
Stop More Bugs with our Code Review Checklist - Fog Creek Blog http://blog.fogcreek.com/increase-defect-detection-with-our-code-review...

1 of 3 3/23/2015 12:37 PM

1

Stop More Bugs with our Code Review Checklist - Fog Creek Blog http://blog.fogcreek.com/increase-defect-detection-with-our-code-review...

2 of 3 3/23/2015 12:37 PM

2

Generic Checklist for Code Reviews

Structure

❏ Does the code completely and correctly implement the design?
❏ Does the code conform to any pertinent coding standards?
❏ Is the code well-structured, consistent in style, and consistently formatted?
❏ Are there any uncalled or unneeded procedures or any unreachable code?
❏ Are there any leftover stubs or test routines in the code?
❏ Can any code be replaced by calls to external reusable components or library functions?
❏ Are there any blocks of repeated code that could be condensed into a single procedure?
❏ Is storage use efficient?
❏ Are symbolics used rather than “magic number” constants or string constants?
❏ Are any modules excessively complex and should be restructured or split into multiple routines?

Documentation

❏ Is the code clearly and adequately documented with an easy-to-maintain commenting style?
❏ Are all comments consistent with the code?

Variables

❏ Are all variables properly defined with meaningful, consistent, and clear names?
❏ Do all assigned variables have proper type consistency or casting?
❏ Are there any redundant or unused variables?

Arithmetic Operations

❏ Does the code avoid comparing floating-point numbers for equality?
❏ Does the code systematically prevent rounding errors?
❏ Does the code avoid additions and subtractions on numbers with greatly different magnitudes?
❏ Are divisors tested for zero or noise?

Loops and Branches

❏ Are all loops, branches, and logic constructs complete, correct, and properly nested?
❏ Are the most common cases tested first in IF- -ELSEIF chains?
❏ Are all cases covered in an IF- -ELSEIF or CASE block, including ELSE or DEFAULT clauses?
❏ Does every case statement have a default?
❏ Are loop termination conditions obvious and invariably achievable?
❏ Are indexes or subscripts properly initialized, just prior to the loop?
❏ Can any statements that are enclosed within loops be placed outside the loops?
❏ Does the code in the loop avoid manipulating the index variable or using it upon exit from the

loop?

Defensive Programming

❏ Are indexes, pointers, and subscripts tested against array, record, or file bounds?
❏ Are imported data and input arguments tested for validity and completeness?
❏ Are all output variables assigned?
❏ Are the correct data operated on in each statement?
❏ Is every memory allocation deallocated?
❏ Are timeouts or error traps used for external device accesses?
❏ Are files checked for existence before attempting to access them?
❏ Are all files and devices are left in the correct state upon program termination?

Copyright © 2001 by Karl E. Wiegers. Permission is granted to use, modify, and distribute this document.

3

Code Review Checklist
http://commondatastorage.googleapis.com/bluelotussoftware/documents/
Code%20Review%20Checklist.docx

Documentation
 All methods are commented in clear language. If it is unclear to the reader, it is unclear to the

user.

 All source code contains @author for all authors.

 @version should be included as required.

 All class, variable, and method modifiers should be examined for correctness.

 Describe behavior for known input corner-cases.

 Complex algorithms should be explained with references. For example, document the reference

that identifies the equation, formula, or pattern. In all cases, examine the algorithm and determine

if it can be simplified.

 Code that depends on non-obvious behavior in external frameworks is documented with

reference to external documentation.

 Confirm that the code does not depend on a bug in an external framework which may be fixed

later, and result in an error condition. If you find a bug in an external library, open an issue, and

document it in the code as necessary.

 Units of measurement are documented for numeric values.

 Incomplete code is marked with //TODO or //FIXME markers.

 All public and private APIs are examined for updates.

Testing
 Unit tests are added for each code path, and behavior. This can be facilitated by tools like Sonar,

and Cobertura.

 Unit tests must cover error conditions and invalid parameter cases.

 Unit tests for standard algorithms should be examined against the standard for expected results.

 Check for possible null pointers are always checked before use.

 Array indices are always checked to avoid ArrayIndexOfBounds exceptions.

 Do not write a new algorithm for code that is already implemented in an existing public framework

API, and tested.

 Ensure that the code fixes the issue, or implements the requirement, and that the unit test

confirms it. If the unit test confirms a fix for issue, add the issue number to the documentation.

Error Handling
 Invalid parameter values are handled properly early in methods (Fast Fail).

4

http://www.sonarsource.org/
http://cobertura.sourceforge.net/

 NullPointerException conditions from method invocations are checked.

 Consider using a general error handler to handle known error conditions.

 An Error handler must clean up state and resources no matter where an error occurs.

 Avoid using RuntimeException, or sub-classes to avoid making code changes to implement

correct error handling.

 Define and create custom Exception sub-classes to match your specific exception conditions.

Document the exception in detail with example conditions so the developer understands the

conditions for the exception.

 (JDK 7+) Use try-with-resources. (JDK < 7) check to make sure resources are closed.

 Don't pass the buck! Don't create classes which throw Exception rather than dealing with

exception condition.

 Don't swallow exceptions! For example catch (Exception ignored) {}. It should at least

log the exception.

Thread Safety
 Global (static) variables are protected by locks, or locking sub-routines.

 Objects accessed by multiple threads are accessed only through a lock, or synchronized

methods.

 Locks must be acquired and released in the right order to prevent deadlocks, even in error

handling code.

Performance
 Objects are duplicated only when necessary. If you must duplicate objects, consider

implementing Clone and decide if deep cloning is necessary.

 No busy-wait loops instead of proper thread synchronization methods. For example,

avoid while(true){ ... sleep(10);...}

 Avoid large objects in memory, or using String to hold large documents which should be handled

with better tools. For example, don't read a large XML document into a String, or DOM.

 Do not leave debugging code in production code.

 Avoid System.out.println(); statements in code, or wrap them in a Boolean condition

statement like if(DEBUG) {...}

 "Optimization that makes code harder to read should only be implemented if a profiler or other

tool has indicated that the routine stands to gain from optimization. These kinds of optimizations

should be well documented and code that performs the same task should be preserved."

— UNKNOWN.

5

Review Information:

Name of Reviewer:

Name of Coder:

File(s) under review:

Brief description of change being reviewed:

Review Notes (problems or decisions):

SVN Versions (if applicable):
Before review:

After revisions:

Coding Standards

 understandable

 adhere code guidelines

 indentation

 no magic numbers

 naming

 units, bounds

 spacing: horizontal (btwn

operators, keywords) and

vertical (btwn methods, blocks)

Comments

 no needless comments

 no obsolete comments

 no redundant comments

 methods document parameters

it modifies, functional

dependencies

 comments consistent in format,

length, level of detail

 no code commented out

Logic

 array indexes within bounds

 conditions correct in ifs, loops

 loops always terminate

 division by zero

 refactor statements in the loop

to outside the loop

Error Handling

 error messages understandable

and complete

 edge cases (null, 0, negative)

 parameters valid

 files, other input data valid

Code Decisions

 code at right level of

abstraction

 methods have appropriate

number, types of parameters

 no unnecessary features

 redundancy minimized

 mutability minimized

 static preferred over nonstatic

 appropriate accessibility

(public, private, etc.)

 enums, not int constants

 defensive copies when needed

 no unnecessary new objects

 variables in lowest scope

 objects referred to by their

interfaces, most generic

supertype

Code Review Checklist

	StopMoreBugsWithOurCodeReviewChecklist_FogCreekBlog_2015-03-23
	WhitePaper-11BestPracticesOfPeerCodeReview_2015-03-23
	CodeReviewChecklist_KarlWiegers_2015-03-23
	CodeReviewChecklist_2015-03-23
	Code Review Checklist
	Documentation
	Testing
	Error Handling
	Thread Safety
	Performance

	12wiCodeReviewChecklist_2015-03-23
	Blank Page

