9/19/22, 9:48 AM Hungarian notation - Wikipedia

WIKIPEDIA

Hungarian notation

Hungarian notation is an identifier naming convention in computer programming, in which the
name of a variable or function indicates its intention or kind, and in some dialects its type. The
original Hungarian notation uses intention or kind in its naming convention and is sometimes called
Apps Hungarian as it became popular in the Microsoft Apps division in the development of Word,
Excel and other apps. As the Microsoft Windows division adopted the naming convention, they used
the actual data type for naming, and this convention became widely spread through the Windows API;

this is sometimes called Systems Hungarian notation.

Hungarian notation was designed to be language-independent, and
found its first major use with the BCPL programming language.
Because BCPL has no data types other than the machine word,
nothing in the language itself helps a programmer remember
variables' types. Hungarian notation aims to remedy this by
providing the programmer with explicit knowledge of each variable's
data type.

In Hungarian notation, a variable name starts with a group of lower-
case letters which are mnemonics for the type or purpose of that
variable, followed by whatever name the programmer has chosen;
this last part is sometimes distinguished as the given name. The first
character of the given name can be capitalized to separate it from
the type indicators (see also CamelCase). Otherwise the case of this
character denotes scope.

Contents

History

Systems Hungarian vs. Apps Hungarian
Relation to sigils

Examples

Advantages

Disadvantages

Notable opinions

See also

References

External links

History

Simonyi: ...BCPL [had] a
single type which was a 16-
bit word... not that it
matters.

Booch: Unless you
continue the Hungarian
notation.

Simonyi: Absolutely... we
went over to the typed
languages too later ... But

. we would look at one
name and I would tell you
exactly a lot about that...[!]

https://en.wikipedia.org/wiki/Hungarian_notation

1/8

9/19/22, 9:48 AM Hungarian notation - Wikipedia

The original Hungarian notation was invented by Charles Simonyi, a programmer who worked at
Xerox PARC circa 1972—1981, and who later became Chief Architect at Microsoft. The name of the
notation is a reference to Simonyi's nation of origin, and also, according to Andy Hertzfeld, because it
made programs "look like they were written in some inscrutable foreign language".!2! Hungarian
people's names are "reversed" compared to most other European names; the family name precedes
the given name. For example, the anglicized name "Charles Simonyi" in Hungarian was originally
"Simonyi Karoly". In the same way, the type name precedes the "given name" in Hungarian notation.
The similar Smalltalk "type last" naming style (e.g. aPoint and lastPoint) was common at Xerox PARC
during Simonyi's tenure there.

Simonyi's paper on the notation referred to prefixes used to indicate the "type" of information being
stored.!314] His proposal was largely concerned with decorating identifier names based upon the
semantic information of what they store (in other words, the variable's purpose). Simonyi's notation
came to be called Apps Hungarian, since the convention was used in the applications division of
Microsoft. Systems Hungarian developed later in the Microsoft Windows development team. Apps
Hungarian is not entirely distinct from what became known as Systems Hungarian, as some of
Simonyi's suggested prefixes contain little or no semantic information (see below for examples). 4]

Systems Hungarian vs. Apps Hungarian

Where Systems notation and Apps notation differ is in the purpose of the prefixes.
In Systems Hungarian notation, the prefix encodes the actual data type of the variable. For example:

= 1AccountNum : variable is a long integer ("1");
= arru8NumberlList : variable is an array of unsigned 8-bit integers ("arru8");
= bReadlLine(bPort,&arru8NumberList) : function with a byte-value return code.

= strName : Variable represents a string ("str") containing the name, but does not specify how that
string is implemented.

Apps Hungarian notation strives to encode the logical data type rather than the physical data type; in
this way, it gives a hint as to what the variable's purpose is, or what it represents.

= rwPosition : variable represents a row ("rw");

= usName : variable represents an unsafe string ("us"), which needs to be "sanitized" before it is
used (e.g. see code injection and cross-site scripting for examples of attacks that can be caused
by using raw user input)

= szName : variable is a zero-terminated string ("sz"); this was one of Simonyi's original suggested
prefixes.

Most, but not all, of the prefixes Simonyi suggested are semantic in nature. To modern eyes, some
prefixes seem to represent physical data types, such as sz for strings. However, such prefixes were
still semantic, as Simonyi intended Hungarian notation for languages whose type systems could not
distinguish some data types that modern languages take for granted.

The following are examples from the original paper:[3!

= pX is a pointer to another type X; this contains very little semantic information.

= d is a prefix meaning difference between two values; for instance, dY might represent a distance
along the Y-axis of a graph, while a variable just called y might be an absolute position. This is

https://en.wikipedia.org/wiki/Hungarian_notation 2/8

9/19/22, 9:48 AM

entirely semantic in nature.

sz is a null- or zero-terminated string. In C, this contains some semantic information because it is
not clear whether a variable of type char* is a pointer to a single character, an array of characters

or a zero-terminated string.

w marks a variable that is a word. This contains essentially no semantic information at all, and

would probably be considered Systems Hungarian.

b marks a byte, which in contrast to w might have semantic information, because in C the only
byte-sized data type is the char, so these are sometimes used to hold numeric values. This prefix
might clear ambiguity between whether the variable is holding a value that should be treated as a

character or a number.

Hungarian notation - Wikipedia

While the notation always uses initial lower-case letters as mnemonics, it does not prescribe the
mnemonics themselves. There are several widely used conventions (see examples below), but any set

of letters can be used, as long as they are consistent within a given body of code.

It is possible for code using Apps Hungarian notation to sometimes contain Systems Hungarian when

describing variables that are defined solely in terms of their type.

Relation to sigils

In some programming languages, a similar notation now called sigils is built into the language and
enforced by the compiler. For example, in some forms of BASIC, name$ names a string and count%
names an integer. The major difference between Hungarian notation and sigils is that sigils declare
the type of the variable in the language, whereas Hungarian notation is purely a naming scheme with

no effect on the machine interpretation of the program text.

Examples

bBusy : boolean

chInitial : char

cApples : count of items

dwLightYears : double word (Systems)

fBusy : flag (or float)

nSize : integer (Systems) or count (Apps)

iSize :integer (Systems) or index (Apps)

fpPrice : floating-point

decPrice : decimal

dbPi : double (Systems)

pFoo : pointer

rgStudents : array, or range

szLastName : zero-terminated string
uléIdentifier : unsigned 16-bit integer (Systems)
u32Identifier : unsigned 32-bit integer (Systems)
stTime : clock time structure

fnFunction : function name

https://en.wikipedia.org/wiki/Hungarian_notation

3/8

9/19/22, 9:48 AM Hungarian notation - Wikipedia

The mnemonics for pointers and arrays, which are not actual data types, are usually followed by the
type of the data element itself:

= pszOwner : pointer to zero-terminated string
= rgfpBalances : array of floating-point values
= aulColors : array of unsigned long (Systems)

While Hungarian notation can be applied to any programming language and environment, it was
widely adopted by Microsoft for use with the C language, in particular for Microsoft Windows, and its
use remains largely confined to that area. In particular, use of Hungarian notation was widely
evangelized by Charles Petzold's "Programming Windows", the original (and for many readers, the
definitive) book on Windows API programming. Thus, many commonly seen constructs of Hungarian
notation are specific to Windows:

= For programmers who learned Windows programming in C, probably the most memorable
examples are the wParam (word-size parameter) and 1Param (long-integer parameter) for the
WindowProc() function.

= hwndFoo : handle to a window
= 1pszBar : long pointer to a zero-terminated string

The notation is sometimes extended in C++ to include the scope of a variable, optionally separated by
an underscore.[5]l8] This extension is often also used without the Hungarian type-specification:

= g nWheels : member of a global namespace, integer
m_nWheels : member of a structure/class, integer
m_wheels, wheels : member of a structure/class
s_wheels : static member of a class

c_wheels : static member of a function

In JavaScript code using jQuery, a $ prefix is often used to indicate that a variable holds a jQuery
object (versus a plain DOM object or some other value).[7]

Advantages

(Some of these apply to Systems Hungarian only.)
Supporters argue that the benefits of Hungarian Notation include:L3!

= The symbol type can be seen from its name. This is useful when looking at the code outside an
integrated development environment — like on a code review or printout — or when the symbol
declaration is in another file from the point of use, such as a function.

= |n a language that uses dynamic typing or that is untyped, the decorations that refer to types
cease to be redundant. In such languages variables are typically not declared as holding a
particular type of data, so the only clue as to what operations can be done on it are hints given by
the programmer, such as a variable naming scheme, documentation and comments. As
mentioned above, Hungarian Notation expanded in such a language (BCPL).

= The formatting of variable names may simplify some aspects of code refactoring (while making
other aspects more error-prone).

https://en.wikipedia.org/wiki/Hungarian_notation 4/8

9/19/22, 9:48 AM Hungarian notation - Wikipedia

= Multiple variables with similar semantics can be used in a block of code: dwWidth, iWidth, fWidth,
dWidth.

= Variable names can be easy to remember from knowing just their types.
= |t leads to more consistent variable names.

= |nappropriate type casting and operations using incompatible types can be detected easily while
reading code.

= |In complex programs with many global objects (VB/Delphi Forms), having a basic prefix notation
can ease the work of finding the component inside of the editor. For example, searching for the
string btn might find all the Button objects.

= Applying Hungarian notation in a narrower way, such as applying only for member variables, helps
avoid naming collision.

= Printed code is more clear to the reader in case of datatypes, type conversions, assignments,
truncations, etc.

Disadvantages

Most arguments against Hungarian notation are against Systems Hungarian notation, not Apps
Hungarian notation. Some potential issues are:

= The Hungarian notation is redundant when type-checking is done by the compiler. Compilers for
languages providing strict type-checking, such as Pascal, ensure the usage of a variable is
consistent with its type automatically; checks by eye are redundant and subject to human error.

= Most modern integrated development environments display variable types on demand, and
automatically flag operations which use incompatible types, making the notation largely obsolete.

= Hungarian Notation becomes confusing when it is used to represent several properties, as in
a_crszkvc30LastNameCol: a constant reference argument, holding the contents of a database
column LastName of type varchar(30) which is part of the table's primary key.

= |t may lead to inconsistency when code is modified or ported. If a variable's type is changed,
either the decoration on the name of the variable will be inconsistent with the new type, or the
variable's name must be changed. A particularly well known example is the standard WPARAM
type, and the accompanying wParam formal parameter in many Windows system function
declarations. The 'w' stands for 'word', where 'word' is the native word size of the platform's
hardware architecture. It was originally a 16 bit type on 16-bit word architectures, but was
changed to a 32-bit on 32-bit word architectures, or 64-bit type on 64-bit word architectures in
later versions of the operating system while retaining its original name (its true underlying type is
UINT_PTR, that is, an unsigned integer large enough to hold a pointer). The semantic impedance,
and hence programmer confusion and inconsistency from platform-to-platform, is on the
assumption that 'w' stands for a two byte, 16-bit word in those different environments.

= Most of the time, knowing the use of a variable implies knowing its type. Furthermore, if the usage
of a variable is not known, it cannot be deduced from its type.

= Hungarian notation reduces the benefits of using code editors that support completion on variable
names, for the programmer has to input the type specifier first, which is more likely to collide with
other variables than when using other naming schemes.

= |t makes code less readable, by obfuscating the purpose of the variable with type and scoping
prefixes.[8!

= The additional type information can insufficiently replace more descriptive names. E.g. sDatabase
does not tell the reader what it is. databaseName might be a more descriptive name.

= When names are sufficiently descriptive, the additional type information can be redundant. E.g.
firstName is most likely a string. So naming it sFirstName only adds clutter to the code.

https://en.wikipedia.org/wiki/Hungarian_notation 5/8

9/19/22, 9:48 AM Hungarian notation - Wikipedia

= lIt's harder to remember the names.

= Multiple variables with different semantics can be used in a block of code with similar names:
dwTmp, iTmp, fTmp, dTmp.

= Placing data type or intent character identifiers as a prefix to the field or variable's Given name

subverts the ability, in some programming environments, to jump to a field or variable name,
alphabetically, when the user begins typing the name. FileMaker, [¥] for example, is one such
programming environment. It may be preferable when using one of these programming
environments to instead suffix Given names with such identifying characters.

Notable opinions

= Robert Cecil Martin (against Hungarian notation and all other forms of encoding):

. nowadays HN and other forms of type encoding are simply impediments. They
make it harder to change the name or type of a variable, function, member or class.
They make it harder to read the code. And they create the possibility that the encoding
system will mislead the reader.['%]

= Linus Torvalds (against Systems Hungarian):

Encoding the type of a function into the name (so-called Hungarian notation) is brain
damaged—the compiler knows the types anyway and can check those, and it only
confuses the programmer.[1]

= Steve McConnell (for Apps Hungarian):

Although the Hungarian naming convention is no longer in widespread use, the basic
idea of standardizing on terse, precise abbreviations continues to have value.
Standardized prefixes allow you to check types accurately when you're using abstract
data types that your compiler can't necessarily check.!12]

= Bjarne Stroustrup (against Systems Hungarian for C++):

No | don't recommend 'Hungarian'. | regard 'Hungarian' (embedding an abbreviated
version of a type in a variable name) as a technique that can be useful in untyped
languages, but is completely unsuitable for a language that supports generic
programming and object-oriented programming — both of which emphasize selection
of operations based on the type and arguments (known to the language or to the run-
time support). In this case, 'building the type of an object into names' simply
complicates and minimizes abstraction.[13]

= Joel Spolsky (for Apps Hungarian):

https://en.wikipedia.org/wiki/Hungarian_notation

6/8

9/19/22, 9:48 AM Hungarian notation - Wikipedia

If you read Simonyi's paper closely, what he was getting at was the same kind of
naming convention as | used in my example above where we decided that us meant
unsafe string and s meant safe string. They're both of type string. The compiler won't
help you if you assign one to the other and Intellisense [an Intelligent code completion
system] won't tell you bupkis. But they are semantically different. They need to be
interpreted differently and treated differently and some kind of conversion function will
need to be called if you assign one to the other or you will have a runtime bug. If you're
lucky. There's still a tremendous amount of value to Apps Hungarian, in that it
increases collocation in code, which makes the code easier to read, write, debug and
maintain, and, most importantly, it makes wrong code look wrong.... (Systems
Hungarian) was a subtle but complete misunderstanding of Simonyi’'s intention and
practice.[]

= Microsoft's Design Guidelines!'#! discourage developers from using Systems Hungarian notation
when they choose names for the elements in .NET class libraries, although it was common on
prior Microsoft development platforms like Visual Basic 6 and earlier. These Design Guidelines
are silent on the naming conventions for local variables inside functions.

See also

= Leszynski naming convention, Hungarian notation for database development
= Polish notation
= PascalCase

References

1. "Oral History of Charles Simonyi" (http://archive.computerhistory.org/resources/access/text/2015/0
6/102702232-05-01-acc.pdf) (PDF). Archive.computerhistory.org\accessdate=5 August 2018.

2. Rosenberg, Scott (1 January 2007). "Anything You Can Do, | Can Do Meta" (https://www.technolo
gyreview.com/2007/01/01/227178/anything-you-can-do-i-can-do-meta/). MIT Technology Review.
Retrieved 21 July 2022.

3. Charles Simonyi (November 1999). "Hungarian Notation" (http://msdn2.microsoft.com/en-us/librar
y/aa260976(VS.60).aspx). MSDN Library. Microsoft Corp.

4. Spolsky, Joel (2005-05-11). "Making Wrong Code Look Wrong" (http://www.joelonsoftware.com/art
icles/Wrong.html). Joel on Software. Retrieved 2005-12-13.

5. "Mozilla Coding Style" (https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding
_ Style#Prefixes). Developer.mozilla.org. Retrieved 17 March 2015.

6. "Webkit Coding Style Guidelines" (http://www.webkit.org/coding/coding-style.html#names-data-me
mbers). Webkit.org. Retrieved 17 March 2015.

7. "Why would a JavaScript variable start with a dollar sign?" (https://stackoverflow.com/questions/20
5853/why-would-a-javascript-variable-start-with-a-dollar-sign). Stack Overflow. Retrieved
12 February 2016.

8. Jones, Derek M. (2009). The New C Standard: A Cultural and Economic Commentary (http://ww
w.coding-guidelines.com/cbook/cbook1_2.pdf) (PDF). Addison-Wesley. p. 727. ISBN 978-0-201-
70917-9.

9. "Make an app for any task - FileMaker — An Apple Subsidiary" (http://www.filemaker.com).
Filemaker.com. Retrieved 5 August 2018.

https://en.wikipedia.org/wiki/Hungarian_notation 7/8

9/19/22, 9:48 AM Hungarian notation - Wikipedia
10. Martin, Robert Cecil (2008). Clean Code: A Handbook of Agile Software Craftsmanship.
Redmond, WA: Prentice Hall PTR. ISBN 978-0-13-235088-4.
11. "Linux kernel coding style" (https://www.kernel.org/doc/html/v4.10/process/coding-style.html).
Linux kernel documentation. Retrieved 9 March 2018.

12. McConnell, Steve (2004). Code Complete (2nd ed.). Redmond, WA: Microsoft Press. ISBN 0-
7356-1967-0.

13. Stroustrup, Bjarne (2007). "Bjarne Stroustrup's C++ Style and Technique FAQ" (http://www.stroust
rup.com/bs_fag2.html#Hungarian). Retrieved 15 February 2015.

14. "Design Guidelines for Developing Class Libraries: General Naming Conventions" (http://msdn2.m
icrosoft.com/en-us/library/ms229045.aspx). Retrieved 2008-01-03.

External links

= Meta-Programming: A Software Production Method (https://web.archive.org/web/2018051904212
2/http://www.parc.com/publication/1940/meta-programming.html) Charles Simonyi, December
1976 (PhD Thesis)

= Hugarian notation - it's my turn now :) (https://blogs.msdn.microsoft.com/larryosterman/2004/06/2
2/hugarian-notation-its-my-turn-now/) — Larry Osterman's WeblLog

= Hungarian Notation (http://msdn.microsoft.com/en-us/library/aa260976%28VS.60%29.aspx)
(MSDN)

= HTML version of Doug Klunder's paper (http://www.byteshift.de/msg/hungarian-notation-doug-klun
der)
= RVBA Naming Conventions (http://www.xoc.net/standards/rvbanc.asp)

» Coding Style Conventions (http://msdn.microsoft.com/en-us/library/aa378932%28VS.85%29.asp
x) (MSDN)

Retrieved from "https://en.wikipedia.org/w/index.php?titte=Hungarian_notation&oldid=1106746644"

https://en.wikipedia.org/wiki/Hungarian_notation 8/8

