
Chapter 3: Adding Logic and Control to Your Programs 97

Functions: Turn
Useful Code Into

Reusable Commands

3. Place the cursor before the first line of code (the line that begins with var
luckyNumber) and type:

do {

This code creates the beginning of the loop. Next, you’ll finish the loop and add
the test condition.

4. Click at the end of the last line of JavaScript code in that section and type:
} while (isNaN(luckyNumber));. The completed code block should look like this:

do {

 var luckyNumber = prompt('What is your lucky number?','');

 luckyNumber = parseInt(luckyNumber, 10);

} while (isNaN(luckyNumber));

Save this file and preview it in a Web browser. Try typing text and other non-
numeric symbols in the prompt dialog. That annoying dialog continues to appear
until you actually type a number.

Here’s how it works: the do keyword tells the JavaScript interpreter that it’s about
to enter a do/while loop. The next two lines are then run, so the prompt appears
and the visitor’s answer is converted to a whole number. It’s only at this point that
the condition is tested. It’s the same condition as the script on page 89: it just
checks to see if the input retrieved from the visitor is “not a number.” If the input
isn’t a number, the loop repeats. In other words, the prompt will keep reappearing
as long as a nonnumber is entered. The good thing about this approach is that it
guarantees that the prompt appears at least once, so if the visitor does type a num-
ber in response to the question, there is no loop.

Functions: Turn Useful Code Into Reusable
Commands
Imagine that at work you’ve just gotten a new assistant to help you with your every
task (time to file this book under “fantasy fiction”). Suppose you got hungry for a
piece of pizza, but since the assistant was new to the building and the area, you had
to give him detailed directions: “Go out this door, turn right, go to the elevator,
take the elevator to the first floor, walk out of the building…” and so on. The assis-
tant follows your directions and brings you a slice. A couple hours later you’re
hungry again, and you want more pizza. Now, you don’t have to go through the
whole set of directions again— “Go out this door, turn right, go to the eleva-
tor…”. By this time, your assistant knows where the pizza joint is, so you just say,
“Get me a slice of pizza,” and he goes to the pizza place and returns with a slice.

In other words, you only need to provide detailed directions a single time; your
assistant memorizes those steps and with the simple phrase “Get me a slice” he
instantly leaves and reappears a little while later with a piece of pizza. JavaScript
has an equivalent mechanism called a function. A function is a series of program-
ming steps that you set up at the beginning of your script—the equivalent of

98 JavaScript: The Missing Manual

Functions: Turn
Useful Code Into
Reusable Commands

providing detailed directions to your assistant. Those steps aren’t actually run
when you create the function; instead, they’re stored in the Web browser’s mem-
ory, where you can call upon them whenever you need those steps performed.

Functions are invaluable for efficiently performing multiple programming steps
repeatedly: for example, say you create a photo gallery Web page filled with 50
small thumbnail images. When someone clicks one of the small photos, you might
want the page to dim, a caption to appear, and a larger version of that image to fill
the screen (you’ll learn to do just that on page 254). Each time someone clicks an
image, the process repeats, so on a Web page with 50 small photos, your script
might have to do the same series of steps 50 times. Fortunately, you don’t have to
write the same code 50 times to make this photo gallery work. Instead, you can
write a function with all the necessary steps, and then, with each click of the
thumbnail, you run the function. You write the code once, but run it any time you
like.

The basic structure of a function looks like this:

function functionName() {

 // the JavaScript you want to run

}

The keyword function lets the JavaScript interpreter know you’re creating a func-
tion—it’s similar to how you use if to begin an if/else statement or var to create a
variable. Next you provide a function name; as with a variable, you get to choose
your own function name. Follow the same rules listed on page 44 for naming vari-
ables. In addition, it’s common to include a verb in a function name like calculateTax,
getScreenHeight, updatePage, or fadeImage. An active name makes it clear that it
does something and makes it easier to distinguish between function and variable
names.

Directly following the name, you add a pair of parentheses, which are another
characteristic of functions. After the parentheses, there’s a space followed by a
curly brace, one or more lines of JavaScript and a final, closing curly brace. As with
if statements, the curly braces mark the beginning and end of the JavaScript code
that make up the function.

Tip: As with if/else statements, functions are more easily read if you indent the JavaScript code between
the curly braces. Two spaces (or a tab) at the beginning of each line are common.

Here’s a very simple function to print out the current date in a format like “Sun
May 12 2008”:

function printToday() {

 var today = new Date();

 document.write(today.toDateString());

}

Chapter 3: Adding Logic and Control to Your Programs 99

Functions: Turn
Useful Code Into

Reusable Commands

The function’s name is printToday. It has just two lines of JavaScript code that
retrieve the current date, convert the date to a format we can understand (that’s
the toDateString() part), and then print the results to the page using our old friend
the document.write() command. Don’t worry about how all of the date stuff
works—you’ll find out in the next chapter.

Programmers usually put their functions at the beginning of a script, which sets up
the various functions that the rest of the script will use later. Remember that a
function doesn’t run when it’s first created—it’s like telling your assistant how to
get to the pizza place without actually sending him there. The JavaScript code is
merely stored in the browser’s memory, waiting to be run later, when you need it.

But how do you run a function? In programming-speak you call the function
whenever you want the function to perform its task. Calling the function is just a
matter of writing the function’s name, followed by a pair of parentheses. For
example, to make our printToday function run, you’d simply type:

printToday();

As you can see, making a function run doesn’t take a lot of typing—that’s the
beauty of functions. Once they’re created, you don’t have to add much code to get
results.

Note: When calling a function, don’t forget the parentheses following the function. That’s the part that
makes the function run. For example, printToday won’t do anything, but printToday() executes the function.

Mini-Tutorial
Because functions are such an important concept, here’s a series of steps for you to
practice creating and using a function on a real Web page:

1. In a text editor, open the file 3.2.html.

You’ll start by adding a function in the head of the document.

2. Locate the code between the <script> tags in the <head> of the page, and type
the following code:

function printToday() {

 var today = new Date();

 document.write(today.toDateString());

}

The basic function is in place, but it doesn’t do anything yet.

3. Save the file and preview it in a Web browser.

Nothing happens. Well, actually something does happen; you just don’t see it.
The Web browser read the function statements into memory, and was waiting
for you to actually call the function, which you’ll do next.

100 JavaScript: The Missing Manual

Functions: Turn
Useful Code Into
Reusable Commands

4. Return to your text editor and the 3.2.html file. Locate the <p> tag that begins
with “Today is”, and between the two tags, add the following bolded
code:

<p>Today is <script type="text/javascript">printToday();↵
</script></p>

Note: Remember, when you see the ↵ character, that just means the full line of code wouldn’t fit across
the page of this book. You just type the code on one line in your text editor. Don’t start a new line, and
don’t attempt to type a ↵ character.

Save the page and preview it in a Web browser. The current date is printed to the
page. If you wanted to print the date at the bottom of the Web page as well, all
you’d need to do is call the function a second time.

Giving Information to Your Functions
Functions are even more useful when they receive information. Think back to your
assistant—the fellow who fetches you slices of pizza. The original “function”
described on page 97 was simply directions to the pizza parlor and instructions to
buy a slice and return to the office. When you wanted some pizza, you “called” the
function by telling your assistant “Get me a slice!” Of course, depending on how
you’re feeling, you might want a slice of pepperoni, cheese, or olive pizza. To make
your instructions more flexible, you can tell your assistant what type of slice you’d
like. Each time you request some pizza, you can specify a different type.

JavaScript functions can also accept information, called parameters, which the
function uses to carry out its actions. For example, if you want to create a function
that calculates the total cost of a person’s shopping cart, then the function needs to
know how much each item costs, and how many of each item was ordered.

To start, when you create the function, place the name of a new variable inside the
parentheses—this is the parameter. The basic structure looks like this:

function functionName(parameter) {

 // the JavaScript you want to run

}

The parameter is just a variable, so you supply any valid variable name (see page 44
for tips on naming variables). For example, let’s say you want to save a few key-
strokes each time you print something to a Web page. You create a simple func-
tion that lets you replace the Web browser’s document.write() function with a
shorter name:

function print(message) {

 document.write(message);

}

Chapter 3: Adding Logic and Control to Your Programs 101

Functions: Turn
Useful Code Into

Reusable Commands

The name of this function is print and it has one parameter, named message. When
this function is called, it receives some information (the message to be printed)
and then it uses the document.write() function to write the message to the page. Of
course, a function doesn’t do anything until it’s called, so somewhere else on your
Web page, you can call the function like this:

print('Hello world.');

When this code is run, the print function is called and some text—the string 'Hello
world.'—is sent to the function, which then prints “Hello World.” to the page.
Technically, the process of sending information to a function is called “passing an
argument.” In this example, the text—'Hello world.'—is the argument.

Even with a really simple function like this, the logic of when and how things work
can be a little confusing if you’re new to programming. Here’s how each step
breaks down, as shown in the diagram in Figure 3-5:

1. The function is read by the JavaScript interpreter and stored in memory. This
step just prepares the Web browser to run the function later.

2. The function is called and information—“Hello world.”—is passed to the
function.

3. The information passed to the function is stored in a new variable named mes-
sage. This step is equivalent to var message = 'Hello World.';

4. Finally, the function runs, printing the value stored in the variable message to
the Web page.

A function isn’t limited to a single parameter, either. You can pass any number of
arguments to a function. You just need to specify each parameter in the function,
like this:

function functionName(parameter1, parameter2, parameter3) {

 // the JavaScript you want to run

}

And then call the function with the same number of arguments in the same order:

functionName(argument1, argument2, argument3);

Figure 3-5:
When working with functions, you usually create the
function before you use it. The print() function here is
created in the first three lines of code, but the code inside
the function doesn’t actually run until the last line.

102 JavaScript: The Missing Manual

Functions: Turn
Useful Code Into
Reusable Commands

In this example, when functionName is called, argument1 is stored in parameter1,
argument2 in parameter2, and so on. Expanding on the print function from above,
suppose in addition to printing a message to the Web page, you want to specify an
HTML tag to wrap around the message. This way, you can print the message as a
headline or a paragraph. Here’s what the new function would look like:

function print(message,tag) {

 document.write('<' + tag + '>' + message +'</' + tag + '>');

}

The function call would look like this:

print('Hello world.', 'p');

In this example, you’re passing two arguments—'Hello world.' and 'p'—to the
function. Those values are stored in the function’s two variables—message and tag.
The result is a new paragraph—<p>Hello world.</p>—printed to the page.

You’re not limited to passing just strings to a function either: you can send any
type of JavaScript variable or value to a function. For example, you can send an
array, a variable, a number, or a Boolean value as an argument.

Retrieving Information from Functions
Sometimes a function simply does something like write a message to a page, move
an object across the screen, or validate the form fields on a page. Other times,
you’ll want to get something back from a function: after all, the “Get me a slice of
pizza” function wouldn’t be much good if you didn’t end up with some tasty pizza
at the end. Likewise, a function that calculates the total cost of items in a shopping
cart isn’t very useful unless the function lets you know the final total.

Some of the built-in JavaScript functions we’ve already seen return values. For
example the prompt() command (see page 55) pops up a dialog box with a text
field, whatever the user types in to the box is returned. As you’ve seen, you can
then store that return value into a variable and do something with it:

var answer = prompt('What month were you born?', '');

The visitor’s response to the prompt dialog is stored in the variable answer; you
can then test the value inside that variable using conditional comments or do any
of the many other things JavaScript lets you do with variables.

To return a value from your own functions, you use return followed by the value
you wish to return:

function functionName(parameter1, parameter2) {

 // the JavaScript you want to run

 return value;

}

Chapter 3: Adding Logic and Control to Your Programs 103

Functions: Turn
Useful Code Into

Reusable Commands

For example, say you want to calculate the total cost of a sale including sales tax.
You might create a script like this:

var TAX = .08; // 8% sales tax

function calculateTotal(quantity, price) {

 var total = quantity * price * (1 + TAX);

 var formattedTotal = total.toFixed(2);

 return formattedTotal;

}

The first line stores the tax rate into a variable named TAX (which lets you easily
change the rate simply by updating this line of code). The next three lines define
the function. Don’t worry too much about what’s happening inside the function—
you’ll learn more about working with numbers in the next chapter. The important
part is the fourth line of the function—the return statement. It returns the value
stored in the variable formattedTotal.

To make use of the return value you usually store it inside a variable, so in this
example, you could call the function like this:

var saleTotal = calculateTotal(2, 16.95);

document.write('Total cost is: $' + saleTotal);

In this case, the values 2 and 16.95 are passed to the function. The first number
represents the number of items purchased, and the second their individual cost.
The result is returned from the function and stored into a new variable—sale-
Total—which is then used as part of a document.write() command to print the
total cost of the sale including tax.

You don’t have to store the return value into a variable, however. You can use the
return value directly within another statement like this:

document.write('Total: $' + calculateTotal(2, 16.95));

In this case, the function is called and its return value is added to the string 'Total:
$', which is then printed to the document. At first, this way of using a function
may be hard to read, so you might want to take the extra step of just storing the
function’s results into a variable and then using that variable in your script.

Tip: A function can only return one value. If you want to return multiple items, store the results in an
array and return the array.

Keeping Variables from Colliding
One great advantage of functions is that they can cut down the amount of pro-
gramming you have to do. You’ll probably find yourself using a really useful func-
tion time and time again on different projects. For example, a function that helps
calculate shipping and sales tax could come in handy on every order form you cre-
ate, so you might copy and paste that function into other scripts on your site or on
other projects.

104 JavaScript: The Missing Manual

Functions: Turn
Useful Code Into
Reusable Commands

One potential problem arises when you just plop a function down into an already
created script. What happens if the script uses the same variable names as the func-
tion? Will the function overwrite the variable from the script, or vice versa? For
example:

var message = 'Outside the function';

function warning(message) {

 alert(message);

}

warning('Inside the function'); // 'Inside the function'

alert(message); // 'Outside the function'

Notice that the variable message appears both outside the function (the first line of
the script) and as a parameter in the function. A parameter is really just a variable
that’s filled with data when the function’s called. In this case, the function call—
warning('Inside the function');—passes a string to the function and the function
stores that string in the variable message. It looks like there are now two versions of
the variable message. So what happens to the value in the original message variable
that’s created in the first line of the script?

You might think that the original value stored in message is overwritten with a new
value, the string 'Outside the function'; it’s not. When you run this script, you’ll
see two alert dialogues: the first will say “Inside the function” and the second
“Outside the function.” There are actually two variables named message, but they
exist in separate places (see Figure 3-6).

The JavaScript interpreter treats variables inside of a function differently than vari-
ables declared and created outside of a function. In programming-speak, each
function has its own scope. A function’s scope is like a wall that surrounds the
function—variables inside the wall aren’t visible to the rest of the script outside the
wall. Scope is a pretty confusing concept when you first learn about it, but it’s very
useful. Because a function has its own scope, you don’t have to be afraid that the
names you use for parameters in your function will overwrite or conflict with vari-
ables used in another part of the script.

Figure 3-6:
A function parameter is only visible inside the
function, so the first line of this function—function
warning(message)—will create a new variable
named message that can only be accessed inside
the function. Once the function is done, that
variable disappears.

Chapter 3: Adding Logic and Control to Your Programs 105

Functions: Turn
Useful Code Into

Reusable Commands

So far, the only situation we’ve discussed is the use of variables as parameters. But
what about a variable that’s created inside the function, but not as a parameter,
like this:

var message = 'Outside the function';

function warning() {

 var message ='Inside the function';

 alert(message);

}

warning(); // 'Inside the function'

alert(message); //'Outside the function'

Here, the code creates a message variable twice—in the first line of the script, and
again in the first line inside the function. This situation is the same as with param-
eters—by typing var message inside the function, you’ve created a new variable
inside the function’s scope. This type of variable is called a local variable, since it’s
only visible within the walls of the function—the main script and other functions
can’t see or access this variable.

However, variables created in the main part of a script (outside a function) exist in
global scope. All functions in a script can access variables that are created in its
main body. For example, in the code below, the variable message is created on the
first line of the script—it’s a global variable, and it can be accessed by the function.

var message = 'Global variable';

function warning() {

 alert(message);

}

warning(); // 'Global variable'

This function doesn’t have any parameters and doesn’t define a message variable,
so when the alert(message) part is run, the function looks for a global variable
named message. In this case, that variable exists, so an alert dialog with the text
“Global variable” appears.

There’s one potential gotcha with local and global variables—a variable only exists
within the function’s scope if it’s a parameter, or if the variable is created inside the
function with the var keyword. Figure 3-7 demonstrates this situation. The top
chunk of code demonstrates how both a global variable named message and a func-
tion’s local variable named message can exist side-by-side. The key is the first line
inside the function—var message ='Inside the function';. By using var, you create a
local variable.

Compare that to the code in the bottom half of Figure 3-7. In this case, the func-
tion doesn’t use the var keyword. Instead, the line of code message='Inside the
function'; doesn’t create a new local variable; it simply stores a new value inside the
global variable message. The result? The function clobbers the global variable,
replacing its initial value.

106 JavaScript: The Missing Manual

Tutorial: A Simple
Quiz

The notion of variable scope is pretty confusing, so the preceding discussion may
not make a lot of sense for you right now. But just keep one thing in mind: if the
variables you create in your scripts don’t seem to be holding the values you expect,
you might be running into a scope problem. If that happens, come back and reread
this section.

Tutorial: A Simple Quiz
Now it’s time to bring together the lessons from this chapter and create a com-
plete program. In this tutorial, you’ll create a simple quiz system for asking ques-
tions and evaluating the quiz-taker’s performance. First, this section will look at a
couple of ways you could solve this problem, and discuss efficient techniques for
programming.

As always, the first step is to figure out what exactly the program should do. There
are a few things you want the program to accomplish:

• Ask questions. If you’re going to quiz people, you need a way to ask them ques-
tions. At this point, you know one simple way to get feedback on a Web page:
the prompt() command. In addition, you’ll need a list of questions; since arrays
are good for storing lists of information, you’ll use an array to store your quiz
questions.

Figure 3-7:
There’s a subtle yet crucial
difference when assigning values to
variables within a function. If you
want the variable to only be
accessible to the code inside the
function, make sure to use the var
keyword to create the variable
inside the function (top). If you
don’t use var, you’re just storing a
new value inside the global
variable (bottom).

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgements
	The Missing Manual Series

	Introduction
	What Is JavaScript?
	A Bit of History
	JavaScript Is Everywhere
	JavaScript Doesn’t Stand Alone

	HTML: The Barebones Structure
	How HTML Tags Work

	CSS: Adding Style to Web Pages
	Anatomy of a Style

	Software for JavaScript Programming
	Free Programs
	Commercial Software

	About This Book
	This Book’s Approach to JavaScript
	About the Outline
	Living Examples
	About MissingManuals.com

	The Very Basics
	About › These › Arrows
	Safari® Books Online

	Chapter 1. Writing Your First JavaScript Program
	Introducing Programming
	What’s a Computer Program?

	How to Add JavaScript to a Page
	External JavaScript Files

	Your First JavaScript Program
	Writing Text on a Web Page
	Attaching an External JavaScript File
	Tracking Down Errors
	The Firefox JavaScript Console
	Displaying the Internet Explorer Error Dialog Box
	Accessing the Safari Error Console

	Chapter 2. The Grammar of JavaScript
	Statements
	Commands
	Types of Data
	Numbers
	Strings
	Booleans

	Variables
	Creating a Variable
	Using Variables

	Working with Data Types and Variables
	Basic Math
	The Order of Operations
	Combining Strings
	Combining Numbers and Strings
	Changing the Values in Variables

	Tutorial: Using Variables to Create Messages
	Tutorial: Asking for Information
	Arrays
	Creating an Array
	Accessing Items in an Array
	Adding Items to an Array
	Adding an item to the end of an array
	Adding an item to the beginning of an array
	Choosing how to add items to an array

	Deleting Items from an Array
	Adding and Deleting with splice(��)
	Deleting items with splice(��)
	Adding items with splice(��)
	Replacing items with splice(��)

	Tutorial: Writing to a Web Page Using Arrays
	Comments
	When to Use Comments
	Comments in this Book

	Chapter 3. Adding Logic and Control to Your Programs
	Making Programs React Intelligently
	Conditional Statement Basics
	Adding a Backup Plan
	Testing More Than One Condition
	More Complex Conditions
	Making sure more than one condition is true
	Making sure at least one condition is true
	Negating a condition

	Nesting Conditional Statements
	Tips for Writing Conditional Statements

	Tutorial: Using Conditional Statements
	Handling Repetitive Tasks with Loops
	While Loops
	Loops and Arrays
	For Loops
	Do/While Loops

	Functions: Turn Useful Code Into Reusable Commands
	Mini-Tutorial
	Giving Information to Your Functions
	Retrieving Information from Functions
	Keeping Variables from Colliding

	Tutorial: A Simple Quiz

	Chapter 4. Working with Words, Numbers, and Dates
	A Quick Object Lesson
	Strings
	Determining the Length of a String
	Changing the Case of a String
	Searching a String: indexOf(��) Technique
	Extracting Part of a String with slice(��)

	Finding Patterns in Strings
	Creating and Using a Basic Regular Expression
	Building a Regular Expression
	Grouping Parts of a Pattern
	Useful Regular Expressions
	U.S. Zip code
	U.S. phone number
	Email address
	Date
	Web address

	Matching a Pattern
	Matching every instance of a pattern

	Replacing Text
	Trying Out Regular Expressions

	Numbers
	Changing a String to a Number
	Testing for Numbers
	Rounding Numbers
	Formatting Currency Values
	Creating a Random Number
	Randomly selecting an array element
	A function for selecting a random number

	Dates and Times
	Getting the Month
	Getting the Day of the Week
	Getting the Time
	Changing hours to a.m. and p.m.
	Padding single digits

	Creating a Date Other Than Today
	Creating a date that’s one week from today

	Tutorial
	Overview
	Writing the Function

	Chapter 5. Dynamically Modifying Web Pages
	Modifying Web Pages: An Overview
	Understanding the Document Object Model
	Selecting a Page Element
	getElementById(��)
	getElementsByTagName(��)
	Selecting nearby nodes

	Adding Content to a Page
	The Moon Quiz Revisited
	The Problem with the DOM

	Introducing JavaScript Libraries
	Getting Started with jQuery

	Selecting Page Elements (Revisited)
	Basic Selectors
	ID selectors
	Element selectors
	Class selectors

	Advanced Selectors
	jQuery Filters
	Understanding jQuery Selections
	Automatic loops
	Chaining functions

	Adding Content to a Page
	Replacing and Removing Selections

	Setting and Reading Tag Attributes
	Classes
	Reading and Changing CSS Properties
	Changing Multiple CSS Properties at Once

	Reading, Setting, and Removing HTML Attributes
	Creative Headlines
	Acting on Each Element in a Selection
	Anonymous Functions
	this and $(this)

	Automatic Pull Quotes
	Overview
	Programming

	Chapter 6. Action/Reaction: Making Pages Come Alive with Events
	What Are Events?
	Mouse Events
	Document/Window Events
	Form Events
	Keyboard Events

	Using Events with Functions
	Inline Events
	The Traditional Model
	The Modern Way
	The jQuery Way

	Tutorial: Highlighting Table Rows
	More jQuery Event Concepts
	Waiting for the HTML to Load
	jQuery Events
	The hover(��) event
	The toggle(��) Event

	The Event Object
	Stopping an Event’s Normal Behavior
	Removing Events

	Advanced Event Management
	Tutorial: A One-Page FAQ
	Overview of the Task
	The Programming

	Chapter 7. Improving Your Images
	Swapping Images
	Changing an Image’s src Attribute
	Preloading Images
	Rollover Images

	Tutorial: Adding Rollover Images
	Overview of the Task
	The Programming

	jQuery Effects
	Basic Showing and Hiding
	Fading Elements In and Out
	Sliding Elements
	Animation

	Tutorial: Photo Gallery with Effects
	Overview of Task
	The Programming

	Advanced Gallery with jQuery lightBox
	The Basics
	Customizing lightBox
	lightBox options
	lightBox images
	lightBox CSS

	Tutorial: lightBox Photo Gallery
	Animated Slideshows with Cycle
	The Basics
	Customizing the Cycle Plug-in
	Effects
	Speed
	Navigating slides
	Starting and stopping the slideshow

	Tutorial: An Automated Slideshow

	Chapter 8. Improving Navigation
	Some Link Basics
	Selecting Links with JavaScript
	Determining a Link’s Destination
	Don’t Follow That Link

	Opening External Links in a New Window
	Creating New Windows
	Window Properties
	Use the window reference
	Events that can open a new window

	Opening Pages in a Window on the Page
	Customizing the Look of a Greybox Window
	Tutorial: Opening a Page Within a Page

	Tutorial: Making Bigger Links
	Overview
	The Programming

	Animated Navigation Menus
	The HTML
	The CSS
	The JavaScript
	The Tutorial

	Chapter 9. Enhancing Web Forms
	Understanding Forms
	Selecting Form Elements
	Getting and Setting the Value of a Form Element
	Determine Whether Buttons and Boxes Are Checked
	Form Events
	Submit
	Focus
	Blur
	Click
	Change

	Adding Smarts to Your Forms
	Focus the First Field in a Form
	Disabling and Enabling Fields
	Hiding and Showing Form Options

	Tutorial: Basic Form Enhancements
	Focusing a Field
	Disabling Form Fields
	Hiding Form Fields

	Form Validation
	jQuery Validation Plug-in
	Basic Validation
	Adding validation rules
	Adding error messages

	Advanced Validation
	Advanced rules
	Advanced error messages

	Styling Error Messages

	Validation Tutorial
	Basic Validation
	Advanced Validation
	Validating Checkboxes and Radio Buttons
	Formatting the Error Messages

	Chapter 10. Expanding Your Interface
	Hiding Information with Accordion Panels
	Customizing an Accordion
	Accordion Tutorial

	Organizing Information in Tabbed Panels
	Formatting Tabs and Panels
	A required class style
	The tab group
	Tabs
	Panels

	Customizing the Tabs Plug-in
	Selecting a tab when the page loads
	Using a different event to open a panel
	Automating the display of panels

	Tabbed Panels Tutorial

	Tooltips
	Tooltips Using the Title Attribute
	Tooltips Using Another Web Page
	Tooltips Using Hidden Content
	Controlling the Display of Tooltips
	Formatting Tooltips
	Cluetip Tutorial
	Adding a tooltip using the title attribute
	Adding a tooltip using another Web page
	Adding a tooltip using HTML on the page

	Creating Sortable Tables
	Styling the Table
	Using the Tablesorter plug-in to stripe tables

	Tablesorter Tutorial

	Chapter 11. Introducing Ajax
	What Is Ajax?
	Ajax: The Basics
	Pieces of the Puzzle
	Talking to the Web Server

	Ajax the jQuery Way
	Using the load(��) Function
	Tutorial: The load(��) Function
	Overview
	The programming

	The get(��) and post(��) Functions
	Formatting Data to Send to the Server
	Query string
	Object literal
	jQuery’s serialize(��) function

	Processing Data from the Server
	Tutorial: Using the post(��) Function
	Overview
	The programming

	JSON
	Accessing JSON Data
	Complex JSON Objects

	Chapter 12. Basic Ajax Programming
	Tabs Plug-in
	Changing the Loading Text and Icon
	Turning off the “Loading” message

	Ajax Tabs Tutorial

	Adding Google Maps to Your Site
	Setting a Location for the Map
	Other jMap Options
	Adding Markers and HTML Bubbles
	Get Driving Directions
	jMaps Tutorial

	Chapter 13. Troubleshooting and Debugging
	Top JavaScript Programming Mistakes
	Non-Closed Pairs
	Quotation Marks
	Using Reserved Words
	Single Equals in Conditional Statements
	Case-Sensitivity
	Incorrect Path to External JavaScript File
	Incorrect Paths Within External JavaScript Files
	Disappearing Variables and Functions

	Debugging with Firebug
	Installing and Turning On Firebug
	Viewing Errors with Firebug
	Using console.log(��) to Track Script Progress
	Tutorial: Using the Firebug Console
	More Powerful Debugging
	Controlling your script with the debugger
	Watching your script

	Debugging Tutorial

	Chapter 14. Going Further with JavaScript
	Putting It All Together
	Using External JavaScript Files

	Writing More Efficient JavaScript
	Put Preferences in Variables
	Ternary Operator
	The Switch Statement
	Using the jQuery Object Efficiently

	Creating Fast-Loading JavaScript
	Using YUI Compressor for Windows
	Using YUI Compressor for Mac

	Appendix A. JavaScript Resources
	References
	Web Sites
	Books

	Basic JavaScript
	Articles and Presentations
	Web Sites
	Books

	jQuery
	Articles
	Web Sites
	Books

	The Document Object Model
	Articles and Presentations
	Web Sites
	Books

	Ajax
	Web Sites
	Books

	Advanced JavaScript
	Articles and Presentations
	Web Sites
	Books

	CSS
	Web Sites
	Books

	JavaScript Software

	Index

