
75

Chapter 3chapter

3

Adding Logic and
Control to Your
Programs

So far you’ve learned about some of JavaScript’s basic building blocks. But simply
creating a variable and storing a string or number in it doesn’t accomplish much.
And building an array with a long list of items won’t be very useful unless there’s
an easy way to work your way through the items in the array. In this chapter, you’ll
learn how to make your programs react intelligently and work more efficiently by
using conditional statements, loops, and functions.

Making Programs React Intelligently
Our lives are filled with choices: “What should I wear today?”, “What should I eat
for lunch?”, “What should I do Friday night?”, and so on. Many choices you make
depend on other circumstances. For example, say you decide you want to go to the
movies on Friday night. You’ll probably ask yourself a bunch of questions like “Are
there any good movies out?”, “Is there a movie playing at the right time?”, “Do I
have enough money to go to the movies (and buy a $17 bag of popcorn)?”

Suppose there is a movie that’s playing at just the time you want to go. You then
ask yourself a simple question: “Do I have enough money?” If the answer is yes,
you’ll head out to the movie. If the answer is no, you won’t go. But on another Fri-
day, you do have enough money, so you go to the movies. This scenario is just a
simple example of how the circumstances around us affect the decisions we make.

JavaScript has the same kind of decision-making feature called conditional state-
ments. At its most basic, a conditional statement is a simple yes or no question.

76 JavaScript: The Missing Manual

Making Programs
React Intelligently

If the answer to the question is yes, your program does one thing; if the answer is
no, it does something else. Conditional statements are one of the most important
programming concepts: they let your programs react to different situations and
behave intelligently. You’ll use them countless times in your programming, but
just to get a clear picture of their usefulness here are a few examples of how they
can come in handy:

• Form validation. When you want to make sure someone filled out all of the
required fields in a form (“Name,” “Address,” “E-mail”, and so on), you’ll use
conditional statements. For example, if the Name field is empty, don’t submit
the form.

• Drag and drop. If you add the ability to drag elements around your Web page,
you might want to check where the visitor drops the element on the page. For
example, if he drops a picture onto an image of a trash can, you make the photo
disappear from the page.

• Evaluating input. If you pop-up a window to ask a visitor a question like
“Would you like to answer a few questions about how great this Web site is?”,
you’ll want your script to react differently depending on how the visitor answers
the question.

Figure 3-1 shows an example of an application that makes use of conditional
statements.

Figure 3-1:
It takes a lot of work to
have fun. A JavaScript-
based game like Solitaire
(http://worldofsolitaire.
com) demonstrates how
a program has to react
differently based on the
conditions of the
program. For example,
when a player drags and
drops a card, the
program has to decide if
the player dropped the
card in a valid location or
not, and then perform
different actions in each
case.

Chapter 3: Adding Logic and Control to Your Programs 77

Making Programs
React Intelligently

Conditional Statement Basics
Conditional statements are also called “if/then” statements, because they perform a
task only if the answer to a question is true: “If I have enough money then I’ll go to
the movies.” The basic structure of a conditional statement looks like this:

if (condition) {

 // some action happens here

}

There are three parts to the statement: if indicates that the programming that fol-
lows is a conditional statement; the parentheses enclose the yes or no question,
called the condition (more on that in a moment); and the curly braces ({ }) mark
the beginning and end of the JavaScript code that should execute if the condition is
true.

Note: In the code listed above, the “// some action happens here” is a JavaScript comment. It’s not code
that actually runs; it’s just a note left in the program, and, in this case, points out to you, the reader, what’s
supposed to go in that part of the code. See page 71 for more on comments.

In many cases, the condition is a comparison between two values. For example, say
you create a game that the player wins when the score is over 100. In this program,
you’ll need a variable to track the player’s score and, at some point, you need to
check to see if that score is more than 100 points. In JavaScript, the code to check if
the player won could look like this:

if (score > 100) {

 alert('You won!');

}

The important part is score > 100. That phrase is the condition, and it simply tests
whether the value stored in the score variable is greater than 100. If it is, then a
“You won!” dialog box appears; if the player’s score is less than or equal to 100,
then the JavaScript interpreter skips the alert and moves onto the next part of the
program. In addition to > (greater than), there are several other operators used to
compare numbers (see Table 3-1).

Tip: Type two spaces (or press the tab key once) before each line of JavaScript code contained within a
pair of braces. The spaces (or tab) indent those lines and makes it easier to see the beginning and ending
brace and to figure out what code belongs inside the conditional statement. Two spaces is a common
technique, but if four spaces make your code easier for you to read, then use four spaces. The examples
in this book always indent code inside braces.

More frequently, you’ll test to see if two values are equal or not. For example, say
you create a JavaScript-based quiz, and one of the questions asks, “How many

78 JavaScript: The Missing Manual

Making Programs
React Intelligently

moons does Saturn have?” The person’s answer is stored in a variable named
answer. You might then write a conditional statement like this:

if (answer == 31) {

 alert('Correct. Saturn has 31 moons.');

}

The double set of equal signs (==) isn’t a typo; it instructs the JavaScript inter-
preter to compare two values and decide whether they’re equal. Remember, in
JavaScript, a single equal sign is the assignment operator that you use to store a
value into a variable:

var score = 0; //stores 0 into the variable score

Because the JavaScript interpreter already assigns a special meaning to a single
equal sign, you need to use two equal signs whenever you want to compare two
values to determine if they’re equal or not.

You can also use the == (called the equality operator) to check to see if two strings
are the same. For example, say you let the user type a color into a form, and if they
type 'red', then you change the background color of the page to red. You could use
the conditional operator for that:

if (enteredColor == 'red') {

 document.body.style.backgroundColor='red';

}

Note: In the code above, don’t worry right now about how the page color is changed. You’ll learn how
to dynamically control CSS properties using JavaScript on page 186.

You can also test to see if two values aren’t the same using the inequality operator:

if (answer != 31) {

 alert("Wrong! That's not how many moons Saturn has.");

}

The exclamation mark translates to “not”, so != means “not equal to.” In this
example, if the value stored in answer is not 31, then the poor test taker would see
the insulting alert message.

Table 3-1. Use these comparison operators to test values as part of a conditional statement

Comparison operator What it means

= = Equal to. Compares two values to see if they’re the same. Can be
used to compare numbers or strings.

!= Not equal to. Compares two values to see if they’re not the same.
Can be used to compare numbers or strings.

Chapter 3: Adding Logic and Control to Your Programs 79

Making Programs
React Intelligently

The code that runs if the condition is true isn’t limited to just a single line of code
as in the previous examples. You can have as many lines of JavaScript between the
opening and closing curly braces as you’d like. For example, as part of the Java-
Script quiz example, you might keep a running tally of how many correct answers
the test-taker gets. So, when the Saturn question is answered correctly, you also
want to add 1 to the test-taker’s total. You would do that as part of the conditional
statement:

if (answer == 31) {

 alert('Correct. Saturn has 31 moons.');

 numCorrect = numCorrect + 1;

}

And you could add additional lines of JavaScript code between the braces as well—
any code that should run if the condition is true.

Adding a Backup Plan
But what if the condition is false? The basic conditional statement in the previous
section doesn’t have a backup plan for a condition that turns out to be false. In the
real world, as you’re deciding what to do Friday night and you don’t have enough
money for the movies, you’d want to do something else. An if statement has its
own kind of backup plan, called an else clause. For example, say as part of the

> Greater than. Compares two numbers and checks if the number
on the left side is greater than the number on the right. For exam-
ple, 2 > 1 is true, since 2 is a bigger number than 1, but 2 > 3 is
false, since 2 isn’t bigger than 3.

< Less than. Compares two numbers and checks if the number on
the left side is less than the number on the right. For example, 2 < 3
is true, since 2 is a smaller number than 3, but 2 < 1 is false, since 2
isn’t less than 1.

>= Greater than or equal to. Compares two numbers and checks if
the number on the left side is greater than or the same value as the
number on the right. For example, 2 >= 2 is true, since 2 is the
same as 2, but 2 >= 3 is false, since 2 isn’t a bigger number 3, nor is
it equal to 3.

<= Less than or equal to. Compares two numbers and checks if the
number on the left side is greater than or the same value as the
number on the right. For example, 2 <= 2 is true, since 2 is the
same as 2, but 2 <= 1 is false, since 2 isn’t a smaller number than 1,
nor is 2 equal to 1.

Table 3-1. Use these comparison operators to test values as part of a conditional statement (continued)

Comparison operator What it means

80 JavaScript: The Missing Manual

Making Programs
React Intelligently

JavaScript testing script, you want to notify the test-taker if he gets the answer
right, or if he gets it wrong. Here’s how you can do that:

if (answer == 31) {

 alert('Correct. Saturn has 31 moons.');

 numCorrect = numCorrect + 1;

} else {

 alert("Wrong! That's not how many moons Saturn has.");

}

This code sets up an either/or situation; only one of the two messages will appear.
If the number 31 is stored in the variable answer, then the “correct” alert appears;
otherwise, the “wrong” alert appears.

To create an else clause, just add “else” after the closing brace for the conditional
statement followed by another pair of braces. You add the code that should exe-
cute if the condition turns out to be false in between the braces. Again, you can
have as many lines of code as you’d like as part of the else clause.

POWER USERS’ CLINIC

The Return of the Boolean
On page 42, you learned about the Boolean values—true
and false. Booleans may not seem very useful at first, but
you’ll find out they’re essential when you start using condi-
tional statements. In fact, since a condition is really just a
yes or no question, the answer to that question is a Boolean
value. For example, check out the following code:

var x = 4;
if (x == 4) {
 //do something
}

The first line of code stores the number 4 into the variable
x. The condition on the next line is a simple question: is the
value stored in x equal to 4? In this case, it is, so the Java-
Script between the curly braces runs. But here’s what really
happens in between the parentheses: the JavaScript inter-
preter converts the condition into a Boolean value; in pro-
gramming-speak, the interpreter evaluates the condition. If
the condition evaluates to true (meaning the answer to the
question is yes), then the code between the braces runs.
However, if the condition evaluates to false, then the code
in the braces is skipped.

One common use of Booleans is to create what’s called a
flag—a variable that marks whether something is true. For
example, when validating a form full of visitor submitted
information, you might start by creating a valid variable
with a Boolean value of true—this means you’re assuming,
at first, that they filled out the form correctly. Then, you’d
run through each form field, and if any field is missing infor-
mation or has the wrong type of information, you change
the value in valid to false. After checking all of the form
fields, you test what’s stored in valid, and if it’s still true, you
submit the form. If it’s not true (meaning one or more form
fields were left blank), you display some error messages
and prevent the form from submitting:

var valid = true;
// lot of other programming gunk happens
in here
// if a field has a problem then you set
valid to false
if (valid) {
 //submit form
} else {
 //print lots of error messages
}

Chapter 3: Adding Logic and Control to Your Programs 81

Making Programs
React Intelligently

Testing More Than One Condition
Sometimes you’ll want to test several conditions and have several possible out-
comes: think of it like a game show where the host says, “Would you like the prize
behind door #1, door #2, or door #3?” You can only pick one. In your day-to-day
activities, you also are often faced with multiple choices like this one.

For example, return to the “What should I do Friday night?” question. You could
expand your entertainment options based on how much money you have and are
willing to spend. For example, you could start off by saying, “If I have more than
$50 I’ll go out to a nice dinner and a movie (and have some popcorn too).” If you
don’t have $50, you might try another test: “If I have $35 or more, I’ll go to a nice
dinner.” If you don’t have $35, then you’d say, “If I have $12 or more, I’ll go to the
movies.” And finally, if you don’t have $12, you might say, “Then I’ll just stay at
home and watch TV.” What a Friday night!

JavaScript lets you perform the same kind of cascading logic using else if state-
ments. It works like this: you start with an if statement, which is option number 1;
you then add one or more else if statements to provide additional questions that
can trigger additional options; and finally, you use the else clause as the fallback
position. Here’s the basic structure in JavaScript:

if (condition) {

 // door #1

} else if (condition2) {

 // door #2

} else {

 // door #3

}

This structure is all you need to create a JavaScript “Friday night planner” pro-
gram. It asks visitors how much money they have, and then determines what they
should do on Friday (sound familiar?). You can use the prompt() command that
you learned about on page 55 to collect the visitor’s response and a series of if/else
if statements to determine what he should do:

var fridayCash = prompt('How much money can you spend?', '');

if (fridayCash >= 50) {

 alert('You should go out to a dinner and a movie.');

} else if (fridayCash >= 35) {

 alert('You should go out to a fine meal.');

} else if (fridayCash >= 12) {

 alert('You should go see a movie.');

} else {

 alert('Looks like you'll be watching TV.');

}

Here’s how this program breaks down step-by-step: The first line opens a prompt
dialog asking the visitor how much he can spend. Whatever the visitor types is

82 JavaScript: The Missing Manual

Making Programs
React Intelligently

stored in a variable named fridayCash. The next line is a test: Is the value the visi-
tor typed 50 or more? If the answer is yes, then an alert appears telling him to go
get a meal and see a movie. At this point, the entire conditional statement is done.
The JavaScript interpreter skips the next else if statement, the following else if state-
ment, and the final else clause. With a conditional statement, only one of the out-
comes can happen, so once the JavaScript interpreter encounters a condition that
evaluates to true, then it runs the JavaScript code between the braces for that con-
dition and skips everything else within the conditional statement.

Suppose the visitor typed 25. The first condition, in this case, wouldn’t be true,
since 25 is a smaller number than 50. So the JavaScript interpreter skips the code
within the braces for that first condition and continues to the else if statement: “Is
25 greater than or equal to 35?” Since the answer is no, it skips the code associated
with that condition and encounters the next else if. At this point, the condition
asks if 25 is greater than or equal to 12; the answer is yes, so an alert box with the
message, “You should go see a movie” appears and the program ends, skipping the
final else clause.

Tip: There’s another way to create a series of conditional statements that all test the same variable, as in
the fridayCash example. Switch statements do the same thing, and you’ll learn about them on page 499.

More Complex Conditions
When you’re dealing with many different variables, you’ll often need even more
complex conditional statements. For example, when validating a required email
address field in a form, you’ll want to make sure both that the field isn’t empty and
that the field contains an email address (and not just random typed letters). Fortu-
nately, JavaScript lets you do these kinds of checks as well.

Making sure more than one condition is true

You’ll often need to make decisions based on a combination of factors. For exam-
ple, you may only want to go to a movie if you have enough money and there’s a
movie you want to see. In this case, you’ll go only if two conditions are true; if
either one is false, then you won’t go to the movie. In JavaScript, you can combine
conditions using what’s called the logical AND operator, which is represented by
two ampersands (&&). You can use it between the two conditions within a single
conditional statement. For example, if you want to check if a number is between 1
and 10, you can do this:

if (a < 10 && a > 1) {

 //the value in a is between 1 and 10

 alert("The value " + a + " is between 1 and 10");

}

Chapter 3: Adding Logic and Control to Your Programs 83

Making Programs
React Intelligently

In this example, there are two conditions: a < 10 asks if the value stored in the vari-
able a is less than 10; the second condition, a > 1, is the same as “Is the value in a
greater than 1?” The JavaScript contained between the braces will run only if both
conditions are true. So if the variable a has the number 0 stored in it, the first con-
dition (a < 10) is true (0 is less than 10), but the second condition is false (0 is not
greater than 1).

You’re not limited to just two conditions. You can connect as many conditions as
you need with the && operator:

if (b>0 && a>0 && c>0) {

 // all three variables are greater than 0

}

This code checks three variables to make sure all three have a value greater than 0.
If just one has a value of 0 or less, then the code between the braces won’t run.

Making sure at least one condition is true

Other times you’ll want to check a series of conditions, but you only need one to
be true. For example, say you’ve added a keyboard control for visitors to jump
from picture to picture in a photo gallery. When the visitor presses the N key, the
next photo appears. In this case, you want her to go to the next picture when she
types either n (lowercase) or, if she has the Caps Lock key pressed, N (uppercase).
You’re looking for a kind of either/or logic: either this key or that key was pressed.
The logical OR operator, represented by two pipe characters (||), comes in handy:

if (key == 'n' || key == 'N') {

 //move to the next photo

}

Tip: To type a pipe character, press Shift-\. The key that types both backslashes and pipe characters is
usually located just above the Return key.

With the OR operator, only one condition needs to be true for the JavaScript that
follows between the braces to run.

As with the AND operator, you can compare more than two conditions. For exam-
ple, say you’ve created a JavaScript racing game. The player has a limited amount
of time, a limited amount of gas, and a limited number of cars (each time he
crashes he loses one car). To make the game more challenging, you want it to come
to an end when any of these three things runs out:

if (gas <= 0 || time <= 0 || cars <= 0) {

 //game is over

}

84 JavaScript: The Missing Manual

Making Programs
React Intelligently

When testing multiple conditions, it’s sometimes difficult to figure out the logic of
the conditional statement. Some programmers group each condition in a set of
parentheses to make the logic easier to grasp:

 if ((key == 'n') || (key == 'N')) {

 //move to the next photo

}

To read this code, simply treat each grouping as a separate test; the results of the
operation between parentheses will always turn out to be either true or false.

Negating a condition

If you’re a Superman fan, you probably know about Bizarro, an anti-hero who
lived on a cubical planet named Htrae (Earth spelled backwards), had a uniform
with a backwards S, and was generally the opposite of Superman in every way.
When Bizarro said “Yes,” he really meant “No”; and when he said “No,” he really
meant “Yes.”

JavaScript programming has an equivalent type of character called the NOT opera-
tor, which is represented by an exclamation mark (!). You’ve already seen the NOT
operator used along with the equal sign to indicate “not equal to”: !=. But the NOT
operator can be used by itself to completely reverse the results of a conditional
statement; in other words, it can make false mean true, and true mean false.

You use the NOT operator when you want to run some code based on a negative
condition. For example, say you’ve created a variable named valid that contains a
Boolean value of either true or false (see the box on page 80). You use this variable
to track whether a visitor correctly filled out a form. When the visitor tries to sub-
mit the form, your JavaScript checks each form field to make sure it passes the
requirements you set up (for example, the field can’t be empty and it has to have
an email address in it). If there’s a problem, like the field is empty, you could then
set valid to false (valid = false).

Now if you want to do something like print out an error and prevent the form
from being submitted, you can write a conditional statement like this:

if (! valid) {

 //print errors and don't submit form

}

The condition ! valid can be translated as “if not valid,” which means if valid is
false, then the condition is true. To figure out the results of a condition that uses the
NOT operator, just evaluate the condition without the NOT operator, then reverse
it. In other words, if the condition results to true, the ! operator changes it to false,
so the conditional statement doesn’t run.

As you can see the NOT operator is very simple to understand (translated from
Bizarro-speak: it’s very confusing, but if you use it long enough, you’ll get used to
it).

Chapter 3: Adding Logic and Control to Your Programs 85

Making Programs
React Intelligently

Nesting Conditional Statements
In large part, computer programming entails making decisions based on informa-
tion the visitor has supplied or on current conditions inside a program. The more
decisions a program makes, the more possible outcomes and the “smarter” the
program seems. In fact, you might find you need to make further decisions after
you’ve gone through one conditional statement.

Suppose, in the “What to do on Friday night?” example, you want to expand the
program to include every night of the week. In that case, you need to first deter-
mine what day of the week it is, and then figure out what to do on that day. So you
might have a conditional statement asking if it’s Friday, and if it is, you’d have
another series of conditional statements to determine what to do on that day:

if (dayOfWeek == 'Friday') {

 var fridayCash = prompt('How much money can you spend?', '');

 if (fridayCash >= 50) {

 alert('You should go out to a dinner and a movie.');

 } else if (fridayCash >= 35) {

 alert('You should go out to a fine meal.');

 } else if (fridayCash >= 12) {

 alert('You should go see a movie.');

 } else {

 alert('Looks like you'll be watching TV.');

 }

}

In this example, the first condition asks if the value stored in the variable dayOf-
Week is the string 'Friday'. If the answer is yes, then a prompt dialog appears, gets
some information from the visitor, and another conditional statements is run. In
other words, the first condition (dayOfWeek == 'Friday') is the doorway to
another series of conditional statements. However, if dayOfWeek isn’t 'Friday',
then the condition is false and the nested conditional statements are skipped.

Tips for Writing Conditional Statements
The example of a nested conditional statement in the last section may look a little
scary. There are lots of (), {}, elses, and ifs. And if you happen to mistype one of
the crucial pieces of a conditional statement, your script won’t work. There are a
few things you can do as you type your JavaScript that can make it easier to work
with conditional statements.

• Type both of the curly braces before you type the code inside them. One of the
most common mistakes programmers make is forgetting to add a final brace to
a conditional statement. To avoid this mistake, type the condition and the

86 JavaScript: The Missing Manual

Tutorial: Using
Conditional
Statements

braces first, then type the JavaScript code that executes when the condition is
true. For example, start a conditional like this:

if (dayOfWeek=='Friday') {

}

In other words, type the if clause and the first brace, hit Return twice, and then
type the last brace. Now that the basic syntax is correct, you can click in the
empty line between the braces and add JavaScript.

• Indent code within braces. You can better visualize the structure of a condi-
tional statement if you indent all of the JavaScript between a pair of braces:

if (a < 10 && a > 1) {

 alert("The value " + a + " is between 1 and 10");

}

By using several spaces (or pressing the Tab key) to indent lines within braces,
it’s easier to identify which code will run as part of the conditional statement. If
you have nested conditional statements, indent each nested statement:

if (a < 10 && a > 1) {

 //first level indenting for first conditional

 alert("The value " + a + " is between 1 and 10");

 if (a==5) {

 //second level indenting for 2nd conditional

 alert(a + " is half of ten.");

 }

}

• Use == for comparing equals. When checking whether two values are equal,
don’t forget to use the equality operator, like this:

if (name == 'Bob') {

A common mistake is to use a single equal sign, like this:

if (name = 'Bob') {

A single equal sign stores a value into a variable, so in this case, the string 'Bob'
would be stored in the variable name. The JavaScript interpreter treats this step
as true, so the code following the condition will always run.

Tutorial: Using Conditional Statements
Conditional statements will become part of your day-to-day JavaScript toolkit. In
this tutorial, you’ll try out conditional statements to control how a script runs.

Note: See the note on page 27 for information on how to download the tutorial files.

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgements
	The Missing Manual Series

	Introduction
	What Is JavaScript?
	A Bit of History
	JavaScript Is Everywhere
	JavaScript Doesn’t Stand Alone

	HTML: The Barebones Structure
	How HTML Tags Work

	CSS: Adding Style to Web Pages
	Anatomy of a Style

	Software for JavaScript Programming
	Free Programs
	Commercial Software

	About This Book
	This Book’s Approach to JavaScript
	About the Outline
	Living Examples
	About MissingManuals.com

	The Very Basics
	About › These › Arrows
	Safari® Books Online

	Chapter 1. Writing Your First JavaScript Program
	Introducing Programming
	What’s a Computer Program?

	How to Add JavaScript to a Page
	External JavaScript Files

	Your First JavaScript Program
	Writing Text on a Web Page
	Attaching an External JavaScript File
	Tracking Down Errors
	The Firefox JavaScript Console
	Displaying the Internet Explorer Error Dialog Box
	Accessing the Safari Error Console

	Chapter 2. The Grammar of JavaScript
	Statements
	Commands
	Types of Data
	Numbers
	Strings
	Booleans

	Variables
	Creating a Variable
	Using Variables

	Working with Data Types and Variables
	Basic Math
	The Order of Operations
	Combining Strings
	Combining Numbers and Strings
	Changing the Values in Variables

	Tutorial: Using Variables to Create Messages
	Tutorial: Asking for Information
	Arrays
	Creating an Array
	Accessing Items in an Array
	Adding Items to an Array
	Adding an item to the end of an array
	Adding an item to the beginning of an array
	Choosing how to add items to an array

	Deleting Items from an Array
	Adding and Deleting with splice(��)
	Deleting items with splice(��)
	Adding items with splice(��)
	Replacing items with splice(��)

	Tutorial: Writing to a Web Page Using Arrays
	Comments
	When to Use Comments
	Comments in this Book

	Chapter 3. Adding Logic and Control to Your Programs
	Making Programs React Intelligently
	Conditional Statement Basics
	Adding a Backup Plan
	Testing More Than One Condition
	More Complex Conditions
	Making sure more than one condition is true
	Making sure at least one condition is true
	Negating a condition

	Nesting Conditional Statements
	Tips for Writing Conditional Statements

	Tutorial: Using Conditional Statements
	Handling Repetitive Tasks with Loops
	While Loops
	Loops and Arrays
	For Loops
	Do/While Loops

	Functions: Turn Useful Code Into Reusable Commands
	Mini-Tutorial
	Giving Information to Your Functions
	Retrieving Information from Functions
	Keeping Variables from Colliding

	Tutorial: A Simple Quiz

	Chapter 4. Working with Words, Numbers, and Dates
	A Quick Object Lesson
	Strings
	Determining the Length of a String
	Changing the Case of a String
	Searching a String: indexOf(��) Technique
	Extracting Part of a String with slice(��)

	Finding Patterns in Strings
	Creating and Using a Basic Regular Expression
	Building a Regular Expression
	Grouping Parts of a Pattern
	Useful Regular Expressions
	U.S. Zip code
	U.S. phone number
	Email address
	Date
	Web address

	Matching a Pattern
	Matching every instance of a pattern

	Replacing Text
	Trying Out Regular Expressions

	Numbers
	Changing a String to a Number
	Testing for Numbers
	Rounding Numbers
	Formatting Currency Values
	Creating a Random Number
	Randomly selecting an array element
	A function for selecting a random number

	Dates and Times
	Getting the Month
	Getting the Day of the Week
	Getting the Time
	Changing hours to a.m. and p.m.
	Padding single digits

	Creating a Date Other Than Today
	Creating a date that’s one week from today

	Tutorial
	Overview
	Writing the Function

	Chapter 5. Dynamically Modifying Web Pages
	Modifying Web Pages: An Overview
	Understanding the Document Object Model
	Selecting a Page Element
	getElementById(��)
	getElementsByTagName(��)
	Selecting nearby nodes

	Adding Content to a Page
	The Moon Quiz Revisited
	The Problem with the DOM

	Introducing JavaScript Libraries
	Getting Started with jQuery

	Selecting Page Elements (Revisited)
	Basic Selectors
	ID selectors
	Element selectors
	Class selectors

	Advanced Selectors
	jQuery Filters
	Understanding jQuery Selections
	Automatic loops
	Chaining functions

	Adding Content to a Page
	Replacing and Removing Selections

	Setting and Reading Tag Attributes
	Classes
	Reading and Changing CSS Properties
	Changing Multiple CSS Properties at Once

	Reading, Setting, and Removing HTML Attributes
	Creative Headlines
	Acting on Each Element in a Selection
	Anonymous Functions
	this and $(this)

	Automatic Pull Quotes
	Overview
	Programming

	Chapter 6. Action/Reaction: Making Pages Come Alive with Events
	What Are Events?
	Mouse Events
	Document/Window Events
	Form Events
	Keyboard Events

	Using Events with Functions
	Inline Events
	The Traditional Model
	The Modern Way
	The jQuery Way

	Tutorial: Highlighting Table Rows
	More jQuery Event Concepts
	Waiting for the HTML to Load
	jQuery Events
	The hover(��) event
	The toggle(��) Event

	The Event Object
	Stopping an Event’s Normal Behavior
	Removing Events

	Advanced Event Management
	Tutorial: A One-Page FAQ
	Overview of the Task
	The Programming

	Chapter 7. Improving Your Images
	Swapping Images
	Changing an Image’s src Attribute
	Preloading Images
	Rollover Images

	Tutorial: Adding Rollover Images
	Overview of the Task
	The Programming

	jQuery Effects
	Basic Showing and Hiding
	Fading Elements In and Out
	Sliding Elements
	Animation

	Tutorial: Photo Gallery with Effects
	Overview of Task
	The Programming

	Advanced Gallery with jQuery lightBox
	The Basics
	Customizing lightBox
	lightBox options
	lightBox images
	lightBox CSS

	Tutorial: lightBox Photo Gallery
	Animated Slideshows with Cycle
	The Basics
	Customizing the Cycle Plug-in
	Effects
	Speed
	Navigating slides
	Starting and stopping the slideshow

	Tutorial: An Automated Slideshow

	Chapter 8. Improving Navigation
	Some Link Basics
	Selecting Links with JavaScript
	Determining a Link’s Destination
	Don’t Follow That Link

	Opening External Links in a New Window
	Creating New Windows
	Window Properties
	Use the window reference
	Events that can open a new window

	Opening Pages in a Window on the Page
	Customizing the Look of a Greybox Window
	Tutorial: Opening a Page Within a Page

	Tutorial: Making Bigger Links
	Overview
	The Programming

	Animated Navigation Menus
	The HTML
	The CSS
	The JavaScript
	The Tutorial

	Chapter 9. Enhancing Web Forms
	Understanding Forms
	Selecting Form Elements
	Getting and Setting the Value of a Form Element
	Determine Whether Buttons and Boxes Are Checked
	Form Events
	Submit
	Focus
	Blur
	Click
	Change

	Adding Smarts to Your Forms
	Focus the First Field in a Form
	Disabling and Enabling Fields
	Hiding and Showing Form Options

	Tutorial: Basic Form Enhancements
	Focusing a Field
	Disabling Form Fields
	Hiding Form Fields

	Form Validation
	jQuery Validation Plug-in
	Basic Validation
	Adding validation rules
	Adding error messages

	Advanced Validation
	Advanced rules
	Advanced error messages

	Styling Error Messages

	Validation Tutorial
	Basic Validation
	Advanced Validation
	Validating Checkboxes and Radio Buttons
	Formatting the Error Messages

	Chapter 10. Expanding Your Interface
	Hiding Information with Accordion Panels
	Customizing an Accordion
	Accordion Tutorial

	Organizing Information in Tabbed Panels
	Formatting Tabs and Panels
	A required class style
	The tab group
	Tabs
	Panels

	Customizing the Tabs Plug-in
	Selecting a tab when the page loads
	Using a different event to open a panel
	Automating the display of panels

	Tabbed Panels Tutorial

	Tooltips
	Tooltips Using the Title Attribute
	Tooltips Using Another Web Page
	Tooltips Using Hidden Content
	Controlling the Display of Tooltips
	Formatting Tooltips
	Cluetip Tutorial
	Adding a tooltip using the title attribute
	Adding a tooltip using another Web page
	Adding a tooltip using HTML on the page

	Creating Sortable Tables
	Styling the Table
	Using the Tablesorter plug-in to stripe tables

	Tablesorter Tutorial

	Chapter 11. Introducing Ajax
	What Is Ajax?
	Ajax: The Basics
	Pieces of the Puzzle
	Talking to the Web Server

	Ajax the jQuery Way
	Using the load(��) Function
	Tutorial: The load(��) Function
	Overview
	The programming

	The get(��) and post(��) Functions
	Formatting Data to Send to the Server
	Query string
	Object literal
	jQuery’s serialize(��) function

	Processing Data from the Server
	Tutorial: Using the post(��) Function
	Overview
	The programming

	JSON
	Accessing JSON Data
	Complex JSON Objects

	Chapter 12. Basic Ajax Programming
	Tabs Plug-in
	Changing the Loading Text and Icon
	Turning off the “Loading” message

	Ajax Tabs Tutorial

	Adding Google Maps to Your Site
	Setting a Location for the Map
	Other jMap Options
	Adding Markers and HTML Bubbles
	Get Driving Directions
	jMaps Tutorial

	Chapter 13. Troubleshooting and Debugging
	Top JavaScript Programming Mistakes
	Non-Closed Pairs
	Quotation Marks
	Using Reserved Words
	Single Equals in Conditional Statements
	Case-Sensitivity
	Incorrect Path to External JavaScript File
	Incorrect Paths Within External JavaScript Files
	Disappearing Variables and Functions

	Debugging with Firebug
	Installing and Turning On Firebug
	Viewing Errors with Firebug
	Using console.log(��) to Track Script Progress
	Tutorial: Using the Firebug Console
	More Powerful Debugging
	Controlling your script with the debugger
	Watching your script

	Debugging Tutorial

	Chapter 14. Going Further with JavaScript
	Putting It All Together
	Using External JavaScript Files

	Writing More Efficient JavaScript
	Put Preferences in Variables
	Ternary Operator
	The Switch Statement
	Using the jQuery Object Efficiently

	Creating Fast-Loading JavaScript
	Using YUI Compressor for Windows
	Using YUI Compressor for Mac

	Appendix A. JavaScript Resources
	References
	Web Sites
	Books

	Basic JavaScript
	Articles and Presentations
	Web Sites
	Books

	jQuery
	Articles
	Web Sites
	Books

	The Document Object Model
	Articles and Presentations
	Web Sites
	Books

	Ajax
	Web Sites
	Books

	Advanced JavaScript
	Articles and Presentations
	Web Sites
	Books

	CSS
	Web Sites
	Books

	JavaScript Software

	Index

