
56 JavaScript: The Missing Manual

Arrays

3. Save the page and preview it in a Web browser.

When the page loads, you’ll see a dialog box. Notice that nothing else hap-
pens—you don’t even see the Web page—until you fill out the dialog box and
click OK. You’ll also notice that nothing much happens after you click OK—
that’s because, at this point, you’ve merely collected and stored the response;
you haven’t used that response on the page. You’ll do that next.

4. Return to your text editor. Locate the second set of <script> tags and add the
code in bold:

<script type="text/javascript">

document.write('<p>Welcome ' + name +  '</p>');

</script>

Here you take advantage of the information supplied by the visitor. As with the
script on page 53, you’re combining several strings—an opening paragraph tag
and text, the value of the variable, and a closing paragraph tag—and printing
the results to the Web page.

5. Save the page and preview it in a Web browser.

When the Prompt dialog appears, type in a name and click OK. Notice that the
name you type appears in the Web page (Figure 2-4). Reload the Web page and
type a new name—it changes! Just like a good variable should.

Arrays
Simple variables, like the ones you learned about in the previous section, only hold
one piece of information, such as a number or a string value. They’re perfect when
you only need to keep track of a single thing like a score, an age, or a total cost.
However, if you need to keep track of a bunch of related items—like the names of
all of the days in a week, or a list of all of the images on a Web page—simple variables
aren’t very convenient.

Figure 2-3:
The prompt( ) command is
one way to retrieve user
input. It works by providing
two strings to the command—
one to appear as the
question, and another that
pre-fills the prompt box with
text.

prompt('What is your name?', " );

Jesse
Rectangle



Chapter 2: The Grammar of JavaScript 57

Arrays

For example, say you’ve created a JavaScript shopping cart system that tracks items
a visitor intends to buy. If you wanted to keep track of all of the items the visitor
adds to her cart using simple variables you’d have to write code like this:

var item1 = 'Xbox 360';

var item2 = 'Tennis shoes';

var item3 = 'Gift certificate';

But what if they wanted to add more items than that? You’d have to create more
variables—item4, item5, and so on. And, because you don’t know how many items
the visitor might want to buy, you really don’t know how many variables you’ll
have to create.

Fortunately, JavaScript provides a better method of tracking a list of items, called
an array. An array is a way of storing more than one value in a single place. Think
of an array like a shopping list. When you need to go to the grocery store, you sit
down and write a list of items to buy. If you just went shopping a few days earlier,
the list might only contain a few items; but if your cupboard is bare, your shop-
ping list might be quite long. Regardless of how many items on the list, though,
there’s still just a single list.

Without an array, you have to create a new variable for each item in the list. Imag-
ine, for example, that you couldn’t make a list of groceries on a single sheet of
paper, but had to carry around individual slips of paper—one for each item that
you’re shopping for. If you wanted to add another item to buy, you’d need a new
slip of paper; then you’d need to keep track of each slip as you shopped (see
Figure 2-5). That’s how simple variables work. But with an array you can create a
single list of items, and even add, remove, or change items at anytime.

Figure 2-4:
The power
of
variables:
this page
customizes
its message
based on a
visitor’s
response.



58 JavaScript: The Missing Manual

Arrays

Creating an Array
To create and store items in an array, you first declare the array’s name (just as you
would a variable) and then supply a list of comma separated values: each value rep-
resents one item in the list. As with variables, what you name your array is up to
you, but you need to follow the same naming rules listed on page 44. To indicate
an array, you put the list of items between opening and closing brackets—[ ]. For
example, to create an array containing abbreviations for the seven days of the
week, you could write this code:

var days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'];

The brackets—[ ]—are very important; they tell the JavaScript interpreter that it’s
dealing with an array. You can create an empty array without any elements like
this:

var playList = [];

Creating an empty array is the equivalent of declaring a variable as described on
page 43. You’ll create an empty array when you don’t add items to the array until
the program is running. For example, the above array might be used to track songs
that someone selects from a list on a Web page—you don’t know ahead of time
which songs the person will choose, so you declare an empty array and later fill it
with items as the person selects music. (Adding items to an array is described on
page 61.)

Note: When looking through other people’s JavaScript programs (or other JavaScript books), you may
encounter another way to create an array using the Array keyword, like this:

var days = new Array('Mon', 'Tues', 'Wed');

This method is valid, but the method used in this book (called an array literal) requires less typing and
less code.

Figure 2-5:
An array provides a simple, organized way to
track a list of related items. Adding another
item to the list is just like writing a new item at
the bottom of the list.



Chapter 2: The Grammar of JavaScript 59

Arrays

You can store any mix of values in an array. In other words, numbers, strings, and
Boolean values can all appear in the same array:

var prefs = [1, 223, 'www.oreilly.com', false];

Note: You can even store arrays and other objects as elements inside an array. This can help store complex
data. You’ll see an example of this advanced topic on page 108.

The array examples above show the array created on a single line. However, if
you’ve got a lot of items to add, or the items are long strings, trying to type all of
that on a single line can make your program difficult to read. Another option
many programmers use is to create an array over several lines, like this:

var authors = [ 'Ernest Hemingway',

                'Charlotte Bronte',

                'Dante Alighieri',

                'Emily Dickinson'

              ];

As mentioned in the box on page 47, a JavaScript interpreter skips extra space and
line breaks, so even though this code is displayed on five lines, it’s still just a single
statement, as indicated by the final semicolon on the last line.

Tip: To make the names line up as above, you’d type the first line — var authors = [ ‘Ernest Heming-
way’,—hit Return, then press the space key as many times as it takes to line up the next value—’Charlotte
Bronte’,.

Accessing Items in an Array
You can access the contents of a simple variable just by using the variable’s name.
For example alert(lastName) opens an alert box with the value stored in the vari-
able lastName. However, because an array can hold more than one value, you can’t
just use its name alone to access the items it contains. A unique number, called an
index, indicates the position of each item in an array. To access a particular item in
an array, you use that item’s index number. For example, say you’ve created an
array with abbreviations for the days of the week, and want to open an alert box
that displayed the first item. You could write this:

var days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'];

alert(days[0]);

This code opens an alert box with ‘Mon’ in it. Arrays are zero-indexed, meaning
that the first item in an array has an index value of 0, and the second item has an
index value of 1: in other words, subtract one from the item’s spot in the list to get
its index value—the fifth item’s index is 5 – 1; that is 4. Zero-indexing is pretty
confusing when you first get started with programming, so Table 2-4 shows how
the array days (from the above example) is indexed, the values it contains and how
to access each value.



60 JavaScript: The Missing Manual

Arrays

You can change the value of an item in an array by assigning a new value to the
index position. For example, to put a new value into the first item in the array
days, you could write this:

days[0] = 'Monday';

Because the index number of the last item in an array is always one less than the
total number of items in an array, you only need to know how many items are in
an array to access the last item. Fortunately, this is an easy task since every array
has a length property, which contains the total number of items in the array. To
access the length property, add a period followed by length after the array’s name:
for example, days.length returns the number of items in the array named days (if
you created a different array, playList, for example, you’d get its length like this:
playList.length). So you can use this tricky bit of JavaScript to access the value
stored in the last item in the array:

days[days.length-1]

This last snippet of code demonstrates that you don’t have to supply a literal num-
ber for an index (for example, the 0 in days[0]). You can also supply an equation
that returns a valid number: in this case days.length – 1 is a short equation: it first
retrieves the number of items in the days array (that’s 7 in this example) and sub-
tracts 1 from it. So, in this case, days[days.length-1] translates to days[6].

You can also use a variable containing a number as the index:

var i = 0;

alert(days[i]);

The last line of code is the equivalent of alert(days[0]);. You’ll find this technique
particularly useful when working with loops as described in the next chapter (page
90).

Table 2-4. Items in an array must be accessed using an index number that’s the equivalent to their place
in the list minus 1

Index value Item To access item

0 Mon days[0]

1 Tues days[1]

2 Wed days[2]

3 Thurs days[3]

4 Fri days[4]

5 Sat days[5]

6 Sun days[6]



Chapter 2: The Grammar of JavaScript 61

Arrays

Adding Items to an Array
Say you’ve created an array to track items that a user clicks on a Web page. Each
time the user clicks the page, an item is added to the array. JavaScript supplies sev-
eral ways to add contents to an array.

Adding an item to the end of an array

To add an item to the end of an array, you can use the index notation from page
59, using an index value that’s one greater than the last item in the list. For exam-
ple, say you’ve have created an array named properties:

var properties = ['red', '14px', 'Arial'];

At this point, the array has three items. Remember that the last item is accessed
using an index that’s one less than the total number of items, so in this case, the
last item in this array is properties[2]. To add another item, you could do this:

properties[3] = 'bold';

This line of code inserts 'bold' into the fourth spot in the array, which creates an
array with four elements: ['red', '14px', 'Arial', 'bold']. Notice that when you add
the new item, you use an index value that’s equal to the total number of elements
currently in the array, so you can be sure you’re always adding an item to the end
of an array by using the array’s length property as the index. For example, you can
rewrite the last line of code like this:

properties[properties.length] = 'bold';

You can also use an array’s push( ) command, which adds whatever you supply
between the parentheses to the end of the array. As with the length property, you
apply push( ) by adding a period to the array’s name followed by push( ). For
example, here’s another way to add an item to the end of the properties array:

properties.push('bold');

Whatever you supply inside the parentheses (in this example the string 'bold') is
added as a new item at the end of the array. You can use any type of value, like a
string, number, Boolean, or even a variable.

One advantage of the push( ) command is that it lets you add more than one item
to the array. For example, say you want to add three values to the end of an array
named properties, you could do that like this:

properties.push('bold', 'italic', 'underlined');

Note: push( ), unshift( ), and the other commands associated with arrays are technically called array
methods. In this book, when you see the word method, you can just think of it as a command that accom-
plishes a task.



62 JavaScript: The Missing Manual

Arrays

Adding an item to the beginning of an array

If you want to add an item to the beginning of an array, use the unshift( ) com-
mand. Here’s an example of adding the ‘bold’ value to the beginning of the properties
array:

var properties = ['red', '14px', 'Arial'];

properties.unshift('bold');

After this code runs, the array properties contains four elements: ['bold', 'red',
'14px', 'Arial']. As with push( ), you can use unshift( ) to insert multiple items at the
beginning of an array:

properties.unshift('bold', 'italic', 'underlined');

Note: Make sure you use the name of the array followed by a period and the method you wish to
use. In other words, push('new item') won’t work. You must first use the array’s name (whatever
name you gave the array when you created it) followed by a period, then the method like this:
authors.push('Stephen King');.

Choosing how to add items to an array

So far, this chapter has shown you three ways to add items to an array. Table 2-5
compares these techniques. Each of these commands accomplishes similar tasks, so
the one you choose depends on the circumstances of your program. If the order
that the items are stored in the array doesn’t matter, then any of these methods
work. For example, say you have a page of product pictures, and clicking one pic-
ture adds the product to a shopping cart. You use an array to store the cart items.
The order the items appear in the cart (or the array) doesn’t matter, so you can use
any of these techniques.

However, if you create an array that keeps track of the order in which something
happens, then the method you choose does matter. For example, say you’ve cre-
ated a page that lets visitors create a playlist of songs by clicking song names on the
page. Since a playlist lists songs in the order they should be played, the order is
important. So if each time the visitor clicks a song, the song’s name should go at
the end of the playlist (so it will be the last song played), then use the push( )
method.

Table 2-5. Various ways of adding elements to an array

Method Original array Example code Resulting array Explanation

.length
property

var  p =
[0,1,2,3]

p[p.length]=4 [0,1,2,3,4] Adds one value
to the end of an
array.

push( ) var  p =
[0,1,2,3]

p.push(4,5,6) [0,1,2,3,4,5,6] Adds one or
more items to
the end of an
array.



Chapter 2: The Grammar of JavaScript 63

Arrays

The push( ) and unshift( ) commands return a value (see the Note on the page 55).
To be specific, once push( ) and unshift( ) complete their tasks, they supply the
number of items that are in the array. Here’s an example:

var  p = [0,1,2,3];

var totalItems = p.push(4,5);

After this code runs, the value stored in totalItems is 6, because there are six items
in the p array.

Deleting Items from an Array
If you want to remove an item from the end or beginning of an array, use the pop( )
or shift( ) commands. Both commands remove one item from the array: the pop( )
command removes the item from the end of the array, while shift( ) removes one
item from the beginning. Table 2-6 compares the two methods.

unshift( ) var  p =
[0,1,2,3]

p.unshift(4,5) [4,5,0,1,2,3] Adds one or
more item to
the beginning
of an array.

Table 2-5. Various ways of adding elements to an array (continued)

Method Original array Example code Resulting array Explanation

POWER USERS’ CLINIC

Creating a Queue
The methods used to add items to an array—push( ) and
unshift( )—and the methods used to remove items from an
array—pop( ) and shift( )—are often used together to pro-
vide a way of accessing items in the order they were cre-
ated. A classic example is a musical playlist. You create the
list by adding songs to it; then, as you play each song, it’s
removed from the list. The songs are played in the order
they appear in the list, so the first song is played and then
removed from the list. This arrangement is similar to a line
at the movies. When you arrive at the movie theater, you
take your place at the end of the line; when the movie’s
about to begin, the doors open and the first person in line
is the first to get in.

In programming circles, this concept is called FIFO for “First
In, First Out.” You can simulate this arrangement using
arrays and the push( ) and shift( ) commands. For example
say you had an array named playlist. To add a new song to
the end of the list you’d use push( ) like this:

playlist.push('Yellow Submarine');

To get the song that’s supposed to play next, you get the
first item in the list like this:

nowPlaying = playlist.shift( );

This code removes the first item from the array and stores
it in a variable named nowPlaying. The FIFO concept is use-
ful for creating and managing queues such as a playlist, a
to-do list, or a slideshow of images.



64 JavaScript: The Missing Manual

Arrays

As with push( ) and unshift( ), pop( ) and shift( ) return a value once they’ve com-
pleted their tasks of removing an item from an array. In fact, they return the value
that they just removed. So, for example, this code removes a value and stores it in
the variable removedItem:

var  p = [0,1,2,3];

var removedItem = p.pop( );

The value of removedItem after this code runs is 3 and the array p now contains
[0,1,2].

Note: This chapter’s files include a Web page that lets you interactively test out the different array com-
mands. It’s named array_methods.html and it’s in the tutorials ➝ chapter02 folder. Open the file in a
Web browser and click the various buttons on the Web page to see how the array methods work. (By the
way, all the cool interactivity of that page is all thanks to JavaScript.)

Adding and Deleting with splice( )
The techniques in the previous sections for adding and removing array items only
work for the beginning and end of arrays. What if you want to insert an item in the
middle of an array, or remove the item that’s in the third position in the array? For
example, say you write a program that lets visitors create slideshows by selecting
images from a Web page. You could store their selections (for example, informa-
tion about each image such as the src attribute) in an array. However, the visitor
may want to edit his selections—perhaps remove one of the pictures he previously
selected.

JavaScript provides one command—splice( )—that lets you add items to an array
and delete items from an array. It’s a powerful command and a little hard to
understand, so we’ll explain it in stages.

Deleting items with splice( )

To remove items from an array, tell the splice( ) command where it should begin
deleting (the index number of the first item to remove) and how many items it
should delete. For example, say you create an array named fruits like this:

var fruit=['apple','pear','kiwi','pomegranate'];

Table 2-6. Two ways of removing an item from an array

Method Original array Example code Resulting array Explanation

pop( ) var  p =
[0,1,2,3]

p.pop( ) [0,1,2] Removes the last
item from the
array.

shift( ) var  p =
[0,1,2,3]

p.shift( ) [1,2,3] Removes the first
item from the
array.



Chapter 2: The Grammar of JavaScript 65

Arrays

This code creates an array of four items. To remove 'pear' and 'kiwi' from the
array, you need to tell splice( ) to begin with the second item (which has an index
of 1, remember) and delete two items like this:

fruit.splice(1,2);

The result as diagrammed in Figure 2-6, is an array with just two strings—'apple'
and 'pomegranate'—left.

Adding items with splice( )

The splice( ) command does double duty: it can also add items in the middle of an
array. To use splice( ) in this way, provide the index value where the new items
should be located, 0 to indicate that you don’t want to delete any items, then the
list of items to insert: one or more values separated by commas. For example, say
you start out with the fruit array again:

var fruit=['apple','pear','kiwi','pomegranate'];

If you want to add two items in between ‘pear’ and ‘kiwi’ in this list, you can use
splice( ) like this:

fruit.splice(2,0,'grape','orange');

This code adds two strings—'grape' and 'orange'—starting at index 2. In other
words, 'grape' becomes the third item in the list, 'orange' the fourth, and 'kiwi' and
'pomegranate' are moved to the end. You can see this diagrammed in Figure 2-7.

Figure 2-6:
The splice( ) method requires two pieces of
information to delete elements from an
array: the index value of where to start
hacking away, and the number of elements
to remove.



66 JavaScript: The Missing Manual

Arrays

Replacing items with splice( )

If you want to get really tricky, you can add and delete elements from an array in a
single operation. This maneuver can come in handy when you want to replace one
or more elements in an array with new items, for example, if someone wants to
replace one song in a playlist with another song.

The process is the same as for adding an item, but instead of specifying 0 for the
second piece of information that you supply splice( ), you indicate the number of
items you wish to remove. So, if you start with the fruit array again:

var fruit=['apple','pear','kiwi','pomegranate'];

Say you want to replace both 'kiwi' and 'pomegranate' with 'grape' and 'orange',
you can write this statement:

fruit.splice(2,2,'grape','orange');

In this case, the first 2 identifies which index position to start at, the second 2 spec-
ifies how many items to remove, and the other items indicate what should replace
the deleted items. See Figure 2-8 for a clear picture of the process.

Figure 2-7:
Add items in the middle of an array using
splice( ). The first number you provide
splice( ) represents the index position in the
array where the new items will go. Make
sure the second number is a 0; otherwise,
you’ll also delete elements from the array
as you insert new items.



Chapter 2: The Grammar of JavaScript 67

Tutorial: Writing to
a Web Page Using

Tutorial: Writing to a Web Page Using
Arrays
You’ll use arrays in many of the scripts in this book, but to get a quick taste of
creating and using arrays, try this short tutorial.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 2.3.html in the chapter02 folder.

You’ll start by simply creating an array containing four strings. As with the pre-
vious tutorial, this file already contains <script> tags in both the head and body
regions.

2. Between the first set of <script> tags, type the bolded code:

<script type="text/javascript">

var authors = [ 'Ernest Hemingway',

                'Charlotte Bronte',

                'Dante Alighieri',

                'Emily Dickinson'

              ];

</script>

Figure 2-8:
When you want to replace items in an array with
new items, you can turn to the splice( ) method.



68 JavaScript: The Missing Manual

Tutorial: Writing to
a Web Page Using

This code comprises a single JavaScript statement, but it’s broken over five
lines. To create it, type the first line—var authors = [ 'Ernest Hemingway',—hit
Return, then press the Space bar until you line up under the ' (about 16 spaces),
and then type 'Charlotte Bronte',.

Note: Most HTML editors use a monospaced font like Courier or Courier New for your HTML and Java-
Script code. In a monospaced font, each character is the same width as every other character, so it’s easy
to line up columns (like all the author names in this example). If your text editor doesn’t use Courier or
something similar, you may not be able to line up the names perfectly.

As mentioned on page 59, when you create an array with lots of elements, you
can make your code easier to read if you break it over several lines. You can tell
it’s a single statement since there’s no semicolon until the end of line 5.

This line of code creates an array named authors and stores the names of 4
authors (4 string values) into the array. Next, you’ll access an element of the
array.

3. Locate the second set of <script> tags, and add the code in bold:

<script type="text/javascript">

document.write('<p>The first author is <strong>');

document.write(authors[0] + '</strong></p>');

</script>

The first line starts a new paragraph with some text and an opening <strong>
tag—just plain HTML. The next line prints the value stored in the first item of
the authors array and prints the closing </strong> and </p> tags to create a
complete HTML paragraph. To access the first item in an array, you use a 0 as
the index—authors[0]—instead of 1.

At this point, it’s a good idea to save your file and preview it in a Web browser.
You should see “The first author is Ernest Hemingway” printed on the screen.
If you don’t, you may have made a typo either when you created the array in
step 2 or 3.

Note: Remember to use the Firefox Error Console described on page 34 to help you locate the source of
any JavaScript errors.

4. Return to your text editor and add the two lines of bolded code below to your
script:

document.write('<p>The last author is <strong>');

document.write(authors[4] + '</strong></p>');

This step is pretty much the same as the previous one, except that you’re print-
ing a different array item. Save the page and preview it in a browser. You’ll see
“undefined” in place of an author’s name (see Figure 2-9). Don’t worry; that’s



Chapter 2: The Grammar of JavaScript 69

Tutorial: Writing to
a Web Page Using

intentional. Remember that an array’s index values begin at 0, so the last item is
actually the total number of items in the array minus 1. In this case, there are
four strings stored in the authors array, so that last item would actually be
accessed with authors[3].

Note: If you try to read the value of an item using an index value that doesn’t exist, you’ll end up with
the JavaScript “undefined” value. All that means is that there’s no value stored in that index position.

Fortunately, there’s an easy technique for retrieving the last item in an array no
matter how many items are stored in the array.

5. Return to your text editor and edit the code you just entered. Erase the 4 and
add the bolded code in its place:

document.write('<p>The last author is <strong>');

document.write(authors[authors.length-1] + '</strong></p>');

As you’ll recall from page 60, an array’s length property stores the number of
items in the array. So the total number of items in the authors array can be
found with this code authors.length. At this point in the script, that turns out to
be 4.

Knowing that the index value of the last item in an array is always 1 less than
the total number of items in an array, you just subtract one from the total to get
the index number of the last item: authors.length-1. You can provide that little
equation as the index value when accessing the last item in an array:
authors[authors.length-1].

You’ll finish up by adding one more item to the beginning of the array.

Figure 2-9:
If you try to access an
array element that
doesn’t exist, then you’ll
end up with the value
“undefined.”



70 JavaScript: The Missing Manual

Tutorial: Writing to
a Web Page Using

6. Add another line of code after the ones you added in step 5:

authors.unshift('Stan Lee');

As you read on page 62, the unshift( ) method adds one or more items to the
beginning of an array. After this line of code runs the authors array will now be
['Stan Lee', 'Ernest Hemingway',

Finally, you’ll print out the newly added item on the page.

7. Add the three more lines (bolded below) so that your final code looks like this:

document.write('<p>The first author is <strong>');

document.write(authors[0] + '</strong></p>');

document.write('<p>The last author is <strong>');

document.write(authors[authors.length-1] + '</strong></p>');

authors.unshift('Stan Lee');

document.write('<p>I almost forgot <strong>');

document.write(authors[0]);

document.write('</strong></p>');

Save the file and preview it in a Web browser. You should see something like
Figure 2-10. If you don’t, remember the error console in Firefox can help you
locate the error (page 34).

Figure 2-10:
OK, Stan Lee may not be
your idea of a literary
giant, but at least he’s
helping you learn how
arrays work.


	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgements
	The Missing Manual Series

	Introduction
	What Is JavaScript?
	A Bit of History
	JavaScript Is Everywhere
	JavaScript Doesn’t Stand Alone

	HTML: The Barebones Structure
	How HTML Tags Work

	CSS: Adding Style to Web Pages
	Anatomy of a Style

	Software for JavaScript Programming
	Free Programs
	Commercial Software

	About This Book
	This Book’s Approach to JavaScript
	About the Outline
	Living Examples
	About MissingManuals.com

	The Very Basics
	About › These › Arrows
	Safari® Books Online


	Chapter 1. Writing Your First JavaScript Program
	Introducing Programming
	What’s a Computer Program?

	How to Add JavaScript to a Page
	External JavaScript Files

	Your First JavaScript Program
	Writing Text on a Web Page
	Attaching an External JavaScript File
	Tracking Down Errors
	The Firefox JavaScript Console
	Displaying the Internet Explorer Error Dialog Box
	Accessing the Safari Error Console


	Chapter 2. The Grammar of JavaScript
	Statements
	Commands
	Types of Data
	Numbers
	Strings
	Booleans

	Variables
	Creating a Variable
	Using Variables

	Working with Data Types and Variables
	Basic Math
	The Order of Operations
	Combining Strings
	Combining Numbers and Strings
	Changing the Values in Variables

	Tutorial: Using Variables to Create Messages
	Tutorial: Asking for Information
	Arrays
	Creating an Array
	Accessing Items in an Array
	Adding Items to an Array
	Adding an item to the end of an array
	Adding an item to the beginning of an array
	Choosing how to add items to an array

	Deleting Items from an Array
	Adding and Deleting with splice(��)
	Deleting items with splice(��)
	Adding items with splice(��)
	Replacing items with splice(��)


	Tutorial: Writing to a Web Page Using Arrays
	Comments
	When to Use Comments
	Comments in this Book


	Chapter 3. Adding Logic and Control to Your Programs
	Making Programs React Intelligently
	Conditional Statement Basics
	Adding a Backup Plan
	Testing More Than One Condition
	More Complex Conditions
	Making sure more than one condition is true
	Making sure at least one condition is true
	Negating a condition

	Nesting Conditional Statements
	Tips for Writing Conditional Statements

	Tutorial: Using Conditional Statements
	Handling Repetitive Tasks with Loops
	While Loops
	Loops and Arrays
	For Loops
	Do/While Loops

	Functions: Turn Useful Code Into Reusable Commands
	Mini-Tutorial
	Giving Information to Your Functions
	Retrieving Information from Functions
	Keeping Variables from Colliding

	Tutorial: A Simple Quiz

	Chapter 4. Working with Words, Numbers, and Dates
	A Quick Object Lesson
	Strings
	Determining the Length of a String
	Changing the Case of a String
	Searching a String: indexOf(��) Technique
	Extracting Part of a String with slice(��)

	Finding Patterns in Strings
	Creating and Using a Basic Regular Expression
	Building a Regular Expression
	Grouping Parts of a Pattern
	Useful Regular Expressions
	U.S. Zip code
	U.S. phone number
	Email address
	Date
	Web address

	Matching a Pattern
	Matching every instance of a pattern

	Replacing Text
	Trying Out Regular Expressions

	Numbers
	Changing a String to a Number
	Testing for Numbers
	Rounding Numbers
	Formatting Currency Values
	Creating a Random Number
	Randomly selecting an array element
	A function for selecting a random number


	Dates and Times
	Getting the Month
	Getting the Day of the Week
	Getting the Time
	Changing hours to a.m. and p.m.
	Padding single digits

	Creating a Date Other Than Today
	Creating a date that’s one week from today


	Tutorial
	Overview
	Writing the Function


	Chapter 5. Dynamically Modifying Web Pages
	Modifying Web Pages: An Overview
	Understanding the Document Object Model
	Selecting a Page Element
	getElementById(��)
	getElementsByTagName(��)
	Selecting nearby nodes

	Adding Content to a Page
	The Moon Quiz Revisited
	The Problem with the DOM

	Introducing JavaScript Libraries
	Getting Started with jQuery

	Selecting Page Elements (Revisited)
	Basic Selectors
	ID selectors
	Element selectors
	Class selectors

	Advanced Selectors
	jQuery Filters
	Understanding jQuery Selections
	Automatic loops
	Chaining functions


	Adding Content to a Page
	Replacing and Removing Selections

	Setting and Reading Tag Attributes
	Classes
	Reading and Changing CSS Properties
	Changing Multiple CSS Properties at Once

	Reading, Setting, and Removing HTML Attributes
	Creative Headlines
	Acting on Each Element in a Selection
	Anonymous Functions
	this and $(this)

	Automatic Pull Quotes
	Overview
	Programming


	Chapter 6. Action/Reaction: Making Pages Come Alive with Events
	What Are Events?
	Mouse Events
	Document/Window Events
	Form Events
	Keyboard Events

	Using Events with Functions
	Inline Events
	The Traditional Model
	The Modern Way
	The jQuery Way

	Tutorial: Highlighting Table Rows
	More jQuery Event Concepts
	Waiting for the HTML to Load
	jQuery Events
	The hover(��) event
	The toggle(��) Event

	The Event Object
	Stopping an Event’s Normal Behavior
	Removing Events

	Advanced Event Management
	Tutorial: A One-Page FAQ
	Overview of the Task
	The Programming


	Chapter 7. Improving Your Images
	Swapping Images
	Changing an Image’s src Attribute
	Preloading Images
	Rollover Images

	Tutorial: Adding Rollover Images
	Overview of the Task
	The Programming

	jQuery Effects
	Basic Showing and Hiding
	Fading Elements In and Out
	Sliding Elements
	Animation

	Tutorial: Photo Gallery with Effects
	Overview of Task
	The Programming

	Advanced Gallery with jQuery lightBox
	The Basics
	Customizing lightBox
	lightBox options
	lightBox images
	lightBox CSS


	Tutorial: lightBox Photo Gallery
	Animated Slideshows with Cycle
	The Basics
	Customizing the Cycle Plug-in
	Effects
	Speed
	Navigating slides
	Starting and stopping the slideshow


	Tutorial: An Automated Slideshow

	Chapter 8. Improving Navigation
	Some Link Basics
	Selecting Links with JavaScript
	Determining a Link’s Destination
	Don’t Follow That Link

	Opening External Links in a New Window
	Creating New Windows
	Window Properties
	Use the window reference
	Events that can open a new window


	Opening Pages in a Window on the Page
	Customizing the Look of a Greybox Window
	Tutorial: Opening a Page Within a Page

	Tutorial: Making Bigger Links
	Overview
	The Programming

	Animated Navigation Menus
	The HTML
	The CSS
	The JavaScript
	The Tutorial


	Chapter 9. Enhancing Web Forms
	Understanding Forms
	Selecting Form Elements
	Getting and Setting the Value of a Form Element
	Determine Whether Buttons and Boxes Are Checked
	Form Events
	Submit
	Focus
	Blur
	Click
	Change


	Adding Smarts to Your Forms
	Focus the First Field in a Form
	Disabling and Enabling Fields
	Hiding and Showing Form Options

	Tutorial: Basic Form Enhancements
	Focusing a Field
	Disabling Form Fields
	Hiding Form Fields

	Form Validation
	jQuery Validation Plug-in
	Basic Validation
	Adding validation rules
	Adding error messages

	Advanced Validation
	Advanced rules
	Advanced error messages

	Styling Error Messages

	Validation Tutorial
	Basic Validation
	Advanced Validation
	Validating Checkboxes and Radio Buttons
	Formatting the Error Messages


	Chapter 10. Expanding Your Interface
	Hiding Information with Accordion Panels
	Customizing an Accordion
	Accordion Tutorial

	Organizing Information in Tabbed Panels
	Formatting Tabs and Panels
	A required class style
	The tab group
	Tabs
	Panels

	Customizing the Tabs Plug-in
	Selecting a tab when the page loads
	Using a different event to open a panel
	Automating the display of panels

	Tabbed Panels Tutorial

	Tooltips
	Tooltips Using the Title Attribute
	Tooltips Using Another Web Page
	Tooltips Using Hidden Content
	Controlling the Display of Tooltips
	Formatting Tooltips
	Cluetip Tutorial
	Adding a tooltip using the title attribute
	Adding a tooltip using another Web page
	Adding a tooltip using HTML on the page


	Creating Sortable Tables
	Styling the Table
	Using the Tablesorter plug-in to stripe tables

	Tablesorter Tutorial


	Chapter 11. Introducing Ajax
	What Is Ajax?
	Ajax: The Basics
	Pieces of the Puzzle
	Talking to the Web Server

	Ajax the jQuery Way
	Using the load(��) Function
	Tutorial: The load(��) Function
	Overview
	The programming

	The get(��) and post(��) Functions
	Formatting Data to Send to the Server
	Query string
	Object literal
	jQuery’s serialize(��) function

	Processing Data from the Server
	Tutorial: Using the post(��) Function
	Overview
	The programming


	JSON
	Accessing JSON Data
	Complex JSON Objects


	Chapter 12. Basic Ajax Programming
	Tabs Plug-in
	Changing the Loading Text and Icon
	Turning off the “Loading” message

	Ajax Tabs Tutorial

	Adding Google Maps to Your Site
	Setting a Location for the Map
	Other jMap Options
	Adding Markers and HTML Bubbles
	Get Driving Directions
	jMaps Tutorial


	Chapter 13. Troubleshooting and Debugging
	Top JavaScript Programming Mistakes
	Non-Closed Pairs
	Quotation Marks
	Using Reserved Words
	Single Equals in Conditional Statements
	Case-Sensitivity
	Incorrect Path to External JavaScript File
	Incorrect Paths Within External JavaScript Files
	Disappearing Variables and Functions

	Debugging with Firebug
	Installing and Turning On Firebug
	Viewing Errors with Firebug
	Using console.log(��) to Track Script Progress
	Tutorial: Using the Firebug Console
	More Powerful Debugging
	Controlling your script with the debugger
	Watching your script


	Debugging Tutorial

	Chapter 14. Going Further with JavaScript
	Putting It All Together
	Using External JavaScript Files

	Writing More Efficient JavaScript
	Put Preferences in Variables
	Ternary Operator
	The Switch Statement
	Using the jQuery Object Efficiently

	Creating Fast-Loading JavaScript
	Using YUI Compressor for Windows
	Using YUI Compressor for Mac


	Appendix A. JavaScript Resources
	References
	Web Sites
	Books

	Basic JavaScript
	Articles and Presentations
	Web Sites
	Books

	jQuery
	Articles
	Web Sites
	Books

	The Document Object Model
	Articles and Presentations
	Web Sites
	Books

	Ajax
	Web Sites
	Books

	Advanced JavaScript
	Articles and Presentations
	Web Sites
	Books

	CSS
	Web Sites
	Books

	JavaScript Software

	Index

