
39

Chapter 2chapter

2

The Grammar of
JavaScript

Learning a programming language is a lot like learning any new language: There
are words to learn, punctuation to understand, and a new set of rules to master.
And just as you need to learn the grammar of French to speak French, you must
become familiar with the grammar of JavaScript to program JavaScript. This chap-
ter covers the concepts that all JavaScript programs rely on.

If you’ve had any experience with JavaScript programming, many of these con-
cepts may be old hat, so you might just skim this chapter. But if you’re new to
JavaScript, or you’re still not sure about the fundamentals, this chapter introduces
you to basic (but crucial) topics.

Statements
A JavaScript statement is a basic programming unit, usually representing a single
step in a JavaScript program. Think of a statement as a sentence: Just as you string
sentences together to create a paragraph (or a chapter, or a book), you combine
statements to create a JavaScript program. In the last chapter you saw several
examples of statements. For example:

alert('Hello World!');

This single statement opens an alert window with the message “Hello World!” in
it. In many cases, a statement is a single line of code. Each statement ends with a
semicolon—it’s like a period at the end of a sentence. The semicolon makes it clear
that the step is over and that the JavaScript interpreter should move onto the next
action.

40 JavaScript: The Missing Manual

Commands

Note: Officially, putting a semicolon at the end of a statement is optional, and some programmers leave
them out to make their code shorter. Don’t be one of them. Leaving off the semicolon makes reading
your code more difficult and, in some cases, causes JavaScript errors. If you want to make your JavaScript
code more compact so that it downloads more quickly, see page 502.

The general process of writing a JavaScript program is to type a statement, enter a
semicolon, press Return to create a new, blank line, type another statement, fol-
lowed by a semicolon, and so on and so on until the program is complete.

Commands
JavaScript and Web browsers let you use various commands to make things hap-
pen in your programs and on your Web pages. For example, the alert() command
you encountered earlier makes the Web browser open a dialog box and display a
message. These commands are usually called functions or methods, and are like
verbs in a sentence. They get things done.

Some commands, like alert() or document.write(), which you encountered on
page 29, are specific to Web browsers. In other words, they only work with Web
pages, so you won’t find them when programming in other environments that use
JavaScript (like, for example, when scripting Adobe applications like Acrobat or
Dreamweaver or in Flash’s JavaScript-based ActionScript).

Other commands are universal to JavaScript and work anywhere JavaScript works.
For example, isNaN() is a command that checks to see if a particular value is a
number or not—this command comes in handy when you want to check if a visi-
tor has correctly supplied a number for a question that requires a numerical
answer (for example, “How many widgets would you like?”). You’ll learn about
isNaN() and how to use it in Chapter 4 on page 137.

JavaScript has many different commands, which you’ll learn about throughout this
book. One quick way to identify a command in a program is by the use of paren-
theses. For example, you can tell isNaN() is a command, because of the parentheses
following isNaN.

In addition, JavaScript lets you create your own functions, so you can make your
scripts do things beyond what the standard JavaScript commands offer. You’ll
learn about functions in Chapter 3, starting on page 97.

Types of Data
You deal with different types of information every day. Your name, the price of
food, the address of your doctor’s office, and the date of your next birthday are all
information that is important to you. You make decisions about what to do and
how to live your life based on the information you have. Computer programs are

Chapter 2: The Grammar of JavaScript 41

Types of Data

no different. They also rely on information to get things done. For example, to cal-
culate the total for a shopping cart, you need to know the price and quantity of
each item ordered. To customize a Web page with a visitor’s name (“Welcome
Back, Kotter”), you need to know his or her name.

Programming languages usually categorize information into different types, and
treat each type in a different way. In JavaScript, the three most common types of
data are number, string, and Boolean.

Numbers
Numbers are used for counting and calculating; you can keep track of the number
of days until summer vacation, or calculate the cost of buying two tickets to a
movie. Numbers are very important in JavaScript programming: you can use num-
bers to keep track of how many times a visitor has visited a Web page, to specify
the exact pixel position of an item on a Web page, or to determine how many
products a visitor wants to order.

In JavaScript, a number is represented by a numeric character; 5, for example, is
the number five. You can also use fractional numbers with decimals, like 5.25 or
10.3333333. JavaScript even lets you use negative numbers, like –130.

Since numbers are frequently used for calculations, your programs will often
include mathematical operations. You’ll learn about operators on page 48, but just
to provide an example of using JavaScript with numbers, say you wanted to print
the total value of 5 plus 15 on a Web page; you could do that with this line of code:

document.write(5 + 15);

This snippet of JavaScript adds the two numbers together and prints the total (20)
onto a Web page. There are many different ways to work with numbers, and you’ll
learn more about them starting on page 134.

Strings
To display a name, a sentence, or any series of letters, you use strings. A string is
just a series of letters and other symbols enclosed inside of quote marks. For exam-
ple, 'Welcome Hal', and “You are here” are both examples of strings. You used a
string in the last chapter with the alert command—alert('Hello World!');.

A string’s opening quote mark signals to the JavaScript interpreter that what fol-
lows is a string—just a series of symbols. The interpreter accepts the symbols liter-
ally, rather than trying to interpret the string as anything special to JavaScript like a
command. When the interpreter encounters the final quote mark, it understands
that it has reached the end of the string and continues onto the next part of the
program.

You can use either double quote marks ("hello world") or single quote marks
('hello world') to enclose the string, but you must make sure to use the same type of
quote mark at the beginning and end of the string (for example, "this is not right'

42 JavaScript: The Missing Manual

Types of Data

isn’t a valid string because it begins with a double-quote mark but ends with a single-
quote.)

So, to pop-up an alert box with the message Warning, warning! you could write:

alert('Warning, warning!');

or

alert("Warning, warning!");

You’ll use strings frequently in your programming—when adding alert messages,
when dealing with user input on Web forms, and when manipulating the contents
of a Web page. They’re so important that you’ll learn a lot more about using
strings starting on page 116.

Booleans
Whereas numbers and strings offer infinite possibilities, the Boolean data type is
simple. It is either one of two values: true or false. You’ll encounter Boolean data
types when you create JavaScript programs that respond intelligently to user input

FREQUENTLY ASKED QUESTION

Putting Quotes into Strings
When I try to create a string with a quote mark in it, my
program doesn’t work. Why is that?

In JavaScript, quote marks indicate the beginning and end
of a string, even when you don’t want them to. When the
JavaScript interpreter encounters the first quote mark, it
says to itself, “Ahh, here comes a string.” When it reaches a
matching quote mark, it figures it has come to the end of
the string. That’s why you can’t create a string like this: "He
said, "Hello."". In this case, the first quote mark (before the
word “He”) marks the start of the string, but as soon as the
JavaScript interpreter encounters the second quote mark
(before the word “Hello”), it figures that the string is over,
so you end up with the string "He said, " and the Hello.
part, which creates a JavaScript error.

There are a couple of ways to get around this conundrum.
The easiest method is to use single quotes to enclose a
string that has one or more double quotes inside it. For
example, 'He said, "Hello."' is a valid string—the single
quotes create the string, and the double quotes inside are
a part of the string. Likewise, you can use double quotes to
enclose a string that has a single quote inside it: "This isn’t
fair" for example.

Another method is to tell the JavaScript interpreter to just
treat the quote mark inside the string literally—that is, treat
the quote mark as part of the string, not the end of the
string. You do this using something called an escape char-
acter. If you precede the quote mark with a backward slash
(\), the quote is treated as part of the string. You could
rewrite the above example like this: "He said, \"Hello.\ "".
In some cases, an escape character is the only choice. For
example: 'He said, "This isn\'t fair."' Because the string is
enclosed by single quotes, the lone single quote in the
word “isn’t” has to have a backward slash before it: isn\'t.

You can even escape quote marks when you don’t neces-
sarily have to—as a way to make it clear that the quote mark
should be taken literally. For example. 'He said, "Hello."'.
Even though you don’t need to escape the double quotes
(since single quotes surround the entire string) some pro-
grammers do it anyway so that it’s clear to them that the
quote mark is just a quote mark.

Chapter 2: The Grammar of JavaScript 43

Variables

and actions. For example, if you want to make sure a visitor supplied an email
address before submitting a form, you can add logic to your page by asking the
simple question: “Did the user type in a valid email address?” The answer to this
question is a Boolean value: either the email address is valid (true) or it’s not
(false). Depending on the answer to the question, the page could respond in differ-
ent ways. For example, if the email address is valid (true), then submit the form; if
it is not valid (false), then display an error message and prevent the form from
being submitted.

You’ll learn how Boolean values come into play when adding logic to your pro-
grams in the box on page 80.

Variables
You can type a number, string, or Boolean value directly into your JavaScript pro-
gram, but these data types work only when you already have the information you
need. For example, you can make the string “Hi Bob” appear in an alert box like
this:

alert('Hi Bob');

But that statement only makes sense if everyone who visits the page is named Bob.
If you want to present a personalized message for different visitors, the name needs
to be different depending on who is viewing the page: 'Hi Mary,' 'Hi Joseph,' 'Hi
Ezra,' and so on. Fortunately, all programming languages provide something
known as a variable to deal with just this kind of situation.

A variable is a way to store information so that you can later use and manipulate it.
For example, imagine a JavaScript-based pinball game where the goal is to get the
highest score. When a player first starts the game, her score will be zero, but as she
knocks the pinball into targets, the score will get bigger. In this case, the score is a
variable since it starts at 0 but changes as the game progresses—in other words, a
variable holds information that can vary. See Figure 2-1 for an example of another
game that uses variables.

Think of a variable as a kind of basket: you can put an item into a basket, look
inside the basket, dump out the contents of a basket, or even replace what’s inside
the basket with something else. However, even though you might change what’s
inside the basket, it still remains the same basket.

Creating a Variable
Creating a variable is a two-step process that involves declaring the variable and
naming it. In JavaScript to create a variable named score you would type:

var score;

The first part, var, is a JavaScript keyword that creates, or, in programming-speak,
declares the variable. The second part of the statement, score, is the variable’s name.

44 JavaScript: The Missing Manual

Variables

What you name your variables is up to you, but there are a few rules you must follow
when naming variables:

• Variable names must begin with a letter, $, or _. In other words, you can’t
begin a variable name with a number or punctuation: so 1thing, and &thing
won’t work, but score, $score, and _score are fine.

• Variable names can only contain letters, numbers, $, and _. You can’t use
spaces or any other special characters anywhere in the variable name: fish&chips
and fish and chips aren’t legal, but fish_n_chips and plan9 are.

• Variable names are case-sensitive. The JavaScript interpreter sees uppercase
and lowercase letters as distinct, so a variable named SCORE is different from a
variable named score, which is also different from variables named sCoRE and
Score.

• Avoid keywords. Some words in JavaScript are specific to the language itself:
var for example is used to create a variable, so you can’t name a variable var. In
addition, some words, like alert, document, and window, are considered special
properties of the Web browser. You’ll end up with a JavaScript error if you try
to use those words as variable names. You can find a list of some reserved words
in Table 2-1. Not all of these reserved words will cause problems in all browsers,
but it’s best to steer clear of these names when naming variables.

Figure 2-1:
The game Real World
Racer (www.thomasscott.
net/realworldracer)
merges JavaScript with
Google Maps technology
to let you race your way
along any road in the
world. The game tracks
your speed, time, and the
number of checkpoints
you’ve crossed (in the
top-right box). These are
all examples of variables
since they change value
as the game goes on.

Chapter 2: The Grammar of JavaScript 45

Variables

In addition to these rules, aim to make your variable names clear and meaningful.
Naming variables according to what type of data you’ll be storing in them makes it
much easier to look at your programming code and immediately understand
what’s going on. For example, score is a great name for a variable used to track a
player’s game score. The variable name s would also work, but the single letter “s”
doesn’t give you any idea about what’s stored in the variable.

Table 2-1. Some words are reserved for use by JavaScript and the Web browser. Avoid using them as
variable names.

JavaScript keywords Reserved for future use Reserved for browser

break
case
catch
continue
default
delete
do
else
finally
for
function
if
in
instanceof
new
return
switch
this
throw
try
typeof
var
void
while
with

abstract
boolean
byte
char
class
const
debugger
double
enum
export
extends
final
float
goto
implements
import
int
interface
long
native
package
private
protected
public
short
static
super
synchronized
throws
transient
volatile

alert
blur
closed
document
focus
frames
history
innerHeight
innerWidth
length
location
navigator
open
outerHeight
outerWidth
parent
screen
screenX
screenY
statusbar
window

46 JavaScript: The Missing Manual

Variables

Likewise, make your variable names easy to read. When you use more than one
word in a variable name, either use an underscore between words or capitalize the
first letter of each word after the first. For example, imagepath isn’t as easy to read
and understand as image_path or imagePath.

Tip: If you want to declare a bunch of variables at one time, you can do it in a single line of code like this:

var score, players, game_time;

This line of code creates three variables at once.

Using Variables
Once a variable is created, you can store any type of data that you’d like in it. To
do so, you use the = sign. For example, to store the number 0 in a variable named
score, you could type this code:

var score;

score = 0;

The first line of code above creates the variable; the second line stores the number
0 in the variable. The equal sign is called an assignment operator, because it’s used
to assign a value to a variable. You can also create a variable and store a value in it
with just a single JavaScript statement like this:

var score = 0;

You can store strings, numbers and Boolean values in a variable:

var firstName = 'Peter';

var lastName = 'Parker';

var age = 22;

var isSuperHero = true;

Tip: To save typing, you can declare multiple variables with a single var keyword, like this:

var x, y, z;

You can even declare and store values into multiple variables in one JavaScript statement:

var isSuperHero=true, isAfraidOfHeights=false;

Once you’ve stored a value in a variable, you can access that value simply by using
the variable’s name. For example, to open an alert dialog box and display the value
stored in the variable score, you’d type this:

alert(score);

Notice that you don’t use quotes with a variable—that’s just for strings, so the code
alert('score') will display the word “score” and not the value stored in the variable
score. Now you can see why strings have to be enclosed in quote marks: the Java-
Script interpreter treats words without quotes as either special JavaScript objects
(like the alert() command) or a variable name.

Chapter 2: The Grammar of JavaScript 47

Working with Data
Types and Variables

Note: You only need to use the var keyword once—when you first create the variable. After that, you’re
free to assign new values to the variable without using var.

Working with Data Types and Variables
Storing a particular piece of information like a number or string in a variable is
usually just a first step in a program. Most programs also manipulate data to get
new results. For example, add a number to a score to increase it, multiply the
number of items ordered by the cost of the item to get a grand total, or personal-
ize a generic message by adding a name to the end: “Good to see you again, Igor.”
JavaScript provides various operators to modify data. An operator is simply a sym-
bol or word that can change one or more values into something else. For example,
you use the + symbol—the addition operator—to add numbers together. There
are different types of operators for the different data types.

FREQUENTLY ASKED QUESTION

Spaces, Tabs, and Carriage Returns in JavaScript
JavaScript seems so sensitive about typos. How do I know
when I’m supposed to use space characters, and when I’m
not allowed to?

You must put a space between keywords: varscore=0, for
example, doesn’t create a new variable named score. The
JavaScript interpreter needs the space between var and
score to identify the var keyword: var score=0. However,
space isn’t necessary between keywords and symbols like
the assignment operator (=) or the semicolon that ends a
statement.

JavaScript interpreters ignore extra space, so you’re free to
insert extra spaces, tabs and carriage returns to format your
code. For example, you don’t need a space on either side
of an assignment operator, but you can add them if you
find it easier to read. Both of the lines of code below work:

var formName='signup';
var formRegistration = 'newsletter' ;

In fact, you can insert as many spaces as you’d like, and
even insert carriage returns within a statement. So both of
the following statements also work:

var formName = 'signup';
var formRegistration
 =
 'newsletter';

Of course, just because you can insert extra space, doesn’t
mean you should. The last two examples are actually
harder to read and understand because of the extra space.
So the general rule of thumb is add extra space if it makes
your code easier to understand. You’ll see examples of how
space can make code easier to read with arrays (page 58)
and with JavaScript Object Literals (page 188).

One important exception to the above rules: you can’t
insert a carriage return inside a string; in other words you
can’t split a string over two lines in your code like this:

var name = 'Bob
 Smith';

Inserting a carriage return (pressing the Enter or Return
key) like this produces a JavaScript error and your program
won’t run.

48 JavaScript: The Missing Manual

Working with Data
Types and Variables

Basic Math
JavaScript supports basic mathematical operations such as addition, division, sub-
traction, and so on. Table 2-2 shows the most basic math operators and how to use
them.

You may be used to using an x for multiplication (4 × 5, for example), but in Java-
Script, you use the * symbol to multiply two numbers.

You can also use variables in mathematical operations. Since a variable is only a
container for some other value like a number or string, using a variable is the same
as using the contents of that variable.

var price = 10;

var itemsOrdered = 15;

var totalCost = price * itemsOrdered;

The first two lines of code create two variables (price and itemsOrdered) and store a
number in each. The third line of code creates another variable (totalCost) and
stores the results of multiplying the value stored in the price variable (10) and the
value stored in the itemsOrdered variable. In this case, the total (150) is stored in
the variable totalCost.

This sample code also demonstrates the usefulness of variables. Suppose you write
a program as part of a shopping cart system for an e-commerce Web site.
Throughout the program, you need to use the price of a particular product to
make various calculations. You could code the actual price throughout the pro-
gram (for example, say the product cost 10 dollars, so you type 10 in each place in
the program that price is used). However, if the price ever changes, you’d have to
locate and change each line of code that uses the price. By using a variable, on the
other hand, you can set the price of the product somewhere near the beginning of
the program. Then, if the price ever changes, you only need to modify the one line
of code that defines the product’s price to update the price throughout the program:

var price = 20;

var itemsOrdered = 15;

var totalCost = price * itemsOrdered;

There are lots of other ways to work with numbers (you’ll learn a bunch starting
on page 134), but you’ll find that you most frequently use the basic math opera-
tors listed in Table 2-2.

Table 2-2. Basic math with JavaScript

Operator What it does How to use it

+ Adds two numbers 5 + 25

– Subtracts one number from another 25 – 5

* Multiplies two numbers 5 * 10

/ Divides one number by another 15/5

Chapter 2: The Grammar of JavaScript 49

Working with Data
Types and Variables

The Order of Operations
If you perform several mathematical operations at once—for example, you total
up several numbers then multiply them all by 10—you need to keep in mind the
order in which the JavaScript interpreter performs its calculations. Some opera-
tors take precedence over other operators, so they’re calculated first. This fact can
cause some unwanted results if you’re not careful. Take this example:

4 + 5 * 10

You might think this simply is calculated from left to right: 4 + 5 is 9 and 9 * 10 is
90. It’s not. The multiplication actually goes first, so this equation works out to 5 *
10 is 50, plus 4 is 54. Multiplication (the * symbol) and division (the / symbol) take
precedence over addition (+) and subtraction (-).

To make sure that the math works out the way you want it, use parentheses to
group operations. For example, you could rewrite the equation above like this:

(4 + 5) * 10

Any math that’s performed inside parentheses happens first, so in this case the 4 is
added to 5 first and the result, 9, is then multiplied by 10. If you do want the multi-
plication to occur first, it would be clearer to write that code like this:

4 + (5*10);

Combining Strings
Combining two or more strings to make a single string is a common programming
task. For example, if a Web page has a form that collects a person’s first name in
one form field and his last name in a different field, you need to combine the two
fields to get his complete name. What’s more, if you want to display a message let-
ting the user know his form information was submitted, you need to combine the
generic message with the person’s name: “John Smith, thanks for your order.”

Combining strings is called concatenation, and you accomplish it with the + operator.
Yes, that’s the same + operator you use to add number values, but with strings it
behaves a little differently. Here’s an example:

var firstName = 'John';

var lastName = 'Smith';

var fullName = firstName + lastName;

In the last line of code above, the contents of the variable firstName are combined
(or concatenated) with the contents of the variable lastName—the two are literally
joined together and the result is placed in the variable fullName. In this example,
the resulting string is “JohnSmith”—there isn’t a space between the two names,
since concatenating just fuses the strings together. In many cases (like this one),
you need to add an empty space between strings that you intend to combine:

var firstName = 'John';

var lastName = 'Smith';

var fullName = firstName + ' ' + lastName;

50 JavaScript: The Missing Manual

Working with Data
Types and Variables

The ' ' in the last line of this code is a single quote, followed by a space, followed by
a final single quote. This code is simply a string that contains an empty space.
When placed between the two variables in this example, it creates the string "John
Smith". This last example also demonstrates that you can combine more than two
strings at a time; in this case, three strings.

Combining Numbers and Strings
Most of the mathematical operators only make sense for numbers. For example, it
doesn’t make any sense to multiply 2 and the string 'eggs'. If you try this example,
you’ll end up with a special JavaScript value NaN, which stands for “not a number.”
However, there are times when you may want to combine a string with a number.
For example, say you want to present a message on a Web page that specifies how
many times a visitor has been to your Web site. The number of times she’s visited
is a number, but the message is a string. In this case, you use the + operator to do
two things: convert the number to a string and concatenate it with the other string.
Here’s an example:

var numOfVisits = 101;

var message = 'You have visited this site ' + numOfVisits + ' times.';

In this case, message contains the string “You have visited this site 101 times.” The
JavaScript interpreter recognizes that there is a string involved, so it realizes it
won’t be doing any math (no addition). Instead, it treats the + as the concatena-
tion operator, and at the same time realizes that the number should be converted
to a string as well.

This example may seem like a good way to print words and numbers in the same
message. In this case, it’s obvious that the number is part of a string of letters that
makes up a complete sentence, and whenever you use the + operator with a string
value and a number, the JavaScript interpreter converts the number to a string.

That feature, known as automatic type conversion, can cause problems, however.
For example, if a visitor answers a question on a form (“How many pairs of shoes
would you like?”) by typing a number (2, for example), that input is treated like a
string—'2'. So you can run into a situation like this:

var numOfShoes = '2';

var numOfSocks = 4;

var totalItems = numOfShoes + numOfSocks;

You’d expect the value stored in totalItems to be 6 (2 shoes + 4 pairs of socks).
Instead, because the value in numOfShoes is a string, the JavaScript interpreter
converts the value in the variable numOfSocks to a string as well, and you end up
with the string '24' in the totalItems variable. There are a couple of ways to prevent
this error.

Chapter 2: The Grammar of JavaScript 51

Working with Data
Types and Variables

First, you add + to the beginning of the string that contains a number like this:

var numOfShoes = '2';

var numOfSocks = 4;

var totalItems = +numOfShoes + numOfSocks;

Adding a + sign before a variable (make sure there’s no space between the two)
tells the JavaScript interpreter to try to convert the string to a number value—if the
string only contains numbers like '2', you’ll end up with the string converted to a
number. In this example, you end up with 6 (2 + 4). Another technique is to use
the Number() command like this:

var numOfShoes = '2';

var numOfSocks = 4;

var totalItems = Number(numOfShoes) + numOfSocks;

Number() converts a string to a number if possible. (If the string is just letters and
not numbers, you get the NaN value to indicate that you can’t turn letters into a
number.)

In general, you’ll most often encounter numbers as strings when getting input
from a visitor to the page; for example, when retrieving a value a visitor entered
into a form field. So, if you need to do any addition using input collected from a
form or other source of visitor input, make sure you run it through the Number()
command first.

Changing the Values in Variables
Variables are useful because they can hold values that change as the program
runs—a score that changes as a game is played, for example. So how do you
change a variable’s value? If you just want to replace what’s contained inside a vari-
able, assign a new value to the variable. For example:

var score = 0;

score = 100;

However, you’ll frequently want to keep the value that’s in the variable and just
add something to it or change it in some way. For example, with a game score you
never just give a new score, you always add or subtract from the current score. To
add to the value of a variable, you use the variable’s name as part of the operation
like this:

var score = 0;

score = score + 100;

That last line of code may appear confusing at first, but it uses a very common
technique. Here’s how it works: All of the action happens to the right of the = sign
first; that is, the score + 100 part. Translated, it means “take what’s currently stored
in score (0) and then add 100 to it.” The result of that operation is then stored back
into the variable score. The final outcome of these two lines of code is that the vari-
able score now has the value of 100.

52 JavaScript: The Missing Manual

Working with Data
Types and Variables

The same logic applies to other mathematical operations like subtraction, division,
or multiplication:

score = score – 10;

score = score * 10;

score = score / 10;

In fact, performing math on the value in a variable and then storing the result back
into the variable is so common that there are shortcuts for doing so with the four
main mathematical operations, as pictured in Table 2-3.

The same rules apply when concatenating a string to a variable. For example, say
you have a variable with a string in it and want to add another couple of strings
onto that variable:

var name = 'Franklin';

var message = 'Hello';

message = message + ' ' + name;

As with numbers, there’s a shortcut operator for concatenating a string to a vari-
able. The += operator adds the string value to the right of the = sign to the end of
the variable’s string. So the last line of the above code could be rewritten like this:

 message += ' ' + name;

You’ll see the += operator frequently when working with strings, and throughout
this book.

Table 2-3. Shortcuts for performing math on a variable

Operator What it does How to use it The same as

+= Adds value on the right side of
equal sign to the variable on the
left.

score += 10; score = score + 10;

-= Subtracts value on the right side
of the equal sign from the vari-
able on the left.

score -= 10; score = score – 10;

*= Multiplies the variable on the left
side of the equal sign and the
value on the right side of the
equal sign.

score *= 10; score = score * 10

/= Divides the value in the variable
by the value on the right side of
the equal sign.

score /= 10 score = score / 10

++ Placed directly after a variable
name, ++ adds 1 to the variable.

score++ score = score + 1

-- Placed directly after a variable
name, -- subtracts 1 from the
variable.

score-- score = score - 1

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgements
	The Missing Manual Series

	Introduction
	What Is JavaScript?
	A Bit of History
	JavaScript Is Everywhere
	JavaScript Doesn’t Stand Alone

	HTML: The Barebones Structure
	How HTML Tags Work

	CSS: Adding Style to Web Pages
	Anatomy of a Style

	Software for JavaScript Programming
	Free Programs
	Commercial Software

	About This Book
	This Book’s Approach to JavaScript
	About the Outline
	Living Examples
	About MissingManuals.com

	The Very Basics
	About › These › Arrows
	Safari® Books Online

	Chapter 1. Writing Your First JavaScript Program
	Introducing Programming
	What’s a Computer Program?

	How to Add JavaScript to a Page
	External JavaScript Files

	Your First JavaScript Program
	Writing Text on a Web Page
	Attaching an External JavaScript File
	Tracking Down Errors
	The Firefox JavaScript Console
	Displaying the Internet Explorer Error Dialog Box
	Accessing the Safari Error Console

	Chapter 2. The Grammar of JavaScript
	Statements
	Commands
	Types of Data
	Numbers
	Strings
	Booleans

	Variables
	Creating a Variable
	Using Variables

	Working with Data Types and Variables
	Basic Math
	The Order of Operations
	Combining Strings
	Combining Numbers and Strings
	Changing the Values in Variables

	Tutorial: Using Variables to Create Messages
	Tutorial: Asking for Information
	Arrays
	Creating an Array
	Accessing Items in an Array
	Adding Items to an Array
	Adding an item to the end of an array
	Adding an item to the beginning of an array
	Choosing how to add items to an array

	Deleting Items from an Array
	Adding and Deleting with splice(��)
	Deleting items with splice(��)
	Adding items with splice(��)
	Replacing items with splice(��)

	Tutorial: Writing to a Web Page Using Arrays
	Comments
	When to Use Comments
	Comments in this Book

	Chapter 3. Adding Logic and Control to Your Programs
	Making Programs React Intelligently
	Conditional Statement Basics
	Adding a Backup Plan
	Testing More Than One Condition
	More Complex Conditions
	Making sure more than one condition is true
	Making sure at least one condition is true
	Negating a condition

	Nesting Conditional Statements
	Tips for Writing Conditional Statements

	Tutorial: Using Conditional Statements
	Handling Repetitive Tasks with Loops
	While Loops
	Loops and Arrays
	For Loops
	Do/While Loops

	Functions: Turn Useful Code Into Reusable Commands
	Mini-Tutorial
	Giving Information to Your Functions
	Retrieving Information from Functions
	Keeping Variables from Colliding

	Tutorial: A Simple Quiz

	Chapter 4. Working with Words, Numbers, and Dates
	A Quick Object Lesson
	Strings
	Determining the Length of a String
	Changing the Case of a String
	Searching a String: indexOf(��) Technique
	Extracting Part of a String with slice(��)

	Finding Patterns in Strings
	Creating and Using a Basic Regular Expression
	Building a Regular Expression
	Grouping Parts of a Pattern
	Useful Regular Expressions
	U.S. Zip code
	U.S. phone number
	Email address
	Date
	Web address

	Matching a Pattern
	Matching every instance of a pattern

	Replacing Text
	Trying Out Regular Expressions

	Numbers
	Changing a String to a Number
	Testing for Numbers
	Rounding Numbers
	Formatting Currency Values
	Creating a Random Number
	Randomly selecting an array element
	A function for selecting a random number

	Dates and Times
	Getting the Month
	Getting the Day of the Week
	Getting the Time
	Changing hours to a.m. and p.m.
	Padding single digits

	Creating a Date Other Than Today
	Creating a date that’s one week from today

	Tutorial
	Overview
	Writing the Function

	Chapter 5. Dynamically Modifying Web Pages
	Modifying Web Pages: An Overview
	Understanding the Document Object Model
	Selecting a Page Element
	getElementById(��)
	getElementsByTagName(��)
	Selecting nearby nodes

	Adding Content to a Page
	The Moon Quiz Revisited
	The Problem with the DOM

	Introducing JavaScript Libraries
	Getting Started with jQuery

	Selecting Page Elements (Revisited)
	Basic Selectors
	ID selectors
	Element selectors
	Class selectors

	Advanced Selectors
	jQuery Filters
	Understanding jQuery Selections
	Automatic loops
	Chaining functions

	Adding Content to a Page
	Replacing and Removing Selections

	Setting and Reading Tag Attributes
	Classes
	Reading and Changing CSS Properties
	Changing Multiple CSS Properties at Once

	Reading, Setting, and Removing HTML Attributes
	Creative Headlines
	Acting on Each Element in a Selection
	Anonymous Functions
	this and $(this)

	Automatic Pull Quotes
	Overview
	Programming

	Chapter 6. Action/Reaction: Making Pages Come Alive with Events
	What Are Events?
	Mouse Events
	Document/Window Events
	Form Events
	Keyboard Events

	Using Events with Functions
	Inline Events
	The Traditional Model
	The Modern Way
	The jQuery Way

	Tutorial: Highlighting Table Rows
	More jQuery Event Concepts
	Waiting for the HTML to Load
	jQuery Events
	The hover(��) event
	The toggle(��) Event

	The Event Object
	Stopping an Event’s Normal Behavior
	Removing Events

	Advanced Event Management
	Tutorial: A One-Page FAQ
	Overview of the Task
	The Programming

	Chapter 7. Improving Your Images
	Swapping Images
	Changing an Image’s src Attribute
	Preloading Images
	Rollover Images

	Tutorial: Adding Rollover Images
	Overview of the Task
	The Programming

	jQuery Effects
	Basic Showing and Hiding
	Fading Elements In and Out
	Sliding Elements
	Animation

	Tutorial: Photo Gallery with Effects
	Overview of Task
	The Programming

	Advanced Gallery with jQuery lightBox
	The Basics
	Customizing lightBox
	lightBox options
	lightBox images
	lightBox CSS

	Tutorial: lightBox Photo Gallery
	Animated Slideshows with Cycle
	The Basics
	Customizing the Cycle Plug-in
	Effects
	Speed
	Navigating slides
	Starting and stopping the slideshow

	Tutorial: An Automated Slideshow

	Chapter 8. Improving Navigation
	Some Link Basics
	Selecting Links with JavaScript
	Determining a Link’s Destination
	Don’t Follow That Link

	Opening External Links in a New Window
	Creating New Windows
	Window Properties
	Use the window reference
	Events that can open a new window

	Opening Pages in a Window on the Page
	Customizing the Look of a Greybox Window
	Tutorial: Opening a Page Within a Page

	Tutorial: Making Bigger Links
	Overview
	The Programming

	Animated Navigation Menus
	The HTML
	The CSS
	The JavaScript
	The Tutorial

	Chapter 9. Enhancing Web Forms
	Understanding Forms
	Selecting Form Elements
	Getting and Setting the Value of a Form Element
	Determine Whether Buttons and Boxes Are Checked
	Form Events
	Submit
	Focus
	Blur
	Click
	Change

	Adding Smarts to Your Forms
	Focus the First Field in a Form
	Disabling and Enabling Fields
	Hiding and Showing Form Options

	Tutorial: Basic Form Enhancements
	Focusing a Field
	Disabling Form Fields
	Hiding Form Fields

	Form Validation
	jQuery Validation Plug-in
	Basic Validation
	Adding validation rules
	Adding error messages

	Advanced Validation
	Advanced rules
	Advanced error messages

	Styling Error Messages

	Validation Tutorial
	Basic Validation
	Advanced Validation
	Validating Checkboxes and Radio Buttons
	Formatting the Error Messages

	Chapter 10. Expanding Your Interface
	Hiding Information with Accordion Panels
	Customizing an Accordion
	Accordion Tutorial

	Organizing Information in Tabbed Panels
	Formatting Tabs and Panels
	A required class style
	The tab group
	Tabs
	Panels

	Customizing the Tabs Plug-in
	Selecting a tab when the page loads
	Using a different event to open a panel
	Automating the display of panels

	Tabbed Panels Tutorial

	Tooltips
	Tooltips Using the Title Attribute
	Tooltips Using Another Web Page
	Tooltips Using Hidden Content
	Controlling the Display of Tooltips
	Formatting Tooltips
	Cluetip Tutorial
	Adding a tooltip using the title attribute
	Adding a tooltip using another Web page
	Adding a tooltip using HTML on the page

	Creating Sortable Tables
	Styling the Table
	Using the Tablesorter plug-in to stripe tables

	Tablesorter Tutorial

	Chapter 11. Introducing Ajax
	What Is Ajax?
	Ajax: The Basics
	Pieces of the Puzzle
	Talking to the Web Server

	Ajax the jQuery Way
	Using the load(��) Function
	Tutorial: The load(��) Function
	Overview
	The programming

	The get(��) and post(��) Functions
	Formatting Data to Send to the Server
	Query string
	Object literal
	jQuery’s serialize(��) function

	Processing Data from the Server
	Tutorial: Using the post(��) Function
	Overview
	The programming

	JSON
	Accessing JSON Data
	Complex JSON Objects

	Chapter 12. Basic Ajax Programming
	Tabs Plug-in
	Changing the Loading Text and Icon
	Turning off the “Loading” message

	Ajax Tabs Tutorial

	Adding Google Maps to Your Site
	Setting a Location for the Map
	Other jMap Options
	Adding Markers and HTML Bubbles
	Get Driving Directions
	jMaps Tutorial

	Chapter 13. Troubleshooting and Debugging
	Top JavaScript Programming Mistakes
	Non-Closed Pairs
	Quotation Marks
	Using Reserved Words
	Single Equals in Conditional Statements
	Case-Sensitivity
	Incorrect Path to External JavaScript File
	Incorrect Paths Within External JavaScript Files
	Disappearing Variables and Functions

	Debugging with Firebug
	Installing and Turning On Firebug
	Viewing Errors with Firebug
	Using console.log(��) to Track Script Progress
	Tutorial: Using the Firebug Console
	More Powerful Debugging
	Controlling your script with the debugger
	Watching your script

	Debugging Tutorial

	Chapter 14. Going Further with JavaScript
	Putting It All Together
	Using External JavaScript Files

	Writing More Efficient JavaScript
	Put Preferences in Variables
	Ternary Operator
	The Switch Statement
	Using the jQuery Object Efficiently

	Creating Fast-Loading JavaScript
	Using YUI Compressor for Windows
	Using YUI Compressor for Mac

	Appendix A. JavaScript Resources
	References
	Web Sites
	Books

	Basic JavaScript
	Articles and Presentations
	Web Sites
	Books

	jQuery
	Articles
	Web Sites
	Books

	The Document Object Model
	Articles and Presentations
	Web Sites
	Books

	Ajax
	Web Sites
	Books

	Advanced JavaScript
	Articles and Presentations
	Web Sites
	Books

	CSS
	Web Sites
	Books

	JavaScript Software

	Index

