
155

Chapter 5chapter

5

Dynamically Modifying
Web Pages

JavaScript gives you the power to change a Web page before your very eyes. Using
JavaScript, you can add pictures and text, remove content, or change the appear-
ance of an element on a page instantly. In fact, dynamically changing a Web page is
the hallmark of the newest breed of JavaScript-powered Web sites. For example,
Google Maps (http://maps.google.com/) provides access to a map of the world;
when you zoom into the map or scroll across it, the page gets updated without the
need to load a new Web page. Similarly, when you mouse over a movie title at Net-
flix (www.netflix.com) an information bubble appears on top of the page provid-
ing more detail about the movie (see Figure 5-1). In both of these examples,
JavaScript is changing the HTML that the Web browser originally downloaded.

The first four chapters of this book covered many of the fundamentals of the Java-
Script programming language—the keywords, concepts, and syntax of JavaScript.
Now that you have a handle on how to write a basic JavaScript program and add it
to a Web page, it’s time to see what JavaScript programming is all about. This
chapter, and the next one on JavaScript events, together show you how to create
the great interactive effects you see on the Web these days.

Modifying Web Pages: An Overview
In this chapter, you’ll learn how to alter a Web page using JavaScript. You’ll add
new content, HTML tags and HTML attributes, and also alter content and tags
that are already on the page. In other words, you’ll use JavaScript to generate new
HTML and change the HTML that’s already on the page.

http://maps.google.com/
http://www.netflix.com

156 JavaScript: The Missing Manual

Modifying Web
Pages: An Overview

Whenever you change the content or HTML of a page—whether you’re adding a
navigation bar complete with pop-up menus, creating a JavaScript-driven slide
show, or simply adding alternating stripes to table rows (like you did in the tuto-
rial in Chapter 1)—you’ll perform two main steps.

1. Identify an element on a page.

An element is any existing tag, and before you have to do anything with that
element, you need to identify it in your JavaScript (which you’ll learn how to do
in this chapter). For example, to add a color to a table row, you first must iden-
tify the row you wish to color; to make a pop-up menu appear when you mouse
over a button, you need to identify that button. Even if you simply want to use
JavaScript to add text to the bottom of a Web page, you need to identify a tag to
insert the text either inside, before, or after that tag.

2. Do something with the element.

OK, “do something” isn’t a very specific instruction. That’s because there’s
nearly an endless number of things you can do with an element to alter the way
your Web page looks or acts. In fact, most of this book is devoted to teaching
you different things to do to page elements. Here are a few examples:

• Add/remove a class attribute. In the example on page 30, you used Java-
Script to assign a class to every other row of a table. The JavaScript didn’t
actually “color” the row; it merely applied a class, and the Web browser used
the information in the CSS style sheet to change the appearance of the row.

• Change a property of the element. When animating a <div> across a page,
for example, you change that element’s position on the page.

Figure 5-1:
JavaScript can make Web
pages simpler to scan
and read, by only
showing content when
it’s needed. At
Netflix.com, movie
descriptions are hidden
from view, but revealed
when the mouse travels
over the movie title or
thumbnail image.

Chapter 5: Dynamically Modifying Web Pages 157

Understanding the
Document Object

Model

• Add new content. If, while filling out a Web form, a visitor incorrectly fills
out a field, it’s common to make an error message appear—“Please supply
an email address,” for example. In this case, you’re adding content some-
where in relation to that form field.

• Remove the element. In the Netflix example pictured in Figure 5-1, the pop-
up bubble disappears when you mouse off the movie title. In this case, Java-
Script removes that pop-up bubble from the page.

• Extract information from the element. Other times, you’ll want to know
something about the tag you’ve identified. For example, to validate a text
field, you need to identify that text field, then find out what text was typed
into that field—in other words, you need to get the value of that field.

The first step above—identifying an element on a page—is mainly what this chapter
is about. To understand how to identify and modify a part of a page using Java-
Script you first need to get to know the Document Object Model.

Understanding the Document Object Model
When a Web browser loads an HTML file, it displays the contents of that file on
the screen (appropriately styled with CSS, of course). But that’s not all the Web
browser does with the tags, attributes, and contents of the file: it also creates and
memorizes a “model” of that page’s HTML. In other words, the Web browser
remembers the HTML tags, their attributes, and the order in which they appear in
the file—this representation of the page is called the Document Object Model, or
DOM for short.

The DOM provides the information needed for JavaScript to communicate with
the elements on the Web page. The DOM also provides the tools necessary to navi-
gate through, change, and add to the HTML on the page. The DOM itself isn’t
actually JavaScript—it’s a standard from the World Wide Web Consortium (W3C)
that most browser manufacturers have adopted and added to their browsers. The
DOM lets JavaScript communicate with and change a page’s HTML.

To see how the DOM works, take look at this very simple Web page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html>

<head>

<title>A web page</title>

</head>

<body class="home">

<h1 id="header">A headline</h1>

<p>Some important text</p>

</body>

</html>

158 JavaScript: The Missing Manual

Understanding the
Document Object
Model

On this and all other Web sites, some tags wrap around other tags—like the
<html> tag, which surrounds all other tags, or the <body> tag, which wraps
around the tags and contents that appear in the browser window. You can repre-
sent the relationship between tags with a kind of family tree (see Figure 5-2). The
<html> tag is the “root” of the tree—like the great-great-great granddaddy of all of
the other tags on the page—while other tags represent different “branches” of the
family tree; for example, the <head> and <body> tags, which each contain their
own set of tags.

In addition to HTML tags, Web browsers also keep track of the text that appears
inside a tag (for example, “A headline” inside the <h1> tag in Figure 5-2), as well
as the attributes that are assigned to each tag (the class attribute applied to the
<body> and <h1> tags in Figure 5-2). In fact, the DOM treats each of these—tags
(also called elements), attributes, and text—as individual units called nodes.

Selecting a Page Element
A Web browser thinks of a Web page simply as an organized collection of tags, tag
attributes, and text, or, in DOM-talk, a bunch of nodes. So for JavaScript to manip-
ulate the contents of a page, it needs a way to communicate with a page’s nodes.
There are two main methods for selecting nodes: getElementById() and
getElementsByTagName().

getElementById()

Getting an element by ID means locating a single node that has a unique ID
applied to it. For example, in Figure 5-2, the <h1> tag has an ID attribute with the
value of header. The following JavaScript selects that node:

document.getElementById('header')

In plain English, this line means, “Search this page for a tag with an ID of 'header'
assigned to it.” The document part of document.getElementById('header') is a key-
word that refers to the entire document. It’s not optional, so you can’t type

Figure 5-2:
The basic nested structure of an HTML
page, where tags wrap around other
tags, is often represented in the form of a
family tree, where tags that wrap around
other tags are called ancestors, and tags
inside other tags are called descendents.

Chapter 5: Dynamically Modifying Web Pages 159

Understanding the
Document Object

Model

getElementById() by itself. The command getElementById() is the method name (a
command for the document) and the 'header' part is simply a string (the name of
the ID you’re looking for) that’s sent to the method as an argument. (See page 101
for the definition of an argument.)

Note: The getElementById() method requires a single string—the name of a tag’s ID attribute. For example:

document.getElementById('header')

However, this doesn’t mean you have to provide a literal string to the method: you can also pass a vari-
able that contains a string with the sought after ID:

var lookFor = 'header';
var foundNode = document.getElementById(lookFor);

Frequently, you’ll assign the results of this method to a variable to store a refer-
ence to the particular tag, so you can later manipulate it in your program. For
example, say you want to use JavaScript to change the text of the headline in the
HTML pictured on page 157. You can do this:

var headLine = document.getElementById('header');

headLine.innerHTML = 'JavaScript was here!';

The getElementById() command returns a reference to a single node, which in this
example is stored in a variable named headline. Storing the results of
getElementById() in a variable is very convenient; it lets you refer simply to the
variable name each time you wish to manipulate that tag, rather than the much
more longwinded document.getElementById('idName'). For example, the second
line of code uses the variable to access the tag’s innerHTML property: headline.
innerHTML (you’ll learn what innerHTML is on page 163).

getElementsByTagName()

Sometimes, you’ll want more than just the single element that getElementById()
provides. For example, maybe you’d like to find every link on a Web page and do
something to those links—like force every link that points outside your site to
open in a new window. In that case, you need to get a list of elements, not just one
element marked with an ID. The command getElementsByTagName() does the
trick.

This method works similarly to getElementById() but instead of providing the
name of an ID, you supply the name of the tag you’re looking for. For example, to
find all of the links on a page, you write this:

var pageLinks = document.getElementsByTagName('a');

Translated, this means, “Search this document for every <a> tag and store the
results in a variable named pageLinks.” The getElementsByTagName() method
returns a list of nodes, instead of just a single node. In that sense, the list acts a lot

160 JavaScript: The Missing Manual

Understanding the
Document Object
Model

like an array: You can access a single node using the same index notation, find the
total number of elements using the length property, and loop through the list of
elements using a for loop (see page 94).

For example, the first item in the pageLinks variable from the code above is
pageLinks[0]—the first <a> tag on the page—and pageLinks.length is the total
number of <a> tags on the page.

Tip: It’s easy to make a typo with these two methods. Most commonly, beginners (and pros) will capital-
ize both letters of Id. Only the first letter is capitalized. Likewise, Elements is plural in
getElementsByTagName()—don’t forget the s:

document.getElementById('banner');
document.getElementsByTagName('a');

You can also use getElementById() and getElementsByTagName() together. For
example, say you have a Web page containing a <div> tag, and that <div> tag has
an ID of ‘banner’ applied to it. If you want to find out how many links were in just
that <div>, you can use getElementById() to retrieve the <div>, and then use
getElementsByTagName() to search the <div>. Here’s how it works:

var banner = document.getElementById('banner');

var bannerLinks = banner.getElementsByTagName('a');

var totalBannerLinks = bannerLinks.length;

While searching for an element with an ID is one method of searching within the
document (document.getElementById()), you can find tags of a particular type by
searching the entire document (document.getElementsByTagName()) or by search-
ing the tags within a particular node. For example, in the above code, the variable
banner contains a reference to a <div> tag, so the code banner.getElementsByTag-
Name('a') only searches for <a> tags inside that <div>.

Selecting nearby nodes

As mentioned earlier, text is also considered a node, so the text “A headline” inside
the <h1> tag on page 157 is a separate node from the <h1> tag that surrounds it.
In other words, if you select that <h1> tag using the techniques you’ve just
learned, you’ve just selected that tag and not the text inside. So, what if you want
to get at that text? Unfortunately, the way the DOM provides to do so involves a
rather roundabout technique: You have to start at the <h1> node, move to the text
node, and then get the value of the text node.

To understand how this process works, you need to understand how tags are
related to each other. If you’ve spent some time working with Cascading Style
Sheets, you’re probably familiar with descendent selectors—one of the most power-
ful tools in CSS. In a nutshell, a descendent selector lets you format a particular tag
based on its relationship to another tag. Thus, using a descendent selector, you can
make a paragraph (<p>) tag look one way when it’s in the sidebar of a page, and
look another way when that same tag is in the footer of the page.

Chapter 5: Dynamically Modifying Web Pages 161

Understanding the
Document Object

Model

Descendent selectors rely on the kind of relationship pictured in Figure 5-2; if a tag
is inside another tag, it’s called a descendent. The <h1> tag in the sample HTML
on page 157 is a descendent of the <body> tag, and, because it’s also inside the
<html> tag, it’s a descendent of that tag as well. Tags that wrap around other tags are
called ancestors; so in Figure 5-2, the <p> tag is an ancestor of the tag.

The DOM also thinks of tags that wrap around other tags as being related, but the
DOM only provides access to the “immediate family.” That is, the DOM can access
a “parent” node, “child” node, or “sibling” node. Figure 5-3 demonstrates these
relationships: If a node is directly inside another node, like the text “Some” inside
the <p> tag, then it’s a child; a node that directly surrounds another node, like the
 tag surrounding the text “important”, is a parent. Nodes that share the
same parent, like the two text nodes—“Some” and “text”—and the tag
are like brothers and sisters, so they’re called siblings.

The DOM provides several methods of accessing nearby nodes:

• .childNodes is a property of a node. It contains a list of all nodes that are direct
children of that node. The list of nodes works just like the list that’s returned by
the getElementsByTagName() method (see page 159). For example, suppose you
add the following JavaScript to the HTML file on page 157:

var headline = document.getElementById('header');

var headlineKids = headline.childNodes;

The variable headlineKids will contain a list of all nodes that are children of the
tag that has the ID of ‘headline’ (the <h1> tag in this example). In this case,
there’s only one child, the text node containing the text “A headline.” So, if you
want to know what the text inside that node is, add an additional line of code,
like this:

var headlineText = headlineKids[0].nodeValue;

Figure 5-3:
There are no first cousins, great aunts, or even
grandparents in the current DOM standard. The DOM
only recognizes parents, children, and sibling
relationships between tags.

162 JavaScript: The Missing Manual

Understanding the
Document Object
Model

The first child in the list is headlineKids[0]—since there is only one child for the
headline (see Figure 5-2), it’s also the only node in the list. To get the text inside
a text node, you access the nodeValue property. (On the other hand, there’s also
an easier way to do so, as you’ll see on page 181.)

• .parentNode is a node property that represents the direct parent of a particular
node. For example, if you wanted to know what tag wraps around the <h1> tag
in Figure 5-2, you could write this:

var headline = document.getElementById('header');

var headlineParent = headline.parentNode;

The variable headlineParent is a reference to the <body> tag in this case.

• .nextSibling and .previousSibling are properties that point to the node that
comes directly after the current node, or the node that comes before. For exam-
ple, in Figure 5-2, the <h1> and <p> tags are siblings: the <p> tag comes
directly after the ending </h1> tag.

var headline = document.getElementById('header');

var headlineSibling = headline.nextSibling;

The variable headlineSibling is a reference to the <p> tag that follows the <h1>
tag. If you try to access a sibling node that doesn’t exist, JavaScript returns the
value of null (see the Tip on page 131). For example, you can check to see if a
node has a previousSibling like this:

var headline = document.getElementById('header');

var headlineSibling = headline.prevSibling;

if (! headlineSibling) {

 alert('This node does not have a previous sibling!');

} else {

 // do something with the sibling node

}

As you can see, it takes a fair amount of gymnastics to move around a page’s DOM
structure. For instance, to get all of the text inside the <p> tag in Figure 5-2, you’d
have to get a list of all of the <p> tags children, and then go through each child
node and look for text. In the case of the tag pictured in Figure 5-2,
you’d have to look at its child nodes to get the text inside it! Fortunately, there’s a
much easier way to work with the DOM, as you’ll see on page 169.

Adding Content to a Page
JavaScript programs frequently need to add, delete, or change content on a page.
For example, in the quiz program you wrote in Chapter 3 (page 106), you used the
document.write() method to add the test-taker’s final score to the page. On the
Netflix site (Figure 5-1), a description appears on the page when a visitor mouses
over a movie title.

Chapter 5: Dynamically Modifying Web Pages 163

Understanding the
Document Object

Model

Note: In earlier chapters you used the document.write() command to add JavaScript-generated content
to a page (see page 29 for an example). That command is easy to learn and use, but very limited in what
it can do—for example, document.write() lets you add new content, but not alter what’s already on the
page. Furthermore, that command works when the page loads, so you can’t use it to add content to a
page later (for example, when a visitor clicks a button or types into a form field).

Adding content using the DOM is a big chore. It involves creating each node of the
content you require, and then injecting the results into the page. In other words, if
you want to add a <div> tag with a couple of other tags and some text, you have to
create each node individually and place them in the proper relation to each other.
Fortunately, browser manufacturers have provided a much simpler method: the
innerHTML property.

The innerHTML property isn’t a standard part of the DOM. It was first imple-
mented in Internet Explorer, but all current, JavaScript-savvy Web browsers sup-
port it. Basically, innerHTML represents all of the HTML inside of a node. For
example, if you look at the HTML code on page 157, the <p> tag wraps around
other HTML. So the innerHTML for that <p> tag node is Some impor-
tant text. Here’s how you use JavaScript to access that HTML:

//get a list of all <p> tags on page

var pTags = document.getElementsByTagName('p');

//get the first <p> tag on page

var theP = pTags[0];

alert(theP.innerHTML);

In this case, the variable theP represents the node for the first paragraph on the
page. The last line of code opens an alert box that displays all of the code inside
that tag. For example, adding this JavaScript to the HTML on page 157 would
make an alert box appear with the text “Some important text”.

Note: innerHTML is a proposed part of the new HTML 5 standard that is being developed at the W3C
(see www.w3.org/TR/html5).

Not only can you find out what’s inside a node using innerHTML, you can also
change the contents inside the node by setting the innerHTML property:

var headLine = document.getElementById('header');

headLine.innerHTML = 'JavaScript was here!';

In this example, the contents inside the tag with an ID of 'header' is changed to
“JavaScript was here!” You aren’t limited to just text either: you can set the
innerHTML property to complete chunks of HTML, including tags and tag
attributes. You’ll see an example of this in the next section.

http://www.w3.org/TR/html5

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgements
	The Missing Manual Series

	Introduction
	What Is JavaScript?
	A Bit of History
	JavaScript Is Everywhere
	JavaScript Doesn’t Stand Alone

	HTML: The Barebones Structure
	How HTML Tags Work

	CSS: Adding Style to Web Pages
	Anatomy of a Style

	Software for JavaScript Programming
	Free Programs
	Commercial Software

	About This Book
	This Book’s Approach to JavaScript
	About the Outline
	Living Examples
	About MissingManuals.com

	The Very Basics
	About › These › Arrows
	Safari® Books Online

	Chapter 1. Writing Your First JavaScript Program
	Introducing Programming
	What’s a Computer Program?

	How to Add JavaScript to a Page
	External JavaScript Files

	Your First JavaScript Program
	Writing Text on a Web Page
	Attaching an External JavaScript File
	Tracking Down Errors
	The Firefox JavaScript Console
	Displaying the Internet Explorer Error Dialog Box
	Accessing the Safari Error Console

	Chapter 2. The Grammar of JavaScript
	Statements
	Commands
	Types of Data
	Numbers
	Strings
	Booleans

	Variables
	Creating a Variable
	Using Variables

	Working with Data Types and Variables
	Basic Math
	The Order of Operations
	Combining Strings
	Combining Numbers and Strings
	Changing the Values in Variables

	Tutorial: Using Variables to Create Messages
	Tutorial: Asking for Information
	Arrays
	Creating an Array
	Accessing Items in an Array
	Adding Items to an Array
	Adding an item to the end of an array
	Adding an item to the beginning of an array
	Choosing how to add items to an array

	Deleting Items from an Array
	Adding and Deleting with splice(��)
	Deleting items with splice(��)
	Adding items with splice(��)
	Replacing items with splice(��)

	Tutorial: Writing to a Web Page Using Arrays
	Comments
	When to Use Comments
	Comments in this Book

	Chapter 3. Adding Logic and Control to Your Programs
	Making Programs React Intelligently
	Conditional Statement Basics
	Adding a Backup Plan
	Testing More Than One Condition
	More Complex Conditions
	Making sure more than one condition is true
	Making sure at least one condition is true
	Negating a condition

	Nesting Conditional Statements
	Tips for Writing Conditional Statements

	Tutorial: Using Conditional Statements
	Handling Repetitive Tasks with Loops
	While Loops
	Loops and Arrays
	For Loops
	Do/While Loops

	Functions: Turn Useful Code Into Reusable Commands
	Mini-Tutorial
	Giving Information to Your Functions
	Retrieving Information from Functions
	Keeping Variables from Colliding

	Tutorial: A Simple Quiz

	Chapter 4. Working with Words, Numbers, and Dates
	A Quick Object Lesson
	Strings
	Determining the Length of a String
	Changing the Case of a String
	Searching a String: indexOf(��) Technique
	Extracting Part of a String with slice(��)

	Finding Patterns in Strings
	Creating and Using a Basic Regular Expression
	Building a Regular Expression
	Grouping Parts of a Pattern
	Useful Regular Expressions
	U.S. Zip code
	U.S. phone number
	Email address
	Date
	Web address

	Matching a Pattern
	Matching every instance of a pattern

	Replacing Text
	Trying Out Regular Expressions

	Numbers
	Changing a String to a Number
	Testing for Numbers
	Rounding Numbers
	Formatting Currency Values
	Creating a Random Number
	Randomly selecting an array element
	A function for selecting a random number

	Dates and Times
	Getting the Month
	Getting the Day of the Week
	Getting the Time
	Changing hours to a.m. and p.m.
	Padding single digits

	Creating a Date Other Than Today
	Creating a date that’s one week from today

	Tutorial
	Overview
	Writing the Function

	Chapter 5. Dynamically Modifying Web Pages
	Modifying Web Pages: An Overview
	Understanding the Document Object Model
	Selecting a Page Element
	getElementById(��)
	getElementsByTagName(��)
	Selecting nearby nodes

	Adding Content to a Page
	The Moon Quiz Revisited
	The Problem with the DOM

	Introducing JavaScript Libraries
	Getting Started with jQuery

	Selecting Page Elements (Revisited)
	Basic Selectors
	ID selectors
	Element selectors
	Class selectors

	Advanced Selectors
	jQuery Filters
	Understanding jQuery Selections
	Automatic loops
	Chaining functions

	Adding Content to a Page
	Replacing and Removing Selections

	Setting and Reading Tag Attributes
	Classes
	Reading and Changing CSS Properties
	Changing Multiple CSS Properties at Once

	Reading, Setting, and Removing HTML Attributes
	Creative Headlines
	Acting on Each Element in a Selection
	Anonymous Functions
	this and $(this)

	Automatic Pull Quotes
	Overview
	Programming

	Chapter 6. Action/Reaction: Making Pages Come Alive with Events
	What Are Events?
	Mouse Events
	Document/Window Events
	Form Events
	Keyboard Events

	Using Events with Functions
	Inline Events
	The Traditional Model
	The Modern Way
	The jQuery Way

	Tutorial: Highlighting Table Rows
	More jQuery Event Concepts
	Waiting for the HTML to Load
	jQuery Events
	The hover(��) event
	The toggle(��) Event

	The Event Object
	Stopping an Event’s Normal Behavior
	Removing Events

	Advanced Event Management
	Tutorial: A One-Page FAQ
	Overview of the Task
	The Programming

	Chapter 7. Improving Your Images
	Swapping Images
	Changing an Image’s src Attribute
	Preloading Images
	Rollover Images

	Tutorial: Adding Rollover Images
	Overview of the Task
	The Programming

	jQuery Effects
	Basic Showing and Hiding
	Fading Elements In and Out
	Sliding Elements
	Animation

	Tutorial: Photo Gallery with Effects
	Overview of Task
	The Programming

	Advanced Gallery with jQuery lightBox
	The Basics
	Customizing lightBox
	lightBox options
	lightBox images
	lightBox CSS

	Tutorial: lightBox Photo Gallery
	Animated Slideshows with Cycle
	The Basics
	Customizing the Cycle Plug-in
	Effects
	Speed
	Navigating slides
	Starting and stopping the slideshow

	Tutorial: An Automated Slideshow

	Chapter 8. Improving Navigation
	Some Link Basics
	Selecting Links with JavaScript
	Determining a Link’s Destination
	Don’t Follow That Link

	Opening External Links in a New Window
	Creating New Windows
	Window Properties
	Use the window reference
	Events that can open a new window

	Opening Pages in a Window on the Page
	Customizing the Look of a Greybox Window
	Tutorial: Opening a Page Within a Page

	Tutorial: Making Bigger Links
	Overview
	The Programming

	Animated Navigation Menus
	The HTML
	The CSS
	The JavaScript
	The Tutorial

	Chapter 9. Enhancing Web Forms
	Understanding Forms
	Selecting Form Elements
	Getting and Setting the Value of a Form Element
	Determine Whether Buttons and Boxes Are Checked
	Form Events
	Submit
	Focus
	Blur
	Click
	Change

	Adding Smarts to Your Forms
	Focus the First Field in a Form
	Disabling and Enabling Fields
	Hiding and Showing Form Options

	Tutorial: Basic Form Enhancements
	Focusing a Field
	Disabling Form Fields
	Hiding Form Fields

	Form Validation
	jQuery Validation Plug-in
	Basic Validation
	Adding validation rules
	Adding error messages

	Advanced Validation
	Advanced rules
	Advanced error messages

	Styling Error Messages

	Validation Tutorial
	Basic Validation
	Advanced Validation
	Validating Checkboxes and Radio Buttons
	Formatting the Error Messages

	Chapter 10. Expanding Your Interface
	Hiding Information with Accordion Panels
	Customizing an Accordion
	Accordion Tutorial

	Organizing Information in Tabbed Panels
	Formatting Tabs and Panels
	A required class style
	The tab group
	Tabs
	Panels

	Customizing the Tabs Plug-in
	Selecting a tab when the page loads
	Using a different event to open a panel
	Automating the display of panels

	Tabbed Panels Tutorial

	Tooltips
	Tooltips Using the Title Attribute
	Tooltips Using Another Web Page
	Tooltips Using Hidden Content
	Controlling the Display of Tooltips
	Formatting Tooltips
	Cluetip Tutorial
	Adding a tooltip using the title attribute
	Adding a tooltip using another Web page
	Adding a tooltip using HTML on the page

	Creating Sortable Tables
	Styling the Table
	Using the Tablesorter plug-in to stripe tables

	Tablesorter Tutorial

	Chapter 11. Introducing Ajax
	What Is Ajax?
	Ajax: The Basics
	Pieces of the Puzzle
	Talking to the Web Server

	Ajax the jQuery Way
	Using the load(��) Function
	Tutorial: The load(��) Function
	Overview
	The programming

	The get(��) and post(��) Functions
	Formatting Data to Send to the Server
	Query string
	Object literal
	jQuery’s serialize(��) function

	Processing Data from the Server
	Tutorial: Using the post(��) Function
	Overview
	The programming

	JSON
	Accessing JSON Data
	Complex JSON Objects

	Chapter 12. Basic Ajax Programming
	Tabs Plug-in
	Changing the Loading Text and Icon
	Turning off the “Loading” message

	Ajax Tabs Tutorial

	Adding Google Maps to Your Site
	Setting a Location for the Map
	Other jMap Options
	Adding Markers and HTML Bubbles
	Get Driving Directions
	jMaps Tutorial

	Chapter 13. Troubleshooting and Debugging
	Top JavaScript Programming Mistakes
	Non-Closed Pairs
	Quotation Marks
	Using Reserved Words
	Single Equals in Conditional Statements
	Case-Sensitivity
	Incorrect Path to External JavaScript File
	Incorrect Paths Within External JavaScript Files
	Disappearing Variables and Functions

	Debugging with Firebug
	Installing and Turning On Firebug
	Viewing Errors with Firebug
	Using console.log(��) to Track Script Progress
	Tutorial: Using the Firebug Console
	More Powerful Debugging
	Controlling your script with the debugger
	Watching your script

	Debugging Tutorial

	Chapter 14. Going Further with JavaScript
	Putting It All Together
	Using External JavaScript Files

	Writing More Efficient JavaScript
	Put Preferences in Variables
	Ternary Operator
	The Switch Statement
	Using the jQuery Object Efficiently

	Creating Fast-Loading JavaScript
	Using YUI Compressor for Windows
	Using YUI Compressor for Mac

	Appendix A. JavaScript Resources
	References
	Web Sites
	Books

	Basic JavaScript
	Articles and Presentations
	Web Sites
	Books

	jQuery
	Articles
	Web Sites
	Books

	The Document Object Model
	Articles and Presentations
	Web Sites
	Books

	Ajax
	Web Sites
	Books

	Advanced JavaScript
	Articles and Presentations
	Web Sites
	Books

	CSS
	Web Sites
	Books

	JavaScript Software

	Index

