
134 JavaScript: The Missing Manual

Numbers

Numbers
Numbers are an important part of programming. They let you perform tasks like
calculating a total sales cost, determining the distance between two points, or sim-
ulating the roll of a die by generating a random number from 1 to 6. JavaScript
gives you many different ways of working with numbers.

Changing a String to a Number
When you create a variable, you can store a number in it like this:

var a = 3.25;

However, there are times when a number is actually a string. For example, if you
use the prompt() method (page 55) to get visitor input, even if someone types 3.25,
you’ll end up with a string that contains a number. In other words, the result will
be '3.25' (a string) and not 3.25 (a number). Frequently, this method doesn’t cause
a problem, since the JavaScript interpreter usually converts a string to a number
when it seems like a number is called for. For example:

var a = '3';

var b = '4';

alert(a*b); // 12

Figure 4-5:
This sample page,
included with the tutorial
files, lets you test out
regular expressions using
different methods—like
Search or Match—and try
different options such as
case-insensitive or global
searches.

Chapter 4: Working with Words, Numbers, and Dates 135

Numbers

In this example, even though the variables a and b are both strings, the JavaScript
interpreter converts them to numbers to perform the multiplication (3 × 4) and
return the result: 12.

However, when you use the + operator, the JavaScript interpreter won’t make that
conversion, and you can end up with some strange results:

var a = '3';

var b = '4';

alert(a+b); // 34

In this case, both a and b are strings; the + operator not only does mathematical
addition, it also combines (concatenates) two strings together (see page 49). So
instead of adding 3 and 4 to get 7, in this example, you end up with two strings
fused together: 34.

When you need to convert a string to a number, JavaScript provides several ways:

• Number() converts whatever string is passed to it into a number, like this:

var a = '3';

a = Number(a); // a is now the number 3

So the problem of adding two strings that contain numbers could be fixed like
this:

var a = '3';

var b = '4';

var total = Number(a) + Number(b); // 7

A faster technique is the + operator, which does the same thing as Number().
Just add a + in front of a variable containing a string, and the JavaScript inter-
preter converts the string to a number.

var a = '3';

var b = '4';

var total = +a + +b // 7

The downside of either of these two techniques is that if the string contains any-
thing except numbers, a single period or a + or – sign at the beginning of the
string, you’ll end up with a nonnumber, or the JavaScript value NaN, which
means “not a number” (see page 50).

• parseInt() tries to convert a string to a number as well. However, unlike
Number(), parseInt() will try to change even a string with letters to a number,
as long as the string begins with numbers. This command can come in handy
when you get a string like '20 years' as the response to a question about some-
one’s age:

var age = '20 years';

age = parseInt(age,10); //20

136 JavaScript: The Missing Manual

Numbers

The parseInt() method looks for either a number or a + or – sign at the begin-
ning of the string and continues to look for numbers until it encounters a non-
number. So in the above example, it returns the number 20 and ignores the
other part of the string, ' years'.

Note: You’re probably wondering what the 10 is doing in parseInt(age,10);. JavaScript can handle Octal
numbers (which are based on 8 different digits 0-7, unlike decimal numbers which are based on 10 differ-
ent digits 0-9); when you add the ,10 to parseInt(), you’re telling the JavaScript interpreter to treat what-
ever the input is as a decimal number. That way, JavaScript correctly interprets a string like ‘08’ in a
prompt window or form field—decimally. For example, in this code age would be equal to 0:

var age = '08 years';
age = parseInt(age);

However, in the following code the variable age would hold the value 8:

var age = '08 years';
age = parseInt(age,10);

In other words, always add the ,10 when using the parseInt() method.

This method is also helpful when dealing with CSS units. For example, if you
want to find the width of an element on a page (you’ll learn how to do that on
page 186), you often end up with a string like this: '200px' (meaning 200 pixels
wide). Using the parseInt() method, you can retrieve just the number value and
then perform some operation on that value.

• parseFloat() is like parseInt(), but you use it when a string might contain a dec-
imal point. For example, if you have a string like '4.5 acres' you can use
parseFloat() to retrieve the entire value including decimal places:

var space = '4.5 acres';

space = parseFloat(space); // 4.5

If you used parseInt() for the above example, you’d end up with just the num-
ber 4, since parseInt() only tries to retrieve whole numbers (integers).

Which of the above methods you use depends on the situation: If your goal is to
add two numbers, but they’re strings, then use Number() or + operator. However,
if you want to extract a number from a string that might include letters, like
'200px' or '1.5em', then use parseInt() to capture whole numbers (200, for exam-
ple) or parseFloat() to capture numbers with decimals (1.5, for example).

Testing for Numbers
When using JavaScript to manipulate user input, you often need to verify that the
information supplied by the visitor is of the correct type. For example, if you ask
for people’s years of birth, you want to make sure they supply a number. Likewise,
when you’re performing a mathematical calculation, if the data you use for the cal-
culation isn’t a number, then your script might break.

Chapter 4: Working with Words, Numbers, and Dates 137

Numbers

To verify that a string is a number, use the isNaN() method. This method takes a
string as an argument and tests whether the string is “not a number.” If the string
contains anything except a plus or minus (for positive and negative numbers) fol-
lowed by numbers and an optional decimal value, it’s considered “not a number,”
so the string '-23.25' is a number, but the string '24 pixels' is not. This method
returns either true (if the string is not a number) or false (if it is a number). You
can use isNaN() as part of a conditional statement like this:

var x = '10'; // is a number

if (isNaN(x)) {

 // is NOT a number

} else {

 // it is a number

}

Rounding Numbers
JavaScript provides a way to round a fractional number to an integer—for exam-
ple, rounding 4.5 up to 5. Rounding comes in handy when you’re performing a
calculation that must result in a whole number. For example, say you’re using
JavaScript to dynamically set a pixel height of a <div> tag on the page based on the
height of the browser window. In other words, the height of the <div> is calcu-
lated using the window’s height. Any calculation you make might result in a deci-
mal value (like 300.25), but since there’s no such thing as .25 pixels, you need to
round the final calculation to the nearest integer (300, for example).

You can round a number using the round() method of the Math object. The
syntax for this looks a little unusual:

Math.round(number)

You pass a number (or variable containing a number) to the round() method, and
it returns an integer. If the original number has a decimal place with a value below
.5, the number is rounded down; if the decimal place is .5 or above, it is rounded
up. For example, 4.4 would round down to 4, while 4.5 rounds up to 5.

var decimalNum = 10.25;

var roundedNum = Math.round(decimalNum); // 10

Note: JavaScript provides two other methods for rounding numbers Math.ceil() and Math.floor().
You use them just like Math.round(), but Math.ceil() always rounds the number up (for example,
Math.ceil(4.0001) returns 5), while Math.floor() always rounds the number down: Math.floor(4.99999)
returns 4. To keep these two methods clear in your mind, think a ceiling is up, and a floor is down.

Formatting Currency Values
When calculating product costs or shopping cart totals, you’ll usually include the
cost, plus two decimals out, like this: 9.99. But even if the monetary value is a
whole number, it’s common to add two zeros, like this: 10.00. And a currency

138 JavaScript: The Missing Manual

Numbers

value like 8.9 is written as 8.90. Unfortunately, JavaScript doesn’t see numbers that
way: it leaves the trailing zeros off (10 instead of 10.00, and 8.9 instead of 8.90, for
example).

Fortunately, there’s a method for numbers called toFixed(), which lets you con-
vert a number to a string that matches the number of decimal places you want. To
use it, add a period after a number (or after the name of a variable containing a
number), followed by toFixed(2):

var cost = 10;

var printCost = '$' + cost.toFixed(2); // $10.00

The number you pass the toFixed() method determines how many decimal places
to go out to. For currency, use 2 to end up with numbers like 10.00 or 9.90; if you
use 3, you end up with 3 decimal places, like 10.000 or 9.900.

If the number starts off with more decimal places than you specify, the number is
rounded to the number of decimal places specified. For example:

var cost = 10.289;

var printCost = '$' + cost.toFixed(2); // $10.29

 In this case, the 10.289 is rounded up to 10.29.

Note: The toFixed() method only works with numbers. So if you use a string, you end up with an error:

var cost='10';//a string
var printCost='$' + cost.toFixed(2);//error

To get around this problem, you need to convert the string to a number as described on page 134, like
this:

var cost='10';//a string
cost = +cost;
var printCost='$' + cost.toFixed(2);//$10.00

Creating a Random Number
Random numbers can help add variety to a program. For example, say you have an
array of questions for a quiz program (like Script 3.3 on page 106). Instead of ask-
ing the same questions in the same order each time, you can randomly select one
question in the array. Or, you could use JavaScript to randomly select the name of
a graphic file from an array and display a different image each time the page loads.
Both of these tasks require a random number.

JavaScript provides the Math.random() method for creating random numbers.
This method returns a randomly generated number between 0 and 1 (for exam-
ple .9716907176080688 or .10345038010895868). While you might not have much
need for numbers like those, you can use some simple math operations to generate
a whole number from 0 to another number. For example, to generate a number
from 0 to 9, you’d use this code:

Math.floor(Math.random()*10);

Chapter 4: Working with Words, Numbers, and Dates 139

Numbers

This code breaks down into two parts. The part inside the Math.floor() method—
Math.random()*10—generates a random number between 0 and 10. That will
generate numbers like 4.190788392268892; and since the random number is
between 0 and 10, it never is 10. To get a whole number, the random result is
passed to the Math.floor() method, which rounds any decimal number down to
the nearest whole number, so 3.4448588848 becomes 3 and .1111939498984
becomes 0.

If you want to get a random number between 1 and another number, just multiply
the random() method (case issue) by the uppermost number and add one to the
total. For example, if you want to simulate a die roll to get a number from 1 to 6:

var roll = Math.floor(Math.random()*6 +1); // 1,2,3,4,5 or 6

Randomly selecting an array element

You can use the Math.random() method to randomly select an item from an array.
As discussed on page 59, each item in an array is accessed using an index number.
The first item in an array uses an index value of 0, and the last item in the array is
accessed with an index number that’s 1 minus the total number of items in the
array. Using the Math.random() method makes it really easy to randomly select an
array item:

var people = ['Ron','Sally','Tricia','Bob']; //create an array

var random = Math.floor(Math.random() * people.length);

var rndPerson = people[random]; //

The first line of this code creates an array with four names. The second line does
two things: First, it generates a random number between 0 and the number of
items in the array (people.length)—in this example, a number between 0 and 4.
Then it uses the Math.floor() method to round down to the nearest integer, so it
will produce the number 0, 1, 2, or 3. Finally, it uses that number to access one ele-
ment from the array and store it in a variable named rndPerson.

A function for selecting a random number

Functions are a great way to create useful, reusable snippets of code (page 97). If
you use random numbers frequently, you might want a simple function to help
you select a random number between any two numbers—for example, a number
between 1 and 6, or 100 and 1,000. The following function is called using two
arguments; The first is the bottom possible value (1 for example), and the second
is the largest possible value (6 for example):

function rndNum(from, to) {

 return Math.floor((Math.random()*(to – from + 1)) + from);

}

To use this function, add it to your Web page (as described on page 98), and then
call it like this:

var dieRoll = rndNum(1,6); // get a number between 1 and 6

140 JavaScript: The Missing Manual

Dates and Times

Dates and Times
If you want to keep track of the current date or time, turn to JavaScript’s Date
object. This special JavaScript object lets you determine the year, month, day of the
week, hour, and more. To use it, you create a variable and store a new Date object
inside it like this:

var now = new Date();

The new Date() command creates a Date object containing the current date and
time. Once created, you can access different pieces of time and date information
using various date-related methods as listed in Table 4-5. For example, to get the
current year use the getFullYear() method like this:

var now = new Date();

var year = now.getFullYear();

Note: new Date() retrieves the current time and date as determined by each visitor’s computer. In other
words, if someone hasn’t correctly set their computer’s clock, then the date and time won’t be accurate.

Getting the Month
To retrieve the month for a Date object, use the getMonth() method, which
returns the month’s number:

var now = new Date();

var month = now.getMonth();

However, instead of returning a number that makes sense to us humans (as in 1
meaning January), this method returns a number that’s one less. For example,

Table 4-5. Methods for accessing parts of the Date object

Method What it returns

getFullYear() The year: 2008, for example.
getMonth() The month as an integer between 0 and 11: 0 is January and 11 is December.
getDate() The day of the month—a number between 1 and 31.
getDay() The day of the week as a number between 0 and 6. 0 is Sunday, and 6 is

Saturday.
getHours() Number of hours on a 24-hour clock (i.e. a number between 0 and 23). For

example, 11p.m. is 23.
getMinutes() Number of minutes between 0 and 59.
getSeconds() Number of seconds between 0 and 59.
getTime() Total number of milliseconds since January 1, 1970 at midnight (see box on

page 142).

Chapter 4: Working with Words, Numbers, and Dates 141

Dates and Times

January is 0, February is 1, and so on. If you want to retrieve a number that
matches how we think of months, just add 1 like this:

var now = new Date();

var month = now.getMonth()+1;//matches the real month

There’s no built-in JavaScript command that tells you the name of a month. Fortu-
nately, JavaScript’s strange way of numbering months comes in handy when you
want to determine the actual name of the month. You can accomplish that by first
creating an array of month names, then accessing a name using the index number
for that month:

var months = ['January','February','March','April','May',

 'June','July','August','September',

 'October','November','December'];

var now = new Date();

var month = months[now.getMonth()];

The first line creates an array with all twelve month names, in the order they occur
(January–December). Remember that to access an array item you use an index
number, and that arrays are numbered starting with 0 (see page 59). So to access
the first item of the array months, you use months[0]. So, by using the getMonth()
method, you can retrieve a number to use as an index for the months array and
thus retrieve the name for that month.

Getting the Day of the Week
The getDay() method retrieves the day of the week. And as with the getMonth()
method, the JavaScript interpreter returns a number that’s one less than what
you’d expect: 0 is considered Sunday, the first day of the week, while Saturday is 6.
Since the name of the day of the week is usually more useful for your visitors, you
can use an array to store the day names and use the getDay() method to access the
particular day in the array, like this:

var days = ['Sunday','Monday','Tuesday','Wednesday',

 'Thursday','Friday','Saturday'];

var now = new Date();

var dayOfWeek = days[now.getDay()];

In the tutorial on page 146, you’ll see use both the getDay() and getMonth() tech-
niques to create a useful function for creating a human-readable date.

Getting the Time
The Date object also contains the current time, so you can display the current time
on a Web page or use the time to determine if the visitor is viewing the page in the
a.m. or p.m. You can then do something with that information, like display a
background image of the sun during the day, or the moon at night.

142 JavaScript: The Missing Manual

Dates and Times

You can use the getHours(), getMinutes(), and getSeconds() methods to get the
hours, minutes, and seconds. So to display the time on a Web page, add the follow-
ing in the HTML where you wish the time to appear:

var now = new Date();

var hours = now.getHours();

var minutes = now.getMinutes();

var seconds = now.getSeconds();

document.write(hours + ":" + minutes + ":" + seconds);

This code produces output like 6:35:56 to indicate 6 a.m., 35 minutes, and 56 sec-
onds. However, it will also produce output that you might not like, like 18:4:9 to
indicate 4 minutes and 9 seconds after 6 p.m. One problem is that most people

POWER USERS’ CLINIC

The Date Object Behind the Scenes
JavaScript lets you access particular elements of the Date
object, such as the year or the day of the month. However,
the JavaScript interpreter actually thinks of a date as the
number of milliseconds that have passed since midnight on
January 1, 1970. For example, Wednesday, July 2, 2008 is
actually 1214982000000 to the JavaScript interpreter.

That isn’t a joke: As far as JavaScript is concerned, the
beginning of time was January 1, 1970. That date (called
the “Unix epoch”) was arbitrarily chosen in the 70s by pro-
grammers creating the Unix operating system, so they
could all agree on a way of keeping track of time. Since
then, this way of tracking a date has become common in
many programming languages and platforms.

Whenever you use a Date method like getFullYear(), the
JavaScript interpreter does the math to figure out (based on
how many seconds have elapsed since January 1, 1970)
what year it is. If you want to see the number of millisec-
onds for a particular date, you use the getTime() method:

var sometime = new Date();
var msElapsed = sometime.getTime();

Tracking dates and times as milliseconds makes it easier to
calculate differences between dates. For example, you can
determine the amount of time until next New Year’s day by
first getting the number of milliseconds that will have
elapsed from 1/1/1970 to when next year rolls around and
then subtracting the number of milliseconds that have
elapsed from 1/1/1970 to today:

// milliseconds from 1/1/1970 to today
var today = new Date();
// milliseconds from 1/1/1970 to next new
year
var nextYear = new Date(2009, 0, 1);
// calculate milliseconds from today to
next year
var timeDiff = nextYear - today;

The result of subtracting two dates is the number of milli-
seconds difference between the two. If you want to convert
that into something useful, just divide it by the number of
milliseconds in a day (to determine how many days) or the
number of milliseconds in an hour (to determine how
many hours), and so on.

var second = 1000; // 1000 milliseconds in
a second
var minute = 60*second; // 60 seconds in a
minute
var hour = 60*minute; // 60 minutes in an
hour
var day = 24*hour; // 24 hours in a day
var totalDays = timeDiff/day; // total
number of days

(In this example, you may have noticed a different way to
create a date: new Date(2009,0,1). You can read more
about this method on page 145.)

Chapter 4: Working with Words, Numbers, and Dates 143

Dates and Times

reading this book, unless they’re in the military, don’t use the 24-hour clock. They
don’t recognize 18 as meaning 6 p.m. An even bigger problem is that times should
be formatted with two digits for minutes and seconds (even if they’re a number
less than 10), like this: 6:04:09. Fortunately, it’s not difficult to adjust the above
script to match those requirements.

Changing hours to a.m. and p.m.

To change hours from a 24-hour clock to a 12-hour clock, you need to do a cou-
ple of things. First, you need to determine if the time is in the morning (so you can
add ‘am’ after the time) or in the afternoon (to append ‘pm’). Second, you need to
convert any hours greater than 12 to their 12-hour clock equivalent (for example,
change 14 to 2 p.m.).

Here’s the code to do that:

1 var now = new Date();

2 var hour = now.getHours();

3 if (hour < 12) {

4 meridiem = 'am';

5 } else {

6 meridiem = 'pm';

7 }

8 hour = hour % 12;

9 if (hour==0) {

10 hour = 12;

11 }

12 hour = hour + ' ' + meridiem;

Note: The column of numbers at the far left is just line numbering to make it easier for you to follow the
discussion below. Don’t type these numbers into your own code!

Lines 1 and 2 grab the current date and time and store the current hour into a vari-
able named hour. Lines 3–7 determine if the hour is in the afternoon or morning;
if the hour is less than 12 (the hour after midnight is 0), then it’s the morning
(a.m.); otherwise, it’s the afternoon (p.m.).

Line 8 introduces a mathematical operator called modulus and represented by a
percent (%) sign. It returns the remainder of a division operation. For example, 2
divides into 5 two times (2 × 2 is 4), with 1 left over. In other words, 5 % 2 is 1. So
in this case, if the hour is 18, 18 % 12 results in 6 (12 goes into 18 once with a
remainder of 6). 18 is 6 p.m., which is what you want. If the first number is smaller
than the number divided into it (for example, 8 divided by 12), then the result is
the original number. For example, 8 % 12 just returns 8; in other words, the mod-
ulus operator doesn’t change the hours before noon.

144 JavaScript: The Missing Manual

Dates and Times

Lines 9–11 take care of two possible outcomes with the modulus operator. If the
hour is 12 (noon) or 0 (after midnight), then the modulus operator returns 0. In
this case, hour is just set to 12 for either 12 p.m. or 12 a.m.

Finally, line 12 combines the reformatted hour with a space and either “am” or
“pm”, so the result is displayed as, for example, “6 am” or “6 pm”.

Padding single digits

As discussed on page 142, when the minutes or seconds values are less than 10, you
can end up with weird output like 7:3:2 p.m. To change this output to the more
common 7:03:02 p.m., you need to add a 0 in front of the single digit. It’s easy with
a basic conditional statement:

1 var minutes = now.getMinutes();

2 if (minutes<10) {

3 minutes = '0' + minutes;

4 }

Line 1 grabs the minutes in the current time, which in this example could be 33 or
3. Line 2 simply checks if the number is less than 10, meaning the minute is a sin-
gle digit and needs a 0 in front of it. Line 3 is a bit tricky, since you can’t normally
add a 0 in front of a number: 0 + 2 equals 2, not 02. However, you can combine
strings in this way so '0' + minutes means combine the string '0' with the value in
the minutes variable. As discussed on page 50, when you add a string to a number,
the JavaScript interpreter converts the number to a string as well, so you end up
with a string like '08'.

You can put all of these parts together to create a simple function to output times
in formats like 7:32:04 p.m., or 4:02:34 a.m., or even leave off seconds altogether
for a time like 7:23 p.m.:

function printTime(secs) {

 var sep = ':'; //seperator character

 var hours,minutes,seconds,time;

 var now = new Date();

 hours = now.getHours();

 if (hours < 12) {

 meridiem = 'am';

 } else {

 meridiem = 'pm';

 }

 hours = hours % 12;

 if (hours==0) {

 hours = 12;

 }

Chapter 4: Working with Words, Numbers, and Dates 145

Dates and Times

 time = hours;

 minutes = now.getMinutes();

 if (minutes<10) {

 minutes = '0' + minutes;

 }

 time += sep + minutes;

 if (secs) {

 seconds = now.getSeconds();

 if (seconds<10) {

 seconds = '0' + seconds;

 }

 time += sep + seconds;

 }

 return time + ' ' + meridiem;

}

You’ll find this function in the file printTime.js in the chapter04 folder in the Tuto-
rials. You can see it in action by opening the file time.html (in that same folder) in
a Web browser. To use the function, either attach the printTime.js file to a Web
page (see page 23), or copy the function into a Web page or another external Java-
Script file (page 22). To get the time, just call the function like this: printTime(),
or, if you want the seconds displayed as well, printTime(true). The function will
return a string containing the current time in the proper format.

Creating a Date Other Than Today
So far, you’ve seen how to use new Date() to capture the current date and time on
a visitor’s computer. But what if you want to create a Date object for next Thanks-
giving or New Year’s? JavaScript lets you create a date other than today in a few
different ways. You might want to do this if you’d like to do a calculation between
two dates: for example, “How many days until the new year?” (Also see the box on
page 142.)

When using the Date() method, you can also specify a date and time in the future
or past. The basic format is this:

new Date(year,month,day,hour,minutes,seconds,milliseconds);

For example, to create a Date for noon on New Year’s Day 2010, you could do this:

var ny2010 = new Date(2010,0,1,12,0,0,0);

This code translates to “create a new Date object for January 1, 2010 at 12 o’clock,
0 minutes, 0 seconds, and 0 milliseconds.” You must supply at least a year and
month, but if you don’t need to specify an exact time, you can leave off millisec-
onds, seconds, minutes, and so on. For example, to just create a date object for
January 1, 2010, you could do this:

var ny2010 = new Date(2010,0,1);

146 JavaScript: The Missing Manual

Tutorial

Note: Remember that JavaScript uses 0 for January, 1 for February, and so on, as described on page 141.

Creating a date that’s one week from today

As discussed in the box on page 142, the JavaScript interpreter actually treats a date
as the number of milliseconds that have elapsed since Jan 1, 1970. Another way to
create a date is to pass a value representing the number of milliseconds for that
date:

new Date(milliseconds);

So another way to create a date for January 1, 2010 would be like this:

var ny2010 = new Date(1262332800000);

Of course, since most of us aren’t human calculators, you probably wouldn’t think
of a date like this. However, milliseconds come in very handy when you’re creat-
ing a new date that’s a certain amount of time from another date. For example,
when setting a cookie using JavaScript, you need to specify a date at which point
that cookie is deleted from a visitor’s browser. To make sure a cookie disappears
after one week, you need to specify a date that’s one week from today.

To create a date that’s one week from now, you could do the following:

var now = new Date(); // today

var nowMS = now.getTime(); // get # milliseconds for today

var week = 1000*60*60*24*7; // milliseconds in one week

var oneWeekFromNow = new Date(nowMS + week);

The first line stores the current date and time in a variable named now. Next, the
getTime() method extracts the number of milliseconds that have elapsed from Jan-
uary 1, 1970 to today. The third line calculates the total number of milliseconds in
a single week (1000 milliseconds * 60 seconds * 60 minutes * 24 hours * 7 days).
Finally, the code creates a new date by adding the number of milliseconds in a
week to today.

Tutorial
To wrap up this chapter, you’ll create a useful function for outputting a date in
several different human-friendly formats. The function will be flexible enough to
let you print out a date, as in “January 1, 2009,” “1/1/09,” or “Monday, February 2,
2009.” In addition, you’ll use some of the date and string methods covered in this
chapter to build this function.

Overview
As with any program you write, it’s good to start with a clear picture of what you
want to accomplish and the steps necessary to get it done. For this program, you
want to output the date in many different formats, and you want the function to
be easy to use.

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgements
	The Missing Manual Series

	Introduction
	What Is JavaScript?
	A Bit of History
	JavaScript Is Everywhere
	JavaScript Doesn’t Stand Alone

	HTML: The Barebones Structure
	How HTML Tags Work

	CSS: Adding Style to Web Pages
	Anatomy of a Style

	Software for JavaScript Programming
	Free Programs
	Commercial Software

	About This Book
	This Book’s Approach to JavaScript
	About the Outline
	Living Examples
	About MissingManuals.com

	The Very Basics
	About › These › Arrows
	Safari® Books Online

	Chapter 1. Writing Your First JavaScript Program
	Introducing Programming
	What’s a Computer Program?

	How to Add JavaScript to a Page
	External JavaScript Files

	Your First JavaScript Program
	Writing Text on a Web Page
	Attaching an External JavaScript File
	Tracking Down Errors
	The Firefox JavaScript Console
	Displaying the Internet Explorer Error Dialog Box
	Accessing the Safari Error Console

	Chapter 2. The Grammar of JavaScript
	Statements
	Commands
	Types of Data
	Numbers
	Strings
	Booleans

	Variables
	Creating a Variable
	Using Variables

	Working with Data Types and Variables
	Basic Math
	The Order of Operations
	Combining Strings
	Combining Numbers and Strings
	Changing the Values in Variables

	Tutorial: Using Variables to Create Messages
	Tutorial: Asking for Information
	Arrays
	Creating an Array
	Accessing Items in an Array
	Adding Items to an Array
	Adding an item to the end of an array
	Adding an item to the beginning of an array
	Choosing how to add items to an array

	Deleting Items from an Array
	Adding and Deleting with splice(��)
	Deleting items with splice(��)
	Adding items with splice(��)
	Replacing items with splice(��)

	Tutorial: Writing to a Web Page Using Arrays
	Comments
	When to Use Comments
	Comments in this Book

	Chapter 3. Adding Logic and Control to Your Programs
	Making Programs React Intelligently
	Conditional Statement Basics
	Adding a Backup Plan
	Testing More Than One Condition
	More Complex Conditions
	Making sure more than one condition is true
	Making sure at least one condition is true
	Negating a condition

	Nesting Conditional Statements
	Tips for Writing Conditional Statements

	Tutorial: Using Conditional Statements
	Handling Repetitive Tasks with Loops
	While Loops
	Loops and Arrays
	For Loops
	Do/While Loops

	Functions: Turn Useful Code Into Reusable Commands
	Mini-Tutorial
	Giving Information to Your Functions
	Retrieving Information from Functions
	Keeping Variables from Colliding

	Tutorial: A Simple Quiz

	Chapter 4. Working with Words, Numbers, and Dates
	A Quick Object Lesson
	Strings
	Determining the Length of a String
	Changing the Case of a String
	Searching a String: indexOf(��) Technique
	Extracting Part of a String with slice(��)

	Finding Patterns in Strings
	Creating and Using a Basic Regular Expression
	Building a Regular Expression
	Grouping Parts of a Pattern
	Useful Regular Expressions
	U.S. Zip code
	U.S. phone number
	Email address
	Date
	Web address

	Matching a Pattern
	Matching every instance of a pattern

	Replacing Text
	Trying Out Regular Expressions

	Numbers
	Changing a String to a Number
	Testing for Numbers
	Rounding Numbers
	Formatting Currency Values
	Creating a Random Number
	Randomly selecting an array element
	A function for selecting a random number

	Dates and Times
	Getting the Month
	Getting the Day of the Week
	Getting the Time
	Changing hours to a.m. and p.m.
	Padding single digits

	Creating a Date Other Than Today
	Creating a date that’s one week from today

	Tutorial
	Overview
	Writing the Function

	Chapter 5. Dynamically Modifying Web Pages
	Modifying Web Pages: An Overview
	Understanding the Document Object Model
	Selecting a Page Element
	getElementById(��)
	getElementsByTagName(��)
	Selecting nearby nodes

	Adding Content to a Page
	The Moon Quiz Revisited
	The Problem with the DOM

	Introducing JavaScript Libraries
	Getting Started with jQuery

	Selecting Page Elements (Revisited)
	Basic Selectors
	ID selectors
	Element selectors
	Class selectors

	Advanced Selectors
	jQuery Filters
	Understanding jQuery Selections
	Automatic loops
	Chaining functions

	Adding Content to a Page
	Replacing and Removing Selections

	Setting and Reading Tag Attributes
	Classes
	Reading and Changing CSS Properties
	Changing Multiple CSS Properties at Once

	Reading, Setting, and Removing HTML Attributes
	Creative Headlines
	Acting on Each Element in a Selection
	Anonymous Functions
	this and $(this)

	Automatic Pull Quotes
	Overview
	Programming

	Chapter 6. Action/Reaction: Making Pages Come Alive with Events
	What Are Events?
	Mouse Events
	Document/Window Events
	Form Events
	Keyboard Events

	Using Events with Functions
	Inline Events
	The Traditional Model
	The Modern Way
	The jQuery Way

	Tutorial: Highlighting Table Rows
	More jQuery Event Concepts
	Waiting for the HTML to Load
	jQuery Events
	The hover(��) event
	The toggle(��) Event

	The Event Object
	Stopping an Event’s Normal Behavior
	Removing Events

	Advanced Event Management
	Tutorial: A One-Page FAQ
	Overview of the Task
	The Programming

	Chapter 7. Improving Your Images
	Swapping Images
	Changing an Image’s src Attribute
	Preloading Images
	Rollover Images

	Tutorial: Adding Rollover Images
	Overview of the Task
	The Programming

	jQuery Effects
	Basic Showing and Hiding
	Fading Elements In and Out
	Sliding Elements
	Animation

	Tutorial: Photo Gallery with Effects
	Overview of Task
	The Programming

	Advanced Gallery with jQuery lightBox
	The Basics
	Customizing lightBox
	lightBox options
	lightBox images
	lightBox CSS

	Tutorial: lightBox Photo Gallery
	Animated Slideshows with Cycle
	The Basics
	Customizing the Cycle Plug-in
	Effects
	Speed
	Navigating slides
	Starting and stopping the slideshow

	Tutorial: An Automated Slideshow

	Chapter 8. Improving Navigation
	Some Link Basics
	Selecting Links with JavaScript
	Determining a Link’s Destination
	Don’t Follow That Link

	Opening External Links in a New Window
	Creating New Windows
	Window Properties
	Use the window reference
	Events that can open a new window

	Opening Pages in a Window on the Page
	Customizing the Look of a Greybox Window
	Tutorial: Opening a Page Within a Page

	Tutorial: Making Bigger Links
	Overview
	The Programming

	Animated Navigation Menus
	The HTML
	The CSS
	The JavaScript
	The Tutorial

	Chapter 9. Enhancing Web Forms
	Understanding Forms
	Selecting Form Elements
	Getting and Setting the Value of a Form Element
	Determine Whether Buttons and Boxes Are Checked
	Form Events
	Submit
	Focus
	Blur
	Click
	Change

	Adding Smarts to Your Forms
	Focus the First Field in a Form
	Disabling and Enabling Fields
	Hiding and Showing Form Options

	Tutorial: Basic Form Enhancements
	Focusing a Field
	Disabling Form Fields
	Hiding Form Fields

	Form Validation
	jQuery Validation Plug-in
	Basic Validation
	Adding validation rules
	Adding error messages

	Advanced Validation
	Advanced rules
	Advanced error messages

	Styling Error Messages

	Validation Tutorial
	Basic Validation
	Advanced Validation
	Validating Checkboxes and Radio Buttons
	Formatting the Error Messages

	Chapter 10. Expanding Your Interface
	Hiding Information with Accordion Panels
	Customizing an Accordion
	Accordion Tutorial

	Organizing Information in Tabbed Panels
	Formatting Tabs and Panels
	A required class style
	The tab group
	Tabs
	Panels

	Customizing the Tabs Plug-in
	Selecting a tab when the page loads
	Using a different event to open a panel
	Automating the display of panels

	Tabbed Panels Tutorial

	Tooltips
	Tooltips Using the Title Attribute
	Tooltips Using Another Web Page
	Tooltips Using Hidden Content
	Controlling the Display of Tooltips
	Formatting Tooltips
	Cluetip Tutorial
	Adding a tooltip using the title attribute
	Adding a tooltip using another Web page
	Adding a tooltip using HTML on the page

	Creating Sortable Tables
	Styling the Table
	Using the Tablesorter plug-in to stripe tables

	Tablesorter Tutorial

	Chapter 11. Introducing Ajax
	What Is Ajax?
	Ajax: The Basics
	Pieces of the Puzzle
	Talking to the Web Server

	Ajax the jQuery Way
	Using the load(��) Function
	Tutorial: The load(��) Function
	Overview
	The programming

	The get(��) and post(��) Functions
	Formatting Data to Send to the Server
	Query string
	Object literal
	jQuery’s serialize(��) function

	Processing Data from the Server
	Tutorial: Using the post(��) Function
	Overview
	The programming

	JSON
	Accessing JSON Data
	Complex JSON Objects

	Chapter 12. Basic Ajax Programming
	Tabs Plug-in
	Changing the Loading Text and Icon
	Turning off the “Loading” message

	Ajax Tabs Tutorial

	Adding Google Maps to Your Site
	Setting a Location for the Map
	Other jMap Options
	Adding Markers and HTML Bubbles
	Get Driving Directions
	jMaps Tutorial

	Chapter 13. Troubleshooting and Debugging
	Top JavaScript Programming Mistakes
	Non-Closed Pairs
	Quotation Marks
	Using Reserved Words
	Single Equals in Conditional Statements
	Case-Sensitivity
	Incorrect Path to External JavaScript File
	Incorrect Paths Within External JavaScript Files
	Disappearing Variables and Functions

	Debugging with Firebug
	Installing and Turning On Firebug
	Viewing Errors with Firebug
	Using console.log(��) to Track Script Progress
	Tutorial: Using the Firebug Console
	More Powerful Debugging
	Controlling your script with the debugger
	Watching your script

	Debugging Tutorial

	Chapter 14. Going Further with JavaScript
	Putting It All Together
	Using External JavaScript Files

	Writing More Efficient JavaScript
	Put Preferences in Variables
	Ternary Operator
	The Switch Statement
	Using the jQuery Object Efficiently

	Creating Fast-Loading JavaScript
	Using YUI Compressor for Windows
	Using YUI Compressor for Mac

	Appendix A. JavaScript Resources
	References
	Web Sites
	Books

	Basic JavaScript
	Articles and Presentations
	Web Sites
	Books

	jQuery
	Articles
	Web Sites
	Books

	The Document Object Model
	Articles and Presentations
	Web Sites
	Books

	Ajax
	Web Sites
	Books

	Advanced JavaScript
	Articles and Presentations
	Web Sites
	Books

	CSS
	Web Sites
	Books

	JavaScript Software

	Index

