5/1/23, 7:55 AM How to clone an array in ES6

How to clone an array in ES67?

In ES5, we used the concat method to make a copy of the array. Also, some developers used the
slice() method by passing O as a parameter to slice all elements of the referenced array and create

a Nnew array.

Example
Users can follow the example below to clone the array using the slice() method. We have created
arrayl, which contains the values of different data types. After that, we used the slice() method to

make a copy of arrayl and store it in the ‘clone’ variable.

<html> Edit & Run @
<body>
<h2>Using the <i>slice()</i> method to clone the array in JavaScript</h2>
<div id = "output"> </div>
<script>
let output = document.getElementById( 'output'

let arrayl = [10, "hello", 30, true
output.innerHTML += "The original array: " + arrayl + " <br>"
let clone = arrayl.slice(©
output.innerHTML += "The cloned array: " + clone + " <br>"
</script>
</body>
</html>

Users have learned how we were cloning the array in ESb.

Also, users can think about copying the array as they copy normal variables like string, number,

and boolean using the assignment operator.

Users can face a problem while copying the array using the assignment operator. Let's understand

it via the example below.

Copying Array using Assignment Operator
In the example below, the strings array contains various strings. We have assigned the strings

array to the strings?2 array. After that, we pushed the new string value to the strings?2 array.

Example
<html> Edit & Run @
<body> @tutorialapoint

https://www.tutorialspoint.com/how-to-clone-an-array-in-es6# 1/4



5/1/23, 7:55 AM How to clone an array in ES6

<h2>Using the <i>assignment</i> operator to clone the array in JavaScript</h2>

<div id = "output"> </div>
<script>
let output = document.getElementById('output'

let arrayl "Hi", " users", "Welcome"
let array2 = arrayl

array2.push("New value"

output.innerHTML += "The value of array2: " + array2 + " <br>"
output.innerHTML += "The value of arrayl: " + arrayl + " <br>"
</script>
</body>
</html>

In the above output, users can observe that when we have pushed the string value to the strings2

array, it also pushed to the strings array. Why did this happen?

Here, the concept of mutable and immutable objects comes into play.

Mutable VS immutable objects

In JavaScript, Array and objects are mutable means we can change their value once we initialize
them after creating them. So, there is no existence of the strings2 array in the above example.

When we assign the strings array to the strings2 array, it generates the reference to the strings

array. So, whenever we change the strings2 array, it will also change the strings array.
So, we need to create an actual copy of the array without referencing the other array

Now, let’s learn to clone the array in ES6.

Using the spread operator (...) to clone an array in ES6

The syntax of the spread operator is three dots (...). We can use it to spread the iterable object like

an array. The spread operator creates a new copy of the array or object.

Syntax

Users can follow the syntax below to copy the array using the spread operator.

let booleansCopy = [...booleans];

Example
In the example below, we have created the boolean array, which contains the different boolean

values. After that, we created the copy of the boolean array using the spread operator and

@tutorialspoint

https://www.tutorialspoint.com/how-to-clone-an-array-in-es6# 2/4

assigned that copy to the booleanCopy variable.



5/1/23, 7:55 AM How to clone an array in ES6
In the output, users can observe that the booleanCopy array contains the same values as the

boolean array contains.

<html> Edit & Run @
<body>
<h2>Using the <i> spread operator </i> to clone the array in JavaScript</h2>
<div id = "output"> </div>
<script>
let output = document.getElementById('output'
let booleans = [true, false, false, true, true
let booleansCopy = |...booleans
output.innerHTML += "The values of the booleansCopy array: " + booleansCopy + "
<br>"
</script>
</body>
</html>
Example

In the example below, the sizes array contains different number values. We have created the copy
of the sizes array using the spread operator and stored that array in the sizesClone variable using

the assignment operator.

After that, we pushed 60 to the sizesClone array.

<html> Edit & Run @
<body>

<h2>Using the <i>spread</i> operator to clone the array in JavaScript</h2>

<div id = "output"> </div>

<script>

let output = document.getElementById( 'output'’
let sizes = [34, 43, 45, 47, 49, 50
output.innerHTML += "------- Before Push------- + "<br>"

output.innerHTML += "The values of the sizes array: + sizes + "<br>"

let sizesClone = [...sizes

output.innerHTML += "The values of the sizesClone array: + sizesClone + "<br>"
sizesClone.push(60
output.innerHTML += "------ After Push------ "+ "<br>"

output.innerHTML += "The values of the sizes array: + sizes + "<br>"

output.innerHTML += "The values of the sizesClone array:" + sizesClone + "<br>"

</script>
</body>
</html>

In the above output, users can observe that 60 reflects in the sizesClone array but not in the sizes

array because we have created the actual copy of the array rather than referencing the array like in

https://www.tutorialspoint.com/how-to-clone-an-array-in-es6# 3/4



5/1/23, 7:55 AM How to clone an array in ES6

example 2.

Now, users clearly understand why not to use the assignment operator in ES6 and why to use the

spread operator to clone the array.

@tutorialspoint

https://www.tutorialspoint.com/how-to-clone-an-array-in-es6# 4/4



