
137

Chapter 6chapter

6

Style Sheets

Last chapter, you learned XHTML’s dirty little secret—it doesn’t have much for-
matting muscle. If you want your Web pages to look sharp, you need to add style
sheets into the mix.

A style sheet is a document filled with formatting rules. Browsers read these rules
and apply them when they display Web pages. For example, a style sheet rule
might say, “Make all the headings on this site bold and fuchsia, and draw a box
around each one.”

There are several reasons why you want to put formatting instructions in a style
sheet instead of embedding them in a Web page. The most obvious is reuse. For
example, thanks to style sheets, you can create a single rule to format level-3 head-
ings, and every level-3 heading on every Web page on your site will reflect that
rule. The second reason is that style sheets help you write tidy, readable, and man-
ageable XHTML files. Because style sheets handle all your site’s formatting, your
XHTML document doesn’t need to. All it needs to do is organize your pages into
logical sections. (For a recap of the difference between structuring and formatting
a Web page, refer to page 110.) And finally, style sheets give you more extensive
formatting choices than those in XHTML alone. Using style sheets, you can con-
trol colors, borders, margins, alignment, and (to a limited degree) fonts.

You’ll use style sheets throughout this book. In this chapter, you’ll learn the basics
of style sheets, and see how you can use them to create a variety of visual effects.

138 Creating a Web Site: The Missing Manual

Style Sheet Basics

Style Sheet Basics
Style sheets use a standard that’s officially known as CSS (Cascading Style Sheets).
CSS is a system for defining style rules. These rules change the appearance of the ele-
ments in a Web page, tweaking details like color, font, size, borders, and placement.

When you use CSS in a Web page, a browser reads both the page’s XHTML file
and the style sheet rules. It then uses those rules to format the page. Figure 6-1
shows the process.

This system gives Web weavers the best of both worlds—a rich way to format
pages and a way to avoid mucking up your XHTML document beyond recogni-
tion. In an ideal world, the XHTML document describes only the structure of your
Web page (what’s a header, what’s a paragraph, what’s a list, and so on), and the
style sheet formats that Web page to give it its hot look.

The Three Types of Styles
Before you learn how to write CSS rules, you first have to think about where you’re
going to place those instructions. CSS gives you three ways to apply style sheets to
a Web page:

• An external style sheet is one that’s stored in a separate file. This is the most pow-
erful approach, because it completely separates formatting rules from your
XHTML pages. It also gives you an easy way to apply the same rules to many pages.

• An internal style sheet is embedded inside an XHTML document (it goes right
inside the <head> section). You still have the benefit of separating the style
information from the XHTML, and if you really want, you can cut and paste
the embedded style sheet from one page to another (although it gets difficult to

Figure 6-1:
When you go to a Web page
that uses a style sheet, the
following things happen. 1)
Your browser requests the
XHTML page from a Web
server. 2) The browser finds
an instruction in the XHTML
page indicating that the
page uses a style sheet. The
browser then grabs that style
sheet with a separate
request. 3) The browser
chews through the XHTML in
the Web page, and uses the
rules in the style sheet to
adjust the page’s
appearance.

Your
computer

Web
server

Get the page

2 Get the linked style sheet

1

resume.htm

resume.css

Render the page and apply the style sheet3

Chapter 6: Style Sheets 139

Style Sheet Basics

keep all those copies synchronized if you make changes later on). You use an
internal style sheet if you want to give someone a complete Web page in a sin-
gle file—for example, if you email someone your home page. You might also
use an internal style sheet if you know that you aren’t going to use any of its
style rules on another page.

• An inline style is a way to insert style sheet language directly inside the start tag
of an XHTML element. At first glance, this sounds suspicious. You already
learned that it’s a bad idea to embed formatting instructions inside a Web page,
because formatting details tend to be long and unwieldy. That’s true, but you
might occasionally use the inline style approach to apply one-time formatting
in a hurry. It’s not all that clean or structured, but it does work.

These choices give you the flexibility to either follow the CSS philosophy whole-
heartedly (with external style sheets), or to use the occasional compromise (with
internal style sheets or inline styles). Because style sheet language is always the
same, even if you use a “lazier” approach like internal style sheets, you can always
cut-and-paste your way to an external style sheet when you’re ready to get more
structured.

UP TO SPEED

The “Other Way” to Format a Web Page
Style sheets aren’t the only way to format a Web page—
they’re just the most capable tool. You’ve also got a few for-
matting options built right into the XHTML elements you
learned about in Chapter 5. For example, you can change a
page’s background color or center text without touching a
style sheet. For the most part, this book doesn’t use these for-
matting options, for several good reasons:

• They’re patchy and incomplete. Many style fea-
tures, like paragraph indenting and borders, are
missing—there are no XHTML formatting elements to
achieve these effects. Even worse, the model isn’t
consistent—for example, you might be able to line
up text in one type of element, but not the text con-
tained in another type of element. This makes the
model difficult to learn and remember.

• They work only in XHTML 1.0 transitional. As
you learned earlier (page 30), transitional XHTML

includes features that the official rulemakers of the
XHTML standard—that’d be the good people who
work at World Wide Web Consortium (W3C)—
consider obsolete. If you use these old-school for-
matting features, your hard-core Web designer
friends won’t sit with you at restaurants.

• They don’t let you easily reuse formatting
changes. So after you reformat one page, you need
to start all over again to fix the next page. And so on,
and so on, and so on.

• Why learn something you don’t need? Consider-
ing that style sheets have so much power and flexibil-
ity, and now that virtually every browser around—old
and new—supports style sheets, it doesn’t make sense
to waste time with something you’ll only outgrow.

140 Creating a Web Site: The Missing Manual

Style Sheet Basics

Browser Support for CSS
Before you embrace style sheets, you need to make sure they work on all the
browsers your site visitors use. That’s not as easy to figure out as it should be. The
first problem is that there’s actually more than one version of the CSS standard—
there’s the original CSS1, the slightly improved CSS2, the corrected CSS2.1, and
the still-developing CSS3. But the real problem is that browsers don’t necessarily
support the entire CSS standard no matter what version it is. And when they do,
they don’t always support it in exactly the same way. The discrepancies range from
minor to troubling. As a result, in this book you’ll focus on CSS1 and CSS2 prop-
erties known to be well-supported on all the major browsers (see below). You’ll
steer clear of CSS3, which is still too new to be useful. That said, don’t forget to test
your pages in a variety of browsers to be sure they look right.

As a basic rule of thumb, you can count on good all-around CSS1 support in
Netscape Navigator 6, Internet Explorer 5, Opera 3.6, and any version of Firefox,
Safari, or Google Chrome. In later versions of these browsers, CSS support gets
more consistent and more comprehensive, with added features from CSS2 and
even CSS3.

People who’ve used the Web for a few years may still remember an earlier genera-
tion of browsers, namely Netscape 4.x and Internet Explorer 4.x. Both of these
browsers are unreliable when it comes to the fancier features of CSS. However,
you’re unlikely to run into them outside of a museum. If you’re in doubt, take a
look at some recent statistics to see which browsers people use online (page 13).

If you’re still concerned about whether a specific browser version supports a spe-
cific CSS feature, see the box on page below.

The Anatomy of a Rule
Style sheets contain just one thing: rules. Each rule is a formatting instruction that
applies to a part of your Web page. A style sheet can contain a single rule, or it can
hold dozens (or even hundreds) of them.

FREQUENTLY ASKED QUESTION

A Browser Compatibility Reference
How can I tell if a particular browser supports a CSS feature?

If you’re a hard-core Web maven, you may be interested in
one of the Web browser compatibility charts for CSS avail-
able on the Web. Two good resources are www.webdevout.
net/browser-support-css and www.quirksmode.org/css/
contents.html. These charts specify which browsers support
which CSS features.

But chart-reader beware: These tables include many rarely
used or new and poorly supported features. For example,
you probably don’t care that virtually no browser supports
the pitch-range property, used in conjunction with text-
reading devices. Unfortunately, the CSS charts can cause
panic in those who don’t know the standards. However,
they can be handy if you need to check out support for a
potentially risky feature.

http://www.webdevout.net/browser-support-css
http://www.webdevout.net/browser-support-css
http://www.quirksmode.org/css/contents.html
http://www.quirksmode.org/css/contents.html

Chapter 6: Style Sheets 141

Style Sheet Basics

Here’s a simple rule that tells a browser to display all <h1> headings in blue:

h1 { color: blue }

CSS rules don’t look like anything you’ve seen in XHTML markup, but you’ll have
no trouble with them once you realize that three ingredients make up every rule:
selectors, properties, and values. Here’s the format that every rule follows:

selector { property: value }

And here’s what each part means:

• The selector identifies the type of content you want to format. A browser then
hunts down all the parts of a Web page that match the selector. For now, you’ll
concentrate on selectors that match every occurrence of a specific page ele-
ment, like a heading. But later in this chapter (page 171), you’ll learn to create
more sophisticated selectors that act only on specific sections of your page.

• The property identifies the type of formatting you want to apply. Here’s where
you choose whether you want to change colors, fonts, alignment, or something
else.

• The value sets a value for the property defined above. This is where you bring it
all home. For example, if your property is color, the value could be light blue or
a queasy green.

Of course, it’s rarely enough to format just one property. Usually, you want to for-
mat several properties at the same time. You can do this with style sheets by creating
a rule like this:

h1 { text-align: center;

 color: black; }

This example changes the color of and centers the text inside an <h1> element.
That’s why style rules use the funny curly braces { and }—so you can put as many
formatting instructions inside them as you want. You separate one property from
the next using a semicolon (;). It’s up to you whether to include a semicolon at the
end of the last property. Although it’s not necessary, Web-heads often do so to
make it easy to add another property onto the end of a rule when needed.

Note: As in an XHTML file, CSS files let you use spacing and line breaks pretty much wherever you want.
However, people often put each formatting instruction on a separate line (as in the example above) to
make style sheets easy to read.

Conversely, you might want to create a single formatting instruction that affects
several different elements. For example, imagine you want to make sure that the
first three heading levels, h1 to h3, all have blue letters. Rather than writing three
separate rules, you can create a selector that includes all three elements, separated
by commas. Here’s an example:

h1, h2, h3 { color: blue }

142 Creating a Web Site: The Missing Manual

Style Sheet Basics

Believe it or not, selectors, properties, and values are the essence of CSS. Once you
understand these three ingredients, you’re on your way to style sheet expertise.

Here are a few side effects of the style sheet system that you might not yet realize:

• A single rule can format a whole bunch of XHTML. When you implement a
rule for the kind of selectors listed above (called type selectors), that rule applies
to every one of those elements. So when you specify blue h1 headings as in the
example above, every h1 element in your page becomes blue.

• It’s up to you to decide how much of your content you want to format. You can
fine-tune every XHTML element on your Web page, or you can write rules that
affect only a single element, using the techniques you’ll find at the end of this
chapter (page 171).

• You can create two different rules for the same element. For example, you could
create a rule that changes the font of every heading level (<h1>, <h2>, <h3>,
and so on), and then add another rule that changes the color of just <h1> ele-
ments. Just make sure you don’t try to set the same property multiple times
with conflicting values, or the results will be difficult to predict.

• Some elements have built-in style rules. For example, browsers always display
text that appears in a element as boldfaced, even when the style sheet
doesn’t include a rule to do so. Similarly, browsers display text in an <h1>
heading in a large font, with no style sheet rule necessary. But you can override
any or all of these built-in rules using custom style rules. For example, you
could explicitly set the font size of an <h1> heading so that it appears smaller
than normal text. Similarly, you can take the underline off of a link, make the
 element italicize text instead of bolding it, and so on.

Don’t worry about memorizing the kind of properties and values you can specify.
Later in this chapter, after you see how style sheets work, you’ll get acquainted with
all the formatting instructions you can use.

Applying a Style Sheet
Now it’s time to see style sheets in action. Before you go any further, dig up the
resume.htm file you worked on in Chapter 2 (it’s also available from the Missing
CD page at www.missingmanuals.com). You’ll use it to test out a new style sheet.
Follow these steps:

1. First, create the style sheet. You do this by creating a new file in any text editor,
like Notepad or TextEdit.

Creating a style sheet is no different from creating an XHTML page—it’s all
text. Many XHTML editors have built-in support for style sheets (see the box
on page 145 for more information).

http://www.missingmanuals.com

Chapter 6: Style Sheets 143

Style Sheet Basics

2. Type the following rule into your style sheet:

h1 { color: fuchsia }

This rule instructs your browser to display all <h1> elements in bright fuchsia
lettering.

3. Save the style sheet with the name resume.css.

Like an XHTML document, a style sheet can have just about any file name.
However, as a matter of convention, style sheets almost always use the exten-
sion .css. For this example, make sure you save the style sheet in the same folder
as your XHTML page.

4. Next, open the resume.htm file.

If you don’t have the resume.htm file handy, you can test this style sheet with
any XHTML file that has at least one <h1> element.

5. Add the <link> element to your XHTML file.

The <link> element points your browser to the style sheet you wrote for your
pages. You have to place the <link> element in the <head> section of your
XHTML page. Here’s the revised <head> section of resume.htm with the <link>
element added:

<head>

<link rel="stylesheet" type="text/css" href="resume.css" />

 <title>Hire Me!</title>

</head>

The link element includes three details. The rel attribute indicates that the link
points to a style sheet. The type attribute describes how you encoded the docu-
ment. You should copy both these attributes exactly as shown above, as they
never change. The href attribute is the important bit—it identifies the location
of your style sheet (“href” stands for hypertext reference). Assuming you put
your style sheet in the same folder as your XHTML file, all you need to supply is
the file name. (If you put these two files in different folders, you need to specify
the location of the .css file using the file path notation system you’ll learn about
on page 171.)

6. Save the XHTML file, and open it in a browser.

Here’s what happens. Your browser begins processing the XHTML document
and finds the <link> element, which tells it to find an associated style sheet and
apply all its rules. The browser then reads the first (and only, in this case) rule
in the style sheet. To apply this rule, it starts by analyzing the selector, which
targets all <h1> elements. Then it finds all the <h1> elements on the XHTML
page and applies the fuchsia formatting.

144 Creating a Web Site: The Missing Manual

Style Sheet Basics

The style sheet in this example isn’t terribly impressive. In fact, it probably seems
like a lot of work to simply get a pink heading. However, once you’ve got this basic
model in place, you can quickly take advantage of it. For example, you could edit
the style sheet to change the font of your resume.htm headings. Or, you could add
rules to format other parts of the document. Simply save the new style sheet, and
then refresh the Web page to see the effect of the changed or added rules.

To see this at work, change the resume.css style sheet so that it has these rules:

body {

 font-family: Verdana,Arial,sans-serif;

 font-size: 83%;

}

h1 {

 border-style: double;

 color: fuchsia;

 text-align: center;

}

h2 {

 color: fuchsia;

 margin-bottom: 0px;

 font-size: 100%;

}

li {

 font-style: italic;

}

p {

 margin-top: 2px;

}

These rules change the font for the entire document (through the <body> element
rule), tweak the two heading levels, italicize the list items, and shave off some of the
spacing between paragraphs. Although you won’t recognize all these rules at first,
the overall model (content in the Web page, formatting in the style sheet) is the
same as in the earlier resume example. Figure 6-2 shows the result.

Internal style sheets

The resume.css example demonstrates an external style sheet. External style sheets
are everybody’s favorite way to use CSS because they let you link a single lovingly
crafted style sheet to as many Web pages as you want. However, sometimes you’re
not working on an entire Web site, and you’d be happy with a solution that’s a lit-
tle less ambitious.

Chapter 6: Style Sheets 145

Style Sheet Basics

Figure 6-2:
Left: By now, you can
recognize a plain-vanilla
Web page.

Right: A style sheet
revamps the entire page.

GEM IN THE ROUGH

Creating Style Sheets with Web Page Editors
Some Web Page editors, like Dreamweaver and Expression
Web, have handy features for editing style sheets. To try
them out, start by opening an existing style sheet or creat-
ing a new one. To create a style sheet in Expression Web,
choose File ➝ New ➝ CSS. To create a style sheet in
Dreamweaver, choose File ➝ New, pick CSS in the Page
Type list, and then click Create.

So far, you won’t see anything to get excited about. But life
gets interesting when you start to edit your style sheet. As you
type, your Web page editor pops up a list of possible style
properties and values (see Figure 6-3). If you dig deeper,
you’ll find that both Web editors have windows that let you
build styles by pointing and clicking, as well as convenient
shortcuts for applying styles to your Web page elements.

Figure 6-3:
As you edit a style sheet
in Dreamweaver, it pops
up lists of possible style
properties (left) and
property values. If you’re
dealing with colors, you
even get this handy color
picker (right), which
translates colors codes in
your style sheet into the
actual color and displays
the results. It’s a great
help for foggy memories,
and saves more than a
few keystrokes.

146 Creating a Web Site: The Missing Manual

Style Sheet Basics

An internal style sheet is one that, rather than being linked, is embedded in the
<head> area of your Web page. Yes, it bulks up your pages and forces you to give
each page a separate style sheet. But sometimes the convenience of having just one
file that contains your page and its style rules makes this approach worthwhile.

To change the earlier example so that it uses an internal style sheet, remove the
<link> element from your XHTML markup and add the style rules in a <style>
element inside the <head> section of the page, as shown here:

<head>

 <title>Hire Me!</title>

<style type="text/css">

 h1 { color: fuchsia }

 </style>

</head>

Inline styles

If you want to avoid writing a style sheet altogether, you can use yet another
approach. Inline styles let you insert the property and value portion of a style sheet
rule right into the start tag for an XHTML element. You don’t need to specify the
selector because browsers understand that you want to format only the element
where you add the rule.

Here’s how you use an inline style to format a single heading:

<h1 style="color: fuchsia">Hire Me!</h1>

The rule above affects only the h1 element where you added it; any other <h1>
headings in the page are unchanged.

Unlike internal and external style sheets, inline styles don’t require the type="text/css"
attribute, which tells browsers that you’re using CSS as your style language. For the
most part, this missing detail is harmless, because every browser ever created
assumes you’re using CSS. However, to meet the strict rules of XHTML, you really
should specify your choice of style language by adding the following <meta> ele-
ment to the <head> section of your Web page:

<meta http-equiv="Content-Style-Type" content="text/css" />

You can pop this element into place right after the <title> element.

Inline styles may seem appealing at first, because they’re clear and straightforward.
You define the formatting information exactly where you want to use it. But if you
try to format a whole Web page this way, you’ll realize why Web developers go
easy on this technique. Quite simply, the average CSS formatting rule is long. If
you need to put it alongside your content and copy it each time you use the ele-
ment, you quickly end up with a Web page that’s mangled beyond all recognition.
For example, consider a more complex heading that needs several style rules:

<h1 style="border-style: double; color: fuchsia; text-align: center">Hire

Me!</h1>

Chapter 6: Style Sheets 147

Style Sheet Basics

Even if this happens only once in a document, it’s already becoming a loose and
baggy monstrosity. So try to avoid inline styles if you can.

The Cascade
By now, you might be wondering what the “cascading” part of “cascading style
sheets” means. It refers to the way browsers decide which rules take precedence
when you’ve got multiple sets of rules.

For example, if an external style sheet indicates that <h1> headings should have
blue letters, and then you apply bold formatting with an inline style, you’ll end up
with the sum of both changes: a blue-lettered, bold-faced heading. It’s not as clear
what happens if the rules conflict, however. For example, if one rule specifies blue
text while another mandates red, which color setting wins?

To determine the answer, you need to consult the following list to find out which
rule has highest priority. This list indicates the steps a browser follows when apply-
ing styles. The steps toward the bottom are the most powerful: the browser imple-
ments them after it applies the steps at the top, and they override any earlier
formatting.

1. Browser’s standard settings

2. External style sheet

3. Internal style sheet (inside the <head> element)

4. Inline style (inside an XHTML element)

So, if an external style sheet conflicts with an internal style sheet, the internal style
sheet wins.

WORD TO THE WISE

Boosting Style Sheet Speed
External style sheets are more efficient on Web sites
because of the way browsers use caching. Caching is a per-
formance-improving technique where browsers store a
copy of some downloaded information on your computer
so they don’t need to download it again.

When a browser loads a Web page that links to a style
sheet, it makes a separate request for that style sheet, as
shown back in Figure 6-1. However, if the browser loads
another page that uses the same style sheet, it’s intelligent
enough to realize that it already has the right .css file on
hand. As a result, it doesn’t make the request. Instead, it
uses the cached copy of the style sheet, which makes the

Web page load a little bit faster. (Of course, browsers only
cache things for so long. If you go to the same site tomor-
row, the browser will have to re-request the style sheet.)

If you embed the style sheet in each of your Web pages, the
browser always downloads the full page with the duplicate
copy of the style sheet. It has no way of knowing that you’re
using the same set of rules over and over again. Although
this probably won’t make a huge difference in page-down-
load time, it could start to add up for a Web site with lots of
pages. Speed is just one more reason Web veterans prefer
external style sheets.

148 Creating a Web Site: The Missing Manual

Style Sheet Basics

Based on this, you might think that you can use this cascading behavior to your
advantage by defining general rules in external style sheets, and then overriding
them with the occasional exception using inline styles. In fact, you can, but there’s
a much better option. Rather than format individual elements with inline style
properties, you can use class selectors to format specific parts of a page (see page
171 for details), as you’ll see later in this chapter.

Note: The “cascading” in cascading style sheets is a little misleading, because in most cases you won’t
use more than one type of style sheet (for the simple reason that it can quickly get confusing). Most Web
artistes favor external style sheets primarily and exclusively.

Inheritance
Along with the idea of cascading styles, there’s another closely related concept—
style inheritance. To understand style inheritance, you need to remember that in
XHTML documents, one element can contain other elements. Remember the
unordered list element ()? It contained list item elements (). Similarly, a
<p> paragraph element can contain character formatting elements like and
<i>, and the <body> element contains the whole document.

Thanks to inheritance, when you apply formatting instructions to an element that
contains other elements, that formatting rule applies to every one of those other ele-
ments. For example, if you set a <body> element to the font Verdana (as in the
résumé style sheet shown earlier), every element inside that <body> element,
including all the headings, paragraphs, lists, and so on, gets the Verdana font.

Note: Elements inherit most, but not all, style properties. For example, elements never inherit margin
settings from another element. Look for the “Can Be Inherited” column in each table in this chapter to see
whether a property setting can be passed from one element to another through inheritance.

However, there’s a trick. Sometimes, formatting rules may overlap. In such a case,
the most specific rule—that is, the one hierarchically closest to the element—wins.
For example, settings you specify for an <h1> element will override settings you
specified for a <body> element for all level-1 headings. Or consider this style sheet:

body {

 color: black;

 text-align: center;

}

ul {

 color: fuschia;

 font-style: italic;

}

Chapter 6: Style Sheets 149

Style Sheet Basics

li {

 color: red;

 font-weight: bold;

}

These rules overlap. In a typical document (see Figure 6-4) you put an (list
item) inside a list element like , which in turn exists inside the <body> ele-
ment. In this case, the text for each item in the list will be red, because the rule
overrides the and <body> rules that kick in first.

Crafty style sheet designers can use this behavior to their advantage. For example,
you might apply a font to the <body> element so that everything in your Web
page—headings, paragraph text, lists, and so on—has the same font. Then, you
can judiciously override this font for a few elements by applying element-specific
formatting rules.

Figure 6-4:
When rules collide, the most specific
element wins. In this example, that means
your browser will display these list items in
red, because the rule for the element
overrides the inherited properties from the
 and <body> elements. However,
elements retain the style of an inherited
rule if it doesn’t conflict with another rule.
In this example, that means the
element gets italics and center alignment
through inheritance.

150 Creating a Web Site: The Missing Manual

Colors

Tip: Although you probably won’t see cascading styles in action very often, you’ll almost certainly use
style inheritance.

Now that you’ve learned how style sheets work, you’re ready to start with the hard
part—learning about the dozens of different formatting properties you can change.
The following sections group the key style properties into categories.

Note: In this chapter, you won’t learn about every CSS property. For example, there are some properties
that apply primarily to pictures and layout. You’ll learn about those properties in later chapters.

Colors
It isn’t difficult to inject some color into your Web pages. Style sheet rules have
two color-related properties, listed in Table 6-1. You’ll learn about the types of val-
ues you can use when setting colors (color names, color codes, and RGB values) in
the following sections.

The color property is easy to understand—it’s the color of your text. The background-
color property is a little more unusual.

If you apply a background color to the <body> element of a Web page, the whole
page adopts that color, as you might expect. However, if you specify a background
color for an individual element, like a heading, the results are a bit stranger. That’s
because CSS treats each element as though it’s enclosed in an invisible rectangle.
When you apply a background color to an element, CSS applies that color to just
that rectangle.

Table 6-1. Color properties

Property Description Common Values
Can Be
Inherited?

color The color of the text. This
is a handy way to make
headings or emphasized
text stand out.

A color name, color code,
or RGB color value.

Yes

background-color The color behind the text,
for just that element.

A color name, color code,
or RGB color value. You
can also use the word
“transparent”.

Noa

a The background-color style property doesn’t use inheritance (page 148). This means that if you give the
<body> section of a page a blue background color and you place a heading on the page, the heading
doesn’t inherit the blue background. However, there’s a trick. If you don’t explicitly assign a back-
ground color to an element, its color is transparent. This means the color of the containing element
shows through, which has the same effect as inheritance. So the heading in this example still ends up
with the appearance of a blue background.

Chapter 6: Style Sheets 151

Colors

For example, the following style sheet applies different background colors to the
page, headings, paragraphs, and any bold text:

body {

 background-color: yellow;

}

h1 {

 color: white;

 background-color: blue;

}

p {

 background-color: lime;

}

b {

 background-color: white;

}

Figure 6-5 shows the result.

Specifying a Color
The trick to using color is finding the code that indicates the exact shade of electric
blue you love. You can go about this in several ways. First of all, you can indicate
your color choice with a plain English name, as you’ve seen in the examples so far.
Unfortunately, this system only works with a small set of 16 colors (aqua, black, blue,
fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yel-
low). Some browsers accept other names, but none of these names are guaranteed to
be widely supported, so it’s best to use another approach. CSS gives you two more
options: hexadecimal color values and RGB (or red-green-blue) values.

Figure 6-5:
If you apply a background color to an
element like <h1>, it colors just that line.
If you use it on an inline element like
or , it affects only the words in
that element. Both results look odd—it’s a
little like someone went wild with a
highlighter. A better choice is to apply a
background color to the whole page by
specifying it in the <body> element, or to
tint just a large box-like portion of the
page, using a container element like
<div>.

152 Creating a Web Site: The Missing Manual

Colors

Hexadecimal color values

With hexadecimal color values you use a strange-looking code that starts with a
number sign (#). Technically, hexadecimal color values are made up of three num-
bers that represent the amount of red, green, and blue that go into creating a color.
(You can create any color by combining various amounts of these three primary
colors.) However, the hexadecimal color value combines these three ingredients
into an arcane code that’s perfectly understandable to computers, but utterly
baroque to normal people.

You’ll find hexadecimal color notation kicking around the Web a lot, because it’s
the original format for specifying colors under HTML. However, it’s about as intu-
itive as reading the 0s and 1s that power your computer.

Here’s an example:

body {

 background-color: #E0E0E0

}

Even a computer nerd can’t tell that #E0E0E0 applies a light gray background. To
figure out the code you need for your favorite color, check out the “Finding the
Right Color” section further down this page.

RGB color values

The other approach to specifying color values is to use RGB values. According to
this more logical approach, you simply specify how much red, green, and blue you
want to “mix in” to create your final color. Each component takes a number from
0 to 255. For example, a color that’s composed of red, green, and blue, each set to
255, appears white; on the other hand, all those values set to 0 generates black.

Here’s an example of a nice lime color:

body {

 background-color: rgb(177,255,20)

}

Finding the Right Color
Style sheets can handle absolutely any color you can imagine. But how do you find
the color code for the perfect shade of sunset orange (or dead salmon) you need?

Sadly, there’s no way this black-and-white book can show you your choices. But
there are a lot of excellent color-picking programs online. For example, try www.
colorpicker.com, where all you need to do is click a picture to preview the color you
want (and to see its hexadecimal code). Or try www.colorschemer.com/online.html,
where you can find groups of colors that complement each other, which is helpful

http://www.colorpicker.com
http://www.colorpicker.com
http://www.colorschemer.com/online.html

Chapter 6: Style Sheets 153

Fonts

for creating Web sites that look professionally designed. If you use a Web design
tool like Expression Web or Dreamweaver, you have an even easier choice—the
program’s built-in color-picking smarts, as shown back in Figure 6-3.

Note: The RGB system lets you pick any of 16.7 million colors, which means that no color-picking Web
site will actually show you every single possible RGB color code (if they do, make sure you don’t hit the
Print button; even with 10 colors per line, you’d wind up with thousands of pages). Instead, most sites
limit you to a representative sampling of colors. This works, because many colors are so similar that
they’re nearly impossible to distinguish by eye.

The RGB color standard is also alive and well in many computer programs. For
example, if you see a color you love in a professional graphics program like Photo-
shop (or even in a not-so-professional graphics program, like Windows Paint),
odds are there’s a way to get the red, green, and blue values for that color. This
gives you a great way to match the text in your Web page with a color in a picture.
Now that’s a trick that will please even the strictest interior designer.

Fonts
Using the CSS font properties, you can choose a font family, font weight (its bold-
ness setting), and font size (see Table 6-2). Be prepared, however, for a bit of Web-
style uncertainty, as this is one case where life isn’t as easy as it seems.

FREQUENTLY ASKED QUESTION

Web-Safe Colors
Will the colors I pick show up on other computers?

Decades ago, when color became the latest fad in Web
pages, the computing world was very different. The average
PC couldn’t handle a wide variety of colors. Many comput-
ers could display a relatively small set of 256 colors, and
had to deal with other colors by dithering, a dubious pro-
cess that combines little dots of several colors to simulate a
different color, leading to an unattractive speckled effect. To
avoid dithering, Web designers came up with a standard
called Web-safe colors, which identifies 216 colors that any
PC can reliably replicate. Even better, they look almost
exactly the same on every computer.

But the world has changed, and you’d be hard pressed to
find a computer that can’t display at least 65,000 colors (a
standard called 16-bit color, or high color). Most support a

staggering 16.7 million colors (a standard called 24-bit
color, or true color). In fact, even very small devices (like
cell phones and palmtop computers) support every color a
Web designer will ever need.

So here’s the bottom line: in the 21st century, it’s safe for
Web designers to finally forget about Web-safe colors.
However, it’s still a good idea to check out your Web pages
and color preferences on a variety of computers. That’s
because different monitors don’t always reproduce the col-
ors exactly—some tend to tint colors unexpectedly, and
Windows computers tend to produce darker colors than
their Macintosh counterparts (even when using the same
monitor). Pick colors carefully, because a color combina-
tion that looks great on your PC can look nauseating (or
worse, be illegible) on someone else’s.

154 Creating a Web Site: The Missing Manual

Fonts

DESIGN TIME

Making Color Look Good
Nothing beats black text on a white background for creating
crisp, clean, easy-to-read Web pages with real presence.
This black-and-white combination also works best for pages
that have a lot of colorful pictures. It’s no accident that
almost every top Web site, from news sites (www.cnn.com)
to search engines (www.google.com) to e-commerce
shops (www.amazon.com) and auction houses (www.
ebay.com), use the winning combination of black on white.

But what if you’re just too colorful a person to leave your
Web page in plain black and white? The best advice is to fol-
low the golden rule of color: use restraint. Unless you’re
creating a sixties revival site or a Led Zeppelin tribute page,
you don’t want your pages to run wild with color. Here are
some ways to inject a splash of color without letting it take
over your Web page:

• Go monochrome. That means use black, white,
and one other dark color. Use the new color to
emphasize an important design element, like sub-
headings in an article. For example, the Time maga-
zine Web site once used its trademark red for
headlines (although now it favors a sleeker black-
and-white combination).

• Use lightly shaded backgrounds. Sometimes, a
faint wash of color in the background is all you need
to perk up a site. For example, a gentle tan or gold
can suggest elegance or sophistication (see the Har-
vard library site at http://lib.harvard.edu). Or light
pinks and yellows can get shoppers ready to buy
sleepwear and other feminine accoutrements at
Victoria’s Secret (www.victoriassecret.com).

• Use color in a box. Web designers frequently use
shaded boxes to highlight important areas of a Web
page (see Wikipedia at http://en.wikipedia.org).
You’ll learn how to create boxes later in this chapter.

• Be careful about using white text. White text on
a black or dark blue background can be striking—and
strikingly hard to read. The rule of thumb is to avoid
it unless you’re trying to make your Web site seem
futuristic, alternative, or gloomy. (And even if you do
fall into one of these categories, you might still get a
stronger effect with a white background and a few
well-chosen graphics with splashy electric colors.)

Table 6-2. Font properties

Property Description Common Values
Can Be
Inherited?

font-family A list of font names. The
browser scans through the list
until it finds a font that’s on
your visitor’s PC. If doesn’t find
a supported font, it uses the
standard font it always uses.

A font name (like Verdana,
Times, or Arial) or a generic
font-family name: serif, sans-
serif, monospace.

Yes

font-size Sets the size of the font. A specific size, or one of these
values: xx-small, x-small, small,
medium, large, x-large, xx-
large, smaller, larger.

Yes

font-weight Sets the weight of the font
(how bold it appears).

normal, bold, bolder, lighter Yes

font-style Lets you apply italic
formatting.

normal, italic Yes

http://www.cnn.com
http://www.google.com
http://www.amazon.com
http://www.ebay.com
http://www.ebay.com
http://lib.harvard.edu
http://www.victoriassecret.com
http://en.wikipedia.org

Chapter 6: Style Sheets 155

Fonts

Although most CSS font properties are straightforward, the font-family property
has a nasty surprise—it doesn’t always work. The inescapable problem you face is
that no two computers have the same set of fonts installed, so the fonts you use to
design your Web page won’t necessarily be the fonts your visitors have installed on
their PCs. A simple way to solve this problem is to create browsers that automati-
cally download fonts they don’t have, but this would be a Web nightmare. First,
automatic downloads could swamp the average computer’s hard drive with thou-
sands of (potentially low-quality) fonts. Second, it would infuriate the software
companies who sell fonts. (Fonts aren’t free, and so wantonly copying them from
one computer to another isn’t kosher.)

There may be practical solutions to these problems, but, unfortunately, browser
companies and the people who set Web standards have never agreed on any. As a
result, any font settings you specify are just recommendations. If a PC doesn’t have
the font you request, the browser reverts to the standard font it uses whenever it’s
on a site that doesn’t have special font instructions.

Given that caveat, you’re probably wondering why you should bother configuring
font choices at all. Well, here’s one bit of good news. Instead of requesting a font
and blindly hoping that it’s available to a browser, you can create a list of font pref-
erences. That way, the browser tries to match your first choice and, if it fails, your
second choice, and so on. At the end of this list, you should use one of the few
standard fonts that almost all PCs support in some variation. You’ll see this tech-
nique at work in the next section.

Specifying a Font
To select a font, you use the font-family attribute. Here’s an example that changes
the font of an entire page:

body {

 font-family: Arial;

}

font-variant Lets you apply small caps,
which turns lowercase letters
into smaller capitals (LIKE THIS).

normal, small-caps Yes

text-
decoration

Applies a few miscellaneous
text changes, like underlining
and strikeout. Technically
speaking, these aren’t part of
the font (the browser adds
these).

none, underline, overline, line-
through

Yes

text-
transform

Transforms text so that it’s all
capitals or all lowercase.

none, uppercase, lowercase Yes

Table 6-2. Font properties (continued)

Property Description Common Values
Can Be
Inherited?

156 Creating a Web Site: The Missing Manual

Fonts

Arial is a sans-serif font found on just about every modern PC, including those
running Windows, Mac OS, Unix, and Linux operating systems. (See Figure 6-6
for more about the difference between serif and sans-serif fonts.)

To be safe, when you create a font list, always end it with a generic font-family
name. Every PC supports generic fonts under the font-family names serif, sans-
serif, and monospace.

Here’s the modified rule:

body {

 font-family: Arial, sans-serif;

}

DESIGN TIME

Graphical Text
The only guaranteed cure for font woes is graphical text.
With graphical text, you don’t type your content into an
XHTML file. Instead, you perfect it in a drawing program,
save it as a picture, and then display the picture of that text
on your page using the element.

Graphical text is clearly unsuitable for large amounts of text.
First of all, it’s an image and images require more bytes of
storage space than text, so it bloats the size of your Web
page horribly. It’s also much less flexible. For example,
graphical text can’t adjust itself to fit the width of a browser
window or take into account your visitors’ browser prefer-
ence settings. There’s also no way for a visitor to search an
image for specific words (or for a Web search engine to fig-
ure out what’s on your site).

However, graphical text is commonly used for Web page
menus, buttons, and headings, where these issues aren’t
nearly as important. Sometimes, graphical text isn’t obvi-
ous. For example, you may never have noticed that the sec-
tion headings on your favorite online newspaper are
actually images. To figure out if a Web site uses graphical
text or the real deal, try to select the text with your mouse.
If you can’t, the text is really a picture.

You’ll learn how to use graphics (including graphical text)
in Chapter 7.

Figure 6-6:
Serif fonts use adornments, or serifs, that make them
easier to read in print. This book uses a serif font, for
example. If you look closely at the letter “S” in the body
text, you’ll see tiny curlicues in the top-right and bottom-
left corners. On the other hand, sans-serif fonts have a
spare, streamlined look. They can make pages seem less
bookish, less formal, more modern, and colder.

Chapter 6: Style Sheets 157

Fonts

At this point, you might be tempted to get a little creative with this rule by adding
support for a less common sans-serif format. Here’s an example:

body {

 font-family: Eras, Arial, sans-serif;

}

If Eras is relatively similar to Arial, this technique might not be a problem. But if
it’s significantly different, it’s a bad idea.

The first problem is that by using a nonstandard font, you’re creating a Web page
whose appearance may vary dramatically depending on the fonts installed on your
visitor’s PC. Whenever pages vary, it becomes more difficult to really tweak them
to perfection because you don’t know exactly how they’ll appear elsewhere. Differ-
ent fonts take up different amounts of space, and if text grows or shrinks, the lay-
out of other elements (like pictures) changes, too. Besides, is it really that pleasant
to read KidzzFunScript or SnoopDawg font for long periods of time?

A more insidious problem happens if a visitor’s computer has a font with the same
name that looks completely different. Even worse, browsers may access an online
database of fonts to try and find a similar font that’s already installed. This
approach can quickly get ugly. At worst, either of these problems can lead to illegi-
ble text.

Tip: Most Web page editors won’t warn you when you apply a nonstandard font, so be on your guard. If
your font isn’t one of a small set of widely distributed Web fonts (more on those in a moment), you
shouldn’t use it.

Finding the Right Font
To make sure your Web page displays correctly, you should use a standard font
that’s widely available. But just what are these standard fonts? Unfortunately, Web
experts aren’t always in consensus.

If you want to be really conservative, you won’t go wrong with any of these fonts:

• Times

• Arial

• Helvetica

• Courier

Of course, all these fonts are insanely boring. If you want to take more risk, you
can use one of the following fonts, found on almost all Windows and Mac com-
puters (but not necessarily on other operating systems, like Unix):

• Verdana

• Georgia

• Tahoma

158 Creating a Web Site: The Missing Manual

Fonts

• Comic Sans MS

• Arial Black

• Impact

To compare these different fonts, see Figure 6-7.

Verdana, Georgia, and Tahoma can all help give your Web pages a more up-to-
date look. However, the characters in Verdana and Tahoma start off a bit large, so
you usually need to ratchet them down a notch in size (a technique described in
the next section).

For a good discussion of fonts, the platforms that reliably support them, and the
pros and cons of each font family (some fonts look nice onscreen, for example, but
they generate lousy printouts) see http://web.mit.edu/jmorzins/www/fonts.html and
www.upsdell.com/BrowserNews/res_fontsamp.htm.

Font Sizes
Once you sort out the thorny issue of choosing a font, you may also want to
change its size. It’s important that you select a text size that’s readable and looks
good. Resist the urge to shrink or enlarge text to suit your personal preferences.
Instead, aim to match the standard text size you see on other popular Web sites.

Despite what you might expect, you don’t have complete control over the size of
the fonts on your Web pages. Most site visitors use browsers that let them scale
font sizes up or down, either to fit more text on-screen or, more commonly, to
make text easy to read on a high-resolution monitor. In Internet Explorer and
Firefox, you find these options in the View ➝ Text Size menu.

Figure 6-7:
Have you spotted these fonts
at large on the Web?

http://web.mit.edu/jmorzins/www/fonts.html
http://www.upsdell.com/BrowserNews/res_fontsamp.htm

Chapter 6: Style Sheets 159

Fonts

A browser’s font-size settings don’t completely override the size you’ve set in your
Web page, however. Instead, they tweak it up or down. For example, if you choose
to use a large font size on your Web page (which corresponds to a setting of about
15 points in a word processor) and a visitor using Internet Explorer selects View ➝

Text Size ➝ Larger, the text size grows about 20 percent, to 18 points.

The fact that your visitors have this kind of control is another reason you shouldn’t
use particularly small or large fonts on your pages. When you combine them with
browser preferences, a size that’s a little on the large size could become gargan-
tuan, and text that’s slightly small could turn unreadable. The best defense for
these problems is to test your Web page with different browsers and different font
size preferences.

As you’ll discover in the following sections, you can set font sizes in several ways.

Keyword sizing

The simplest way to specify the size of your text is to use one of the size values
listed previously in Table 6-2. For example, to create a really big heading and
ridiculously small text, you can use these two rules:

body {

 font-size: xx-small;

}

h1 {

 font-size: xx-large;

}

These size keywords are often called absolute sizes, because they apply an exact size
to text. Exactly what size, you ask? Well, that’s where it gets a bit complicated.
These size details aren’t set in stone—different browsers are free to interpret them
in different ways. The basic rule of thumb is that the font size medium corre-
sponds to a browser’s standard text size, which is the size it uses (12 points) if a
Web site doesn’t specify a text size. Every time you go up a level, you add about 20
percent in size. (For math geeks, that means that every time you go down a level,
you lose about 17 percent.)

The standard font size for most browsers is 12 points (although text at this size
typically appears smaller on Macs than on Windows PCs). That means large text
measures approximately 15 points, x-large text is 18 points, and xx-large text is 27
points.

Figure 6-8 shows the basic sizes you can choose from.

Note: When using size keywords, make sure your Web page specifies an XHTML doctype. If you don’t,
Internet Explorer renders your page in the dreaded “quirks” mode, which makes your text one size larger
than it should be. As a result, your page won’t look the same in Internet Explorer as it does in other brows-
ers, like Firefox.

160 Creating a Web Site: The Missing Manual

Fonts

Percentage sizing

Another font-size option is to use percentage sizes instead of size keywords. For
example, if you want to make sure your text appears normal size, use this rule:

body {

 font-size: 100%;

}

And if you want to make your text smaller, use something like this:

body {

 font-family: Verdana,Arial,sans-serif;

 font-size: 83%;

}

This displays text at 83 percent of its standard size. It doesn’t matter whether the
standard size is considered small (Internet Explorer) or medium (most other brows-
ers). This particular example creates nicely readable text with the Verdana font.

It’s just as easy to upsize text:

h1 {

 font-size: 120%;

}

Figure 6-8:
There are seven standard
text sizes, ranging from
xx-large to xx-small. You
can dictate font sizes,
too, by specifying a pixel
measurement.

Chapter 6: Style Sheets 161

Fonts

But keep in mind that 100 percent always refers to the standard size of normal
paragraph text, not the standard size of the element you’re styling, like an h1 head-
ing. So if you create a heading with text sized at 120 percent, your heading is going
to be only a little bigger than normal paragraph text, which is actually quite a bit
smaller than the normal size of an <h1> heading.

Using percentage sizes is the safest, most reliable way to size text. Not only does it
provide consistent results across all browsers, it also works in conjunction with the
browser size preferences described earlier.

Relative sizing

Another approach for setting font size is to use one of two relative size values—
“larger” or “smaller”. This is a bit confusing, because as you learned in the last sec-
tion, absolute sizes are already relative—they’re all based on the browser setting for
standard text.

The difference is that relative size settings are influenced by the font of the element
that contains them. The easiest way to understand how this works is to consider
the following style sheet, which has two rules:

body {

 font-size: xx-small;

}

b {

 font-size: larger;

}

The first rule applies an absolute xx-small size to the whole page. If your page
includes a element, the text inside inherits the xx-small size (see page 148 for a
recap of inheritance), and then the second style rule steps it up one notch, to x-small.

Now consider what happens if you edit the body text style above to use a larger
font, like this:

body {

 font-size: x-small;

}

Now all bold text will be one level up from x-small, which is small.

The only limit to the two relative sizes is that they can step up or down only one
level. However, you can get around this limitation by using font numbers. For
example, a size of +2 is a relative size that increments a font two levels. Here’s an
example:

body {

 font-size: x-small;

}

162 Creating a Web Site: The Missing Manual

Fonts

b {

 font-size: +2;

}

Now the bold text becomes medium text, because medium is two levels up from
x-small.

Relative sizes are a little trickier to get used to than absolute sizes. You’re most
likely to use them if you have a style sheet with a lot of different sizes. For exam-
ple, you might use a relative size for bold text if you want to make sure bold text is
always a little bit bigger than the text around it. If you were to use an absolute size
instead, the bold text would appear large in relation to small-sized paragraph text,
but it wouldn’t stand out in a large-sized heading.

Note: When you use absolute or relative sizes, you create flexible pages. If a visitor ratchets up the text
size using his browser’s preferences, the browser resizes all your other fonts proportionately.

Pixel sizing

Most of the time, you should rely on absolute and relative sizing for text. How-
ever, if you want to have more control, you can customize your font size precisely
by specifying a pixel size. Pixel sizes can range wildly, with 12 pixels and 14 pixels
being about normal for body text. To specify a pixel size, use the number immedi-
ately followed by the letters px, as shown here:

body {

 font-size: 11px;

}

h1 {

 font-size: 24px;

}

Note: Don’t put a space between the number and the letters “px”. If you do, your rule may work in Internet
Explorer but it will thoroughly confuse other browsers.

As always, you need to test, refine, and retest your font choice to get the sizes right.
Some fonts look bigger than others, and require smaller sizes. Other fonts work
well at larger sizes, but become less legible as you scale them down in size.

Web purists avoid using exact sizes because they’re horribly inflexible in Internet
Explorer. For example, if a near-sighted visitor has upped the text size settings in
Internet Explorer, this adjustment won’t have any effect on a page that uses pixel
sizing. (For some reason, other browsers don’t suffer from this problem—they’re
able to resize pages even if you use pixel sizes.) As a result, using pixel sizes is a
quick shortcut to inconsistent results. By using them, you could inadvertently lock
out certain audiences or create pages that visitors find difficult to read or navigate
on certain types of browsers. It just goes to show that in the Web world there’s a
price to be paid for getting complete control over formatting.

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgments
	The Missing Manual Series

	Introduction
	What You Need to Get Started
	About This Book
	Macintosh and Windows
	About the Outline
	About › These › Arrows
	Downloadable Examples
	About MissingManuals.com
	Safari® Books Online

	Preparing for the Web
	Introducing the World Wide Web
	Browsers
	Choosing your Web browser

	Web Servers

	Planning a Web Site
	Types of Sites
	Understanding Your Audience
	The Lifespan of Your Site
	Practice Good Design

	The Ingredients of a Web Site

	Creating Your First Page
	The Anatomy of a Web Page
	Cracking Open an XHTML Document
	Creating Your Own XHTML Files
	The Document Type Definition

	XHTML Tags
	What’s in a Tag
	Understanding Elements
	Nesting Elements

	The XHTML Document
	The Basic Skeleton
	Adding Content
	Structuring Text
	Where Are All the Pictures?
	The 10 Most Important Elements (and a Few More)
	Checking Your Pages for Errors

	Putting Your Page on the Web
	How Web Hosting Works
	Understanding the URL
	How Browsers Analyze a URL

	Domain Names
	Getting the Right Name
	Searching for a Name
	Registering Your Name
	Domain parking
	Domain forwarding

	Free Domain Names

	Getting Web Space
	The Big Picture
	Assessing Your Needs
	A Web Host Checklist

	Choosing Your Host
	Your ISP (Internet Service Provider)
	Web hosting companies
	A Web host walkthrough (#1)
	A Web host walkthrough (#2)

	Free Web Hosts

	Transferring Files
	Browser-Based Uploading
	FTP

	Power Tools
	Choosing Your Tools
	Types of Web Page Editors
	Finding a Free Web Page Editor
	Nvu
	Amaya
	HTML-Kit
	CoffeeCup Free HTML Editor

	Professional XHTML Editors

	Working with Your XHTML Editor
	Starting Out
	Multiple Views
	Creating a Web Page in Code View
	Creating a Web Page in WYSIWYG View
	Managing a Web Site
	Defining a site in Expression Web
	Uploading a site in Expression Web
	Defining a site in Dreamweaver
	Uploading a site in Dreamweaver

	XHTML Text Elements
	Understanding Text and the Web
	Logical Structure vs. Physical Formatting
	CSS (Cascading Style Sheets)

	XHTML Elements for Basic Text
	Paragraphs
	Line Breaks
	Headings
	Horizontal Lines
	Preformatted Text
	Quotes
	Divisions and Spans

	XHTML Elements for Lists
	Ordered Lists
	Unordered Lists
	Definition Lists
	Nesting Lists

	Inline Formatting
	Italics, Bold, and Underline
	Emphasis and Strong
	Subscript, Superscript, and Strikethrough
	Teletype
	Special Characters
	Non-English Languages

	Style Sheets
	Style Sheet Basics
	The Three Types of Styles
	Browser Support for CSS
	The Anatomy of a Rule
	Applying a Style Sheet
	Internal style sheets
	Inline styles

	The Cascade
	Inheritance

	Colors
	Specifying a Color
	Hexadecimal color values
	RGB color values

	Finding the Right Color

	Fonts
	Specifying a Font
	Finding the Right Font
	Font Sizes
	Keyword sizing
	Percentage sizing
	Relative sizing
	Pixel sizing

	Text Alignment and Spacing
	Alignment
	Spacing
	White Space

	Borders
	Basic Borders
	Making Better Borders
	Using Borders to Separate Sections

	Class Selectors
	Creating Class Rules
	Saving Work with the <div> Element
	More Generic Class Rules
	Creating a Style Sheet for Your Entire Web Site

	Adding Graphics
	Understanding Images
	The Element
	Alternate Text
	Picture Size
	File Formats for Graphics
	Compression
	Choosing the right image format

	Putting Pictures on Colored Backgrounds

	Images and Styles
	Inline Images in Text
	Borders
	Wrapping Text Around an Image
	Adding Captions
	Background Images
	Background “watermarks”

	Techniques with Graphics
	Graphical Text
	Backgrounds for Other Elements
	Graphical Bullets in a List

	Finding Free Art

	Linking Pages
	Understanding the Anchor
	Internal and External Links
	Relative Links and Folders
	Moving down into a subfolder
	Moving up into a parent folder
	Moving to the root folder

	Linking to Other Types of Content

	Image Links and Image Maps
	Adding Bookmarks
	When Good Links Go Bad
	Site Management
	Link Checkers
	Using Redirects

	Page Layout Tools
	The Challenge of Screen Space
	Testing Different Page Sizes

	Tables
	The Anatomy of a Table
	Formatting Table Borders
	Cell Spans
	Sizing and Aligning Tables
	Sizing a table
	Sizing a column
	Sizing a row

	Organizing a Page with Tables

	Style-Based Layout
	Structuring Pages with the <div> Element
	Even Better Selectors
	Contextual selectors
	id selectors

	Floating Boxes
	Absolute Positioning
	Layering
	Combining Absolute and Relative Positioning

	Multipart Pages
	Understanding Multipart Pages
	Server-Side Includes
	Frame Basics
	Creating a Frames Page
	Putting Documents in a Frameset
	Targeting Frames

	Building Better Frames Pages
	Frame Borders and Resizing
	Scrolling
	Handling Browsers That Don’t Support Frames
	Better URLs for Framesets
	Nested Framesets
	Another Way to Nest Frames

	Page Templates
	Understanding Page Templates
	Creating a New Page Template
	The Anatomy of a Page Template
	Using a Page Template

	Attracting Visitors
	Your Web Site Promotion Plan
	Spreading the Word
	Reciprocal Links
	Web Rings
	Shameless Self-Promotion
	Return Visitors

	Adding Meta Elements
	The Description Meta Element
	The Keyword Meta Element

	Directories and Search Engines
	Directories
	The Open Directory Project
	The Yahoo directory

	Search Engines
	Rising up in the rankings
	The Google Webmaster Tools
	Google AdWords
	Hiding from search engines

	Tracking Visitors
	Understanding Google Analytics
	Signing Up for Google Analytics
	Examining your Web Traffic
	Graph of Visits
	Site Usage
	Map Overlay
	Traffic Sources Overview
	Content Overview

	Letting Visitors Talk to You (and Each Other)
	Transforming a Site into a Community
	Helping Visitors Email You
	Mailto Links
	XHTML Forms
	Form basics
	Mailing a form
	Creating a more complex form
	More reliable forms with server scripts

	Adding Forums and Groups to Your Site
	About Google Groups
	Creating a Group
	Participating in a Group
	Managing Your Group

	Making Money with Your Site
	Money-Making the Web Way
	Google AdSense
	Signing Up for AdSense
	Creating an Ad
	Placing Ads in Your Web Pages
	Google-Powered Searches

	Amazon Associates
	Signing Up As an Associate
	Generating Associate Links
	Product links
	Advanced links

	PayPal Merchant Tools
	Signing Up with PayPal
	Accepting Payments
	Building a Shopping Cart
	Creating a custom page style
	Generating the shopping cart buttons

	Withdrawing Your Money

	JavaScript: Adding Interactivity
	Understanding JavaScript
	Server-Side and Client-Side Programming
	Scripting Languages

	JavaScript 101
	The <script> Element
	Scripts and XHTML
	Browsers that don’t support JavaScript

	Variables
	Declaring variables
	Modifying variables
	An example with variables

	Functions
	Declaring a function
	Calling a function
	Functions that receive information
	Functions that return information

	External Script Files

	Dynamic XHTML
	XHTML Objects
	Using XHTML objects in a script

	Events
	Image Rollovers
	Collapsible Text
	An Interactive Form

	Scripts on the Web
	Finding a Cool Script

	Fancy Buttons and Menus
	Creating Fancy Buttons
	Generating Button Pictures
	Building a Rollover Button
	Using image lists
	Preloading images

	Creating Rollover Buttons in Dreamweaver and Expression Web

	Creating Fancy Menus
	Do-It-Yourself Collapsible Menus
	Third-Party Menus
	Getting the script
	Creating the menu
	Placing the menu on a page

	Audio and Video
	Understanding Multimedia
	Linking, Embedding, and Hosting
	Types of Multimedia Files

	Background Music
	The <embed> Element
	Embedded audio options
	Other audio formats

	Sound Effects

	Flash MP3 Players
	The E-Phonic Player
	Create a playlist
	Adding the player to a Web page

	Flashtrak Loops

	Video Clips
	Preparing Video
	Linking to and Embedding Video
	Uploading Your Videos to YouTube
	Signing up with YouTube
	Preparing a video
	Uploading a video
	Watching a video

	Blogs
	Understanding Blogs
	Syndication
	Blog Hosting and Software

	Getting Started with Blogger
	Creating a Blog
	Creating Formatted Posts

	Managing a Blog
	Tweaking a Few Common Settings
	Configuring Your Blogger Profile
	Templates
	Applying a new template
	Customizing your template
	Customizing the XHTML in a template

	Moderating Comments
	Hosting Your Blog on Your Web Site

	XHTML Quick Reference
	XHTML Elements
	<a> (Anchor Element)
	<acronym>
	<address>
	<area> (Image Map)
	 (Bold Text)
	<base> (Base URL)
	<big> (Large Text)
	<blockquote> (Block Quotation)
	<body> (Document Body)
	
 (Line Break)
	<button> (Button)
	<caption> (Table Caption)
	<cite> (Citation)
	<dd> (Dictionary Description)
	 (Deleted Text)
	<dfn> (Defined Term)
	<div> (Generic Block Container)
	<dl> (Dictionary List)
	<dt> (Dictionary Term)
	 (Emphasis)
	<form> (Interactive Form)
	<frame> (Frame)
	<frameset> (Frameset)
	<h1>, <h2>, <h3>, <h4>, <h5>, <h6> (Headings)
	<head> (Document Head)
	<hr> (Horizontal Rule)
	<html> (Document)
	<i> (Italic Text)
	<iframe> (Inline Frame)
	 (Image)
	<input> (Input Control)
	<ins> (Inserted Text)
	 (List Item)
	<link> (Document Relationship)
	<map> (Image Map)
	<meta> (Metadata)
	<noframes> (Frames Alternate Content)
	<noscript> (Alternate Script Content)
	<object> (Embedded Object)
	 (Ordered List)
	<option> (Menu Option)
	<p> (Paragraph)
	<param> (Object Parameter)
	<pre> (Preformatted Text)
	<q> (Short Quotation)
	<script> (Client-Side Script)
	<select> (Selectable List)
	<small> (Small Text)
	 (Generic Inline Container)
	 (Strong Emphasis)
	<style> (Internal Style Sheet)
	<sub> (Subscript)
	<sup> (Superscript)
	<table> (Table)
	<td> (Table Data Cell)
	<textarea> (Multiline Text Input)
	<th> (Table Header Cell)
	<title> (Document Title)
	<tr> (Table Row)
	<tt> (Teletype Text)
	<u> (Underlined Text)
	 (Unordered List)

	XHTML Character Entities
	XHTML Color Names

	Useful Web Sites
	Chapter Links
	Chap�ter�1. Preparing for the Web
	Chap�ter�2. Creating Your First Page
	Chap�ter�3. Putting Your Page on the Web
	Chap�ter�4. Power Tools
	Chap�ter�5. XHTML Text Elements
	Chap�ter�6. Style Sheets
	Chap�ter�7. Adding Graphics
	Chap�ter�8. Linking Pages
	Chap�ter�9. Page Layout Tools
	Chap�ter�10. Multipart Pages
	Chap�ter�11. Attracting Visitors
	Chap�ter�12. Letting Your Visitors Talk to You (and Each Other)
	Chap�ter�13. Making Money with Your Site
	Chap�ter�14. JavaScript: Adding Interactivity
	Chap�ter�15. Fancy Buttons and Menus
	Chap�ter�16. Audio and Video
	Chap�ter�17. Blogs

	Index

