
Chapter 5: XHTML Text Elements 113

XHTML Elements for
Basic Text

XHTML Elements for Basic Text
As you learned in Chapter 2, there are two things you need to know about every
new element you meet. To use the element correctly, without violating the rules of
XHTML, you need to answer these two questions:

• Is it a container element or a standalone element?

• Is it a block element or an inline element?

The first question tells you something about the syntax you use when you add an
element to a document. Container elements (like the element that boldfaces
text) require a start tag and an end tag, with the content sandwiched in between.
Standalone elements (like the element that inserts an image into a page)
use a single, all-in-one tag. If standalone elements need additional information,
like the location of an image file, you supply it using attributes.

The second question tells you something about where you can place an element.
Block elements (like the <p> element) go inside the main <body> element or
within other block elements. When you start building the overall structure of your
Web page, you always begin with block elements. Inline elements (like the
element) have to go inside block elements. Inline elements don’t make sense when
they’re on their own, floating free of any container.

Tip: To quickly check if an element is a container or standalone element, and to see if it’s a block or
inline element, check the XHTML reference in Appendix A.

Figure 5-1:
Left: This page is plain
text, but ready for style
sheets. It’s been carefully
separated into logical
sections.

Right: With the
application of a style
sheet, the page’s
formatting and layout
change dramatically.
You’ll see an example of
this in Chapter 9 (page
253).

114 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

Block elements also have an effect on the spacing of your content. Essentially, each
block element defines a chunk of content. When you end a block element, your
browser automatically adds a line break and a little extra space before the next bit
of content.

For example, consider this fragment of XHTML:

<h1>Bread and Water</h1><p>This economical snack is really

all you need to sustain life.</p>

This snippet has a title in large, bold letters followed immediately by a paragraph
of ordinary text. You might expect to see both parts (the heading and the ordinary
text) on the same line. However, the <h1> element is a block element. When you
close it, the browser does a little housecleaning, and adds a line break and some
extra space. The paragraph text starts on a new line, as you can see in Figure 5-2.

Tip: Block elements are nice because they make it easy to format a document. For example, the spaces
that exist between block elements help ensure that one section of text doesn’t run into another. However,
there’s also a clear downside. In some cases, you won’t be happy with the automatic spacing between
block elements. For example, for dense, information-laden pages, the standard spacing looks far too gen-
erous. To tighten up your text and shrink the spaces in between block elements, use style sheets to
change the margin settings of your elements (page 163).

Now that you’ve learned about the basic types of elements, it’s time to take a look
through your element toolkit.

Paragraphs
You’ve already seen the basic paragraph element, <p>. It’s a block element that
defines a paragraph of text.

<p>It was the best of times, it was the worst of times...</p>

As you’ve no doubt noticed by now in your travels across the Internet, XHTML
paragraphs aren’t indented as they are in print media. That’s just the way of the
Web, although you can change this with style sheets (page 163). Figure 5-3 shows
an example of paragraph elements in action.

Figure 5-2:
XHTML separates block elements by a distance
of approximately one and a half lines (in this
figure, that’s the space between “Bread and
Water” and the sentence below it).

Chapter 5: XHTML Text Elements 115

XHTML Elements for
Basic Text

You should get into the habit of thinking of the text in your Web pages as a series
of paragraphs. In other words, before you type in any text, add the <p> and </p>
tags to serve as a container. Most of the time, paragraphs are the first level of struc-
ture you add to a page.

Web browsers don’t pay attention to hard returns (the line breaks you create when
you hit the Enter key). That means you can space your text out over several lines as
you type it in, and the browser still wraps it to fit the window. Technically, brows-
ers treat line breaks (like the one you see at the end of this line) as a single space,
and if it finds more than one space in a row, it ignores the extra ones. If you want
to insert a real break between your lines, check out the next section.

Figure 5-3:
When you put several
paragraphs in a row,
each paragraph is
separated with a space
of about one and a half
lines. However, browsers
ignore empty paragraph
elements completely,
and don’t add any extra
space for them.

These extra
paragraph

elements don’t
create any extra

line breaks

UP TO SPEED

Getting More Space
The way that browsers ignore spaces can be exasperating.
What if you really do want to add several spaces in a row?
The trick is the nonbreaking space— —which is a spe-
cial XHTML character entity (see page 132) that forces
browsers to insert a space.

When a browser sees this entity, it interprets it as a space
that it can’t ignore. So if you create a paragraph like this:

• <p>Hello Bye</p>

You end up with this text:

• Hello Bye

Many Web editors automatically add nonbreaking spaces
when you press the space key in Design view, which is why
those spaces don’t disappear. But try not to use nonbreak-
ing spaces more than you need to. (If you really want
indented paragraphs, you’ll get a better solution with style
sheets, which you’ll learn about in Chapter 6.) And never,
ever use spaces to try and align columns of text—that always
ends badly, with the browser scrambling your attempts.
Instead, use the layout features described in Chapter 9.

116 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

Line Breaks
Sometimes you want to start a new line of text, but you don’t want to use a para-
graph element because browsers add extra space between paragraphs. This is the
case, for example, when you want to include a business address on your site and
you want it to appear in the standard single-spaced three-line format. In situations
like this, the standalone line break element
 comes in handy.

Line breaks are exceedingly simple—they tell a browser to move to the start of the
following line (see Figure 5-4). They’re inline elements, so you need to use them
inside a block element, like a paragraph:

<p>This paragraph appears

on two lines</p>

Figure 5-4:
The line break element
 is great for
separating addresses. If you want to skip down
several lines, you can use a series of

elements in a row (but it’s a better idea to use
empty paragraphs, as described in the box on
page 117).

Chapter 5: XHTML Text Elements 117

XHTML Elements for
Basic Text

Don’t overuse line breaks. Remember, when you resize a browser window, the
browser reformats your text to fit the available space. If you try to perfect your
paragraphs with line breaks, you’ll end up with pages that look bizarre at different
browser window sizes. A good rule of thumb is to avoid line breaks in ordinary
paragraphs. Instead, use them to force breaks in addresses, outlines, poems, and
other types of text whose spacing you want to tightly control. Don’t use them for
bulleted or numbered lists, either—you’ll learn about elements designed just for
these lists on page 123.

In some cases, you want to prevent a line break, like when you want to keep the
longish name of a company or a product on a single line. The solution is to use the
nonbreaking space code (which looks like) instead of just hitting the space
bar. The browser still displays a space when it gets to the code, but it won’t
wrap the words on either side of it (see Figure 5-5).

Figure 5-5:
Paragraphs 2 and 3 in this figure show how the
code affects line breaks. Paragraph 3 is actually coded
as Microsoft Office 2007. As a result, the
browser won’t split this term.

HOW’D THEY DO THAT?

The Mystery of Empty Paragraphs
In Web authoring tools like Dreamweaver and Expression
Web, if you’re in Design view and you press Enter, the pro-
gram creates a new paragraph. This seems a little counter-
intuitive, as you’ve seen that browsers normally ignore line
breaks (see Figure 5-5).

The trick is that when you hit the Enter key, both programs
insert a paragraph that contains a nonbreaking space.
Here’s what that creation looks like:

<p> </p>

This paragraph is still empty, but the browser won’t ignore
it because it includes the code. Therefore, the
browser gives it the same space as a single-line paragraph
and bumps down the content underneath.

Incidentally, Dreamweaver and Expression Web do let you
use more ordinary
 line break elements instead of
empty paragraphs, even in Design view. To do this, press
Shift+Enter instead of Enter.

118 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

Headings
Headings are section titles—for example, the word “Headings” just above this
paragraph. Browsers display them in boldface at various sizes. The size depends on
the heading level. XHTML supports six heading levels, starting at <h1> (the big-
gest) and dwindling down to <h6> (the smallest). Both <h5> and <h6> are actu-
ally smaller than regularly sized text, and Web developers don’t use them too
often. Figure 5-6 shows all the heading levels you can use.

Headings aren’t just useful for formatting—they also help define the hierarchy of
your document. Big headings identify important topics, while smaller ones denote
lesser issues related to that larger topic. To make sure your document makes sense,
start with the largest headings (level 1) and work your way down. For instance,
don’t jump straight to a level-3 heading just because you like the way it looks.

Note: It’s probably occurred to you that if everyone uses the same heading levels in the same order, the
Web will become as bland as a bagel in a chain supermarket. Don’t panic—it’s not as bad as it seems.
When you add style sheets into the mix, you’ll see that you can completely change the look of any and
every heading you use. So for now, stick to using the right levels in the correct order.

Figure 5-6:
Many Web page editors let
you apply headings with a
single click. In Expression
Web, you can find a drop-
down list that lets you
choose whether to make the
currently selected text a
paragraph or one of the
various headings, as shown
here. In Dreamweaver, you
can use the handy buttons
in the Text tab of the Insert
toolbar.

Chapter 5: XHTML Text Elements 119

XHTML Elements for
Basic Text

Horizontal Lines
Paragraphs and line breaks aren’t the only way to separate sections of text. Another
neat trick is the standalone <hr> element, which translates to “horizontal rule.” A
horizontal rule element adds a line that stretches from one side of its container to
the other, separating everything above and below it.

Tip: Usually, you’ll position a horizontal break between paragraphs, which means it will stretch from one
side of a page to the other. However, you can also put a horizontal rule in a smaller container, like a single
cell in a table, in which case it won’t turn out nearly as big.

Horizontal rules are block elements, so you can stick them in between paragraphs
(see Figure 5-7).

Preformatted Text
Preformatted text is a unique concept in XHTML that breaks the rules you’ve read
about so far. As you’ve seen, Web browsers ignore multiple spaces and flow your
text to fit the width of a browser window. Although you can change this to a cer-
tain extent by using line breaks and nonbreaking spaces, some types of content are
still hard to deal with.

Figure 5-7:
In this example, two paragraphs have
an <hr> element between them. The
<hr> element inserts the solid line
you see.

120 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

For example, imagine you want to display a bit of poetry. Using nonbreaking
spaces to align the text is time-consuming and makes your XHTML markup diffi-
cult to read. The <pre> element gives you a better option. It tells your browser to
re-create the text just as you entered it, including every space and line break, and it
displays these details on-screen. Additionally, the browser puts all that text into a
monospaced font (typically Courier). Figure 5-8 shows an example.

Note: In a monospaced font, every letter occupies the same amount of space. XHTML documents and
books like this one use proportional fonts, where letters like W and M are much wider than l and i. Mono-
spaced fonts are useful in preformatted text, because it lets you line up rows of text exactly. However, it
doesn’t look as polished.

Figure 5-8:
There’s no mystery as to how this e. e.
cummings poem will turn out. Because it’s
in a <pre> block, you get the exact spacing
and line breaks that appear in your XHTML
file. The <pre> element also works well for
blocks of programming code.

Chapter 5: XHTML Text Elements 121

XHTML Elements for
Basic Text

Quotes
It may be a rare Web page that spouts literary quotes, but the architects of XHTML
created a block element named <blockquote> especially for long quotations.
When you use this element, your browser indents text on the left and right edges.

Here’s an example:

<p>Some words of wisdom from "A Tale of Two Cities":</p>

<blockquote>

<p>It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was
the epoch of incredulity, it was the season of Light, it was the season of
Darkness, it was the spring of hope, it was the winter of despair, we had
everything before us, we had nothing before us, we were all going direct to
Heaven, we were all going direct the other way—in short, the period was so
far like the present period, that some of its noisiest authorities insisted
on its being received, for good or for evil, in the superlative degree of
comparison only.</p>

</blockquote>

<p>It's amazing what you can fit into one sentence.</p>

Figure 5-9 shows how this appears in the browser.

Figure 5-9:
Here, the <blockquote> element indents
the middle paragraph.

122 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

Occasionally, people use the <blockquote> element purely for its formatting
capability—they like the way it sets off text. Of course, this compromises the spirit
of the element, and you’d be better off to use style sheets to achieve a similar effect.
However, it’s a fairly common technique, so it’s more or less accepted.

The <blockquote> element is a block element, which means it always appears
separately from other block elements, like paragraphs and headings. The
<blockquote> has one further restriction—it can hold only other block elements,
which means you need to put your content into paragraphs rather than simply
type it in between the blockquote start and end tags.

If, instead of using a quote that runs a paragraph or longer, you want to include a
simple one-line quote, XHTML’s got you covered. It defines an inline element for
short quotes that you can nest inside a block element. It’s the <q> element, which
stands for quotation:

<p>As Charles Dickens once wrote, <q>It was the best of times, it was the
worst of times</q>.</p>

Some browsers, like Firefox, add quotation marks around the text in a <q> ele-
ment. Other browsers, like Internet Explorer, do nothing. If you want your quota-
tion to stand out from the text around it in every browser, you might want to add
some different formatting, like italics. You can do this by applying a style sheet rule
(see Chapter 6).

And if you’re dreaming of the semantic Web (see the box on page 111), you can
add a URL that points to the source of your quote (assuming it’s on the Web)
using the cite attribute:

<p>As Charles Dickens once wrote, <q cite="http://www.literature.org/
authors/dickens-charles/two-cities">It was the best of times, it was the
worst of times</q>.</p>

Looking at this example, you might expect your browser to provide some sort of
feature that takes you to the referenced Web site (for example, when you click the
paragraph). But it doesn’t. If you want your text to link to a reference, you need to
investigate the anchor element in Chapter 8.

In fact, the information in the cite attribute won’t appear on your page at all. It is
available to programs that analyze your Web page—for example, automated pro-
grams that scan pages and compile a list of references, or a search engine that uses
this information to provide better search results. But most of the time, the refer-
ence has little benefit, except that it stores an extra piece of information that you,
the Web site creator, might need later to double-check your sources.

Divisions and Spans
The last block element you’ll learn about—<div>—is one of the least interesting,
at least at first glance. That’s because, on its own, it doesn’t actually do anything.

Chapter 5: XHTML Text Elements 123

XHTML Elements for
Lists

You use <div> to group together one or more block elements. That means you
could group together several paragraphs, or a paragraph and a heading, and so on.
Here’s an example:

<div>

 <h1>...</h1>

 <p>...</p>

 <p>...</p>

</div>

<p>...</p>

Given the fact that <div> doesn’t do anything, you’re probably wondering why it
exists. In turns out that the lowly <div> tag becomes a lot more interesting when
you combine it with style sheets. That’s because you can apply formatting com-
mands directly to a <div> element. For example, if a <div> element contains three
paragraphs, you can format all three paragraphs at once simply by formatting the
<div> element.

The <div> element has an important relative—the element. Like its
cousin, the element doesn’t do anything on its own, but when you place it
inside a block element and define its attributes in a style sheet, you can use it to
format just a portion of a paragraph, which is very handy. Here’s an example:

<p>In this paragraph, some of the text is wrapped in a span element. That
gives you the ability to format it in some fancy way later on.
</p>

You’ll put the <div> and elements to good use in later chapters.

XHTML Elements for Lists
Once you master XHTML’s basic text elements, it’s time to move on to XHTML’s
other set of elements for organizing text—list elements. XHTML lets you create
three types of list:

• Ordered lists give each item in a list a sequential number (as in 1, 2, 3). They’re
handy when sequence is important, like when you list a series of steps that tell
your relatives how to drive to your house.

• Unordered lists are also known as bulleted lists, because a bullet appears before
each item in the list. To some degree, you can control what the bullet looks like.
You’re reading a bulleted list right now.

• Definition lists are handy for displaying terms followed by definitions or
descriptions. For example, the dictionary is one huge definition list. In a defini-
tion list on a Web page, your browser left-aligns the terms and indents the defi-
nitions underneath them.

In the following sections you’ll learn how to create all three types of list.

124 Creating a Web Site: The Missing Manual

XHTML Elements for
Lists

Ordered Lists
In an ordered list, XHTML numbers each item consecutively, starting at some
value (usually 1). The neat part about ordered lists in XHTML is that you don’t
need to supply the numbers. Instead, the browser automatically adds the appropri-
ate number next to each list item (sort of like the autonumber feature in Microsoft
Word). This is handy for two reasons. First, it lets you insert and remove list items
without screwing up your numbering. Second, XHTML carefully aligns the num-
bers and list items, which isn’t as easy if you do it on your own.

To create an ordered list, use , a block element (stands for “ordered
list”). Then, inside the element, you place an element for each item in
the list (stands for “list item”).

For example, here’s an ordered lists with three items:

<p>To wake up in the morning:</p>

 Rub eyes.

 Assume erect position.

 Turn on light.

DESIGN TIME

Webifying Your Text
As you learned earlier in this chapter, text on the Web isn’t
like text in print. But sometimes it’s hard to shake old habits.
Here are some unwritten rules that can help make sure
you’re making good use of text in your Web pages:

• Split your text into small sections. Web pages
(and the viewers who read them) don’t take kindly
to long paragraphs.

• Create short pages. If a page is longer than two
screenfuls, split it into two pages. Not only does this
make your pages easier to read, it gives you more
Web pages, which helps with the next point.

• Divide your content into several pages. The next
step is to link these pages together (see Chapter 8).
This gives readers the flexibility to choose what they
want to read, and in what order.

• Put your most important information in the
first screenful. This technique is called designing
above the fold. The basic idea is to make sure
there’s something eye-catching or interesting for vis-
itors to read without having to scroll down. (In the
same way, well-designed newspapers give news-
stand visitors something interesting to read without
them having to flip over the folded broadsheet,
hence the term “above the fold”.)

• Proofread, proofread, proofread. Typos and bad
grammar shatter your site’s veneer of professional-
ism and Web-coolness.

• Don’t go wild with formatting until you under-
stand style sheets. If you break this rule, you’ll
leave a big mess that you’ll only need to clean up
later on.

Chapter 5: XHTML Text Elements 125

XHTML Elements for
Lists

In a browser, you’d see this:

To wake up in the morning:

1.Rub eyes.

2.Assume erect position.

3.Turn on light.

XHTML inserts some space between the paragraph preceding the list and the list
itself, as with all block elements. Next, it gives each list item a number.

Ordered lists get more interesting when you mix in the start and type attributes.
The start attribute lets you start the list at a value other than 1. Here’s an example
that starts the counting at 5:

<p>To wake up in the morning:</p>

<ol start="5">

...

This list will include the numbers 5, 6, and 7. Unfortunately, there’s no way to
count backward, or to automatically continue counting from a previous list else-
where on a page.

You aren’t limited to numbers in your ordered list, either. The type attribute lets
you choose the style of numbering. You can use sequential letters and roman
numerals, as described in Table 5-1. Figure 5-10 shows a few examples.

Strict XHTML forbids both the type and start attributes. If you want to use these
attributes, you need to stick an XHTML transitional doctype at the top of your
Web page. Another option is to switch to styles (using CSS, the standard you’ll
pick up in Chapter 6). This is a partial solution, because CSS provides an alterna-
tive for the type attribute but not for the start attribute. When you use CSS, you
can keep the XHTML strict doctype. Just remove the style attribute and replace it
with the list-style-type CSS property (explained in Chapter 6).

Table 5-1. Types of ordered lists

type Attribute Description Example

1 Numbers 1, 2, 3, 4…

a Lowercase letters a, b, c, d…

A Uppercase letters A, B, C, D…

i Lowercase roman numerals i, ii, iii, iv…

I Uppercase roman numerals I, II, III, IV…

126 Creating a Web Site: The Missing Manual

XHTML Elements for
Lists

Unordered Lists
Unordered lists are similar to ordered lists except that they aren’t consecutively
numbered or lettered. The outer element is , and you wrap each item inside
an element. The browser indents each item in the list, and automatically
draws the bullets.

The most interesting frill that comes with unordered lists is the type attribute,
which lets you change the style of bullet. You can use disc (a black dot, which is
automatic), circle (an empty circle), or square (a filled-in square). Figure 5-11
shows the different styles.

Once again, the type attribute is only suitable for XHTML 1.0 transitional—if
you’re going strict, you need to switch to the list-style-type style property.

Tip: Most Web page editors have handy links for quickly creating the different types of lists. In Dream-
weaver, look for the “ul” and “ol” icons in the Text tab of the Insert toolbar.

Figure 5-10:
The type attribute in action. For example, the code to start off
the first list would be: <ol type="I">.

Chapter 5: XHTML Text Elements 127

XHTML Elements for
Lists

Definition Lists
Definition lists are perfect for creating your own online glossary. Each list item
actually has two parts—a term (which the browser doesn’t indent) and a defini-
tion (which the browser indents underneath the term).

Definition lists use a slightly different tagging system than ordered and unordered
lists. First, you wrap the whole list in a dictionary list element (<dl>). Then you
wrap each term in a <dt> element (dictionary term), and each definition in a
<dd> element (dictionary definition).

Here’s an example:

<dl>

<dt>eat</dt>

<dd>To perform successively (and successfully) the functions of mastication,

humectation, and deglutition.</dd>

<dt>eavesdrop</dt>

<dd>Secretly to overhear a catalogue of the crimes and vices of another or

yourself.</dd>

<dt>economy</dt>

<dd>Purchasing the barrel of whiskey that you do not need for the price of

the cow that you cannot afford.</dd>

</dl>

In a browser you’d see this:

eat
To perform successively (and successfully) the functions of mastication,
humectation, and deglutition.

Figure 5-11:
Three flavors of the same list.

128 Creating a Web Site: The Missing Manual

XHTML Elements for
Lists

eavesdrop
Secretly to overhear a catalogue of the crimes and vices of another or yourself.

economy
Purchasing the barrel of whiskey that you do not need for the price of the
cow that you cannot afford.

Nesting Lists
Lists work well on their own, but you can get even fancier by placing one complete
list inside another. This technique is called nesting lists, and it lets you build multi-
layered outlines and detailed sequences of instructions.

To nest a list, declare a new list inside an element in an existing list. For exam-
ple, the following daily to-do list has three levels:

 Monday

 Plan schedule for week

 Complete Project X

 <ul style="square">

 Preliminary Interview

 Wild Hypothesis

 Final Report

 Abuse underlings

 Tuesday

 Revise schedule

 Procrastinate (time permitting). If necessary, put off

 procrastination until another day.

 Wednesday

 ...

Tip: When using nested lists, it’s a good idea to use indents in your XHTML document so you can see
the different levels at a glance. Otherwise, you’ll find it difficult to determine where each list item belongs.

In a nested list, the different list styles really start to become useful for distinguish-
ing each level. Figure 5-12 shows the result of this example.

Chapter 5: XHTML Text Elements 129

Inline Formatting

Inline Formatting
As you learned earlier in this chapter, it’s best not to format XHTML too heavily.
To get maximum control and make it easy to update your Web site’s look later on,
you should head straight to style sheets (as described in the next chapter). How-
ever, a few basic formatting elements are truly useful. You’re certain to come
across them, and you’ll probably want to use them in your own pages. These ele-
ments are all inline elements, so you use them inside a block element, like a para-
graph, a heading, or a list.

Italics, Bold, and Underline
You’ve already seen the elements for bold () and italic (<i>) formatting in
Chapter 2. They’re staples in XHTML, letting you quickly format snippets of text.

Figure 5-12:
In a nested list, browsers indent each subsequent list.
Although you aren’t limited in the number of levels you can
use, you’ll eventually run out of room and force your text up
against the right side of the page.

130 Creating a Web Site: The Missing Manual

Inline Formatting

XHTML also has a <u> element for underlining text, but you can only use it in
XHTML 1.0 transitional (page 30). Here’s an example that uses all three ele-
ments—<i> for italics, for bold, and <u> for underline:

<p

Stop! The mattress label says <u>do not remove under penalty

of law</u> and you <i>don't</i> want to mess with mattress companies.

</p>

A browser displays it like this:

Stop! The mattress label says do not remove under penalty of law and you don’t
want to mess with mattress companies.

If you keep your pages clean with XHTML 1.0 strict, you can’t use the <u> element.
However, you can get exactly the same effect using text decorations in a style sheet.
Page 155 shows you how.

Emphasis and Strong
The element (for emphasized text) is the logical-element equivalent of the
physical element <i>. These two elements have the same effect—they both itali-
cize text. Philosophically, the element is a better choice, because it’s more
generic. When you use , you’re simply indicating that you want to empha-
size a piece of text, but you aren’t saying how to emphasize it. Later on, you can use
a style sheet to define just how browsers should emphasize it. Possibilities include
making it a different color, a different font, or a different size. If you don’t use a
style sheet, the text inside the element is set in italics, just as with the <i>
element.

Note: Technically, you can use style sheets to redefine the <i> element in the same way. However, it
seems confusing to have the <i> element do anything except apply italics. After all, that’s its name.

The element is the logical-element equivalent of the physical element
. If you aren’t using style sheets, this simply applies bold formatting to a piece
of text. Overall, Web developers more commonly use the <i> and elements
over and , but XHTML experts prefer the latter because they’re
more flexible.

Here’s the previous example rewritten to use the and elements:

<p>

Stop! The mattress label says <u>do not remove under penalty

of law</u> and you don't want to mess with mattress companies.

</p>

There’s no logical-element equivalent for the <u> underline element, although
you can always use one of the generic elements discussed earlier, like in
conjunction with the text-decoration style property (see page 155).

Chapter 5: XHTML Text Elements 131

Inline Formatting

Subscript, Superscript, and Strikethrough
You can use the <sub> element for subscript—text that’s smaller and placed at the
bottom of the current line. The <sup> element is for superscript—smaller text at
the top of the current line. Finally, wrapping text in a <strike> element tells a
browser to cross it out, but you can use it only in XHTML 1.0 transitional.
Figure 5-13 shows an example of all three.

Web designers who want to stay on the right side of XHTML law can still create
crossed-out text. One alternative is to use the rare element (which is meant
to represent deleted text in a revised document). However, you can’t trust that all
browsers will format the same way, and you really shouldn’t use it for any-
thing other than highlighting changes. A better approach is to use a style rule that
applies the right text decoration, as explained on page 155.

Figure 5-13:
Strikeout, superscript, and subscript tags in
action.

132 Creating a Web Site: The Missing Manual

Inline Formatting

Teletype
Text within a <tt> element appears in a fixed-width (monospaced) font, such as
Courier. Programmers sometimes use it for snippets of code in a paragraph.

<p>To solve your problem, use the <tt>Fizzle()</tt> function.</p>

Which shows up like this:

To solve your problem, use the Fizzle() function.

Teletype text (or typewriter text) looks exactly like the text in a <pre> block (see
page 119), but you should place <tt> text inside another block element. Unlike
preformatted text, browsers ignore spaces and line breaks in <tt> text, as they do
in every other XHTML element.

Special Characters
Not all characters are available directly on your keyboard. For example, what if you
want to add a copyright symbol (©), a paragraph mark (¶), or an accented e (é)?
Good news: XHTML supports them all, along with about 250 relatives, including
mathematical symbols and Icelandic letters. To add them, however, you need to
use some sleight of hand. The trick is to use XHTML character entities—special
codes that browsers recognize as requests for unusual characters. Table 5-2 has
some common options, with a sprinkling of accent characters.

Table 5-2. Common special characters

Character Name of Character What to Type

© Copyright ©

® Registered trademark ®

¢ Cent sign ¢

£ Pound sterling £

¥ Yen sign ¥

Euro sign € (but € is
better supported)

˚ Degree sign °

± Plus or minus ±

÷ Division sign ÷

× Multiply sign ×

µ Micro sign µ

Fraction one-fourth ¼

Fraction one-half ½

Fraction three-fourths ¾

¶ Paragraph sign ¶

§ Section sign §

Chapter 5: XHTML Text Elements 133

Inline Formatting

Tip: The euro symbol is a relative newcomer to XHTML. Although you can use the character entity €
you’ll have the best support using the numeric code € because it works with older browsers.

XHTML character entities aren’t just for non-English letters and exotic symbols.
You also need them to deal with characters that have a special meaning according
to the XHTML standard—namely angle brackets (< >) and the ampersand (&).
You shouldn’t enter these characters directly into a Web page because the browser
will assume you’re trying to give it a super-special instruction. Instead, you need to
replace these characters with their equivalent character entity, as shown in
Table 5-3.

Strictly speaking, you don’t need all these entities all of the time. For example, it’s
safe to insert ordinary quotation marks by typing them in from your keyboard—
just don’t put them inside attribute names. Similarly, browsers are usually intelli-
gent enough to handle the ampersand (&) character appropriately, but it’s better
style to use the & code, so that there’s no chance a browser will confuse the
ampersand with another character entity. Finally, the character entities for the
angle brackets are absolutely, utterly necessary.

« Left angle quote, guillemot left «

» Right angle quote, guillemot right »

¡ Inverted exclamation ¡

¿ Inverted question mark ¿

æ Small ae diphthong (ligature) æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut mark ë

ö Small o, dieresis or umlaut mark ö

É Capital E, acute accent É

Table 5-3. XHTML character entities

Character Name of Character What To Type

< Left angle bracket <

> Right angle bracket >

& Ampersand &

“ Double quotation mark "

Table 5-2. Common special characters (continued)

Character Name of Character What to Type

134 Creating a Web Site: The Missing Manual

Inline Formatting

Here’s some flawed text that won’t display correctly:

I love the greater than (>) and less than (<) symbols. Problem is, when I
type them my browser thinks I’m trying to use a tag.

And here’s the corrected version, with XHTML character entities. When a browser
processes and displays this text, it replaces the entities with the characters you
really want.

I love the greater than (>) and less than (<) symbols. Problem is,
when I type them my browser thinks I’m trying to use a tag.

Most Web design tools insert the correct character entities as you type, as long as
you’re in Design view and not Code view.

Tip: To get a more comprehensive list of special characters and see how they look in your browser,
check out www.webmonkey.com/reference/Special_Characters.

Non-English Languages
Although character entities work perfectly well, they can be a bit clumsy if you
need to rely on them all the time. For example, consider the famous French phrase
“We were given speech to hide our thoughts,” shown here:

La parole nous a été donnée pour déguiser notre pensée.

Here’s what it looks like with character entities replacing all the accented characters:

La parole nous a été donnée pour déguiser notre
pensée.

French speakers would be unlikely to put up with this for long. Fortunately, there’s
a solution called Unicode encoding. Essentially, Unicode is a system that converts
characters into the bytes that computers understand and can properly render. By
using Unicode encoding, you can create accented characters just as easily as if they
were keys on your keyboard.

So how does it work? First, you need a way to get the accented characters into your
Web page. Here are some options:

• Type it in. Many non-English speakers will have the benefit of keyboards that
include accented characters.

• Use a utility. In Windows, you can run a little utility called charmap (short for
Character Map) that lets you pick from a range of special characters and copy
your selected character to the clipboard so it’s ready for pasting into another pro-
gram. To run charmap, click Start ➝ Run, type in charmap, and then hit Enter (in
Windows Vista, click Start, and then type charmap into the search box).

http://www.webmonkey.com/reference/Special_Characters

Chapter 5: XHTML Text Elements 135

Inline Formatting

• Use your Web page editor. Some Web page editors include their own built-in
symbol pickers. In Expression Web, choose Insert ➝ Symbol (see Figure 5-14). In
Dreamweaver, you can use Insert ➝ HTML ➝ Special Characters ➝ Other, but
this process only inserts character entities, not Unicode characters. Though the
end result is the same, your XHTML markup will still include a clutter of codes.

When using Unicode encoding, you need to make sure you save your Web page cor-
rectly. This won’t be a problem if you use a professional Web page editor, which is
smart enough to get it right the first time. But Unicode can trip up text editors. For
example, in Windows Notepad, you need to choose File ➝ Save As, and then pick
UTF-8 from the Encoding list (see Figure 5-15). For the Mac’s TextEdit, select Format
➝ Make Plain Text, go to Preferences ➝ Open and Save ➝ Plain Text File Encoding ➝

Saving Files, and then select Unicode (UTF-8) from the drop-down list. Every time you
re-save your file thereafter, Notepad and TextEdit will encode it correctly.

Figure 5-14:
Choose Insert ➝ Symbol to
see Expression Web’s
comprehensive list of special
characters. When you pick
one, Expression Web inserts
the actual character,
Unicode-style, not the
cryptic character entity.

Figure 5-15:
UTF-8 is a slimmed down version
of Unicode that saves space for
normal characters. It’s the
overwhelming standard of the
Web. However, you need to
explicitly tell Notepad to use UTF-8
encoding when you save a Web
page that includes special
characters like accented letters.

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgments
	The Missing Manual Series

	Introduction
	What You Need to Get Started
	About This Book
	Macintosh and Windows
	About the Outline
	About › These › Arrows
	Downloadable Examples
	About MissingManuals.com
	Safari® Books Online

	Preparing for the Web
	Introducing the World Wide Web
	Browsers
	Choosing your Web browser

	Web Servers

	Planning a Web Site
	Types of Sites
	Understanding Your Audience
	The Lifespan of Your Site
	Practice Good Design

	The Ingredients of a Web Site

	Creating Your First Page
	The Anatomy of a Web Page
	Cracking Open an XHTML Document
	Creating Your Own XHTML Files
	The Document Type Definition

	XHTML Tags
	What’s in a Tag
	Understanding Elements
	Nesting Elements

	The XHTML Document
	The Basic Skeleton
	Adding Content
	Structuring Text
	Where Are All the Pictures?
	The 10 Most Important Elements (and a Few More)
	Checking Your Pages for Errors

	Putting Your Page on the Web
	How Web Hosting Works
	Understanding the URL
	How Browsers Analyze a URL

	Domain Names
	Getting the Right Name
	Searching for a Name
	Registering Your Name
	Domain parking
	Domain forwarding

	Free Domain Names

	Getting Web Space
	The Big Picture
	Assessing Your Needs
	A Web Host Checklist

	Choosing Your Host
	Your ISP (Internet Service Provider)
	Web hosting companies
	A Web host walkthrough (#1)
	A Web host walkthrough (#2)

	Free Web Hosts

	Transferring Files
	Browser-Based Uploading
	FTP

	Power Tools
	Choosing Your Tools
	Types of Web Page Editors
	Finding a Free Web Page Editor
	Nvu
	Amaya
	HTML-Kit
	CoffeeCup Free HTML Editor

	Professional XHTML Editors

	Working with Your XHTML Editor
	Starting Out
	Multiple Views
	Creating a Web Page in Code View
	Creating a Web Page in WYSIWYG View
	Managing a Web Site
	Defining a site in Expression Web
	Uploading a site in Expression Web
	Defining a site in Dreamweaver
	Uploading a site in Dreamweaver

	XHTML Text Elements
	Understanding Text and the Web
	Logical Structure vs. Physical Formatting
	CSS (Cascading Style Sheets)

	XHTML Elements for Basic Text
	Paragraphs
	Line Breaks
	Headings
	Horizontal Lines
	Preformatted Text
	Quotes
	Divisions and Spans

	XHTML Elements for Lists
	Ordered Lists
	Unordered Lists
	Definition Lists
	Nesting Lists

	Inline Formatting
	Italics, Bold, and Underline
	Emphasis and Strong
	Subscript, Superscript, and Strikethrough
	Teletype
	Special Characters
	Non-English Languages

	Style Sheets
	Style Sheet Basics
	The Three Types of Styles
	Browser Support for CSS
	The Anatomy of a Rule
	Applying a Style Sheet
	Internal style sheets
	Inline styles

	The Cascade
	Inheritance

	Colors
	Specifying a Color
	Hexadecimal color values
	RGB color values

	Finding the Right Color

	Fonts
	Specifying a Font
	Finding the Right Font
	Font Sizes
	Keyword sizing
	Percentage sizing
	Relative sizing
	Pixel sizing

	Text Alignment and Spacing
	Alignment
	Spacing
	White Space

	Borders
	Basic Borders
	Making Better Borders
	Using Borders to Separate Sections

	Class Selectors
	Creating Class Rules
	Saving Work with the <div> Element
	More Generic Class Rules
	Creating a Style Sheet for Your Entire Web Site

	Adding Graphics
	Understanding Images
	The Element
	Alternate Text
	Picture Size
	File Formats for Graphics
	Compression
	Choosing the right image format

	Putting Pictures on Colored Backgrounds

	Images and Styles
	Inline Images in Text
	Borders
	Wrapping Text Around an Image
	Adding Captions
	Background Images
	Background “watermarks”

	Techniques with Graphics
	Graphical Text
	Backgrounds for Other Elements
	Graphical Bullets in a List

	Finding Free Art

	Linking Pages
	Understanding the Anchor
	Internal and External Links
	Relative Links and Folders
	Moving down into a subfolder
	Moving up into a parent folder
	Moving to the root folder

	Linking to Other Types of Content

	Image Links and Image Maps
	Adding Bookmarks
	When Good Links Go Bad
	Site Management
	Link Checkers
	Using Redirects

	Page Layout Tools
	The Challenge of Screen Space
	Testing Different Page Sizes

	Tables
	The Anatomy of a Table
	Formatting Table Borders
	Cell Spans
	Sizing and Aligning Tables
	Sizing a table
	Sizing a column
	Sizing a row

	Organizing a Page with Tables

	Style-Based Layout
	Structuring Pages with the <div> Element
	Even Better Selectors
	Contextual selectors
	id selectors

	Floating Boxes
	Absolute Positioning
	Layering
	Combining Absolute and Relative Positioning

	Multipart Pages
	Understanding Multipart Pages
	Server-Side Includes
	Frame Basics
	Creating a Frames Page
	Putting Documents in a Frameset
	Targeting Frames

	Building Better Frames Pages
	Frame Borders and Resizing
	Scrolling
	Handling Browsers That Don’t Support Frames
	Better URLs for Framesets
	Nested Framesets
	Another Way to Nest Frames

	Page Templates
	Understanding Page Templates
	Creating a New Page Template
	The Anatomy of a Page Template
	Using a Page Template

	Attracting Visitors
	Your Web Site Promotion Plan
	Spreading the Word
	Reciprocal Links
	Web Rings
	Shameless Self-Promotion
	Return Visitors

	Adding Meta Elements
	The Description Meta Element
	The Keyword Meta Element

	Directories and Search Engines
	Directories
	The Open Directory Project
	The Yahoo directory

	Search Engines
	Rising up in the rankings
	The Google Webmaster Tools
	Google AdWords
	Hiding from search engines

	Tracking Visitors
	Understanding Google Analytics
	Signing Up for Google Analytics
	Examining your Web Traffic
	Graph of Visits
	Site Usage
	Map Overlay
	Traffic Sources Overview
	Content Overview

	Letting Visitors Talk to You (and Each Other)
	Transforming a Site into a Community
	Helping Visitors Email You
	Mailto Links
	XHTML Forms
	Form basics
	Mailing a form
	Creating a more complex form
	More reliable forms with server scripts

	Adding Forums and Groups to Your Site
	About Google Groups
	Creating a Group
	Participating in a Group
	Managing Your Group

	Making Money with Your Site
	Money-Making the Web Way
	Google AdSense
	Signing Up for AdSense
	Creating an Ad
	Placing Ads in Your Web Pages
	Google-Powered Searches

	Amazon Associates
	Signing Up As an Associate
	Generating Associate Links
	Product links
	Advanced links

	PayPal Merchant Tools
	Signing Up with PayPal
	Accepting Payments
	Building a Shopping Cart
	Creating a custom page style
	Generating the shopping cart buttons

	Withdrawing Your Money

	JavaScript: Adding Interactivity
	Understanding JavaScript
	Server-Side and Client-Side Programming
	Scripting Languages

	JavaScript 101
	The <script> Element
	Scripts and XHTML
	Browsers that don’t support JavaScript

	Variables
	Declaring variables
	Modifying variables
	An example with variables

	Functions
	Declaring a function
	Calling a function
	Functions that receive information
	Functions that return information

	External Script Files

	Dynamic XHTML
	XHTML Objects
	Using XHTML objects in a script

	Events
	Image Rollovers
	Collapsible Text
	An Interactive Form

	Scripts on the Web
	Finding a Cool Script

	Fancy Buttons and Menus
	Creating Fancy Buttons
	Generating Button Pictures
	Building a Rollover Button
	Using image lists
	Preloading images

	Creating Rollover Buttons in Dreamweaver and Expression Web

	Creating Fancy Menus
	Do-It-Yourself Collapsible Menus
	Third-Party Menus
	Getting the script
	Creating the menu
	Placing the menu on a page

	Audio and Video
	Understanding Multimedia
	Linking, Embedding, and Hosting
	Types of Multimedia Files

	Background Music
	The <embed> Element
	Embedded audio options
	Other audio formats

	Sound Effects

	Flash MP3 Players
	The E-Phonic Player
	Create a playlist
	Adding the player to a Web page

	Flashtrak Loops

	Video Clips
	Preparing Video
	Linking to and Embedding Video
	Uploading Your Videos to YouTube
	Signing up with YouTube
	Preparing a video
	Uploading a video
	Watching a video

	Blogs
	Understanding Blogs
	Syndication
	Blog Hosting and Software

	Getting Started with Blogger
	Creating a Blog
	Creating Formatted Posts

	Managing a Blog
	Tweaking a Few Common Settings
	Configuring Your Blogger Profile
	Templates
	Applying a new template
	Customizing your template
	Customizing the XHTML in a template

	Moderating Comments
	Hosting Your Blog on Your Web Site

	XHTML Quick Reference
	XHTML Elements
	<a> (Anchor Element)
	<acronym>
	<address>
	<area> (Image Map)
	 (Bold Text)
	<base> (Base URL)
	<big> (Large Text)
	<blockquote> (Block Quotation)
	<body> (Document Body)
	
 (Line Break)
	<button> (Button)
	<caption> (Table Caption)
	<cite> (Citation)
	<dd> (Dictionary Description)
	 (Deleted Text)
	<dfn> (Defined Term)
	<div> (Generic Block Container)
	<dl> (Dictionary List)
	<dt> (Dictionary Term)
	 (Emphasis)
	<form> (Interactive Form)
	<frame> (Frame)
	<frameset> (Frameset)
	<h1>, <h2>, <h3>, <h4>, <h5>, <h6> (Headings)
	<head> (Document Head)
	<hr> (Horizontal Rule)
	<html> (Document)
	<i> (Italic Text)
	<iframe> (Inline Frame)
	 (Image)
	<input> (Input Control)
	<ins> (Inserted Text)
	 (List Item)
	<link> (Document Relationship)
	<map> (Image Map)
	<meta> (Metadata)
	<noframes> (Frames Alternate Content)
	<noscript> (Alternate Script Content)
	<object> (Embedded Object)
	 (Ordered List)
	<option> (Menu Option)
	<p> (Paragraph)
	<param> (Object Parameter)
	<pre> (Preformatted Text)
	<q> (Short Quotation)
	<script> (Client-Side Script)
	<select> (Selectable List)
	<small> (Small Text)
	 (Generic Inline Container)
	 (Strong Emphasis)
	<style> (Internal Style Sheet)
	<sub> (Subscript)
	<sup> (Superscript)
	<table> (Table)
	<td> (Table Data Cell)
	<textarea> (Multiline Text Input)
	<th> (Table Header Cell)
	<title> (Document Title)
	<tr> (Table Row)
	<tt> (Teletype Text)
	<u> (Underlined Text)
	 (Unordered List)

	XHTML Character Entities
	XHTML Color Names

	Useful Web Sites
	Chapter Links
	Chap�ter�1. Preparing for the Web
	Chap�ter�2. Creating Your First Page
	Chap�ter�3. Putting Your Page on the Web
	Chap�ter�4. Power Tools
	Chap�ter�5. XHTML Text Elements
	Chap�ter�6. Style Sheets
	Chap�ter�7. Adding Graphics
	Chap�ter�8. Linking Pages
	Chap�ter�9. Page Layout Tools
	Chap�ter�10. Multipart Pages
	Chap�ter�11. Attracting Visitors
	Chap�ter�12. Letting Your Visitors Talk to You (and Each Other)
	Chap�ter�13. Making Money with Your Site
	Chap�ter�14. JavaScript: Adding Interactivity
	Chap�ter�15. Fancy Buttons and Menus
	Chap�ter�16. Audio and Video
	Chap�ter�17. Blogs

	Index

