
417

CHAPTER

13

Float-based layouts take advantage of the float property to position elements
side by side and create columns on a web page. As described in Chapter 7
(page 220), you can use this property to create a wrap-around effect for, say, a

photograph, but when you apply it to a <div> tag, float becomes a powerful page-
layout tool. The float property moves a page element to one side of the page (or
other containing block). Any HTML that appears below the floated element moves
up on the page and wraps around the float.

The float property accepts one of three different values—left, right, and none. To
move an image to the right side of the page, you could create this class style and
apply it to the tag:

.floatRight { float: right; }

The same property applied to a <div> tag full of content can also create a sidebar:

.sidebar {
 float: left;
 width: 170px;
}

Figure 13-1 shows these two styles in action.

 NOTE  The none value turns off any floating and positions the element like a normal, unfloated element. It’s
useful only for overriding a float that’s already applied to an element. You may have an element with a particular
class such as .sidebar applied to it, with that element floating to the right. But on one page you may want an
element with that class to not float, but to be placed within the flow of the page, like this Note box. By creating
a more specific CSS selector (see page 480) with float: none, you can prevent that element from floating.

13

 Building Float-
Based Layouts

Css3: tHe MIssInG MAnUAL418

FiGURE 13-1
You can use the float prop-
erty to lay out a web page
with multiple columns. On
this page, a block of content
is floated to the left edge.
The sidebar has a set width,
but the main content doesn’t,
which makes this design a
liquid layout. The main section
of the page simply expands to
fill the width of the browser
window. In the upper right,
the bathtub photo is floated
to the right.

A simple two-column design like Figure 13-1 requires just a few steps:

1. Wrap each column in a <div> tag with an ID or class attribute.

In Figure 13-1, the news items listed in the left sidebar are wrapped in one <div>—
<div class="news">—and the main content in another div—<div class="main">.

2. Float the sidebar <div> either right or left.

When you work with floats, the source order (the order in which you add HTML
to a file) is important. The HTML for the floated element must appear before
the HTML for the element that wraps around it.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 419

Figure 13-2 shows three two-column layouts. The diagrams on the left side
show the page’s HTML source order: A <div> for the banner, followed by a <div>
for the sidebar, and, lastly, a <div> for the main content. On the right side, you
see the actual page layout. The sidebar comes before the main content in the
HTML so it can float either left (top, bottom) or right (middle).

3. Set a width for the floated sidebar.

Unless you’re floating an image with a predefined width, you should always
give your floats a width. This way, you create a set size for the floated element,
letting the browser make room for other content to wrap into position.

The width could be a fixed size like 170px or 10em. You can also use percentages
for a flexible design that’s based on the width of the browser window. (See page
158 for more about the pros and cons of the different measurement units.) If
the sidebar is 20 percent wide, and the browser window is 700 pixels wide,
then the sidebar will be 140 pixels wide. But if your visitor resizes the window
to 1000 pixels, then the sidebar grows to 200 pixels. Fixed-width sidebars are
easier to design for, since you don’t have to consider all the different widths
the sidebar might stretch to.

However, percentages let you maintain the same proportions between the two
columns, which can be more visually pleasing. In addition, percentages make
your designs more flexible, since the overall proportion of the page can adjust
to fit the screen size, something that’s important when creating responsive web
designs, which you’ll learn about in the next chapter.

 NOTE  When the overall page design is a fixed width (as described on page 406), percentage width values
for the sidebar are based on the fixed-width containing element. The width isn’t based on the window size and
won’t change when the browser window changes size.

4. Add a left margin to the main content.

If the sidebar is shorter than the other content on the page, the text from the
main column wraps underneath the sidebar, ruining the look of two side-by-side
columns (see Figure 13-12 for an example). Adding a left margin that’s equal to
or greater than the width of the sidebar indents the main content of the page,
creating the illusion of a second column:

.main { margin-left: 180px; }

By the way, it’s usually a good idea to make the left margin a little bigger than
the width of the sidebar: This creates some empty space—a white gutter—
between the two elements. So, when you use percentages to set the width of
the sidebar, use a slightly larger percentage value for the left margin.

Css3: tHe MIssInG MAnUAL420

FiGURE 13-2
Creating a two-column layout is a simple
matter of floating a <div> tag to the left
(top). To make a sidebar move from the
left to right side of the page (middle), just
change the sidebar’s CSS styling to float:
right. You don’t need to make any other
changes to your CSS or HTML.

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 421

APPLYING
FLOATS TO

YOUR LAYOUTS
Avoid setting a width for the main content div. It’s not necessary, since brows-
ers simply expand it to fit the available space. Even if you want a fixed-width
design, you don’t need to set a width for the main content div, as you’ll see in
the next section.

Applying Floats to Your Layouts
Now that you’ve learned a basic two-column liquid layout, you can adapt it in count-
less ways. Converting it into a fixed-width layout is a snap. Simply wrap all the tags
within the page’s body inside another <div> (like <div class="wrapper">). Then,
create a style for that new container element that has a set width, such as 960
pixels (see Figure 13-2, bottom). That width setting constrains everything inside
the container box.

 TIP  It’s also possible to create a fixed-width page without resorting to the extra wrapper div: set a width
on the <body> tag. You already saw an example of this technique in the tutorial on page 225.

Expanding it into a three-column design isn’t difficult, either (Figure 13-3). First, add
another <div> between the two columns and float it to the right. Then add a right
margin to the middle column, so that if the text in the middle column runs longer
than the new right sidebar, it won’t wrap underneath the sidebar.

The rest of this section explores more CSS layout techniques that use float-based
layouts.

FiGURE 13-3
A three-column design uses the same
concepts used to create a two-column design.
In this case, you float both the left and right
sidebars and add both left and right margins
to the center column. The lefthand diagram
shows the order of the HTML; the right side
shows what the web page looks like.

Floating All Columns
It’s perfectly possible to float every column, not just the left and right sidebars. You
could float the first sidebar to the left, the middle column to the left, and the right
sidebar to the right, as shown in Figure 13-4, top. This approach lets you put more

Css3: tHe MIssInG MAnUAL422

APPLYING
FLOATS TO

YOUR LAYOUTS
than three columns in your design. You can float four or more columns, as long as
there’s room for all the floats to fit side by side.

When you float all columns in a design, you need to pay close attention to the
widths of each column. If the total width of all the columns is more than the space
available—for example, if the browser window is smaller or the columns are placed
inside another <div> with a set width—then the last column drops down below the
others. (You can read a solution to this dropping float problem on page 480.)

UP TO SPEED

You Don’t Have to Reinvent the Wheel
If terms like liquid layout and containing element sound a little
intimidating, don’t give up. First of all, the tutorials beginning
on page 440 walk you step by step through the process of laying
out web pages with CSS. But there’s no law saying you have to
create your own CSS layouts from scratch. On the Web, you’ll
find plenty of pre-built and tested designs you can make your
own. The LayoutGala site offers 40 different CSS designs that
work in all common browsers (http://blog.html.it/layoutgala/).
The designs are just basic skeletons consisting of <div> tags

and the CSS that positions them. All you need to do is fill them
with your own design touches like font styling and imagery.

There are also quite a few layout generators—online tools
that let you customize basic requirements like the number of
columns you want, whether you’re after a liquid or fixed layout,
and so on. The Gridinator (http://gridinator.com) provides a
simple tool for creating a complex multicolumn grid system
(see the box on page 430). You can then download HTML and
CSS files with the code created for you.

In addition, floating more than just the sidebars lets you change the order of your
divs in the HTML. Take, for example, the left diagram in Figure 13-3, which shows the
order of the <div> tags for that page. Because of the way floated elements work,
they must appear before any content that wraps around them, so in this example,
the main content area must go after the sidebars.

The order of the <div> tags in the HTML may not seem like a big deal until you try to
browse the web page without CSS, which is the case for many alternative browsers,
including screen readers that read a page’s content aloud to visually impaired visitors.
Without CSS, all the sidebar material (which often includes navigational elements,
ads, or other information that’s not relevant to the main topic of the page) appears
before the content the visitor came to read in the first place. The inconvenience of
having to scroll past the same sidebar content on each page will turn off some visi-
tors. Furthermore, your page is less accessible to vision-impaired visitors, who have
to listen to their screen readers read off a long list of links and ads before coming
to any real information.

And if that doesn’t sway you, you’ve got the search engines to worry about. Most
search engines limit the amount of HTML they read when searching a site. On a
particularly long web page, they simply stop at a certain point—possibly missing
important content that should be indexed by the search engine. Also, most search
engines give greater value to the HTML near the beginning of the file. So if you’re
worried about getting good placement in search engine results, it’s in your best

CHAPteR 13: BUILDING FLOAT-BASED LAYOUTS 423

APPLYING
FLOATS TO

YOUR LAYOUTS
interest to make sure the important content is as close as possible to the top of the
page’s HTML code.

In the top-left diagram in Figure 13-4, the main content’s HTML is between the left
and right sidebars, which is better than having it after both sidebars. You can even
put the main content before both sidebars’ HTML by wrapping the main content and
left sidebar in one <div>, floating that <div> left, and then floating the main content
right and the left sidebar left within that <div> (Figure 13-4, bottom). Voilà—the main
column’s HTML falls before the other <div> tags.

Floats Within Floats
The bottom diagram in Figure 13-4 illustrates another useful technique—floating
elements within floats. Imagine that the main content (3) and the left sidebar (4)
divs didn’t exist, and only the column wrapper (2) and the right sidebar (5) were
left. You’d have just a basic two-column design, with one column floated left and
another floated right. In fact, it’s still a two-column design even with the two divs
(3 and 4) placed back inside the column-wrapper div. The difference is that the left
column is itself divided into two columns.

FiGURE 13-4
There’s more than one way to float a page.
CSS’s flexibility provides many ways to
create a multicolumn layout. Using different
methods of floating, you can easily change
the source order of the HTML for the page, as
you can see in the diagrams at left. Right-side
diagrams represent final web page layout.

Css3: tHe MIssInG MAnUAL424

APPLYING
FLOATS TO

YOUR LAYOUTS
Although this arrangement is a bit confusing, it’s also helpful in a number of instances.
First, it lets you add columns within a column. The three-column layout at the top of
Figure 13-5 shows a small Tips box in the middle column that also has two columns
inside it. By nesting floats inside floats, you can create some very complex designs.

In addition, when you have just a couple of floated elements divided into columns
with additional floated elements, it’s easier to calculate the widths of page elements.
That’s a good thing when you need to control float drops (page 480) and other
problems that occur when columns get too wide.

FiGURE 13-5
Top: Create columns within columns by floating
elements inside another floated element. In the
middle column, the Tips box provides a simple two-
column note that adds visual interest to the page.

Bottom: It doesn’t matter which direction the
container is floated (in this instance, to the right)—
you simply float the two additional columns left
and right.

	The Missing Credits
	Introduction
		Part One:	CSS Basics
		Chapter 1:	HTML for CSS
	HTML: Past and Present
	Writing HTML for CSS
	The Importance of the Doctype
	Making Sure Internet Explorer Is Up-to-Date

		Chapter 2:	Creating Styles and Style Sheets
	Anatomy of a Style
	Understanding Style Sheets
	Internal Style Sheets
	External Style Sheets
	Tutorial: Creating Your First Styles

		Chapter 3: 	Selectors: Identifying What to Style
	Tag Selectors: Page-Wide Styling
	Class Selectors: Pinpoint Control
	ID Selectors: Specific Page Elements
	Styling Groups of Tags
	Styling Tags Within Tags
	Pseudo-Classes and Pseudo-Elements
	Attribute Selectors
	Child Selectors
	Siblings
	The :not() Selector
	Tutorial: Selector Sampler

		Chapter 4: 	Saving Time with Style Inheritance
	What Is Inheritance?
	How Inheritance Streamlines Style Sheets
	The Limits of Inheritance
	Tutorial: Inheritance

		Chapter 5:	Managing Multiple Styles: The Cascade
	How Styles Cascade
	Specificity: Which Style Wins
	Controlling the Cascade
	Tutorial: The Cascade in Action

		Part Two:	Applied CSS
		Chapter 6:	Formatting Text
	Using Fonts
	Using Web Fonts
	Discovering Google Web Fonts
	Adding Color to Text
	Changing Font Size
	Formatting Words and Letters
	Adding Text Shadow
	Formatting Entire Paragraphs
	Styling Lists
	Tutorial: Text Formatting in Action

		Chapter 7:	Margins, Padding, and Borders
	Understanding the Box Model
	Controling Space with Margins and Padding
	Adding Borders
	Coloring the Background
	Creating Rounded Corners
	Adding Drop Shadows
	Determining Height and Width
	Wrapping Content with Floating Elements
	Tutorial: Margins, Backgrounds, and Borders

		Chapter 8:	Adding Graphics to Web Pages
	Discovering CSS and the Tag
	Adding Background Images
	Controlling Repetition
	Positioning a Background Image
	Using Background Property Shorthand
	Using Multiple Background Images
	Utilizing Gradient Backgrounds
	Applying Easy Gradients with Colorzilla
	Tutorial: Enhancing Images
	Tutorial: Creating a Photo Gallery
	Tutorial: Using Background Images

		Chapter 9:	Sprucing Up Your Site’s Navigation
	Selecting Which Links to Style
	Styling Links
	Building Navigation Bars
	CSS-Style Preloading Rollovers
	Styling Particular Types of Links
	Tutorial: Styling Links
	Tutorial: Creating a Navigation Bar

		Chapter 10:	CSS Transforms, Transitions, and Animations
	Transforms
	Transitions
	Animations
	Tutorial

		Chapter 11:	Formatting Tables and Forms
	Using Tables the Right Way
	Styling Tables
	Styling Forms
	Tutorial: Styling a Table
	Tutorial: Styling a Form

		Part Three:	CSS Page Layout
		Chapter 12:	Introducing CSS Layout
	Types of Web Page Layouts
	How CSS Layout Works
	Layout Strategies

		Chapter 13:	Building Float-Based Layouts
	Applying Floats to Your Layouts
	Overcoming Float Problems
	Tutorial: Multiple Column Layouts

		Chapter 14:	Responsive Web Design
	Responsive Web Design Basics
	Setting Up a Web Page for RWD
	Media Queries
	Flexible Grids
	Fluid Images
	Responsive Web Design Tutorial

		Chapter 15:	Positioning Elements on a Web Page
	How Positioning Properties Work
	Powerful Positioning Strategies
	Tutorial: Positioning Page Elements

		Part Four:	Advanced CSS
		Chapter 16:	CSS for the Printed Page
	How Media Style Sheets Work
	How to Add Media Style Sheets
	Creating Print Style Sheets
	Tutorial: Building a Print Style Sheet

		Chapter 17:	Improving Your CSS Habits
	Adding Comments
	Organizing Styles and Style Sheets
	Eliminating Browser Style Interference
	Using Descendent Selectors
	Trying Different CSS for Internet Explorer

		Part Five:	Appendixes
		Appendix A:	CSS Property Reference
	CSS Values
	Text Properties
	List Properties
	Padding, Borders, and Margins
	Backgrounds
	Page Layout Properties
	Animation, Transform, and Transition Properties
	Table Properties
	Miscellaneous Properties

		Appendix B:	CSS Resources
	References
	CSS Help
	CSS Tips, Tricks, and Advice
	CSS Navigation
	CSS Layout
	Showcase Sites
	CSS Books
	CSS Software

	Index

