
103

CHAPTER

5

As you create increasingly complex style sheets, you’ll sometimes wonder
why a particular element on a page looks the way it does. CSS’s inheritance
feature, as discussed in Chapter 4, creates the possibility that any tag on a

page is potentially affected by any of the tags that wrap around it. For example, the
<body> tag can pass properties on to a paragraph, and a paragraph may pass its
own formatting instructions on to a link within the paragraph. In other words, that
link can inherit CSS properties from both the <body> and the <p> tag—essentially
creating a kind of Frankenstyle that combines parts of two different CSS styles.

Then there are times when styles collide—the same CSS property is defined in mul-
tiple styles, all applying to a particular element on the page (for example, a <p> tag
style in an external style sheet and another <p> tag style in an internal style sheet).
When that happens, you can see some pretty weird stuff, like text that appears bright
blue, even though you specifically applied a class style with the text color set to
red. Fortunately, there’s actually a system at work: a basic CSS mechanism known
as the cascade, which governs how styles interact and which styles get precedence
when there’s a conflict.

 NOTE  This chapter deals with issues that arise when you build complex style sheets that rely on inheritance
and more sophisticated types of selectors like descendent selectors (page 88). The rules are all pretty logical, but
they’re about as fun to master as the tax code. If that’s got your spirits sagging, consider skipping the details
and doing the tutorial on page 117 to get a taste of what the cascade is and why it matters. Or jump right to the
next chapter, which explores fun and visually exciting ways to format text. You can always return to this chapter
later, after you’ve mastered the basics of CSS.

5

 Managing Multiple
Styles: The Cascade

Css3: tHe MIssInG MAnUAL104

HOW STYLES
CASCADE How Styles Cascade

The cascade is a set of rules for determining which style properties get applied to an
element. It specifies how a web browser should handle multiple styles that apply to
the same tag and what to do when CSS properties conflict. Style conflicts happen
in two cases: through inheritance when the same property is inherited from multiple
ancestors, and when one or more styles apply to the same element (maybe you’ve
applied a class style to a paragraph and also created a <p> tag style, so both styles
apply to that paragraph).

Inherited Styles Accumulate
As you read in the last chapter, CSS inheritance ensures that related elements—like
all the words inside a paragraph, even those inside a link or another tag—share
similar formatting. It spares you from creating specific styles for each tag on a page.
But since one tag can inherit properties from any ancestor tag—a link, for example,
inheriting the same font as its parent <p> tag—determining why a particular tag is
formatted one way can be a bit tricky. Imagine a font family applied to the <body>
tag, a font size applied to a <p> tag, and a font color applied to an <a> tag. Any <a>
tag inside of a paragraph would inherit the font from the body and the size from
the paragraph. In other words, the inherited styles combine to form a hybrid style.

The page shown in Figure 5-1 has three styles: one for the <body>, one for the <p>
tag, and one for the tag. The CSS looks like this:

body { font-family: Verdana, Arial, Helvetica, sans-serif; }
p { color: #F30; }
strong { font-size: 24px; }

FiGURE 5-1
Thanks to inheritance, it’s possible for
multiple styles to affect the appearance
of one tag. Here the tag has
a specific color, font family, and font size,
even though only a single property is
applied directly to that tag. The other two
formatting options were inherited from
the tag’s ancestors: the <body> and the
<p> tags.

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 105

HOW STYLES
CASCADE

The tag is nested inside a paragraph, which is inside the <body> tag.
That tag inherits from both of its ancestors, so it inherits the font-family
property from the body and the color property from its parent paragraph. In addi-
tion, the tag has a bit of CSS applied directly to it—a 24px font size. The
final appearance of the tag is a combination of all three styles. In other words, the
 tag appears exactly as if you’d created a style like this:

strong {

 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #F30;
 font-size: 24px;
}

Nearest Ancestor Wins
In the previous example, various inherited and applied tags smoothly combined to
create an overall formatting package. But what happens when inherited CSS proper-
ties conflict? Think about a page where you’ve set the font color for the body tag to
red and the paragraph tag to green. Now imagine that within one paragraph, there’s
a tag. The tag inherits from both the body and p tag styles, so
is the text inside the tag red or green? Ladies and gentleman, we have a
winner: the green from the paragraph style. That’s because the web browser obeys
the style that’s closest to the tag in question.

In this example, any properties inherited from the <body> tag are rather generic. They
apply to all tags. A style applied to a <p> tag, on the other hand, is more narrowly
defined. Its properties apply only to <p> tags and the tags inside them.

In a nutshell, if a tag doesn’t have a specific style applied to it, then, in the case of
any conflicts from inherited properties, the nearest ancestor wins (see Figure 5-2,
number 1).

Here’s one more example, just to make sure the concept sinks in. If a CSS style
defining the color of text were applied to a <table> tag, and another style defining
a different text color were applied to a <td> tag inside that table, then tags inside
that table cell (<td>) such as a paragraph, headline, or unordered list would use the
color from the <td> style, since it’s the closest ancestor.

The Directly Applied Style Wins
Taking the “nearest ancestor” rule to its logical conclusion, there’s one style that
always becomes king of the CSS family tree—any style applied directly to a given tag.
Suppose a font color is set for the body, paragraph, and strong tags. The paragraph
style is more specific than the body style, but the style applied to the tag
is more specific than either one. It formats the tags and only the
tags, overriding any conflicting properties inherited from the other tags (see Figure
5-2, number 2). In other words, properties from a style specifically applied to a tag
beat out any inherited properties.

Css3: tHe MIssInG MAnUAL106

HOW STYLES
CASCADE

This rule explains why some inherited properties don’t appear to inherit. A link
inside a paragraph whose text is red still appears browser-link blue. That’s because
browsers have their own predefined style for the <a> tag, so an inherited text color
won’t apply.

FiGURE 5-2
Here’s how web browsers figure out which proper-
ties to display when inherited properties conflict:
The tag in the first paragraph (1) inherits
the font family and color from both the <body>
tag and the paragraph. But since the body and
paragraph have different fonts and colors applied
to them, the tag uses the font and color
specified for its closest ancestor—the <p> tag.
When a style applies directly to a tag—the font-
family and color are specified for the
tag (2)—browsers ignore conflicting inherited
properties.

 NOTE  You can learn how to overcome preset styles for the <a> tag and change link colors to your heart’s
content. See page 115.

One Tag, Many Styles
Inheritance is one way that a tag can be affected by multiple styles. But it’s also
possible to have multiple styles apply directly to a given tag. For example, say you
have an external style sheet with a <p> tag style and attach it to a page that has an
internal style sheet that also includes a <p> tag style. And just to make things really
interesting, one of the <p> tags on the page has a class style applied to it. So for
that one tag, three different styles directly format it. Which style—or styles—should
the browser obey?

The answer: It depends. Based on the types of styles and the order in which they’re
created, a browser may apply one or more of them at once. Here are a few situations
in which multiple styles can apply to the same tag:

• The tag has both a tag selector and a class style applied to it. For example,
a tag style for the <h2> tag, a class style named .leadHeadline and this HTML:
<h2 class="leadHeadline">Your Future Revealed!</h2>. Both styles apply
to this <h2> tag.

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 107

HOW STYLES
CASCADE

 NOTE  Hold onto your hat if you’re worried about what happens when these multiple styles conflict; details
to follow.

• The same style name appears more than once in the style sheet. There could
be a group selector (page 84), like .leadHeadline, .secondaryHeadline, .news
Headline, and the class style .leadHeadline in the same style sheet. Both of
these rules define how any element with a class of leadHeadline looks.

• A tag has both a class and an ID style applied to it. Maybe it’s an ID named
#banner, a class named .news, and this HTML: <div id="banner" class="news">.
Properties from both the banner and news styles apply to this <div> tag.

• There’s more than one style sheet containing the same style name attached
to a page. The same-named styles can arrive in an external style sheet and
an internal style sheet. Or, the same style can appear in multiple external style
sheets that are all linked to the same page.

• There are complex selectors targeting the same tag. This situation is com-
mon when you use descendent selectors (page 88). For example, say you have
a div tag in a page (like this: <div id="mainContent">), and inside the div is a
paragraph with a class applied to it: <p class="byline">. The following selec-
tors apply to this paragraph:

#mainContent p
#mainContent .byline
p.byline
.byline

If more than one style applies to a particular element, then a web browser combines
the properties of all those styles, as long as they don’t conflict. An example will make
this concept clearer. Imagine you have a paragraph that lists the name of the web
page’s author, including a link to his email address. The HTML might look like this:

<p class="byline">Written by Jean Graine
de Pomme</p>

Meanwhile, the page’s style sheet has three styles that format the link:

a { color: #6378df; }
p a { font-weight: bold; }
.byline a { text-decoration: none; }

The first style turns all <a> tags powder blue; the second style makes all <a> tags
that appear inside a <p> tag bold; and the third style removes the underline from
any links that appear inside an element with the byline class applied to it.

All three styles apply to that very popular <a> tag, but since none of the proper-
ties are the same, there are no conflicts between the rules. The situation is similar
to the inheritance example (page 104): the styles combine to make one überstyle
containing all three properties, so this particular link appears powder blue, bold,
and underline-free.

Css3: tHe MIssInG MAnUAL108

SPECIFICITY:
WHICH STYLE

WINS
 NOTE  Your head will really start to ache when you realize that this particular link’s formatting can also be
affected by inherited properties. For example, it would inherit any font family that’s applied to the paragraph. A
few tools can help sort out what’s going on in the cascade. (See the box on page 110.)

Specificity: Which Style Wins
The previous example is pretty straightforward. But what if the three link styles
above each had a different font specified for the font-family property? Which of
the three fonts would a web browser pay attention to?

As you know if you’ve been reading carefully so far, the cascade provides a set of
rules that helps a web browser sort out any property conflicts; namely, properties
from the most specific style win. But as with the styles listed above, sometimes it’s
not clear which style is most specific. Thankfully, CSS provides a formula for deter-
mining a style’s specificity that’s based on a value assigned to the style’s selector—a
tag selector, class selector, ID selector, and so on. Here’s how the system works:

• A tag selector is worth 1 point.

• A class selector is worth 10 points.

• An ID selector is worth 100 points.

• An inline style (page 44) is worth 1,000 points.

 NOTE  The math involved in calculating specificity is actually a bit more complicated than described here.
But this formula works in all but the weirdest cases. To read how web browsers actually calculate specificity, visit
www.w3.org/TR/css3-selectors/#specificity.

The bigger the number, the greater the specificity. So say you create the following
three styles:

• A tag style for the tag (specificity = 1)

• A class style named .highlight (specificity = 10)

• An ID style named #logo (specificity = 100)

Then, say your web page has this HTML: <img id="logo" class="highlight"
src="logo.gif" />. If you define the same property—such as the border property—in
all three styles, then the value from the ID style (#logo) always wins out.

 NOTE  A pseudo-element (like ::first-line for example) is treated like a tag selector and is worth 1
point. A pseudo-class (:link, for example) is treated like a class and is worth 10 points. (See page 68 for the
deal on these pseudo-things.)

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 109

SPECIFICITY:
WHICH STYLE

WINS
Since descendent selectors are composed of several selectors—#content p, or h2
strong, for example—the math gets a bit more complicated. The specificity of a
descendent selector is the total value of all of the selectors listed (see Figure 5-3).

FiGURE 5-3
When more than one style applies to
a tag, a web browser must determine
which style should “win out” in
case style properties conflict. In CSS,
a style’s importance is known as
specificity and is determined by the
type of selectors used when creating
the style. Each type of selector has a
different value, and when multiple
selector types appear in one style—
for example, the descendent selector
#banner p—the values of all the
selectors used are added up.

 NOTE  Inherited properties don’t have any specificity. So even if a tag inherits properties from a style with
a large specificity—like #banner—those properties will always be overridden by a style that directly applies to
the tag.

The Tiebreaker: Last Style Wins
It’s possible for two styles with conflicting properties to have the same specificity.
(“Oh brother, when will it end?” Soon, comrade, soon. The tutorial is coming up.) A
specificity tie can occur when you have the same selector defined in two locations.
You may have a <p> tag selector defined in an internal style sheet and an external
style sheet. Or two different styles may simply have equal specificity values. In case
of a tie, the style appearing last in the style sheet wins.

Here’s a tricky example using the following HTML:

<p class="byline">Written by <a class="email" href="mailto:jean@cosmofarmer.
com">Jean Graine de Pomme</p>

In the style sheet for the page containing the above paragraph and link, you have
two styles:

p .email { color: blue; }
.byline a { color: red; }

Both styles have a specificity of 11 (10 for a class name and 1 for a tag selector) and
both apply to the <a> tag. The two styles are tied. Which color does the browser
use to color the link in the above paragraph? Answer: Red, since it’s the second (and
last) style in the sheet.

Css3: tHe MIssInG MAnUAL110

SPECIFICITY:
WHICH STYLE

WINS

FREQUENTLY ASKED QUESTION

Get a Little Help
My head hurts from all of this. Isn’t there some tool I can use to
help me figure out how the cascade is affecting my web page?

Trying to figure out all the ins and outs of inherited properties
and conflicting styles confuses many folks. Furthermore, doing
the math to figure out a style’s specificity isn’t your average
web designer’s idea of fun, especially when there are large
style sheets with lots of descendent selectors.

All current web browsers have built-in help in the form of an
inspector. The fastest way to inspect an element on a page
and all the CSS that affects it is to right-click (Control-click on
a Mac) the element (the headline, link, paragraph, or image),
and choose Inspect Element from the contextual menu. A panel
will open (usually beneath the web page) showing the page’s
HTML, with your selected element’s HTML highlighted. (To
get this to work in Safari, you first need to turn on the Show
Develop Menu option in the Preferences window→Advanced.)

On the right side of the panel, you’ll see the styles applied
to the element. There’s usually a “computed” style—the sum
total of all the CSS properties applied to the element through
inheritance and the cascade or the element’s “Frankenstyle.”
Below that you’ll find the style rules that apply to the element,
listed in order of most specific (at the top) to least specific (at
the bottom).

In the listing of styles, you’ll probably see some properties
crossed out—this indicates that the property either doesn’t
apply to the element or that it’s been overridden by a more
specific style. For a couple of short tutorials on using Chrome’s
Developer’s Tools for analyzing CSS, visit https://developers
.google.com/chrome-developer-tools/docs/elements-styles
and http://webdesign.tutsplus.com/tutorials/workflow-
tutorials/faster-htmlcss-workflow-with-chrome-developer-
tools/.

Now suppose the style sheet looked like this instead:

.byline a {color: red; }
p. email { color: blue; }

In this case, the link would be blue. Since p .email appears after .byline in the style
sheet, its properties win out.

What happens if you’ve got conflicting rules in an external and an internal style
sheet? In that case, the placement of your style sheets (within your HTML file) be-
comes very important. If you first add an internal style sheet by using the <style>
tag (page 45) and then attach an external style sheet farther down in the HTML by
using the <link> tag (page 48), then the style from the external style sheet wins.
(In effect, it’s the same principle at work that you just finished reading about: The
style appearing last wins.) The bottom line: Be consistent in how you place external
style sheets. It’s best to list any external style sheets first, and only use an internal
style sheet when you absolutely need one or more styles to apply to a single page.

 NOTE  Any external style sheets attached with the @import rule have to appear before internal styles
within a <style> tag, and before any styles in an external style sheet. See page 48 for more information on
external and internal style sheets.

https://developers.google.com/chrome-developer-tools/docs/elements-styles
https://developers.google.com/chrome-developer-tools/docs/elements-styles
http://webdesign.tutsplus.com/tutorials/workflow-%20tutorials/faster-htmlcss-workflow-with-chrome-developer-tools/
http://webdesign.tutsplus.com/tutorials/workflow-%20tutorials/faster-htmlcss-workflow-with-chrome-developer-tools/
http://webdesign.tutsplus.com/tutorials/workflow-%20tutorials/faster-htmlcss-workflow-with-chrome-developer-tools/

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 111

CONTROLLING
THE CASCADE

TROUBLESHOOTING MOMENT

Overruling Specificity
CSS provides a way of overruling specificity entirely. You can
use this trick when you absolutely, positively want to make
sure that a particular property can’t be overridden by a more
specific style. Simply insert !important after any property
to shield it from specificity-based overrides.

For example, consider the two following styles:

.nav a { color: red; }
a { color: teal !important; }

Normally, a link inside an element with the class of nav would
be colored red since the .nav a style is more specific than
the a tag style.

However, including !important after a property value
means that property always wins. So in the above example,
all links on the page—including those inside an element with
the nav class—are teal.

Note that !important works on an individual property, not
an entire style, so you need to add !important to the end of
each property you wish to make invincible. Finally, when two
styles both have !important applied to the same property,
the more specific style’s !important rule wins.

Controlling the Cascade
As you can see, the more CSS styles you create, the greater the potential for format-
ting snafus. For example, you may create a class style specifying a particular font
and font size, but when you apply the style to a paragraph, nothing happens! This
kind of problem is usually related to the cascade. Even though you may think that
directly applying a class to a tag should apply the class’s formatting properties, it
may not if there’s a style with greater specificity.

You have a couple of options for dealing with this kind of problem. First, you can use
!important (as described in the box above) to make sure a property always applies.
The !important approach is a bit heavy-handed, though, since it’s hard to predict
that you’ll never, ever, want to overrule an !important property someday. Read on
for two other cascade-tweaking solutions.

Changing the Specificity
The top picture in Figure 5-4 is an example of a specific tag style losing out in the
cascade game. Fortunately, most of the time, you can easily change the specificity
of one of the conflicting styles and save !important for real emergencies. In Figure
5-4 (top), two styles format the first paragraph. The class style—.intro—isn’t as
specific as the #sidebar p style, so .intro’s properties don’t get applied to the
paragraph. To increase the specificity of the class, add the ID name to the style:
#sidebar .intro.

Css3: tHe MIssInG MAnUAL112

CONTROLLING
THE CASCADE

FiGURE 5-4
Even though a class is ap-
plied to a specific tag—like
the first paragraph in the top
image—its properties may
not always have an effect.
In this case, the paragraph
is inside a <div> tag with
an ID of #sidebar, so the
descendent selector #side-
bar p is more specific
than the .intro class. The
solution: Make the .intro
class more specific by adding
the ID before it—#sidebar
p.intro—as in the bottom
example.

However, simply tacking on additional selectors to make a style’s properties “win”
can lead to what’s been called specificity wars where you end up with style sheets
containing very long and convoluted style names like: #home #main #story h1. In
fact, as you’ll read on page 114, you should try to avoid these types of styles and
aim to keep your selectors as short as possible.

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 113

CONTROLLING
THE CASCADE

 NOTE  If you’re into math, the #sidebar p style has a specificity of 101 (100 for the ID, and 1 for the tag
selector), while the .intro style has a specificity of 10 (10 points for a class selector). Since 101 is greater than
10, #sidebar p takes precedence. Changing .intro to #sidebar .intro changes its specificity to 110.

Selective Overriding
You can also fine-tune your design by selectively overriding styles on certain pages.
Say you’ve created an external style sheet named styles.css that you’ve attached to
each page in your site. This file contains the general look and feel for your site—the
font and color of <h1> tags, how form elements should look, and so on. But maybe
on your home page, you want the <h1> tag to look slightly different than the rest of
the site—bolder and bigger, perhaps. Or the paragraph text should be smaller on the
home page, so you can wedge in more information. In other words, you still want
to use most of the styles from the styles.css file, but you simply want to override a
few properties for some of the tags (<h1>, <p>, and so on).

One approach is to simply create an internal style sheet listing the styles that you
want to override. Maybe the styles.css file has the following rule:

h1 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 24px;
 color: #000;
}

You want the <h1> tag on the home page to be bigger and red. So just add the fol-
lowing style in an internal style sheet on the home page:

h1 {
 font-size: 36px;
 color: red;
}

In this case, the <h1> tag on the home page would use the font Arial (from the
external style sheet) but would be red and 36 pixels tall (from the internal style).

 TIP  Make sure you attach the external style sheet before the internal style sheet in the <head> section of
the HTML. This ensures that the styles from the internal style sheet win out in cases where the specificity of two
styles are the same, as explained on page 114.

Another approach would be to create one more external style sheet—home.css for
example—that you attach to the home page in addition to the styles.css style sheet.
The home.css file would contain the style names and properties that you want to
overrule from the styles.css file. For this to work, you need to make sure the home
.css file appears after the styles.css file in the HTML, like so:

<link rel="stylesheet" href="css/styles.css"/>
<link rel="stylesheet" href="css/home.css"/>

Css3: tHe MIssInG MAnUAL114

CONTROLLING
THE CASCADE

 TIP  Another way to fine-tune designs on a page-by-page basis is to use different class names for the <body>
tag of different types of pages—for example .review, .story, .home—and then create descendent selectors
to change the way tags on these types of pages look. This technique is discussed on page 67.

Avoiding Specificity Wars
As mentioned on page 61, many web designers these days avoid ID selectors in
favor of classes. One reason: ID selectors are very powerful, and, therefore, require
more power to override. This often leads to specificity wars in which style sheets get
loaded with unnecessarily long-winded and complicated selectors. This problem is
best explained by example. Say, for instance, your page has this snippet of HTML:

<div id="article">
<p>A paragraph</p>
<p>Another paragraph</p>
<p class="special">A special paragraph</p>
</div>

You decide that you want to color the paragraphs inside the article div red, so you
create a descendent selector like this:

#article p { color: red; }

But you want that one paragraph with the class of special to be blue. If you simply
create a class selector, you won’t get what you want.

.special { color: blue; }

As you read on page 108, when determining which properties to apply to a tag, a web
browser uses a simple mathematical formula to deal with style conflicts: browsers
give an ID selector a value of 100, a class selector a value of 10, and a tag selector a
value of 1. Because the selector #article p is composed of one ID and one element
(a total of 101 specificity points), it overrides the simple class style—forcing you to
change the selector:

#article .special {color: blue; }

Unfortunately, this change causes two more problems. First, it makes the selector
longer, and second, now that blue color is applied only when the special class ap-
pears inside something with an ID of article. In other words, if you copy the HTML
<p class="special">A special paragraph</p> and paste it elsewhere in the page,
it will no longer be blue. In other words, the use of the ID makes your selectors both
longer and less useful.

Now look what happens if you simply replace all IDs with classes. The previous
HTML would change to:

<div class="article">
<p>A paragraph</p>
<p>Another paragraph</p>
<p class="special">A special paragraph</p>
</div>

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 115

CONTROLLING
THE CASCADE

And you could change the CSS to this:

.article p { color: red; }
p.special { color: blue; }

The first style—.article p—is a descendent selector worth 11 points. The second
style p.special is also worth 11 points (one tag and one class) and means “apply the
following properties to any paragraph with the special class.” Now if you cut that
HTML and paste it anywhere else on the page, you’d get the blue styling you’re after.

This is just one example, but it’s not hard to find style sheets with ridiculously long
selectors like #home #article #sidebar #legal p and #home #article #sidebar
#legal p.special.

There’s basically no reason to use IDs. They don’t provide anything that you can’t
have with a simple class selector or tag selector, and their powerful specificity can
only lead you to unnecessarily complex style sheets.

 NOTE  For a more detailed discussion of why you should avoid ID selectors, visit http://csswizardry
.com/2011/09/when-using-ids-can-be-a-pain-in-the-class.

Starting with a Clean Slate
As discussed on page 96, browsers apply their own styles to tags: for example, <h1>
tags are bigger than <h2> tags, and both are bold, while paragraph text is smaller
and isn’t bold; links are blue and underlined; and bulleted lists are indented. There’s
nothing in the HTML standard that defines any of this formatting: Web browsers
just add this formatting to make basic HTML more readable. However, even though
browsers treat all tags roughly the same, they don’t treat them identically.

For example, Safari and Firefox use the padding property to indent bulleted lists, but
Internet Explorer uses the margin property. Likewise, you’ll find subtle differences in
the size of tags across browsers and an altogether confusing use of margins among
the most common web browsers. Because of these inconsistencies, you can run into
problems where, for instance, Firefox adds a top margin, while Internet Explorer
doesn’t. These types of problems aren’t your fault—they stem from differences in
the built-in browser styles.

To avoid cross-browser inconsistencies, it’s a good idea to start a style sheet with
a clean slate. In other words, erase the built-in browser formatting and supply your
own. The concept of erasing browser styling is called CSS reset. This section gives
you a working introduction.

In particular, there’s a core set of styles you should include at the top of your style
sheets. These styles set a baseline for properties that commonly are treated differ-
ently across browsers.

Here’s a bare-bones CSS reset:

http://csswizardry.com/2011/09/when-using-ids-can-be-a-pain-in-the-class
http://csswizardry.com/2011/09/when-using-ids-can-be-a-pain-in-the-class

Css3: tHe MIssInG MAnUAL116

CONTROLLING
THE CASCADE

html, body, div, span, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote,
pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd,
q, s, samp,small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt,
dd, ol, ul, li, fieldset, form, label, legend, table, caption, tbody, tfoot,
thead, tr, th, td, article, aside, canvas, details, embed, figure, figcaption,
footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark,
audio, video {
 margin: 0;
 padding: 0;
 border: 0;
 font-size: 100%;
 vertical-align: baseline;
}

article, aside, details, figcaption, figure, footer, header, hgroup, menu,
nav, section {
 display: block;
}
body {
 line-height: 1.2;
}
ol {
 padding-left: 1.4em;
 list-style: decimal;
}
ul {
 padding-left: 1.4em
 list-style: square;
}
table {

 border-collapse: collapse;
 border-spacing: 0;
}

 NOTE  The above CSS reset is adapted from Eric Meyer’s well-known and influential CSS reset, which you
can find at http://meyerweb.com/eric/tools/css/reset.

The first style is a very long group selector (page 84) that takes the most common
tags and zeros them out—removing all the padding and margins, setting their base
text size to 100%, and removing bold text formatting. This step makes your tags
look pretty much identical (see Figure 5-5), but that’s the point—you want to start
at zero and then add your own formatting so that all browsers apply a consistent
look to your HTML.

The second selector (article, aside, details…) is another group selector that
helps older browsers correctly display the new HTML5 tags. The third selector (body)

CHAPteR 5: MANAGING MULTIPLE STYLES: THE CASCADE 117

TUTORIAL: THE
CASCADE IN

ACTION
style sets a consistent line-height (space between lines in a paragraph). You’ll learn
about the line-height property in the next chapter.

 NOTE  You don’t have to type all this code yourself. You’ll find a file named reset.css in the 05 tutorial folder
at www.sawmac.com/css3 that contains a basic CSS reset file. Just copy the styles from this file and paste them
into your own style sheets. Another approach to resets (discussed on page 551) is available in the Chapter 17
tutorial files inside the 17 folder.

The fourth and fifth styles (the ol and ul tag styles) set a consistent left margin and
style (page 173 introduces list styling), and the last style makes adding borders to
table cells easier (you’ll learn why this style is useful on page 380).

Tutorial: The Cascade in Action
In this tutorial, you’ll see how styles interact and how they can sometimes conflict
to create unexpected results. First, you’ll look at a basic page that has the CSS reset
styles mentioned above plus a couple of other styles that provide some simple layout.
Then, you’ll create two styles and see how some properties are inherited and how
others are overruled by the cascade. Then, you’ll see how inheritance affects tags
on a page and how a browser resolves any CSS conflicts. Finally, you’ll learn how to
troubleshoot problems created by the cascade.

To get started, you need to download the tutorial files located on this book’s com-
panion website at www.sawmac.com/css3. Click the tutorial link and download the
files. All of the files are enclosed in a zip archive, so you’ll need to unzip them first.
(Go to the website for detailed instructions on unzipping the files.) The files for this
tutorial are contained inside the folder named 05.

Resetting CSS and Styling from Scratch
First, take a look at the page you’ll be working on.

1. In a web browser, open the file named cascade.html located in the 05
tutorial folder (see Figure 5-5).

The page doesn’t look like much—two columns, one with a blue background
and a lot of same-looking text. There are a few styles already applied to this
file, so open the CSS up in a text editor and have a look.

2. Using your favorite text or web page editor, open the file styles.css located
in the 05 folder.

This file is the external style sheet that the cascade.html file uses. It has several
styles already in it—the first group is the CSS reset styles discussed on the
previous page. They eliminate the basic browser styles, which is why all of the
text currently looks the same. (You’ll create your own styles to make this page
look great soon.)

	The Missing Credits
	Introduction
		Part One:	CSS Basics
		Chapter 1:	HTML for CSS
	HTML: Past and Present
	Writing HTML for CSS
	The Importance of the Doctype
	Making Sure Internet Explorer Is Up-to-Date

		Chapter 2:	Creating Styles and Style Sheets
	Anatomy of a Style
	Understanding Style Sheets
	Internal Style Sheets
	External Style Sheets
	Tutorial: Creating Your First Styles

		Chapter 3: 	Selectors: Identifying What to Style
	Tag Selectors: Page-Wide Styling
	Class Selectors: Pinpoint Control
	ID Selectors: Specific Page Elements
	Styling Groups of Tags
	Styling Tags Within Tags
	Pseudo-Classes and Pseudo-Elements
	Attribute Selectors
	Child Selectors
	Siblings
	The :not() Selector
	Tutorial: Selector Sampler

		Chapter 4: 	Saving Time with Style Inheritance
	What Is Inheritance?
	How Inheritance Streamlines Style Sheets
	The Limits of Inheritance
	Tutorial: Inheritance

		Chapter 5:	Managing Multiple Styles: The Cascade
	How Styles Cascade
	Specificity: Which Style Wins
	Controlling the Cascade
	Tutorial: The Cascade in Action

		Part Two:	Applied CSS
		Chapter 6:	Formatting Text
	Using Fonts
	Using Web Fonts
	Discovering Google Web Fonts
	Adding Color to Text
	Changing Font Size
	Formatting Words and Letters
	Adding Text Shadow
	Formatting Entire Paragraphs
	Styling Lists
	Tutorial: Text Formatting in Action

		Chapter 7:	Margins, Padding, and Borders
	Understanding the Box Model
	Controling Space with Margins and Padding
	Adding Borders
	Coloring the Background
	Creating Rounded Corners
	Adding Drop Shadows
	Determining Height and Width
	Wrapping Content with Floating Elements
	Tutorial: Margins, Backgrounds, and Borders

		Chapter 8:	Adding Graphics to Web Pages
	Discovering CSS and the Tag
	Adding Background Images
	Controlling Repetition
	Positioning a Background Image
	Using Background Property Shorthand
	Using Multiple Background Images
	Utilizing Gradient Backgrounds
	Applying Easy Gradients with Colorzilla
	Tutorial: Enhancing Images
	Tutorial: Creating a Photo Gallery
	Tutorial: Using Background Images

		Chapter 9:	Sprucing Up Your Site’s Navigation
	Selecting Which Links to Style
	Styling Links
	Building Navigation Bars
	CSS-Style Preloading Rollovers
	Styling Particular Types of Links
	Tutorial: Styling Links
	Tutorial: Creating a Navigation Bar

		Chapter 10:	CSS Transforms, Transitions, and Animations
	Transforms
	Transitions
	Animations
	Tutorial

		Chapter 11:	Formatting Tables and Forms
	Using Tables the Right Way
	Styling Tables
	Styling Forms
	Tutorial: Styling a Table
	Tutorial: Styling a Form

		Part Three:	CSS Page Layout
		Chapter 12:	Introducing CSS Layout
	Types of Web Page Layouts
	How CSS Layout Works
	Layout Strategies

		Chapter 13:	Building Float-Based Layouts
	Applying Floats to Your Layouts
	Overcoming Float Problems
	Tutorial: Multiple Column Layouts

		Chapter 14:	Responsive Web Design
	Responsive Web Design Basics
	Setting Up a Web Page for RWD
	Media Queries
	Flexible Grids
	Fluid Images
	Responsive Web Design Tutorial

		Chapter 15:	Positioning Elements on a Web Page
	How Positioning Properties Work
	Powerful Positioning Strategies
	Tutorial: Positioning Page Elements

		Part Four:	Advanced CSS
		Chapter 16:	CSS for the Printed Page
	How Media Style Sheets Work
	How to Add Media Style Sheets
	Creating Print Style Sheets
	Tutorial: Building a Print Style Sheet

		Chapter 17:	Improving Your CSS Habits
	Adding Comments
	Organizing Styles and Style Sheets
	Eliminating Browser Style Interference
	Using Descendent Selectors
	Trying Different CSS for Internet Explorer

		Part Five:	Appendixes
		Appendix A:	CSS Property Reference
	CSS Values
	Text Properties
	List Properties
	Padding, Borders, and Margins
	Backgrounds
	Page Layout Properties
	Animation, Transform, and Transition Properties
	Table Properties
	Miscellaneous Properties

		Appendix B:	CSS Resources
	References
	CSS Help
	CSS Tips, Tricks, and Advice
	CSS Navigation
	CSS Layout
	Showcase Sites
	CSS Books
	CSS Software

	Index

