JavaScript 4:
Frameworks

Chapter 20

Randy Connolly and Ricardo Hoar Fundamentals of Web Development

© 2017 Pearson
http://www.funwebdev.com

Chapter 20

JavaScript
Frameworks

3 MongoDB 4 Angular
5 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Chapter 20

3 MongoDB 4 Angular
5 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

JavaScript Frameworks

Popularity of Frameworks

Interest over time

10K Angular _ e
& I //5_,//-“ React -
e e —— Backpone
® angular ® Ember ® React ® Backbone -
from libscore.com from Google Trends
Angular Backbone Ember React
Stackoverflow questions 187K 20K 19K 19K
Stackshare stacks 3.7K 1.3K 0.4K 1.7K
Github stars 51K 25K 16K 46K

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

JavaScript Frameworks

JavaScript Front-End Frameworks

* Ember forces developers to adopt a known and well-regarded
approach to structuring and implementing a web application.
It uses a variant of the MVC pattern

* Angular has many similarities to Ember (i.e., models,
templates, and routing), and has the added advantage of
being partially maintained by Google.

* React is a newer framework developed by Facebook. Unlike
Ember and Angular, React is not a complete MVC-like
framework; instead it focuses on the view.

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

JavaScript Frameworks

* Node.js
e Alternative to LAMP stack

e MEAN stack

e MongoDB-Express-Angular-Node.js

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Chapter 20

JavaScript
Frameworks

3 MongoDB 4 Angular
5 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Node.js

Push based web application

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Node.js

Blocking thread-based architecture (how apache /PHP run

Each thread executes the
entirety of the web application

YA This thread is
blocked while
it performs

I lengthly task

This thread’s done
and the generated
response is being
delivered (finally)

This thread is blocked
while it waits for the
database

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Node.js

Node.js single-thread architecture

There is only a
single thread |
running in an

event loop

This architecture
can handle way
more requests
at a time

Potential blocking tasks run
asynchronously thus do not
block main event loop

e These other tasks will
signal when ready for
event loop response

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Node.js

Working with Node.js

/[Load the http module to create an HTTP server
var http = require('http");

// Configure HTTP server to respond with Hello World to all requests

var server = http.createServer(function (request, response) {
response.writeHead(200, {"Content-Type": "text/plain"});
response.write("Hello this is our first node.js application\n");
response.end();

1

// Listen on port 7000 on localhost
server.listen(7000, "localhost");

// display a message on the terminal
console.log("Server running at http://127.0.0.1:7000/");

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Node.js

Working with Node.js

randy@randy-laptop MINGW64

$ node hello.js <

Server running atmttp: //127.0.0.1:7000/

[127.0.0.1:7000
[C' | [127.0.0.1:7000

Hello this is our first node.js application

First you have to run the program via node command
(You can stop the program via Ctrl-C)

_ 9 Then use browser to request URL and port

Note: every time you make a change to your
Node source file, you will have to stop the
program and re-run it.

Randy Connolly and Ricardo Hoar

Fundamentals of Web Development - 27¢ Ed.

Node.js

Static file server example

fileserver.js
var http = require("http");
var url = require("url");

var path = require("path"); Using two new modules in this example that process
var fs = require("fs"); URL paths and read/write local files.

/1 our HTTP server now returns requested files
var server = http.createServer(function (request, response) {

Il get the filename from the URL

var requestedFile = url.parse(request.url).pathname;

I/ now turn that into a file system file name by adding the current
// local folder path in front of the filename

var filename = path.join(process.cwd(), requestedFile);

Il check if it exists on the computer

fs.exists(filename, function(exists) { € @ D1 L]
/1 if it doesn't exist, then return a 404 response 404 Error
if (! exists) {

response.writeHead (404, —
{"Content-Type": "text/htm1"});

response.write("<h1>404 Error</h1>\n");

response.write("The requested file isn't on this machine\n");

response.end();

return;

/1 if no file was specified, then return default page
if (fs.statSync(filename).isDirectory())
filename += '/index.html'; —

/1 file was specified then read it in and send its
/1 contents to requestor

fs.readFile(filename, "binary", function(err, file) {
1/ maybe something went wrong .
if (err) {
response.writeHead (500, {"Content-Type": "text/htm1"});
response.write("<h1>500 Error</h1>\n");
response.write(err + "\n");
response.end() ;
return;
}
Il ... everything is fine so return contents of file
response.writeHead (200) ;
response.write(file, "binary"); —m ———>
response.end();
h;

}s

i
server.listen(7000, "localhost");
console.log("Server running at http://127.0.0.1:7000/");

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Node.js

Static file server example

fileserver.js
var http = require("http");
var url = require("url");

var path = require("path"); Using two new modules in this example that process
var fs = require("fs"); URL paths and read/write local files.

/1 our HTTP server now returns requested files
var server = http.createServer(function (request, response) {

Il get the filename from the URL

var requestedFile = url.parse(request.url).pathname;

I/ now turn that into a file system file name by adding the current
// local folder path in front of the filename

var filename = path.join(process.cwd(), requestedFile);

Il check if it exists on the computer

fs.exists(filename, function(exists) { € @ D1 L]
/1 if it doesn't exist, then return a 404 response 404 Error
if (! exists) {

response.writeHead (404, —
{"Content-Type": "text/htm1"});

response.write("<h1>404 Error</h1>\n");

response.write("The requested file isn't on this machine\n");

response.end();

return;

/1 if no file was specified, then return default page
if (fs.statSync(filename).isDirectory())
filename += '/index.html'; —

/1 file was specified then read it in and send its
/1 contents to requestor

fs.readFile(filename, "binary", function(err, file) {
1/ maybe something went wrong .
if (err) {
response.writeHead (500, {"Content-Type": "text/htm1"});
response.write("<h1>500 Error</h1>\n");
response.write(err + "\n");
response.end() ;
return;
}
Il ... everything is fine so return contents of file
response.writeHead (200) ;
response.write(file, "binary"); —m ———>
response.end();
h;

}s

i
server.listen(7000, "localhost");
console.log("Server running at http://127.0.0.1:7000/");

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Node.js

Chat application

o Notice request for server

_

F @ 1220017000 c|| =

Janet has joined

127.0.0.1:7000 says:

e Get user name

What's your username?

Randy

Prevent this page from cresting additions! dislogs.

oK Cance!
Ricarda has joined

Randy: Hello everyone

0) Chapter 20 x

€ > € 112700170 Qv O

1
"1
n

e Application sends different message
Chat [Randy] for new connections

Randy has joined |

Janet has joined

Ricardo has joined |
Randy: Hello everyone

Ricardo: This is a good example <

_
@ 127.002:3000 cjl=

| & 12700170 [

Ricards has joined

Aandy: Helo averyone
Janet has joned

Ricardo has jained This is a ge P m

Randy: Hella everyans

<
Ricardo: This s a good wample. €€

o Each user sees any submitted message

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 27¢ Ed.

Chapter 20

JavaScript
Frameworks

4 Angular

5 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

MongoDB

MongoDB Data Model

MongoDB is a document-based database system, and uses
different terminology and ideas to describe the way it organizes
its data.

 Collections
* Document
 Field

e Nested Document

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

MongoDB

Comparing to relational DB

Field
|

ArtistID Year

The Death of Marat
Artist
400 The School of Athens 37 1510
Table
15 David
408 Bacchus and Ariadne 25 1520
22 | Vermeer
425 Girl with a Pearl Earring | 22 1665
25 | Titian
438 | Starry Night 43 _ 1889
37 | Raphael <— Record
Join L5 |43 Van Gogh
Collection
{
"id" : 438,
"title" : "Starry Night",
"artist" : { Nested Document
"first": "Vincent",
"last": "Van Gogh",
"birth": 1853,
"died": 1890
Document g
"notable-works" : [{"id": 452, "title": "Sunflowers"}
"id": 265, "title": "Bedroom in Arles"}]
I
"year" : 1889,
"location" : { "name": "Museum of Modern Art",
"city": "New York City",
"address": "11 West 53rd Street" }
I
{
"id" : 400,
"title" : "The School of Athens",
"artist" @ {
"known-as": "Raphael"
"first": "Raffaello",
"last": "Sanzio da Urbino",
"birth": 1483,
"died": 1520
I
"year" : 1511,
"medium" : "fresco"
"location" : { "name": "Apostolic Palace",
"city": "Vatican City"}
}
Field

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

MongoDB

Running the MongoDB Shell

mongod o MongoDB daemon process needs to be started in a separate terminal window

mongod --help for help and startup options
2016-08-03T20:14:00.020+0000 [initandlisten] MongoDB starting :
2016-08-03T20:14:00.020+0000 [initandlisten] db version v2.6.11
2016-08-03T20:14:00.020+0000 [initandlisten] git version:

2016-08-04T17:00:49.737+0000 [initandlisten] waiting for connections on port 27017

e The MongoDB shell in another window lets you work with the data
mongo

MongoDB shell version: 2.6.11
connecting to: test
> use funwebdev <«—— Specifies the database to use (if it doesn’t exist it gets created)
switched to db funwebdev
> Specifies the collection to use (if it doesn't exist it gets created)
> i Adds new document
> db.art.insert({"id":438, "title" : "Starry Night"})
WriteResult({ "nInserted" : 1 })) Quotes around property names are optional
> db.art.insert({id:400, title : "The School of Athens"})
WriteResult({ "nInserted" : 1 })
>
The MongoDB shell is like the JavaScript console: you can write any valid JavaScript code

for (var i=1; i<=10; i++) db.users.insert({Name : "User" + i, Id: i})

db.art.find() €«——— returns all data in specified collection
"_id" : ObjectId("57a3780476..."), "id" : 438, "title" : "Starry Night" }
" _id" : ObjectId("57a378..."), "id" : 400, "title" : "The School of Athens" }

V V MM ™M V V V

db.art.find(Q) .sort({title: 1}) <«— Sortson title field (1=ascending)
> db.art.find({id:400}) <«—— Searches for object with id = 400
>-<;1b.art.f'ind({ id: {$gte: 400} }) <€—— Searches for objects with id >= 400
> db.art.find({title: /Night/}) <——— Regular expression search

> quitQ)
e Imports JSON data file into funwebdev database in the collection books
mongoimport --db funwebdev --collection books --file books.json --jsonArray
connected to: 127.0.0.1
2016-08-04T19:12:28.053+0000 check 9 215
2016-08-04T19:12:28.053+0000 imported 215 objects

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

MongoDB

Comparing a MongoDB query to an SQL query

MongoDB Query SQL Equivalent
db.art.find(SELECT
{ title, year, artist.last,
i title: /*The/, location.name
"artist.died": { $1t: 1800 } FROM
}, art
{ WHERE
title: 1, title LIKE "The%"
o year: 1, AND
ielsaer "artist.last": 1, artist.died < 1800
"location.name: 1 ORDER BY
} year, title
).sort({year: 1,title : 1}).1imit(5) LIMIT 5

Cursor Modifiers

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

MongoDB

Accessing MongoDB Data in Node.js

The official MongoDB driver for Node.js
(https://mongodb.github .io/node-mongodb-native/)
provides a comprehensive set of methods and
properties for accessing a MongoDB database

An ORM (Object-Relational Mapping) tool or
framework is a technique for moving data between
objects in your programming code and some form of
persistence storage (mongoose)

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Chapter 20

JavaScript
Frameworks

3 MongoDB
5 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Angular

Angular is a popular browser-based, open-source JavaScript
MVC framework (Goole driven)

It is the “A” in the MEAN stack, though like everything covered
in this chapter, it is independent of the other components of the
stack, and can be used without any of them.

Angular 2 now allows developers to write in TypeScript,
JavaScript, or Dart.

* many of the online examples and tutorials are TypeScript
only

* AngularJS uses JavaScript

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Angular

Why Angular]S — Well suited for Single Page Applications

Notice that only a
page address is ust
for most of the
application’s functionality.

[T rrery—

Additional Information

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Angular

Creating a Simple Angular]S Application

A directive for designating the root Angularl)S element
<htm1 ng-app>
<head>
<title>Chapter 20</title>
<script src="https://code.angularjs.org/1.5.0/angular.min.js" >
</script>
</head>
<body>

A template
2 A directive for saving the field value in the Model

Enter your name: <input type="text" ng-model="name" />
<p>You entered: {{ name }} </p>
m expression
<hr>
Enter your city: <input type="text" ng-model="city" />
<p>You entered: {{ city }} </p>
</body>
</htm1>

& C | [127.00.1:12673/figure20-18 htm agy =

Enter your name:

You entered:

& - C | [127.001:12673/figure20-18 htm afy =
Enter your city:

Enter your name: Randy
You entered:

You entered: Randy

Enter your city: Pari

You entered: Pari

A
|

Appears as user types into textbox

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Angular

A Controller

Now this directive is specifying the module used in the application
<htm1 ng-app="demo">
This element is going to use a controller to get its data

<body ng-controller="myController">

<div id="search"> Save the user’s input in a model property named search

City Search: <input type="text" ng-model="search" />
</div>

<table> A directive to loop through a collection named cities (which is defined in the controller)

<tr ng-repeat="city in cities | filter:search | orderBy: 'name'">

<td>{{city.name }}</td> Uses filters to alter how this element works. In this

<td>{{city.country}}</td> example, the filter filter and the orderBy filter
_— are used to modify how the ng-repeat works. Here
</tr> Data bind to values in the search refers to data item in the model.

</table> the collection
</body>
</html>

A module is an AngularJS container for the different components used in the application

var myapp = angular.module('demo',[]);
The $scope variable is passed (injected into)
Add a controller to the module named myController the controller by AngularJS

myapp.controller('myController', function ($scope) {

$scope.cities = [{name: 'Calgary', country: 'Canada'},
The $scope variable is used to {name: 'Toronto', country: 'Canada'},
sienE e el (ERiE). e {name: 'Boston', country: 'United States'},

we are defining an array of
object literals named cities {name: 'Seattle', country: 'United States'},

{name: 'Almeria', country: 'Spain'},
{name: 'Barcelona', country: 'Spain'}];

Search: The result in the browser (notice the sort order)

Almeria Spain

Barcelona Spain

Boston United States

Calgary Canada

Search: 8 The filter filter alters the displayed
cities based on the current value of the

Search text field.

Seattle United States

Toronto Canada

Barcelona Spain

Boston United States

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Angular

A Controller

Now this directive is specifying the module used in the application
<htm1 ng-app="demo">
This element is going to use a controller to get its data

<body ng-controller="myController">

<div id="search"> Save the user’s input in a model property named search

City Search: <input type="text" ng-model="search" />
</div>

<table> A directive to loop through a collection named cities (which is defined in the controller)

<tr ng-repeat="city in cities | filter:search | orderBy: 'name'">

<td>{{city.name }}</td> Uses filters to alter how this element works. In this

<td>{{city.country}}</td> example, the filter filter and the orderBy filter
_— are used to modify how the ng-repeat works. Here
</tr> Data bind to values in the search refers to data item in the model.

</table> the collection
</body>
</html>

A module is an AngularJS container for the different components used in the application

var myapp = angular.module('demo',[]);
The $scope variable is passed (injected into)
Add a controller to the module named myController the controller by AngularJS

myapp.controller('myController', function ($scope) {

$scope.cities = [{name: 'Calgary', country: 'Canada'},
The $scope variable is used to {name: 'Toronto', country: 'Canada'},
sienE e el (ERiE). e {name: 'Boston', country: 'United States'},

we are defining an array of
object literals named cities {name: 'Seattle', country: 'United States'},

{name: 'Almeria', country: 'Spain'},
{name: 'Barcelona', country: 'Spain'}];

Search: The result in the browser (notice the sort order)

Almeria Spain

Barcelona Spain

Boston United States

Calgary Canada

Search: 8 The filter filter alters the displayed
cities based on the current value of the

Search text field.

Seattle United States

Toronto Canada

Barcelona Spain

Boston United States

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Chapter 20

JavaScript
Frameworks

3 MongoDB 4 Angular

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Summary

Key Terms

Angular

build tools
clickstream
commodity servers
context switching
DIRT (data-intensive

real-time)
applications

Ember

failover clustering
full-duplex

MEAN stack

module routing

multiple master sharding

replication single master
node.js replication

npm (Node Package Single-Page
Manager) Applications

ORM (Object- (SPA)

Relational software framework
Mapping) task runner tools

push-based web WebSockets
applications
React

Randy Connolly and Ricardo Hoar

Fundamentals of Web Development - 27¢ Ed.

Summary

Questions?

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

