Web Application
Design

Chapter 17

Randy Connolly and Ricardo Hoar Fundamentals of Web Development

© 2017 Pearson
http://www.funwebdev.com

Chapter 17

Real-World Web Principle of
Software Design Layering

Software Data and
Design Patterns Domain Patterns

5 Presentation
Patterns

7 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Chapter 17

Principle of
Layering

Software Data and
Design Patterns Domain Patterns

5 Presentation
Patterns

7 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Real-World Web Software Design

Challenges in Designing Web Applications

It is quite possible to create complex web applications
with little to no class design. The page-oriented
development approach is such that each page
contains most of the programming code it needs to
perform its operations.

* rapidly thought-out systems are rarely able to
handle unforeseen changes in an elegant way.

* a well-designed application infrastructure up front
can make your web application easier to modify
and maintain, easier to grow and expand in
functionality, less prone to bugs, and thus,
ultimately, in the long run easier to create

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Chapter 17

Real-World Web
Software Design

Software Data and
Design Patterns Domain Patterns

5 Presentation
Patterns

7 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Principle of Layering

What Is a Layer?

A layer, in the context of application development, is
simply a group of classes that are functionally or
logically related;

* each layer in an application should demonstrate
cohesion

* distribute the functionality of your software among
classes so that coupling is minimized.

A dependency is a relationship between two
elements where a change in one affects the other.

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Principle of Layering

What Is a Layer?

Layer 1

Classes

| << uses >> << uses >> |

|
Layer 2 Y

Classes

|
[
[
|
[
[
|
[
Layer 3 J

Classes
I
I
: << uses >>
Layer 4 '
y \\2
Classes

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Principle of Layering

Visualizing Tiers

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Principle of Layering

Common Layering Schemes

* Presentation Principally concerned with the display of
information to the user, as well as interacting with the user.

* Domain/Business The main logic of the application. Some
developers call this the business layer since it is modeling
the rules and processes of the business for which the
application is being written.

e Data Access Communicates with the data sources used by
the application. Often a database, but could be web
services, text files, or email systems.

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Principle of Layering

‘Two Layer Model

Presentation layer

PHP pages Helper functions

<< uses >>

Data layer

Data access Service helpers

W V2

DBMS Legacy system

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Principle of Layering

Business Rules and Processes

Presentation layer

ProcessOrder.php
EditPainting.php

CancelOrder.php

AddPainting.php

EditOrder.php

I
Business Rules {7 : ? Business Processes
¢ When creating I o After creating order,

a painting title, Data layer \/ check if it qualifies for any
ensure that it doesn't \ % discounts.
already exist. e Check if selected shipper
* Only allow delete if PaintingDataAccess OrderDataAccess available for weight of
no orders yet for this order.
painting. + CreatePainting() + CreateOrder() e Ensure financial system
e Ensure price is + RetrievePainting() + RetrieveOrder() approved purchase.
greater than cost. + UpdatePainting() + UpdateOrder() e Communicate to
+ DeletePainting() + DeleteOrder() inventory system to fulfill
(ship) order.

i ' ¢ Only allow order to be
——————— ——————= canceled if inventory

| system has not fulfilled

I order.

\/ e Communicate with
financial system to refund
purchase (or get more
funds if necessary).

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Principle of Layering

3-layer model

Presentation layer

PHP pages

Helper functions

L= ——>

Business layer

i
|
|
|
|
|
|
v

<< uses >>

Entities

Workflow

Data layer

K- ———— ——A

Data access

Service helpers

Randy Connolly and Ricardo Hoar

Fundamentals of Web Development - 27¢ Ed.

Principle of Layering

Simple mapping of tables to domain objects

Business layer

+ o+ o+ +

Artist Painting
id: int id: int
TastName: string artist: Artist

firstName: string
nationality: string

+ o+ o+ +

title: string
yearOfWork: date

OrderDetail Order

+ id: int + 1id:

+ artWork: Painting + orderDate: date

+ quantity: int < O + details: OrderDetails|[]

+ price: currency

DBMS
Artists Paintings OrderDetails Orders
PK ArtistID PK PaintingID PK OrderID PK OrderID
LastName a ArtistID a PK PaintingID OrderDate
FirstName ' Title ' Quantity CustomerID
Nationality YearOfWork Price
etc

Randy Connolly and Ricardo Hoar

Fundamentals of Web Development - 27¢ Ed.

Chapter 17

Real-World Web Principle of
Software Design Layering

Data and
Domain Patterns

5 Presentation
Patterns

7 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Software Design Patterns in the Web Context

Adapter Pattern

The Adapter pattern is used to convert the interface
of a set of classes that we need to use to a different
but preferred interface.

* frequently used in web projects as a way to make
use of a database API (such as PDO or mysqli)
without coupling the pages over and over to that
database API.

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Software Design Patterns in the Web Context

A database API adaptor

<< interface >>
SomeClass (or Page) r——2 DatabaseAdapterInterface
Client + beginTransaction()
+ commit ()
+ fetch(): Array
+ roll1Back()
+ runQuery(): mixed
+ setConnectionInfo() Adapter interface
A
|
I
I
_________________ I e s e e e e e e e e e e e e e
I I
I I
1 L
AdapterPDO AdapterMySQLi
+ beginTransaction() Concrete + beginTransaction()
+ commit() + commit()
+ fetch(): Array adapters + fetch(): Array
+ roll1Back() + roll1Back()
+ runQuery(): mixed + runQuery(): mixed
+ setConnectionInfo() + setConnectionInfo()
PDO mysqli
Adaptees
+ construct(host,user,pass,db) + construct(dsn,user,pass)
+ beginTransaction() + commit()
+ commit() + prepare(): mysqli_stmt
+ exec(): int + query(): mixed
+ prepare(): PDOStatement + rollback()
+ query(): PDOStatement
+ roll1Back()

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Software Design Patterns in the Web Context

Simple Factory Pattern

A factory is a special class that is responsible for the
creation of subclasses (or concrete implementations of
an interface), so that clients are not coupled to specific
subclasses or implementations.

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Software Design Patterns in the Web Context

Simple Factory Pattern

<?php
class DatabaseAdapterFactory {
/*
Notice that this creation method is static. The $type parameter
Is used to specify which adapter to instantiate
*/
public static function create($type, $connectionValues) {
$adapter = "DatabaseAdapter” . $type;
if (class_exists($adapter)) {
return new $adapter($connectionValues);
}
else {
throw new Exception("Data Adapter type does not
exist");
}
}
}
(>

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Software Design Patterns in the Web Context

Template Method Pattern

Client | SomeClass (or Page)

i
I Algorithm
|

\I/ public function findA11() {
$sq1 = getSelectStatement();
<<abstract>>)
TableDataGateway $results = $this->db->query($sql);

if (! $results) {
throw new Exception('Something happened');

getSelectStatement ()

}
+ findA11() return $this->lastStatement;
}

abstract protected function getSelectStatement();

ArtistTableGateway Concrete PaintingTableGateway
1,
getSelectStatement () classes # getSelectStatement ()
+ findA11 () + findA11 ()
i i
| |
| |
protected function getSelectStatement() protected function getSelectStatement ()
{ {
return 'select * from Artists'; return 'select * from Paintings';
} }

Randy Connolly and Ricardo Hoar

Fundamentals of Web Development - 27¢ Ed.

Software Design Patterns in the Web Context

Dependency Injection

abstract class TableDataGateway
{
protected $dbAdapter;
public function __ construct($dbAdapter){
if (is_null($dbAdapter))

throw new Exception("Database
adapter is null");

$this->dbAdapter = $dbAdapter;

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Chapter 17

Real-World Web Principle of
Software Design Layering

Software
Design Patterns

5 Presentation
Patterns

7 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Data and Domain Patterns

Table Data Gateway Pattern

<<abstract>>
TableDataGateway

getSelectStatement ()
etPrimaryKeyName << uses >>
ﬁndA]]Q g O > DatabaseAdapter
findById ()
findBy ()
insert()
update()
delete()

+ + + + + + W

ArtistTableGateway PaintingTableGateway

Concrete

I
getSelectStatement() classes # getSelectStatement()

getPrimaryKeyName () # getPrimaryKeyName ()

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Data and Domain Patterns

Domain Model Pattern

For programmers who are familiar with object-
oriented design, the Domain Model pattern is a
natural one. In it, the developer implements an object
model : that is, a variety of related classes that
represent objects in the problem domain of the
application.

e Often the domain model will be similar to the
database schema

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Data and Domain Patterns

Example Domain Model

<<abstract>>
DomainObject

__construct(datal[])
getFieldNames ()
doesFieldExist(name)
__get(name)
__set(name)
__isset(name)
__unset(name)

JAY

+ oo+

+ + o+

Artist Painting Order

+ __construct(datal]) + __construct(datal[]) + __construct(datal[])
getFieldNames() # getFieldNames() # getFieldNames ()

protected static function getFieldNames()

return array('ArtistID’',
'"FirstName',
'LastName',
'Nationality',
'YearOfBirth',
'YearOfDeath',
'Details’',
'"ArtistLink’

N

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Data and Domain Patterns

Active Record Pattern

* the domain objects have the responsibility for
* retrieving themselves from the database,

e updating or inserting the data into the underlying
database

* the properties of each class must mirror quite
closely the underlying table structure

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Data and Domain Patterns

Active Record Pattern

<<abstract>>
DomainObject
getFieldNames()
doesFieldExist(name)
+ __get(name)
+ __set(name)
+ __isset(name) <<§bstract>%
+ __unset(name) DomainCollection
Artist <> ArtistCollection
+ __construct(data[]) + artists[]
getFieldNames()
+ findByKey (ke + addArtist(artist)
+ insert() + removeArtist(artist)
+ update() + findA11 ()
+ delete() + findBy ()
T + insertMultiple()
l + updateMultiple()
: + deleteMultiple()
T
: << uses >> |
______________________ 4
T
|
\V4
DatabaseAdapter

Randy Connolly and Ricardo Hoar

Fundamentals of Web Development - 27¢ Ed.

Chapter 17

Real-World Web Principle of
Software Design Layering

Software Data and
Design Patterns Domain Patterns

7 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Presentation Patterns

Classic Model-View-Controller (MVC) Pattern

Retrieves

Requests .~

’ Manipulates

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Presentation Patterns

Model-View-Controller (MVC) Pattern Split across Client/server

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Presentation Patterns

Model-View-Controller (MVC) Pattern Reponses across Client/server

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Presentation Patterns

Front Controller Pattern

<< uses >>
FrontController = L ————— > <<abstract>>
ActionCommand
+ determineRequestedAction()
+ performCommonRequestProcessing() # processRequest ()
+ dispatchAction() + simpleFactory(): Command
JAY
ConcreteAction1 ConcreteAction2 ConcreteAction3
processRequest() # processRequest () # processRequest()

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Chapter 17

Real-World Web Principle of
Software Design Layering

Software Data and
Design Patterns Domain Patterns

5 Presentation
Patterns

7 Summary

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Testing

* Functional testing is testing the system’s functional
requirements.

* Non-functional testing refers to a broad category
of tests that do not cover the functionality of the
application, but instead evaluate quality
characteristics such as

e Usability
* Security

e Performance

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

Summary

Key Terms

Adapter pattern
business layer
business objects
business process
business rule
cohesion

controller

coupling

CRUD

data access objects
Dependency
Dependency Injection
pattern

design patterns

domain layer

Domain Model pattern
domain objects
entities

enterprise patterns
functional testing
gateway

layer

model
Model-View-Controller
(MVC) pattern
non-functional testing
object model

ORM

page-oriented development
approach

Simple Factory pattern
software design

Table Data Gateway
pattern

table gateways

Template Method pattern
tier

two-layer model

use cases

variable variables

view

Randy Connolly and Ricardo Hoar

Fundamentals of Web Development - 27¢ Ed.

Summary

Questions?

Randy Connolly and Ricardo Hoar Fundamentals of Web Development - 274 Ed.

