

jQuery
Pocket Reference

jQuery
Pocket Reference

David Flanagan

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

jQuery Pocket Reference
by David Flanagan

Copyright © 2011 David Flanagan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (http://my.safari
booksonline.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Simon St. Laurent
Production Editor: Teresa Elsey
Proofreader: Marlowe Shaeffer
Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
December 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designation, jQuery Pocket Reference, the image of a rufous-necked weaver
bird, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN: 978-1-449-39722-7

[TG] [2011-06-17]

1308326733

http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Contents

Preface ix

Chapter 1: Introduction to jQuery 1
jQuery Basics 3
The jQuery() Function 4
Queries and Query Results 8

Chapter 2: Element Getters and Setters 13
Getting and Setting HTML Attributes 14
Getting and Setting CSS Attributes 15
Getting and Setting CSS Classes 15
Getting and Setting HTML Form Values 17
Getting and Setting Element Content 18
Getting and Setting Element Geometry 18
Getting and Setting Element Data 21

Chapter 3: Altering Document Structure 25
Inserting and Replacing Elements 25
Copying Elements 28
Wrapping Elements 29
Deleting Elements 29

v

Chapter 4: Events 31
Simple Event Handler Registration 31
jQuery Event Handlers 34
The jQuery Event Object 34
Advanced Event Handler Registration 37
Deregistering Event Handlers 39
Triggering Events 41
Custom Events 44
Live Events 45

Chapter 5: Animated Effects 49
Simple Effects 52
Custom Animations 53
Canceling, Delaying, and Queuing Effects 58

Chapter 6: Ajax 63
The load() Method 63
Ajax Utility Functions 66
The jQuery.ajax() Function 72
Ajax Events 80

Chapter 7: Utility Functions 83

Chapter 8: Selectors and Selection Methods 89
jQuery Selectors 89
Selection Methods 95

Chapter 9: Extending jQuery with Plugins 103

Chapter 10: The jQuery UI Library 109

Chapter 11: jQuery Quick Reference 113
Factory Function 113

vi | Table of Contents

Selector Grammar 114
Basic Methods and Properties 115
Selection Methods 117
Element Methods 120
Insertion and Deletion Methods 123
Event Methods 126
Effects and Animation Methods 129
Ajax Functions 131
Utility Functions 134

Index 139

Table of Contents | vii

Preface

This book covers version 1.4 of the jQuery library for client-
side JavaScript programming. It is one chapter from my much
longer book JavaScript: The Definitive Guide. jQuery is such a
powerful library and so well suited to pocket reference format
that it seemed worth publishing this material on its own.

This book assumes that you already know how to program
with JavaScript, and that you are familiar with the basics of
client-side JavaScript programming without jQuery. For ex-
ample, you should know about DOM methods like getElement
ById(), getElementsByTagName(), and addEventListener().

Thanks to Raffaele Cecco for a timely and thorough review of
the book and of the code it contains. Thanks also to John Resig
and the entire jQuery team for creating such a useful library,
to my editor Mike Loukides for his enthusiasm for this project,
and to the O’Reilly production department for getting this
book out so quickly.

The examples in this book can be downloaded from the book’s
web page, which will also include errata if any errors are dis-
covered after publication:

http://oreilly.com/catalog/0636920016182/

ix

http://oreilly.com/catalog/9780596805531/
http://oreilly.com/catalog/0636920016182/

In general, you may use the examples in this book in your pro-
grams and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of
the code. We appreciate, but do not require, an attribution
like this: “From jQuery Pocket Reference by David Flanagan
(O’Reilly). Copyright 2011 David Flanagan,
978-1-449-39722-7.” If you feel your use of code examples falls
outside fair use or the permission given here, feel free to contact
us at permissions@oreilly.com.

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

This book is also available from the Safari Books Online serv-
ice. For full digital access to this book and others on similar
topics from O’Reilly and other publishers, sign up at http://
my.safaribooksonline.com.

x | Preface

mailto:permissions@oreilly.com
mailto:bookquestions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://my.safaribooksonline.com/?portal=oreilly

CHAPTER 1

Introduction to jQuery

JavaScript has an intentionally simple core API and an overly
complicated client-side API that is marred by major incompa-
tibilities between browsers. The arrival of IE9 eliminates the
worst of those incompatibilities, but many programmers find
it easier to write web applications using a JavaScript framework
or utility library to simplify common tasks and hide the differ-
ences between browsers. At the time of this writing, jQuery is
one of the most popular and widely used of these libraries.

Because it has become so widely used, web developers should
be familiar with the jQuery library: even if you don’t use it in
your own code, you are likely to encounter it in code written
by others. Fortunately, jQuery is stable and small enough to
document in pocket reference form.

jQuery makes it easy to find the elements of a document, and
then manipulate those elements by adding content, editing
HTML attributes and CSS properties, defining event handlers,
and performing animations. It also has Ajax utilities for dy-
namically making HTTP requests, and general-purpose utility
functions for working with objects and arrays.

As its name implies, the jQuery library is focused on queries.
A typical query uses a CSS selector to identify a set of document
elements and then returns an object that represents those ele-
ments. This returned object provides many useful methods for

1

operating on the matching elements as a group. Whenever
possible, these methods return the object on which they are
invoked, allowing a succinct method-chaining idiom to be
used. These features are at the heart of jQuery’s power and
utility:

• An expressive syntax (CSS selectors) for referring to
elements in the document

• An efficient query method for finding the set of document
elements that match a CSS selector

• A useful set of methods for manipulating selected
elements

• Powerful functional programming techniques for operat-
ing on sets of elements as a group, rather than one at a time

• A succinct idiom (method chaining) for expressing
sequences of operations

This book begins with an introduction to jQuery that shows
how to make simple queries and work with the results. The
chapters that follow explain:

• How to set HTML attributes; CSS styles and classes;
HTML form values; and element content, geometry, and
data

• How to alter the structure of a document by inserting,
replacing, wrapping, and deleting elements

• How to use jQuery’s cross-browser event model

• How to produce animated visual effects with jQuery

• jQuery’s Ajax utilities for making scripted HTTP requests

• jQuery’s utility functions

• The full syntax of jQuery’s selectors, and how to use
jQuery’s advanced selection methods

• How to extend jQuery by using and writing plugins

• The jQuery UI library

The end of this book is a quick reference to all of jQuery’s
methods and functions.

2 | Chapter 1: Introduction to jQuery

jQuery Basics
The jQuery library defines a single global function named
jQuery(). This function is so frequently used that the library
also defines the global symbol $ as a shortcut for it. These are
the only two symbols jQuery defines in the global namespace.*

This single global function with two names is the central query
function for jQuery. Here, for example, is how we ask for the
set of all <div> tags in a document:

var divs = $("div");

The value returned by this function represents a set of zero or
more DOM elements and is known as a jQuery object. Note
that jQuery() is a factory function rather than a constructor: it
returns a newly created object, but it is not used with the new
keyword. jQuery objects define many methods for operating
on the sets of elements they represent, and most of this book
is devoted to explaining those methods. Below, for example, is
code that finds, highlights, and quickly displays all hidden
<p> tags that have a class of “more”:

$("p.more").css("background-color", "gray").show("fast");

The css() method operates on the jQuery object returned by
$(), and returns that same object so that the show() method
can be invoked next in a compact “method chain”. This
method-chaining idiom is common in jQuery programming.
As another example, the code below finds all elements in the
document that have the CSS class “hide”, and registers an event
handler on each one. That event handler is invoked when the
user clicks on the element, making it slowly “slide up” and
disappear:

$(".hide").click(function() { $(this).slideUp("slow"); });

* If you use $ in your own code, or are using another library—such as
Prototype—that uses $, you can call jQuery.noConflict() to restore $ to its
original value.

jQuery Basics | 3

Obtaining jQuery
The jQuery library is free software you can download from
http://jquery.com. Once you have the code, you can include it
in your web pages with a <script> tag:

<script src="jquery-1.4.4.min.js"></script>

At the time of this writing, the current version of jQuery is
1.4.4. The “min” in the filename above indicates that this is
the minimized version of the library, with unnecessary com-
ments and whitespace removed, and internal identifiers re-
placed with shorter ones.

Another way to use jQuery in your web applications is to allow
a content distribution network to serve it using a URL like one
of these:

http://code.jquery.com/jquery-1.4.4.min.js

http://ajax.microsoft.com/ajax/jquery/jquery-1.4.4.min.js

http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js

Replace the “1.4.4” version number in the URLs above as nec-
essary. If you use the Google CDN, you can use “1.4” to get
the latest release in the 1.4.x series, or just “1” to get the most
current release less than 2.0. The major advantage of loading
jQuery from well-known URLs like these is that because of
jQuery’s popularity, visitors to your website will likely already
have a copy of the library in their browser’s cache and no
download will be necessary.

The jQuery() Function
The jQuery() function (a.k.a. $()) is the most important one
in the jQuery library. It is heavily overloaded, however, and
there are four different ways you can invoke it.

The first and most common way to invoke $() is to pass a CSS
selector (a string) to it. When called this way, it returns the set
of elements from the current document that match the selector.

4 | Chapter 1: Introduction to jQuery

http://jquery.com
http://code.jquery.com/jquery-1.4.4.min.js
http://ajax.microsoft.com/ajax/jquery/jquery-1.4.4.min.js
http://ajax.googleapis.com/ajax/libs/jquery/1.4.4/jquery.min.js

jQuery supports most of the CSS3 selector syntax, plus some
extensions of its own. Complete details of the jQuery selector
syntax are in “jQuery Selectors” on page 89. If you pass an
element or a jQuery object as the second argument to $(), it
returns only matching descendants of the specified element (or
elements). This optional second argument value defines the
starting point (or points) for the query and is often called the
context.

The second way to invoke $() is to pass it an Element, Docu-
ment, or Window object. Called like this, it simply wraps the
element, document, or window in a jQuery object and returns
that object, allowing you to use jQuery methods to manipulate
the element rather than using raw DOM methods. It is com-
mon to see jQuery programs call $(document) or $(this), for
example. jQuery objects can represent more than one element
in a document, and you can also pass an array of elements to
$(). In this case, the returned jQuery object represents the set
of elements in your array.

The third way to invoke $() is to pass it a string of HTML text.
When you do this, jQuery creates the HTML element (or ele-
ments) described by that text and then returns a jQuery object
representing those elements. jQuery does not automatically
insert the newly created elements into the document, but the
jQuery methods described in Chapter 3 allow you to easily in-
sert them where you want them. Note that you cannot pass
plain text when you invoke $() in this way, or jQuery will think
you are passing a CSS selector. For this style of invocation, the
string you pass to $() must include at least one HTML tag with
angle brackets.

When invoked in this third way, $() accepts an optional second
argument. You can pass a Document object to specify the
document with which the elements are to be associated. (If you
are creating elements to be inserted into an <iframe>, for ex-
ample, you’ll need to explicitly specify the document object of
that frame.) Or, you can pass an object as the second argument.
If you do this, the object properties are assumed to specify the
names and values of HTML attributes to be set on the object.

The jQuery() Function | 5

But, if the object includes properties with any of the names
"css", "html", "text", "width", "height", "offset", "val" or "data",
or properties that have the same name as any of the jQuery
event-handler registration methods, then jQuery will invoke
the method of the same name on the newly created element
and pass the property value to it. (Methods like css(), html()
and text() are covered below in Chapter 2 and event handler
registration methods are in Chapter 4. For example:

var img = $("", // Create a new tag
 { src:url, // with this HTML attribute,
 css: {borderWidth:5}, // this CSS style,
 click: handleClick // and this event handler.
 });

Finally, the fourth way to invoke $() is to pass a function to it.
If you do this, the function you pass will be invoked when the
document has been loaded and the DOM is ready to be ma-
nipulated. It is very common to see jQuery programs written
as anonymous functions defined within a call to jQuery():

jQuery(function() { // Invoked when document has loaded
 // All jQuery code goes here
});

You’ll sometimes see $(f) written using the older and more
verbose form: $(document).ready(f).

The function you pass to jQuery() will be invoked with the
document object as its this value and with the jQuery function
as its single argument. This means that you can undefine the
global $ function and still use that convenient alias locally with
this idiom:

jQuery.noConflict(); // Restore $ to its original state
jQuery(function($) {
 // Use $ as a local alias for the jQuery object
 // Put all your jQuery code here
});

jQuery triggers functions registered through $() when the
“DOMContentLoaded” event is fired, or, in browsers that
don’t support that event, when the “load” event is fired. This
means that the document will be completely parsed, but that

6 | Chapter 1: Introduction to jQuery

external resources such as images may not be loaded yet. If you
pass a function to $() after the DOM is ready, that function
will be invoked immediately—before $() returns.

The jQuery library also uses the jQuery() function as its name-
space, and defines a number of utility functions and properties
under it. The jQuery.noConflict() function mentioned above
is one such utility function. Others include jQuery.each()
for general-purpose iteration and jQuery.parseJSON() for pars-
ing JSON text. Chapter 7 lists general-purpose utility
functions, and other jQuery functions are described through-
out this book.

jQuery Terminology
Let’s pause here to define some important terms and phrases
that you’ll see throughout this book:

“the jQuery function”
The jQuery function is the value of jQuery or of $. This is
the function that creates jQuery objects and registers
handlers to be invoked when the DOM is ready; it also
serves as the jQuery namespace. I usually refer to it as
$(). Because it serves as a namespace, the jQuery function
might also be called “the global jQuery object”, but it is
very important not to confuse it with “a jQuery object”.

“a jQuery object”
A jQuery object is an object returned by the jQuery func-
tion. A jQuery object represents a set of document ele-
ments and can also be called a “jQuery result”, a “jQuery
set”, or a “wrapped set”.

“the selected elements”
When you pass a CSS selector to the jQuery function, it
returns a jQuery object that represents the set of docu-
ment elements matching that selector. When describing
the methods of the jQuery object, I’ll often use the phrase
“the selected elements” to refer to those matching ele-
ments. For example, to explain the attr() method, I
might write, “the attr() method sets HTML attributes
on the selected elements”, rather than a more precise but

The jQuery() Function | 7

awkward description like, “the attr() method sets
HTML attributes on the elements of the jQuery object on
which it was invoked”. Note that the word “selected” re-
fers to the CSS selector and has nothing to do with any
selection performed by the user.

“a jQuery function”
This is a function like jQuery.noConflict() that is defined
in the namespace of the jQuery function. jQuery func-
tions might also be described as “static methods”.

“a jQuery method”
A jQuery method is a method of a jQuery object returned
by the jQuery function. The most important part of the
jQuery library is the powerful methods it defines.

The distinction between jQuery functions and methods is
sometimes tricky because a number of functions and methods
have the same name. Note the differences between these two
lines of code:

// Call the jQuery function each() to invoke the
// function f once for each element of the array a
$.each(a,f);

// Call the jQuery() function to obtain a jQuery
// object that represents all <a> elements in the
// document. Then call the each() method of that
// jQuery object to invoke the function f once for
// each selected element.
$("a").each(f);

The official jQuery documentation at http://jquery.com uses
names like $.each to refer to jQuery functions, and names
like .each (with a period but without a dollar sign) to refer to
jQuery methods. In this book, I’ll use the term “function” and
“method” instead. Usually it will be clear from the context that
is being discussed.

Queries and Query Results
When you pass a jQuery selector string to $(), it returns a
jQuery object that represents the set of matched (or “selected”)

8 | Chapter 1: Introduction to jQuery

http://jquery.com

elements. jQuery selectors are very much like the CSS selectors
you use in stylesheets. For example:

div // all <div> elements
#surname // the element with id="surname"
.warning // all elements with class="warning"

$() vs. querySelectorAll()
The $() function is similar to the Document method
querySelectorAll(): both take a CSS selector as their argument
and return an array-like object that holds the elements that
match the selector. The jQuery implementation uses
querySelectorAll() in browsers that support it, but there are
good reasons to use $() instead of querySelectorAll() in your
own code:

• querySelectorAll() has only recently been implemented
by browser vendors, whereas $() works in older browsers
as well as new ones.

• Because jQuery can perform selections “by hand”, the
CSS3 selectors supported by $() work in all browsers, not
just those browsers that support CSS3.

• The array-like object returned by $() (a jQuery object) is
much more useful than the array-like object (a NodeList)
returned by querySelectorAll().

The specific selector syntax supported by jQuery is detailed in
“jQuery Selectors” on page 89. Rather than focus on those
advanced selector details now, we’re going to first explore what
you can do with the results of a query.

The value returned by $() is a jQuery object. jQuery objects
are array-like: they have a length property and numeric prop-
erties from 0 to length-1. This means that you can access the
contents of the jQuery object using standard square-bracket
array notation:

$("body").length // => 1: documents have only one body
$("body")[0] // This the same as document.body

Queries and Query Results | 9

If you prefer not to use array notation with jQuery objects, you
can use the size() method instead of the length property, and
the get() method instead of indexing with square brackets. If
you need to convert a jQuery object to a true array, call the
toArray() method.

In addition to the length property, jQuery objects have three
other properties that are sometimes of interest. The selector
property is the selector string (if any) that was used when the
jQuery object was created. The context property is the context
object that was passed as the second argument to $(), or the
Document object otherwise. Finally, all jQuery objects have a
property named jquery, and testing for the existence of this
property is a simple way to distinguish jQuery objects from
other array-like objects. The value of the jquery property is the
jQuery version number as a string:

// Find all <script> elements in the document body
var bodyscripts = $("script", document.body);
bodyscripts.selector // => "script"
bodyscripts.context // => document.body
bodyscripts.jquery // => "1.4.2"

If you want to loop over all elements in a jQuery object, call
the each() method instead of writing a for loop. The each()
method is something like the ECMAScript 5 (ES5) forEach()
array method. It expects a callback function as its sole argu-
ment, and invokes that callback function once for each element
in the jQuery object (in document order). The callback is in-
voked as a method of the matched element, so within the call-
back the this keyword refers to an Element object. each() also
passes the index and the element as the first and second argu-
ments to the callback. Note that this and the second argument
are raw document elements, not jQuery objects; if you want to
use a jQuery method to manipulate the element, you’ll need to
pass it to $() first.

jQuery’s each() method has one feature that is quite different
than forEach(): if your callback returns false for any element,
iteration is terminated after that element (this is like using the
break keyword in a normal loop). each() returns the jQuery

10 | Chapter 1: Introduction to jQuery

object on which it is called so that it can be used in method
chains. Here is an example (it uses the prepend() method that
will be explained in Chapter 3):

// Number the divs of the document, up to div#last
$("div").each(function(idx) { // Invoke for each <div>
 // Create a jQuery object from the element
 // And insert the index at start of it.
 $(this).prepend(idx + ": ");
 // Stop iterating when we reach #last
 if (this.id === "last")
 return false;
});

Despite the power of the each() method, it is not very com-
monly used since jQuery methods usually iterate implicitly
over the set of matched elements and operate on them all. You
typically only need to use each() if you need to manipulate the
matched elements in different ways. Even then, you may not
need to call each() since a number of jQuery methods allow
you to pass a callback function.

The jQuery library predates the ES5 array methods and defines
a couple of other methods that provide similar functionality.
The jQuery method map() works much like the Array.map()
method. It accepts a callback function as its argument and in-
vokes that function once for each element of the jQuery object,
collecting the return values of those invocations, and returning
a new jQuery object holding those return values. map() invokes
the callback in the same way as the each() method: the element
is passed as the this value and as the second argument, and
the index of the element is passed as the first argument. If the
callback returns null or undefined, that value is ignored and
nothing is added to the new jQuery object for that invocation.
If the callback returns an array or an array-like object (such as
a jQuery object), it is “flattened” and its elements are added
individually to the new jQuery object. Note that the jQuery
object returned by map() may not hold document elements, but
it still works as an array-like object. Here is an example:

$(":header") // Find all headings.
 .map(function() { // Map them to

Queries and Query Results | 11

 return this.id; // their ids.
 })
 .toArray() // Convert to a true array
 .sort(); // And sort that array

Along with each() and map(), another fundamental jQuery
method is index(). This method expects an element as its
argument, and it returns the index of that element in the jQuery
object, or -1 if it is not found. In typical jQuery fashion, how-
ever, this index() method is overloaded. If you pass a jQuery
object as the argument, index() searches for the first element
of that object. If you pass a string, index() uses it as a CSS
selector and returns the index of the first element of this jQuery
object in the set of elements matching that selector. And if you
pass no argument, index() returns the index of the first element
within its sibling elements.

The final general-purpose jQuery method we’ll discuss here is
is(). It takes a selector as its argument and returns true if at
least one of the selected elements also matches the specified
selector. You might use it in an each() callback function, for
example:

$("div").each(function() { // For each <div> element
 if ($(this).is(":hidden")) // Skip hidden elements
 return;
 // Do something with the visible ones here
});

12 | Chapter 1: Introduction to jQuery

CHAPTER 2

Element Getters and Setters

Some of the simplest and most common operations on jQuery
objects are those that get or set the value of HTML attributes,
CSS styles, element content, or element geometry. This chapter
describes those methods. First, however, it is worth making
some generalizations about getter and setter methods in
jQuery:

• Rather than defining a pair of methods, jQuery uses a sin-
gle method as both getter and setter. If you pass a new
value to the method, it sets that value; if you don’t specify
a value, it returns the current value.

• When used as setters, these methods set values on every
element in the jQuery object and then return the jQuery
object to allow method chaining.

• When used as a getter, these methods query only the first
element of the set of elements and return a single value.
(Use map() if you want to query all elements.) Since getters
do not return the jQuery object they are invoked on, they
can only appear at the end of a method chain.

• When used as setters, these methods often accept object
arguments. In this case, each property of the object speci-
fies a name and a value to be set.

• When used as setters, these methods often accept func-
tions as values. In this case, the function is invoked to

13

compute the value to be set. The element that the value is
being computed for is the this value: the element index is
passed as the first argument to the function, and the cur-
rent value is passed as the second argument.

Keep these generalizations about getters and setters in mind as
you read the rest of this chapter. Each section below explains
an important category of jQuery getter/setter methods.

Getting and Setting HTML Attributes
The attr() method is the jQuery getter/setter for HTML at-
tributes, and it adheres to each of the generalizations described
above. attr() handles browser incompatibilities and special
cases, and allows you to use either HTML attribute names or
their JavaScript property equivalents (where they differ). For
example, you can use either “for” or “htmlFor”, and either
“class” or “className”. removeAttr() is a related function that
completely removes an attribute from all selected elements.
Here are some examples:

// Query the action attr of 1st form
$("form").attr("action");
// Set the src attribute of element with id icon
$("#icon").attr("src", "icon.gif");
// Set 4 attributes at once
$("#banner").attr({src:"banner.gif",
 alt:"Advertisement",
 width:720, height:64});
// Make all links load in new windows
$("a").attr("target", "_blank");
// Compute the target attribute to load local links
// locally and load off-site links in a new window
$("a").attr("target", function() {
 if (this.host == location.host) return "_self"
 else return "_blank";
});
// We can also pass functions like this
$("a").attr({target: function() {...}});
// Make all links load in this window
$("a").removeAttr("target");

14 | Chapter 2: Element Getters and Setters

Getting and Setting CSS Attributes
The css() method is very much like the attr() method, but it
works with the CSS styles of an element rather than the HTML
attributes of the element. When querying style values, css()
returns the current style (or “computed style”) of the element:
the returned value may come from the style attribute or from
a stylesheet. Note that it is not possible to query compound
styles such as “font” or “margin”. You must instead query in-
dividual styles such as “font-weight”, “font-family”, “margin-
top”, and “margin-left”. When setting styles, the css() method
simply adds the style to the element’s style attribute. css()
allows you to use hyphenated CSS style names (“background-
color”) or camel-case JavaScript style names (“background-
Color”). When querying style values, css() returns numeric
values as strings, with the units suffix included. When setting,
however, it converts numbers to strings and adds a “px”
(pixels) suffix to them when necessary:

$("h1").css("font-weight"); // Get font weight of 1st <h1>
$("h1").css("fontWeight"); // Camel case works, too
$("h1").css("font"); // ERROR: can't query compound style
$("h1").css("font-variant", // Set style on all <h1> tags
 "smallcaps");
$("div.note").css("border", // Okay to set compound styles
 "solid black 2px");
// Set multiple styles at once
$("h1").css({ backgroundColor: "black",
 textColor: "white",
 fontVariant: "small-caps",
 padding: "10px 2px 4px 20px",
 border: "dotted black 4px" });
// Increase all <h1> font sizes by 25%
$("h1").css("font-size", function(i,curval) {
 return Math.round(1.25*parseInt(curval));
 });

Getting and Setting CSS Classes
Recall that the value of the class attribute (accessed via the
className property in JavaScript) is interpreted as a space-

Getting and Setting CSS Classes | 15

separated list of CSS class names. Usually, we want to add,
remove, or test for the presence of a single name in the list
rather than replace one list of classes with another. For this
reason, jQuery defines convenience methods for working with
the class attribute. addClass() and removeClass() add and re-
move classes from the selected elements. toggleClass() adds
classes to elements that don’t already have them, and removes
classes from those that do. hasClass() tests for the presence of
a specified class. Here are some examples:

// Add a CSS class to all <h1> tags
$("h1").addClass("hilite");
// Add 2 classes to <p> tags after <h1>
$("h1+p").addClass("hilite firstpara");
// Pass a function to add a computed class to each elt.
$("section").addClass(function(n) {
 return "section" + n;
});

// Remove a class from all <p> tags
$("p").removeClass("hilite");
// Multiple classes are allowed
$("p").removeClass("hilite firstpara");
// Remove computed classes from tags
$("section").removeClass(function(n) {
 return "section" + n;
});
// Remove all classes from all <div>s
$("div").removeClass();

// Toggle a CSS class: add the class if it is not
// there or remove it if it is.
$("tr:odd").toggleClass("oddrow");
// Toggle two classes at once
$("h1").toggleClass("big bold");
// Toggle a computed class or classes
$("h1").toggleClass(function(n) {
 return "big bold h1-" + n;
});
$("h1").toggleClass("hilite", true); // Like addClass
$("h1").toggleClass("hilite", false); // Like removeClass

// Testing for CSS classes: does any <p> have this class?
$("p").hasClass("firstpara")
// This does the same thing.

16 | Chapter 2: Element Getters and Setters

$("#lead").is(".firstpara")
// is() is more flexible than hasClass()
$("#lead").is(".firstpara.hilite")

Note that the hasClass() method is less flexible than add
Class(), removeClass(), and toggleClass(). hasClass() works
for only a single class name and does not support function ar-
guments. It returns true if any of the selected elements has the
specified CSS class, and it returns false if none of them does.
The is() method (described in “Queries and Query Re-
sults” on page 8) is more flexible and can be used for the same
purpose.

These jQuery methods are like the methods of the HTML5
classList property. But the jQuery methods work in all brows-
ers, not just those that support HTML5. Also, of course, the
jQuery methods work for multiple elements and can be
chained.

Getting and Setting HTML Form Values
val() is a method for setting and querying the value attribute
of HTML form elements, and also for querying and setting the
selection state of checkboxes, radio buttons, and <select>
elements:

// Get value from the surname text field
$("#surname").val()
// Get single value from <select>
$("#usstate").val()
// Get array of values from <select multiple>
$("select#extras").val()
// Get val of checked radio button
$("input:radio[name=ship]:checked").val()
// Set value of a text field
$("#email").val("Invalid email address")
// Check any checkboxes with these names or values
$("input:checkbox").val(["opt1", "opt2"])
// Reset all text fields to their default
$("input:text").val(function() {
 return this.defaultValue;
})

Getting and Setting HTML Form Values | 17

Getting and Setting Element Content
The text() and html() methods query and set the plain-text or
HTML content of an element. When invoked with no argu-
ments, text() returns the plain-text content of all descendant
text nodes of all matched elements. This works even in brows-
ers that do not support the textContent or innerText
properties.

If you invoke the html() method with no arguments, it returns
the HTML content of just the first matched element. jQuery
uses the innerHTML property to do this: x.html() is effectively
the same as x[0].innerHTML.

If you pass a string to text() or html(), that string will be used
for the plain-text or HTML-formatted text content of the ele-
ment, and it will replace all existing content. As with the other
setter methods we’ve seen, you can also pass a function, which
will be used to compute the new content string:

var t = $("head title").text(); // Get document title
var hdr = $("h1").html() // Get html of first <h1>
// Give each heading a section number
$("h1").text(function(n, current) {
 return "§" + (n+1) + ": " + current
});

Getting and Setting Element Geometry
It can be tricky to correctly determine the size and position of
an element, especially in browsers that do not support
getBoundingClientRect(). jQuery simplifies these computa-
tions with methods that work in any browser. Note that all of
the methods described here are getters, but only some can also
be used as setters.

To query or set the position of an element, use the offset()
method. This method measures positions relative to the docu-
ment, and returns them in the form of an object with left and
top properties that hold the X and Y coordinates. If you pass

18 | Chapter 2: Element Getters and Setters

an object with these properties to the method, it sets the posi-
tion you specify. It sets the CSS position attribute as necessary
to make elements positionable:

var elt = $("#sprite"); // The element we want to move
var pos = elt.offset(); // Get its current position
pos.top += 100; // change the Y coordinate
elt.offset(pos); // Set the new position

// Move all <h1> tags to the right by a distance
// that depends on their position in the document.
$("h1").offset(function(index,curpos) {
 return {
 left: curpos.left + 25*index,
 top:curpos.top
 };
});

The position() method is like offset() except that it is a getter
only, and it returns element positions relative to their offset
parent, rather than to the document as a whole. In the DOM,
every element has an offsetParent property to which its posi-
tion is relative. Positioned elements always serve as the offset
parents for their descendants, but some browsers also make
other elements, such as table cells, into offset parents. jQuery
only considers positioned elements to be offset parents, and
the offsetParent() method of a jQuery object maps each ele-
ment to the nearest positioned ancestor element or to the
<body> element. Note the unfortunate naming mismatch for
these methods: offset() returns the absolute position of an
element, in document coordinates; position() returns the off-
set of an element relative to its offsetParent().

There are three getters for querying the width of an element
and three for querying the height. The width() and height()
methods return the basic width and height and do not include
padding, borders, or margins. innerWidth() and inner
Height() return the width and height of an element plus the
width and height of its padding (the word “inner” refers to the
fact that these methods return the dimensions measured to
the inside of the border). outerWidth() and outerHeight() nor-
mally return the element’s dimensions plus its padding and

Getting and Setting Element Geometry | 19

border. If you pass the value true to either of these methods,
they also add in the size of the element’s margins. The code
below shows four different widths that you can compute for
an element:

var body = $("body");
// Four different widths, depending on what's included
var contentWidth = body.width();
var paddingWidth = body.innerWidth();
var borderWidth = body.outerWidth();
var marginWidth = body.outerWidth(true);
// Sums of the l and r padding, borders, and margins
var padding = paddingWidth-contentWidth;
var borders = borderWidth-paddingWidth;
var margins = marginWidth-borderWidth;

The width() and height() methods have features that the other
four methods (inner and outer) do not. One feature is that if
the first element of the jQuery object is a Window or Document
object, it returns the size of the window’s viewport or the full
size of the document. The other methods only work for ele-
ments, not windows or documents.

The other feature of the width() and height() methods is that
they are setters as well as getters. If you pass a value to these
methods, they set the width or height of every element in the
jQuery object. (Note, however, that they cannot set the width
or height of Window and Document objects.) If you pass a
number, it is taken as a dimension in pixels. If you pass a string
value, it is used as the value of the CSS width or height attribute
and can therefore use any CSS unit. Finally, as with other set-
ters, you can pass a function, which will be called to compute
the width or height.

There is a minor asymmetry between the getter and setter be-
havior of width() and height(). When used as getters, these
methods return the dimensions of an element’s content box,
excluding padding, borders, and margins. When you use them
as setters, however, they simply set the CSS width and height
attributes. By default, those attributes also specify the size of
the content box. But if an element has its CSS box-sizing at-
tribute set to border-box, the width() and height() methods

20 | Chapter 2: Element Getters and Setters

set dimensions that include the padding and border. For an
element e that uses the content-box model, calling
$(e).width(x).width() returns the value x. For elements that
use the border-box model, however, this is not generally the
case.

The final pair of geometry-related jQuery methods are scroll
Top() and scrollLeft(), which query the scrollbar positions
for an element or set the scrollbar positions for all elements.
These methods work for the Window object as well as for
document elements, and when invoked on a Document, they
query or set the scrollbar positions of the Window that holds
the document. Unlike other setters, you cannot pass a function
to scrollTop() or scrollLeft().

We can use scrollTop() as a getter and a setter, along with the
height() method to define a method that scrolls the window
up or down by the number of pages you specify:

// Scroll the window by n pages.
// n may be fractional or negative.
function page(n) {
 // Wrap the window in a jQuery object
 var w = $(window);
 // Get the size of a page
 var pagesize = w.height();
 // Get the current scrollbar position
 var current = w.scrollTop();
 // Set new scrollbar position n pages down
 w.scrollTop(current + n*pagesize);
}

Getting and Setting Element Data
jQuery defines a getter/setter method named data() that sets
or queries data associated with any document element or with
the Document or Window object. The ability to associate data
with any element is important and powerful: it is the basis for
jQuery’s event handler registration, effecting queuing mecha-
nisms. You may sometimes want to use the data() method in
your own code.

Getting and Setting Element Data | 21

To associate data with the elements in a jQuery object, call
data() as a setter method, passing a name and a value as the
two arguments. Alternatively, you can pass a single object to
the data() setter and each property of that object will be used
as a name/value pair to associate with the element or elements
of the jQuery object. Note, however, that when you pass an
object to data(), the properties of that object replace any data
previously associated with the element. Unlike many of the
other setter methods we’ve seen, data() does not invoke func-
tions you pass. If you pass a function as the second argument
to data(), that function is stored, just as any other value
would be.

The data() method can also serve as a getter, of course. When
invoked with no arguments, it returns an object containing all
name/value pairs associated with the first element in the
jQuery object. When you invoke data() with a single string
argument, it returns the value associated with that string for
the first element.

Use the removeData() method to remove data from an element.
(Using data() to set a named value to null or undefined is not
the same thing as actually deleting the named value.) If you
pass a string to removeData(), the method deletes any value
associated with that string for the element. If you call remove
Data() with no arguments, it removes all data associated with
the element.

$("div").data("x", 1); // Set some data
$("div.nodata").removeData("x"); // Remove some data
var x = $('#mydiv').data("x"); // Query some data

jQuery also defines utility function forms of the data() and
removeData() methods. You can associate data with an indi-
vidual element e using either the method or function form of
data():

$(e).data(...) // The method form
$.data(e, ...) // The function form

jQuery’s data framework does not store element data as prop-
erties of the elements themselves, but it does need to add one

22 | Chapter 2: Element Getters and Setters

special property to any element that has data associated with
it. Some browsers do not allow properties to be added to
<applet>, <object>, and <embed> elements, so jQuery simply
does not allow data to be associated with these elements.

Getting and Setting Element Data | 23

CHAPTER 3

Altering Document Structure

In “Getting and Setting Element Content” on page 18 we saw
the html() and text() methods for setting element content.
HTML documents are represented as a tree of nodes rather
than a linear sequence of characters, so insertions, deletions,
and replacements are not as simple as they are for strings and
arrays. The sections that follow explain the various jQuery
methods for more complex document modification.

Inserting and Replacing Elements
Let’s begin with basic methods for insertions and replace-
ments. Each of the methods demonstrated below takes an ar-
gument that specifies the content that is to be inserted into the
document. This can be a string of plain text or of HTML, or it
can be a jQuery object, Element, or text node. The insertion is
made into, before, after, or in place of (depending on the
method) each of the selected elements. If the content to be in-
serted is an element that already exists in the document, it is
moved from its current location. If it is to be inserted more than
once, the element is cloned. These methods all return the
jQuery object on which they are called. Note, however, that
after replaceWith() runs, the elements in the jQuery object are
no longer in the document:

25

// Add content at end of the #log element
$("#log").append("
"+message);
// Add section sign at start of each <h1>
$("h1").prepend("§");
// Insert a rule before and after each <h1>
$("h1").before("<hr/>");
$("h1").after("<hr/>");
// Replace <hr/> tags with
 tags
$("hr").replaceWith("
");
// Replace <h2> with <h1>, keeping content
$("h2").each(function() {
 var h2 = $(this);
 h2.replaceWith("<h1>" + h2.html() + "</h1>");
});
// after() and before() can also be called on text nodes.
// Here is another way to add § at the start of each <h1>
$("h1").map(function() { // Map each <h1> element to
 return this.firstChild; // its first content node
}).before("§");

Each of these five structure-altering methods can also be passed
a function that will be invoked to compute the value to be in-
serted. As usual, if you supply such a function it will be invoked
once for each selected element. The this value will be that el-
ement, and the first argument will be the index of that element
within the jQuery object. For the methods append(),
prepend(), and replaceWith(), the second argument is the cur-
rent content of the element as an HTML string. For before()
and after(), the function is invoked with no second argument.

The five methods demonstrated above are all invoked on target
elements and are passed the content that is to be inserted as an
argument. Each of those five methods can be paired with an-
other method that works the other way around: invoked on
the content and passed the target elements as the argument.
This table shows the method pairs:

26 | Chapter 3: Altering Document Structure

 $(target) $(content)

Operation .method(content) .method(target)

insert content at end of target append() appendTo()

insert content at start of target prepend() prependTo()

insert content after target after() insertAfter()

insert content before target before() insertBefore()

replace target with content replaceWith() replaceAll()

The methods demonstrated in the example code above are in
the second column; the methods in the third column are dem-
onstrated below. But first there are a few important things to
understand about these pairs of methods:

• If you pass a string to one of the methods in column two,
it is taken as a string of HTML to insert. If you pass a string
to one of the methods in column three, it is taken as a
selector that identifies the target elements. (You can also
identify the target elements directly by passing a jQuery
object, Element, or text node.)

• The column three methods do not accept function argu-
ments like the column two methods do.

• The methods in column two return the jQuery object on
which they were invoked. The elements in that jQuery
object may have new content or new siblings, but they are
not themselves altered. The methods in column three are
invoked on the content that is being inserted, and they
return a new jQuery object that represents the new con-
tent after its insertion. In particular, note that if content is
inserted at multiple locations, the returned jQuery object
will include one element for each location.

With those differences listed, the code below performs the
same operations as the code above, using the methods in the
third column instead of the methods in the second column.
Notice that in the second line we can’t pass plain text (without
angle brackets to identify it as HTML) to the $() method—it

Inserting and Replacing Elements | 27

thinks we’re specifying a selector. For this reason, we must
explicitly create the text node that we want to insert:

// Append html to #log
$("
+message").appendTo("#log");
// Append text node to <h1>s
$(document.createTextNode("§")).prependTo("h1");
// Insert rule before and after <h1>s
$("<hr/>").insertBefore("h1");
$("<hr/>").insertAfter("h1");
// Replace <hr/> with

$("
").replaceAll("hr");

Copying Elements
As noted above, if you insert elements that are already part of
the document, those elements will simply be moved, not cop-
ied, to their new location. If you are inserting the elements in
more than one place, jQuery will make copies as needed, but
copies are not made for only one insertion. If you want to copy
elements to a new location instead of moving them, you must
first make a copy with the clone() method. clone() makes and
returns a copy of each selected element (and of all descendants
of those elements). The elements in the returned jQuery object
are not part of the document yet, but you can insert them with
one of the methods above:

// Append a new div, with id "linklist" to the document
$(document.body)
 .append("<div id='linklist'><h1>Links</h1></div>");
// Copy all links in the document into that new div
$("a").clone().appendTo("#linklist");
// Add a
 after each link so they don't run together
$("#linklist > a").after("
");

clone() does not normally copy event handlers (see Chap-
ter 4) or other data you have associated with elements (see
“Getting and Setting Element Data” on page 21); pass true if
you want to clone that additional data as well.

28 | Chapter 3: Altering Document Structure

Wrapping Elements
Another type of insertion into an HTML document involves
wrapping a new element around one or more elements. jQuery
defines three wrapping functions: wrap() wraps each of the
selected elements, wrapInner() wraps the contents of each se-
lected element, and wrapAll() wraps the selected elements as
a group. These methods are usually passed a newly created
wrapper element or a string of HTML used to create a wrapper.
The HTML string can include multiple nested tags, if desired,
but there must be a single innermost element. If you pass a
function to any of these methods, it will be invoked once in the
context of each element (with the element index as its only
argument) and should return the wrapper string, Element, or
jQuery object. Here are some examples:

// Wrap all <h1> tags with <i> tags
// Produces <i><h1>...</h1></i>
$("h1").wrap(document.createElement("i"));
// Wrap the content of all <h1> tags.
// Produces <h1><i>...</i></h1>
$("h1").wrapInner("<i/>");
// Wrap the first paragraph in an anchor and div
$("body>p:first")
 .wrap("<div class='first'></div>");
// Wrap all the other paragraphs in another div
$("body>p:not(:first)")
 .wrapAll("<div class='rest'></div>");

Deleting Elements
Along with insertions and replacements, jQuery also defines
methods for deleting elements. empty() removes all children
(including text nodes) of each of the selected elements without
altering the elements themselves. The remove() method, by
contrast, removes the selected elements (and all of their con-
tent) from the document. remove() is normally invoked with
no arguments and removes all elements in the jQuery object.
If you pass an argument, however, it is treated as a selector,
and only elements of the jQuery object that also match the

Deleting Elements | 29

selector are removed. (If you just want to remove elements
from the set of selected elements, without removing them from
the document, use the filter() method, which is covered in
“Selection Methods” on page 95.) Note that it is not neces-
sary to remove elements before reinserting them into the
document: you can simply insert them at a new location and
they will be moved.

The remove() method removes any event handlers (see Chap-
ter 4) and other data (see “Getting and Setting Element
Data” on page 21) you may have bound to the removed ele-
ments. The detach() method works just like remove() but does
not remove event handlers and data. detach() may be more
useful when you want to temporarily remove elements from
the document for later reinsertion.

Finally, the unwrap() method performs element removal in a
way that is opposite of the wrap() or wrapAll() method: it re-
moves the parent of each selected element without affecting
the selected elements or their siblings. That is, for each selected
element, it replaces the parent of that element with its children.
Unlike remove() and detach(), unwrap() does not accept an
optional selector argument.

30 | Chapter 3: Altering Document Structure

CHAPTER 4

Events

One of the difficulties of working with events in client-side
JavaScript is that IE (until IE9) implements a different event
API than all other browsers. To address this difficulty, jQuery
defines a uniform event API that works in all browsers. In its
simple form, the jQuery API is easier to use than the standard
or IE event APIs. And in its more complex full-featured form,
the jQuery API is more powerful than the standard API. The
sections below have all the details.

Simple Event Handler Registration
jQuery defines simple event registration methods for each of
the commonly used and universally implemented browser
events. To register an event handler for “click” events, for ex-
ample, just call the click() method:

// Clicking on any <p> gives it a gray background
$("p").click(function() {
 $(this).css("background-color", "gray");
});

Calling a jQuery event registration method registers your
handler on all of the selected elements. This is typically much
easier than one-at-a-time event handler registration with
addEventListener() or attachEvent().

31

These are the simple event handler registration methods
jQuery defines:

blur() focusin() mousedown() mouseup()
change() focusout() mouseenter() resize()
click() keydown() mouseleave() scroll()
dblclick() keypress() mousemove() select()
error() keyup() mouseout() submit()
focus() load() mouseover() unload()

Most of these registration methods are for common event types
with which you are probably already familiar. A few notes are
in order, however. “focus” and “blur” events do not bubble,
but the “focusin” and “focusout” events do, and jQuery en-
sures that these events work in all browsers. Conversely, the
“mouseover” and “mouseout” events do bubble, which is often
inconvenient because it is difficult to know whether the mouse
has left the element you’re interested in, or whether it has sim-
ply moved out of one of the descendants of that element.
“mouseenter” and “mouseleave” are nonbubbling events that
solve this problem. These event types were originally intro-
duced by IE, and jQuery ensures that they work correctly in all
browsers.

The “resize” and “unload” event types are only ever fired on
the Window object, so if you want to register handlers for these
event types, you should invoke the resize() and unload()
methods on $(window). The scroll() method is also most often
used on $(window), but it can also be used on any element that
has scrollbars (such as when the CSS overflow attribute is set
to “scroll” or “auto”). The load() method can be called on
$(window) to register a “load” handler for the window, but it is
usually better to pass your initialization function directly to
$(), as shown in “The jQuery() Function” on page 4. You can
use the load() method on iframes and images, however. Note
that when invoked with different arguments, load() is also
used to load new content (via scripted HTTP) into an
element—see “The load() Method” on page 63. The
error() method can be used on elements to register han-
dlers that are invoked if an image fails to load. It should not be
used to set the Window onerror property.

32 | Chapter 4: Events

In addition to these simple event registration methods, there
are two special forms that are sometimes useful. The hover()
method registers handlers for “mouseenter” and “mouseleave”
events. Calling hover(f,g) is like calling mouseenter(f) and
then calling mouseleave(g). If you pass just one argument to
hover(), that function is used as the handler for both enter and
leave events.

The other special event registration method is toggle(). This
method binds event handler functions to the “click” event. You
specify two or more handler functions and jQuery invokes one
of them each time a click event occurs. If you call
toggle(f,g,h), for example, the function f() is invoked to
handle the first click event, g() is invoked to handle the second,
h() is invoked to handle the third, and f() is invoked again to
handle the fourth click event. Be careful when using
toggle(): as we’ll see in “Simple Effects” on page 52, this
method can also be used to show or hide (i.e., toggle the visi-
bility of) the selected elements.

We’ll learn about other more general ways to register event
handlers in the section “Advanced Event Handler Registra-
tion” on page 37, and we’ll end this section with one more
simple and convenient way to register handlers. Recall that you
can pass a string of HTML to $() to create the elements de-
scribed by that string, and that you can pass (as a second ar-
gument) an object of attributes to be set on the newly created
elements. This second argument can be any object that you
would pass to the attr() method. But, if any of the properties
have the same name as the event registration methods listed
above, the property value is taken as a handler function and is
registered as a handler for the named event type. For example:

$("", {
 src: image_url,
 alt: image_description,
 className: "translucent_image",
 click: function() { $(this).css("opacity", "50%"); }
});

Simple Event Handler Registration | 33

jQuery Event Handlers
The event handler functions in the examples above expect no
arguments and return no values. It is quite normal to write
event handlers like that, but jQuery does invoke every event
handler with one or more arguments, and it does pay attention
to the return value of your handlers. The most important thing
you should know is that every event handler is passed a jQuery
event object as its first argument. The fields of this object pro-
vide details (like mouse pointer coordinates) about the event.
jQuery simulates the W3C standard Event object, even in
browsers that do not support it (like IE8 and before), and
jQuery event objects have the same set of fields in all browsers.
This is explained in detail in “The jQuery Event Ob-
ject” on page 34.

Normally, event handlers are invoked with only the single
event object argument. But if you explicitly trigger an event
with trigger() (see “Triggering Events” on page 41), you can
pass an array of extra arguments. If you do this, those argu-
ments will be passed to the event handler after the first event
object argument.

Regardless of how they are registered, the return value of a
jQuery event handler function is always significant. If a handler
returns false, both the default action associated with the event
and any future propagation of the event are canceled. That is,
returning false is the same as calling the preventDefault() and
stopPropagation() methods of the Event object. Also, when an
event handler returns a value (other than undefined), jQuery
stores that value in the result property of the Event object
where it can be accessed by subsequently invoked event
handlers.

The jQuery Event Object
jQuery hides implementation differences among browsers by
defining its own Event object. When a jQuery event handler is

34 | Chapter 4: Events

invoked, it is always passed a jQuery Event object as its first
argument. The jQuery Event object is based heavily on W3C
standards, but it also codifies some de-facto event standards.
jQuery does not define a hierarchy of Event object types, for
example, there are not separate Event, MouseEvent, and Key-
Event types. jQuery copies all of the following fields from the
native Event object into every jQuery Event object (though
some of them will be undefined for certain event types):

altKey ctrlKey newValue screenX
attrChange currentTarget offsetX screenY
attrName detail offsetY shiftKey
bubbles eventPhase originalTarget srcElement
button fromElement pageX target
cancelable keyCode pageY toElement
charCode layerX prevValue view
clientX layerY relatedNode wheelDelta
clientY metaKey relatedTarget which

In addition to these properties, the Event object also defines
the following methods:

preventDefault() isDefaultPrevented()
stopPropagation() isPropagationStopped()
stopImmediatePropagation() isImmediatePropagationStopped()

Most of these event properties and methods are standardized
by the W3C, and you can read about them in any JavaScript
reference. Some of these fields, shown in the following list, are
specially handled by jQuery to give them a uniform cross-
browser behavior:

metaKey
If the native event object does not have a metaKey property,
jQuery sets this to the same value as the ctrlKey property.
In MacOS, the Command key sets the metaKey property.

pageX, pageY
If the native event object does not define these properties
but does define the viewport coordinates of the mouse
pointer in clientX and clientY, jQuery computes the
document coordinates of the mouse pointer and stores
them in pageX and pageY.

The jQuery Event Object | 35

target, currentTarget, relatedTarget
The target property is the document element on which
the event occurred. If the native event object has a text
node as the target, jQuery reports the containing Element
instead. currentTarget is the element on which the current
executing event handler was registered. This should al-
ways be the same as this.

If currentTarget is not the same as target, you’re handling
an event that has bubbled up from the element on which
it occurred, and it may be useful to test the target element
with the is() method (see “Queries and Query Re-
sults” on page 8):

// Ignore events that start on links
if ($(event.target).is("a")) return;

relatedTarget is the other element involved in transition
events such as “mouseover” and “mouseout”. For
“mouseover” events, for example, the relatedTarget
property specifies the element that the mouse pointer exi-
ted as it moved over the target. If the native event object
does not define relatedTarget but does define toElement
and fromElement, relatedTarget is set from those
properties.

timeStamp
The time at which the event occurred, in the millisecond
representation returned by the Date.getTime() method.
jQuery sets the field itself to work around a long-standing
bug in Firefox.

which
jQuery normalizes this nonstandard event property so
that it specifies which mouse button or keyboard key was
pressed during the event. For keyboard events, if the na-
tive event does not define which but defines charCode or
keyCode, then which will be set to whichever of those prop-
erties is defined. For mouse events, if which is not defined
but the button property is defined, which is set based on
the button value: 0 means no buttons are pressed, 1 means
the left button is pressed, 2 means the middle button is

36 | Chapter 4: Events

pressed, and 3 means the right button is pressed. (Note
that some browsers don’t generate mouse events for right-
button clicks.)

In addition, the following fields of the jQuery Event object are
jQuery-specific additions that you may sometimes find useful:

data
If additional data was specified when the event handler
was registered (see “Advanced Event Handler Registra-
tion”), it is made available to the handler as the value of
this field.

handler
A reference to the event handler function currently being
invoked.

result
The return value of the most recently invoked handler for
this event, ignoring handlers that do not return a value.

originalEvent
A reference to the native Event object generated by the
browser.

Advanced Event Handler Registration
We’ve seen that jQuery defines quite a few simple methods for
registering event handlers. Each of these simply invokes the
single, more complex method bind() to bind a handler for a
named event type to each of the elements in the jQuery object.
Using bind() directly allows you to use advanced event regis-
tration features that are not available through the simpler
methods.*

* jQuery uses the term “bind” for event handler registration. ECMAScript 5,
and a number of JavaScript frameworks, define a bind() method on
functions, and use the term for the association of functions with objects on
which they are to be invoked. jQuery’s version of the Function.bind()
method is a utility function named jQuery.proxy(), which you can read
about in Chapter 7.

Advanced Event Handler Registration | 37

In its simplest form, bind() expects an event type string as its
first argument and an event handler function as its second. The
simple event registration methods use this form of bind(). The
call $('p').click(f), for example, is equivalent to:

$('p').bind('click', f);

bind() can also be invoked with three arguments. In this form,
the event type is the first argument and the handler function is
the third. You can pass any value between those two and
jQuery will set the data property of the Event object to the value
you specify before it invokes the handler. It is sometimes useful
to pass additional data to your handlers in this way without
having to use closures.

There are other advanced features of bind() as well. If the first
argument is a space-separated list of event types, the handler
function will be registered for each of the named event types.
The call $('a').hover(f) (see “Simple Event Handler Regis-
tration” on page 31), for example, is the same as:

$('a').bind('mouseenter mouseleave', f);

Another important feature of bind() is that it allows you to
specify a namespace (or namespaces) for your event handlers
when you register them. This allows you to define groups of
handlers, which comes in handy if you later want to trigger or
de-register the handlers in a particular namespace. Handler
namespaces are especially useful for programmers who are
writing libraries or modules of reusable jQuery code. Event
namespaces look like CSS class selectors. To bind an event
handler in a namespace, add a period and the namespace name
to the event type string:

// Bind f as a mouseover handler in namespace "myMod"
$('a').bind('mouseover.myMod', f);

You can even assign a handler to multiple namespaces, like
this:

// Bind f as a mouseout handler in two namespaces
$('a').bind('mouseout.myMod.yourMod', f);

38 | Chapter 4: Events

The final feature of bind() is that the first argument can be an
object that maps event names to handler functions. To reuse
the hover() method example, the call $('a').hover(f,g) is the
same as:

$('a').bind({mouseenter:f, mouseleave:g});

When you use this form of bind(), the property names in the
object you pass can be space-separated strings of event types
and can include namespaces. If you specify a second argument
after the first object argument, that value is used as the data
argument for each of the event bindings.

jQuery has another event handler registration method: one().
This method is invoked and works just like bind(), except that
the event handler you register will automatically de-register
itself after it is invoked. As the method name implies, this
means that event handlers registered with one() will never be
triggered more than once.

One feature that bind() and one() do not have is the ability to
register capturing event handlers as you can with
addEventListener(). IE (until IE9) does not support capturing
handlers, and jQuery does not attempt to simulate that feature.

Deregistering Event Handlers
After registering an event handler with bind() (or with any of
the simpler event registration methods) you can deregister it
with unbind() to prevent it from being triggered by future
events. (Note that unbind() only deregisters event handlers
registered with bind() and related jQuery methods. It does not
deregister handlers passed to addEventListener() or the IE
method attachEvent(), and it does not remove handlers de-
fined by element attributes such as onclick and onmouseover.)
With no arguments, unbind() deregisters all event handlers (for
all event types) for all elements in the jQuery object:

// Remove all jQuery event handlers from all elements!
$('*').unbind();

Deregistering Event Handlers | 39

With one string argument, all handlers for the named event
type (or types, if the string names more than one) are unbound
from all elements in the jQuery object:

// Unbind all mouseover and mouseout handlers
// of all <a> tags
$('a').unbind("mouseover mouseout");

This is a heavy-handed approach and should not be used in
modular code because someone might also be using other
modules that register their own handlers for the same event
types on the same elements. If your module registered event
handlers using namespaces, however, you can use this one-
argument version of unbind() to deregister only the handlers
in your namespace:

// Unbind all mouseover and mouseout handlers
// in the "myMod" namespace
$('a').unbind("mouseover.myMod mouseout.myMod");
// Unbind handlers for any event in the myMod namespace
$('a').unbind(".myMod");
// Unbind click handlers that are in both namespaces
$('a').unbind("click.ns1.ns2");

If you want to be careful to unbind only event handlers you
registered yourself, and you did not use namespaces, you must
retain a reference to the event handler functions and use the
two-argument version of unbind(). In this form, the first argu-
ment is an event type string (without namespaces), and the
second argument is a handler function:

$('#mybutton').unbind('click', myClickHandler);

When invoked this way, unbind() deregisters the specified
event handler function for events of the specified type (or types)
from all elements in the jQuery object. Note that event han-
dlers can be unbound using this two-argument version of
unbind(), even when they were registered with an extra data
value using the three-argument version of bind().

You can also pass a single object argument to unbind(). In this
case, unbind() is invoked recursively for each property of the
object. The property name is used as the event type string, and
the property value is used as the handler function:

40 | Chapter 4: Events

$('a').unbind({ // Remove specific event handlers
 mouseover: mouseoverHandler,
 mouseout: mouseoutHandler
});

Finally, there is one more way that unbind() can be invoked. If
you pass a jQuery Event object to it, it unbinds the event han-
dler to which that event was passed. Calling unbind(ev) is
equivalent to unbind(ev.type, ev.handler).

Triggering Events
The event handlers you register are automatically invoked
when the user uses the mouse or keyboard, or when other kinds
of events occur. Sometimes, however, it is useful to be able to
trigger events manually. The simple way to do this is to invoke
one of the event registration methods (like click() or mouse
over()) with no argument. Just as many jQuery methods serve
as both getters and setters, these event methods register an
event handler when invoked with an argument, and trigger
event handlers when invoked with no arguments. For example:

// Act as if the user clicked the Submit button
$("#my_form").submit();

The submit() method in the line above synthesizes an Event
object and triggers any event handlers that have been registered
for the “submit” event. If none of those event handlers returns
false or calls the preventDefault() method of the Event object,
the form will actually be submitted. Note that events that bub-
ble will do so even when triggered manually. This means that
triggering an event on a selected set of elements may also trigger
handlers on the ancestors of those elements.

It is important to note that jQuery’s event triggering methods
will trigger any handlers registered with jQuery’s event regis-
tration methods, and they will also trigger handlers defined on
HTML attributes or Element properties such as onsubmit. But
you cannot manually trigger event handlers registered with
addEventListener() or attachEvent() (those handlers will still
be invoked when a real event occurs, however).

Triggering Events | 41

It is also important to note that jQuery’s event triggering mech-
anism is synchronous—there is no event queue involved.
When you trigger an event, event handlers are invoked imme-
diately, before the triggering method you called returns. If you
trigger a “click” event, and one of the triggered handlers trig-
gers a “submit” event, all of the matching submit handlers are
invoked before the next “click” handler is invoked.

Methods like submit() are convenient for binding and trigger-
ing events, but just as jQuery defines a more general bind()
method, it also defines a more general trigger() method. Nor-
mally, you invoke trigger() with an event type string as the
first argument, and it triggers the handlers registered for events
of that type on all elements in the jQuery object. So, the
submit() call above is equivalent to:

$("#my_form").trigger("submit");

Unlike the bind() and unbind() methods, you cannot specify
more than one event type in this string. Like bind() and
unbind(), however, you can specify event namespaces to trigger
only the handlers defined in that namespace. If you want to
trigger only event handlers that have no namespace, append an
exclamation mark to the event type. Handlers registered
through properties like onclick are considered to have no
namespace:

// Trigger button click handlers in namespace ns1
$("button").trigger("click.ns1");
// Trigger button click handlers in no namespace
$("button").trigger("click!");

Instead of passing an event type string as the first argument to
trigger(), you can also pass an Event object (or any object that
has a type property). The type property will be used to deter-
mine what kind of handlers to trigger. If you specified a jQuery
Event object, it will be the one passed to the triggered handlers.
If you specified a plain object, a new jQuery Event object will
be created, and the properties of the object you passed will be
added to it. This is an easy way to pass additional data to event
handlers:

42 | Chapter 4: Events

// The onclick handler of button1 triggers
// the same event on button2
$('#button1').click(function(e) {
 $('#button2').trigger(e);
});

// Add extra property to the event object when triggering
$('#button1').trigger({type:'click', synthetic:true});

// Test extra property to distinguish real from synthetic
$('#button1').click(function(e) {
 if (e.synthetic) {...};
});

There is another way to pass additional data to event handlers
when you trigger them manually. The value you pass as the
second argument to trigger() will become the second argu-
ment to each of the event handlers that is triggered. If you pass
an array as the second argument, each of its elements will be
passed as arguments to the triggered handlers:

// Pass a single extra argument
$('#button1').trigger("click", true);
// Pass three extra arguments
$('#button1').trigger("click", [x,y,z]);

Sometimes you may want to trigger all handlers for a given
event type, regardless of which document element those han-
dlers are bound to. You could select all elements with $('*')
and then call trigger() on the result, but that would be very
inefficient. Instead, call the jQuery.event.trigger() utility
function, which takes the same arguments as the trigger()
method but efficiently triggers event handlers for the specified
event type throughout the document. Note that “global
events” triggered in this way do not bubble, and only handlers
registered using jQuery methods (not event handlers registered
with DOM properties like onclick) are triggered with this
technique.

After invoking event handlers, trigger() (and the convenience
methods that call it) perform whatever default action is asso-
ciated with the triggered event (assuming that the event han-
dlers didn’t return false or call preventDefault() on the event

Triggering Events | 43

object). For example, if you trigger a “submit” event on a
<form> element, trigger() will call the submit() method of that
form, and if you trigger a “focus” event on an element,
trigger() will call the focus() method of that element.

If you want to invoke event handlers without performing the
default action, use triggerHandler(), which works just like
trigger() except that it first calls the preventDefault() and
cancelBubble() methods of the Event object. This means that
the synthetic event does not bubble or perform the default ac-
tion associated with it.

Custom Events
jQuery’s event management system is designed around the
standard events like mouse clicks and key presses that web
browsers generate. But it is not tied to those events, and you
can use any string you want as an event type name. With
bind(), you can register handlers for this kind of “custom
event”, and with trigger() you can cause those handlers to be
invoked.

This kind of indirect invocation of custom event handlers turns
out to be quite useful for writing modular code and imple-
menting a publish/subscribe model or the Observer pattern.
When using custom events you may find it useful to trigger
them globally with the jQuery.event.trigger() function in-
stead of the trigger() method:

// When the user clicks the "logoff" button, broadcast a
// custom event to any interested observers that need to
// save their state and then navigate to the logoff page.
$("#logoff").click(function() {
 $.event.trigger("logoff"); // Broadcast an event
 window.location = "logoff.php"; // Go to a new page
});

We’ll see in “Ajax Events” on page 80 that jQuery’s Ajax
methods broadcast custom events like this to notify interested
listeners.

44 | Chapter 4: Events

Live Events
The bind() method binds event handlers to specific document
elements, just as addEventListener() and attachEvent() do.
But web applications that use jQuery often dynamically create
new elements. If we’ve used bind() to bind an event handler to
all <a> elements in the document, and then we create new
document content with new <a> elements, those new elements
will not have the same event handlers as the old ones, so they
will behave differently.

jQuery addresses this issue with “live events”. To use live
events, use the delegate() and undelegate() methods instead
of bind() and unbind(). delegate() is usually invoked on
$(document) and is passed a jQuery selector string, a jQuery
event type string, and a jQuery event handler function. It reg-
isters an internal handler on the document or window (or on
whatever elements are in the jQuery object). When an event of
the specified type bubbles up to this internal handler, it deter-
mines whether the target of the event (the element that the
event occurred on) matches the selector string. If so, it invokes
the specified handler function. So to handle “mouseover”
events on both old and newly created <a> elements, you might
register a handler like this:

$(document).delegate("a", "mouseover", linkHandler);

Or, you might use bind() in the static portions of your docu-
ment and then use delegate() to handle the portions that
change dynamically:

// Static event handlers for static links
$("a").bind("mouseover", linkHandler);
// Live event handlers for dynamic parts of the document
$(".dynamic").delegate("a", "mouseover", linkHandler);

Just as the bind() method has a three-argument version that
allows you to specify the value of the data property of the event
object, the delegate() method has a four-argument version
that allows the same thing. To use this version, pass the data

Live Events | 45

value as the third argument and the handler function as the
fourth.

It is important to understand that live events depend on event
bubbling. By the time an event bubbles up to the document
object, it may have already been passed to a number of static
event handlers. And if any of those handlers called the cancel
Bubble() method of the Event object, the live event handler will
never be invoked.

jQuery defines a method named live() that can also be used
to register live events. live() is a little harder to understand
than delegate(), but it has the same two- or three-argument
signature as bind() and is more commonly used. The two calls
to delegate() shown above could also be written using live():

$("a").live("mouseover", linkHandler);
$("a", $(".dynamic")).live("mouseover", linkHandler);

When the live() method is invoked on a jQuery object, the
elements in that object are not actually used. What matters
instead is the selector string and the context object (the first
and second arguments to $()) that were used to create the
jQuery object. jQuery objects make these values available
through their context and selector properties (see “Queries
and Query Results” on page 8). Normally, you invoke $() with
only one argument and the context is the current document.
So for a jQuery object x, the following two lines of code do the
same thing:

x.live(type,handler);
$(x.context).delegate(x.selector, type, handler);

To deregister live event handlers, use die() or undelegate().
die() can be invoked with one or two arguments. With one
event type argument, it removes all live event handlers that
match the selector and the event type. And with an event type
and handler function argument, it removes only the one speci-
fied handler. Some examples:

// Remove all live handlers for mouseover on <a> tags
$('a').die('mouseover');

46 | Chapter 4: Events

// Remove just one specific live handler
$('a').die('mouseover', linkHandler);

undelegate() is like die() but more explicitly separates the
context (the elements on which the internal event handlers are
registered) and the selector string. The calls to die() above
could instead be written like this:

// Remove all live handlers for <a> tags
$(document).undelegate('a');
// Remove all live mouseover handlers for <a> tags
$(document).undelegate('a', 'mouseover');
// Remove one live mouseover handler for <a> tags
$(document).undelegate('a', 'mouseover', linkHandler);

Finally, undelegate() can also be called with no arguments at
all. In this case, it deregisters all live event handlers that are
delegated from the selected elements.

Live Events | 47

CHAPTER 5

Animated Effects

One powerful feature of client-side JavaScript is that you can
script the CSS styles of document elements. By setting the CSS
visibility property, for example, you can make elements ap-
pear and disappear. With clever programming, you can even
produce animated visual effects. Instead of just making an el-
ement disappear, for example, you might reduce the value of
its opacity property over the period of a half-second so that it
quickly fades away instead of just blinking out of existence.
This kind of animated visual effect creates a more pleasing ex-
perience for users, and jQuery makes them easy.

jQuery defines simple methods such as fadeIn() and fade
Out() for basic visual effects. In addition to simple effects
methods, it defines an animate() method for producing more
complex custom animations. The sections below explain both
the simple effects methods and the more general animate()
method. First, however, we’ll describe some general features
of jQuery’s animation framework.

For every animation, you need to specify a duration of time—
in milliseconds or by using a string—for how long the effect
should last. The string “fast” means 200ms. The string “slow”
means 600ms. If you specify a duration string that jQuery does
not recognize, or if you omit it, you’ll get a default duration of
400ms. You can define new duration names by adding new
string-to-number mappings to jQuery.fx.speeds:

49

jQuery.fx.speeds["medium-fast"] = 300;
jQuery.fx.speeds["medium-slow"] = 500;

jQuery’s effects methods usually take the effect duration as an
optional first argument. Some methods, however, produce an
instant nonanimated effect when you omit the duration:

$("#message").fadeIn(); // Fade in over 400ms
$("#message").fadeOut("fast"); // Fade out over 200ms
$("#message").show(); // Show instantly

Disabling Animations
Animated visual effects have become the norm on many web-
sites, but not all users like them—some find them distracting,
and others feel they cause motion sickness. Disabled users may
find that animations interfere with assistive technology like
screen readers, and users on old hardware may feel that such
effects require too much processing power. As a courtesy to
your users, you should generally keep your animations simple
and understated, and also provide an option to disable them
completely. jQuery makes it easy to disable all effects globally:
simply set jQuery.fx.off to true. This has the effect of chang-
ing the duration of every animation to 0ms, making them be-
have as instantaneous, nonanimated changes.

To allow end-users to disable effects, you might use code like
this in your scripts:

$(".stopmoving").click(function() {
 jQuery.fx.off = true;
});

Then, if the web designer includes an element with class “stop-
moving” on the page, the user can click it to disable
animations.

jQuery’s effects are asynchronous. When you call an animation
method like fadeIn(), it returns right away and the animation
is performed “in the background”. Because animation meth-
ods return before the animation is complete, the second argu-
ment (also optional) to many of jQuery’s effects methods is a

50 | Chapter 5: Animated Effects

function that will be invoked when the effect is complete. The
function is not passed any arguments, but the this value is set
to the document element that was animated. The callback
function is invoked once for each selected element:

// Quickly fade in an element, and when it is visible,
// display some text in it.
$("#message").fadeIn("fast", function() {
 $(this).text("Hello World");
});

Passing a callback function to an effect method allows you to
perform actions at the end of an effect. Note, however, that
this is not necessary when you simply want to perform multiple
effects in sequence. By default, jQuery’s animations are queued
(“The Animation Options Object” on page 55 shows how to
override this default). If you call an animation method on an
element that is already being animated, the new animation
does not begin right away but is deferred until the current ani-
mation ends. For example, you can make an element blink
before fading in permanently:

$("#blinker").fadeIn(100).fadeOut(100)
 .fadeIn(100).fadeOut(100)
 .fadeIn();

jQuery’s effects methods are declared to accept optional
duration and callback arguments. It is also possible to invoke
these methods with an object whose properties specify anima-
tion options:

// Pass duration and callback as object properties
$("#message").fadeIn({
 duration: "fast",
 complete: function(){ $(this).text("Hello World"); }
});

Passing an object of animation objects is most commonly done
with the general animate() method, but it is also possible for
the simpler effects methods. Using an options object allows
you to set other advanced options to control queuing and eas-
ing, for example. The available options are explained in “The
Animation Options Object” on page 55.

Animated Effects | 51

Simple Effects
jQuery defines nine simple effects methods to hide and show
elements. They can be divided into three groups based on the
kind of effect they perform:

fadeIn(), fadeOut(), fadeTo()
These are the simplest effects: fadeIn() and fadeOut()
animate the CSS opacity property to show or hide an el-
ement. Both accept optional duration and callback argu-
ments. fadeTo() is slightly different: it expects a target
opacity argument and animates the change from the ele-
ment’s current opacity to this target. For the fadeTo()
method, the duration (or options object) is required as the
first argument, and the target opacity is required as the
second argument. The callback function is an optional
third argument.

show(), hide(), toggle()
The fadeOut() method listed above makes elements in-
visible but retains space for them in the document layout.
The hide() method, by contrast, removes the elements
from the layout as if the CSS display property was set to
none. When invoked with no arguments, hide() and
show() simply hide or show the selected elements imme-
diately. With a duration (or options object) argument,
however, they animate the hiding or showing process.
hide() shrinks an element’s width and height to 0 at the
same time that it reduces the element’s opacity to 0.
show() reverses the process.

toggle() changes the visibility state of the elements it is
invoked on: if they are hidden, it calls show(); if they are
visible, it calls hide(). As with show() and hide(), you
must pass a duration or options object to toggle() to get
an animated effect. Passing true to toggle() is the same
as calling show() with no arguments, and passing
false() is the same as calling hide() with no arguments.
Note also that if you pass two or more function arguments

52 | Chapter 5: Animated Effects

to toggle(), it registers event handlers, as described in
“Simple Event Handler Registration” on page 31.

slideDown(), slideUp(), slideToggle()
slideUp() hides the elements in the jQuery object by
animating their height to 0 and then setting the CSS
display property to “none”. slideDown() reverses the
process to make a hidden element visible again.
slideToggle() toggles the visibility of an item using a slide
up or slide down animation. Each of the three methods
accepts the optional duration and callback arguments (or
the options object argument).

Here is an example that invokes methods from each of these
groups. Keep in mind that jQuery’s animations are queued by
default, so these animations are performed one after the other:

// Fade out, then show, then slide up, then slide down
$("img").fadeOut().show(300).slideUp().slideToggle();

Various jQuery plugins (see Chapter 9) add additional effect
methods to the library. The jQuery UI library (see Chap-
ter 10) includes a particularly comprehensive set of effects.

Custom Animations
You can use the animate() method to produce more general
animated effects than are available with the simple effects
methods. The first argument to animate() specifies what to
animate, and the remaining arguments specify how to animate
it. The first argument is required: it must be an object whose
properties specify CSS attributes and their target values.
animate() animates the CSS properties of each element from
its current value to the specified target value. So, for example,
the slideUp() effect described above can also be performed
with code like this:

// Shrink the height of all images to 0
$("img").animate({ height: 0 });

Custom Animations | 53

As an optional second argument, you can pass an options
object to animate():

$("#sprite").animate({
 opacity: .25, // Animate opacity to .25
 font-size: 10 // Animate font size to 10 pixels
}, {
 duration: 500, // Animation lasts 1/2 second
 complete: function() { // Call this when done
 this.text("Goodbye"); // Change element text.
 }
});

Instead of passing an options object as the second argument,
animate() also allows you to specify three of the most com-
monly used options as arguments. You can pass the duration
(as a number or string) as the second argument. You can specify
the name of an easing function (which will be explained
shortly) as the third argument. And you can specify a callback
function as the fourth argument.

In the most general case, animate() accepts two object argu-
ments: the first specifies what to animate, and the second
specifies how to animate it. To fully understand how to per-
form animations with jQuery, there are additional details
about both objects that you must know.

The Animation Properties Object
The first argument to animate() must be an object. The prop-
erty names for this object must be CSS attribute names, and
the values of those properties must be the target values toward
which the animation will move. Only numeric properties can
be animated: it is not possible to animate colors, fonts, or
enumerated properties such as display. If the value of a prop-
erty is a number, pixels are assumed. If the value is a string,
you may specify units. If you omit the units, pixels are again
assumed. To specify relative values, prefix the value string with
“+=” to increase the value or with “-=” to decrease the value.
For example:

54 | Chapter 5: Animated Effects

$("p").animate({
 "margin-left": "+=.5in", // Increase indent
 opacity: "-=.1" // And decrease opacity
});

Note the use of the quotes around the property name “margin-
left” in the object literal above. The hyphen in this property
name means that it is not a legal JavaScript identifier, so it must
be quoted here. jQuery also allows you to use the mixed-case
alternative “marginLeft”, of course.

In addition to numeric values (with optional units and “+=”
and “-=” prefixes), there are three other values that can be used
in jQuery animation objects. The value “hide” will save the
current state of the property and then animate that property
toward 0. The value “show” will animate a CSS property to-
ward its saved value. If an animation uses “show”, jQuery will
call the show() method when the animation completes. And if
an animation uses “hide”, jQuery will call hide() when the
animation completes. You can also use the value “toggle” to
perform either a show or a hide depending on the current set-
ting of the attribute. You can produce a “slideRight” effect
(similar to the slideUp() method, but animating element
width) like this:

$("img").animate({
 width: "hide",
 borderLeft: "hide",
 borderRight: "hide",
 paddingLeft: "hide",
 paddingRight: "hide"
});

Replace the property values with “show” or “toggle” to pro-
duce sideways slide effects analogous to slideDown() and
slideToggle().

The Animation Options Object
The second argument to animate() is an optional object that
holds options specifying how the animation is performed.
You’ve already seen two of the most important options. The

Custom Animations | 55

duration property specifies the length of the animation in mil-
liseconds, or as the string “fast”, “slow”, or any name you’ve
defined in jQuery.fx.speeds.

Another option you’ve already seen is the complete property:
it specifies a function that will be called when the animation is
complete. A similar property, step, specifies a function that is
called for each step or frame of the animation. The element
being animated is the this value, and the current value of the
property being animated is passed as the first argument.

The queue property of the options object specifies whether the
animation should be queued, or whether it should be deferred
until any pending animations have completed. By default, ani-
mations are queued, but you can disable this by setting the
queue property to false. Unqueued animations start immedi-
ately. Subsequent queued animations are not deferred for
unqueued animations. Consider the following code:

$("img").fadeIn(500)
 .animate({"width":"+=100"},
 {queue:false, duration:1000})
 .fadeOut(500);

The fadeIn() and fadeOut() effects are queued, but the call to
animate() (which animates the width property for 1000ms) is
not queued. The width animation begins at the same time the
fadeIn() effect begins. The fadeOut() effect begins as soon as
the fadeIn() effect ends—it does not wait for the width ani-
mation to complete.

The remaining animation options involve easing functions.
The easing property of the options object specifies the name
of an easing function. By default, jQuery uses the sinusoidal
function it calls “swing”. If you want your animations to be
linear, use an options object like this:

$("img").animate({"width":"+=100"},
 {duration: 500, easing:"linear"});

Recall that the duration, easing, and complete options can also
be specified by arguments to animate() instead of passing an

56 | Chapter 5: Animated Effects

options object. So, the animation above could also be written
like this:

$("img").animate({"width":"+=100"}, 500, "linear");

Easing Functions
The straightforward but naïve way to perform animations in-
volves a linear mapping between time and the value being ani-
mated. If we are 100ms into a 400ms animation, for example,
the animation is 25% done. If we are animating the opacity
property from 1.0 to 0.0 (for a fadeOut() call, perhaps), in a
linear animation, the opacity should be at 0.75 at this point in
the animation. It turns out, however, that visual effects are
more pleasing if they are not linear. So, jQuery interposes an
“easing function” that maps from a time-based completion
percentage to the desired effect percentage. jQuery calls the
easing function with a time-based value between 0 and 1. It
returns another value between 0 and 1, and jQuery computes
the value of the CSS property based on this computed value.
Generally, easing functions are expected to return 0 when
passed the value 0, and 1 when passed the value 1, of course.
But they can be nonlinear between those two values, which
makes the animation appear to accelerate and decelerate.

jQuery’s default easing function is a sinusoid: it starts off slow,
then speeds up, then slows down again to “ease” the animation
to its final value. jQuery gives its easing functions names. The
default is named “swing”, and jQuery also implements a linear
function named “linear”. You can add your own easing func-
tions to the jQuery.easing object:

jQuery.easing["squareroot"] = Math.sqrt;

The jQuery UI library and a plugin known simply as “the
jQuery Easing Plugin” define a comprehensive set of additional
easing functions.

Finally, jQuery’s animation framework even allows you to
specify different easing functions for the different CSS proper-
ties you want to animate. There are two different ways to ach-
ieve this, demonstrated by the code below:

Custom Animations | 57

// Hide images, as with the hide() method, but animate
// the image size linearly while the opacity is being
// animated with the default "swing" easing function.

// Use the specialEasing option
$("img").animate({
 width:"hide",
 height:"hide",
 opacity:"hide"
 },{
 specialEasing: {
 width: "linear",
 height: "linear"
 }
 });

// Or pass [target value, easing function] arrays
$("img").animate({
 width: ["hide", "linear"],
 height: ["hide", "linear"],
 opacity:"hide"
});

Canceling, Delaying, and Queuing Effects
jQuery defines a few more animation and queue-related meth-
ods that you should know about. The stop() method is first:
it stops any currently executing animations on the selected el-
ements. stop() accepts two optional boolean arguments. If the
first argument is true, the animation queue will be cleared for
the selected elements, canceling any pending animations as
well as stopping the current one. The default is false: if this
argument is omitted, queued animations are not canceled. The
second argument specifies whether the CSS properties being
animated should be left as they are currently, or whether they
should be set to their final target values. true sets them to their
final values; false (or omitting the argument) leaves them at
whatever their current value is.

When animations are triggered by user events, you may want
to cancel any current or queued animations before beginning
a new one. For example:

58 | Chapter 5: Animated Effects

// Images become opaque when the mouse moves over them.
// But don't keep queueing up animations on mouse events!
$("img").bind({
 mouseover: function() {
 $(this).stop().fadeTo(300, 1.0);
 },
 mouseout: function() {
 $(this).stop().fadeTo(300, 0.5);
 }
});

The second animation-related method we’ll cover here is
delay(), which simply adds a timed delay to the animation
queue. Pass a duration in milliseconds (or a duration string) as
the first argument and a queue name as the optional second
argument (the second argument is not normally needed—we’ll
talk about queue names below). You can use delay() in com-
pound animations like this one:

// Quickly fade out halfway, wait, then slide up
$("img").fadeTo(100, 0.5).delay(200).slideUp();

In the stop() method example above, we used “mouseover”
and “mouseout” events to animate the opacity of images. We
can refine that example by adding a short delay before the ani-
mation begins. That way, if the mouse quickly moves through
an image without stopping, no distracting animation occurs:

$("img").bind({
 mouseover: function() {
 $(this).stop(true).delay(100).fadeTo(300, 1.0);
 },
 mouseout: function() {
 $(this).stop(true).fadeTo(300, 0.5);
 }
});

The final animation-related methods are ones that give low-
level access to the jQuery queuing mechanism. jQuery queues
are lists of functions to be executed in sequence. Each queue
is associated with a document element (or the Document or
Window objects), and each element’s queues are independent
of other elements’ queues. You can add a new function to the
queue with the queue() method. When your function reaches

Canceling, Delaying, and Queuing Effects | 59

the head of the queue, it will be automatically dequeued and
invoked. When your function is invoked, the this value is the
element with which it is associated. Your function will be
passed a function as its single argument. When your function
has completed its operation, it must invoke the function that
was passed to it. This runs the next operation in the queue, and
if you don’t call the function, the queue will stall and queued
functions will never get invoked.

We’ve seen that you can pass a callback function to jQuery’s
effects methods in order to perform some kind of action after
the effect completes. You can achieve the same thing by queu-
ing up your function:

// Fade in, wait, set some text, and animate the border
$("#message").fadeIn().delay(200).queue(function(next) {
 $(this).text("Hello World"); // Display some text
 next(); // Run next queued item
}).animate({borderWidth: "+=10px;"}); // Grow the border

The function argument to queued functions is a new feature in
jQuery 1.4. In code written for earlier versions of the library,
queued functions dequeue the next function “manually” by
calling the dequeue() method:

$(this).dequeue(); // Instead of next()

If there is nothing in the queue, calling dequeue() does nothing.
Otherwise, it removes a function from the head of the queue
and invokes it, setting the this value and passing the function
described above.

There are a few more heavy-handed ways to manipulate the
queue. clearQueue() clears the queue. Passing an array of func-
tions to queue() instead of a single function replaces the queue
with the new array of functions. And calling queue() with nei-
ther a function nor an array of functions returns the current
queue as an array. Also, jQuery defines versions of the
queue() and dequeue() methods as utility functions. If you want
to add the function f to the queue for an element e, you can
use either the method or the function:

60 | Chapter 5: Animated Effects

// Create a jQuery object holding e, and call queue()
$(e).queue(f);
// Just call the jQuery.queue() utility function
jQuery.queue(e,f);

Finally, note that queue(), dequeue(), and clearQueue() all take
an optional queue name as their first argument. jQuery’s effects
and animation methods use a queue named “fx”, which is the
queue that is used if you do not specify a queue name. jQuery’s
queue mechanism is useful whenever you need to perform
asynchronous operations sequentially: instead of passing a
callback function to each asynchronous operation so that it can
trigger the next function in the sequence, you can use a queue
to manage the sequence instead. Simply pass a queue name
other than “fx”, and remember that queued functions do not
execute automatically. You must explicitly call dequeue() to
run the first one, and each operation must dequeue the next
one when it finishes.

Canceling, Delaying, and Queuing Effects | 61

CHAPTER 6

Ajax

Ajax is the popular name for web application programming
techniques that use HTTP scripting to load data, without caus-
ing page refreshes. Because Ajax techniques are so useful in
modern web apps, jQuery includes Ajax utilities to simplify
them. jQuery defines one high-level utility method and four
high-level utility functions. These high-level utilities are all
based on the powerful low-level function jQuery.ajax(). The
subsections that follow describe the high-level utilities first,
and then cover the jQuery.ajax() function in detail. In order
to fully understand the operation of the high-level utilities,
you’ll need to understand jQuery.ajax(), even if you never
need to use it explicitly.

The load() Method
The load() method is the simplest of all jQuery utilities: pass
it a URL, which it will asynchronously load the content of, and
then insert that content into each of the selected elements, re-
placing any content that is already there. For example:

// Load and display a status report every 60 seconds
setInterval(function() {
 $("#stats").load("status_report.html");
}, 60000);

63

We also saw the load() method in “Simple Event Handler
Registration” on page 31 where it was used to register a handler
for “load” events. If the first argument to this method is a func-
tion instead of a string, it behaves as an event handler registra-
tion method instead of as an Ajax method.

If you only want to display a portion of the loaded document,
add a space to the URL and follow it with a jQuery selector.
When the URL has loaded, the selector you specified will be
used to select the portions of the loaded HTML to be displayed:

// Load the temperature section of the weather report
$('#temp').load("weather_report.html #temperature");

Note that the selector at the end of this URL looks very much
like a fragment identifier. The space is required, however, if
you want jQuery to insert only the selected portion (or por-
tions) of the loaded document.

The load() method accepts two optional arguments in addi-
tion to the required URL. The first is data to append to the URL
or to send along with the request. If you pass a string, it is
appended to the URL (after a ? or &, as needed). If you pass an
object, it is converted to a string of ampersand-separated
name=value pairs and sent along with the request. (The details
of object-to-string conversion for Ajax are in “Passing Data to
jQuery’s Ajax Utilities” on page 68). The load() method
normally makes an HTTP GET request, but if you pass a data
object, it makes a POST request instead. Here are two
examples:

// Load the weather report for a specified zipcode
$('#temp').load("us_weather.html", "zipcode=02134");

// Here we use an object as data and specify degrees F
$('#temp').load("us_weather.html",
 { zipcode:02134, units:'F' });

64 | Chapter 6: Ajax

jQuery’s Ajax Status Codes
All of jQuery’s Ajax utilities, including the load() method, in-
voke callback functions to provide asynchronous notification
of the success or failure of the request. The second argument
to these callbacks is a string with one of the following values:

“success”
This indicates that the request completed successfully.

“notmodified”
This code indicates that the request completed normally
but that the server sent an HTTP 304 “Not Modified”
response, which means that the requested URL has not
changed since it was last requested. This status code only
occurs if you set the ifModified option to true (see
“Common Options” on page 73). jQuery 1.4 considers
a “notmodified” status code a success, but earlier versions
consider it an error.

“error”
This indicates that the request did not complete success-
fully because of an HTTP error of some sort. For more
details, you can check the HTTP status code in the
XMLHttpRequest object, which is also passed to each
callback.

“timeout”
If an Ajax request does not complete within the timeout
interval that you select, the error callback is invoked with
this status code. By default, jQuery Ajax requests do not
time out; you’ll only see this status code if you set the
timeout option (see “Common Options” on page 73).

“parsererror”
This status code indicates that the HTTP request com-
pleted successfully but that jQuery could not parse it in
the way it expected to. This status code occurs if the server
sends a malformed XML document or malformed JSON
text, for example. Note that this status code is
“parsererror” not “parseerror”.

The load() Method | 65

Another optional argument to load() is a callback function that
will be invoked when the Ajax request completes. If it’s suc-
cessful, it will be invoked after the URL has been loaded and
inserted into the selected elements. If you don’t specify any
data, you can pass this callback function as the second
argument. Otherwise, it should be the third argument. The
callback you specify will be invoked once as a method of each
of the elements in the jQuery object, and it will be passed three
arguments to each invocation: the complete text of the loaded
URL, a status code string, and the XMLHttpRequest object
that was used to load the URL. The status argument is a jQuery
status code, not an HTTP status code, and it will be a string
like “success”, “error”, or “timeout”.

Ajax Utility Functions
The other high-level jQuery Ajax utilities are functions, not
methods, and they are invoked directly through jQuery or $,
not on a jQuery object. jQuery.getScript() loads and executes
files of JavaScript code. jQuery.getJSON() loads a URL, parses
it as JSON, and passes the resulting object to the specified call-
back. Both of these functions call jQuery.get(), which is a
more general purpose URL-fetching function. Finally,
jQuery.post() works just like jQuery.get() but performs an
HTTP POST request instead of a GET. Like the load() method,
all of these functions are asynchronous: they return to their
caller before anything is loaded, and they notify you of the re-
sults by invoking a callback function that you specify.

jQuery.getScript()
The jQuery.getScript() function takes the URL of a file of
JavaScript code as its first argument. It asynchronously loads
and then executes that code in the global scope. It can work
for both same-origin and cross-origin scripts:

// Dynamically load a script from some other server
jQuery.getScript("http://example.com/js/widget.js");

66 | Chapter 6: Ajax

You can pass a callback function as the second argument, and
if you do, jQuery will invoke that function once after the code
has been loaded and executed:

// Load a library and use it once it loads
jQuery.getScript("js/jquery.my_plugin.js", function() {
 $('div').my_plugin(); // Use the library we loaded
});

jQuery.getScript() normally uses an XMLHttpRequest object
to fetch the text of the script to be executed. But for cross-
domain requests (when the script is loaded by a server other
than the one that served the current document), jQuery loads
the script with a <script> tag. In the same-origin case, the first
argument to your callback is the text of the script, the second
argument is the status code “success”, and the third argument
is the XMLHttpRequest object used to fetch the text of the
script. The return value of jQuery.getScript() is also the
XMLHttpRequest object in this case. For cross-origin requests,
there is no XMLHttpRequest object, and the text of the script
is not captured. In this case, the callback function is called with
its first and third arguments undefined, and the return value of
jQuery.getScript() is also undefined.

The callback function you pass to jQuery.getScript() is in-
voked only if the request completes successfully. If you need
to be notified of errors as well as successes, you’ll need to use
the lower-level jQuery.ajax() function. The same is true of the
three other utility functions described in this section.

jQuery.getJSON()
jQuery.getJSON() is like jQuery.getScript(): it fetches text and
then processes it specially before invoking the specified call-
back. Instead of executing the text as a script,
jQuery.getJSON() parses it as JSON (using the
jQuery.parseJSON() function; see Chapter 7 for more).
jQuery.getJSON() is only useful when passed a callback argu-
ment. If the URL is loaded successfully and its content is parsed
successfully as JSON, the resulting object will be passed as the

Ajax Utility Functions | 67

first argument to the callback function. As with jQuery.get
Script(), the second and third arguments to the callback are
the status code “success” and the XMLHttpRequest object:

// Suppose data.json contains the text: '{"x":1,"y":2}'
jQuery.getJSON("data.json", function(data) {
 // Now data is the object {x:1, y:2}
});

Unlike jQuery.getScript(), jQuery.getJSON() accepts an op-
tional data argument like the one passed to the load() method.
If you pass data to jQuery.getJSON(), it must be the second
argument and the callback must be the third. If you do not pass
any data, the callback may be the second argument. If the data
is a string, it is appended to the URL, following a ? or &. If the
data is an object, it is converted to a string (see the following
sidebar) and then appended to the URL.

If either the URL or data string passed to jQuery.getJSON()
contains "=?" at the end of the string or before an ampersand,
it is taken to specify a JSONP request. jQuery will replace the
question mark with the name of a callback function it creates,
and jQuery.getJSON() will then behave as if a script is being
requested rather than a JSON object. This does not work for
static JSON data files: it only works with server-side scripts
that support JSONP. Because JSONP requests are handled as
scripts, however, it does mean that JSON-formatted data can
be requested cross-domain.

Passing Data to jQuery’s Ajax Utilities
Most of jQuery’s Ajax methods accept an argument (or an op-
tion) that specifies data to send to the server along with the
URL. Usually this data takes the form of URL-encoded
name=value pairs separated from each other by ampersands.
(This data format is known by the MIME type “application/x-
www-form-urlencoded”. You can think of it as an analog of
JSON: a format for converting simple JavaScript objects to and
from strings.) For HTTP GET requests, this string of data is
appended to the request URL. For POST requests, it is sent as
the request body, after all the HTTP headers are sent.

68 | Chapter 6: Ajax

One way to obtain a string of data in this format is to call the
serialize() method of a jQuery object that contains forms or
form elements. To submit an HTML form using the load()
method, for example, you might use code like this:

$("#submit_button").click(function(e) {
 var f = this.form; // The container form element
 $(f).load(// Replace form by loading
 f.action, // ...form url
 $(f).serialize()); // ...plus form data.
 e.preventDefault(); // Don't submit f normally
 this.disabled = "disabled"; // No more clicks
});

If you set the data argument (or option) of a jQuery Ajax func-
tion to an object rather than a string, jQuery will normally
(with an exception described below) convert that object to a
string by calling jQuery.param(). This utility function treats
object properties as name=value pairs and converts the object
{x:1,y:"hello"}, for example, to the string "x=1&y=hello".

In jQuery 1.4, jQuery.param() handles more complicated Java-
Script objects. If the value of an object property is an array,
each element of that array will have its own name/value pair
in the resulting string, and the property name will have square
brackets appended. And if the value of a property is an object,
the property names of that nested object are placed in square
brackets and appended to the outer property name:

$.param({a:[1,2,3]}) // "a[]=1&a[]=2&a[]=3"
$.param({o:{x:1,y:true}}) // "o[x]=1&o[y]=true"
$.param({o:{x:{y:[1]}}}) // "o[x][y][]=1

For backward compatibility with jQuery 1.3 and before, you
can pass true as the second argument to jQuery.param() or set
the traditional option to true. This will prevent the advanced
serialization of properties whose values are arrays or objects.

Occasionally, you may want to pass a Document (or some
other object that should not be automatically converted) as the
body of a POST request. In this case, you can set the content
Type option to specify the type of your data, and set the
processData option to false to prevent jQuery from passing
your data object to jQuery.param().

Ajax Utility Functions | 69

jQuery.get() and jQuery.post()
jQuery.get() and jQuery.post() fetch the content of the speci-
fied URL, passing the specified data, if any, and passing the
result to the specified callback. jQuery.get() does this using an
HTTP GET request, and jQuery.post() uses a POST request,
but otherwise these two utility functions are the same. They
both take the same three arguments as jQuery.getJSON(): a
required URL, an optional data string or object, and a techni-
cally optional but almost always used callback function. The
callback function is invoked with the returned data as its first
argument, the string “success” as its second, and the
XMLHttpRequest (if there was one) as its third.

// Request text and display it in an alert dialog
jQuery.get("debug.txt", alert);

In addition to the three arguments described above, these two
methods accept a fourth optional argument (passed as the third
argument if the data is omitted) that specifies the type of the
data being requested. This fourth argument affects the way the
data is processed before being passed to your callback. The
load() method uses the type “html”, jQuery.getScript() uses
the type “script”, and jQuery.getJSON() uses the type “json”.
jQuery.get() and jQuery.post() are more flexible than those
special-purpose utilities, however, and you can specify any of
these types. The legal values for this argument, as well as
jQuery’s behavior when you omit the argument, are explained
in the following sidebar.

70 | Chapter 6: Ajax

jQuery’s Ajax Data Types
You can pass any of the following six types as an argument to
jQuery.get() or jQuery.post(). And, as we’ll see below, you
can pass one of these types to jQuery.ajax() using the data
Type option.

"text"
This returns the server’s response as plain text with no
processing.

"html"
This type works just like “text”—the response is plain
text. The load() method uses this type and inserts the
returned text into the document itself.

"xml"
The URL is assumed to refer to XML-formatted data, and
jQuery uses the responseXML property of the
XMLHttpRequest object instead of the responseText
property. The value passed to the callback is a Document
object representing the XML document instead of a string
holding the document text.

"script"
The URL is assumed to reference a file of JavaScript, and
the returned text is executed as a script before being
passed to the callback. jQuery.getScript() uses this type.
When the type is “script”, jQuery can handle cross-
domain requests using a <script> tag instead of an
XMLHttpRequest object.

"json"
The URL is assumed to reference a file of JSON-formatted
data. The value passed to the callback is the object ob-
tained by parsing the URL contents with
jQuery.parseJSON() (see Chapter 7). jQuery.getJSON()
uses this type. If the type is “json” and the URL or data
string contains "=?", the type is converted to “jsonp”.

"jsonp"
The URL is assumed to refer to a server-side script that
supports the JSONP protocol for passing JSON-
formatted data as an argument to a client-specified func-
tion. This type passes the parsed object to the callback

Ajax Utility Functions | 71

function. Because JSONP requests can be made with
<script> tags, this type can be used to make cross-domain
requests, like the “script” type can. When you use this
type, your URL or data string should typically include a
parameter like "&jsonp=?" or "&callback=?". jQuery will
replace the question mark with the name of an automat-
ically generated callback function. (But see the jsonp and
jsonpCallback options in “Uncommon Options and
Hooks” on page 78 for alternatives.)

If you do not specify one of these types when you invoke
jQuery.get(), jQuery.post(), or jQuery.ajax(), jQuery exam-
ines the Content-Type header of the HTTP response. If that
header includes the string “xml”, an XML document is passed
to the callback. If the header includes the string “json”, the
data is parsed as JSON and the parsed object is passed to the
callback. If it includes the string “javascript”, the data is exe-
cuted as a script. Otherwise, the data is treated as plain text.

The jQuery.ajax() Function
All of jQuery’s Ajax utilities end up invoking jQuery.ajax()—
the most complicated function in the entire library.
jQuery.ajax() accepts just a single argument: an options object
whose properties specify many details about how to perform
the Ajax request. A call to jQuery.getScript(url,callback),
for example, is equivalent to this jQuery.ajax() invocation:

jQuery.ajax({
 type: "GET", // The HTTP request method.
 url: url, // The URL of the data to fetch.
 data: null, // Don't add any data to the URL.
 dataType:"script", // Execute response as a script.
 success: callback // Call this function when done.
});

You can set these five fundamental options with
jQuery.get() and jQuery.post(). jQuery.ajax() supports quite
a few other options, however, if you invoke it directly. The

72 | Chapter 6: Ajax

options (including the basic five shown above) are explained
in detail below.

Before we dive into the options, note that you can set defaults
for any of these options by passing an options object to
jQuery.ajaxSetup():

jQuery.ajaxSetup({
 // Abort all Ajax requests after 2 seconds
 timeout: 2000,
 // Defeat browser cache by adding a timestamp to URL
 cache: false
});

After running the code above, the specified timeout and
cache options will be used for all Ajax requests (including high-
level ones like jQuery.get() and the load() method) that do
not specify their own values for these options.

While reading about jQuery’s many options and callbacks in
the sections that follow, you may find it helpful to refer to the
sidebars about jQuery’s Ajax status code and data type strings
in “jQuery’s Ajax Status Codes” on page 65 and “jQuery’s Ajax
Data Types” on page 71.

Common Options
The most commonly used jQuery.ajax() options are:

type
This option specifies the HTTP request method. The de-
fault is “GET”, but “POST” is another commonly used
value. You can specify other HTTP request methods such
as “DELETE” and “PUT” but not all browsers support
them. Note that this option is misleadingly named: it has
nothing to do with the data type of the request or re-
sponse, and “method” would be a better name.

url
The URL to be fetched. For GET requests, the data option
will be appended to this URL. jQuery may add parameters
to the URL for JSONP requests and for when the cache
option is false.

The jQuery.ajax() Function | 73

data
Data to be appended to the URL (for GET requests) or
sent in the body of the request (for POST requests). This
can be a string or an object. Objects are usually converted
to strings as described in “Passing Data to jQuery’s Ajax
Utilities” on page 68, but see the processData option for
an exception.

dataType
Specifies the type of data expected in the response and
how that data should be processed by jQuery. Legal values
are “text”, “html”, “script”, “json”, “jsonp”, and “xml”.
(The meanings of these values were explained in “jQuery’s
Ajax Data Types” on page 71.) This option has no default
value. When left unspecified, jQuery examines the
Content-Type header of the response to determine what to
do with the returned data.

contentType
This specifies the HTTP Content-Type header for the re-
quest. The default is “application/x-www-form-
urlencoded”, which is the normal value used by HTML
forms and most server-side scripts. If you have set type to
“POST” and want to send plain text or an XML document
as the request body, you also need to set this option.

timeout
A timeout, in milliseconds. If this option is set and the
request has not completed within the specified timeout,
the request will be aborted and the error callback will be
called with status “timeout”. The default timeout is 0,
which means that requests continue until they complete
and are never aborted.

cache
For GET requests, if this option is set to false, jQuery will
add a _= parameter to the URL or replace an existing pa-
rameter with that name. The value of this parameter is set
to the current time (in millisecond format). This defeats
browser-based caching since the URL will be different
each time the request is made.

74 | Chapter 6: Ajax

ifModified
When this option is set to true, jQuery records the values
of the Last-Modified and If-None-Match response headers
for each URL it requests, and then sets those headers in
any subsequent requests for the same URL. This instructs
the server to send an HTTP 304 “Not Modified” response
if the URL has not changed since the last time it was re-
quested. By default, this option is unset and jQuery does
not set or record these headers.

jQuery translates an HTTP 304 response to the status
code “notmodified”. The “notmodified” status is not con-
sidered an error, and this value is passed to the success
callback instead of the normal “success” status code. Thus
if you set the ifModified option, you must check the status
code in your callback—if the status is “notmodified”, the
first argument (the response data) will be undefined. Note
that in versions of jQuery before 1.4, an HTTP 304 code
was considered an error and the “notmodified” status
code was passed to the error callback instead of the
success callback. See “jQuery’s Ajax Status Co-
des” on page 65 for more on jQuery’s Ajax status codes.

global
This option specifies whether jQuery should trigger events
that describe the progress of the Ajax request. The default
is true; set this option to false to disable all Ajax-related
events. (See “Ajax Events” on page 80 for full event de-
tails.) The name of this option is confusing: it is named
“global” because jQuery normally triggers its events glob-
ally rather than on a specific object.

Callbacks
The following options specify functions to be invoked at vari-
ous stages during the Ajax request. The success option is
already familiar: it is the callback function that you pass to
methods like jQuery.getJSON(). Note that jQuery also sends

The jQuery.ajax() Function | 75

notification about the progress of an Ajax request as events
(unless you have set the global option to false).

context
This option specifies the object to be used as the context
—the this value—for invocations of the various callback
functions. This option has no default value, and if left un-
set, callbacks are invoked on the options object that holds
them. Setting the context option also affects the way Ajax
events are triggered (see “Ajax Events” on page 80). If
you set it, the value should be a Window, Document, or
Element on which events can be triggered.

beforeSend
This option specifies a callback function that will be in-
voked before the Ajax request is sent to the server. The
first argument is the XMLHttpRequest object, and the
second is the options object for the request. The before
Send callback gives programs the opportunity to set cus-
tom HTTP headers on the XMLHttpRequest object. If this
callback function returns false, the Ajax request will be
aborted. Note that cross-domain “script” and “jsonp” re-
quests do not use an XMLHttpRequest object and do not
trigger the beforeSend callback.

success
This option specifies the callback function to be invoked
when an Ajax request completes successfully. The first
argument is the data sent by the server, the second argu-
ment is the jQuery status code, and the third is the
XMLHttpRequest object that was used to make the
request. As explained in “jQuery.get() and
jQuery.post()” on page 70, the type of the first argument
depends on the dataType option or on the Content-Type
header of the server’s response. If the type is “xml”, the
first argument is a Document object. If the type is “json”
or “jsonp”, the first argument is the object that results
from parsing the server’s JSON-formatted response. If the
type was “script”, the response is the text of the loaded
script (that script will already have been executed,

76 | Chapter 6: Ajax

however, so the response can usually be ignored in this
case). For other types, the response is simply the text of
the requested resource.

The second argument status code is normally the string
“success”, but if you have set the ifModified option, this
argument might be “notmodified” instead. In this case,
the server does not send a response and the first argument
is undefined. Cross-domain requests of type “script” and
“jsonp” are performed with a <script> tag instead of an
XMLHttpRequest, so for those requests, the third argu-
ment will be undefined.

error
This option specifies the callback function to be invoked
if the Ajax request does not succeed. The first argument
to this callback is the XMLHttpRequest object of the re-
quest (if it used one). The second argument is the jQuery
status code. This may be “error” for an HTTP error,
“timeout” for a timeout, and “parsererror” for an error
that occurred while parsing the server’s response. If an
XML document or JSON object is not well-formed, for
example, the status code will be “parsererror”. In this case,
the third argument to the error callback will be the Error
object that was thrown. Note that requests with data
Type “script” that return invalid JavaScript code do not
cause errors. Any errors in the script are silently ignored,
and the success callback is invoked instead of the error
callback.

complete
This option specifies a callback function to be invoked
when the Ajax request is complete. Every Ajax request ei-
ther succeeds and calls the success callback or fails and
calls the error callback. jQuery invokes the complete call-
back after invoking either success or error. The first ar-
gument to the complete callback is the XMLHttpRequest
object, and the second is the status code.

The jQuery.ajax() Function | 77

Uncommon Options and Hooks
The following Ajax options are uncommonly used. Some spec-
ify options that you are not likely to set, and others provide
customization hooks if you need to modify jQuery’s default
handling of Ajax requests.

async
Scripted HTTP requests are asynchronous by their very
nature. The XMLHttpRequest object provides an option
to block until the response is received, however. Set this
option to false if you want jQuery to block. Setting this
option does not change the return value of
jQuery.ajax(): the function always returns the
XMLHttpRequest object, if it used one. For synchronous
requests, you can extract the server’s response and HTTP
status code from the XMLHttpRequest object yourself, or
you can specify a complete callback (as you would for an
asynchronous request) if you want jQuery’s parsed re-
sponse and status code.

dataFilter
This option specifies a function to filter or preprocess the
data returned by the server. The first argument will be the
raw data from the server (either as a string or Document
object for XML requests), and the second argument will
be the value of the dataType option. If this function is
specified, it must return a value, and that value will be
used in place of the server’s response. Note that the data
Filter function is invoked before JSON parsing or script
execution is performed. Also note that dataFilter is not
invoked for cross-origin “script” and “jsonp” requests.

jsonp
When you set the dataType option to “jsonp”, your url or
data option usually includes a parameter like “jsonp=?”.
If jQuery does not find such a parameter in the url or data,
it inserts one, using this option as the parameter name.
The default value of this option is “callback”. Set this op-
tion if you are using JSONP with a server that expects a

78 | Chapter 6: Ajax

different parameter name, and you have not yet encoded
that parameter into your URL or data.

jsonpCallback
For requests with dataType “jsonp” (or type “json” when
the URL includes a JSONP parameter like “jsonp=?”),
jQuery must alter the URL to replace the question mark
with the name of the wrapper function that the server will
pass its data to. Normally, jQuery synthesizes a unique
function name based on the current time. Set this option
if you want to substitute your own function for jQuery’s.
If you do this, however, it will prevent jQuery from in-
voking the success and complete callbacks and from trig-
gering its normal events.

processData
When you set the data option to an object (or pass an
object as the second argument to jQuery.get() and related
methods), jQuery normally converts that object to a string
in the standard HTML “application/x-www-form-
urlencoded” format (see “Passing Data to jQuery’s Ajax
Utilities” on page 68). If you want to avoid this step (such
as when you want to pass a Document object as the body
of a POST request), set this option to false.

scriptCharset
For cross-origin “script” and “jsonp” requests that use a
<script> tag, this option specifies the value of the
charset attribute of that tag. It has no effect for regular
XMLHttpRequest-based requests.

traditional
jQuery 1.4 altered slightly the way that data objects were
serialized to “application/x-www-form-urlencoded”
strings (see “Passing Data to jQuery’s Ajax Utilit-
ies” on page 68 for details). Set this option to true if you
need jQuery to revert to its old behavior.

username, password
If a request requires password-based authentication, use
these two options to specify the username and password.

The jQuery.ajax() Function | 79

xhr
This option specifies a factory function for obtaining an
XMLHttpRequest. It is invoked with no arguments and
must return an object that implements the
XMLHttpRequest API. This is a very low-level hook that
allows you to create your own wrapper around
XMLHttpRequest, adding features or instrumentation to
its methods.

Ajax Events
“Callbacks” on page 75 explained that jQuery.ajax() has four
callback options: beforeSend, success, error, and complete. In
addition to invoking these individually specified callback func-
tions, jQuery’s ajax functions also fire custom events at each
of the same stages in an Ajax request. The following table
shows the callback options and the corresponding events:

Callback Event Type Handler Registration Method

beforeSend “ajaxSend” ajaxSend()

success “ajaxSuccess” ajaxSuccess()

error “ajaxError” ajaxError()

complete “ajaxComplete” ajaxComplete()

“ajaxStart” ajaxStart()

“ajaxStop” ajaxStop()

You can register handlers for these custom Ajax events using
the bind() method (see “Advanced Event Handler Registra-
tion” on page 37) and the event type string shown in the second
column, or using the event registration methods shown in the
third column. ajaxSuccess() and the other methods work
just like the click(), mouseover(), and other simple event reg-
istration methods of “Simple Event Handler Registra-
tion” on page 31.

80 | Chapter 6: Ajax

Since these are custom events generated by jQuery rather than
the browser, the Event object passed to the event handler does
not contain much useful detail. The “ajaxSend”,
“ajaxSuccess”, “ajaxError”, and “ajaxComplete” events are all
triggered with additional arguments, however. Handlers for
these events will all be invoked with two extra arguments after
the event. The first extra argument is the XMLHttpRequest
object, and the second is the options object. This means, for
example, that a handler for the “ajaxSend” event can add cus-
tom headers to an XMLHttpRequest object just like the
beforeSend callback can. The “ajaxError” event is triggered
with a third extra argument, in addition to the two just descri-
bed. This final argument to the event handler is the Error
object, if any, that was thrown when the error occurred. Sur-
prisingly, these Ajax events are not passed jQuery’s status
code. If the handler for an “ajaxSuccess” event needs to dis-
tinguish “success” from “notmodified”, for example, it will
need to examine the raw HTTP status code in the
XMLHttpRequest object.

The last two events listed in the table above are different from
the others, most obviously because they have no corresponding
callback functions, but also because they are triggered with no
extra arguments. “ajaxStart” and “ajaxStop” indicate the start
and stop of Ajax-related network activity. When jQuery is not
performing any Ajax requests and a new request is initiated, it
fires an “ajaxStart” event. If other requests begin before this
first one ends, those new requests do not cause a new “ajax-
Start” event. The “ajaxStop” event is triggered when the last
pending Ajax request is completed and jQuery is no longer
performing any network activity. This pair of events can be
useful to show and hide some kind of “Loading...” animation
or network activity icon. For example:

$("#loading_animation").bind({
 ajaxStart: function() { $(this).show(); },
 ajaxStop: function() { $(this).hide(); }
});

Ajax Events | 81

These “ajaxStart” and “ajaxStop” event handlers can be bound
to any document element: jQuery triggers them globally (see
“Triggering Events” on page 41) rather than on any one par-
ticular element. The other four Ajax events—“ajaxSend”,
“ajaxSuccess”, “ajaxError”, and “ajaxComplete”—are also
normally triggered globally, so you can bind handlers to any
element. If you set the context option in your call to
jQuery.ajax(), however, these four events are triggered on the
context element rather than globally.

Finally, remember that you can prevent jQuery from triggering
any Ajax-related events by setting the global option to false.
Despite its confusing name, setting global to false stops
jQuery from triggering events on a context object, as well as
stopping jQuery from triggering events globally.

82 | Chapter 6: Ajax

CHAPTER 7

Utility Functions

The jQuery library defines a number of utility functions (as well
as two properties) that you may find useful in your programs.
As you’ll see in the list below, a number of these functions now
have equivalents in ECMAScript 5 (ES5). jQuery’s functions
predate ES5 and work in all browsers. In alphabetical order,
the utility functions are:

jQuery.browser
The browser property is not a function, but an object that
you can use for client sniffing or browser testing. This ob-
ject will have the property msie set to true if the browser
is IE. The mozilla property will be true if the browser is
Firefox or related. The webkit property will be true for
Safari and Chrome, and the opera property will be true for
Opera. In addition to this browser-specific property, the
version property contains the browser version number.
Client sniffing is best avoided whenever possible, but you
can use this property to work around browser-specific
bugs with code like this:

if ($.browser.mozilla &&
 parseInt($.browser.version) < 4) {
 // Work around a hypothetical Firefox bug here.
}

83

jQuery.contains()
This function expects two document elements as its ar-
guments. It returns true if the first element contains the
second element, and returns false otherwise.

jQuery.each()
Unlike the each() method, which iterates only over jQuery
objects, the jQuery.each() utility function iterates
through the elements of an array or the properties of an
object. The first argument is the array or object to be iter-
ated. The second argument is the function to be called for
each array element or object property. That function will
be invoked with two arguments: the index or name of the
array element or object property, and the value of the array
element or object property. The this value for the function
is the same as the second argument. If the function returns
false, jQuery.each() returns immediately without com-
pleting the iteration. jQuery.each() always returns its first
argument.

jQuery.each() enumerates object properties with an
ordinary for/in loop, so all enumerable properties are
iterated, even inherited properties. jQuery.each() enu-
merates array elements in numerical order by index and
does not skip the undefined properties of sparse arrays.

jQuery.extend()
This function expects objects as its arguments. It copies
the properties of the second and subsequent objects into
the first object, overwriting any properties with the same
name in the first argument. This function skips any prop-
erties whose value is undefined or null. If only one object
is passed, the properties of that object are copied into the
jQuery object itself. The return value is the object into
which properties were copied. If the first argument is the
value true, a deep or recursive copy is performed: the sec-
ond argument is extended with the properties of the third
(and any subsequent) objects.

84 | Chapter 7: Utility Functions

This function is useful for cloning objects and for merging
options objects with sets of defaults:

var clone = jQuery.extend({}, original);
var opts = jQuery.extend({}, defaults, user_opts);

jQuery.globalEval()
This function executes a string of JavaScript code in the
global context, as if it were the contents of a <script> tag.
(In fact, jQuery actually implements this function by cre-
ating a <script> tag and temporarily inserting it into the
document.)

jQuery.grep()
This function is like the ES5 filter() method of the Array
object. It expects an array as its first argument and a pred-
icate function as its second, and it invokes the predicate
once for each element in the array, passing the element
value and the element index. jQuery.grep() returns a new
array that contains only those elements of the argument
array for which the predicate returned true (or another
truthy value). If you pass true as the third argument to
jQuery.grep(), it inverts the sense of the predicate and
returns an array of elements for which the predicate re-
turned false (or another falsy value).

jQuery.inArray()
This function is like the ES5 indexOf() method of the
Array object. It expects an arbitrary value as its first argu-
ment and an array (or array-like object) as its second, and
it returns the first index in the array at which the value
appears, or -1 if the array does not contain the value.

jQuery.isArray()
Returns true if the argument is a native Array object.

jQuery.isEmptyObject
Returns true if the argument has no enumerable
properties.

jQuery.isFunction()
Returns true if the argument is a native Function object.
Note that in IE 8 and earlier, browser methods like

Utility Functions | 85

Window.alert() and Element.attachEvent() are not func-
tions in this sense.

jQuery.isPlainObject()
Returns true if the argument is a “plain” object rather than
an instance of some more specialized type or class of
objects.

jQuery.makeArray()
If the argument is an array-like object, this function copies
the elements of that object into a new (true) array and
returns that array. If the argument is not array-like, this
function simply returns a new array with the argument as
its single element.

jQuery.map()
This function is like the ES5 map() method of the Array
object. It expects an array or array-like object as its first
argument and a function as its second. It passes each array
element along with the index of that element to the func-
tion, and it returns a new array that collects the values
returned by the function. jQuery.map() differs from the
ES5 map() method in a couple of ways. If your mapping
function returns null, that value will not be included in
the result array. And if your mapping function returns an
array, the elements of that array will be added to the result
rather than the array itself.

jQuery.merge()
This function expects two arrays or array-like objects. It
appends the elements of the second to the first and returns
the first. The first array is modified, the second is not. Note
that you can use this function to shallowly clone an array
like this:

var clone = jQuery.merge([], original);

jQuery.parseJSON()
This function parses a JSON-formatted string and returns
the resulting value. It throws an exception when passed
malformed input. jQuery uses the standard
JSON.parse() function in browsers that define it. Note that

86 | Chapter 7: Utility Functions

jQuery defines only a JSON parsing function, not a JSON
serialization function.

jQuery.proxy()
This function is something like the ES5 bind() method of
the Function object. It takes a function as its first argu-
ment and an object as its second, and it returns a new
function that invokes the function as a method of the ob-
ject. It does not perform partial application of arguments
like the bind() method does.

jQuery.proxy() can also be invoked with an object as its
first argument and a property name as its second. The
value of the named property should be a function. Invoked
this way, jQuery.proxy(o,n) returns the same thing as
jQuery.proxy(o[n],o).

jQuery.proxy() is intended for use with jQuery’s event
handler binding mechanism. If you bind a proxied func-
tion, you can unbind it using the original function.

jQuery.support
This is a property like jQuery.browser, but it is intended
for portable feature testing rather than more brittle
browser testing. The value of jQuery.support is an object
whose properties are all boolean values that specify the
presence or absence of browser features. Most of these
jQuery.support properties are low-level details used in-
ternally by jQuery. They may be of interest to plugin
writers, but most are not generally useful to application
writers. One exception is jQuery.support.boxModel: this
property is true if the browser uses the CSS standard
“context-box” model, and is false in IE 6 and IE 7 in
quirks mode.

jQuery.trim()
This function is like the trim() method added to strings
in ES5. It expects a string as its only argument and returns
a copy of that string with leading and trailing whitespace
removed.

Utility Functions | 87

CHAPTER 8

Selectors and
Selection Methods

We’ve been using the jQuery selection function, $(), with sim-
ple CSS selectors. It is now time to study the jQuery selector
grammar in depth, along with a number of methods for refining
and augmenting the set of selected elements.

jQuery Selectors
jQuery supports a fairly complete subset of the selector gram-
mar defined by the CSS3 Selectors draft standard, with the
addition of some nonstandard but very useful pseudoclasses.

The selector grammar has three layers. You’ve undoubtedly
seen the simplest kind of selectors before. “#test” selects an
element with an id attribute of “test”, “blockquote” selects all
<blockquote> tags in the document, and “div.note” selects
all <div> tags with a class attribute of “note”. Simple selectors
can be combined into “selector combinations” such as
“div.note>p” and “blockquote i” by separating them with a
combinator character. And simple selectors and selector com-
binations can be grouped into comma-separated lists. These
selector groups are the most general kind of selector that we

89

pass to $(). Before explaining selector combinations and se-
lector groups, we must explain the syntax of simple selectors.

Simple Selectors
A simple selector begins (explicitly or implicitly) with a tag type
specification. If you are only interested in <p> tags, for example,
your simple selector would begin with “p”. If you want to select
elements without regard to their tagname, use the wildcard “*”
instead. If a selector does not begin with either a tagname or a
wildcard, the wildcard is implicit.

The tagname or wildcard specifies an initial set of document
elements that are candidates for selection. The portion of the
simple selector that follows this type specification consists of
zero or more filters. The filters are applied left-to-right, in the
order that they appear, and each one narrows the set of selected
elements. Table 8-1 lists the filters supported by jQuery.

Table 8-1. jQuery Selector Filters

Filter Meaning

#id Matches the element with an id attribute of id. Valid HTML
documents never have more than one element with the same
id, so this filter is usually used as a standalone selector.

.class Matches any elements whose class attribute (when inter-
preted as a list of words separated by spaces) includes the
word class.

[attr] Matches any elements that have an attr attribute (regard-
less of its value).

[attr=val] Matches any elements that have an attr attribute whose
value is val.

[attr!=val] Matches elements that have no attr attribute, or whose
attr attribute is not equal to val (jQuery extension).

[attr^=val] Matches elements whose attr attribute has a value that
begins with val.

[attr$=val] Matches elements whose attr attribute has a value that
ends with val.

90 | Chapter 8: Selectors and Selection Methods

Filter Meaning

[attr*=val] Matches elements whose attr attribute has a value that
contains val.

[attr~=val] Matches elements whose attr attribute, when interpreted
as a list of words separated by spaces, includes the word
val. Thus the selector “div.note” is the same as
“div[class~=note]”.

[attr|=val] Matches elements whose attr attribute has a value that
begins with val and is optionally followed by a hyphen and
any other character.

:animated Matches elements that are currently being animated by
jQuery.

:button Matches <button type="button"> and <input
type="button"> elements (jQuery extension).

:checkbox Matches <input type="checkbox"> elements (jQuery
extension). This filter is most efficient when explicitly pre-
fixed with the input tag: “input:checkbox”.

:checked Matches input elements that are checked.

:contains(text) Matches elements that contain the specified text (jQuery
extension). The parentheses of this filter delimit the text—
no quotation marks are required. The text of the elements
being filtered is determined with their textContent or
innerText properties—this is the raw document text,
with tags and comments stripped out.

:disabled Matches disabled elements.

:empty Matches elements that have no children, including no text
content.

:enabled Matches elements that are not disabled.

:eq(n) Matches only the nth element of the document-order zero-
indexed list of matches (jQuery extension).

:even Matches elements with even indexes in the list. Since the first
element has an index of 0, this actually matches the first,
third, and fifth (and so on) elements (jQuery extension).

:file Matches <input type="file"> elements (jQuery
extension).

jQuery Selectors | 91

Filter Meaning

:first Matches only the first element in the list. Same as :eq(0)
(jQuery extension).

:first-child Matches only elements that are the first child of their parent.
Note that this is completely different from :first.

:gt(n) Matches elements in the document-order list of matches
whose zero-based index is greater than n (jQuery extension).

:has(sel) Matches elements that have a descendant matching the
nested selector sel.

:header Matches any header tag: <h1>, <h2>, <h3>, <h4>,
<h5>, or <h6> (jQuery extension).

:hidden Matches any element that is not visible on the screen: roughly
those elements whose offsetWidth and
offsetHeight are 0.

:image Matches <input type="image"> elements. Note that
this does not match tags (jQuery extension).

:input Matches user input elements: <input>, <textarea>,
<select>, and <button> (jQuery extension).

:last Matches the last element in the list of matches (jQuery
extension).

:last-child Matches any element that is the last child of its parent. Note
that this is not the same as :last.

:lt(n) Matches all elements in the document-order list of matches
whose zero-based index is less than n (jQuery extension).

:not(sel) Matches elements that are not matched by the nested
selector sel.

:nth(n) A synonym for :eq(n) (jQuery extension).

:nth-child(n) Matches elements that are the nth child of their parent. n
can be a number, the word “even”, the word “odd”, or a
formula. Use :nth-child(even) to select elements that
are the second and fourth (and so on) in their parents’ list of
children. Use :nth-child(odd) to select elements that
are first, third, and so on.

Most generally, n can be a formula of the form xn or xn+y,
where x and y are integers and n is the literal letter n. Thus

92 | Chapter 8: Selectors and Selection Methods

Filter Meaning
nth-child(3n+1) selects the first, fourth, and seventh
(and so on) elements.

Note that this filter uses one-based indexes, so an element
that is the first child of its parent is considered odd and is
matched by 3n+1, not 3n. Contrast this with the :even
and :odd filters that are based on an element’s zero-based
position in the list of matches.

:odd Matches elements with odd (zero-based) indexes in the list.
Note that elements 1 and 3 are the 2nd and 4th matched
element, respectively (jQuery extension).

:only-child Matches elements that are the only child of their parent.

:parent Matches elements that are parents. This is the opposite
of :empty (jQuery extension).

:password Matches <input type="password"> elements (jQuery
extension).

:radio Matches <input type="radio"> elements (jQuery
extension).

:reset Matches <input type="reset"> and <button
type="reset"> elements (jQuery extension).

:selected Matches <option> tags that are selected.
Use :checked for selected checkboxes and radio buttons
(jQuery extension).

:submit Matches <input type="submit"> and <button
type="submit"> elements (jQuery extension).

:text Matches <input type="text"> elements (jQuery
extension).

:visible Matches all elements that are currently visible: roughly those
that have non-zero offsetWidth and offsetHeight.
This is the opposite of :hidden.

Notice that some of the filters listed in Table 8-1 accept argu-
ments within parentheses. The following selector, for example,
selects paragraphs that are the first or every third subsequent
child of their parent, as long as they contain the word “Java-
Script” and do not contain an <a> tag:

jQuery Selectors | 93

p:nth-child(3n+1):text(JavaScript):not(:has(a))

Filters typically run most efficiently if prefixed with a tag type.
Rather than simply using “:radio” to select radio buttons, for
example, it is better to use “input:radio”. The exception is id
filters, which are most efficient when they stand alone. The
selector “#address” is typically more efficient than the more
explicit “form#address”, for example.

Selector Combinations
Simple selectors can be combined to use special operators or
combinators to represent relationships between elements in
the document tree. Table 8-2 lists the selector combinations
supported by jQuery. These are the same selector combina-
tions that CSS3 supports.

Table 8-2. jQuery Selector Combinations

Combination Meaning

A B Selects document elements matching selector B that are descend-
ants of elements that match selector A. Note that the combinator
character is simply whitespace for this combination.

A > B Selects document elements that match selector B that are direct
children of elements that match selector A.

A + B Selects document elements that match selector B and immediately
follow (ignoring text nodes and comments) elements that match
selector A.

A ~ B Selects document elements matching B that are sibling elements
that come after elements that match A.

Here are some example selector combinations:

"blockquote i" // Matches <i> within a <blockquote>
"ol > li" // as a direct child of
"#output + *" // The sibling after the #output elt
"div.note > h1 + p" // <p> after <h1> inside a div.note

Note that selector combinations are not limited to combina-
tions of two selectors: three or more selectors are allowed, too.
Selector combinations are processed left-to-right.

94 | Chapter 8: Selectors and Selection Methods

Selector Groups
A selector group, which is the kind of selector that we pass to
$() (or use in a stylesheet), is simply a comma-separated list of
one or more simple selectors or selector combinations. A se-
lector group matches all elements that match any of the selector
combinations in the group. For our purposes here, even a sim-
ple selector can be considered a selector combination. Here are
some example selector groups:

"h1, h2, h3" // All <h1>, <h2> and <h3> tags
"#p1, #p2, #p3" // Elements with id p1, p2 and p3
"div.note, p.note" // Any <div> or <p> with class="note"
"body>p,div.note>p" // <p> children of <body> or div.note

Note that the CSS and jQuery selector syntax use parentheses
for some of the filters in simple selectors, but they do not allow
parentheses to be used more generally for grouping. You can-
not put a selector group or selector combination in parentheses
and treat it like a simple selector, for example:

(h1, h2, h3)+p // Not legal
h1+p, h2+p, h3+p // Write this instead

Selection Methods
In addition to the selector grammar supported by $(), jQuery
defines a number of selection methods. Most of the jQuery
methods we’ve seen so far in this chapter perform some action
on the selected elements. The selection methods are different:
they alter the set of selected elements by refining it, augmenting
it, or just using it as a starting point for a new selection.

This section describes these selection methods. You’ll notice
that many of the methods provide the same functionality as the
selector grammar itself.

The simplest way to refine a selection is by its position within
the selection. first() returns the jQuery object that contains
only the first selected element, and last() returns the jQuery
object that contains only the last element. More generally, the

Selection Methods | 95

eq() method returns a jQuery object that contains only the
single selected element at the specified index. (In jQuery 1.4,
negative indexes are allowed and count from the end of the
selection.) Note that these methods return a jQuery object with
a single element. This is different than regular array indexing,
which returns a single element with no jQuery object wrapped
around it:

var paras = $("p");
paras.first() // Select only the first <p> tag
paras.last() // Select only the last <p>
paras.eq(1) // Select the second <p>
paras.eq(-2) // Select the second to last <p>
paras[1] // The second <p> tag, itself

The general method for refining a selection by position is
slice(). The jQuery slice() method works like the
Array.slice() method: it accepts a start and an end index (with
negative indexes measured from the end of the array), and re-
turns a jQuery object that contains elements from the start in-
dex up to, but not including, the end index. If the end index is
omitted, the returned object includes all elements at or after
the start index:

$("p").slice(2,5) // The 3rd, 4th and 5th <p> tags
$("div").slice(-3) // The last three <div> tags

filter() is a general-purpose selection filtering method, and
you can invoke it in three different ways:

• If you pass a selector string to filter(), it returns a jQuery
object containing only those selected elements that also
match that selector.

• If you pass another jQuery object to filter(), it returns a
new jQuery object that contains the intersection of the
two jQuery objects. You can also pass an array of ele-
ments, or even a single document element, to filter().

• If you pass a predicate function to filter(), that function
is called for each matched element, and filter() returns
a jQuery object containing only those elements for which
the predicate returned true (or any truthy value). The
predicate function is called with the element as its this

96 | Chapter 8: Selectors and Selection Methods

value, and the element index as an argument. (See also
jQuery.grep() in Chapter 7.)

$("div").filter(".note") // Like $("div.note")
$("div").filter($(".note")) // Like $("div.note")
$("div").filter(function(i) { // Like $("div:even")
 return i % 2 == 0
})

The not() method is just like filter() except that it inverts the
sense of the filter. If you pass a selector string to not(), it returns
a new jQuery object containing only the selected elements that
do not match the selector. If you pass a jQuery object or an
array of elements or a single element, not() returns all of the
selected elements except for those elements you’ve explicitly
excluded. If you pass a predicate function to not(), it is invoked
just as it is for filter(), but the returned jQuery object includes
only those elements for which the predicate returns false (or
a falsy value):

// All <div> tags except two special ones
$("div").not("#header, #footer");

In jQuery 1.4, the has() method is another way to refine a se-
lection. If you pass a selector, it returns a new jQuery object
that contains only the selected elements that have a descendant
that matches the selector. If you pass a document element to
has(), it refines the selection to match only those elements that
are ancestors of the specified element:

$("p").has("a[href]") // Paragraphs that include links

The add() method augments a selection rather than filtering or
refining it. You can invoke add() with any arguments (other
than a function) that you would pass to $(). add() returns the
originally selected elements, plus whatever elements would be
selected (or created) by the arguments if those arguments were
passed to $(). add() removes duplicate elements and sorts the
combined selection so that elements are in document order:

// Equivalent ways to select all <div> and <p> elements
$("div, p") // Use a selector group
$("div").add("p") // Pass a selector to add()
$("div").add($("p")) // Pass a jQuery object to add()

Selection Methods | 97

var paras = document.getElementsByTagName("p");
$("div").add(paras); // Pass an array-like object

Using a Selection As Context
The filter(), add(), and not() methods described above per-
form set intersection, union, and subtraction operations on
independent selections. jQuery defines a number of other se-
lection methods that use the current selection as the context.
For each selected element, these methods make a new selection
using the selected element as the context or starting point, and
then return a new jQuery object that contains the union of
those selections. As with the add() method, duplicates are re-
moved and the elements are sorted so that they are in document
order.

The most general of this category of selection methods is
find(). It searches the descendants of each of the currently se-
lected elements for elements that match the specified selector
string, and returns a new jQuery object that represents that
new set of matching descendants. Note that the newly selected
elements are not merged with the existing selection; they are
returned as a new set of elements. Note also that find() is not
the same as filter(), which simply narrows the currently se-
lected set of elements without selecting new elements:

// find <p> tags inside <div> tags. Same as $("div p")
$("div").find("p")

The other methods in this category return new jQuery objects
that represent the children, siblings, or parents of each of the
currently selected elements. Most accept an optional selector
string as an argument. With no selector, they return all appro-
priate children, siblings, or parents. With the selector, they fil-
ter the list to return only those that match.

The children() method returns the immediate child elements
of each selected element, filtering them with an optional
selector:

98 | Chapter 8: Selectors and Selection Methods

// Find all tags that are direct children of the
// elements with ids "header" and "footer".
// Same as $("#header>span,#footer>span")
$("#header, #footer").children("span")

The contents() method is similar to children() but it returns
all child nodes, including text nodes, of each element. Also, if
any of the selected elements is an <iframe>, contents() returns
the document object for the content of that <iframe>. Note that
contents() does not accept an optional selector string—this is
because it returns document nodes that are not elements, and
selector strings only describe element nodes.

The next() and prev() methods return the next and previous
sibling of each selected element that has one. If a selector is
specified, the sibling is selected only if it matches the selector:

$("h1").next("p") // Same as $("h1+p")
$("h1").prev() // Sibling elements before <h1> tags

nextAll() and prevAll() return all siblings following and pre-
ceding (if there are any) each selected element. And the
siblings() method returns all siblings of each selected element
(elements are not considered siblings of themselves). If a se-
lector is passed to any of these methods, only siblings that
match are returned:

// All <p> siblings following the #footer element
$("#footer").nextAll("p")
// All siblings before the #footer element
$("#footer").prevAll()

In jQuery 1.4 and later, the nextUntil() and prevUntil() meth-
ods take a selector argument and select all siblings following
or preceding the selected element until a sibling is found that
matches the selector. If you omit the selector, these methods
work just like nextAll() and prevAll() with no selector.

The parent() method returns the parent of each selected
element:

$("li").parent() // Elements that have children

Selection Methods | 99

The parents() method returns the ancestors (up to the
<html> tag) of each selected element. Both parent() and
parents() accept an optional selector string argument:

$("a[href]").parents("p") // <p> tags that contain links

parentsUntil() returns the ancestors of each selected element
until the first ancestor that matches the specified selector. The
closest() method requires a selector string, and it returns the
closest ancestor (if any) of each selected element that matches
the selector. For this method, an element is considered an an-
cestor of itself. In jQuery 1.4, you can also pass an ancestor
element as the second argument to closest() to prevent jQuery
from climbing the ancestor tree beyond the specified element:

// Innermost <div>s that contain links
$("a[href]").closest("div")
// All <div> wrappers directly around <a>
$("a[href]").parentsUntil(":not(div)")

Reverting to a Previous Selection
To facilitate method chaining, most jQuery object methods
return the object on which they are called. However, the meth-
ods we’ve covered in this section all return new jQuery objects.
Method chaining works but you must keep in mind that meth-
ods called later in the chain may be operating on a different set
of elements than those near the start of the chain.

The situation is a little more complicated than this, however.
When the selection methods described here create and return
a new jQuery object, they give that object an internal reference
to the older jQuery object from which it was derived. This cre-
ates a linked list or stack of jQuery objects. The end() method
pops this stack, returning the saved jQuery object. Calling
end() in a method chain restores the set of matched elements
to its previous state. Consider the following code:

// Find all <div> tags, then find the <p> tags inside.
// Highlight the <p> tags and then give the <div> tags
// a border. First, without method chaining:
var divs = $("div");
var paras = divs.find("p");

100 | Chapter 8: Selectors and Selection Methods

paras.addClass("highlight");
divs.css("border", "solid black 1px");

// Here's how we could do it with a method chain
$("div").find("p").addClass("highlight")
 .end().css("border", "solid black 1px");

// Or reorder the operations and avoid the call to end()
$("div").css("border", "solid black 1px")
 .find("p").addClass("highlight");

If you ever want to manually modify the set of selected elements
in a way that is compatible with the end() method, pass the
new set of elements as an array or array-like object to the push
Stack() method. The elements you specify become the new
selected elements, and the previous set of selected elements are
pushed on the stack, where they can be restored with end():

var sel = $("div"); // Select all <div> tags
var paras = document.getElementsByTagName("p");
sel.pushStack(paras); // Modify selection to all <p>s
sel.end(); // Restore selection to all <div>s

Now that we’ve covered the end() method and the selection
stack that it uses, there is one final method to cover. and
Self() returns a new jQuery object that includes all of the el-
ements of the current selection plus all of the elements (minus
duplicates) of the previous selection. andSelf() works like the
add() method, so “addPrev” might be a more descriptive name
for it. As an example, consider the following variant on the
code above: it highlights <p> tags and the <div> tags that hold
them, and then adds a border to the <div> tags:

$("div").find("p") // find <p>s in <div>s
 .andSelf() // merge them together
 .addClass("highlight") // Highlight them all
 .end().end() // Pop twice back to $("div")
 .css("border", "solid black 1px"); // Add a border

Selection Methods | 101

CHAPTER 9

Extending jQuery with Plugins

jQuery is written so that it is easy to add new functionality.
Modules that add new functionality are called plugins, and you
can find many of them at http://plugins.jquery.com. jQuery
plugins are just ordinary files of JavaScript code, and to use
them in your web pages, you just include them with a
<script> tag as you would any other JavaScript library (you
must include plugins after you include jQuery itself, of course).

It is almost trivially easy to write your own jQuery extensions.
The trick is to know that jQuery.fn is the prototype object for
all jQuery objects. If you add a function to this object, that
function becomes a jQuery method. Here is an example:

jQuery.fn.println = function() {
 // Join arguments into a space-separated string
 var msg = Array.prototype.join.call(arguments, " ");
 // Loop through each element in the jQuery object
 this.each(function() {
 // For each one, append the string as plain text,
 jQuery(this).append(document.createTextNode(msg))
 .append("
"); // then append a
.
 });
 // Return the jQuery object for method chaining
 return this;
};

103

http://plugins.jquery.com

With that jQuery.fn.println function defined, we can now in-
voke a println() method on any jQuery object:

$("#debug").println("x = ", x, "; y = ", y);

It is common practice to add new methods to jQuery.fn. If you
use the each() method to “manually” iterate through the ele-
ments in a jQuery object and perform some kind of operation
on them, consider whether it might make sense to refactor your
code so that the each() invocation is moved into an extension
method. If you follow basic modular coding practices when
writing your extension, and abide by a few jQuery-specific
conventions, you can call your extension a plugin and share it
with others. These are the jQuery plugin conventions to be
aware of:

• Don’t rely on the $ identifier: the including page may have
called jQuery.noConflict(), and $() may no longer be a
synonym for the jQuery() function. In short plugins like
the one shown above, you can just use jQuery instead of
$. If you are writing a longer extension, you are likely to
wrap it all within one anonymous function to avoid the
creation of global variables. If you do so, you can use the
idiom of passing the jQuery as an argument to your
anonymous function and receiving that value in a param-
eter named $:

(function($) { // An function with parameter named $
 // Put your plugin code here
}(jQuery)); // Pass the jQuery object to the function

• If your extension method does not return a value of its
own, be sure to return a jQuery object that can be used in
a method chain. Usually this will just be the this object,
which you can return unmodified. In the example above,
the method ended with the line return this;. The method
could have been made slightly shorter (and less readable)
following another jQuery idiom: returning the result of
the each() method. Then the println() method would
have included the code return this.each(function()
{...});.

104 | Chapter 9: Extending jQuery with Plugins

• If your extension method has more than a couple of pa-
rameters or configuration options, allow the user to pass
options in the form of an object (as we saw with the
animate() method in “Custom Animations” on page 53,
and the jQuery.ajax() function in “The jQuery.ajax()
Function” on page 72).

• Don’t pollute the jQuery method namespace. Well-
behaved jQuery plugins define the smallest number of
methods consistent with a usable API. It is common for
jQuery plugins to define only a single method in
jQuery.fn. This one method takes a string as its first ar-
gument and interprets that string as the name of a function
to pass its remaining arguments to. When you are able to
limit your plugin to a single method, the name of that
method should be the same as the name of the plugin. If
you must define more than one method, use the plugin
name as a prefix for each of your method names.

• If your plugin binds event handlers, put all of those han-
dlers in an event namespace (see “Advanced Event Han-
dler Registration” on page 37). Use your plugin name as
the namespace name.

• If your plugin uses the data() method to associate data
with elements, place all of your data values in a single ob-
ject, and store that object as a single value, giving it the
same name as your plugin.

• Save your plugin code in a file with a name of the form
“jquery.plugin.js”, replacing plugin with the name of your
plugin.

A plugin can add new utility functions to jQuery by adding
them to the jQuery object itself. For example:

// This method prints its arguments (using the println()
// plugin method) to the element with id "debug". If no
// such element exists, it is created and added.
jQuery.debug = function() {
 // Find the #debug element
 var elt = jQuery("#debug");
 // Create and insert it if necessary
 if (elt.length === 0) {

Extending jQuery with Plugins | 105

 elt = jQuery("<div id='debug'>" +
 "<h1>Debugging Output</h1></div>");
 jQuery(document.body).append(elt);
 }
 // Output the arguments to it
 elt.println.apply(elt, arguments);
};

In addition to defining new methods, it is also possible to ex-
tend other parts of the jQuery library. In Chapter 5, for exam-
ple, we saw that it is possible to add new effect duration names
(in addition to “fast” and “slow”) by adding properties to
jQuery.fx.speeds, and that it is possible to add new easing
functions by adding them to jQuery.easing. Plugins can even
extend the jQuery CSS selector engine! You can add new pseu-
doclass filters (like :first and :input) by adding properties to
the jQuery.expr[':'] object. Here is an example that defines a
new :draggable filter, which returns only elements that have a
draggable=true attribute:

jQuery.expr[':'].draggable = function(e) {
 return e.draggable === true;
};

With this selector defined, we can select draggable images with
$("img:draggable") instead of the more verbose $("img[drag
gable=true]").

As you can see from the code above, a custom selector function
is passed a candidate DOM element as its first argument. It
should return true if the element matches the selector, and
false otherwise. Many custom selectors need only the one el-
ement argument, but they are actually invoked with four ar-
guments. The second argument is an integer index that gives
the element’s position within an array of candidate elements.
That array is passed as the fourth argument, and your selector
must not modify it. The third argument is interesting: it is the
array result of a call to the RegExp.exec() method. The fourth
element of this array (at index 3) is the value, if any, within
parentheses after the pseudoclass filter. The parentheses and
any quotes inside are stripped, leaving only the argument
string. Here, for example, is how you could implement

106 | Chapter 9: Extending jQuery with Plugins

a :data(x) pseudoclass that returns true only for arguments
that have an HTML5 data-x attribute:

jQuery.expr[':'].data = function(e, idx, match, array) {
 return e.hasAttribute("data-" + match[3]);
};

Extending jQuery with Plugins | 107

CHAPTER 10

The jQuery UI Library

jQuery limits itself to providing core DOM, CSS, event han-
dling, and Ajax functionality. These provide an excellent
foundation for building higher-level abstractions, such as user
interface widgets, and the jQuery UI library does just that. Full
coverage of jQuery UI is beyond the scope of this book, but
this chapter offers a simple overview. You can find the library
and its documentation at http://jqueryui.com.

As its name implies, jQuery UI defines a number of user inter-
face widgets: auto-completion input fields, date pickers for en-
tering dates, accordions and tabs for organizing information,
sliders and progress bars for visually displaying numbers, and
modal dialogs for urgent communication with the user. In ad-
dition to these widgets, jQuery UI implements more general
“interactions”, which allow any document element to be easily
made draggable, droppable, resizable, selectable, or sortable.
Finally, jQuery UI adds a number of new visual effects methods
(including the ability to animate colors) to those offered by
jQuery itself, and defines lots of new easing functions as well.

Think of jQuery UI as a bunch of related jQuery plugins packed
into a single JavaScript file. To use it, simply include the jQuery
UI script into your web page after including the jQuery code.
The Download page at http://jqueryui.com allows you to select
the components you plan to use, and will build a custom

109

http://jqueryui.com
http://jqueryui.com

download bundle for you that may reduce your page load times
compared to the full jQuery UI library.

jQuery UI is fully themeable, and its themes take the form of
CSS files. So in addition to loading the jQuery UI JavaScript
code into your web pages, you’ll have to include the CSS file
for your selected theme as well. The jQuery UI website features
a number of prebuilt themes and also a “ThemeRoller” page
that allows you to customize and download your own theme.

jQuery UI widgets and interactions are structured as jQuery
plugins, and each defines a single jQuery method. Typically,
when you call this method on an existing document element,
it transforms that element into the widget. For example, to alter
a text input field so that it pops up a date picker widget when
clicked or focused, simply call the datepicker() method with
code like this:

// Make input.date tags into date picker widgets
$("input.date").datepicker();

In order to make full use of a jQuery UI widget, you must be
familiar with three things: its configuration options, its meth-
ods, and its events. All jQuery UI widgets are configurable, and
some have many configuration options. You can customize the
behavior and appearance of your widgets by passing an options
object (like the animations options object passed to
animate()) to the widget method.

jQuery UI widgets usually define at least a handful of “meth-
ods” for interacting with the widget. In order to avoid a pro-
liferation of jQuery methods, however, jQuery UI widgets do
not define their “methods” as true methods. Each widget has
only a single method (like the datepicker() method in the ex-
ample above). When you want to call a “method” of the
widget, you pass the name of the desired “method” to the single
true method defined by the widget. To disable a date picker
widget, for example, you don’t call disableDatepicker();
instead, you call datepicker("disable").

110 | Chapter 10: The jQuery UI Library

jQuery UI widgets generally define custom events that they
trigger in response to user interaction. You can bind event
handlers for these custom events with the normal bind()
method, and you can also usually specify event handler func-
tions as properties in the options object you pass to the widget
method. The first argument to these handler methods is an
Event object as usual. Some widgets pass a “UI” object as the
second argument to the event handler, which typically pro-
vides state information about the widget.

Note that the jQuery UI documentation sometimes describes
“events” that are not truly custom events and could better be
described as callback functions set through the configuration
options object. The date picker widget, for example, supports
a number of callback functions that it can call at various times.
None of these functions have the standard event handler sig-
nature, however, and you cannot register handlers for these
“events” with bind(). Instead, you specify appropriate call-
backs when you configure the widget in your initial call to the
datepicker() method.

The jQuery UI Library | 111

CHAPTER 11

jQuery Quick Reference

This is a quick reference for the entire jQuery library. jQuery
functions and methods are listed by category and are briefly
described in the sections that follow.

This reference uses the following conventions in the method
signatures. Arguments named sel are jQuery selectors. Argu-
ments named idx are integer indexes. Arguments named elt
or elts are document elements or array-like objects of docu-
ment elements. Arguments named f are callback functions,
and nested parentheses are used to indicate the arguments that
jQuery will pass to the function you supply. Square brackets
indicate optional arguments. If an optional argument is fol-
lowed by an equals sign and a value, that value will be used
when the argument is omitted. The return value of a function
or a method follows the close parenthesis and a colon. Methods
with no return value specified return the jQuery object on
which they are invoked.

Factory Function
The jQuery() function is a namespace for a variety of utility
functions, but it is also the factory function for creating jQuery
objects. jQuery() can be invoked in all of the ways shown be-
low, but it always returns a jQuery object that represents a
collection of document elements (or the Document object

113

itself). The symbol $ is an alias for jQuery, and you can use
$() instead of jQuery() in each of the forms below:

jQuery(sel [, context=document])
Returns a new jQuery object that represents the document
elements that are descendants of context and match the
selector string sel.

jQuery(elts)
Returns a new jQuery object that represents the specified
elements. elts may be a single document element or an
array or array-like object (such as a NodeList or another
jQuery object) of document elements.

jQuery(html, [props])
Parses html as a string of HTML-formatted text, and re-
turns a new jQuery object that contains one or more top-
level elements in the string. If html describes a single
HTML tag, props may be an object that specifies HTML
attributes and event handlers for the newly created
element.

jQuery(f)
Registers f as a function to be invoked when the document
has loaded and is ready to be manipulated. If the docu-
ment is already ready, f is invoked immediately as a
method of the document object. Returns a jQuery object
that contains only the document object.

Selector Grammar
The jQuery selector grammar is very similar to that of CSS3,
and it is explained in detail in “jQuery Selectors” on page 89.
The following is a summary:

Simple tag, class, and id selectors

* tagname .classname #id

Selector combinations

A B B as a descendant of A
A > B B as a child of A

114 | Chapter 11: jQuery Quick Reference

A + B B as a sibling following A
A ~ B B as a sibling of A

Attribute filters

[attr] has attribute
[attr=val] has attribute with value val
[attr!=val] does not have attribute with value val
[attr^=val] attribute begins with val
[attr$=val] attribute ends with val
[attr*=val] attribute includes val
[attr~=val] attribute includes val as a word
[attr|=val] attribute begins with val and optional hyphen

Element type filters

:button :header :password :submit
:checkbox :image :radio :text
:file :input :reset

Element state filters

:animated :disabled :hidden :visible
:checked :enabled :selected

Selection position filters

:eq(n) :first :last :nth(n)
:even :gt(n) :lt(n) :odd

Document position filters

:first-child :nth-child(n)
:last-child :nth-child(even)
:only-child :nth-child(odd)
 :nth-child(xn+y)

Miscellaneous filters

:contains(text) :not(selector)
:empty :parent
:has(selector)

Basic Methods and Properties
These are the basic methods and properties of jQuery objects.
They don’t alter the selection or the selected elements in any
way, but they allow you to query and iterate over the set of

Basic Methods and Properties | 115

selected elements. See the section “Queries and Query Re-
sults” on page 8 for details.

context
The context, or root element, under which the selection
was made. This is the second argument to $() or the
Document object.

each(f(idx,elt))
Invokes f once as a method of each selected element. Stops
iterating if the function returns false. Returns the jQuery
object on which it was invoked.

get(idx):elt
get():array

Return the selected element at the specified index in the
jQuery object. You can also use regular square bracket
array indexing. With no arguments, get() is a synonym
for toArray().

index():int
index(sel):int
index(elt):int

With no argument, return the index of the first selected
element among its siblings. With a selector argument, re-
turn the index of the first selected element within the set
of elements that match the selector sel, or -1 if it is not
found. With an element argument, return the index of
elt in the selected elements, or -1 if it is not found.

is(sel):boolean
Returns true if at least one of the selected elements also
matches sel.

length
The number of selected elements.

map(f(idx,elt)):jQuery
Invokes f once as a method of each selected element, and
returns a new jQuery object that holds the returned val-
ues, with null and undefined values omitted and array
values flattened.

116 | Chapter 11: jQuery Quick Reference

selector
The selector string originally passed to $().

size():int
Returns the value of the length property.

toArray():array
Returns a true array of the selected elements.

Selection Methods
The methods described in this section alter the set of selected
elements by filtering them, adding new elements, or by using
the selected elements as starting points for new selections. In
jQuery 1.4 and later, jQuery selections are always sorted in
document order and do not contain duplicates. See “Selection
Methods” on page 95.

add(sel, [context])
add(elts)
add(html)

The arguments to add() are passed to $(), and the result-
ing selection is merged with the current selection.

andSelf()
Adds the previously selected set of elements (from the
stack) to the selection.

children([sel])
Selects children of the selected elements. With no argu-
ment, selects all children. With a selector, selects only
matching children.

closest(sel, [context])
Selects the closest ancestor of each selected element that
matches sel and is a descendant of context. If context is
omitted, the context property of the jQuery object is used.

contents()
Selects all children of each selected element, including text
nodes and comments.

Selection Methods | 117

end()
Pops the internal stack, restoring the selection to the state
it was in before the last selection-altering method.

eq(idx)
Selects only the selected element with the specified index.
In jQuery 1.4, negative indexes count from the end.

filter(sel)
filter(elts)
filter(f(idx):boolean)

Filter the selection so it only includes elements that also
match the selector sel, that are included in the array-like
object elts, or for which the predicate f returns true when
invoked as a method of the element.

find(sel)
Selects all descendants of any selected element that match
sel.

first()
Selects only the first selected element.

has(sel)
has(elt)

Filter the selection to include only those selected elements
that have a descendant that matches sel or that are an-
cestors of elt.

last()
Selects only the last selected element.

next([sel])
Selects the next sibling of each selected element. If sel is
specified, excludes those that do not match.

nextAll([sel])
Selects all of the siblings following each selected element.
If sel is specified, excludes those that do not match.

nextUntil(sel)
Selects the siblings following each selected element up to
(but not including) the first sibling that matches sel.

118 | Chapter 11: jQuery Quick Reference

not(sel)
not(elts)
not(f(idx):boolean)

This is the opposite of filter(). It filters the selection to
exclude elements that match sel, that are included in
elts, or for which f returns true. elts may be a single
element or an array-like object of elements. f is invoked
as a method of each selected element.

offsetParent()
Selects the nearest positioned ancestor of each selected
element.

parent([sel])
Selects the parent of each selected element. If sel is speci-
fied, excludes any that do not match.

parents([sel])
Selects the ancestors of each selected element. If sel is
specified, excludes any that do not match.

parentsUntil(sel)
Selects the ancestors of each selected element up to (but
not including) the first one that matches sel.

prev([sel])
Selects the previous sibling of each selected element. If
sel is specified, excludes those that do not match.

prevAll([sel])
Selects all of the siblings before each selected element. If
sel is specified, excludes those that do not match.

prevUntil(sel)
Selects the siblings preceding each selected element up to
(but not including) the first sibling that matches sel.

pushStack(elts)
Pushes the current state of the selection so that it can be
restored with end(), and then selects the elements in the
elts array (or array-like object).

Selection Methods | 119

siblings([sel])
Selects the siblings of each selected element, excluding the
element itself. If sel is specified, excludes any siblings that
do not match.

slice(startidx, [endidx])
Filters the selection to include only elements with an index
greater than or equal to startidx, and less than (but not
equal to) endidx. Negative indexes count backward from
the end of the selection. If endidx is omitted, the length
property is used.

Element Methods
The methods described here query and set the HTML attrib-
utes and CSS style properties of elements. Setter callback func-
tions with an argument named current are passed the current
value of whatever it is they are computing a new value for; see
Chapter 2.

addClass(names)
addClass(f(idx,current):names)

Add the specified CSS class name (or names) to the
class attribute of each selected element. Or, invoke f as a
method of each element to compute the class name or
names to add.

attr(name):value
attr(name, value)
attr(name, f(idx,current):value)
attr(obj)

With one string argument, return the value of the named
attribute for the first selected element. With two argu-
ments, set the named attribute of all selected elements to
the specified value, or invoke f as a method of each ele-
ment to compute a value. With a single object argument,
use property names as attribute names, and property val-
ues as attribute values or attribute computing functions.

120 | Chapter 11: jQuery Quick Reference

css(name):value
css(name, value)
css(name, f(idx,current):value)
css(obj)

Like attr(), but query or set CSS style attributes instead
of HTML attributes.

data():obj
data(key):value
data(key, value)
data(obj)

With no arguments, return the data object for the first
selected element. With one string argument, return the
value of the named property of that data object. With two
arguments, set the named property of the data object of
all selected elements to the specified value. With one ob-
ject argument, replace the data object of all selected
elements.

hasClass(name):boolean
Returns true if any of the selected elements includes
name in its class attribute.

height():int
height(h)
height(f(idx,current):int)

Return the height (not including padding, border, or mar-
gin) of the first selected element, or set the height of all
selected elements to h or to the value computed by invok-
ing f as a method of each element.

innerHeight():int
Returns the height plus padding of the first selected
element.

innerWidth():int
Returns the width plus padding of the first selected
element.

Element Methods | 121

offset():coords
offset(coords)
offset(f(idx,current):coords)

Return the X and Y position (in document coordinates) of
the first selected element, or set the position of all selected
elements to coords or to the value computed by invoking
f as a method of each element. Coordinates are specified
as objects with top and left properties.

offsetParent():jQuery
Selects the nearest positioned ancestor of each selected
element and returns them in a new jQuery object.

outerHeight([margins=false]):int
Returns the height plus the padding and border, and, if
margins is true, the margins of the first selected element.

outerWidth([margins=false]):int
Returns the width plus the padding and border, and, if
margins is true, the margins of the first selected element.

position():coords
Returns the position of the first selected element relative
to its nearest positioned ancestor. The return value is an
object with top and left properties.

removeAttr(name)
Removes the named attribute from all selected elements.

removeClass(names)
removeClass(f(idx,current):names)

Remove the specified name (or names) from the class at-
tribute of all selected elements. If a function is passed in-
stead of a string, invoke it as a method of each element to
compute the name to be removed.

removeData([key])
Removes the named property from the data object of each
selected element. If no property name is specified, re-
moves the entire data object instead.

122 | Chapter 11: jQuery Quick Reference

scrollLeft():int
scrollLeft(int)

Return the horizontal scrollbar position of the first selec-
ted element or set it for all selected elements.

scrollTop():int
scrollTop(int)

Return the vertical scrollbar position of the first selected
element or set it for all selected elements.

toggleClass(names, [add])
toggleClass(f(idx,current):names, [add])

Toggle the specified class name (or names) in the class
property of each selected element. If f is specified, invoke
it as a method of each selected element to compute the
name to be toggled. If add is true or false, add or remove
the class names rather than toggling them.

val():value
val(value)
val(f(idx,current)):value

Return the form value or selection state of the first selected
element, or set the value or selection state of all selected
elements to value or to the value computed by invoking
f as a method of each element.

width():int
width(w)
width(f(idx,current):int)

Return the width (not including padding, border, or mar-
gin) of the first selected element, or set the width of all
selected elements to w or to the value computed by invok-
ing f as a method of each element.

Insertion and Deletion Methods
The methods described here insert, delete, and replace docu-
ment content. In the method signatures below, the content
argument may be a jQuery object, a string of HTML, or an
individual document element, and the target argument may

Insertion and Deletion Methods | 123

be a jQuery object, an individual document element, or a
selector string. See “Getting and Setting Element Con-
tent” on page 18 and Chapter 3 for further details.

after(content)
after(f(idx):content)

Insert content after each selected element, or invoke f as
a method of—and insert its return value after—each
selected element.

append(content)
append(f(idx,html):content)

Append content to each selected element, or invoke f as
a method of—and append its return value to—each
selected element.

appendTo(target):jQuery
Appends the selected elements to the end of each specified
target element, cloning them as necessary if there is more
than one target.

before(content)
before(f(idx):content)

Like after(), but make insertions before the selected
elements.

clone([data=false]):jQuery
Makes a deep copy of each of the selected elements and
returns a new jQuery object representing the cloned ele-
ments. If data is true, also clones the data (including event
handlers) associated with the selected elements.

detach([sel])
Like remove(), but does not delete any data associated
with the detached elements.

empty()
Deletes the content of all selected elements.

html():string
html(htmlText)
html(f(idx,current):htmlText)

With no arguments, return the content of the first selected
element as an HTML-formatted string. With one

124 | Chapter 11: jQuery Quick Reference

argument, set the content of all selected elements to the
specified htmlText or to the value returned by invoking f
as a method of those elements.

insertAfter(target):jQuery
Inserts the selected elements after each target element,
cloning them as necessary if there is more than one target.

insertBefore(target):jQuery
Inserts the selected elements before each target element,
cloning them as necessary if there is more than one target.

prepend(content)
prepend(f(idx,html):content)

Like append(), but insert content at the beginning of each
selected element.

prependTo(target):jQuery
Like appendTo(), except that the selected elements are in-
serted at the beginning of the target elements.

remove([sel])
Removes all selected elements, or all selected elements
that also match sel, from the document, as well as any
data (including event handlers) associated with them.
Note that the removed elements are no longer part of the
document, but are still members of the returned jQuery
object.

replaceAll(target)
Inserts the selected elements into the document so that
they replace each target element, cloning the selected
elements as needed if there is more than one target.

replaceWith(content)
replaceWith(f(idx,html):content)

Replace each selected element with content, or invoke f
as a method of each selected element—passing the
element index and current HTML content—and then
replace that element with the return value.

Insertion and Deletion Methods | 125

text():string
text(plainText)
text(f(idx,current):plainText)

With no arguments, return the content of the first selected
element as a plain-text string. With one argument, set the
content of all selected elements to the specified plain
Text or to the value returned by invoking f as a method of
those elements.

unwrap()
Removes the parent of each selected element, replacing it
with the selected element and its siblings.

wrap(wrapper)
wrap(f(idx):wrapper)

Wrap wrapper around each selected element, cloning as
needed if there is more than one selected element. If a
function is passed, invoke it as a method of each selected
element to compute the wrapper. The wrapper may be an
element, a jQuery object, a selector, or a string of HTML,
but it must have a single innermost element.

wrapAll(wrapper)
Wraps wrapper around the selected elements as a group
by inserting wrapper at the location of the first selected
element and then copying all selected elements into the
innermost element of wrapper.

wrapInner(wrapper)
wrapInner(f(idx):wrapper)

Like wrap(), but inserts wrapper (or the return value of f)
around the content of each selected element rather than
around the elements themselves.

Event Methods
The methods in this section are for registering event handlers
and triggering events; see Chapter 4.

126 | Chapter 11: jQuery Quick Reference

event-type()
event-type(f(event))

Register f as a handler for event-type, or trigger an event
of event-type. jQuery defines the following convenience
methods that follow this pattern:

ajaxComplete blur focusin mousedown mouseup
ajaxError change focusout mouseenter resize
ajaxSend click keydown mouseleave scroll
ajaxStart dblclick keypress mousemove select
ajaxStop error keyup mouseout submit
ajaxSuccess focus load mouseover unload

bind(type, [data], f(event))
bind(events)

Register f as a handler for events of the specified type on
each of the selected elements. If data is specified, add it to
the event object before invoking f. type may specify mul-
tiple event types and may include namespaces.

If a single object is passed, treat it as a mapping of event
types to handler functions, and register handlers for all the
specified events on each selected element.

delegate(sel, type, [data], f(event))
Registers f as a live event handler. f will be triggered when
events of type type occur on an element matching sel and
bubble up to any of the selected elements. If data is speci-
fied, it will be added to the event object before f is invoked.

die(type, [f(event)])
Deregisters live event handlers registered with live() for
events of type type on elements that match the selector
string of the current selection. If a specific event handler
function f is specified, only deregister that one.

hover(f(event))
hover(enter(event), leave(event))

Register event handlers for “mouseenter” and “mouse-
leave” events on all selected elements. If only one function
is specified, it is used as the handler for both events.

Event Methods | 127

live(type, [data], f(event))
Registers f as a live event handler for events of type type.
If data is specified, adds it to the event object before in-
voking f. This method does not use the set of selected
elements, but it does use the selector string and context
object of the jQuery object. f will be triggered when
type events bubble up to the context object (usually the
document) and the event’s target element matches the se-
lector. See delegate().

one(type, [data], f(event))
one(events)

Like bind(), except that the registered event handlers are
automatically deregistered after they are invoked once.

ready(f())
Registers f to be invoked when the document becomes
ready, or invokes it immediately if the document is ready.
This method does not use the selected elements and is a
synonym for $(f).

toggle(f1(event), f2(event),...)
Registers a “click” event handler on all selected elements
that alternate (or toggle) among the specified handler
functions.

trigger(type, [params])
trigger(event)

Trigger a type event on all selected elements, passing
params as extra parameters to event handlers. params may
be omitted, or may be a single value or an array of values.
If you pass an event object, its type property specifies the
event type, and any other properties are copied into the
event object that is passed to the handlers.

triggerHandler(type, [params])
Like trigger(), but does not allow the triggered event to
bubble or to trigger the browser’s default action.

unbind([type],[f(event)])
With no arguments, deregisters all jQuery event handlers
on all selected elements. With one argument, deregisters

128 | Chapter 11: jQuery Quick Reference

all event handlers for the type events on all selected ele-
ments. With two arguments, deregisters f as a handler for
type events on all selected elements. type may name mul-
tiple event types and may include namespaces.

undelegate()
undelegate(sel, type, [f(event)])

With no arguments, deregister all live event handlers dele-
gated from the selected elements. With two arguments,
deregister live event handlers for type events on elements
matching sel that are delegated from the selected ele-
ments. With three arguments, only deregister the single
handler f.

Effects and Animation Methods
The methods described here produce visual effects and custom
animations. Most return the jQuery object on which they are
called; see Chapter 5.

Animation options

complete duration easing queue specialEasing step

jQuery.fx.off
Disables all effects and animations when set to true.

animate(props, opts)
Animates the CSS properties specified by the props object
on each selected element, using the options specified by
opts. See “Custom Animations” on page 53 for details of
both objects.

animate(props, [duration], [easing], [f()])
Animates the CSS properties specified by props on each
selected element, using the specified duration and
easing function. Invokes f as a method of each selected
element when done.

clearQueue([qname="fx"])
Clears the effects queue or the named queue for each se-
lected element.

Effects and Animation Methods | 129

delay(duration, [qname="fx"])
Adds a delay of the specified duration to the effects queue
or the named queue.

dequeue([qname="fx"])
Removes and invokes the next function on the effects
queue or the named queue. It is not normally necessary to
dequeue the effects queue.

fadeIn([duration=400],[f()])
fadeOut([duration=400],[f()])

Fade the selected elements in or out by animating their
opacity for duration ms. When complete, invoke f, if
specified, as a method of each selected element.

fadeTo(duration, opacity, [f()])
Animates the CSS opacity of the selected elements to
opacity over the specified duration. When complete, in-
vokes f, if specified, as a method of each selected element.

hide()
hide(duration, [f()])

With no arguments, hide each selected element immedi-
ately. Otherwise, animate the size and opacity of each se-
lected element so that they are hidden after duration ms.
When complete, invoke f, if specified, as a method of each
selected element.

slideDown([duration=400],[f()])
slideUp([duration=400],[f()])
slideToggle([duration=400],[f()])

Show, hide, or toggle the visibility of each selected element
by animating its height for the specified duration. When
complete, invoke f, if specified, as a method of each se-
lected element.

show()
show(duration, [f()])

With no arguments, show each selected element imme-
diately. Otherwise, animate the size and opacity of each
selected element so that they are fully visible after

130 | Chapter 11: jQuery Quick Reference

duration ms. When complete, invoke f, if specified, as a
method of each selected element.

stop([clear=false], [jump=false])
Stops the current animation (if one is running) on all se-
lected elements. If clear is true, also clears the effects
queue for each element. If jump is true, jumps the anima-
tion to its final value before stopping it.

toggle([show])
toggle(duration, [f()])

If show is true, show() the selected elements immediately.
If show is false, hide() the selected elements immediately.
If show is omitted, toggle the visibility of the elements.

If duration is specified, toggle the visibility of the selected
elements with a size and opacity animation of the specified
length. When complete, invoke f, if specified, as a method
of each selected element.

queue([qname="fx"]):array
queue([qname="fx"], f(next))
queue([qname="fx"], newq)

With no arguments or just a queue name, return the
named queue of the first selected element. With a function
argument, add f to the named queue of all selected ele-
ments. With an array argument, replace the named queue
of all selected elements with the newq array of functions.

Ajax Functions
Most of the jQuery Ajax-related functionality takes the form
of utility functions rather than methods. These are some of the
most complicated functions in the jQuery library; see Chap-
ter 6 for complete details.

Ajax status codes

success error notmodified timeout parsererror

Ajax Data Types

text html xml script json jsonp

Ajax Functions | 131

Ajax Events

ajaxStart ajaxSuccess ajaxComplete
ajaxSend ajaxError ajaxStop

Ajax Options

async data jsonp timeout
beforeSend dataFilter jsonpCallback traditional
cache dataType password type
complete error processData url
contentType global scriptCharset username
context ifModified success xhr

jQuery.ajax(options):XHR
This is the complicated but fully general Ajax function on
which all of jQuery’s Ajax utilities are based. It expects a
single object argument whose properties specify all details
of the Ajax request and the handling of the server’s re-
sponse. The most common options are described in
“Common Options” on page 73, and callback options are
covered in “Callbacks” on page 75.

jQuery.ajaxSetup(options)
Sets default values for jQuery’s Ajax options. Passes the
same kind of options object you would pass to
jQuery.ajax(). The values you specify will be used by any
subsequent Ajax request that does not specify the value
itself. This function has no return value.

jQuery.getJSON(url, [data], [f(object,status)]):XHR
Asynchronously requests the specified url, adding any
data that is specified. When the response is received, par-
ses it as JSON, and passes the resulting object to the call-
back function f. Returns the XMLHttpRequest object, if
any, used for the request.

jQuery.getScript(url, [f(text,status)]):XHR
Asynchronously requests the specified url. When the re-
sponse arrives, executes it as a script, and then passes the
response text to f. Returns the XMLHttpRequest object,
if any, used for the request. Cross-domains are allowed,
but does not pass the script text to f, and does not return
an XMLHttpRequest object.

132 | Chapter 11: jQuery Quick Reference

jQuery.get(url,[data],[f(data,status,xhr)],[type]):XHR
Makes an asynchronous HTTP GET request for url, add-
ing data, if any, to the query parameter portion of that
URL. When the response arrives, interprets it as data of
the specified type—or according to the Content-Type
header of the response—and executes it or parses it if
necessary. Finally, passes the (possibly parsed) response
data to the callback f along with the jQuery status code
and the XMLHttpRequest object used for the request.
That XMLHttpRequest object, if any, is also the return
value of jQuery.get().

jQuery.post(url,[data],[f(data,status,xhr)],[type]):XHR
Like jQuery.get(), but makes an HTTP POST request in-
stead of a GET request.

jQuery.param(o, [old=false]):string
Serializes the names and values of the properties of o in
www-form-urlencoded form, suitable for adding to a URL
or passing as the body of an HTTP POST request. Most
jQuery Ajax functions will do this automatically for you
if you pass an object as the data parameter. Pass true as
the second argument if you want jQuery 1.3-style shallow
serialization.

jQuery.parseJSON(text):object
Parses JSON-formatted text and returns the resulting ob-
ject. jQuery’s Ajax functions use this function internally
when you request JSON-encoded data.

load(url, [data], [f(text,status,xhr)])
Asynchronously requests the url, adding any data that is
specified. When the response arrives, interprets it as a
string of HTML and inserts it into each selected element,
replacing any existing content. Finally, invokes f as a
method of each selected element, passing the response
text, the jQuery status code, and the XMLHttpRequest
object used for the request.

If url includes a space, any text after the space is used as
a selector, and only the portions of the response document

Ajax Functions | 133

that match that selector are inserted into the selected
elements.

Unlike most jQuery Ajax utilities, load() is a method not
a function. Like most jQuery methods, it returns the
jQuery object on which it was invoked.

serialize():string
Serializes the names and values of the selected forms and
form elements, returning a string in www-form-urlencoded
format.

Utility Functions
These are miscellaneous jQuery functions and properties (not
methods); see Chapter 7 for more details.

jQuery.boxModel
A deprecated synonym for jQuery.support.boxModel.

jQuery.browser
This property refers to an object that identifies the
browser vendor and version. The object has the property
msie for Internet Explorer, mozilla for Firefox, webkit for
Safari and Chrome, and opera for Opera. The version
property is the browser version number.

jQuery.contains(a,b):boolean
Returns true if document element a contains element b.

jQuery.data(elt):data
jQuery.data(elt, key):value
jQuery.data(elt, data)
jQuery.data(elt, key, value)

A low-level version of the data() method. With one ele-
ment argument, return the data object for that element.
With an element and a string, return the named value from
that element’s data object. With an element and an object,
set the data object for the element. With an element,
string, and value, set the named value in the element’s data
object.

134 | Chapter 11: jQuery Quick Reference

jQuery.dequeue(elt, [qname="fx"])
Removes and invokes the first function in the named
queue of the specified element. It is the same as
$(elt).dequeue(qname).

jQuery.each(o, f(name,value)):o
jQuery.each(a, f(index,value)):a

Invoke f once for each property of o, passing the name and
value of the property and invoking f as a method of the
value. If the first argument is an array or array-like object,
invoke f as a method of each element in the array, passing
the array index and element value as arguments. Iteration
stops if f returns false. This function returns its first
argument.

jQuery.error(msg)
Throws an exception containing msg. You can call this
function from plugins or override (e.g., jQuery.error =
alert) it when debugging.

jQuery.extend(obj):object
jQuery.extend([deep=false], target, obj...):object

With one argument, copy the properties of obj into the
global jQuery namespace. With two or more arguments,
copy the properties of the second and subsequent objects,
in order, into the target object. If the optional deep argu-
ment is true, a deep copy is done and properties are copied
recursively. The return value is the object that was
extended.

jQuery.globalEval(code):void
Executes the specified JavaScript code as if it were a top-
level <script>. No return value.

jQuery.grep(a, f(elt,idx):boolean, [invert=false]):array
Returns a new array that contains only the elements of a
for which f returns true. Or, if invert is true, returns only
those elements for which f returns false.

jQuery.inArray(v, a):integer
Searches the array or array-like object a for an element v,
and returns the index at which it is found or -1.

Utility Functions | 135

jQuery.isArray(x):boolean
Returns true only if x is a true JavaScript array.

jQuery.isEmptyObject(x):boolean
Return strue only if x has no enumerable properties.

jQuery.isFunction(x):boolean
Returns true only if x is a JavaScript function.

jQuery.isPlainObject(x):boolean
Returns true only if x is a plain JavaScript object, such as
one created by an object literal.

jQuery.isXMLDoc(x):true
Returns true only if x is an XML document or an element
of an XML document.

jQuery.makeArray(a):array
Returns a new JavaScript array that contains the same el-
ements as the array-like object a.

jQuery.map(a, f(elt, idx)):array
Returns a new array that contains the values returned by
f when invoked for each element in the array (or array-like
object) a. Returned values of null are ignored, and re-
turned arrays are flattened.

jQuery.merge(a,b):array
Appends the elements of the array b to a, and returns a.
The arguments may be array-like objects or true arrays.

jQuery.noConflict([radical=false])
Restores the symbol $ to its value before the jQuery library
was loaded, and returns jQuery. If radical is true, also
restores the value of the jQuery symbol.

jQuery.proxy(f, o):function
jQuery.proxy(o, name):function

Return a function that invokes f as a method of o, or a
function that invokes o[name] as a method of o.

jQuery.queue(elt, [qname="fx"], [f])
Queries or sets the named queue of elt, or adds a new
function f to that queue; same as $(elt).queue(qname, f).

136 | Chapter 11: jQuery Quick Reference

jQuery.removeData(elt, [name]):void
Removes the named property from the data object of
elt, or removes the data object itself.

jQuery.support
An object containing a number of properties describing
the features and bugs of the current browser. Most are of
interest only to plugin writers. jQuery.support.boxModel
is false in IE browsers running in quirks mode.

jQuery.trim(s):string
Returns a copy of the string s, with leading and trailing
whitespace trimmed off.

Utility Functions | 137

Index

Symbols
$ () function, 3, 5

(see also jQuery () function)
extension functions and, 104
querySelectorAll() method

versus, 9
[] (square brackets), array

notation, 9

A
add() method, 97, 117
addClass() method, 16, 120
addEventListener() method, 39
after() method, 26, 124
Ajax, 63–82

events, 80
jQuery functions, 131
jQuery.ajax() function, 72
load() method, 63
options, 132
status codes in jQuery, 65
utility functions, 66

data types of arguments,
71

jQuery.get() and
jQuery.post(), 70

jQuery.getJSON (), 68
jQuery.getScript (), 66
passing data to, 68

andSelf() method, 101, 117
animate() method, 49, 53, 129

animation options object, 56
animation properties object,

54
animated effects, 49–61

canceling, delaying, and
queuing, 58–61

custom, 53
disabling, 50
methods for, 129
options for, 129
simple effects, methods for,

52
append() method, 26, 124
appendTo() method, 27, 124
array methods (ES5), 10

map(), 11
array notation, accessing jQuery

objects, 9
array-like objects, 9
arrays, converting jQuery objects

to, 10
async option (Ajax), 78

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

139

attr() method, 14, 120
attributes

getting and setting CSS
attributes, 15

getting and setting HTML
attributes, 14

methods for querying and
setting, 120

B
before() method, 26, 124
beforeSend option (Ajax), 76
bind() method, 37, 127

registering event handlers for
custom events, 44

registering handlers for Ajax
events, 80

blur() method, 31
borders, width and height of, 20
box-sizing attribute, 21
browsers

incompatible event models,
31

jQuery.browser property, 83,
134

bubbling (events)
bubbling and nonbubbling

events, 32
global events triggered by

jQuery.event.trigger
(), 43

live events, 46

C
cache option (Ajax), 74
callback functions

jQuery.ajax () options, 76
passed to each() method, 10
passed to effect methods, 51
UI widgets, 111

cancelBubble() (Event), 46
canceling animations, 58
change() method, 31
children() method, 98, 117
class attribute, 16

classList property (HTML5), 17
className property, 16
clearQueue() method, 60, 129
click events

binding event handler
functions with
toggle(), 33

dblclick() method, 31
click() method, 31
clone() method, 28, 124
closest() method, 100, 117
combinations, jQuery selectors,

94
complete option (Ajax), 77
complete property, 56
content distribution networks,

serving jQuery, 4
contents() method, 99, 117
contentType option (Ajax), 74
context for queries, 5
context option (Ajax), 76, 82
context property, 10, 46, 116
CSS attributes

box-sizing attribute, set to
border-box, 21

display, 52
methods setting and querying

style properties, 120
opacity, 52
overflow, 32
position, 19
visibility, 49
width and height, setting, 21

CSS classes, getting and setting,
16

CSS selectors, 5
(see also selectors)
use in queries, 2

css() method, 3, 121
currentTarget property (Event),

36

D
data associated with elements,

copying, 28

140 | Index

data option (Ajax), 74
data property (Event), 37
data types (Ajax), 71, 131
data() method, 21, 121
data, passing to Ajax utilities, 68
dataFilter option (Ajax), 78
dataType option (Ajax), 74
datepicker() method, 110
dblclick() method, 31
delay() method, 59, 130
delegate() method, 45, 127
deletion methods, 124

deleting elements, 30
dequeue() method, 60, 130
detach() method, 30, 124
die() method, 46, 127
display property, 52

setting to none, 53
document structure, altering, 25–

30
copying elements, 28
deleting elements, 30
inserting and replacing

elements, 25–28
wrapping elements, 29

documentation, 8
DOMContentLoaded event, 7
duration (effects), 49

passing as object properties,
51

duration property, 56

E
each() method, 10, 116
easing functions, 57

specifying different functions
for CSS properties, 57

easing property, 56
ECMAScript 5 (ES5)

equivalents to jQuery utility
functions, 83

forEach() array method, 10
effects, 49

(see also animated effects)
elements

copying, 28
deleting, 30
getting and setting content,

18
getting and setting data, 21
getting and setting geometry,

18–21
inserting and replacing in

documents, 25
jQuery methods for, 120
selected elements, 8
wrapping, 29
wrapping with jQuery objects,

5
empty() method, 30, 124
end() method, 100, 118
eq() method, 96, 118
error option (Ajax), 77
error status code (Ajax), 65
error() method, 31
ES5 (see ECMAScript 5)
Event object

cancelBubble() method, 46
cross-browser behavior for

properties, 35
methods, 35
preventDefault(), 34, 41
properties, 35
stopPropagation(), 34

event-type() method, 127
events, 31–47

advanced event handler
registration, 37

Ajax, 80, 132
copying event handlers

associated with
elements, 28

custom, 44
de-registering event handlers,

39
event handlers, 34
jQuery Event object, 35
live, 45
methods to register event

handlers and trigger
events, 126

Index | 141

simple event handler
registration, 31

triggering, 41
UI widgets, 111

F
fadeIn() method, 49, 52, 130
fadeOut() method, 49, 52, 130
fadeTo() method, 52, 130
filter() method, 30, 96, 118
filters

adding pseudo-class filters,
106

selector, 90
find() method, 98, 118
first() method, 96, 118
focus events, triggering, 44
focus() method, 31
focusin() method, 31
focusout() method, 31
forEach() method, 10
forms, getting and setting values,

17
functions

Ajax, 131
defined, 8
methods versus, 8
passing to $ (), 6
queued, 60
utility, 83–87, 134

fx queue, 61

G
geometry, getting and setting for

elements, 18–21
get() method, 10, 116
getter and setter methods, 13–23

for CSS classes, 16
for element content, 18
for element data, 21
for element geometry, 18–21
for HTML attributes, 14
for HTML form values, 17

global option (Ajax), 75

preventing triggering of any
Ajax events, 82

groups, selector, 95

H
handler property (Event), 37
has() method, 97, 118
hasClass() method, 17, 121
height() method, 20, 121

asymmetry between getter and
setter behavior, 21

hide() method, 52, 130
hover() method, 33, 127
HTML attributes

getting and setting, 14
methods for querying and

setting, 120
html data type (Ajax), 71
HTML elements (see elements)
HTML forms, getting and setting

values, 17
html() method, 18, 125
HTML5, classList property, 17

I
ifModified option (Ajax), 75
index() method, 12, 116
innerHeight() method, 20, 121
innerHTML property, 18
innerText property, 18
innerWidth() method, 20, 121
insertAfter() method, 27, 125
insertBefore() method, 27, 125
insertions

copying elements, 28
inserting elements into

documents, 25
methods for, 124
wrapping elements, 29

Internet Explorer (IE), event API,
31

is() method, 12, 116

142 | Index

J
jQuery

defined, 2
documentation, 8
obtaining and including in

web pages, 4
jQuery () function, 3, 4–9, 114

defined, 7
invoking, 5

jquery property, 10
jQuery UI library, 109
jQuery.ajax() function, 63, 72,

132
callbacks, 76
common options, 73
uncommon options and

hooks, 78
jQuery.ajaxSetup() function,

132
jQuery.boxModel property, 134
jQuery.browser property, 83,

134
jQuery.contains() function, 84,

134
jQuery.data() function, 134
jQuery.dequeue() function, 135
jQuery.each() function, 84, 135
jQuery.easing object, 57
jQuery.error() function, 135
jQuery.event.trigger() function,

43
jQuery.expr object, adding

properties to, 106
jQuery.extend() function, 84,

135
jQuery.fn object, 103
jQuery.fx.off property, 50, 129
jQuery.fx.speeds, 49, 56
jQuery.get() and jQuery.post()

functions, 70, 133
options, 73

jQuery.getJSON() function, 68,
132

jQuery.getScript() function, 66,
132

jQuery.globalEval() function, 85,
135

jQuery.grep() function, 85, 135
jQuery.inArray() function, 85,

135
jQuery.isArray() function, 85,

136
jQuery.isEmptyObject()

function, 85, 136
jQuery.isFunction() function, 86,

136
jQuery.isPlainObject() function,

86, 136
jQuery.isXMLDoc() function,

136
jQuery.makeArray() function,

86, 136
jQuery.map() function, 86, 136
jQuery.merge() function, 86,

136
jQuery.noConflict() function, 6,

136
jQuery.param() function, 69,

133
jQuery.parseJSON() function,

87, 133
jQuery.proxy() function, 87, 136
jQuery.queue() function, 136
jQuery.removeData() function,

137
jQuery.support() function, 87,

137
jQuery.trim() function, 87, 137
JSON (JavaScript Object

Notation)
jQuery.getJSON() function,

68, 132
jQuery.parseJSON()

function, 87, 133
json data type (Ajax), 71
JSONP, 68
jsonp data type (Ajax), 72
jsonp option (Ajax), 79
jsonpCallback option (Ajax), 79

Index | 143

K
keydown() method, 31
keypress() method, 31
keyup() method, 31

L
last() method, 96, 118
left property, 19
length property, 9, 116
linear animations, 56
live events, 45
live() method, 46, 128
load event, 7
load() method, 31, 63, 133

submitting HTML form, 69

M
map() method, 11, 116
margins, getting size of, 20
metaKey property (Event), 35
method chaining, 3, 100
methods

basic jQuery methods, 116
defined, 8
effects and animation, 129
event, 126
functions versus, 8
for HTML attributes and CSS

style properties, 120
insertion and deletion, 124
jQuery UI widgets, 110
plugin, naming, 105
selection, 95–101

reverting to previous
selection, 100

using selection as context,
98

mouse events
triggering, 41
using to animate opacity of

images, 58
mousedown() method, 31
mouseenter() method, 31
mouseleave() method, 31

mousemove() method, 31
mouseout() method, 31
mouseover() method, 31
mouseup() method, 31

N
namespaces

binding event handlers to, 38
plugins binding event

handlers, 105
specifying to trigger event

handlers, 42
next() method, 99, 118
nextAll() method, 99, 118
nextUntil() method, 99, 118
not() method, 97, 119
notmodified status code (Ajax),

65

O
objects, jQuery, 7
offset() method, 19, 122
offsetParent property, 19
offsetParent() method, 19, 119,

122
one() method, 39, 128
opacity property, 52

animating, 57
originalEvent property (Event),

37
outerHeight() method, 20, 122
outerWidth() method, 20, 122
overflow attribute, 32

P
padding, dimensions of, 20
pageX, pageY properties (Event),

35
parent() method, 99, 119
parents() method, 100, 119
parentsUntil() method, 100, 119
parseerror status code (Ajax), 65
plugins, 103–107

144 | Index

adding functions to jQuery.fn
object, 103

adding utility functions to
jQuery object, 105

conventions for, 104
jQuery UI library, 110

position and size of elements,
getting and setting, 18–21

position attribute, 19
position() method, 19, 122
prepend() method, 26, 125
prependTo() method, 27, 125
prev() method, 99, 119
prevAll() method, 99, 119
preventDefault() (Event), 34, 41
prevUntil() method, 99, 119
processData option (Ajax), 79
properties

animation properties object,
54

of jQuery objects, 10, 116
pushStack() method, 101, 119

Q
queries, 2

and query results, 9–12
querySelectorAll() method

$ () function versus, 9
queue property, 56
queue() method, 60, 131
queues, manipulating, 60

R
ready() method, 128
relatedTarget property (Event),

36
relative values for animation

properties, 54
remove() method, 30, 125
removeAttr() method, 122
removeClass() method, 16, 122
removeData() method, 22, 122
replaceAll() method, 27, 125
replaceWith() method, 25, 125
resize() method, 31

result property (Event), 37

S
script data type (Ajax), 71
<script> tags, including jQuery in

web pages, 4
scriptCharset option (Ajax), 79
scroll() method, 31
scrollLeft() method, 21, 123
scrollTop() method, 21, 123
select() method, 31
selected elements, 8
selection methods, 95–101, 117

custom filters for, 106
reverting to previous

selection, 100
using selection as context, 98

selection state for HTML form
elements, 17

selector property, 10, 46, 117
selectors

CSS
passing to $ () function, 5
use in jQuery, 2

jQuery, 89–95
combining selectors, 94
extending, 106
filters, 90
grammar, 114
groups of, 95
simple selectors, 90

passing to $ () function, 9
using to display portion of

loaded document, 64
serialize() method, 69, 134
setters, 13

(see also getter and setter
methods)

show() method, 52, 131
siblings() method, 99, 120
size() method, 10, 117
size, getting and setting for

elements, 18–21
slice() method, 96, 120
slideDown() method, 53, 130

Index | 145

slideToggle() method, 53, 130
slideUp() method, 53, 130
speeds (animated effects), 49
status codes (Ajax), 65, 131
step property, 56
stop() method, 58
stopPropagation() (Event), 34
strings of HTML text, passing to

$ () function, 5
style attribute, 15
style properties, querying and

setting, 15, 120
submit() method, 31

triggering an event, 41
success option (Ajax), 77
success status code (Ajax), 65
swing function, 56

T
tag names, selector names and,

90
target property (Event), 36
text data type (Ajax), 71
text() method, 18, 126
textContent property, 18
themes, Jquery UI, 110
this keyword

in callback function for each()
method, 10

timeout option (Ajax), 74
timeout status code (Ajax), 65
timeStamp property (Event), 36
toArray() method, 10, 117
toggle() method, 52, 128, 131

binding event handler
functions to click
event, 33

toggleClass() method, 16, 123
top property, 19
traditional option (Ajax), 79
trigger() method, 34, 42, 128

triggering custom event
handlers, 44

triggerHandler(), 44, 128
type option (Ajax), 73

type property (Event), 42

U
unbind() method, 39, 129
undelegate() method, 45, 129
unload() method, 31
unqueued animations, 56
unwrap() method, 30, 126
url option (Ajax), 73
username, password options

(Ajax), 79
utility functions, 83–87, 134

V
val() method, 17, 123
value attribute, 17
visibility property, 49
visual effects methods, 109

W
W3C (World Wide Web

Consortium)
Event object, 34

which property (Event), 37
widgets (jQuery UI), 110
width() method, 20, 123

asymmetry between getter and
setter behavior, 21

wrap() method, 29, 126
wrapAll() method, 29, 126
wrapInner() method, 29, 126

X
xhr option (Ajax), 80
xml data type (Ajax), 71
XMLHttpRequest objects

use with jQuery.getJSON()
function, 68

use with jQuery.getScript()
function, 67

146 | Index

	Table of Contents
	Preface
	Chapter 1. Introduction to jQuery
	jQuery Basics
	The jQuery() Function
	Queries and Query Results

	Chapter 2. Element Getters and Setters
	Getting and Setting HTML Attributes
	Getting and Setting CSS Attributes
	Getting and Setting CSS Classes
	Getting and Setting HTML Form Values
	Getting and Setting Element Content
	Getting and Setting Element Geometry
	Getting and Setting Element Data

	Chapter 3. Altering Document Structure
	Inserting and Replacing Elements
	Copying Elements
	Wrapping Elements
	Deleting Elements

	Chapter 4. Events
	Simple Event Handler Registration
	jQuery Event Handlers
	The jQuery Event Object
	Advanced Event Handler Registration
	Deregistering Event Handlers
	Triggering Events
	Custom Events
	Live Events

	Chapter 5. Animated Effects
	Simple Effects
	Custom Animations
	The Animation Properties Object
	The Animation Options Object

	Canceling, Delaying, and Queuing Effects

	Chapter 6. Ajax
	The load() Method
	Ajax Utility Functions
	jQuery.getScript()
	jQuery.getJSON()
	jQuery.get() and jQuery.post()

	The jQuery.ajax() Function
	Common Options
	Callbacks
	Uncommon Options and Hooks

	Ajax Events

	Chapter 7. Utility Functions
	Chapter 8. Selectors and Selection
 Methods
	jQuery Selectors
	Simple Selectors
	Selector Combinations
	Selector Groups

	Selection Methods
	Using a Selection As Context
	Reverting to a Previous Selection

	Chapter 9. Extending jQuery with Plugins
	Chapter 10. The jQuery UI Library
	Chapter 11. jQuery Quick Reference
	Factory Function
	Selector Grammar
	Basic Methods and Properties
	Selection Methods
	Element Methods
	Insertion and Deletion Methods
	Event Methods
	Effects and Animation Methods
	Ajax Functions
	Utility Functions

	Index

