

Regular Expression
Pocket Reference

Regular Expression
Pocket Reference

SECOND EDITION

Tony Stubblebine

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Regular Expression Pocket Reference, Second Edition
by Tony Stubblebine

Copyright © 2007, 2003 Tony Stubblebine. All rights reserved. Portions of
this book are based on Mastering Regular Expressions, by Jeffrey E. F. Friedl,
Copyright © 2006, 2002, 1997 O’Reilly Media, Inc.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sumita Mukherji
Copyeditor: Genevieve d’Entremont

Indexer: Johnna VanHoose Dinse
Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
August 2003: First Edition.
July 2007: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Reference series
designations, Regular Expression Pocket Reference, the image of owls, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

Java™ is a trademark of Sun Microsystems, Inc. Microsoft Internet Explorer
and .NET are registered trademarks of Microsoft Corporation. Spider-Man
is a registered trademark of Marvel Enterprises, Inc.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

ISBN-10: 0-596-51427-1
ISBN-13: 978-0-596-51427-3
[T]

http://safari.oreilly.com
mailto:corporate@oreilly.com

v

Contents

About This Book 1

Introduction to Regexes and Pattern Matching 3
Regex Metacharacters, Modes, and Constructs 5
Unicode Support 13

Regular Expression Cookbook 13
Recipes 14

Perl 5.8 16
Supported Metacharacters 17
Regular Expression Operators 21
Unicode Support 23
Examples 24
Other Resources 25

Java (java.util.regex) 26
Supported Metacharacters 26
Regular Expression Classes and Interfaces 30
Unicode Support 35
Examples 36
Other Resources 38

vi | Contents

.NET and C# 38
Supported Metacharacters 38
Regular Expression Classes and Interfaces 42
Unicode Support 47
Examples 47
Other Resources 49

PHP 50
Supported Metacharacters 50
Pattern-Matching Functions 54
Examples 56
Other Resources 58

Python 58
Supported Metacharacters 58
re Module Objects and Functions 61
Unicode Support 64
Examples 65
Other Resources 66

RUBY 66
Supported Metacharacters 67
Object-Oriented Interface 70
Unicode Support 75
Examples 75

JavaScript 77
Supported Metacharacters 77
Pattern-Matching Methods and Objects 79
Examples 82
Other Resources 83

Contents | vii

PCRE 83
Supported Metacharacters 84
PCRE API 89
Unicode Support 92
Examples 92
Other Resources 96

Apache Web Server 96
Supported Metacharacters 96
RewriteRule 99
Matching Directives 102
Examples 102

vi Editor 103
Supported Metacharacters 103
Pattern Matching 106
Examples 108
Other Resources 108

Shell Tools 109
Supported Metacharacters 109
Other Resources 114

Index 115

1

Regular Expression Pocket
Reference

Regular expressions are a language used for parsing and
manipulating text. They are often used to perform complex
search-and-replace operations, and to validate that text data
is well-formed.

Today, regular expressions are included in most program-
ming languages, as well as in many scripting languages,
editors, applications, databases, and command-line tools.
This book aims to give quick access to the syntax and
pattern-matching operations of the most popular of these
languages so that you can apply your regular-expression
knowledge in any environment.

The second edition of this book adds sections on Ruby and
Apache web server, common regular expressions, and also
updates existing languages.

About This Book
This book starts with a general introduction to regular
expressions. The first section describes and defines the
constructs used in regular expressions, and establishes the
common principles of pattern matching. The remaining sec-
tions of the book are devoted to the syntax, features, and
usage of regular expressions in various implementations.

The implementations covered in this book are Perl, Java™,
.NET and C#, Ruby, Python, PCRE, PHP, Apache web
server, vi editor, JavaScript, and shell tools.

2 | Regular Expression Pocket Reference

Conventions Used in This Book
The following typographical conventions are used in this
book:

Italic
Used for emphasis, new terms, program names, and
URLs

Constant width
Used for options, values, code fragments, and any text
that should be typed literally

Constant width italic
Used for text that should be replaced with user-supplied
values

Constant width bold
Used in examples for commands or other text that
should be typed literally by the user

Acknowledgments
Jeffrey E. F. Friedl’s Mastering Regular Expressions (O’Reilly)
is the definitive work on regular expressions. While writing, I
relied heavily on his book and his advice. As a convenience,
this book provides page references to Mastering Regular
Expressions, Third Edition (MRE) for expanded discussion of
regular expression syntax and concepts.

Nat Torkington and Linda Mui were excellent editors who
guided me through what turned out to be a tricky first edi-
tion. This edition was aided by the excellent editorial skills of
Andy Oram. Sarah Burcham deserves special thanks for
giving me the opportunity to write this book, and for her
contributions to the “Shell Tools” section. More thanks for
the input and technical reviews from Jeffrey Friedl, Philip
Hazel, Steve Friedl, Ola Bini, Ian Darwin, Zak Greant, Ron
Hitchens, A.M. Kuchling, Tim Allwine, Schuyler Erle, David
Lents, Rabble, Rich Bowan, Eric Eisenhart, and Brad Merrill.

Introduction to Regexes and Pattern Matching | 3

Introduction to Regexes and Pattern
Matching
A regular expression is a string containing a combination of
normal characters and special metacharacters or metase-
quences. The normal characters match themselves.
Metacharacters and metasequences are characters or sequences
of characters that represent ideas such as quantity, locations,
or types of characters. The list in “Regex Metacharacters,
Modes, and Constructs” shows the most common metachar-
acters and metasequences in the regular expression world.
Later sections list the availability of and syntax for sup-
ported metacharacters for particular implementations of
regular expressions.

Pattern matching consists of finding a section of text that is
described (matched) by a regular expression. The underlying
code that searches the text is the regular expression engine.
You can predict the results of most matches by keeping two
rules in mind:

1. The earliest (leftmost) match wins

Regular expressions are applied to the input starting at
the first character and proceeding toward the last. As
soon as the regular expression engine finds a match, it
returns. (See MRE 148–149.)

2. Standard quantifiers are greedy

Quantifiers specify how many times something can be
repeated. The standard quantifiers attempt to match as
many times as possible. They settle for less than the max-
imum only if this is necessary for the success of the
match. The process of giving up characters and trying
less-greedy matches is called backtracking. (See MRE
151–153.)

Regular expression engines have differences based on their
type. There are two classes of engines: Deterministic Finite
Automaton (DFA) and Nondeterministic Finite Automaton

4 | Regular Expression Pocket Reference

(NFA). DFAs are faster, but lack many of the features of an
NFA, such as capturing, lookaround, and nongreedy quanti-
fiers. In the NFA world, there are two types: traditional and
POSIX.

DFA engines
DFAs compare each character of the input string to the
regular expression, keeping track of all matches in
progress. Since each character is examined at most once,
the DFA engine is the fastest. One additional rule to
remember with DFAs is that the alternation metase-
quence is greedy. When more than one option in an
alternation (foo|foobar) matches, the longest one is
selected. So, rule No. 1 can be amended to read “the
longest leftmost match wins.” (See MRE 155–156.)

Traditional NFA engines
Traditional NFA engines compare each element of the
regex to the input string, keeping track of positions
where it chose between two options in the regex. If an
option fails, the engine backtracks to the most recently
saved position. For standard quantifiers, the engine
chooses the greedy option of matching more text; how-
ever, if that option leads to the failure of the match, the
engine returns to a saved position and tries a less greedy
path. The traditional NFA engine uses ordered
alternation, where each option in the alternation is tried
sequentially. A longer match may be ignored if an earlier
option leads to a successful match. So, here rule #1 can
be amended to read “the first leftmost match after greedy
quantifiers have had their fill wins.” (See MRE 153–154.)

POSIX NFA engines
POSIX NFA Engines work similarly to Traditional NFAs
with one exception: a POSIX engine always picks the
longest of the leftmost matches. For example, the alter-
nation cat|category would match the full word
“category” whenever possible, even if the first alternative
(“cat”) matched and appeared earlier in the alternation.
(See MRE 153–154.)

Introduction to Regexes and Pattern Matching | 5

Regex Metacharacters, Modes, and Constructs
The metacharacters and metasequences shown here repre-
sent most available types of regular expression constructs
and their most common syntax. However, syntax and avail-
ability vary by implementation.

Character representations

Many implementations provide shortcuts to represent char-
acters that may be difficult to input. (See MRE 115–118.)

Character shorthands
Most implementations have specific shorthands for the
alert, backspace, escape character, form feed, newline,
carriage return, horizontal tab, and vertical tab
characters. For example, \n is often a shorthand for the
newline character, which is usually LF (012 octal), but
can sometimes be CR (015 octal), depending on the oper-
ating system. Confusingly, many implementations use \b
to mean both backspace and word boundary (position
between a “word” character and a nonword character).
For these implementations, \b means backspace in a char-
acter class (a set of possible characters to match in the
string), and word boundary elsewhere.

Octal escape: \num
Represents a character corresponding to a two- or three-
digit octal number. For example, \015\012 matches an
ASCII CR/LF sequence.

 Hex and Unicode escapes: \xnum, \x{num}, \unum, \Unum
Represent characters corresponding to hexadecimal num-
bers. Four-digit and larger hex numbers can represent the
range of Unicode characters. For example, \x0D\x0A
matches an ASCII CR/LF sequence.

Control characters: \cchar
Corresponds to ASCII control characters encoded with
values less than 32. To be safe, always use an uppercase
char—some implementations do not handle lowercase

6 | Regular Expression Pocket Reference

representations. For example, \cH matches Control-H, an
ASCII backspace character.

Character classes and class-like constructs

Character classes are used to specify a set of characters. A char-
acter class matches a single character in the input string that is
within the defined set of characters. (See MRE 118–128.)

Normal classes: [...] and [^...]
Character classes, [...], and negated character classes,
[^...], allow you to list the characters that you do or do
not want to match. A character class always matches one
character. The - (dash) indicates a range of characters.
For example, [a-z] matches any lowercase ASCII letter.
To include the dash in the list of characters, either list it
first, or escape it.

Almost any character: dot (.)
Usually matches any character except a newline. How-
ever, the match mode usually can be changed so that dot
also matches newlines. Inside a character class, dot
matches just a dot.

Class shorthands: \w, \d, \s, \W, \D, \S
Commonly provided shorthands for word character,
digit, and space character classes. A word character is
often all ASCII alphanumeric characters plus the under-
score. However, the list of alphanumerics can include
additional locale or Unicode alphanumerics, depending
on the implementation. A lowercase shorthand (e.g., \s)
matches a character from the class; uppercase (e.g., \S)
matches a character not from the class. For example, \d
matches a single digit character, and is usually equiva-
lent to [0-9].

POSIX character class: [:alnum:]
POSIX defines several character classes that can be used
only within regular expression character classes (see
Table 1). Take, for example, [:lower:]. When written as
[[:lower:]], it is equivalent to [a-z] in the ASCII locale.

Introduction to Regexes and Pattern Matching | 7

Unicode properties, scripts, and blocks: \p{prop}, \P{prop}
The Unicode standard defines classes of characters that
have a particular property, belong to a script, or exist
within a block. Properties are the character’s defining char-
acteristics, such as being a letter or a number (see Table 2).
Scripts are systems of writing, such as Hebrew, Latin, or
Han. Blocks are ranges of characters on the Unicode char-
acter map. Some implementations require that Unicode
properties be prefixed with Is or In. For example, \p{Ll}
matches lowercase letters in any Unicode-supported lan-
guage, such as a or α.

Unicode combining character sequence: \X
Matches a Unicode base character followed by any
number of Unicode-combining characters. This is a
shorthand for \P{M}\p{M}. For example, \X matches è; as
well as the two characters e'.

Table 1. POSIX character classes

Class Meaning

Alnum Letters and digits.

Alpha Letters.

Blank Space or tab only.

Cntrl Control characters.

Digit Decimal digits.

Graph Printing characters, excluding space.

Lower Lowercase letters.

Print Printing characters, including space.

Punct Printing characters, excluding letters and digits.

Space Whitespace.

Upper Uppercase letters.

Xdigit Hexadecimal digits.

8 | Regular Expression Pocket Reference

Table 2. Standard Unicode properties

Property Meaning

\p{L} Letters.

\p{Ll} Lowercase letters.

\p{Lm} Modifier letters.

\p{Lo} Letters, other. These have no case, and are not considered
modifiers.

\p{Lt} Titlecase letters.

\p{Lu} Uppercase letters.

\p{C} Control codes and characters not in other categories.

\p{Cc} ASCII and Latin-1 control characters.

\p{Cf} Nonvisible formatting characters.

\p{Cn} Unassigned code points.

\p{Co} Private use, such as company logos.

\p{Cs} Surrogates.

\p{M} Marks meant to combine with base characters, such as accent
marks.

\p{Mc} Modification characters that take up their own space. Examples
include “vowel signs.”

\p{Me} Marks that enclose other characters, such as circles, squares, and
diamonds.

\p{Mn} Characters that modify other characters, such as accents and
umlauts.

\p{N} Numeric characters.

\p{Nd} Decimal digits in various scripts.

\p{Nl} Letters that represent numbers, such as Roman numerals.

\p{No} Superscripts, symbols, or nondigit characters representing
numbers.

\p{P} Punctuation.

\p{Pc} Connecting punctuation, such as an underscore.

\p{Pd} Dashes and hyphens.

\p{Pe} Closing punctuation complementing \p{Ps}.

\p{Pi} Initial punctuation, such as opening quotes.

Introduction to Regexes and Pattern Matching | 9

Anchors and zero-width assertions

Anchors and “zero-width assertions” match positions in the
input string. (See MRE 128–134.)

Start of line/string: ^, \A
Matches at the beginning of the text being searched. In
multiline mode, ^ matches after any newline. Some
implementations support \A, which matches only at the
beginning of the text.

End of line/string: $, \Z, \z
$ matches at the end of a string. In multiline mode, $
matches before any newline. When supported, \Z matches
the end of string or the point before a string-ending new-
line, regardless of match mode. Some implementations
also provide \z, which matches only the end of the string,
regardless of newlines.

\p{Pf} Final punctuation, such as closing quotes.

\p{Po} Other punctuation marks.

\p{Ps} Opening punctuation, such as opening parentheses.

\p{S} Symbols.

\p{Sc} Currency.

\p{Sk} Combining characters represented as individual characters.

\p{Sm} Math symbols.

\p{So} Other symbols.

\p{Z} Separating characters with no visual representation.

\p{Zl} Line separators.

\p{Zp} Paragraph separators.

\p{Zs} Space characters.

Table 2. Standard Unicode properties (continued)

Property Meaning

10 | Regular Expression Pocket Reference

Start of match: \G
In iterative matching, \G matches the position where the
previous match ended. Often, this spot is reset to the
beginning of a string on a failed match.

Word boundary: \b, \B, \<, \>
Word boundary metacharacters match a location where a
word character is next to a nonword character. \b often
specifies a word boundary location, and \B often specifies a
not-word-boundary location. Some implementations pro-
vide separate metasequences for start- and end-of-word
boundaries, often \< and \>.

Lookahead: (?=...), (?!...)
Lookbehind: (?<=...), (?<!...)

Lookaround constructs match a location in the text where
the subpattern would match (lookahead), would not
match (negative lookahead), would have finished match-
ing (lookbehind), or would not have finished matching
(negative lookbehind). For example, foo(?=bar) matches
foo in foobar, but not food. Implementations often limit
lookbehind constructs to subpatterns with a predeter-
mined length.

Comments and mode modifiers

Mode modifiers change how the regular expression engine
interprets a regular expression. (See MRE 110–113, 135–136.)

Multiline mode: m
Changes the behavior of ^ and $ to match next to new-
lines within the input string.

Single-line mode: s
Changes the behavior of . (dot) to match all characters,
including newlines, within the input string.

Case-insensitive mode: i
Treat letters that differ only in case as identical.

Introduction to Regexes and Pattern Matching | 11

Free-spacing mode: x
Allows for whitespace and comments within a regular
expression. The whitespace and comments (starting with
and extending to the end of the line) are ignored by the
regular expression engine.

Mode modifiers: (?i), (?-i), (?mod:...)
Usually, mode modifiers may be set within a regular
expression with (?mod) to turn modes on for the rest of
the current subexpression; (?-mod) to turn modes off for
the rest of the current subexpression; and (?mod:...) to
turn modes on or off between the colon and the closing
parentheses. For example, use (?i:perl) matches use
perl, use Perl, use PeRl, etc.

Comments: (?#...) and #
In free-spacing mode, # indicates that the rest of the line is
a comment. When supported, the comment span (?#...)
can be embedded anywhere in a regular expression,
regardless of mode. For example, .{0,80}(?#Field limit
is 80 chars) allows you to make notes about why you
wrote .{0,80}.

Literal-text span: \Q...\E
Escapes metacharacters between \Q and \E. For example,
\Q(.*)\E is the same as \(\.*\).

Grouping, capturing, conditionals, and control

This section covers syntax for grouping subpatterns, captur-
ing submatches, conditional submatches, and quantifying the
number of times a subpattern matches. (See MRE 137–142.)

Capturing and grouping parentheses: (...) and \1, \2, etc.
Parentheses perform two functions: grouping and captur-
ing. Text matched by the subpattern within parentheses is
captured for later use. Capturing parentheses are num-
bered by counting their opening parentheses from the left.
If backreferences are available, the submatch can be
referred to later in the same match with \1, \2, etc. The

12 | Regular Expression Pocket Reference

captured text is made available after a match by
implementation-specific methods. For example, \b(\w+)\b
\s+\1\b matches duplicate words, such as the the.

Grouping-only parentheses: (?:...)
Groups a subexpression, possibly for alternation or quanti-
fiers, but does not capture the submatch. This is useful for
efficiency and reusability. For example, (?:foobar) matches
foobar, but does not save the match to a capture group.

Named capture: (?<name>...)
Performs capturing and grouping, with captured text later
referenced by name. For example, Subject:(?<subject>.*)
captures the text following Subject: to a capture group
that can be referenced by the name subject.

Atomic grouping: (?>...)
Text matched within the group is never backtracked
into, even if this leads to a match failure. For example,
(?>[ab]*)\w\w matches aabbcc, but not aabbaa.

Alternation: ...|...
Allows several subexpressions to be tested. Alternation’s
low precedence sometimes causes subexpressions to be
longer than intended, so use parentheses to specifically
group what you want alternated. Thus, \b(foo|bar)\b
matches the words foo or bar.

Conditional: (?(if)then |else)
The if is implementation-dependent, but generally is a
reference to a captured subexpression or a lookaround.
The then and else parts are both regular expression pat-
terns. If the if part is true, the then is applied. Otherwise,
else is applied. For example, (<)?foo(?(1)>|bar) matches
<foo> as well as foobar.

Greedy quantifiers: *, +, ?, {num,num }
The greedy quantifiers determine how many times a con-
struct may be applied. They attempt to match as many
times as possible, but will backtrack and give up matches
if necessary for the success of the overall match. For
example, (ab)+ matches all of ababababab.

Regular Expression Cookbook | 13

Lazy quantifiers: *?, +?, ??, {num,num }?
Lazy quantifiers control how many times a construct may
be applied. However, unlike greedy quantifiers, they
attempt to match as few times as possible. For example,
(an)+? matches only an of banana.

Possessive quantifiers: *+, ++, ?+, {num,num }+
Possessive quantifiers are like greedy quantifiers, except
that they “lock in” their match, disallowing later back-
tracking to break up the submatch. For example,
(ab)++ab will not match ababababab.

Unicode Support
The Unicode character set gives unique numbers to the
characters in all the world’s languages. Because of the large
number of possible characters, Unicode requires more than
one byte to represent a character. Some regular expression
implementations will not understand Unicode characters
because they expect 1 byte ASCII characters. Basic support
for Unicode characters starts with the ability to match a lit-
eral string of Unicode characters. Advanced support includes
character classes and other constructs that incorporate char-
acters from all Unicode-supported languages. For example, \w
might match è; as well as e.

Regular Expression Cookbook
This section contains simple versions of common regular
expression patterns. You may need to adjust them to meet
your needs.

Each expression is presented here with target strings that it
matches, and target strings that it does not match, so you can
get a sense of what adjustments you may need to make for
your own use cases.

They are written in the Perl style:

/pattern/mode
s/pattern/replacement/mode

14 | Regular Expression Pocket Reference

Recipes

Removing leading and trailing whitespace
s/^\s+//
s/\s+$//

Matches: " foo bar ", "foo "

Nonmatches: "foo bar"

Numbers from 0 to 999999
/^\d{1,6}$/

Matches: 42, 678234

Nonmatches: 10,000

Valid HTML Hex code
/^#([a-fA-F0-9]){3}(([a-fA-F0-9]){3})?$/

Matches: #fff, #1a1, #996633

Nonmatches: #ff, FFFFFF

U.S. Social Security number
/^\d{3}-\d{2}-\d{4}$/

Matches: 078-05-1120

Nonmatches: 078051120, 1234-12-12

U.S. zip code
/^\d{5}(-\d{4})?$/

Matches: 94941-3232, 10024

Nonmatches: 949413232

U.S. currency
/^\$\(d{1,3}(\,\d{3})*|\d+)(\.\d{2})?$/

Matches: $20, $15,000.01

Nonmatches: $1.001, $.99

Regular Expression Cookbook | 15

Match date: MM/DD/YYYY HH:MM:SS
/^\d\d\/\d\d\/\d\d\d\d \d\d:\d\d:\d\d$/

Matches: 04/30/1978 20:45:38

Nonmatches: 4/30/1978 20:45:38, 4/30/78

Leading pathname
/^.*\//

Matches: /usr/local/bin/apachectl

Nonmatches: C:\\System\foo.exe

(See MRE 190–192.)

Dotted Quad IP address
/^(\d|[01]?\d\d|2[0-4]\d|25[0-5])\.(\d|[01]?\d\d|2[0-4]
\d|25[0-5])\.
(\d|[01]?\d\d|2[0-4]\d|25[0-5])\.(\d|[01]?\d\d|2[0-4]
\d|25[0-5])$/

Matches: 127.0.0.1, 224.22.5.110

Nonmatches: 127.1

(See MRE 187–189.)

MAC address
/^([0-9a-fA-F]{2}:){5}[0-9a-fA-F]{2}$/

Matches: 01:23:45:67:89:ab

Nonmatches: 01:23:45, 0123456789ab

Email
/^[0-9a-zA-Z]([-.\w]*[0-9a-zA-Z_+])*@([0-9a-zA-Z][-\w]*
[0-9a-zA-Z]\.)+[a-zA-Z]{2,9}$/

Matches: tony@example.com, tony@i-e.com, tony@mail.
example.museum

Nonmatches: .@example.com, tony@i-.com, tony@example.a

(See MRE 70.)

16 | Regular Expression Pocket Reference

 HTTP URL
/(https?):\/\/([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+
[a-zA-Z]{2,9})
(:\d{1,4})?([-\w\/#~:.?+=&%@~]*)/

Matches: https://example.com, http://foo.com:8080/bar.html

Nonmatches: ftp://foo.com, ftp://foo.com/

Perl 5.8
Perl provides a rich set of regular-expression operators, con-
structs, and features, with more being added in each new
release. Perl uses a Traditional NFA match engine. For an
explanation of the rules behind an NFA engine, see “Intro-
duction to Regexes and Pattern Matching.”

This reference covers Perl version 5.8. A number of new fea-
tures will be introduced in Perl 5.10; these are covered in
Table 8. Unicode features were introduced in 5.6, but did
not stabilize until 5.8. Most other features work in versions
5.004 and later.

Supported Metacharacters
Perl supports the metacharacters and metasequences listed in
Table 3 through Table 7. To learn more about expanded def-
initions of each metacharacter, see “Regex Metacharacters,
Modes, and Constructs.”

Table 3. Perl character representations

Sequence Meaning

\a Alert (bell).

\b Backspace; supported only in character class (outside of
character class matches a word boundary).

\e Esc character, x1B.

\n Newline; x0A on Unix and Windows, x0D on Mac OS 9.

\r Carriage return; x0D on Unix and Windows, x0A on Mac OS 9.

Perl 5.8 | 17

\f Form feed, x0C.

\t Horizontal tab, x09.

\octal Character specified by a two- or three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

\N{name} A named character specified in the Unicode standard or listed in
PATH_TO_PERLLIB/unicode/Names.txt; requires use
charnames ':full'.

Table 4. Perl character classes and class-like constructs

Class Meaning

[...] A single character listed, or contained in a listed range.

[^...] A single character not listed, and not contained within a listed
range.

[:class:] POSIX-style character class valid only within a regex character
class.

. Any character except newline (unless single-line mode, /s).

\C One byte; however, this may corrupt a Unicode character
stream.

\X Base character, followed by any number of Unicode combining
characters.

\w Word character, \p{IsWord}.

\W Nonword character, \P{IsWord}.

\d Digit character, \p{IsDigit}.

\D Nondigit character, \P{IsDigit}.

\s Whitespace character, \p{IsSpace}.

\S Nonwhitespace character, \P{IsSpace}.

\p{prop} Character contained by given Unicode property, script, or block.

\P{prop} Character not contained by given Unicode property, script, or
block.

Table 3. Perl character representations (continued)

Sequence Meaning

18 | Regular Expression Pocket Reference

Table 5. Perl anchors and zero-width tests

Sequence Meaning

^ Start of string, or, in multiline match mode (/m), the position
after any newline.

\A Start of search string, in all match modes.

$ End of search string or the point before a string-ending newline,
or, in multiline match mode (/m), the position before any
newline.

\Z End of string, or the point before a string-ending newline, in any
match mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b Word boundary.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind; fixed-length only.

(?<!...) Negative lookbehind; fixed-length only.

Table 6. Perl comments and mode modifiers

Modifier Meaning

/i Case-insensitive matching.

/m ^ and $ match next to embedded \n.

/s Dot (.) matches newline.

/x Ignore whitespace, and allow comments (#) in pattern.

/o Compile pattern only once.

(?mode) Turn listed modes (one or more of xsmi) on for the rest of the
subexpression.

(?-mode) Turn listed modes (one or more of xsmi) off for the rest of the
subexpression.

(?mode:...) Turn listed modes (one or more of xsmi) on within
parentheses.

(?-mode:...) Turn listed modes (one or more of xsmi) off within
parentheses.

Perl 5.8 | 19

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in /x mode.

\u Force next character to uppercase.

\l Force next character to lowercase.

\U Force all following characters to uppercase.

\L Force all following characters to lowercase.

\Q Quote all following regex metacharacters.

\E End a span started with \U, \L, or \Q.

Table 7. Perl grouping, capturing, conditional,
and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2, . . . and $1,
$2,

\n Contains text matched by the nth capture group.

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Atomic grouping.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, and no more than y times, but as few
times as possible.

Table 6. Perl comments and mode modifiers (continued)

Modifier Meaning

20 | Regular Expression Pocket Reference

(?(COND)...|
...)

Match with if-then-else pattern, where COND is an integer
referring to a backreference, or a lookaround assertion.

(?(COND)...) Match with if-then pattern.

(?{CODE}) Execute embedded Perl code.

(??{CODE}) Match regex from embedded Perl code.

Table 8. New features in Perl 5.10

Modifier Meaning

(?<name>...)or
(?'name'...)

Named capture group.

\k<name> or
\k'name'

Backreference to named capture group.

%+ Hash reference to the leftmost capture of a given name,
$+{foo}.

%- Hash reference to an array of all captures of a given name,
$-{foo}[0].

\g{n} or \gn Back reference to the nth capture.

\g{-n} or \g-n Relative backreference to the nth previous capture.

(?n) Recurse into the nth capture buffer.

(?&NAME) Recurse into the named capture buffer.

(?R) Recursively call the entire expression.

(?(DEFINE)...) Define a subexpression that can be recursed into.

(*FAIL) Fail submatch, and force the engine to backtrack.

(*ACCEPT) Force engine to accept the match, even if there is more pattern
to check.

(*PRUNE) Cause the match to fail from the current starting position.

(*MARK:name) Marks and names the current position in the string. The position
is available in $REGMARK.

(*SKIP:name) Reject all matches up to the point where the named MARK was
executed.

(*THEN) When backtracked into, skip to the next alternation.

Table 7. Perl grouping, capturing, conditional,
and control (continued)

Sequence Meaning

Perl 5.8 | 21

Regular Expression Operators
Perl provides the built-in regular expression operators qr//,
m//, and s///, as well as the split function. Each operator
accepts a regular expression pattern string that is run through
string and variable interpolation, and then compiled.

Regular expressions are often delimited with the forward
slash, but you can pick any nonalphanumeric, non-
whitespace character. Here are some examples:

qr#...# m!...! m{...}
s|...|...| s[...][...] s<...>/.../

A match delimited by slashes (/.../) doesn’t require a
leading m:

/.../ #same as m/.../

Using the single quote as a delimiter suppresses interpolation
of variables and the constructs \N{name}, \u, \l, \U, \L, \Q, and
\E. Normally, these are interpolated before being passed to
the regular expression engine.

qr// (Quote Regex)
qr/PATTERN/ismxo

Quote and compile PATTERN as a regular expression. The returned
value may be used in a later pattern match or substitution. This
saves time if the regular expression is going to be interpolated
repeatedly. The match modes (or lack of), /ismxo, are locked in.

(*COMMIT) When backtracked into, cause the match to fail outright.

/p Mode modifier that enables the${^PREMATCH},${MATCH},
and ${^POSTMATCH} variables.

\K Exclude previously matched text from the final match.

Table 8. New features in Perl 5.10 (continued)

Modifier Meaning

22 | Regular Expression Pocket Reference

m// (Matching)
m/PATTERN/imsxocg

Match PATTERN against input string. In list context, returns a list of
substrings matched by capturing parentheses, or else (1) for a
successful match or () for a failed match. In scalar context,
returns 1 for success, or "" for failure. /imsxo are optional mode
modifiers. /cg are optional match modifiers. /g in scalar context
causes the match to start from the end of the previous match. In
list context, a /g match returns all matches, or all captured
substrings from all matches. A failed /g match will reset the match
start to the beginning of the string, unless the match is in
combined /cg mode.

s/// (Substitution)
s/PATTERN/REPLACEMENT/egimosx

Match PATTERN in the input string, and replace the match text with
REPLACEMENT, returning the number of successes. /imosx are
optional mode modifiers. /g substitutes all occurrences of PATTERN.
Each /e causes an evaluation of REPLACEMENT as Perl code.

split
split /PATTERN/, EXPR, LIMIT

split /PATTERN/, EXPR

split /PATTERN/

split

Return a list of substrings surrounding matches of PATTERN in EXPR.
If LIMIT is included, the list contains substrings surrounding the
first LIMIT matches. The pattern argument is a match operator, so
use m if you want alternate delimiters (e.g., split m{PATTERN}). The
match permits the same modifiers as m{}. Table 9 lists the after-
match variables.

Perl 5.8 | 23

Unicode Support
Perl provides built-in support for Unicode 3.2, including full
support in the \w, \d, \s, and \b metasequences.

The following constructs respect the current locale if use
locale is defined: case-insensitive (i) mode, \L, \l, \U, \u, \w,
and \W.

Perl supports the standard Unicode properties (see Table 3)
as well as Perl-specific composite properties (see Table 10).
Scripts and properties may have an Is prefix, but do not
require it. Blocks require an In prefix only if the block name
conflicts with a script name.

Table 9. Perl after-match variables

Variable Meaning

$1, $2, ... Captured submatches.

@- $-[0]: offset of start of match.
$-[n]: offset of start of $n.

@+ $+[0]: offset of end of match.
$+[n]: offset of end of $n.

$+ Last parenthesized match.

$' Text before match. Causes all regular expressions to be slower.
Same as substr($input, 0, $-[0]).

$& Text of match. Causes all regular expressions to be slower. Same
as substr($input, $-[0], $+[0] - $-[0]).

$` Text after match. Causes all regular expressions to be slower.
Same as substr($input, $+[0]).

$^N Text of most recently closed capturing parentheses.

$* If true, /m is assumed for all matches without a /s.

$^R The result value of the most recently executed code construct
within a pattern match.

24 | Regular Expression Pocket Reference

Examples

Table 10. Perl composite Unicode properties

Property Equivalent

IsASCII [\x00-\x7f]

IsAlnum [\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}]

IsAlpha [\p{Ll}\p{Lu}\p{Lt}\p{Lo}]

IsCntrl \p{C}

IsDigit \p{Nd}

IsGraph [^\p{C}\p{Space}]

IsLower \p{Ll}

IsPrint \P{C}

IsPunct \p{P}

IsSpace [\t\n\f\r\p{Z}]

IsUppper [\p{Lu}\p{Lt}]

IsWord [_\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}]

IsXDigit [0-9a-fA-F]

Example 1. Simple match

Find Spider-Man, Spiderman, SPIDER-MAN, etc.
my $dailybugle = "Spider-Man Menaces City!";
if ($dailybugle =~ m/spider[-]?man/i) { do_something(); }

Example 2. Match, capture group, and qr

Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
my $date = "12/30/1969";
my $regex = qr!^(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)$!;
if ($date =~ $regex) {
 print "Day= ", $1,
 " Month=", $2,
 " Year= ", $3;
}

Perl 5.8 | 25

Other Resources
• Programming Perl, by Larry Wall et al. (O’Reilly), is the

standard Perl reference.

• Mastering Regular Expressions, Third Edition, by Jeffrey
E. F. Friedl (O’Reilly), covers the details of Perl regular
expressions on pages 283–364.

• perlre is the perldoc documentation provided with most
Perl distributions.

Example 3. Simple substitution

Convert
 to
 for XHTML compliance
my $text = "Hello World!
";
$text =~ s#
#
#ig;

Example 4. Harder substitution

urlify - turn URLs into HTML links
$text = "Check the web site, http://www.oreilly.com/catalog/
regexppr.";
$text =~
 s{
 \b # start at word boundary
 (# capture to $1
 (https?|telnet|gopher|file|wais|ftp) :
 # resource and colon
 [\w/#~:.?+=&%@!\-] +? # one or more valid
 # characters
 # but take as little as
 # possible
)
 (?= # lookahead
 [.:?\-] * # for possible punctuation
 (?: [^\w/#~:.?+=&%@!\-] # invalid character
 | $) # or end of string
)
 }{$1}igox;

26 | Regular Expression Pocket Reference

Java (java.util.regex)
Java 1.4 introduced regular expressions with Sun’s java.
util.regex package. Although there are competing packages
available for previous versions of Java, Sun’s is now the stan-
dard. Sun’s package uses a Traditional NFA match engine.
For an explanation of the rules behind a Traditional NFA
engine, see “Introduction to Regexes and Pattern Matching.”
This section covers regular expressions in Java 1.5 and 1.6.

Supported Metacharacters
java.util.regex supports the metacharacters and metase-
quences listed in Table 11 through Table 15. For expanded
definitions of each metacharacter, see “Regex Metacharacters,
Modes, and Constructs.”

Table 11. Java character representations

Sequence Meaning

\a Alert (bell).

\b Backspace, \x08, supported only in character class.

\e Esc character, \x1B.

\n Newline, \x0A.

\r Carriage return, \x0D.

\f Form feed, \x0C.

\t Horizontal tab, \x09.

\0octal Character specified by a one-, two-, or three-digit octal
code.

\xhex Character specified by a two-digit hexadecimal code.

\uhex Unicode character specified by a four-digit hexadecimal
code.

\cchar Named control character.

Java (java.util.regex) | 27

Table 12. Java character classes and class-like constructs

Class Meaning

[...] A single character listed or contained in a listed range.

[^...] A single character not liste and not contained within a
listed range.

. Any character, except a line terminator (unless DOTALL
mode).

\w Word character, [a-zA-Z0-9_].

\W Nonword character, [^a-zA-Z0-9_].

\d Digit, [0-9].

\D Nondigit, [^0-9].

\s Whitespace character, [\t\n\f\r\x0B].

\S Nonwhitespace character, [^ \t\n\f\r\x0B].

\p{prop} Character contained by given POSIX character class,
Unicode property, or Unicode block.

\P{prop} Character not contained by given POSIX character class,
Unicode property, or Unicode block.

Table 13. Java anchors and other zero-width tests

Sequence Meaning

^ Start of string, or the point after any newline if in
MULTILINE mode.

\A Beginning of string, in any match mode.

$ End of string, or the point before any newline if in
MULTILINE mode.

\Z End of string, but before any final line terminator, in any
match mode.

\z End of string, in any match mode.

\b Word boundary.

\B Not-word-boundary.

\G Beginning of current search.

28 | Regular Expression Pocket Reference

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 14. Java comments and mode modifiers

Modifier/sequence Mode character Meaning

Pattern.UNIX_LINES d Treat \n as the only line
terminator.

Pattern.DOTALL s Dot (.) matches any character,
including a line terminator.

Pattern.MULTILINE m ^ and $match next to embedded
line terminators.

Pattern.COMMENTS x Ignore whitespace, and allow
embedded comments starting
with #.

Pattern.CASE_
INSENSITIVE

i Case-insensitive match for ASCII
characters.

Pattern.UNICODE_
CASE

u Case-insensitive match for
Unicode characters.

Pattern.CANON_EQ Unicode “canonical equivalence”
mode, where characters, or
sequences of a base character and
combining characters with
identical visual representations,
are treated as equals.

(?mode) Turn listed modes (one or more of
idmsux) on for the rest of the
subexpression.

(?-mode) Turn listed modes (one or more of
idmsux) off for the rest of the
subexpression.

(?mode:...) Turn listed modes (one or more of
idmsux) on within parentheses.

Table 13. Java anchors and other zero-width tests (continued)

Sequence Meaning

Java (java.util.regex) | 29

(?-mode:...) Turn listed modes (one or more of
idmsux) off within parentheses.

#... Treat rest of line as a comment in
/x mode.

Table 15. Java grouping, capturing, conditional,
and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2, . . .
and $1, $2,

\n Contains text matched by the nth capture group.

$n In a replacement string, contains text matched by the
nth capture group.

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Atomic grouping.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few
times as possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

Table 14. Java comments and mode modifiers (continued)

Modifier/sequence Mode character Meaning

30 | Regular Expression Pocket Reference

Regular Expression Classes and Interfaces
Regular expression functions are contained in two main classes,
java.util.regex.Pattern and java.util.regex.Matcher; an
exception, java.util.regex.PatternSyntaxException; and an
interface, CharSequence. Additionally, the String class imple-
ments the CharSequence interface to provide basic pattern-
matching methods. Pattern objects are compiled regular
expressions that can be applied to any CharSequence. A
Matcher is a stateful object that scans for one or more occur-
rences of a Pattern applied in a string (or any object
implementing CharSequence).

Backslashes in regular expression String literals need to be
escaped. So, \n (newline) becomes \\n when used in a Java
String literal that is to be used as a regular expression.

java.lang.String

Description

Methods for pattern matching.

Methods

boolean matches(String regex)
Return true if regex matches the entire String.

String[] split(String regex)
Return an array of the substrings surrounding matches of
regex.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never
backtrack.

Table 15. Java grouping, capturing, conditional,
and control (continued)

Sequence Meaning

Java (java.util.regex) | 31

String [] split(String regex, int limit)
Return an array of the substrings surrounding the first limit-1
matches of regex.

String replaceFirst(String regex, String replacement)
Replace the substring matched by regex with replacement.

String replaceAll(String regex, String replacement)
Replace all substrings matched by regex with replacement.

java.util.regex.Pattern

Description

Models a regular expression pattern.

Methods

static Pattern compile(String regex)
Construct a Pattern object from regex.

static Pattern compile(String regex, int flags)
Construct a new Pattern object out of regex, and the OR’d
mode-modifier constants flags.

int flags()
Return the Pattern’s mode modifiers.

Matcher matcher(CharSequence input)
Construct a Matcher object that will match this Pattern
against input.

static boolean matches(String regex, CharSequence input)
Return true if regex matches the entire string input.

String pattern()
Return the regular expression used to create this Pattern.

static String quote(String text)
Escapes the text so that regular expression operators will be
matched literally.

String[] split(CharSequence input)
Return an array of the substrings surrounding matches of this
Pattern in input.

String[] split(CharSequence input, int limit)
Return an array of the substrings surrounding the first limit
matches of this pattern in regex.

32 | Regular Expression Pocket Reference

java.util.regex.Matcher

Description

Models a stateful regular expression pattern matcher and pattern
matching results.

Methods

Matcher appendReplacement(StringBuffer sb, String replacement)
Append substring preceding match and replacement to sb.

StringBuffer appendTail(StringBuffer sb)
Append substring following end of match to sb.

int end()
Index of the first character after the end of the match.

int end(int group)
Index of the first character after the text captured by group.

boolean find()
Find the next match in the input string.

boolean find(int start)
Find the next match after character position start.

String group()
Text matched by this Pattern.

String group(int group)
Text captured by capture group group.

int groupCount()
Number of capturing groups in Pattern.

boolean hasAnchoringBounds()
Return true if this Matcher uses anchoring bounds so that
anchor operators match at the region boundaries, not just at
the start and end of the target string.

boolean hasTransparentBounds()
True if this Matcher uses transparent bounds so that lookaround
operators can see outside the current search bounds. Defaults
to false.

boolean hitEnd()
True if the last match attempts to inspect beyond the end of
the input. In scanners, this is an indication that more input
may have resulted in a longer match.

Java (java.util.regex) | 33

boolean lookingAt()
True if the pattern matches at the beginning of the input.

boolean matches()
Return true if Pattern matches entire input string.

Pattern pattern()
Return Pattern object used by this Matcher.

static String quoteReplacement(String string)
Escape special characters evaluated during replacements.

Matcher region(int start, int end)
Return this matcher and run future matches in the region
between start characters and end characters from the begin-
ning of the string.

int regionStart()
Return the starting offset of the search region. Defaults to zero.

int regionEnd()
Return the ending offset of the search region. Defaults to the
length of the target string.

String replaceAll(String replacement)
Replace every match with replacement.

String replaceFirst(String replacement)
Replace first match with replacement.

boolean requireEnd()
Return true if the success of the last match relied on the end
of the input. In scanners, this is an indication that more input
may have caused a failed match.

Matcher reset()
Reset this matcher so that the next match starts at the begin-
ning of the input string.

Matcher reset(CharSequence input)
Reset this matcher with new input.

int start()
Index of first character matched.

int start(int group)
Index of first character matched in captured substring group.

MatchResult toMatchResult()
Return a MatchResult object for the most recent match.

String toString()
Return a string representation of the matcher for debugging.

34 | Regular Expression Pocket Reference

Matcher useAnchorBounds(boolean b)
If true, set the Matcher to use anchor bounds so that anchor
operators match at the beginning and end of the current
search bounds, rather than the beginning and end of the
search string. Defaults to true.

Matcher usePattern(Pattern p)
Replace the Matcher’s pattern, but keep the rest of the match
state.

Matcher useTransparentBounds(boolean b)
If true, set the Matcher to use transparent bounds so that
lookaround operators can see outside of the current search
bounds. Defaults to false.

java.util.regex.PatternSyntaxException

Description

Thrown to indicate a syntax error in a regular expression pattern.

Methods

PatternSyntaxException(String desc, String regex, int index)
Construct an instance of this class.

String getDescription()
Return error description.

int getIndex()
Return error index.

String getMessage()
Return a multiline error message containing error descrip-
tion, index, regular expression pattern, and indication of
the position of the error within the pattern.

String getPattern()
Return the regular expression pattern that threw the
exception.

java.lang.CharSequence

Description

Defines an interface for read-only access so that regular expres-
sion patterns may be applied to a sequence of characters.

Java (java.util.regex) | 35

Methods

char charAt(int index)
Return the character at the zero-based position index.

int length()
Return the number of characters in the sequence.

CharSequence subSequence(int start, int end)
Return a subsequence, including the start index, and
excluding the end index.

String toString()
Return a String representation of the sequence.

Unicode Support
This package supports Unicode 4.0, although \w, \W, \d, \D, \s,
and \S support only ASCII. You can use the equivalent Uni-
code properties \p{L}, \P{L}, \p{Nd}, \P{Nd}, \p{Z}, and \P{Z}.
The word boundary sequences—\b and \B—do understand
Unicode.

For supported Unicode properties and blocks, see Table 2.
This package supports only the short property names, such
as \p{Lu}, and not \p{Lowercase_Letter}. Block names require
the In prefix, and support only the name form without spaces
or underscores, for example, \p{InGreekExtended}, not \p{In_
Greek_Extended} or \p{In Greek Extended}.

Examples

Example 5. Simple match

import java.util.regex.*;

// Find Spider-Man, Spiderman, SPIDER-MAN, etc.
public class StringRegexTest {
 public static void main(String[] args) throws Exception {
 String dailyBugle = "Spider-Man Menaces City!";

 //regex must match entire string

36 | Regular Expression Pocket Reference

 String regex = "(?i).*spider[-]?man.*";

 if (dailyBugle.matches(regex)) {
 System.out.println("Matched: " + dailyBugle);
 }
 }
}

Example 6. Match and capture group

// Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
import java.util.regex.*;

public class MatchTest {
 public static void main(String[] args) throws Exception {
 String date = "12/30/1969";
 Pattern p =
 Pattern.compile("^(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\
\d)?)$");

 Matcher m = p.matcher(date);

 if (m.find()) {
 String month = m.group(1);
 String day = m.group(2);
 String year = m.group(3);
 System.out.printf("Found %s-%s-%s\n", year, month, day);
 }
 }
}

Example 7. Simple substitution

// Example -. Simple substitution
// Convert
 to
 for XHTML compliance
import java.util.regex.*;

public class SimpleSubstitutionTest {
 public static void main(String[] args) {
 String text = "Hello world.
";

Example 5. Simple match (continued)

Java (java.util.regex) | 37

 Pattern p = Pattern.compile("
", Pattern.CASE_
INSENSITIVE);
 Matcher m = p.matcher(text);

 String result = m.replaceAll("
");
 System.out.println(result);
 }
}

Example 8. Harder substitution

// urlify - turn URLs into HTML links
import java.util.regex.*;

public class Urlify {
 public static void main (String[] args) throws Exception {
 String text = "Check the web site, http://www.oreilly.com/
catalog/regexppr.";
 String regex =
 "\\b # start at word\n"
 + " # boundary\n"
 + "(# capture to $1\n"
 + "(https?|telnet|gopher|file|wais|ftp) : \n"
 + " # resource and colon\n"
 + "[\\w/\\#~:.?+=&%@!\\-] +? # one or more valid\n"
 + " # characters\n"
 + " # but take as little\n"
 + " # as possible\n"
 + ")\n"
 + "(?= # lookahead\n"
 + "[.:?\\-] * # for possible punc\n"
 + "(?: [^\\w/\\#~:.?+=&%@!\\-] # invalid character\n"
 + "| $) # or end of string\n"
 + ")";

 Pattern p = Pattern.compile(regex,
 Pattern.CASE_INSENSITIVE + Pattern.COMMENTS);
 Matcher m = p.matcher(text);
 String result = m.replaceAll("$1");
 System.out.println(result);
 }
}

Example 7. Simple substitution (continued)

38 | Regular Expression Pocket Reference

Other Resources
• Mastering Regular Expressions, Third Edition, by Jeffrey

E. F. Friedl (O’Reilly), covers the details of Java regular
expressions on pages 365–403.

• Sun’s online documentation at http://java.sun.com/javase/
6/docs/api/java/util/regex/package-summary.html.

.NET and C#
Microsoft’s .NET Framework provides a consistent and
powerful set of regular expression classes for all .NET imple-
mentations. The following sections list the .NET regular
expression syntax, the core .NET classes, and C# examples.
Microsoft’s .NET uses a Traditional NFA match engine. For an
explanation of the rules behind this engine, see “Introduction
to Regexes and Pattern Matching.”

Supported Metacharacters
.NET supports the metacharacters and metasequences listed
in Table 16 through Table 21. For expanded definitions of
each metacharacter, see “Regex Metacharacters, Modes, and
Constructs.”

Table 16. .NET character representations

Sequence Meaning

\a Alert (bell), \x07.

\b Backspace, \x08, supported only in character class.

\e Esc character, \x1B.

\n Newline, \x0A.

\r Carriage return, \x0D.

\f Form feed, \x0C.

http://java.sun.com/javase/6/docs/api/java/util/regex/package-summary.html
http://java.sun.com/javase/6/docs/api/java/util/regex/package-summary.html

.NET and C# | 39

\t Horizontal tab, \x09.

\v Vertical tab, \x0B.

\0octal Character specified by a two-digit octal code.

\xhex Character specified by a two-digit hexadecimal code.

\uhex Character specified by a four-digit hexadecimal code.

\cchar Named control character.

Table 17. .NET character classes and class-like constructs

Class Meaning

[...] A single character listed, or contained within a listed
range.

[^...] A single character not listed, and not contained within a
listed range.

. Any character, except a line terminator (unless single-
line mode, s).

\w Word character, [\p{Ll}\p{Lu}\p{Lt}\p{Lo}
\p{Nd}\p{Pc}] or [a-zA-Z_0-9] in
ECMAScript mode.

\W Nonword character, [\p{Ll}\p{Lu}\p{Lt}
\p{Lo}\p{Nd}\p{Pc}], or [^a-zA-Z_0-9] in
ECMAScript mode.

\d Digit, \p{Nd}, or [0-9] in ECMAScript mode.

\D Nondigit, \P{Nd}, or [^0-9] in ECMAScript mode.

\s Whitespace character, [\f\n\r\t\v\x85\p{Z}] or
[\f\n\r\t\v] in ECMAScript mode.

\S Nonwhitespace character, [^ \f\n\r\t\v\x85
\p{Z}] or [^ \f\n\r\t\v] in ECMAScript mode.

\p{prop} Character contained by given Unicode block or property.

\P{prop} Character not contained by given Unicode block or
property.

Table 16. .NET character representations (continued)

Sequence Meaning

40 | Regular Expression Pocket Reference

Table 18. .NET anchors and other zero-width tests

Sequence Meaning

^ Start of string, or the point after any newline if in
MULTILINE mode.

\A Beginning of string, in all match modes.

$ End of string, or the point before any newline if in
MULTILINE mode.

\Z End of string, but before any final line terminator, in all
match modes.

\z End of string, in all match modes.

\b Boundary between a \w character, and a \W character.

\B Not-word-boundary.

\G End of the previous match.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 19. .NET comments and mode modifiers

Modifier/sequence Mode character Meaning

Singleline s Dot (.) matches any character,
including a line terminator.

Multiline m ^ and $ match next to
embedded line terminators.

IgnorePatternWhite
space

x Ignore whitespace, and allow
embedded comments starting
with #.

IgnoreCase i Case-insensitive match based on
characters in the current culture.

CultureInvariant i Culture-insensitive match.

ExplicitCapture n Allow named capture groups,
but treat parentheses as
noncapturing groups.

.NET and C# | 41

Compiled Compile regular expression.

RightToLeft Search from right to left, starting
to the left of the start position.
This has undefined and
unpredictable semantics.

ECMAScript Enables ECMAScript
compliance when used with
IgnoreCase or Multiline.

(?imnsx-imnsx) Turn match flags on or off for
rest of pattern.

(?imnsx-imnsx:...) Turn match flags on or off for the
rest of the subexpression.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment
in /x mode.

Table 20. .NET grouping, capturing, conditional,
and control

Sequence Meaning

(...) Grouping. Submatches fill \1,\2, . . . and $1, $2,

\n In a regular expression, match what was matched by the
nth earlier submatch.

$n In a replacement string, contains the nth earlier
submatch.

(?<name>...) Captures matched substring into group, name.

(?:...) Grouping-only parentheses, no capturing.

(?>...) Atomic grouping.

...|... Alternation; match one or the other.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

Table 19. .NET comments and mode modifiers (continued)

Modifier/sequence Mode character Meaning

42 | Regular Expression Pocket Reference

Regular Expression Classes and Interfaces
.NET defines its regular expression support in the System.
Text.RegularExpressions module. The RegExp() constructor
handles regular expression creation, and the rest of the
RegExp methods handle pattern matching. The Groups and
Match classes contain information about each match.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, and no more than y times, but as
few times as possible.

Table 21. .NET replacement sequences

Sequence Meaning

$1, $2, ... Captured submatches.

${name} Matched text of a named capture group.

$' Text before match.

$& Text of match.

$` Text after match.

$+ Last parenthesized match.

$_ Copy of original input string.

Table 20. .NET grouping, capturing, conditional,
and control (continued)

Sequence Meaning

.NET and C# | 43

C#’s raw string syntax, @"", allows defining regular expres-
sion patterns without having to escape embedded backslashes.

Regex

This class handles the creation of regular expressions and
pattern matching. Several static methods allow for pattern
matching without creating a RegExp object.

Methods

public Regex(string pattern)

public Regex(string pattern, RegexOptions options)
Return a regular expression object based on pattern, and
with the optional mode modifiers, options.

public static void CompileToAssembly(RegexCompilationInfo[]
regexinfos, System.Reflection.AssemblyName assemblyname)

public static void CompileToAssembly(RegexCompilationInfo[]
regexinfos, System.Reflection.AssemblyName assemblyname)

public static void CompileToAssembly(RegexCompilationInfo[]
regexinfos, System.Reflection.AssemblyName assemblyname,
System.Reflection.Emit.CustomAttributeBuilder[] attributes)

public static void CompileToAssembly(RegexCompilationInfo[]
regexinfos, System.Reflection.AssemblyName assemblyname,
System.Reflection.Emit.CustomAttributeBuilder[] attributes,
string resourceFile)

Compile one or more Regex objects to an assembly. The
regexinfos array describes the regular expressions to include.
The assembly filename is assemblyname. The array attributes
defines attributes for the assembly. resourceFile is the name
of a Win32 resource file to include in the assembly.

public static string Escape(string str)
Return a string with all regular expression metacharacters,
pound characters (#), and whitespace escaped.

44 | Regular Expression Pocket Reference

public static bool IsMatch(string input, string pattern)

public static bool IsMatch(string input, string pattern,
RegexOptions options)

public bool IsMatch(string input)

public bool IsMatch(string input, int startat)
Return the success of a single match against the input string
input. Static versions of this method require the regular
expression pattern. The options parameter allows for
optional mode modifiers (OR’d together). The startat
parameter defines a starting position in input to start
matching.

public static Match Match(string input, string pattern)

public static Match Match(string input, string pattern,
RegExpOptions options)

public Match Match(string input)

public Match Match(string input, int startat)

public Match Match(string input, int startat, int length)
Perform a single match against the input string input, and
return information about the match in a Match object. Static
versions of this method require the regular expression
pattern. The options parameter allows for optional mode
modifiers (OR’d together). The startat and length parame-
ters define a starting position, and the number of characters
after the starting position to perform the match, respectively.

public static MatchCollection Matches(string input, string
pattern)

public static MatchCollection Matches(string input, string
pattern, RegExpOptions options)

public MatchCollection Matches(string input)

public MatchCollection Matches(string input, int startat)
Find all matches in the input string input, and return informa-
tion about the matches in a MatchCollection object. Static
versions of this method require the regular expression
pattern. The options parameter allows for optional mode
modifiers (OR’d together). The startat parameter defines a
starting position in input to perform the match.

.NET and C# | 45

public static string Replace(string input, pattern,
MatchEvaluator evaluator)

public static string Replace(string input, pattern,
MatchEvaluator evaluator, RegexOptions options)

public static string Replace(string input, pattern, string
replacement)

public static string Replace(string input, pattern, string
replacement, RegexOptions options)

public string Replace(string input, MatchEvaluator evaluator)

public string Replace(string input, MatchEvaluator evaluator,
int count)

public string Replace(string input, MatchEvaluator evaluator,
int count, int startat)

public string Replace(string input, string replacement)

public string Replace(string input, string replacement, int count)

public string Replace(string input, string replacement, int
count, int startat)

Return a string in which each match in input is replaced with
the evaluation of the replacement string, or a call to a
MatchEvaluator object. The string replacement can contain
backreferences to captured text with the $n or ${name} syntax.

The options parameter allows for optional mode modifiers
(OR’d together). The count paramenter limits the number of
replacements. The startat parameter defines a starting posi-
tion in input to start the replacement.

public static string[] Split(string input, string pattern)

public static string[] Split(string input, string pattern,
RegexOptions options)

public static string[] Split(string input)

public static string[] Split(string input, int count)

public static string[] Split(string input, int count, int
startat)

Return an array of strings broken around matches of the regex
pattern. If specified, no more than count strings are returned.
You can specify a starting position in input with startat.

46 | Regular Expression Pocket Reference

Match

Properties

public bool Success
Indicate whether the match was successful.

public string Value
Text of the match.

public int Length
Number of characters in the matched text.

public int Index
Zero-based character index of the start of the match.

public GroupCollection Groups
A GroupCollection object, where Groups[0].value contains
the text of the entire match, and each additional Groups
element contains the text matched by a capture group.

Methods

public Match NextMatch()
Return a Match object for the next match of the regex in the
input string.

public virtual string Result(string result)
Return result with special replacement sequences replaced by
values from the previous match.

public static Match Synchronized(Match inner)
Return a Match object identical to inner, except also safe for
multithreaded use.

Group

Properties

public bool Success
True if the group participated in the match.

public string Value
Text captured by this group.

.NET and C# | 47

public int Length
Number of characters captured by this group.

public int Index
Zero-based character index of the start of the text captured by
this group.

Unicode Support
.NET provides built-in support for Unicode 3.1, including full
support in the \w, \d, and \s sequences. The range of charac-
ters matched can be limited to ASCII characters by turning on
ECMAScript mode. Case-insensitive matching is limited to the
characters of the current language defined in Thread.
CurrentCulture, unless the CultureInvariant option is set.

.NET supports the standard Unicode properties (see Table 2)
and blocks. Only the short form of property names are sup-
ported. Block names require the Is prefix, and must use the
simple name form, without spaces or underscores.

Examples

Example 9. Simple match

//Find Spider-Man, Spiderman, SPIDER-MAN, etc.
namespace Regex_PocketRef
{
 using System.Text.RegularExpressions;

 class SimpleMatchTest
 {
 static void Main()
 {
 string dailybugle = "Spider-Man Menaces City!";

 string regex = "spider[-]?man";

48 | Regular Expression Pocket Reference

 if (Regex.IsMatch(dailybugle, regex, RegexOptions.
IgnoreCase)) {
 //do something
 }
 }
}

Example 10. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
using System.Text.RegularExpressions;

class MatchTest
{
 static void Main()
 {
 string date = "12/30/1969";
 Regex r =
 new Regex(@"^(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)$");

 Match m = r.Match(date);

 if (m.Success) {
 string month = m.Groups[1].Value;
 string day = m.Groups[2].Value;
 string year = m.Groups[3].Value;
 }
 }
}

Example 11. Simple substitution

//Convert
 to
 for XHTML compliance
using System.Text.RegularExpressions;

class SimpleSubstitutionTest
{
 static void Main()
 {
 string text = "Hello world.
";
 string regex = "
";

Example 9. Simple match (continued)

.NET and C# | 49

 string replacement = "
";

 string result =
 Regex.Replace(text, regex, replacement, RegexOptions.
IgnoreCase);
 }
}

Example 12. Harder substitution

//urlify - turn URLs into HTML links
using System.Text.RegularExpressions;

public class Urlify
{
 static Main ()
 {
 string text = "Check the web site, http://www.oreilly.com/
catalog/regexppr.";
 string regex =
 @"\b # start at word boundary
 (# capture to $1
 (https?|telnet|gopher|file|wais|ftp) :
 # resource and colon
 [\w/#~:.?+=&%@!\-] +? # one or more valid
 # characters
 # but take as little as
 # possible

)
 (?= # lookahead
 [.:?\-] * # for possible
 # punctuation
 (?: [^\w/#~:.?+=&%@!\-] # invalid character
 | $) # or end of string
)";

 Regex r = new Regex(regex, RegexOptions.IgnoreCase
 | RegexOptions.IgnorePatternWhitespace);
 string result = r.Replace(text, "$1");
 }
}

Example 11. Simple substitution (continued)

50 | Regular Expression Pocket Reference

Other Resources
• Programming C#, by Jesse Liberty (O’Reilly), gives a thor-

ough introduction to C#, .NET, and regular expressions.

• Mastering Regular Expressions, Third Edition, by Jeffrey
E. F. Friedl (O’Reilly), covers the details of .NET regular
expressions on pages 399–432.

• Microsoft’s online documentation at http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/cpgenref/html/
cpconregularexpressionslanguageelements.asp.

PHP
This reference covers PHP 4.4.3 and 5.1.4’s Perl-style regular
expression support contained within the preg routines. Both
are based on the PCRE 6.6 library. The preg routines use a
Traditional NFA match engine. For an explanation of the
rules behind an NFA engine, see “Introduction to Regexes
and Pattern Matching.”

Supported Metacharacters
PHP supports the metacharacters and metasequences listed
in Table 22 through Table 26. For expanded definitions of
each metacharacter, see “Regex Metacharacters, Modes, and
Constructs.”

Table 22. PHP character representations

Sequence Meaning

\a Alert (bell), \x07.

\b Backspace, \x08, supported only in character class.

\e Esc character, \x1B.

\n Newline, \x0A.

\r Carriage return, \x0D.

\f Form feed, \x0C.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

PHP | 51

\t Horizontal tab, \x09.

\octal Character specified by a three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

Table 23. PHP character classes and class-like constructs

Class Meaning

[...] A single character listed or contained within a listed range.

[^...] A single character not listed and not contained within a listed
range.

[:class:] POSIX-style character class (valid only within a regex character
class).

. Any character except newline (unless single-line mode, /s).

\C One byte (this might corrupt a Unicode character stream,
however).

\w Word character, [a-zA-z0-9_].

\W Nonword character, [^a-zA-z0-9_].

\d Digit character, [0-9].

\D Nondigit character, [^0-9].

\s Whitespace character, [\n\r\f\t].

\S Nonwhitespace character, [^\n\r\f\t].

Table 24. PHP anchors and zero-width tests

Sequence Meaning

^ Start of string, or the point after any newline if in multiline
match mode, /m.

\A Start of search string, in all match modes.

$ End of search string, or the point before a string-ending
newline, or before any newline if in multiline match mode, /m.

Table 22. PHP character representations (continued)

Sequence Meaning

52 | Regular Expression Pocket Reference

\Z End of string, or the point before a string-ending newline, in any
match mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b Word boundary; position between a word character (\w), and a
nonword character (\W), the start of the string, or the end of the
string.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 25. PHP comments and mode modifiers

Modes Meaning

i Case-insensitive matching.

m ^ and $ match next to embedded \n.

s Dot (.) matches newline.

x Ignore whitespace, and allow comments (#) in pattern.

U Inverts greediness of all quantifiers: * becomes lazy, and *?
greedy.

A Force match to start at beginning of subject string.

D Force $ to match end of string instead of before the string-
ending newline. Overridden by multiline mode.

u Treat regular expression and subject strings as strings of
multibyte UTF-8 characters.

(?mode) Turn listed modes (one or more of imsxU) on for the rest of the
subexpression.

(?-mode) Turn listed modes (one or more of imsxU) off for the rest of the
subexpression.

(?mode:...) Turn mode (xsmi) on within parentheses.

(?-mode:...) Turn mode (xsmi) off within parentheses.

Table 24. PHP anchors and zero-width tests (continued)

Sequence Meaning

PHP | 53

(?#...) Treat substring as a comment.

#... Rest of line is treated as a comment in x mode.

\Q Quotes all following regex metacharacters.

\E Ends a span started with \Q.

Table 26. PHP grouping, capturing, conditional,
and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,
\2,

(?P<name>...) Group subpattern, and capture submatch into named
capture group, name.

\n Contains the results of the nth earlier submatch from a
parentheses capture group, or a named capture group.

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Atomic grouping.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as
few times as possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

Table 25. PHP comments and mode modifiers (continued)

Modes Meaning

54 | Regular Expression Pocket Reference

Pattern-Matching Functions
PHP provides several standalone functions for pattern match-
ing. When creating regular expression strings, you need to
escape embedded backslashes; otherwise, the backslash is
interpreted in the string before being sent to the regular
expression engine.

array preg_grep (string pattern, array input)
Return array containing every element of input matched
by pattern.

int preg_match_all (string pattern, string subject, array
matches [, int flags])

Search for all matches of pattern against subject, and
return the number of matches. The matched substrings
are placed in the matches array. The first element of
matches is an array containing the text of each full match.
Each additional element n of matches is an array contain-
ing the nth capture group match for each full match. So,
for example, matches[7][3] contains the text matches by
the seventh capture group in the fourth match of pattern
in subject.

?+ Match 0 or 1 times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and
never backtrack.

(?(condition)...|...) Match with if-then-else pattern. The condition can
be the number of a capture group, or a lookahead or
lookbehind construct.

(?(condition)...) Match with if-then pattern. The condition can be
the number of a capture group, or a lookahead or
lookbehind construct.

Table 26. PHP grouping, capturing, conditional,
and control (continued)

Sequence Meaning

PHP | 55

The default ordering of matches can be set explicitly with
the PREG_SET_ORDER flag. PREG_SET_ORDER sets a more intui-
tive ordering, where each element of matches is an array
corresponding to a match. Element 0 of each array is the
complete match, and each additional element corre-
sponds to a capture group. The additional flag PREG_
OFFSET_CAPTURE causes each array element containing a
string to be replaced with a two-element array containing
the same string and starting character position in subject.

int preg_match (string pattern, string subject [, array
matches [, int flags]])

Return 1 if pattern matches in subject; otherwise, return
0. If the matches array is provided, the matched substring
is placed in matches[0], and any capture group matches
are placed in subsequent elements. One allowed flag,
PREG_OFFSET_CAPTURE, causes elements of matches to be
replaced with a two-element array containing the matched
string and starting character position of the match.

string preg_quote (string str [, string delimiter])
Return a str with all regular expression metacharacters
escaped. Provide the delimiter parameter if you are
using optional delimiters with your regular expression,
and need the delimiter escaped in str.

mixed preg_replace_callback (mixed pattern, callback
callback, mixed subject [, int limit])

Return text of subject with every occurrence of pattern
replaced with the results of callback. The callback
should take one parameter, an array containing the
matched text, and any matches from capture groups. If
limit is provided, the function performs no more than
limit replacements.

If pattern is an array, each element is replaced with
callback. If subject is an array, the function iterates over
each element.

56 | Regular Expression Pocket Reference

mixed preg_replace (mixed pattern, mixed replacement, mixed
subject [, int limit])

Return text of subject with every occurrence of pattern
replaced with replacement. If limit is provided, the func-
tion performs no more than limit replacements. The
replacement string may refer to the match, or capture
group matches with $n (preferred), or \n (deprecated). If
pattern has the /e modifier, replacement is parsed for ref-
erence substitution, and then executed as PHP code.

If pattern is an array, each element is replaced with
replacement, or, if replacement is an array, the corre-
sponding element in replacement. If subject is an array,
the function iterates over each element.

array preg_split (string pattern, string subject [, int
limit [, int flags]])

Return an array of strings broken around pattern. If limit
is specified, preg_split() returns no more than limit sub-
strings. A limit of –1 is the same as “no limit,” allowing
you to set flags. Available flags are: PREG_SPLIT_NO_EMPTY,
return only nonempty pieces; PREG_SPLIT_DELIM_CAPTURE,
return captured submatches after each split substring; and
PREG_SPLIT_OFFSET_CAPTURE, return an array of two-
element arrays where the first element is the match, and
the second element is the offset of the match in subject.

Examples

Example 13. Simple match

//Find Spider-Man, Spiderman, SPIDER-MAN, etc.
$dailybugle = "Spider-Man Menaces City!";

$regex = "/spider[-]?man/i";

if (preg_match($regex, $dailybugle)) {
 //do something
}

PHP | 57

Example 14. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
$date = "12/30/1969";
$p = "!^(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)$!";

if (preg_match($p,$date,$matches) {
 $month = $matches[1];
 $day = $matches[2];
 $year = $matches[3];
}

Example 15. Simple substitution

//Convert
 to
 for XHTML compliance
$text = "Hello world.
";

$pattern = "{
}i";

echo preg_replace($pattern, "
", $text);

Example 16. Harder substitution

//urlify - turn URLs into HTML links
$text = "Check the web site, http://www.oreilly.com/catalog/
regexppr.";
$regex =
 "{ \\b # start at word\n"
 . " # boundary\n"
 . "(# capture to $1\n"
 . "(https?|telnet|gopher|file|wais|ftp) : \n"
 . " # resource and colon\n"
 . "[\\w/\\#~:.?+=&%@!\\-]+? # one or more valid\n"
 . " # characters\n"
 . " # but take as little as\n"
 . " # possible\n"
 . ")\n"
 . "(?= # lookahead\n"
 . "[.:?\\-]* # for possible punct\n"
 . "(?:[^\\w/\\#~:.?+=&%@!\\-] # invalid character\n"
 . "|$) # or end of string\n"
 . ") }x";

echo preg_replace($regex, "$1", $text);

58 | Regular Expression Pocket Reference

Other Resources
• PHP’s online documentation at http://www.php.net/pcre.

• Mastering Regular Expressions, Third Edition, by Jeffrey
E. F. Friedl (O’Reilly), covers the details of PHP regular
expressions on pages 439–481.

Python
Python provides a rich, Perl-like regular expression syntax in
the re module. The re module uses a Traditional NFA match
engine. For an explanation of the rules behind an NFA
engine, see “Introduction to Regexes and Pattern Matching.”

This chapter will cover the version of re included with
Python 2.3.5, although the module has been available in sim-
ilar form since Python 1.5.

Supported Metacharacters
The re module supports the metacharacters and metase-
quences listed in Table 27 through Table 31. For expanded
definitions of each metacharacter, see “Regex Metacharacters,
Modes, and Constructs.”

Table 27. Python character representations

Sequence Meaning

\a Alert (bell), \x07.

\b Backspace, \x08, supported only in character class.

\n Newline, \x0A.

\r Carriage return, \x0D.

\f Form feed, \x0C.

\t Horizontal tab, \x09.

\v Vertical tab, \x0B.

\octal Character specified by up to three octal digits.

http://www.php.net/pcre

Python | 59

\xhh Character specified by a two-digit hexadecimal code.

\uhhhh Character specified by a four-digit hexadecimal code.

\Uhhhhhhhh Character specified by an eight-digit hexadecimal code.

Table 28. Python character classes and class-like constructs

Class Meaning

[...] Any character listed, or contained within a listed range.

[^...] Any character that is not listed, and is not contained
within a listed range.

. Any character, except a newline (unless DOTALL mode).

\w Word character, [a-zA-z0-9_] (unless LOCALE or
UNICODE mode).

\W Nonword character, [^a-zA-z0-9_] (unless LOCALE
or UNICODE mode).

\d Digit character, [0-9].

\D Nondigit character, [^0-9].

\s Whitespace character, [\t\n\r\f\v].

\S Nonwhitespace character, [\t\n\r\f\v].

Table 29. Python anchors and zero-width tests

Sequence Meaning

^ Start of string, or the point after any newline if in
MULTILINE match mode.

\A Start of search string, in all match modes.

$ End of search string, or the point before a string-ending
newline, or before any newline in MULTILINE match
mode.

\Z End of string, or the point before a string-ending
newline, in any match mode.

\b Word boundary.

\B Not-word-boundary.

Table 27. Python character representations (continued)

Sequence Meaning

60 | Regular Expression Pocket Reference

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 30. Python comments and mode modifiers

Modifier/sequence Mode character Meaning

I or IGNORECASE i Case-insensitive matching.

L or LOCALE L Cause \w, \W, \b, and \B to use
current locale’s definition of
alphanumeric.

M or MULTILINE or (?m) m ^ and $match next to embedded
\n.

S or DOTALL or (?s) s Dot (.) matches newline.

U or UNICODE or (?u) u Cause \w, \W, \b, and \B to use
Unicode definition of
alphanumeric.

X or VERBOSE or (?x) x Ignore whitespace, and allow
comments (#) in pattern.

(?mode) Turn listed modes (one or more of
iLmsux) on for the entire regular
expression.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in
VERBOSE mode.

Table 31. Python grouping, capturing, conditional,
and control

Sequence Meaning

(...) Group subpattern, and capture submatch, into \1,\2,

(?P<name> ...) Group subpattern, and capture submatch, into named
capture group, name.

Table 29. Python anchors and zero-width tests (continued)

Sequence Meaning

Python | 61

re Module Objects and Functions
The re module defines all regular expression functionality.
Pattern matching is done directly through module functions,
or patterns are compiled into regular expression objects that
can be used for repeated pattern matching. Information
about the match, including captured groups, is retrieved
through match objects.

Python’s raw string syntax, r'' or r"", allows you to specify
regular expression patterns without having to escape embed-
ded backslashes. The raw-string pattern, r'\n', is equivalent
to the regular string pattern, \\n. Python also provides triple-
quoted raw strings for multiline regular expressions:
r'''text''' and r"""text""".

(?P=name) Match text matched by earlier named capture group,
name.

\n Contains the results of the nth earlier submatch.

(?:...) Groups subpattern, but does not capture submatch.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few
times as possible.

Table 31. Python grouping, capturing, conditional,
and control (continued)

Sequence Meaning

62 | Regular Expression Pocket Reference

Module Functions

The re module defines the following functions and one exception.

compile(pattern [, flags])
Return a regular expression object with the optional mode
modifiers, flags.

match(pattern, string [, flags])
Search for pattern at starting position of string, and return a
match object or None if no match.

search(pattern, string [, flags])
Search for pattern in string, and return a match object or
None if no match.

split(pattern, string [, maxsplit=0])
Split string on pattern, and limit the number of splits to
maxsplit. Submatches from capturing parentheses are also
returned.

sub(pattern, repl, string [, count=0])
Return a string with all or up to count occurrences of pattern
in string replaced with repl. repl may be a string, or a func-
tion that takes a match object argument.

subn(pattern, repl, string [, count=0])
Perform sub(), but return a tuple of the new string, and the
number of replacements.

findall(pattern, string)
Return matches of pattern in string. If pattern has capturing
groups, returns a list of submatches, or a list of tuples of
submatches.

finditer(pattern, string)
Return an iterator over matches of pattern in string. For each
match, the iterator returns a match object.

escape(string)
Return the string with alphanumerics backslashed so that
string can be matched literally.

exception error
The exception raised if an error occurs during compilation or
matching. This is common if a string passed to a function is
not a valid regular expression.

Python | 63

RegExp

Regular expression objects are created with the re.compile function.

flags
Return the flags argument used when the object was
compiled, or 0.

groupindex
Return a dictionary that maps symbolic group names to group
numbers.

pattern
Return the pattern string used when the object was compiled.

match(string [, pos [, endpos]])

search(string [, pos [, endpos]])

split(string [, maxsplit=0])

sub(repl, string [, count=0])

subn(repl, string [, count=0])

findall(string)
Same as the re module functions, except pattern is implied.
pos and endpos give start and end string indexes for the
match.

Match Objects

Match objects are created by the match and find functions.

pos

endpos
Value of pos or endpos passed to search or match.

re
The regular expression object whose match or search returned
this object.

string
String passed to match or search.

group([g1, g2, . . .])
Return one or more submatches from capturing groups.
Groups may be numbers corresponding to capturing groups,
or strings corresponding to named capturing groups. Group 0

64 | Regular Expression Pocket Reference

corresponds to the entire match. If no arguments are
provided, this function returns the entire match. Capturing
groups that did not match have a result of None.

groups([default])
Return a tuple of the results of all capturing groups. Groups
that did not match have the value None or default.

groupdict([default])
Return a dictionary of named capture groups, keyed by group
name. Groups that did not match have the value None or
default.

start([group])
Index of start of substring matched by group (or start of entire
matched string if no group).

end([group])
Index of end of substring matched by group (or end of entire
matched string if no group).

span([group])
Return a tuple of starting and ending indexes of group (or
matched string if no group).

expand([template])
Return a string obtained by doing backslash substitution on
template. Character escapes, numeric backreferences, and
named backreferences are expanded.

lastgroup
Name of the last matching capture group, or None if no match
or if the group had no name.

lastindex
Index of the last matching capture group, or None if no match.

Unicode Support
re provides limited Unicode support. Strings may contain
Unicode characters, and individual Unicode characters can
be specified with \u. Additionally, the UNICODE flag causes \w,
\W, \b, and \B to recognize all Unicode alphanumerics. How-
ever, re does not provide support for matching Unicode
properties, blocks, or categories.

Python | 65

Examples

Example 17. Simple match

#Find Spider-Man, Spiderman, SPIDER-MAN, etc.
import re

dailybugle = 'Spider-Man Menaces City!'
pattern = r'spider[-]?man.'

if re.match(pattern, dailybugle, re.IGNORECASE):
 print dailybugle

Example 18. Match and capture group

#Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
import re

date = '12/30/1969'

regex = re.compile(r'^(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)$')

match = regex.match(date)

if match:
 month = match.group(1) #12
 day = match.group(2) #30
 year = match.group(3) #1969

Example 19. Simple substitution

#Convert
 to
 for XHTML compliance
import re

text = 'Hello world.
'
regex = re.compile(r'
', re.IGNORECASE);
repl = r'
'

result = regex.sub(repl,text)

66 | Regular Expression Pocket Reference

Other Resources
• Python’s online documentation at http://www.python.org/

doc/current/lib/module-re.html.

RUBY
Ruby provides a subset of Perl-style regular expressions built
into the Regexp and String classes. Ruby uses a Traditional
NFA match engine. For an explanation of the rules behind a
Traditional NFA engine, see “Introduction to Regexes and
Pattern Matching.”

Example 20. Harder substitution

#urlify - turn URLs into HTML links
import re

text = 'Check the web site, http://www.oreilly.com/catalog/
regexppr.'

pattern = r'''
\b # start at word boundary

 (# capture to \1
 (https?|telnet|gopher|file|wais|ftp) :
 # resource and colon
 [\w/#~:.?+=&%@!\-] +? # one or more valid chars
 # take little as possible

)
 (?= # lookahead
 [.:?\-] * # for possible punc
 (?: [^\w/#~:.?+=&%@!\-] # invalid character
 | $) # or end of string
)'''

regex = re.compile(pattern, re.IGNORECASE
 + re.VERBOSE)

result = regex.sub(r'\1', text)

http://www.python.org/doc/current/lib/module-re.html
http://www.python.org/doc/current/lib/module-re.html

RUBY | 67

Ruby 1.9 introduces a new regular expression engine that
includes several new features. These features are available in
earlier releases as part of the Oniguruma library. The following
reference primarily covers Ruby 1.8.6, but the most prominent
Ruby 1.9 features are also included and marked.

Supported Metacharacters
Ruby supports the metacharacters and metasequences listed
in Table 32 through Table 37. For expanded definitions of
each metacharacter, see “Regex Metacharacters, Modes, and
Constructs.”

Table 32. Ruby character representations

Sequence Meaning

\a Alert (bell), \x07.

\b Backspace, \x08, supported only in character class.

\e ESC character, \x1B.

\n Newline, \x0A.

\r Carriage return, \x0D.

\f Form feed, \x0C.

\t Horizontal tab, \x09.

\v Vertical tab, \x0B.

\0octal Character specified by a two-digit octal code.

\xhex Character specified by a two-digit hexadecimal code.

\cchar Named control character.

Table 33. Ruby character classes and class-like
constructs

Class Meaning

[...] A single character listed, or contained within a listed range.

[^...] A single character not listed, and not contained within a listed
range.

68 | Regular Expression Pocket Reference

. Any character, except a line terminator (unless single-line
mode, s).

\w Word character.

\W Nonword character.

\d Digit.

\D Nondigit.

\s Whitespace character, [\f\n\r\t\v].

\S Nonwhitespace character, [^ \f\n\r\t\v].

Table 34. Ruby anchors and other zero-width tests

Sequence Meaning

^ Start of string, or the point after any newline.

\A Beginning of string, in all match modes.

$ End of string, or the point before any newline.

\Z End of string, but before any final line terminator, in all match
modes.

\z End of string, in all match modes.

\b Boundary between a \w character and a \W character.

\B Not-word-boundary.

\G End of the previous match.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

Table 35. Ruby comments and mode modifiers

Mode character Meaning

m Dot (.) matches any character, including a line terminator.
Note that this is different from most regex implementations.

x Ignore whitespace, and allow embedded comments starting
with #.

Table 33. Ruby character classes and class-like
constructs (continued)

Class Meaning

RUBY | 69

i Case-insensitive match based on characters in the current
culture.

n Turn off wide-character processing.

o Evaluate #{...} substitutions only once. Default is to evaluate
each time the regex is evaluated.

(?imns-imns) Turn match flags on or off for the rest of pattern.

(?imns-imns:
...)

Turn match flags on or off for the rest of the subexpression.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in /x mode.

(?<=...) Positive lookbehind. (Ruby 1.9)

(?<!...) Negative lookbehind. (Ruby 1.9)

Table 36. Ruby grouping, capturing, conditional,
and control

Sequence Meaning

(...) Grouping. Submatches fill \1,\2, . . . and $1, $2,

(?<name>...) Named captured. Grouped match will fill \k<name>.
 (Ruby 1.9)

\n In a regular expression, match what was matched by the nth
earlier submatch.

$n In a replacement string, contains the nth earlier submatch.

\k<name> In a replacement string, contains the named submatch name.
(Ruby 1.9)

(?:...) Grouping-only parentheses, no capturing.

(?>...) Atomic grouping.

...|... Alternation; match one or the other.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

Table 35. Ruby comments and mode modifiers (continued)

Mode character Meaning

70 | Regular Expression Pocket Reference

Object-Oriented Interface
Ruby provides an object-oriented regular expression inter-
face through the Regexp and MatchData classes, as well as
several built-in methods of the String class.

Ruby also provides the /.../ and =~ operators to provide a
Perl-like operator syntax. The /.../ operator is a synonym for
Regexp.new, and =~ is a synonym for String#match. The /.../
operator is commonly used to pass a Regexp object to a
method, e.g., "foo, bar, frog".split(/,\s*/).

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times
as possible.

Table 37. Ruby replacement sequences

Sequence Meaning

$1, $2, ... Captured submatches.

${name} Matched text of a named capture group.

$' Text before match.

$& Text of match.

$` Text after match.

$+ Last parenthesized match.

Table 36. Ruby grouping, capturing, conditional,
and control (continued)

Sequence Meaning

RUBY | 71

String

Description

String objects contain built-in methods for regular expression
pattern matching and substitution, as well as several methods for
string manipulation that take regular expressions as arguments.

Instance Methods

string =~ regexp => fixnum or nil
Match the regexp, and return the position that the match
starts, or nil.

regexp === string => boolean
Return true if the regexp matches the string. Used in case-
when statements.

gsub(pattern, replacement) => new_string

gsub(pattern) {|match| block } => new_string
Return a copy of string with all occurrences of pattern
replaced with replacement, or the value of the block. Other-
wise, behaves as Regexp#sub.

gsub!(pattern, replacement) => string or nil

gsub!(pattern) {|match| block } => string or nil
Perform the substitutions of String#gsub in place, returning
string or returning nil if no substitutions were performed.

index(regexp [, offset]) => fixnum or nil
Return the index of the first match by regexp or nil if not
found. Optionally, offset specifies the position in the string
to begin the search.

match(pattern) => matchdata or nil
Apply a regex pattern or Regexp object to the string, returning
a MatchData object, or returning nil if there was no match.

rindex(regexp [, fixnum]) => fixnum or nil
Return the index of the first match by regexp or nil if not
found. Optionally, offset specifies the position in the string
to end the search; characters to the right of this point will not
be considered.

72 | Regular Expression Pocket Reference

scan(regexp) => array

scan(regexp) {|match, ...| block } => string
Iterate through the string, and return either an array of
matches, or, if the regexp contains matching groups, an array
of arrays.

[regexp] => substring or nil

[regexp, fixnum] => substring or nil

slice(regexp) => substring or nil

slice(regexp, fixnum) => substring or nil
Return the matched substring or nil. If a fixnum is provided,
return the corresponding submatch.

slice!(regexp) => new_str or nil
Delete the matching portion of the string, and return the
portion deleted, or return nil if there is no match.

split(pattern=$;, [limit]) => anArray
Divides the string into substrings based on a delimiter, which
can be either a string, or a Regexp object.

If limit is positive, returns at most limit matches. If no limit
is provided, trailing empty substrings are omitted. If limit is
negative, all substrings are returned, including trailing empty
substrings.

sub(regexp, replacement) => new_string

sub(regexp) {|match| block } => new_string
Return a copy of the string with the first match of regexp
replaced with replacement, or the value of the block. The
replacement string may reference submatches with the
sequences \1, \2, ..., \n. The block form can reference the
special match variables $1, $2, $`, $&, and $´.

sub!(pattern, replacement) => string or nil

sub!(pattern) {|match| block } => string or nil
Performs the substitutions of String#sub in place, returning
string, or returning nil if no substitutions were performed.

Regexp

Description

Holds a regular expression that is used to match a pattern against
strings.

RUBY | 73

Class Methods

escape(string) => escaped_string

quote(string) => escaped_string
Escape regular expression metacharacters, so they aren’t
interpreted when used inside a regular expression pattern.

last_match => matchdata

last_match(n) => string
Return the MatchData of the last successful match, or the nth
field in the MatchData object.

Regexp.new(pattern [, options [, lang]]) => regexp

Regexp.compile(pattern [, options [, lang]]) => regexp
Create a new Regexp object from a regular expression pattern.
Options can be an OR’d combination of Regexp::EXTENDED,
Regexp::IGNORECASE, and Regexp::MULTILINE. The lang param-
eter enables multibyte support for the regexp: 'n', 'N' =
none, 'e', 'E' = EUC, 's', 'S' = SJIS, 'u', 'U' = UTF-8.

Regexp.union([pattern]*) => new_str
Create a Regexp object that is the union of given patterns
joined by the alternation operator, where each pattern is
either a pattern string, or a Regexp object.

Instance Methods

regexp == second_regexp => boolean

regexp.eql?(second_regexp) => boolean
Return true if two Regexp objects are based on identical patterns,
and have the same character set code and mode options.

match(string) => matchdata or nil
Return a MatchData object describing the match, or nil if there
was no match.

casefold? => true or false
Return true if IGNORECASE is set for the entire pattern.

inspect => string
Return a string representation of the Regexp object.

kcode => string
Return the character set code for the Regexp object.

options => fixnum
Return the set of bits corresponding to the options used when
creating this Regexp. These bits can be passed as the options
to a new Regexp.

74 | Regular Expression Pocket Reference

source => string
Return the original pattern string.

to_s => string
Return a string containing the regular expression, and its
options, using the (?imns-imns:...) notation.

MatchData

Description

Holds the results of a successful match, including the matched
string, and submatches from match groups.

Instance Methods

[i] => string

[start, length] => array

[range] => array
Access match results as an array. Element 0 is the entire
matched string, and elements 1 through n contain submatches.

begin(n) => integer
Return the offset of the start of the nth submatch in the string.

captures => array
Return the array of captures, equivalent to MatchData#to_a.

end(n) => integer
Return the offset of the end of the nth submatch in the string.

length => integer

size => integer
Return the number of elements, including the full match and
submatches, in the match array.

offset(n) => array
Return a two-element array containing the beginning and
ending offsets of the nth submatch.

post_match => string
Return the portion of the original string after the current
match (same as $`).

pre_match => string
Return the portion of the original string before the current
match (same as $`).

RUBY | 75

select([index]*) => array
Use each index to access the submatches, returning an array
of the corresponding values.

string => original_string
Return a copy of the string passed in to match.

to_a => anArray
Return the array of matches.

to_s => string
Return the entire matched string.

Unicode Support
Ruby has some UTF-8 support, but you have to enable it by
including the line $KCODE = "UTF8" before using the con-
structs. When enabled, the metasequences \w, \d, \s, and \b
support Unicode characters outside of the ASCII range. You
can also enable multibyte regex processing by passing a lan-
guage parameter to Regexp.new, and turn off multibyte
processing with the /n modifier.

Examples

Example 21. Simple match

#Find Spider-Man, Spiderman, SPIDER-MAN, etc.

dailybugle = 'Spider-Man Menaces City!'

if dailybugle.match(/spider[-]?man./i)
 puts dailybugle
end

Example 22. Match and capture group

#Match dates formatted like MM/DD/YYYY, MM-DD-YY,...

date = '12/30/1969'

regexp = Regexp.new('^(\d\d)[-/](\d\d)[-/](\d\d(?:\d\d)?)$')

76 | Regular Expression Pocket Reference

if md = regexp.match(date)
 month = md[1] #12
 day = md[2] #30
 year = md[3] #1969
end

Example 23. Simple substitution

#Convert
 to
 for XHTML compliance

text = 'Hello world.
'
regexp = Regexp.new('
', Regexp::IGNORECASE)

result = text.sub(regexp, "
")

Example 24. Harder substitution

#urlify - turn URLs into HTML links
text = 'Check the web site, http://www.oreilly.com/catalog/
regexppr.'

regexp = Regexp.new('
\b # start at word boundary

 (# capture to \1
 (https?|telnet|gopher|file|wais|ftp) :
 # resource and colon
 [\w/#~:.?+=&%@!\-] +? # one or more valid chars
 # take little as possible

)
 (?= # lookahead
 [.:?\-] * # for possible punc
 (?: [^\w/#~:.?+=&%@!\-] # invalid character
 | $) # or end of string
)', Regexp::EXTENDED)

result = text.sub(regexp, '\1')

Example 22. Match and capture group (continued)

JavaScript | 77

JavaScript
JavaScript introduced Perl-like regular expression support
with version 1.2. This reference covers versions 1.5 through
1.7 as defined by the ECMA standard. Supporting implemen-
tations include Microsoft Internet Explorer 5.5+ and Firefox
1.0++. JavaScript uses a Traditional NFA match engine. For
an explanation of the rules behind this NFA engine, see
“Introduction to Regexes and Pattern Matching.”

Supported Metacharacters
JavaScript supports the metacharacters and metasequences
listed in Table 38 through Table 42. For expanded defini-
tions of each metacharacter, see “Regex Metacharacters,
Modes, and Constructs.”

Table 38. JavaScript character representations

Sequence Meaning

\0 Null character, \x00.

\b Backspace, \x08; supported only in character class.

\n Newline, \x0A.

\r Carriage return, \x0D.

\f Form feed, \x0C.

\t Horizontal tab, \x09.

\t Vertical tab, \x0B.

\xhh Character specified by a two-digit hexadecimal code.

\uhhhh Character specified by a four-digit hexadecimal code.

\cchar Named control character.

78 | Regular Expression Pocket Reference

Table 39. JavaScript character classes and class-like constructs

Class Meaning

[...] A single character listed, or contained within a listed range.

[^...] A single character not listed, and not contained within a listed
range.

. Any character except a line terminator, [^\x0A\x0D\
u2028\u2029].

\w Word character, [a-zA-Z0-9_].

\W Nonword character, [^a-zA-Z0-9_].

\d Digit character, [0-9].

\D Nondigit character, [^0-9].

\s Whitespace character.

\S Nonwhitespace character.

Table 40. JavaScript anchors and other zero-width tests

Sequence Meaning

^ Start of string, or the point after any newline if in multiline
match mode, /m.

$ End of search string, or the point before a string-ending
newline, or before any newline if in multiline match mode, /m.

\b Word boundary.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

Table 41. JavaScript mode modifiers

Modifier Meaning

m ^ and $ match next to embedded line terminators.

i Case-insensitive match.

JavaScript | 79

Pattern-Matching Methods and Objects
JavaScript provides convenient pattern-matching methods in
String objects, as well as a RegExp object for more complex
pattern matching. JavaScript strings use the backslash for
escapes; therefore, any escapes destined for the regular
expression engine should be double escaped (e.g., \\w instead
of \w). You can also use the regular expression literal syntax,
/pattern/img.

Table 42. JavaScript grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern, and capture submatch, into \1,\2, . . . and
$1, $2,

\n In a regular expression, contains text matched by the nth
capture group.

$n In a replacement string, contains text matched by the nth
capture group.

(?:...) Group subpattern, but do not capture submatch.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times
as possible.

80 | Regular Expression Pocket Reference

String

Strings support four convenience methods for pattern matching.
Each method takes a pattern argument, which may be a RegExp
object, or a string containing a regular expression pattern.

Methods

search(pattern)
Match pattern against the string, returning either the char-
acter position of the start of the first matching substring or -1.

replace(pattern, replacement)
Search the string for a match of pattern, and replace the
matched substring with replacement. If pattern has global
mode set, all matches of pattern are replaced. The replace-
ment string may have $n constructs that are replaced with the
matched text of the nth capture group in pattern.

match(pattern)
Match pattern against the string, returning either an array or
-1. Element 0 of the array contains the full match. Additional
elements contain submatches from capture groups. In global
(g) mode, the array contains all matches of pattern with no
capture group submatches.

split(pattern, limit)
Return an array of strings broken around pattern. If limit is
included, the array contains at most the first limit substrings
broken around pattern. If pattern contains capture groups,
captured substrings are returned as elements after each split
substring.

RegExp

Models a regular expression, and contains methods for pattern
matching.

Constructor

new RegExp(pattern, attributes)

/pattern/attributes
RegExp objects can be created with either the RegExp()
constructor, or a special literal syntax /.../. The parameter
pattern is a required regular expression pattern, and the

JavaScript | 81

parameter attributes is an optional string containing any of
the mode modifiers g, i, or m. The parameter pattern can also
be a RegExp object, but then the attributes parameter
becomes required.

The constructor can throw two exceptions. SyntaxError is thrown
if pattern is malformed, or if attributes contains invalid mode
modifiers. TypeError is thrown if pattern is a RegExp object, and
the attributes parameter is omitted.

Instance properties

global
Boolean indicating whether RegExp has g attribute.

ignoreCase
Boolean indicating whether RegExp has i attribute.

lastIndex
The character position of the last match.

multiline
Boolean indicating whether RegExp has m attribute.

source
The text pattern used to create this object.

Methods

exec(text)
Search text, and return an array of strings if the search
succeeds, and null if it fails. Element 0 of the array contains
the substring matched by the entire regular expression. Addi-
tional elements correspond to capture groups.

If the global flag (g) is set, then lastIndex is set to the char-
acter position after the match, or zero if there was no match.
Successive exec() or test() calls will start at lastIndex. Note
that lastIndex is a property of the regular expression, not the
string being searched. You must reset lastIndex manually if
you are using a RegExp object in global mode to search
multiple strings.

test(text)
Return true if the RegExp object matches text. The test()
method behaves in the same way as exec() when used in
global mode: successive calls start at lastIndex, even if used
on different strings.

82 | Regular Expression Pocket Reference

Examples

Example 25. Simple match

//Find Spider-Man, Spiderman, SPIDER-MAN, etc.
 var dailybugle = "Spider-Man Menaces City!";

 //regex must match entire string
 var regex = /spider[-]?man/i;

 if (dailybugle.search(regex)) {
 //do something
 }

Example 26. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...
 var date = "12/30/1969";
 var p =
 new RegExp("^(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\
d)?)$");

 var result = p.exec(date);
 if (result != null) {
 var month = result[1];
 var day = result[2];
 var year = result[3];

Example 27. Simple substitution

//Convert
 to
 for XHTML compliance
 String text = "Hello world.
";

 var pattern = /
/ig;

 test.replace(pattern, "
");

Example 28. Harder substitution

//urlify - turn URLs into HTML links
 var text = "Check the web site, http://www.oreilly.com/
catalog/regexppr.";
 var regex =
 "\\b" // start at word boundary
 + "(" // capture to $1

PCRE | 83

Other Resources
• JavaScript: The Definitive Guide, by David Flanagan

(O’Reilly), is a reference for all JavaScript, including
regular expressions.

PCRE
The Perl Compatible Regular Expression (PCRE) library is a
free-for-any-use, open source, C-language regular expression
library developed by Philip Hazel. PCRE has been incorpo-
rated into PHP, the Apache web server 2.0, KDE, Exim,
Analog, and Postfix. Users of those programs can use the sup-
ported metacharacters listed in Table 43 through Table 47.

The PCRE library uses a Traditional NFA match engine. For
an explanation of the rules behind an NFA engine, see
“Introduction to Regexes and Pattern Matching.”

This reference covers PCRE Version 7.0, which aims to emu-
late Perl 5.8-style regular expressions, but also includes
features from the upcoming Perl 5.10.

PCRE can be compiled with or without support for UTF-8
strings, and with or without support for Unicode character
properties. The following lists and tables assume that both
these features are available.

 + "(https?|telnet|gopher|file|wais|ftp) :"
 // resource and colon
 + "[\\w/\\#~:.?+=&%@!\\-]+?" // one or more valid chars
 // take little as possible

+ ")"
 + "(?=" // lookahead
 + "[.:?\\-]*" // for possible punct
 + "(?:[^\\w/\\#~:.?+=&%@!\\-]"// invalid character
 + "|$)" // or end of string
 + ")";

 text.replace(regex, "$1");

Example 28. Harder substitution (continued)

84 | Regular Expression Pocket Reference

Supported Metacharacters
PCRE supports the metacharacters and metasequences listed
in Table 43 through Table 47. For expanded definitions of
each metacharacter, see “Regex Metacharacters, Modes, and
Constructs.”

Table 43. PCRE character representations

Sequence Meaning

\a Alert (bell), \x07.

\b Backspace, \x08; supported only in character class.

\e Escape character, \x1B.

\n Newline, \x0A.

\r Carriage return, \x0D.

\f Form feed, \x0C.

\t Horizontal tab, \x09.

\octal Character specified by a three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal
code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

\p{prop} Character contained by given Unicode block or property.

\P{prop} Character not contained by given Unicode block or
property.

Table 44. PCRE character classes and class-like constructs

Class Meaning

[...] A single character listed, or contained in a listed range.

[^...] A single character not listed, and not contained within a
listed range.

[:class:] POSIX-style character class valid only within a regex
character class.

. Any character, except newline (unless single-line mode,
PCRE_DOTALL).

PCRE | 85

\C One byte; however, this may corrupt a Unicode character
stream.

\w Word character, [a-zA-z0-9_].

\W Nonword character, [^a-zA-z0-9_].

\d Digit character, [0-9].

\D Nondigit character, [^0-9].

\s Whitespace character, [\n\r\f\t\v].

\S Nonwhitespace character, [^\n\r\f\t\v].

\R Unicode newline sequence.

Table 45. PCRE anchors and zero-width tests

Sequence Meaning

^ Start of string, or the point after any newline if in
multiline match mode, PCRE_MULTILINE.

\A Start of search string, in all match modes.

$ End of search string, or the point before a string-ending
newline, or before any newline if in multiline match
mode, PCRE_MULTILINE.

\Z End of string, or the point before a string-ending
newline, in any match mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b Word boundary; position between a word character (\w)
and a nonword character (\W), the start of the string, or
the end of the string.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

Table 44. PCRE character classes and class-like constructs

Class Meaning

86 | Regular Expression Pocket Reference

Table 46. PCRE comments and mode modifiers

Modifier/sequence
Equivalent Perl
mode character Meaning

PCRE_CASELESS i Case-insensitive matching for
characters with codepoints values
less than 256. In UTF-8 mode, it
works for all characters if Unicode
property support is available.

PCRE_MULTILINE m ^ and $match next to embedded
\n.

PCRE_DOTALL s Dot (.) matches newline.

PCRE_EXTENDED x Ignore whitespace, and allow
comments (#) in pattern.

PCRE_UNGREEDY U Reverse greediness of all
quantifiers: * becomes
nongreedy, and *? becomes
greedy.

PCRE_ANCHORED Force match to start at the first
position searched.

PCRE_DOLLAR_
ENDONLY

Force $ to match at only the end
of a string instead of before a
string ending with a newline.
Overridden by multiline mode.

PCRE_NO_AUTO_
CAPTURE

Disable capturing function of
parentheses.

PCRE_UTF8 Treat regular expression and
subject strings as strings of
multibyte UTF-8 characters.

PCRE_AUTO_CALLOUT Insert automatic callouts.

PCRE_DUPNAMES Allow duplicate named groups.

PCRE_FIRSTLINE Unanchored pattern must match
before the first newline of the
subject.

PCRE_NEWLINE_CR
PCRE_NEWLINE_LF
PCRE_NEWLINE_CRLF
PCRE_NEWLINE_ANY

Specify newline character
sequence.

PCRE_NOTBOL Start of subject is not start of line.

PCRE_NOTEOL End of subject is not end of line.

PCRE | 87

PCRE_NOTEMPTY An empty string is not a valid
match.

PCRE_NO_UTF8_CHECK Do not validate UTF-8 strings.

PCRE_PARTIAL Failed matches that reach the end
of the input string return PCRE_
PARTIAL rather than PCRE_
ERROR_NO_MATCH.

(?mode) Turn listed modes (one or more of
imsxU) on for the rest of the
subexpression.

(?-mode) Turn listed modes (one or more of
imsxU) off for the rest of the
subexpression.

(?mode:...) Turn listed modes (one or more of
imsx) on within parentheses.

(?-mode:...) Turn listed modes (one or more of
imsx) off within parentheses.

\Q Quote all following regex
metacharacters.

\E End a span started with \Q.

(?#...) Treat substring as a comment.

#... Treat rest of line as a comment in
PCRE_EXTENDED mode.

Table 47. PCRE grouping, capturing, conditional,
and control

Sequence Meaning

(...) Group subpattern and capture submatch
into \1,\2,

(?P<name>...),
(?<name>),(?’name')

Group subpattern and capture submatch
into named capture group, name.

(?P=name),\k<name>, \k'name' Backreference to named capture.

\n, \gn, \g{n} Contains the results of the nth earlier
submatch from a parentheses capture
group or a named capture group.

Table 46. PCRE comments and mode modifiers (continued)

Modifier/sequence
Equivalent Perl
mode character Meaning

88 | Regular Expression Pocket Reference

(?:...) Group subpattern, but do not capture
submatch.

(?>...) Atomic grouping.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than
y times.

*? Match 0 or more times, but as few times
as possible.

+? Match 1 or more times, but as few times
as possible.

?? Match 0 or 1 times, but as few times as
possible.

{n,}? Match at least n times, but as few times
as possible.

{x,y}? Match at least x times, no more than y
times, and as few times as possible.

*+ Match 0 or more times, and never
backtrack.

++ Match 1 or more times, and never
backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never
backtrack.

{n,}+ Match at least n times, and never
backtrack.

{x,y}+ Match at least x times, no more than y
times, and never backtrack.

Table 47. PCRE grouping, capturing, conditional,
and control (continued)

Sequence Meaning

PCRE | 89

PCRE API
Applications using PCRE should look for the API prototypes
in pcre.h, and include the actual library file, libpcre.a, by
compiling with -lpcre.

Most functionality is contained in the functions pcre_
compile(), which prepares a regular expression data struc-
ture, and pcre_exec(), which performs the pattern matching.
You are responsible for freeing memory, although PCRE does
provide pcre_free_substring() and pcre_free_substring_
list() to help out.

PCRE API Synopsis

pcre *pcre_compile(const char *pattern, int options, const char
**errptr, int *erroffset, const unsigned char *tableptr)

Compile pattern with optional mode modifiers options, and
optional locale tables tableptr, which are created with pcre_
maketables(). Returns a compiled regex, or NULL, with
errptr pointing to an error message, and erroffset pointing
to the position in pattern where the error occurred.

int pcre_exec(const pcre *code, const pcre_extra *extra, const
char *subject, int length, int startoffset, int options, int
*ovector, int ovecsize)

Perform pattern matching with a compiled regular expres-
sion, code, and a supplied input string, subject, of length
length. The results of a successful match are stored in
ovector. The first and second elements of ovector contain the

(?(condition)...|...) Match with if-then-else pattern. The
condition can be either the number of
a capture group, or a lookahead or
lookbehind construct.

(?(condition)...) Match with if-then pattern. The
condition can be either the number of
a capture group, or a lookahead or
lookbehind construct.

Table 47. PCRE grouping, capturing, conditional,
and control (continued)

Sequence Meaning

90 | Regular Expression Pocket Reference

position of the first character in the overall match, and the
character following the end of the overall match. Each addi-
tional pair of elements, up to two-thirds the length of ovector,
contain the positions of the starting character, and the char-
acter after capture group submatches. Optional parameters
options contain mode modifiers, and pcre_extra contains the
results of a call to pcre_study().

pcre_extra *pcre_study(const pcre *code, int options, const char
**errptr)

Return information to speed up calls to pcre_exec() with
code. There are currently no options, so options should always
be 0. If an error occurred, errptr points to an error message.

int pcre_copy_named_substring(const pcre *code, const char
*subject, int *ovector, int stringcount, const char *stringname,
char *buffer, int buffersize)

Copy the substring matched by the named capture group
stringname into buffer. stringcount is the number of
substrings placed into ovector, usually the result returned by
pcre_exec().

int pcre_copy_substring(const char *subject, int *ovector, int
stringcount, int stringnumber, char *buffer, int buffersize)

Copy the substring matched by the numbered capture group
stringnumber into buffer. stringcount is the number of
substrings placed into ovector, usually the result returned by
pcre_exec().

int pcre_get_named_substring(const pcre *code, const char
*subject, int *ovector, int stringcount, const char *stringname,
const char **stringptr)

Create a new string, pointed to by stringptr, containing the
substring matched by the named capture group stringname.
Returns the length of the substring. stringcount is the
number of substrings placed into ovector, usually the result
returned by pcre_exec().

int pcre_get_stringnumber(const pcre *code, const char *name)
Return the number of the capture group associated with the
named capture group, name.

int pcre_get_substring(const char *subject, int *ovector, int
stringcount, int stringnumber, const char **stringptr)

Create a new string, pointed to by stringptr, containing the
substring matched by the numbered capture group

PCRE | 91

stringnumber. Returns the length of the substring. stringcount
is the number of substrings placed into ovector, usually the
result returned by pcre_exec().

int pcre_get_substring_list(const char *subject, int *ovector,
int stringcount, const char ***listptr)

Return a list of pointers, listptr, to all captured substrings.

void pcre_free_substring(const char *stringptr)
Free memory pointed to by stringptr, and allocated by pcre_
get_named_substring(), or pcre_get_substring_list().

void pcre_free_substring_list(const char **stringptr)
Free memory pointed to by stringptr and allocated by pcre_
get_substring_list().

const unsigned char *pcre_maketables(void)
Build character tables for the current locale.

int pcre_fullinfo(const pcre *code, const pcre_extra *extra, int
what, void *where)

Place info on a regex specified by what into where. Available
values for what are PCRE_INFO_BACKREFMAX, PCRE_INFO_
CAPTURECOUNT, PCRE_INFO_FIRSTBYTE, PCRE_INFO_FIRSTTABLE,
PCRE_INFO_LASTLITERAL, PCRE_INFO_NAMECOUNT, PCRE_INFO_
NAMEENTRYSIZE, PCRE_INFO_NAMETABLE, PCRE_INFO_OPTIONS, PCRE_
INFO_SIZE, and PCRE_INFO_STUDYSIZE.

int pcre_config(int what, void *where)
Place the value of build-time options specified by what into
where. Available values for what are PCRE_CONFIG_UTF8, PCRE_
CONFIG_NEWLINE, PCRE_CONFIG_LINK_SIZE, PCRE_CONFIG_POSIX_
MALLOC_THRESHOLD, and PCRE_CONFIG_MATCH_LIMIT.

char *pcre_version(void)
Return a pointer to a string containing the PCRE version and
release date.

void *(*pcre_malloc)(size_t)
Entry point PCRE uses for malloc() calls.

void (*pcre_free)(void *)
Entry point PCRE uses for pcre_free() calls.

int (*pcre_callout)(pcre_callout_block *)
Can be set to a callout function that will be called during
matches.

92 | Regular Expression Pocket Reference

Unicode Support
PCRE provides basic Unicode 5.0 support. When a pattern is
compiled with the PCRE_UTF8 flag, the pattern will run on
Unicode text. However, PCRE determines case and the prop-
erty of being a letter or a digit based on a set of default tables.
You can supply an alternate set of tables based on a different
locale. For example:

setlocale(LC_CTYPE, "fr");
tables = pcre_maketables();
re = pcre_compile(..., tables);

Examples
Example 29 and Example 30 are adapted from an open
source example written by Philip Hazel and copyright by the
University of Cambridge, England.

Example 29. Simple match

#include <stdio.h>
#include <string.h>
#include <pcre.h>

#define CAPTUREVECTORSIZE 30 /* should be a multiple of 3 */

int main(int argc, char **argv)
{
pcre *regex;
const char *error;
int erroffset;
int capturevector[CAPTUREVECTORSIZE];
int rc;

char *pattern = "spider[-]?man";
char *text ="SPIDERMAN menaces city!";

/* Compile Regex */
regex = pcre_compile(
 pattern,
 PCRE_CASELESS, /* OR'd mode modifiers */

PCRE | 93

 &error, /* error message */
 &erroffset, /* position in regex where error occurred */
 NULL); /* use default locale */

/* Handle Errors */
if (regex = = NULL)
 {
 printf("Compilation failed at offset %d: %s\n", erroffset,
 error);
 return 1;
 }

/* Try Match */
rc = pcre_exec(
regex, /* compiled regular expression */

 NULL, /* optional results from pcre_study */
 text, /* input string */
 (int)strlen(text), /* length of input string */
0, /* starting position in input string */

 0, /* OR'd options */
capturevector, /* holds results of capture groups */

 CAPTUREVECTORSIZE);

/* Handle Errors */
if (rc < 0)
 {
 switch(rc)
 {
 case PCRE_ERROR_NOMATCH: printf("No match\n"); break;
 default: printf("Matching error %d\n", rc); break;
 }
 return 1;
 }
return 0;
}

Example 30. Match and capture group

#include <stdio.h>
#include <string.h>
#include <pcre.h>

Example 29. Simple match (continued)

94 | Regular Expression Pocket Reference

#define CAPTUREVECTORSIZE 30 /* should be a multiple of 3 */

int main(int argc, char **argv)
{
pcre *regex;
const char *error;
int erroffset;
int capturevector[CAPTUREVECTORSIZE];
int rc, i;

char *pattern = "(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)";
char *text ="12/30/1969";

/* Compile the Regex */
re = pcre_compile(
 pattern,
 PCRE_CASELESS, /* OR'd mode modifiers */
 &error, /* error message */
 &erroffset, /* position in regex where error occurred */
 NULL); /* use default locale */

/* Handle compilation errors */
if (re = = NULL)
 {
 printf("Compilation failed at offset %d: %s\n",
 erroffset, error);
 return 1;
 }

rc = pcre_exec(
regex, /* compiled regular expression */

 NULL, /* optional results from pcre_study */
 text, /* input string */
 (int)strlen(text), /* length of input string */
0, /* starting position in input string */

 0, /* OR'd options */
capturevector, /* holds results of capture groups */

 CAPTUREVECTORSIZE);

Example 30. Match and capture group (continued)

PCRE | 95

/* Handle Match Errors */
if (rc < 0)
 {
 switch(rc)
 {
 case PCRE_ERROR_NOMATCH: printf("No match\n"); break;
 /*
 Handle other special cases if you like
 */
 default: printf("Matching error %d\n", rc); break;
 }
 return 1;
 }

/* Match succeded */

printf("Match succeeded\n");

/* Check for output vector for capture groups */
if (rc = = 0)
 {
 rc = CAPTUREVECTORSIZE/3;
 printf("ovector only has room for %d captured substrings\n",
 rc - 1);
 }

/* Show capture groups */

for (i = 0; i < rc; i++)
 {
 char *substring_start = text + ovector[2*i];
 int substring_length = capturevector[2*i+1]
 - capturevector[2*i];
 printf("%2d: %.*s\n", i, substring_length, substring_start);
 }

return 0;
}

Example 30. Match and capture group (continued)

96 | Regular Expression Pocket Reference

Other Resources
• The C source code and documentation for PCRE at http://

www.pcre.org.

Apache Web Server
Apache web server 2.0 introduced Perl-style regular expres-
sions based on the PCRE library. Apache 2.2 now has
support for PCRE 5.0. The library uses a Traditional NFA
match engine. For an explanation of the rules behind an NFA
engine, see “Introduction to Regexes and Pattern Matching.”

A number of Apache directives work with regular expres-
sions. This section covers Apache 2.2 (which is mostly
compatible with 2.0) and the most common directives:
RewriteRule, LocationMatch, DirectoryMatch, FilesMatch,
ProxyMatch, and AliasMatch.

Supported Metacharacters
Apache supports the metacharacters and metasequences
listed in Table 48 through Table 52. For expanded defini-
tions of each metacharacter, see “Regex Metacharacters,
Modes, and Constructs.”

Table 48. Apache character representations

Sequence Meaning

\octal Character specified by a three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal
code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

http://www.pcre.org
http://www.pcre.org

Apache Web Server | 97

Table 49. Apache character classes and class-like constructs

Class Meaning

[...] A single character listed, or contained within a listed
range.

[^...] A single character not listed, and not contained within a
listed range.

[:class:] POSIX-style character class (valid only within a regex
character class).

. Any character, except newline (unless single-line mode,
/s).

\C One byte; however, this may corrupt a Unicode character
stream.

\w Word character, [a-zA-z0-9_].

\W Nonword character, [^a-zA-z0-9_].

\d Digit character, [0-9].

\D Nondigit character, [^0-9].

\s Whitespace character, [\n\r\f\t].

\S Nonwhitespace character, [^\n\r\f\t].

Table 50. Apache anchors and zero-width tests

Sequence Meaning

^ Start of string.

$ End of search string.

\b Word boundary; position between a word character (\w)
and a nonword character (\W), the start of the string, or
the end of the string.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

(?<!...) Negative lookbehind.

98 | Regular Expression Pocket Reference

Table 51. Apache comments and mode modifiers

Modes Meaning

NC Case-insensitive matching.

(?mode) Turn listed modes (one or more of imsxU) on for the
rest of the subexpression.

(?-mode) Turn listed modes (one or more of imsxU) off for the
rest of the subexpression.

(?mode:...) Turn mode (one of xsmi) on within parentheses.

(?-mode:...) Turn mode (one of xsmi) off within parentheses.

(?#...) Treat substring as a comment.

#... Rest of line is treated as a comment in x mode.

\Q Quotes all following regex metacharacters.

\E Ends a span started with \Q.

Table 52. Apache grouping, capturing, conditional,
and control

Sequence Meaning

(...) Group subpattern, and capture submatch into \1,
\2

(?P<name>...) Group subpattern, and capture submatch into named
capture group, name.

\n Contains the results of the nth earlier submatch from a
parentheses capture group, or a named capture group.

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Atomic grouping.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times, but no more than y times.

*? Match 0 or more times, but as few times as possible.

Apache Web Server | 99

RewriteRule
The rewrite engine enables regular-expression-based rewrit-
ing of URLs. The feature is enabled with the RewriteEngine
On directive. Most rewrites are a single RewriteRule, or a com-
bination of RewriteCond directives followed by a RewriteRule.

RewriteRule pattern substitution [[FLAG1, FLAG2, ...]]
Rewrites URL to substitution if the URL is successfully
matched by pattern. The substitution string can con-
tain back-references ($N) to the RewriteRule pattern,
back-references (%N) to the last matched RewriteCond pat-
tern, server-variables as in rule condition test-strings
(%{VARNAME}), and mapping-function calls (${mapname:
key|default}). Optional flags, listed in Table 53, cause
the server to take various actions when a match occurs.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 times, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as
few times as possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and
never backtrack.

(?(condition)...|...) Match with if-then-else pattern. The condition can
be the number of a capture group, or a lookahead or
lookbehind construct.

(?(condition)...) Match with if-then pattern. The condition can be
the number of a capture group, or a lookahead or
lookbehind construct.

Table 52. Apache grouping, capturing, conditional,
and control (continued)

Sequence Meaning

100 | Regular Expression Pocket Reference

RewriteCond teststring pattern
Define a test condition (Table 54) for applying a
RewriteRule. Multiple RewriteCond directives preceding a
RewriteRule are combined with an implicit AND, unless
specified as OR. The teststring can contain back-refer-
ences ($N) to the RewriteRule pattern, back-references
(%N) to the last matched RewriteCond pattern, server-vari-
ables as in rule condition test-strings (%{VARNAME}), and
mapping-function calls (${mapname:key|default}).

Server variables affecting rewrites are listed in Table 55.

Table 53. Apache RewriteRule flags

Modes Meaning

C Chain with next rule. If rule matches, apply the
rewrite, and the following chained rewrites;
otherwise, stop the chain.

CO=NAME:VAL:domain
[:lifetime[:path]]

Set a cookie.

E=VAR:VAL Set an environment variable.

F Forbidden; send back 403 code.

G Gone; send back 401 code.

H=Content-handler Set the content handler.

L Last rule; don’t apply any more rewrite rules.

N Next rule; reapply the rewrite rules to the newly
rewritten URL.

NC No case; apply case-insensitive matching.

NE Disable the application of URL-escaping rules to
the output of a rule.

NS Skip processing if the request is an internal
subrequest.

P Stop rewrite processing, and process the result as
an internal proxy request.

PT Pass through to next handler, setting request
structure so that Alias, ScriptAlias, and
Redirect can work with the result.

QSA Append query string.

Apache Web Server | 101

R[=Code] Redirect to new URL with optional code. The
default code is 302.

S=num Skip the next num rules.

T=MIME-type Set the MIME type.

Table 54. Apache RewriteCond flags

Modes Meaning

NC No case; apply case-insensitive matching.

OR Use this to combine rule conditions with a localOR
instead of the implicit AND.

Table 55. Apache server variables

HTTP headers Connection and request

HTTP_USER_AGENT REMOTE_ADDR

HTTP_REFERER REMOTE_HOST

HTTP_COOKIE REMOTE_PORT

HTTP_FORWARDED REMOTE_USER

HTTP_HOST REMOTE_IDENT

HTTP_PROXY_CONNECTION REQUEST_METHOD

HTTP_ACCEPT SCRIPT_FILENAME

Server internals PATH_INFO

DOCUMENT_ROOT AUTH_TYPE

SERVER_ADMIN Date and time

SERVER_ADDR TIME_YEAR

SERVER_PORT TIME_MON

SERVER_PROTOCOL TIME_DAY

SERVER_SOFTWARE TIME_HOUR

Table 53. Apache RewriteRule flags (continued)

Modes Meaning

102 | Regular Expression Pocket Reference

Matching Directives
A number of other Apache directives make use of regular
expressions. The following are the most common.

AliasMatch pattern file-path|directory-path
Map URLs to filesystem locations. Use submatch variables
$1...$n to access submatches in the resulting file path.

<DirectoryMatch pattern> ... </DirectoryMatch>
Apply enclosed directives when filesystem directory
matches pattern.

<FilesMatch pattern> ... </FilesMatch>
Apply enclosed directives when file matches pattern.

<LocationMatch pattern> ... </LocationMatch>
Apply enclosed directives when URL matches pattern.

<ProxyMatch pattern> ... </ProxyMatch>
Apply enclosed directives when URL matches pattern.

Examples

Specials TIME_MIN

API_VERSION TIME_WDAY

THE_REQUEST TIME

REQUEST_URI

REQUEST_FILENAME

IS_SUBREQ

HTTPS

Example 31. Simple match

Rewrite /foo to /bar
RewriteEngine On
RewriteRule ^/foo$ /bar

Table 55. Apache server variables (continued)

HTTP headers Connection and request

vi Editor | 103

vi Editor
The vi program is a popular text editor on all Unix systems,
and Vim is a popular vi clone with expanded regular
expression support. Both use a DFA match engine. For an
explanation of the rules behind a DFA engine, see “Introduc-
tion to Regexes and Pattern Matching.”

Supported Metacharacters
Table 56 through Table 60 list the metacharacters and
metasequences supported by vi. For expanded definitions of
each metacharacter, see “Regex Metacharacters, Modes, and
Constructs.”

Example 32. Match and capture group

Rewrite pretty url as script parameters
RewriteRule ^/(\w+)/(\d+) /index.php?action=$1&id=$2

Example 33. Rewrite conditions

Limit admin url to internal IP addresses
RewriteCond %{REMOTE_ADDR} !192.168.\d*.\d*
RewriteCond %{PATH_INFO} ^admin
RewriteRule .* - [F]

Example 34. Redirect to SSL

Make sure admin urls are served over SSL
RewriteCond %{SERVER_PORT} !^443$
RewriteRule ^/admin/(.*)$ https://www.example.com/admin/$1
[L,R]

Table 56. vi character representation

Sequence Meaning

Vim only

\b Backspace, \x08.

\e Escape character, \x1B.

104 | Regular Expression Pocket Reference

\n Newline, \x0A.

\r Carriage return, \x0D.

\t Horizontal tab, \x09.

Table 57. vi character classes and class-like constructs

Class Meaning

[...] Any character listed, or contained within a listed range.

[^...] Any character that is not listed, or contained within a listed
range.

[:class:] POSIX-style character class (valid only within a character class).

. Any character except newline (unless /s mode).

Vim only

\w Word character, [a-zA-z0-9_].

\W Nonword character, [^a-zA-z0-9_].

\a Letter character, [a-zA-z].

\A Nonletter character, [^a-zA-z].

\h Head of word character, [a-zA-z_].

\H Not the head of a word character, [^a-zA-z_].

\d Digit character, [0-9].

\D Nondigit character, [^0-9].

\s Whitespace character, [\t].

\S Nonwhitespace character, [^ \t].

\x Hex digit, [a-fA-F0-9].

\X Nonhex digit, [^a-fA-F0-9].

\o Octal digit, [0-7].

\O Nonoctal digit, [^0-7].

\l Lowercase letter, [a-z].

\L Nonlowercase letter, [^a-z].

Table 56. vi character representation (continued)

Sequence Meaning

vi Editor | 105

\u Uppercase letter, [A-Z].

\U Nonuppercase letter, [^A-Z].

\i Identifier character defined by isident.

\I Any nondigit identifier character.

\k Keyword character defined by iskeyword, often set by
language modes.

\K Any nondigit keyword character.

\f Filename character defined by isfname. Operating system-
dependent.

\F Any nondigit filename character.

\p Printable character defined by isprint, usually x20-x7E.

\P Any nondigit printable character.

Table 58. vi anchors and zero-width tests

Sequence Meaning

^ Start of a line when appearing first in a regular expression;
otherwise, it matches itself.

$ End of a line when appearing last in a regular expression;
otherwise, it matches itself.

\< Beginning of word boundary (i.e., a position between a
punctuation or space character, and a word character).

\> End of word boundary.

Table 59. vi mode modifiers

Modifier Meaning

:set ic Turn on case-insensitive mode for all searching and
substitution.

:set noic Turn off case-insensitive mode.

\u Force next character in a replacement string to uppercase.

\l Force next character in a replacement string to lowercase.

Table 57. vi character classes and class-like constructs (continued)

Class Meaning

106 | Regular Expression Pocket Reference

Pattern Matching

Searching
/pattern ?pattern

Moves to the start of the next position in the file matched by
pattern. A ?pattern searches backward. A search can be repeated
with the n (search forward), or N (search backward) commands.

\U Force all following characters in a replacement string to
uppercase.

\L Force all following characters in a replacement string to
lowercase.

\E or \e Ends a span started with \U or \L.

Table 60. vi grouping, capturing, conditional, and control

Sequence Meaning

\(...\) Group subpattern, and capture submatch, into \1,\2,

\n Contains the results of thenth earlier submatch. Valid in either a
regex pattern, or a replacement string.

& Evaluates to the matched text when used in a replacement
string.

* Match 0 or more times.

Vim only

\+ Match 1 or more times.

\= Match 1 or 0 times.

\{n} Match exactly n times.

\{n,} Match at least n times.

\{,n} Match at most n times.

\{x,y} Match at least x times, but no more than y times.

Table 59. vi mode modifiers (continued)

Modifier Meaning

vi Editor | 107

Substitution
:[addr1[,addr2]]s/pattern/replacement/[cgp]

Replace the text matched by pattern with replacement on every
line in the address range. If no address range is given, the current
line is used. Each address may be a line number, or a regular
expression. If addr1 is supplied, substitution begins on that line
number (or the first matching line), and continues until the end of
the file, or the line indicated (or matched) by addr2. There are also
a number of address shortcuts, which are described in the
following tables.

Substitution options

Address shortcuts

Option Meaning

C Prompt before each substitution.

g Replace all matches on a line.

p Print line after substitution.

Address Meaning

. Current line.

$ Last line in file.

% Entire file.

't Position t.

/...[/] Next line matched by pattern.

?...[?] Previous line matched by pattern.

\/ Next line matched by the last search.

\? Previous line matched by the last search.

\& Next line where the last substitution pattern matched.

108 | Regular Expression Pocket Reference

Examples

Other Resources
• Learning the vi Editor, Sixth Edition, by Linda Lamb and

Arnold Robbins (O’Reilly), is a guide to the vi editor and
popular vi clones.

• http://www.geocities.com/volontir/, by Oleg Raisky, is an
overview of Vim regular expression syntax.

Example 35. Simple search in vi

Find spider-man, Spider-Man, Spider Man
/[Ss]pider[-][Mm]an

Example 36. Simple search in Vim

Find spider-man, Spider-Man, Spider Man, spiderman, SPIDER-
MAN, etc.
:set ic
/spider[-]\=man

Example 37. Simple substitution in vi

Globally convert
 to
 for XHTML compliance.
:set ic
: % s/
/<br \/>/g

Example 38. Simple substitution in Vim

Globally convert
 to
 for XHTML compliance.
: % s/
/<br \/>/ig

Example 39. Harder substitution in Vim

Urlify: Turn URLs into HTML links
: % s/\(https\=:\/\/[a-z_.\\w\/\\#~:?+=&;%@!-]*\)/< a href="
\1">\1<\/a>/ic

http://www.geocities.com/volontir/

Shell Tools | 109

Shell Tools
awk, sed, and egrep are a related set of Unix shell tools for
text processing. awk uses a DFA match engine, egrep
switches between a DFA and NFA match engine, depending
on which features are being used, and sed uses an NFA
engine. For an explanation of the rules behind these engines,
see “Introduction to Regexes and Pattern Matching.”

This reference covers GNU egrep 2.4.2, a program for search-
ing lines of text; GNU sed 3.02, a tool for scripting editing
commands; and GNU awk 3.1, a programming language for
text processing.

Supported Metacharacters
awk, egrep, and sed support the metacharacters and metase-
quences listed in Table 61 through Table 65. For expanded
definitions of each metacharacter, see “Regex Metacharacters,
Modes, and Constructs.”

Table 61. Shell character representations

Sequence Meaning Tool

\a Alert (bell). awk, sed

\b Backspace; supported only
in character class.

awk

\f Form feed. awk, sed

\n Newline (line feed). awk, sed

\r Carriage return. awk, sed

\t Horizontal tab. awk, sed

\v Vertical tab. awk, sed

\ooctal A character specified by a
one-, two-, or three-digit
octal code.

sed

110 | Regular Expression Pocket Reference

\octal A character specified by a
one-, two-, or three-digit
octal code.

awk

\xhex A character specified by a
two-digit hexadecimal
code.

awk, sed

\ddecimal A character specified by a
one, two, or three decimal
code.

awk, sed

\cchar A named control character
(e.g., \cC is Control-C).

awk, sed

\b Backspace. awk

\metacharacter Escape the metacharacter,
so that it literally
represents itself.

awk, sed, egrep

Table 62. Shell character classes and class-like
constructs

Class Meaning Tool

[...] Matches any single
character listed, or
contained within a listed
range.

awk, sed, egrep

[^...] Matches any single
character that is not listed,
or contained within a
listed range.

awk, sed, egrep

. Matches any single
character, except newline.

awk, sed, egrep

\w Matches an ASCII word
character, [a-zA-
Z0-9_].

egrep, sed

Table 61. Shell character representations (continued)

Sequence Meaning Tool

Shell Tools | 111

\W Matches a character that is
not an ASCII word
character, [^a-zA-Z0-
9_].

egrep, sed

[:prop:] Matches any character in
the POSIX character class.

awk, sed

[^[:prop:]] Matches any character not
in the POSIX character
class.

awk, sed

Table 63. Shell anchors and other zero-width testshell tools

Sequence Meaning Tool

^ Matches only start of
string, even if newlines are
embedded.

awk, sed, egrep

$ Matches only end of search
string, even if newlines are
embedded.

awk, sed, egrep

\< Matches beginning of
word boundary.

egrep

\> Matches end of word
boundary.

egrep

Table 64. Shell comments and mode modifiers

Modifier Meaning Tool

flag: i or I Case-insensitive matching
for ASCII characters.

sed

command-line option: -i Case-insensitive matching
for ASCII characters.

egrep

set IGNORECASE to
non-zero

Case-insensitive matching
for Unicode characters.

awk

Table 62. Shell character classes and class-like
constructs (continued)

Class Meaning Tool

112 | Regular Expression Pocket Reference

egrep
egrep [options] pattern files

egrep searches files for occurrences of pattern, and prints out
each matching line.

Example
$ echo 'Spiderman Menaces City!' > dailybugle.txt
$ egrep -i 'spider[-]?man' dailybugle.txt
Spiderman Menaces City!

sed
sed '[address1][,address2]s/pattern/replacement/[flags]' files

sed -f script files

By default, sed applies the substitution to every line in files. Each
address can be either a line number, or a regular expression
pattern. A supplied regular expression must be defined within the
forward slash delimiters (/.../).

Table 65. Shell grouping, capturing, conditional, and control

Sequence Meaning Tool

(PATTERN) Grouping. awk

\(PATTERN\) Group and capture
submatches, filling \1,
\2, . . . ,\9.

sed

\n Contains the nth earlier
submatch.

sed

...|... Alternation; match one or
the other.

egrep, awk, sed

Greedy quantifiers

* Match 0 or more times. awk, sed, egrep

+ Match 1 or more times. awk, sed, egrep

? Match 1 or 0 times. awk, sed, egrep

\{n\} Match exactly n times. sed, egrep

\{n,\} Match at least n times. sed, egrep

\{x,y\} Match at least x times, but
no more than y times.

sed, egrep

Shell Tools | 113

If address1 is supplied, substitution will begin on that line
number, or the first matching line, and continue until either the
end of the file, or the line indicated or matched by address2. Two
subsequences, & and \n, will be interpreted in replacement based
on the match results.

The sequence & is replaced with the text matched by pattern. The
sequence \n corresponds to a capture group (1...9) in the current
match. Here are the available flags:

n
Substitute the nth match in a line, where n is between 1 and 512.

g
Substitute all occurrences of pattern in a line.

p
Print lines with successful substitutions.

w file
Write lines with successful substitutions to file.

Example

Change date formats from MM/DD/YYYY to DD.MM.YYYY.

$ echo 12/30/1969' |
 sed 's!\([0-9][0-9]\)/\([0-9][0-9]\)/\([0-9]\{2,4\}\)!
\2.\1.\3!g'

awk
awk 'instructions' files

awk -f script files

The awk script contained in instructions or script should be a
series of /pattern/ {action} pairs. The action code is applied to
each line matched by pattern. awk also supplies several functions
for pattern matching.

Functions

match(text, pattern)
If pattern matches in text, return the position in text where
the match starts. A failed match returns zero. A successful
match also sets the variable RSTART to the position where the
match started, and the variable RLENGTH to the number of
characters in the match.

114 | Regular Expression Pocket Reference

gsub(pattern, replacement, text)
Substitute each match of pattern in text with replacement,
and return the number of substitutions. Defaults to $0 if text
is not supplied.

sub(pattern, replacement, text)
Substitute first match of pattern in text with replacement. A
successful substitution returns 1, and an unsuccessful substi-
tution returns 0. Defaults to $0 if text is not supplied.

Example

Create an awk file and then run it from the command line.

$ cat sub.awk
{
 gsub(/https?:\/\/[a-z_.\\w\/\\#~:?+=&;%@!-]*/,
 "\&");

 print
}

$ echo "Check the web site, http://www.oreilly.com/
catalog/repr" | awk -f sub.awk

Other Resources
• sed and awk, by Dale Dougherty and Arnold Robbins

(O’Reilly), is an introduction and reference to both tools.

115

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

Symbols
[...] character class, 6
[^...] character class, 6

A
address shortcuts, vi editor, 107
anchors, 9
Apache web server, 96

matching directives, 102
rewrite engine, 99

ASCII, 5

B
backslashes in regular expression

String literals, Java
(java.util.regex), 30

boundary, word, 10

C
C#, 38
character classes, 6
character shorthands, 5
CharSequence interface, 30

classes
Group, 46
java.util.regex

Matcher, 30
Pattern, 30
PatternSyntaxException, 30

Match, 46
Regex, 43
Ruby

MatchData, 70
Regexp, 70

classes, .NET, 42
control characters, 5

D
Deterministic Finite Automaton

(DFA), 3

E
engines, 3

DFA (Deterministic Finite
Automaton), 3

NFA (Nondeterministic Finite
Automaton), 3

116 | Index

F
find function (Python), 63

G
Group class, 46

H
Hazel, Philip, 83
hex escape, 5

I
interfaces, 42

Java (java.util.regex), 30

J
Java (java.util.regex), 26
java.util.regex

Matcher class, 30
Pattern class, 30
PatternSyntaxException

class, 30
JavaScript, 77

pattern-matching, 79
RegExp object, 80
String object, 80

L
lookahead, 10
lookaround constructs, 10
lookbehind, 10

M
Match class, 46, 70
match function (Python), 63
Matcher class, java.util.regex, 30
matching, iterative, 10
metacharacters, 3, 5

Java (java.util.regex), 26
Perl version 5.8, 16

metasequences, 5
modifiers, mode, 10

N
negated character classes, 6
NFA (Nondeterministic Finite

Automaton), 3

O
octal escape, 5

P
parentheses, capturing and

grouping, 11
Pattern class, java.util.regex, 30
pattern matching, 3
PatternSyntaxException class,

java.util.regex, 30
PCRE API, 89
PCRE lib examples, 92
pcre_compile() function

(PCRE), 89
pcre_exec() function

(PCRE), 89
Perl Compatible Regular

Expression (PCRE)
library, 83

Perl version 5.8, 16
regular expression

operators, 21
single quotes, 21

PHP, 50
pattern matching

functions, 54
Python, 58

Unicode support, 64

Q
quantifiers, 3

Index | 117

R
re module (Python), 61

functions, 62
Regex class, 43

Ruby, 66
Regexp class, 70
RegExp object, JavaScript, 80
regular expression engines, 3
regular expressions overview, 3
Ruby, 66

object-oriented interface, 70
Oniguruma library, 67
Unicode support, 75

S
shell tools, 109

examples, 114
String object, JavaScript, 80
subpatterns, grouping, 11
substitution

options, vi editor, 107

U
Unicode

Java (java.util.regex), 35
support, 13, 23, 64, 92

Unicode 3.1, 47
Unicode escape, 5
use locale, 23

V
vi editor, 103

Z
zero-width assertions, 9

	Contents
	Regular Expression Pocket Reference
	About This Book
	Conventions Used in This Book
	Acknowledgments

	Introduction to Regexes and Pattern Matching
	Regex Metacharacters, Modes, and Constructs
	Character representations
	Character classes and class-like constructs
	Anchors and zero-width assertions
	Comments and mode modifiers
	Grouping, capturing, conditionals, and control

	Unicode Support

	Regular Expression Cookbook
	Recipes
	Removing leading and trailing whitespace
	Numbers from 0 to 999999
	Valid HTML Hex code
	U.S. Social Security number
	U.S. zip code
	U.S. currency
	Match date: MM/DD/YYYY HH:MM:SS
	Leading pathname
	Dotted Quad IP address
	MAC address
	Email
	HTTP URL

	Perl 5.8
	Supported Metacharacters
	Regular Expression Operators
	qr// (Quote Regex)
	m// (Matching)
	s/// (Substitution)
	split

	Unicode Support
	Examples
	Other Resources

	Java (java.util.regex)
	Supported Metacharacters
	Regular Expression Classes and Interfaces
	java.lang.String
	java.util.regex.Pattern
	java.util.regex.Matcher
	java.util.regex.PatternSyntaxException
	java.lang.CharSequence

	Unicode Support
	Examples
	Other Resources

	.NET and C#
	Supported Metacharacters
	Regular Expression Classes and Interfaces
	Regex
	Match
	Group

	Unicode Support
	Examples
	Other Resources

	PHP
	Supported Metacharacters
	Pattern-Matching Functions
	Examples
	Other Resources

	Python
	Supported Metacharacters
	re Module Objects and Functions
	Module Functions
	RegExp
	Match Objects

	Unicode Support
	Examples
	Other Resources

	RUBY
	Supported Metacharacters
	Object-Oriented Interface
	String
	Regexp
	MatchData

	Unicode Support
	Examples

	JavaScript
	Supported Metacharacters
	Pattern-Matching Methods and Objects
	String
	RegExp

	Examples
	Other Resources

	PCRE
	Supported Metacharacters
	PCRE API
	PCRE API Synopsis

	Unicode Support
	Examples
	Other Resources

	Apache Web Server
	Supported Metacharacters
	RewriteRule
	Matching Directives
	Examples

	vi Editor
	Supported Metacharacters
	Pattern Matching
	Searching
	Substitution

	Examples
	Other Resources

	Shell Tools
	Supported Metacharacters
	egrep
	sed
	awk

	Other Resources

	Index

