

THE
MISSING
MANUAL®

JavaScript

David Sawyer McFarland

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

JavaScript: The Missing Manual
by David Sawyer McFarland

Copyright © 2008 David Sawyer McFarland. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Printing History:

July 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, the O’Reilly logo, and “The book that should have been
in the box” are registered trademarks of O’Reilly Media, Inc. JavaScript: The Missing Manual, The Missing
Manual logo, Pogue Press, and the Pogue Press logo are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-0-596-51589-8

[LSI] [2011-05-12]

http://safari.oreilly.com
mailto:corporate@oreilly.com

iii

Table of Contents

The Missing Credits ... xi

Introduction... 1

Part One: Getting Started with JavaScript

Chapter 1: Writing Your First JavaScript Program 19
Introducing Programming .. 19

What’s a Computer Program? .. 21
How to Add JavaScript to a Page ... 22

External JavaScript Files .. 24
Your First JavaScript Program .. 26
Writing Text on a Web Page ... 29
Attaching an External JavaScript File ... 29
Tracking Down Errors .. 32

The Firefox JavaScript Console .. 34
Displaying the Internet Explorer Error Dialog Box .. 35
Accessing the Safari Error Console ... 36

Chapter 2: The Grammar of JavaScript... 39
Statements .. 39
Commands .. 40
Types of Data .. 40

Numbers ... 41
Strings .. 41
Booleans ... 42

iv JavaScript: The Missing Manual

Variables .. 43
Creating a Variable .. 43
Using Variables ... 46

Working with Data Types and Variables ... 47
Basic Math ... 48
The Order of Operations .. 49
Combining Strings ... 49
Combining Numbers and Strings .. 50
Changing the Values in Variables .. 51

Tutorial: Using Variables to Create Messages .. 53
Tutorial: Asking for Information ... 54
Arrays ... 56

Creating an Array ... 58
Accessing Items in an Array ... 59
Adding Items to an Array .. 61
Deleting Items from an Array ... 63
Adding and Deleting with splice() ..64

Tutorial: Writing to a Web Page Using Arrays .. 67
Comments ... 71

When to Use Comments ... 72
Comments in this Book ... 73

Chapter 3: Adding Logic and Control to Your Programs 75
Making Programs React Intelligently ... 75

Conditional Statement Basics ... 77
Adding a Backup Plan ... 79
Testing More Than One Condition .. 81
More Complex Conditions .. 82
Nesting Conditional Statements .. 85
Tips for Writing Conditional Statements ... 85

Tutorial: Using Conditional Statements .. 86
Handling Repetitive Tasks with Loops ... 90

While Loops .. 90
Loops and Arrays ... 92
For Loops ... 94
Do/While Loops .. 96

Functions: Turn Useful Code Into Reusable Commands .. 97
Mini-Tutorial ... 99
Giving Information to Your Functions ... 100
Retrieving Information from Functions ... 102
Keeping Variables from Colliding .. 103

Tutorial: A Simple Quiz .. 106

Table of Contents v

Chapter 4: Working with Words, Numbers, and Dates........................113
A Quick Object Lesson .. 113
Strings .. 116

Determining the Length of a String ... 116
Changing the Case of a String ... 116
Searching a String: indexOf() Technique ... 117
Extracting Part of a String with slice() .. 118

Finding Patterns in Strings .. 120
Creating and Using a Basic Regular Expression .. 121
Building a Regular Expression ... 121
Grouping Parts of a Pattern .. 125
Useful Regular Expressions .. 126
Matching a Pattern .. 131
Replacing Text .. 132
Trying Out Regular Expressions ... 133

Numbers .. 134
Changing a String to a Number ... 134
Testing for Numbers ... 136
Rounding Numbers ... 137
Formatting Currency Values ... 137
Creating a Random Number .. 138

Dates and Times ... 140
Getting the Month ... 140
Getting the Day of the Week .. 141
Getting the Time .. 141
Creating a Date Other Than Today ... 145

Tutorial .. 146
Overview ... 146
Writing the Function .. 147

Chapter 5: Dynamically Modifying Web Pages.................................... 155
Modifying Web Pages: An Overview ... 155
Understanding the Document Object Model ... 157

Selecting a Page Element .. 158
Adding Content to a Page ... 162
The Moon Quiz Revisited .. 164
The Problem with the DOM ... 168

Introducing JavaScript Libraries ... 169
Getting Started with jQuery .. 170

Selecting Page Elements (Revisited) .. 172
Basic Selectors .. 173
Advanced Selectors ... 176
jQuery Filters .. 178
Understanding jQuery Selections .. 179

vi JavaScript: The Missing Manual

Adding Content to a Page ... 181
Replacing and Removing Selections .. 183

Setting and Reading Tag Attributes .. 185
Classes ... 185
Reading and Changing CSS Properties ... 186
Changing Multiple CSS Properties at Once .. 188

Reading, Setting, and Removing HTML Attributes ... 189
Creative Headlines ... 190
Acting on Each Element in a Selection .. 193

Anonymous Functions .. 193
this and $(this) ... 194

Automatic Pull Quotes ... 196
Overview ... 196
Programming .. 197

Chapter 6: Action/Reaction: Making Pages Come Alive with Events. 201
What Are Events? .. 201

Mouse Events ... 203
Document/Window Events ... 204
Form Events .. 205
Keyboard Events .. 206

Using Events with Functions ... 207
Inline Events .. 207
The Traditional Model ... 208
The Modern Way ... 209
The jQuery Way ... 210

Tutorial: Highlighting Table Rows .. 212
More jQuery Event Concepts .. 218

Waiting for the HTML to Load .. 218
jQuery Events ... 220
The Event Object .. 222
Stopping an Event’s Normal Behavior .. 223
Removing Events .. 224

Advanced Event Management .. 225
Tutorial: A One-Page FAQ ... 227

Overview of the Task ... 228
The Programming .. 228

Chapter 7: Improving Your Images ...233
Swapping Images ... 233

Changing an Image’s src Attribute ... 234
Preloading Images ... 235
Rollover Images .. 236

Tutorial: Adding Rollover Images ... 238
Overview of the Task ... 238
The Programming .. 239

Table of Contents vii

jQuery Effects .. 242
Basic Showing and Hiding .. 243
Fading Elements In and Out ... 244
Sliding Elements ... 245
Animation ... 246

Tutorial: Photo Gallery with Effects ... 248
Overview of Task ... 248
The Programming .. 249

Advanced Gallery with jQuery lightBox .. 254
The Basics ... 255
Customizing lightBox ... 257

Tutorial: lightBox Photo Gallery ... 261
Animated Slideshows with Cycle ... 263

The Basics ... 263
Customizing the Cycle Plug-in ... 265

Tutorial: An Automated Slideshow .. 268

Part Two: Building Web Page Features

Chapter 8: Improving Navigation.. 275
Some Link Basics .. 275

Selecting Links with JavaScript ... 275
Determining a Link’s Destination .. 276
Don’t Follow That Link .. 277

Opening External Links in a New Window ... 278
Creating New Windows ... 281

Window Properties .. 282
Opening Pages in a Window on the Page .. 286

Customizing the Look of a Greybox Window .. 290
Tutorial: Opening a Page Within a Page .. 290

Tutorial: Making Bigger Links ... 294
Overview ... 295
The Programming .. 296

Animated Navigation Menus .. 300
The HTML .. 301
The CSS ... 303
The JavaScript .. 303
The Tutorial .. 304

Chapter 9: Enhancing Web Forms ...309
Understanding Forms .. 309

Selecting Form Elements .. 311
Getting and Setting the Value of a Form Element ... 313
Determine Whether Buttons and Boxes Are Checked ... 314
Form Events .. 315

viii JavaScript: The Missing Manual

Adding Smarts to Your Forms .. 320
Focus the First Field in a Form ... 321
Disabling and Enabling Fields .. 322
Hiding and Showing Form Options ... 323

Tutorial: Basic Form Enhancements .. 324
Focusing a Field .. 325
Disabling Form Fields .. 325
Hiding Form Fields ... 328

Form Validation .. 330
jQuery Validation Plug-in .. 331
Basic Validation .. 333
Advanced Validation .. 336
Styling Error Messages .. 342

Validation Tutorial .. 343
Basic Validation .. 343
Advanced Validation .. 346
Validating Checkboxes and Radio Buttons ... 349
Formatting the Error Messages .. 352

Chapter 10: Expanding Your Interface ..355
Hiding Information with Accordion Panels ... 355

Customizing an Accordion .. 358
Accordion Tutorial ... 360

Organizing Information in Tabbed Panels .. 364
Formatting Tabs and Panels ... 368
Customizing the Tabs Plug-in ... 370
Tabbed Panels Tutorial ... 372

Tooltips .. 376
Tooltips Using the Title Attribute ... 377
Tooltips Using Another Web Page ... 379
Tooltips Using Hidden Content .. 380
Controlling the Display of Tooltips .. 382
Formatting Tooltips .. 386
Cluetip Tutorial ... 388

Creating Sortable Tables ... 394
Styling the Table ... 396
Tablesorter Tutorial ... 397

Part Three: Ajax: Communicating with the Web Server

Chapter 11: Introducing Ajax...403
What Is Ajax? ... 404
Ajax: The Basics .. 406

Pieces of the Puzzle ... 406
Talking to the Web Server .. 408

Table of Contents ix

Ajax the jQuery Way .. 411
Using the load() Function .. 411
Tutorial: The load() Function .. 413
The get() and post() Functions .. 418
Formatting Data to Send to the Server ... 419
Processing Data from the Server ... 423
Tutorial: Using the get() Function ... 426

JSON ... 432
Accessing JSON Data ... 434
Complex JSON Objects ... 435

Chapter 12: Basic Ajax Programming ...439
Tabs Plug-in .. 439

Changing the Loading Text and Icon .. 441
Ajax Tabs Tutorial .. 443

Adding Google Maps to Your Site ... 445
Setting a Location for the Map .. 449
Other jMap Options .. 450
Adding Markers and HTML Bubbles ... 451
Get Driving Directions ... 453
jMaps Tutorial .. 455

Part Four: Troubleshooting, Tips, and Tricks

Chapter 13: Troubleshooting and Debugging463
Top JavaScript Programming Mistakes ... 463

Non-Closed Pairs ... 463
Quotation Marks .. 467
Using Reserved Words .. 468
Single Equals in Conditional Statements .. 468
Case-Sensitivity .. 470
Incorrect Path to External JavaScript File ... 470
Incorrect Paths Within External JavaScript Files .. 471
Disappearing Variables and Functions ... 472

Debugging with Firebug .. 473
Installing and Turning On Firebug .. 473
Viewing Errors with Firebug ... 474
Using console.log() to Track Script Progress .. 475
Tutorial: Using the Firebug Console ... 477
More Powerful Debugging ... 482

Debugging Tutorial .. 486

x JavaScript: The Missing Manual

Chapter 14: Going Further with JavaScript...493
Putting It All Together .. 493

Using External JavaScript Files ... 493
Writing More Efficient JavaScript ... 496

Put Preferences in Variables ... 496
Ternary Operator ... 498
The Switch Statement .. 499
Using the jQuery Object Efficiently .. 501

Creating Fast-Loading JavaScript ... 502
Using YUI Compressor for Windows ... 504
Using YUI Compressor for Mac ... 505

Part Five: Appendix

Appendix A: JavaScript Resources ..509

Index ...517

xi

JavaScript: The Missing Manual, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Missing Credits

About the Author
David Sawyer McFarland is president of Sawyer McFarland Media,
Inc., a Web development and training company in Portland,
Oregon. He’s been building Web sites since 1995, when he designed
his first Web site—an online magazine for communication profes-
sionals. He’s served as webmaster at the University of California at

Berkeley and the Berkeley Multimedia Research Center, and oversaw a complete
CSS-driven redesign of Macworld.com.

In addition to building Web sites, David is also a writer, trainer, and instructor.
He’s taught Web design at UC Berkeley Graduate School of Journalism, the Cen-
ter for Electronic Art, the Academy of Art College, Ex’Pressions Center for New
Media, and Portland State University. He’s written articles about the Web for Practi-
cal Web Design, MX Developer’s Journal, Macworld magazine, and CreativePro.com.

He welcomes feedback about this book by email: missing@sawmac.com. (If you’re
seeking technical help, however, please refer to the sources listed in Appendix A.)

About the Creative Team
Nan Barber (editor) has worked with the Missing Manual series since its incep-
tion—long enough to remember booting up her computer from a floppy disk.
Email: nanbarber@oreilly.com.

Nellie McKesson (production editor) is a graduate of St. John’s College in Santa
Fe, New Mexico. She currently lives in Jamaica Plain, Mass., and spends her spare
time making t-shirts for her friends to wear (mattsaundersbynellie.etsy.com). Email:
nellie@oreilly.com.

Tony Ruscoe (technical reviewer) is a Web developer living in Sheffield, England.
His first computer programs were written in Sinclair BASIC on his ZX Spectrum
in the mid-1980s. He’s been using JavaScript since 1997 when he started to develop
websites and web applications. He currently maintains his personal website (http://
ruscoe.net) and a site dedicated to researching his surname (http://ruscoe.name).

Lisa Hasko (technical reviewer) is a nonprofit humanitarian aid worker with a
background in project management for an independent film Web site. Aside from
freelancing in her spare time, she is a traveler, social connector, and changeaholic.
Email: lisa.hasko@gmail.com.

http://ruscoe.net
http://ruscoe.net
http://ruscoe.name
lisa.hasko@gmail.com

JavaScript: The Missing Manual, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

xii JavaScript: The Missing Manual

Marni Derr (tech reviewer) is a technical writer and Web developer. When not
working on computer-related books or client sites, she is madly giving fiction writ-
ing a go. She maintains a community blog for technical writers and developers at
http://writingyourdreams.com. Email: marni.derr@writerslatte.com.

Acknowledgements
Many thanks to all those who helped with this book, including Marni Derr, Tanya
Symes, Tony Ruscoe, and Lisa Hasko, whose watchful eyes saved me from poten-
tially embarrassing mistakes. Thanks also to my many students at Portland State
University who have sat through my long JavaScript lectures and struggled
through my programming assignments. Also, we all owe a big debt of gratitude to
John Resig and the jQuery team for creating the best tool yet for making Java-
Script fun.

Finally, thanks to David Pogue for getting me started; Nan Barber for making my
writing sharper and clearer; my wife, Scholle, for putting up with an author’s
crankiness; and my son, Graham, who’s glad I’m done with this book so he and I
can finally get back to playing Indiana Jones and the Legos of Doom. (Hey Kate,
welcome to the world!)

The Missing Manual Series
Missing Manuals are witty, superbly written guides to computer products that
don’t come with printed manuals (which is just about all of them). Each book fea-
tures a handcrafted index; cross-references to specific pages (not just chapters);
and RepKover, a detached-spine binding that lets the book lie perfectly flat with-
out the assistance of weights or cinder blocks.

Recent and upcoming titles include:

Access 2007: The Missing Manual by Matthew MacDonald

AppleScript: The Missing Manual by Adam Goldstein

AppleWorks 6: The Missing Manual by Jim Elferdink and David Reynolds

CSS: The Missing Manual by David Sawyer McFarland

Creating Web Sites: The Missing Manual by Matthew MacDonald

Digital Photography: The Missing Manual by Chris Grover and Barbara Brundage

Dreamweaver 8: The Missing Manual by David Sawyer McFarland

Dreamweaver CS3: The Missing Manual by David Sawyer McFarland

eBay: The Missing Manual by Nancy Conner

Excel 2003: The Missing Manual by Matthew MacDonald

Excel 2007: The Missing Manual by Matthew MacDonald

Acknowledgements

JavaScript: The Missing Manual, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

The Missing Credits xiii

Facebook: The Missing Manual by E.A. Vander Veer

FileMaker Pro 8: The Missing Manual by Geoff Coffey and Susan Prosser

FileMaker Pro 9: The Missing Manual by Geoff Coffey and Susan Prosser

Flash 8: The Missing Manual by E.A. Vander Veer

Flash CS3: The Missing Manual by E.A. Vander Veer and Chris Grover

FrontPage 2003: The Missing Manual by Jessica Mantaro

Google Apps: The Missing Manual by Nancy Conner

The Internet: The Missing Manual by David Pogue and J.D. Biersdorfer

iMovie 6 & iDVD: The Missing Manual by David Pogue

iMovie ’08 & iDVD: The Missing Manual by David Pogue

iPhone: The Missing Manual by David Pogue

iPhoto ’08: The Missing Manual by David Pogue

iPod: The Missing Manual, Sixth Edition by J.D. Biersdorfer

Mac OS X: The Missing Manual, Tiger Edition by David Pogue

Mac OS X: The Missing Manual, Leopard Edition by David Pogue

Microsoft Project 2007: The Missing Manual by Bonnie Biafore

Office 2004 for Macintosh: The Missing Manual by Mark H. Walker and Franklin
Tessler

Office 2007: The Missing Manual by Chris Grover, Matthew MacDonald, and E.A.
Vander Veer

Office 2008 for Macintosh: The Missing Manual by Jim Elferdink

PCs: The Missing Manual by Andy Rathbone

Photoshop Elements 6: The Missing Manual by Barbara Brundage

Photoshop Elements 6 for Mac: The Missing Manual by Barbara Brundage

PowerPoint 2007: The Missing Manual by E.A. Vander Veer

QuickBase: The Missing Manual by Nancy Conner

QuickBooks 2008: The Missing Manual by Bonnie Biafore

Quicken 2008: The Missing Manual by Bonnie Biafore

Switching to the Mac: The Missing Manual, Tiger Edition by David Pogue and
Adam Goldstein

Switching to the Mac: The Missing Manual, Leopard Edition by David Pogue

JavaScript: The Missing Manual, eMatter Edition
Copyright © 2011 O’Reilly & Associates, Inc. All rights reserved.

xiv JavaScript: The Missing Manual

Wikipedia: The Missing Manual by John Broughton

Windows XP Home Edition: The Missing Manual, Second Edition by David Pogue

Windows XP Pro: The Missing Manual, Second Edition by David Pogue, Craig
Zacker, and Linda Zacker

Windows Vista: The Missing Manual by David Pogue

Windows Vista for Starters: The Missing Manual by David Pogue

Word 2007: The Missing Manual by Chris Grover

Your Brain: The Missing Manual by Matthew MacDonald

1

9-

Introduction

Not too long ago, the Web was a pretty boring place. Constructed from plain old
HTML, Web pages displayed information and not much else. Folks would click a
link and then wait for a new Web page to load—and that was about as interactive
as it got.

These days, most Web sites are almost as responsive as the programs on a desktop
computer, reacting immediately to every mouse-click. And it’s all thanks to the
subject of the book you’re holding—JavaScript.

What Is JavaScript?
JavaScript is a programming language that lets you supercharge your HTML with
animation, interactivity, and dynamic visual effects.

JavaScript can make Web pages more useful by supplying immediate feedback. For
example, a JavaScript-powered shopping cart page can instantly display a total
cost, with tax and shipping, the moment a visitor selects a product to buy. Java-
Script can produce an error message immediately after someone attempts to sub-
mit a Web form that’s missing necessary information.

JavaScript’s main selling point is its immediacy. It lets Web pages respond instantly
to the actions of someone interacting with a page—clicking a link, filling out a
form, or merely moving the mouse around the screen. JavaScript doesn’t suffer
from the frustrating delay associated with server-side programming languages like
PHP, which rely on communication between the Web browser and the Web server.

2 JavaScript: The Missing Manual

Introduction

Because it doesn’t rely on constantly loading and reloading Web pages, JavaScript
lets you create Web pages that feel and act more like desktop programs than Web
pages.

If you’ve visited Google Maps (http://maps.google.com/), you’ve seen JavaScript in
action. Google Maps lets you view a map of your town (or pretty much anywhere
else for that matter), zoom in to get a detailed view of streets and bus stops, or
zoom out to get a birds-eye view of how to get across town, the state, or the nation.
While there were plenty of map sites before Google, they always required reload-
ing multiple Web pages (a usually slow process) to get to the information you
wanted. Google Maps, on the other hand, works without page refreshes—it
responds immediately to your choices.

The programs you create with JavaScript can range from the really simple (like
popping up a new browser window with a Web page in it) to full blown Web
applications like Google Docs (http://docs.google.com/), which let you create pre-
sentations, edit documents, and create spreadsheets using your Web browser with
the feel of a program running directly on your computer.

A Bit of History
Invented by Netscape back in 1995, JavaScript is nearly as old as the Web itself.
While JavaScript is well respected today, it has a somewhat checkered past. It used
to be considered a hobbyist’s programming language, used to add less-than-useful
effects messages scrolling across the bottom of a Web browser’s status bar like a
stock-ticker, or animated butterflies following mouse movements around the page.
In the early days of JavaScript, it was easy to find thousands of free JavaScript pro-
grams (also called scripts) online, but many of those scripts frequently didn’t work
in all Web browsers, and at times even crashed browsers.

Note: JavaScript has nothing to do with the Java programming language. JavaScript was originally named
LiveScript, but the marketing folks at Netscape decided they’d get a lot more publicity if they tried to asso-
ciate the language with the then-hot Java.

In the early days, JavaScript also suffered from incompatibilities between the two
prominent browsers, Netscape Navigator and Internet Explorer. Because Netscape
and Microsoft tried to outdo each other’s browsers by adding newer and (ostensi-
bly) better features, the two browsers often acted in very different ways, making it
difficult to create JavaScript programs that worked well in both.

Note: After Netscape introduced JavaScript, Microsoft introduced jScript, their own version of JavaScript
included with Internet Explorer.

http://maps.google.com/
http://docs.google.com/

Introduction 3

Introduction

Fortunately the worst of those days is nearly gone and contemporary browsers like
Firefox, Safari, and Internet Explorer 7 have standardized much of the way they
handle JavaScript, making it easier to write JavaScript programs that work for most
everyone. (There are still a few incompatibilities among current Web browsers, so
you’ll need to learn a few tricks for dealing with cross-browser problems. You’ll
learn how to overcome browser incompatibilities in this book.)

In the past several years, JavaScript has undergone a rebirth, fueled by high-profile
Web sites like Google, Yahoo, and Flickr, which use JavaScript extensively to create
interactive Web applications. There’s never been a better time to learn JavaScript.
With the wealth of knowledge and the quality of scripts being written, even if
you’re a beginner you can add sophisticated interaction to your Web site—without
becoming a computer scientist.

JavaScript Is Everywhere
JavaScript isn’t just for Web pages, either. It’s proven to be such a useful program-
ming language that if you learn JavaScript you can create Yahoo Widgets and
Apple’s Dashboard Widgets, write programs for the iPhone, and tap into the
scriptable features of many Adobe programs like Acrobat, Photoshop, Illustrator,
and Dreamweaver. In fact, Dreamweaver has always offered clever JavaScript pro-
grammers a way to add their own commands to the program.

In addition, the programming language for Flash—ActionScript—is based on
JavaScript, so if you learn the basics of JavaScript you’ll be well prepared to take on
Flash programming projects.

JavaScript Doesn’t Stand Alone
JavaScript isn’t any good without the two other pillars of Web design—HTML and
CSS. Many programmers talk about the three languages as forming the “layers” of
a Web page: HTML provides the structural layer, organizing content like pictures
and words in a meaningful way; CSS (Cascading Style Sheets) provides the presen-
tational layer, making the content in the HTML look good; and JavaScript adds a
behavioral layer, bringing a Web page to life so it interacts with Web visitors.

In other words, to master JavaScript you need to have a good understanding of
both HTML and CSS.

Tip: For a full-fledged introduction to HTML and CSS, check out Head First HTML with CSS and XHTML
by Elisabeth Freeman and Eric Freeman. For an in-depth presentation of the tricky subject of Cascading
Style Sheets, pick up a copy of CSS: The Missing Manual by David Sawyer McFarland (both O’Reilly).

4 JavaScript: The Missing Manual

Introduction

HTML: The Barebones Structure
HTML (Hypertext Markup Language) uses simple commands called tags to define
the various parts of a Web page. For example, this HTML code creates a simple
Web page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html>

<head>

<title>Hey, I am the title of this Web page.</title>

</head>

<body>

Hey, I am some body text on this Web page.

</body>

</html>

It may not be exciting, but this example has all the basic elements a Web page
needs. This page begins with a few lines that state what type of document the page
is and which standards it conforms to. This document type declaration—doctype
for short—also points the Web browser to a file on the Internet that contains defi-
nitions for that type of file. HTML actually comes in different versions, and you
use a different doctype with each. In this case, the doctype for this page indicates
that the page is an HTML document that uses a “strict” version of HTML 4.01.

In essence, the doctype tells the Web browser how to display the page. In Internet
Explorer, the doctype can even affect how CSS and JavaScript work. With an
incorrect or missing doctype, you may end up banging your head against a wall as
you discover lots of cross-browser differences with your scripts. In other words,
always include a doctype in your HTML.

There are four types of HTML commonly used today: HTML 4.01 Transitional,
HTML 4.01 Strict, XHTML 1.0 Transitional, and XHTML 1.0 Strict. All four are
very much alike, with just slight differences in how tags are written and what tags
and attributes are allowed. Most Web page editing programs add an appropriate
doctype when you create a new Web page, but if you want examples of how each is
written, you can find templates for the different types of pages at www.
webstandards.org/learn/reference/templates.

It doesn’t really matter which type of HTML you use. All current Web browsers
understand each doctype and can display Web pages using any of the four docu-
ment types without problem. Which doctype you use isn’t nearly as important as
making sure a page validates correctly, as described in the box on page 6.

http://www.webstandards.org/learn/reference/templates
http://www.webstandards.org/learn/reference/templates

Introduction 5

Introduction

Note: XHTML was once heralded as the next big thing for Web designers. Although you’ll still find peo-
ple who think you should only use XHTML, the winds of change have turned. Most browser manufactur-
ers aren’t very excited about the progress (and complexity) of future versions of XHTML, and have instead
turned their attention to HTML 5. You can find out more at www.digital-web.com/articles/html5_xhtml2_
and_the_future_of_the_web.

How HTML Tags Work
In the example on the the previous page, as in the HTML code of any Web page
you look at, you’ll notice that most commands appear in pairs that surround a
block of text or other commands. Sandwiched between brackets, these tags are
instructions that tell a Web browser how to display the Web page. Tags are the
“markup” part of the Hypertext Markup Language.

The starting (opening) tag of each pair tells the browser where the instruction
begins, and the ending tag tells it where the instruction ends. Ending or closing tags
always include a forward slash (/) after the first bracket symbol (<). For example,
the tag <p> marks the start of a paragraph, while </p> marks its end.

For a Web page to work correctly, you must include at least these three tags:

• The <html> tag appears once at the beginning of a Web page (after the doc-
type) and again (with an added slash) at the end. This tag tells a Web browser
that the information contained in this document is written in HTML, as
opposed to some other language. All of the contents of a page, including other
tags, appear between the opening and closing <html> tags.

If you were to think of a Web page as a tree, the <html> tag would be its trunk.
Springing from the trunk are two branches that represent the two main parts of
any Web page—the head and the body.

• The head of a Web page, surrounded by <head> tags, contains the title of the
page. It may also provide other, invisible information (such as search key-
words) that browsers and Web search engines can exploit.

In addition, the head can contain information that’s used by the Web browser
for displaying the Web page and for adding interactivity. You put Cascading
Style Sheets, for example, in the head of the document. The head of the docu-
ment is also where you often include JavaScript programming and links to Java-
Script files.

• The body of a Web page, as set apart by its surrounding <body> tags, contains
all the information that appears inside a browser window: headlines, text,
pictures, and so on.

Within the <body> tag, you commonly find the following tags:

• You tell a Web browser where a paragraph of text begins with a <p> (opening
paragraph tag), and where it ends with a </p> (closing paragraph tag).

http://www.digital-web.com/articles/html5_xhtml2_and_the_future_of_the_web
http://www.digital-web.com/articles/html5_xhtml2_and_the_future_of_the_web

6 JavaScript: The Missing Manual

Introduction

• The tag emphasizes text. If you surround some text with it and its
partner tag, , you get boldface type. The HTML snippet
Warning! tells a Web browser to display the word “Warning!” in bold
type.

• The <a> tag, or anchor tag, creates a hyperlink in a Web page. When clicked, a
hyperlink—or link—can lead anywhere on the Web. You tell the browser where
the link points by putting a Web address inside the <a> tags. For instance, you
might type Click here!.

The browser knows that when your visitor clicks the words “Click here!” it
should go to the Missing Manual Web site. The href part of the tag is called an
attribute and the URL (the Uniform Resource Locator or Web address) is the
value. In this example, http://www.missingmanuals.com is the value of the href
attribute.

CSS: Adding Style to Web Pages
HTML used to be the only language you needed to know. You could build pages
with colorful text and graphics and make words jump out using different sizes,
fonts, and colors. But today, visitors expect more from our Web sites, so you need

UP TO SPEED

Validating Web Pages
As mentioned on page 4, a Web page’s doctype identifies
which type of HTML or XHTML you used to create the Web
page. The rules differ subtly depending on type: For exam-
ple, unlike HTML 4.01, XHTML doesn’t let you have an
unclosed <p> tag, and requires that all tag names and
attributes be lowercase (<a> not <A>, for example.)
Because different rules apply to each variant of HTML, you
should always validate your Web pages.

An HTML validator is a program that makes sure a Web
page is written correctly. It checks the page’s doctype and
then analyzes the code in the page to see whether it
matches the rules defined by that doctype. For example, the
validator flags mistakes like a misspelled tag name or an
unclosed tag. The World Wide Web Consortium (W3C), the
organization that’s responsible for many of the technolo-
gies used on the Web, has a free online validator at http://
validator.w3.org. You can copy your HTML and paste it into
a Web form, upload a Web page, or point the validator to
an already existing page on the Web; the validator then
analyzes the HTML and reports back whether the page is

valid or not. If there are any errors, the validator tells you
what the error is and on which line of the HTML file it occurs.

If you use Firefox, you can download the HTML Validator
plug-in from http://users.skynet.be/mgueury/mozilla. This
plug-in lets you validate a page directly in your Web
browser; just open a page (even a page directly off of your
computer) and the validator will point out any errors in
your HTML. There’s a similar plug-in for Safari, called Safari
Tidy, which you can find at http://zappatic.net/safaritidy.

Valid HTML isn’t just good form, it’s also necessary to make
sure your JavaScript programs work correctly. A lot of Java-
Script involves manipulating a Web page’s HTML: identify-
ing a particular form field, for example, or placing new
HTML (like an error message) in a particular spot. In order
for JavaScript to access and manipulate a Web page, the
HTML must be in proper working order. Forgetting to close
a tag, using the same ID name more than once, or improp-
erly nesting your HTML tags can make your JavaScript code
behave erratically or not at all.

http://validator.w3.org
http://validator.w3.org
http://users.skynet.be/mgueury/mozilla
http://zappatic.net/safaritidy

Introduction 7

Introduction

to turn to a newer, more flexible technology—Cascading Style Sheets (CSS)—to
give your pages visual sophistication. CSS is a formatting language that lets you
make text look good, build complex page layouts, and generally add style to your
site.

Think of HTML as merely the language you use to structure a page. It helps iden-
tify the stuff you want the world to know about. Tags like <h1> and <h2> denote
headlines and assign them relative importance: a heading 1 is more important than
a heading 2. The <p> tag indicates a basic paragraph of information. Other tags
provide further structural clues: for example, a tag identifies a bulleted list (to
make a list of recipe ingredients more intelligible, for example).

CSS, on the other hand, adds design flair to well-organized HTML content, mak-
ing it more beautiful and easier to read. Essentially, a CSS style is just a rule that
tells a Web browser how to display a particular element on a page. For example,
you can create a CSS rule to make all <h1> tags appear 36 pixels tall, in the Ver-
dana font, and the color orange. CSS can do more powerful stuff, too, like add
borders, change margins, and even control the exact placement of a page element.

When it comes to JavaScript, some of the most valuable changes you make to a
page involve CSS. You can use JavaScript to add or remove a CSS style from an
HTML tag, or dynamically change CSS properties based on a visitor’s input or
mouse clicks. For example, you can make a page element appear or disappear sim-
ply by changing the CSS display property. To animate an item across the screen,
you change the CSS position properties dynamically using JavaScript.

Anatomy of a Style
A single style that defines the look of one element is a pretty basic beast. It’s essen-
tially a rule that tells a Web browser how to format something—turn a headline
blue, draw a red border around a photo, or create a 150-pixel-wide sidebar box to
hold a list of links. If a style could talk, it would say something like, “Hey Browser,
make this look like that.” A style is, in fact, made up of two elements: the Web page
element that the browser formats (the selector) and the actual formatting instruc-
tions (the declaration block). For example, a selector can be a headline, a paragraph
of text, a photo, and so on. Declaration blocks can turn that text blue, add a red
border around a paragraph, position the photo in the center of the page—the
possibilities are endless.

Note: Technical types often follow the lead of the W3C and call CSS styles rules. This book uses the
terms “style” and “rule” interchangeably.

Of course, CSS styles can’t communicate in nice clear English. They have their own
language. For example, to set a standard font color and font size for all paragraphs
on a Web page, you’d write the following:

p { color: red; font-size: 1.5em; }

8 JavaScript: The Missing Manual

Introduction

This style simply says, “Make the text in all paragraphs—marked with <p> tags—
red and 1.5 ems tall.” (An em is a unit or measurement that’s based on a browser’s
normal text size.) As Figure I-1 illustrates, even a simple style like this example
contains several elements:

• Selector. The selector tells a Web browser which element or elements on a page
to style—like a headline, paragraph, image, or link. In Figure I-1, the selector
(p) refers to the <p> tag, which makes Web browsers format all <p> tags using
the formatting directions in this style. With the wide range of selectors that CSS
offers and a little creativity, you can gain fine control of your pages’ formatting.
(Selectors are so important, you’ll find a detailed discussion of them starting on
page 172.)

• Declaration Block. The code following the selector includes all the formatting
options you want to apply to the selector. The block begins with an opening
brace ({) and ends with a closing brace (}).

• Declaration. Between the opening and closing braces of a declaration, you add
one or more declarations, or formatting instructions. Every declaration has two
parts, a property and a value, and ends with a semicolon.

• Property. CSS offers a wide range of formatting options, called properties. A
property is a word—or a few hyphenated words—indicating a certain style
effect. Most properties have straightforward names like font-size, margin-top,
and background-color. For example, the background-color property sets—you
guessed it—a background color.

Note: If you need to brush up on your CSS, grab a copy of CSS: The Missing Manual.

• Value. Finally, you get to express your creative genius by assigning a value to a
CSS property—by making a background blue, red, purple, or chartreuse, for
example. Different CSS properties require specific types of values—a color (like
red, or #FF0000), a length (like 18px, 2in, or 5em), a URL (like images/
background.gif), or a specific keyword (like top, center, or bottom).

You don’t need to write a style on a single line as pictured in Figure I-1. Many
styles have multiple formatting properties, so you can make them easier to read by
breaking them up into multiple lines. For example, you may want to put the selector

Figure I-1
A style (or rule) is made of two main parts: a
selector, which tells Web browsers what to
format, and a declaration block, which lists
the formatting instructions that the browsers
use to style the selector.

Introduction 9

Introduction

and opening brace on the first line, each declaration on its own line, and the clos-
ing brace by itself on the last line, like so:

p {

 color: red;

 font-size: 1.5em;

}

It’s also helpful to indent properties, with either a tab or a couple of spaces, to visi-
bly separate the selector from the declarations, making it easy to tell which is
which. And finally, putting one space between the colon and the property value is
optional, but adds to the readability of the style. In fact you can put as much white
space between the two as you want. For example color:red, color: red, and color: red
all work.

Software for JavaScript Programming
To create Web pages made up of HTML, CSS, and JavaScript, you need nothing
more than a basic text editor like Notepad (Windows) or Text Edit (Mac). But
after typing a few hundred lines of JavaScript code, you may want to try a pro-
gram better suited to working with Web pages. This section lists some common
programs, both free and those you can buy.

Note: There are literally hundreds of tools that can help you create Web pages and write JavaScript pro-
grams, so the following is by no means a complete list. Think of it as a greatest-hits tour of the most popular
programs that JavaScript fans are using today.

Free Programs
There are plenty of free programs out there for editing Web pages and style sheets.
If you’re still using Notepad or Text Edit, give one of these a try. Here’s a short list
to get you started:

• Notepad++ (Windows, http://notepad-plus.sourceforge.net) is a coder’s friend. It
highlights the syntax of JavaScript and HTML code, and lets you save macros
and assign keyboard shortcuts to them so you can automate the process of
inserting the code snippets you use most.

• HTML-Kit (Windows, www.chami.com/html-kit) is a powerful HTML/XHTML
editor that includes lots of useful features, like the ability to preview a Web page
directly in the program (so you don’t have to switch back and forth between
browser and editor), shortcuts for adding HTML tags, and a lot more.

• CoffeeCup Free HTML Editor (Windows, www.coffeecup.com/free-editor) is the
free version of the commercial ($49) CoffeeCup HTML editor.

http://notepad-plus.sourceforge.net
http://www.chami.com/html-kit
http://www.coffeecup.com/free-editor

10 JavaScript: The Missing Manual

Introduction

• TextWrangler (Mac, www.barebones.com/products/textwrangler) is free software
that’s actually a pared-down version of BBEdit, the sophisticated, well-known
text editor for the Mac. TextWrangler doesn’t have all of BBEdit’s built-in
HTML-tools, but it does include syntax-coloring (highlighting tags and proper-
ties in different colors so it’s easy to scan a page and identify its parts), FTP
support (so you can upload files to a Web server), and more.

Commercial Software
Commercial Web site development programs range from inexpensive text editors
to complete Web site construction tools with all the bells and whistles:

• EditPlus (Windows, www.editplus.com) is an inexpensive ($30) text editor that
includes syntax-coloring, FTP, auto-completion, and other wrist-saving features.

• CoffeCup (Windows, www.coffeecup.com) is a combination text and visual edi-
tor ($30). You can either write straight HTML code or use a visual interface to
build your pages.

• skEdit (Mac, www.skti.org) is a cheap ($25) Web page editor, complete with
FTP/SFTP support, code hints, and other useful features.

• textMate (Mac, http://macromates.com) is the new darling of Mac program-
mers. This text editor ($63) includes many timesaving features for JavaScript
programmers like “auto-paired characters,” which automatically plops in the
second character of a pair of punctuation marks (for example, the program
automatically inserts a closing parenthesis after you type an opening parenthesis).

• BBEdit (Mac, www.barebones.com/products/bbedit). This much-loved Mac text
editor ($125) has plenty of tools for working with HTML, XHTML, CSS, Java-
Script, and more. Includes many useful Web building tools and shortcuts.

• Dreamweaver (Mac and Windows, www.macromedia.com/software/
dreamweaver) is a visual Web page editor ($399.) It lets you see how your page
looks in a Web browser. The program also includes a powerful text-editor for
writing JavaScript programs and excellent CSS creation and management tools.
Check out Dreamweaver: The Missing Manual for the full skinny on how to use
this powerful program.

• Expression Web Designer (Windows, www.microsoft.com) is Microsoft’s new
entry in the Web design field ($299). It replaces FrontPage and includes many
professional Web design tools, including excellent CSS features.

About This Book
Unlike a piece of software such as Microsoft Word or Dreamweaver, JavaScript
isn’t a single product developed by a single company. There’s no support depart-
ment at JavaScript headquarters writing an easy-to-read manual for the average
Web developer. While you’ll find plenty of information on sites like Mozilla.org

http://www.barebones.com/products/textwrangler
http://www.editplus.com
http://www.coffeecup.com
http://www.skti.org
http://macromates.com
http://www.barebones.com/products/bbedit
http://www.macromedia.com/software/dreamweaver
http://www.macromedia.com/software/dreamweaver
http://www.microsoft.com

Introduction 11

Introduction

(see, for example, http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_
Reference) or Ecmascript.org (www.ecmascript.org/docs.php), there’s no definitive
source of information on the JavaScript programming language.

Because there’s no manual for JavaScript, people just learning JavaScript often
don’t know where to begin. And the finer points regarding JavaScript can trip up
even seasoned Web pros. The purpose of this book, then, is to serve as the manual
that should have come with JavaScript. In this book’s pages, you’ll find step-by-
step instructions for using JavaScript to create highly interactive Web pages.

JavaScript: The Missing Manual is designed to accommodate readers who have
some experience building Web pages. You’ll need to feel comfortable with HTML
and CSS to get the most from this book, since JavaScript often works closely with
HTML and CSS to achieve its magic. The primary discussions are written for
advanced-beginner or intermediate computer users. But if you’re new to building
Web pages, special boxes called Up to Speed provide the introductory information
you need to understand the topic at hand. If you’re an advanced Web page jockey,
on the other hand, keep your eye out for similar shaded boxes called Power Users’
Clinic. They offer more technical tips, tricks, and shortcuts for the experienced
computer fan.

Note: This book periodically recommends other books, covering topics that are too specialized or tan-
gential for a manual about using JavaScript. Sometimes the recommended titles are from Missing Manual
series publisher O’Reilly Media—but not always. If there’s a great book out there that’s not part of the
O’Reilly family, we’ll let you know about it.

This Book’s Approach to JavaScript
JavaScript is a real programming language: It doesn’t work like HTML or CSS, and
it has its own set of (often complicated) rules. It’s not always easy for Web design-
ers to switch gears and start thinking like computer programmers, and there’s no
one book that can teach you everything there is to know about JavaScript.

The goal of JavaScript: The Missing Manual isn’t to turn you into the next great
programmer. This book is meant to familiarize Web designers with the ins and
outs of JavaScript and then move on to advanced tools for adding really useful
interactivity to a Web site as quickly and easily as possible.

In this book, you’ll learn the basics of JavaScript and programming; but just the
basics won’t make for very exciting Web pages. It’s not possible in 400 pages to
teach you everything about JavaScript that you need to know to build sophisticated,
interactive Web pages. Instead, this book shows you how to use professional (and
free) JavaScript code that will liberate you from all of the minute, time-consuming
details of creating JavaScript programs that run well across different browsers.

You’ll learn the basics of JavaScript, and then jump immediately to advanced Web
page interactivity with a little help—OK, a lot of help—from some very sophisti-
cated but easy-to-use JavaScript helper programs. Think of it this way: You could

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://www.ecmascript.org/docs.php

12 JavaScript: The Missing Manual

Introduction

build a house by cutting down and milling your own lumber, constructing your
own windows, doors and doorframes, manufacturing your own tile, and so on.
That “do it yourself” approach is common to a lot of JavaScript books. But who
has that kind of time? This book’s approach is more like building a house by tak-
ing advantage of already built pieces and putting them together using basic skills.
The end result will be a beautiful and functional house built in a fraction of the
time it would take you to learn every step of the process.

And even if you want to learn every step of the process, this book is the best place
to start. It points out other useful and more advanced JavaScript books so you can
continue your programming education after you’re done with this book (but only
if you want to!).

About the Outline
JavaScript: The Missing Manual is divided into four parts, each containing several
chapters:

• Part 1, Getting Started with JavaScript starts at the very beginning. You’ll learn
the basic building blocks of JavaScript as well as get some helpful tips on com-
puter programming in general. This section teaches you how to add a script to a
Web page, store and manipulate information, and add smarts to a program so it
can respond to different situations. You’ll also learn how to communicate with
the browser window, store and read cookies, respond to various events like
mouse clicks and form submissions, and modify the HTML of a Web page.

• Part 2, Building Web Page Features, provides many real-world examples of
JavaScript in action. You’ll learn how to create pop-up navigation bars, enhance
HTML tables, and build an interactive photo gallery. You’ll make your Web
forms more usable by adding form validation (so visitors can’t submit forms
missing information), add a calendar widget to make selecting dates easy, and
change form options based on selections a Web visitor makes. Finally, you’ll
create interesting user interfaces with tabbed panels, accordion panels and pop-
up dialog boxes that look great and function flawlessly.

• Part 3, Ajax: Communicating with the Web Server, covers the technology that
single-handedly made JavaScript one of the most glamorous Web languages to
learn. In this section, you’ll learn how to use JavaScript to communicate with a
Web server so your pages can receive information and update themselves based
on information provided by a Web server—without having to load a new Web
page.

Tip: You’ll find step-by-step instructions for setting up a Web server on your computer so you can take
advantage of the cool technology (discussed in Part 3) on this book’s companion Web page. See “Living
Examples” on the next page for details.

Introduction 13

Introduction

• Part 4, Troubleshooting, Tips, and Tricks, helps you with those times when
nothing seems to be working: your perfectly crafted JavaScript program just
doesn’t seem to do what you want (or worse, it doesn’t work at all!). You’ll
learn the most common errors new programmers make as well as techniques
for discovering and fixing bugs in your programs. In addition, you’ll learn a few
tips to make your programming more efficient and your scripts run faster.

At the end of the book, an appendix provides a detailed list of references to aid you
in your further exploration of the JavaScript programming language.

Living Examples
This book is designed to get your work onto the Web faster and more profession-
ally; it’s only natural, then, that half the value of this book also lies on the Web.

As you read the book’s chapters, you’ll encounter a number of living examples—
step-by-step tutorials that you can build yourself, using raw materials (like graph-
ics and half-completed Web pages) that you can download from either www.
sawmac.com/javascript/ or from this book’s “Missing CD” page at www.
missingmanuals.com/cds. You might not gain very much from simply reading these
step-by-step lessons while relaxing in your porch hammock. But if you take the
time to work through them at the computer, you’ll discover that these tutorials
give you unprecedented insight into the way professional designers build Web
pages.

You’ll also find, in this book’s lessons, the URLs of the finished pages, so that you
can compare your work with the final result. In other words, you won’t just see
pictures of JavaScript code in the pages of the book; you’ll find the actual, working
Web pages on the Internet.

About MissingManuals.com
At www.missingmanuals.com, you’ll find articles, tips, and updates to JavaScript:
The Missing Manual. In fact, we invite and encourage you to submit such correc-
tions and updates yourself. In an effort to keep the book as up to date and accu-
rate as possible, each time we print more copies of this book, we’ll make any
confirmed corrections you’ve suggested. We’ll also note such changes on the Web
site, so that you can mark important corrections into your own copy of the book, if
you like. (Go to http://missingmanuals.com/feedback, choose the book’s name from
the pop-up menu, and then click Go to see the changes.)

Also on our Feedback page, you can get expert answers to questions that come to
you while reading this book, write a book review, and find groups for folks who
share your interest in JavaScript.

http://www.sawmac.com/javascript
http://www.sawmac.com/javascript
http://www.missingmanuals.com/cds
http://www.missingmanuals.com/cds
http://www.missingmanuals.com
http://missingmanuals.com/feedback

14 JavaScript: The Missing Manual

Introduction

While you’re there, sign up for our free monthly email newsletter. Click the “Sign
Up for Our Newsletter” link in the left-hand column. You’ll find out what’s hap-
pening in Missing Manual land, meet the authors and editors, get bonus video and
book excerpts, and so on.

The Very Basics
To use this book, and indeed to use a computer, you need to know a few basics.
This book assumes that you’re familiar with a few terms and concepts:

• Clicking. This book gives you three kinds of instructions that require you to use
your computer’s mouse or trackpad. To click means to point the arrow cursor at
something on the screen and then—without moving the cursor at all—to press
and release the clicker button on the mouse (or laptop trackpad). To right-click
means to do the same thing with the right mouse button. To double-click, of
course, means to click twice in rapid succession, again without moving the cur-
sor at all. And to drag means to move the cursor while pressing the button.

Tip: If you’re on a Mac and don’t have a right mouse button, you can accomplish the same thing by
pressing the Control key as you click with the one mouse button.

When you’re told to c-click something on the Mac, or Ctrl-click something on
a PC, you click while pressing the c or Ctrl key (both of which are near the
Space bar).

• Menus. The menus are the words at the top of your screen or window: File, Edit,
and so on. Click one to make a list of commands appear, as though they’re writ-
ten on a window shade you’ve just pulled down.

• Keyboard shortcuts. If you’re typing along in a burst of creative energy, it’s
sometimes disruptive to have to take your hand off the keyboard, grab the
mouse, and then use a menu (for example, to use the Bold command). That’s
why many experienced computer mavens prefer to trigger menu commands by
pressing certain combinations on the keyboard. For example, in the Firefox
Web browser, you can press Ctrl-+ (Windows) orc-+ (Mac) to make text on a
Web page get larger (and more readable). When you read an instruction like
“press c-B,” start by pressing the c key; while it’s down, type the letter B, and
then release both keys.

• Operating-system basics. This book assumes that you know how to open a pro-
gram, surf the Web, and download files. You should know how to use the Start
menu (Windows) and the Dock or a menu (Macintosh), as well as the Control
Panel (Windows), or System Preferences (Mac OS X).

If you’ve mastered this much information, you have all the technical background
you need to enjoy JavaScript: The Missing Manual.

Introduction 15

Introduction

About ➝ These ➝ Arrows
Throughout this book, and throughout the Missing Manual series, you’ll find sen-
tences like this one: “Open the System ➝ Library ➝ Fonts folder.” That’s short-
hand for a much longer instruction that directs you to open three nested folders in
sequence, like this: “On your hard drive, you’ll find a folder called System. Open
that. Inside the System folder window is a folder called Library; double-click it to
open it. Inside that folder is yet another one called Fonts. Double-click to open it,
too.”

Similarly, this kind of arrow shorthand helps to simplify the business of choosing
commands in menus, as shown in Figure I-2.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available
online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-Books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current infor-
mation. Try it free at http://safari.oreilly.com.

Figure I-2
In this book, arrow
notations help simplify
menu instructions. For
example, View ➝ Text
Size ➝ Increase is a more
compact way of saying,
“From the View menu,
choose Text Size; from the
submenu that then
appears, choose
Increase.“

http://safari.oreilly.com.

1
I.Part One:
Getting Started with
JavaScript

Chapter 1: Writing Your First JavaScript Program

Chapter 2: The Grammar of JavaScript

Chapter 3: Adding Logic and Control to Your Programs

Chapter 4: Working with Words, Numbers, and Dates

Chapter 5: Dynamically Modifying Web Pages

Chapter 6: Action/Reaction: Making Pages Come Alive with Events

Chapter 7: Improving Your Images

19

Chapter 1chapter

1

Writing Your First
JavaScript Program

By itself, HTML doesn’t have any smarts: It can’t do math, it can’t figure out if
someone has correctly filled out a form, and it can’t make decisions based on how
a Web visitor interacts with it. Basically, HTML lets people read text, look at pic-
tures, and click links to move to other Web pages with more text and pictures. In
order to add intelligence to your Web pages so they can respond to your site’s
visitors, you need JavaScript.

JavaScript lets a Web page react intelligently. With it, you can create smart Web
forms that let visitors know when they’ve forgotten to include necessary informa-
tion; you can make elements appear, disappear, or move around a Web page (see
Figure 1-1); you can even update the contents of a Web page with information
retrieved from a Web server—without having to load a new Web page. In short,
JavaScript lets you make your Web sites more engaging and effective.

Introducing Programming
For a lot of people, the word “computer programming” conjures up visions of
super-intelligent nerds hunched over keyboards, typing nearly unintelligible
gibberish for hours on end. And, honestly, some programming is just like that.
Programming can seem like complex magic that’s well beyond the average mortal.
But many programming concepts aren’t difficult to grasp, and as programming
languages go, JavaScript is relatively friendly to nonprogrammers.

20 JavaScript: The Missing Manual

Introducing
Programming

Still, JavaScript is more complex than either HTML or CSS, and programming
often is a foreign world to Web designers; so one goal of this book is to help you
think more like a programmer. Throughout this book you’ll learn fundamental
programming concepts that apply whether you’re writing JavaScript, ActionScript,
or even writing a desktop program using C++. More importantly, you’ll learn how
to approach a programming task so you’ll know exactly what you want to do
before you start adding JavaScript to a Web page.

Many Web designers are immediately struck by the strange symbols and words
used in JavaScript. An average JavaScript program is sprinkled with symbols ({ } []
; , () !=) and full of unfamiliar words (var, null, else if). It’s like staring at a foreign
language, and in many ways learning a programming language is a lot like learning
another language. You need to learn new words, new punctuation, and under-
stand how to put them together so you can communicate successfully.

In fact, every programming language has its own set of key words and characters,
and its own set of rules for putting those words and characters together—the
language’s syntax. Learning JavaScript’s syntax is like learning the vocabulary and
grammar of another language. You’ll need to memorize the words and rules of the
language (or at least keep this book handy as a reference). When learning to speak
a new language, you quickly realize that placing an accent on the wrong syllable
can make a word unintelligible. Likewise, a simple typo or even a missing punctua-
tion mark can prevent a JavaScript program from working, or trigger an error in a
Web browser. You’ll make plenty of mistakes as you start to learn to program—
that’s just the nature of programming.

Figure 1-1:
JavaScript lets Web
pages respond to visitors.
On Amazon.com,
mousing over the “Gifts
and Wish Lists” link
opens a tab that floats
above the other content
on the page and offers
additional options.

Chapter 1: Writing Your First JavaScript Program 21

Introducing
Programming

At first, you’ll probably find JavaScript programming frustrating—you’ll spend a
lot of your time tracking down errors you made when typing the script. Also, you
might find some of the concepts related to programming a bit hard to follow at
first. But don’t worry: If you’ve tried to learn JavaScript in the past and gave up
because you thought it was too hard, this book will help you get past the hurdles
that often trip up folks new to programming. (And if you do have programming
experience, this book will teach you JavaScript’s idiosyncrasies and the unique
concepts involved in programming for Web browsers.)

What’s a Computer Program?
When you add JavaScript to a Web page, you’re writing a computer program.
Granted, most JavaScript programs are much simpler than the programs you use
to read email, retouch photographs, and build Web pages. But even though Java-
Script programs (also called scripts) are simpler and shorter, they share many of
the same properties of more complicated programs.

UP TO SPEED

The Client Side vs. The Server Side
JavaScript is a client-side language, which (in English)
means that it works inside a Web browser. The alternative
type of Web programming language is called a server-side
language, which you’ll find in pages built around PHP, .NET,
ASP, ColdFusion, Ruby on Rails, and other Web server tech-
nologies. Server-side programming languages, as the name
suggests, run on a Web server. They can exhibit a lot of
intelligence by accessing databases, processing credit
cards, and sending email around the globe. The problem
with server-side languages is that they require the Web
browser to send requests to the Web server, forcing visitors
to wait until a new page arrives with new information.

Client-side languages, on the other hand, can react imme-
diately and change what a visitor sees in his Web browser
without the need to download a new page. Content can
appear or disappear, move around the screen, or automat-
ically update based on how a visitor interacts with the page.
This responsiveness lets you create Web sites that feel more
like desktop programs than static Web pages. But JavaScript
isn’t the only client-side technology in town. You can also
use plug-ins to add programming smarts to a Web page.
Java applets are one example. These are small programs,

written in the Java programming language, that run in a
Web browser. They also tend to start up slowly and have
been known to crash the browser.

Flash is another plug-in based technology that offers
sophisticated animation, video, sound, and lots of interac-
tive potential. In fact, it’s sometimes hard to tell if an inter-
active Web page is using JavaScript or Flash. For example,
Google Maps could also be created in Flash (in fact, Yahoo
Maps was at one time a Flash application, until Yahoo re-
created it using JavaScript.) A quick way to tell the differ-
ence: Right-click on the part of the page that you think
might be Flash (the map itself, in this case); if it is, you’ll see
a pop-up menu that includes “About the Flash Player.”

Ajax, which you’ll learn about in Part 3 of this book, brings
both client-side and server-side together. Ajax is a method
for using JavaScript to talk to a server, retrieve information
from the server, and update the Web page without the
need to load a new Web page. Google Maps uses this tech-
nique to let you move around a map without forcing you to
load a new Web page.

22 JavaScript: The Missing Manual

How to Add
JavaScript to a Page

In a nutshell, any computer program is a series of steps that are completed in a
designated order. Say you want to display a welcome message using the name of
the person viewing a Web page: for example, “Welcome, Bob!” There are several
things you’d need to do to accomplish this task:

1. Ask the visitor his or her name.

2. Get the visitor’s response.

3. Print (that is, display) the message on the Web page.

While you may never want to print a welcome message on a Web page, this exam-
ple demonstrates the fundamental process of programming: determine what you
want to do, then break that task down into each step that’s necessary to get it done.
Every time you want to create a JavaScript program, you must go through the pro-
cess of determining the steps needed to achieve your goal. Once you know the
steps, you’re ready to write your program. In other words, you’ll translate your
ideas into programming code—the words and characters that make the Web
browser behave how you want it to.

How to Add JavaScript to a Page
Web browsers are built to understand HTML and CSS and convert those languages
into a visual display on the screen. The part of the Web browser that understands
HTML and CSS is called the layout or rendering engine. But most browsers also
have something called a JavaScript interpreter. That’s the part of the browser that
understands JavaScript and can execute the steps of a JavaScript program. Since

FREQUENTLY ASKED QUESTION

Compiled vs. Scripting Languages
JavaScript is called a scripting language. I’ve heard this
term used for other languages like PHP and ColdFusion as
well. What’s a scripting language?

Most of the programs running on your computer are writ-
ten using languages that are compiled. Compiling is the
process of turning the code a programmer writes into
instructions that a computer can understand. Once a pro-
gram is compiled, you can run it on your computer, and
since a compiled program has been converted directly to
instructions a computer understands, it will run faster than
a program written with a scripting language. Unfortunately,
compiling a program is a time-consuming process: you
have to write the program, compile it, then test it. If the pro-
gram doesn’t work, you have to go through the whole
process again.

A scripting language, on the other hand, is only compiled
when an interpreter (another program that can convert the
script into something a computer can understand) reads it.
In the case of JavaScript, the interpreter is built into the Web
browser. So when your Web browser reads a Web page
with a JavaScript program in it, the Web browser translates
the JavaScript into something the computer understands.
As a result, a scripting language operates more slowly than
a compiled language, since every time it runs the program
must be translated for the computer. Scripting languages
are great for Web developers: Scripts are generally much
smaller and less complex than desktop programs, so the
lack of speed isn’t so important. In addition, since they
don’t require compiling, creating and testing programs that
use a scripting language is a much faster process.

Chapter 1: Writing Your First JavaScript Program 23

How to Add
JavaScript to a Page

the Web browser is usually expecting HTML, you must specifically tell the browser
when JavaScript is coming by using the <script> tag.

The <script> tag is regular HTML. It acts like a switch that in effect says “Hey Web
browser, here comes some JavaScript code; you don’t know what to do with it, so
hand it off to the JavaScript interpreter.” When the Web browser encounters the
closing </script> tag, it knows it’s reached the end of the JavaScript program and
can get back to its normal duties.

Much of the time, you’ll add the <script> tag in the <head> portion of the Web
page like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html>

<head>

<title>My Web Page</title>

<script type="text/javascript">

</script>

</head>

The <script> tag’s type attribute indicates the format and the type of script that
follows. In this case, type="text/javascript" means the script is regular text (just like
HTML) and that it’s written in JavaScript. Theoretically, a Web browser could
handle multiple types of scripting languages, but not every browser supports other
languages.

Note: Make sure you include type="text/javascript" in the opening script tag. If you leave it out, your
Web page won’t validate (see the box on page 6 for more on validation).

You then add your JavaScript code between the opening and closing <script> tags:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html>

<head>

<title>My Web Page</title>

<script type="text/javascript">

alert('hello world!');

</script>

</head>

You’ll find out what this JavaScript actually does in a moment. For now, turn your
attention to the opening and closing <script> tags. To add a script to your page,
start by inserting these tags. In most cases, you’ll put the <script> tags in the page’s
<head> in order to keep your JavaScript code neatly organized in one area of the
Web page.

24 JavaScript: The Missing Manual

How to Add
JavaScript to a Page

However, it’s perfectly valid to put <script> tags anywhere inside the HTML of the
page. In fact, as you’ll see later in this chapter, there’s a JavaScript command that
lets you write information directly into a Web page. Using that command, you
place the <script> tags in the location on the page (somewhere inside the body)
where you want the script to write its message.

External JavaScript Files
Using the <script> tag as discussed in the previous section lets you add JavaScript
to a single page. But many times you’ll create scripts that you want to share with all
of the pages on your site. For example, you might use a JavaScript program to add
animated, drop-down navigation menus to a Web page. You’ll want that same
fancy navigation bar on every page of your site, but copying and pasting the same
JavaScript code into each page of your site is a really bad idea for several reasons.

First, it’s a lot of work copying and pasting the same code over and over again,
especially if you have a site with hundreds of pages. Second, if you ever decide to
change or enhance the JavaScript code, you’ll need to locate every page using that
JavaScript and update the code. Finally, since all of the code for the JavaScript pro-
gram would be located in every Web page, each page will be that much larger and
slower to download.

A better approach is to use an external JavaScript file. If you’ve used external CSS
files for your Web pages, this technique should feel familiar. An external Java-
Script file is simply a text file that ends with the file extension .js—navigation.js, for
example. The file only includes JavaScript code and is linked to a Web page using
the <script> tag. For example, to add a JavaScript file named navigation.js to your
home page, you might write the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html>

<head>

<title>My Web Page</title>

<script type="text/javascript" src="navigation.js"></script>

</head>

The src attribute of the <script> tag works just like the src attribute of an
tag, or an <a> tag’s href attribute. In other words, it points to a file either in your
Web site or on another Web site (see the box on the next page).

Note: When adding the src attribute to link to an external JavaScript file, don’t add any JavaScript code
between the opening and closing <script> tags. If you want to link to an external JavaScript file and add
custom JavaScript code to a page, use a second set of <script> tags. For example:

<script type="text/javascript" src="navigation.js"></script>
<script type="text/javascript">
 alert('Hello world!');
</script>

Chapter 1: Writing Your First JavaScript Program 25

How to Add
JavaScript to a Page

UP TO SPEED

URL Types
When attaching an external JavaScript file to a Web page,
you need to specify a URL for the src attribute of the
<script> tag. A URL or Uniform Resource Locator is a path
to a file located on the Web. There are three types of paths:
absolute path, root-relative path, and document-relative
path. All three indicate where a Web browser can find a
particular file (like another Web page, a graphic, or a Java-
Script file).

An absolute path is like a postal address—it contains all the
information needed for a Web browser located anywhere
in the world to find the file. An absolute path includes http:
//, the hostname, and the folder and name of the file. For
example: http://www.cosmofarmer.com/scripts/site.js.

A root-relative path indicates where a file is located relative
to a site’s top-level folder—the site’s root folder. A root-
relative path doesn’t include http:// or the domain name. It
begins with a / (slash) indicating the site’s root folder—the
folder the home page is in. For example, /scripts/site.js indi-
cates that the file site.js is located inside a folder named
scripts, which is itself located in the site’s top-level folder.
An easy way to create a root-relative path is to take an abso-
lute path and strip off the http:// and the host name. For
example, http://www.sawmac.com/index.html written as a
root relative URL is /index.html.

A document-relative path specifies the path from the Web
page to the JavaScript file. If you have multiple levels of
folders on your Web site, you’ll need to use different paths
to point to the same JavaScript file. For example, suppose
you have a JavaScript file named site.js located in a folder
named scripts in your Web site’s main directory. The
document-relative path to that file will look like one way for
the home page—scripts/site.js—but for a page located inside
a folder named about, the path to the same file would be
different—../scripts/site.js—the ../ means climb up out of the
about folder, while the /scripts/site.js means go to the
scripts folder and get the file site.js.

Here are some tips on which URL type to use:

• If you’re pointing to a file that’s not on the same
server as the Web page, you must use an absolute
path. It’s the only type that can point to another
Web site.

• Root-relative paths are good for JavaScript files
stored on your own site. Since they always start at
the root folder, the URL for a JavaScript file will be
the same for every page on your Web site, even
when Web pages are located in folders and subfold-
ers on your site. However, root-relative paths don’t
work unless you’re viewing your Web pages through
a Web server—either your Web server out on the
Internet, or a Web server you’ve set up on your own
computer for testing purposes. In other words, if
you’re just opening a Web page off your computer
using the browser’s File ➝ Open command, the
Web browser won’t be able to locate, load, or run
JavaScript files that are attached using a root relative
path.

• Document-relative paths are the best when you’re
designing on your own computer without the aid of
a Web server. You can create an external JavaScript
file, attach it to a Web page, and then check the
JavaScript in a Web browser simply by opening the
Web page off your hard drive. Document-relative
paths work fine when moved to your actual, living,
breathing Web site on the Internet, but you’ll have
to rewrite the URLS to the JavaScript file if you move
the Web page to another location on the server. In
this book, we’ll be using document-relative paths,
since they will let you follow along and test the tuto-
rials on your own computer without a Web server.

26 JavaScript: The Missing Manual

Your First
JavaScript Program

You can (and often will) attach multiple external JavaScript files to a single Web
page. For example, you might have created one external JavaScript file that con-
trols a drop-down navigation bar, and another that lets you add a nifty slideshow
to a page of photos (you’ll learn how to do that on page 263). On your photo gal-
lery page, you’d want to have both JavaScript programs, so you’d attach both files.

In addition, you can attach external JavaScript files and add a JavaScript program
to the same page like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html>

<head>

<title>My Web Page</title>

<script type="text/javascript" src="navigation.js"></script>

<script type="text/javascript" src="slideshow.js"></script>

<script type="text/javascript">

alert('hello world!');

</script>

</head>

Just remember that you must use one set of opening and closing <script> tags for
each external JavaScript file. You’ll create an external JavaScript file in the tutorial
that starts on page 29.

You can keep external JavaScript files anywhere inside your Web site’s root folder
(or any subfolder inside the root). Many Web developers create a special directory
for external JavaScript files in the site’s root folder: common names are js (mean-
ing JavaScript) or libs (meaning libraries).

Note: Sometimes the order in which you attach external JavaScript files matters. As you’ll see later in this
book, sometimes scripts you write depend upon code that comes from an external file. That’s often the
case when using JavaScript libraries (JavaScript code that simplifies complex programming tasks). You’ll
see an example of a JavaScript library in action in the tutorial on page 29.

Your First JavaScript Program
The best way to learn JavaScript programming is by actually programming.
Throughout this book, you’ll find hands-on tutorials that take you step-by-step
through the process of creating JavaScript programs. To get started, you’ll need a
text editor (see page 9 for recommendations), a Web browser, and the exercise files
located at www.sawmac.com/javascript (see the note on the next page for complete
instructions).

http://www.sawmac.com/javascript

Chapter 1: Writing Your First JavaScript Program 27

Your First
JavaScript Program

Note: The tutorials in this chapter require the example files from this book’s Web site, www.sawmac.
com/javascript. Click the “Download tutorials” link to download them. (The tutorial files are stored as a
single Zip file.)

Windows users should download the Zip file and double-click it to open the archive. Click the Extract All
Files option, and then follow the instructions of the Extraction Wizard to unzip the files and place them on
your computer. Mac users, just double-click the file to decompress it. After you’ve downloaded and
decompressed the files, you should have a folder named MM_JAVASCRIPT on your computer, containing
all of the tutorial files for this book.

To get your feet wet and provide a gentle introduction to JavaScript, your first pro-
gram will be very simple:

1. In your favorite text editor, open the file 1.1.html.

This file is located in the chapter01 folder in the MM_JAVASCRIPT folder you
downloaded from www.sawmac.com/javascript. It’s a very simple HTML page,
with an external cascading style sheet to add a little visual excitement.

2. Click in the empty line just before the closing </head> tag and type:

<script type="text/javascript">

This code is actually HTML, not JavaScript. It informs the Web browser that
the stuff following this tag is JavaScript.

3. Press the Return key to create a new blank line, and type:

alert('hello world');

You’ve just typed your first line of JavaScript code. The JavaScript alert() func-
tion, is a command that pops open an Alert box and displays the message that
appears inside the parentheses—in this case hello world. Don’t worry about all
of the punctuation (the parentheses, quotes, and semicolon) just yet. You’ll
learn what they do in the next chapter.

4. Press the Return key once more, and type </script>. The code should now look
like this:

<link href="../css/global.css" rel="stylesheet" type="text/css">

<script type="text/javascript">

alert('hello world');

</script>

</head>

In this example, the stuff you just typed is shown in boldface. The two HTML
tags are already in the file; make sure you type the code exactly where shown.

http://www.sawmac.com/javascript
http://www.sawmac.com/javascript
http://www.sawmac.com/javascript

28 JavaScript: The Missing Manual

Your First
JavaScript Program

5. Launch a Web browser and open the 1.1.html file to preview it.

A JavaScript Alert box appears (see Figure 1-2). Notice that the page is blank
when the alert appears. (If you don’t see the Alert box pictured in Figure 1-2,
you probably mistyped the code listed in the previous steps. Double-check your
typing and read the Tip below.)

6. Click the Alert box’s OK button to close it.

When the Alert box disappears, the Web page appears in the browser window.

Tip: When you first start programming, you’ll be shocked at how often your JavaScript programs don’t
seem to work…at all. For new programmers, the most common cause of nonfunctioning programs is
simple typing mistakes. Always double-check to make sure you spelled commands (like alert in the first
script) correctly. Also, notice that punctuation frequently comes in pairs (the opening and closing paren-
theses, and single-quote marks from your first script, for example). Make sure you include both opening
and closing punctuation marks when they’re required.

Although this first program isn’t earth-shatteringly complex (or even that interest-
ing), it does demonstrate an important concept: A Web browser will run a Java-
Script program the moment it reads in the JavaScript code. In this example, the
alert() command appeared before the Web browser displayed the Web page,
because the JavaScript code appeared before the HTML in the <body> tag. This
concept comes into play when you start writing programs that manipulate the
HTML of the Web page—as you’ll learn in Chapter 5.

Note: You’ll frequently see the word “execute” used in place of “run.” For example, “the Web browser
executed the JavaScript program” means the same thing as “the Web browser ran the JavaScript program.”

Figure 1-2:
The JavaScript Alert box
is a quick way to grab
someone’s attention. It’s
one of the simplest
JavaScript commands to
learn and use.

Chapter 1: Writing Your First JavaScript Program 29

Attaching an
External JavaScript

File

Writing Text on a Web Page
The last script popped up a dialog box in the middle of your monitor. What if you
want to print a message directly onto a Web page using JavaScript? There are many
ways to do so, and you’ll learn some sophisticated techniques later in this book.
However, you can achieve this simple goal with a built-in JavaScript command,
and that’s what you’ll do in your second script:

1. In your text editor, open the file 1.2.html.

While <script> tags usually appear in the <head> of a Web page, you can put
them and JavaScript programs directly in the body of the Web page.

2. Directly below “<h1>Writing to the document window</h1>”, type the fol-
lowing code:

<script type="text/javascript">

document.write('<p>Hello world!</p>');

</script>

Like the alert() function, document.write() is a JavaScript command that liter-
ally writes out whatever you place between the opening and closing parenthe-
ses. In this case, the HTML <p>Hello world!</p> is added to the page: a
paragraph tag and two words.

3. Save the page, and open it in a Web browser.

The page opens and the words “Hello world!” appear below the red headline
(see Figure 1-3).

Note: The tutorial files you downloaded also include the completed version of each tutorial. If you can’t
seem to get your JavaScript working, compare your work with the file that begins with complete_ in the
same folder as the tutorial file. For example, the file complete_1.2.html contains a working version of the
script you added to file 1.2.html.

The two scripts you just created may leave you feeling a little underwhelmed with
JavaScript…or this book. Don’t worry. It’s important to start out with a full
understanding of the basics. You’ll be doing some very useful and complicated
things using JavaScript in just a few chapters. In fact, in the remainder of this chap-
ter you’ll get a taste of some of the advanced features you’ll be able to add to your
Web pages after you’ve worked your way through the first two parts of this book.

Attaching an External JavaScript File
As discussed on page 24, you’ll usually put JavaScript code in a separate file if you
want to use the same scripts on more than one Web page. You can then instruct a
Web page to load that file and use the JavaScript inside it. External JavaScript files

30 JavaScript: The Missing Manual

Attaching an
External JavaScript
File

also come in handy when you’re using someone else’s JavaScript code. In particu-
lar, there are collections of JavaScript code called libraries, which provide useful
JavaScript programming: Usually, these libraries make it easy for you to do some-
thing that’s normally quite difficult to do. You’ll learn more about JavaScript
libraries on page 169, and, in particular, the JavaScript library this book uses—
jQuery.

But for now, you’ll get experience attaching an external JavaScript file to a page,
and writing a short program that does some amazing things:

1. In your text editor, open the file 1.3.html.

This page has a basic HTML table, containing data on a handful of products
(see Figure 1-4). HTML tables are like spreadsheets: They organize data into
rows and columns. One problem with tables that contain lots of rows and col-
umns is that it’s easy to lose your place as you read across a row. One helpful
visual effect many designers use is to put a background color on every other
row, making it much easier to quickly scan across a row of data. To do this, you
create a CSS class style that defines a background color or image, then apply
that class to every other table row using HTML like this: <tr class="even">.
Now, that’s a lot of repetitive work, and you can ruin it just by inserting a new
row in the middle of the table. Fortunately, there’s a quick JavaScript solution
to this common design problem.

2. Click in the blank line between the <link> and closing </head> tags near the
top of the page, and type:

<script type="text/javascript" src="../js/jquery.js"></script>

Figure 1-3:
Wow. This script may not
be something to
document.write home
about—ha, ha, JavaScript
humor— but it does
demonstrate that you
can use JavaScript to add
content to a Web page, a
trick that comes in handy
when you want to display
messages (like ‘Welcome
back to the site, Dave’)
after a Web page has
downloaded.

Chapter 1: Writing Your First JavaScript Program 31

Attaching an
External JavaScript

File

This code links a file named jquery.js, that’s contained in a folder named js, to
this Web page. When a Web browser loads this Web page, it also downloads the
jquery.js JavaScript file and runs the code inside it.

Next, you’ll add your own JavaScript programming to this page.

3. Press Return to create a new blank line, and then type:

<script type="text/javascript">

HTML tags usually travel in pairs—an opening and closing tag. To make sure
you don’t forget to close a tag, it helps to close the tag immediately after typing
the opening tag, and then fill in the stuff that goes between the tags.

4. Press return twice to create two blank lines, and then type:

</script>

This ends the block of JavaScript code. Now you’ll add some programming.

5. Click the empty line between the opening and closing script tags and type:

$(document).ready(function() {

You’re probably wondering what the heck that is. You’ll find out all the details
of this code on page 218, but in a nutshell, this line takes advantage of the pro-
gramming that’s inside the jquery.js file to make sure that the browser executes
the next line of code at the right time.

Figure 1-4:
A plain HTML table can
be hard to read if there
are lots of columns, rows,
and data. While scanning
across a long row of
data, it’s easy to lose
your place and view data
from a different row.

32 JavaScript: The Missing Manual

Tracking Down
Errors

6. Hit return to create a new line, and then type:

$('table.striped tr:even').addClass('even');

This line does the magic of adding a background to every other row of the table.
Specifically, it does so by adding a CSS class of .even to every even row of the
table. In the CSS style sheet attached to this page, the .even class style sets a blue
color for the background property. When you apply this class to a table row,
that row gets a blue background.

7. Hit Return one last time, and then type:

});

This code closes up the JavaScript code, much like a closing </script> tag indi-
cates the end of a JavaScript program. Don’t worry too much about all those
weird punctuation marks—you’ll learn how they work in detail later in the
book. The main thing you need to make sure of is to type the code exactly as it’s
listed here. One typo, and the program may not work.

The final code you added to the page should look like the bolded text below:

<link href="../css/global.css" rel="stylesheet" type="text/css">

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

$('table.striped tr:even').addClass('even');

});

</script>

</head>

8. Save the HTML file, and open it in a Web browser.

You should now see a table in which every other row has a blue background
(see Figure 1-5).

As you can see, it doesn’t take a whole lot of JavaScript to do some amazing things
to your Web pages. Thanks to JavaScript libraries like jQuery, you’ll be able to create
sophisticated, interactive Web sites without being a programming wizard yourself.
However, it does help to know the basics of JavaScript and programming. In the
next three chapters, we’ll cover the very basics of JavaScript so that you’re comfort-
able with the fundamental concepts and syntax that make up the language.

Tracking Down Errors
The most frustrating moment in JavaScript programming comes when you try to
view your JavaScript-powered page in a Web browser…and nothing happens. It’s
one of the most common experiences for programmers. Even very experienced
programmers don’t always get it right the first time they write a program, so figur-
ing out what went wrong is just part of the game.

Chapter 1: Writing Your First JavaScript Program 33

Tracking Down
Errors

Most Web browsers are set up to silently ignore JavaScript errors, so you usually
won’t even see a “Hey this program doesn’t work!” dialog box. (Generally, that’s a
good thing, since you don’t want a JavaScript error to interrupt the experience of
viewing your Web pages.)

So how do you figure out what’s gone wrong? There are many ways to track errors
in a JavaScript program. You’ll learn some advanced debugging techniques in
Chapter 13, but the most basic method is to consult the Web browser. Most Web
browsers keep track of JavaScript errors and record them in a separate window
called a JavaScript console. When you load a Web page that contains an error, you
can then view the console to get helpful information about the error, like which
line of the Web page it occurred in and a description of the error.

However, not all consoles are created equal. Internet Explorer’s JavaScript console
is notoriously cryptic and often misleading. If you suspect errors, you’ll find the
most helpful JavaScript console in Firefox. Often, you can find the answer to the
problem, fix the JavaScript, and then the page will work in Firefox and other
browsers as well. The console helps you weed out the basic typos you make when
you first start programming, like forgetting closing punctuation, or mistyping the
name of a JavaScript command. But since scripts sometimes work in one browser
and not another, this section shows you how to turn on the JavaScript console in
all major browsers, so you can track down problems in each.

Figure 1-5:
JavaScript can simplify
common design tasks like
changing the background
color of every other table
row.

34 JavaScript: The Missing Manual

Tracking Down
Errors

The Firefox JavaScript Console
Firefox’s JavaScript console is the best place to begin tracking down errors in your
code. Not only does the console provide fairly clear descriptions of errors (no
descriptions are ever that clear when it comes to programming), it also identifies
the line in your code where the error occurred.

For example, in Figure 1-6 the console identifies the error as a missing closing
parenthesis after an argument list (you’ll learn exactly what an argument list is on
page 101). The console also identifies the name of the file the error is in (complete_
1.3.html in this case) and the line number the error occurs (line 9). Best of all, it
even indicates the line containing the error with an arrow.

Warning: Although the error console draws an arrow pointing to the location where Firefox encoun-
tered the error, that’s not always where you made the mistake. Sometimes you need to fix your code
before or after that arrow.

To show the JavaScript console, choose Tools ➝ Error Console. The console is a
free-floating window that you can move around. It not only displays JavaScript
errors but CSS errors as well, so if you’ve made any mistakes in your Cascading
Styles Sheets, you’ll find out about those as well. (Make sure you select the Errors
button at the top of the console; otherwise you might see warnings and messages
that aren’t related to your JavaScript error.)

Tip: Since the error console displays the line number where the error occurred, you may want to use a
text-editor that can show line numbers. That way, you can easily jump from the error console to your text
editor and identify the line of code you need to fix.

Unfortunately, there’s a long list of things that can go wrong in a script, from simple
typos to complex errors in logic. When you’re just starting out with JavaScript pro-
gramming, many of your errors will be the simple typographic sort. For example,
you might forget a semicolon, quote mark, or parentheses, or misspell a JavaScript

Figure 1-6:
Firefox’s JavaScript console
identifies errors in your
programs. The console keeps a
list of errors for previous pages
as well, so pretty soon the list
can get very long. Just click the
Clear button to erase all the
errors listed in the console.

Chapter 1: Writing Your First JavaScript Program 35

Tracking Down
Errors

command. You’re especially prone to typos when following examples from a book
(like this one). Here are a few errors you may see a lot of when you first start typing
the code from this book:

• Missing) after argument list. You forgot to type a closing parenthesis at the end
of a command. For example in this code—alert('hello';—the parenthesis is
missing after 'hello'.

• Unterminated string literal. A string is a series of characters enclosed by quote
marks (you’ll learn about these in greater detail on page 41). For example,
'hello' is a string in the code alert('hello');. It’s easy to forget either the opening
or closing quote.

• Missing } in compound statement. In addition to parentheses and quote marks,
you’ll often use other types of punctuation in your programs, like the { } sym-
bols (which are called braces). As with other errors of this kind, you just need to
make sure you include both the opening and closing brace.

• XXX is not defined. If you misspell a JavaScript command—aler('hello');—
you’ll get an error saying that the (misspelled) command isn’t defined: for
example, “aler is not defined.”

• Syntax error. Occasionally, Firefox has no idea what you were trying to do and
provides this generic error message. A syntax error represents some mistake in
your code. It may not be a typo, but you may have put together one or more
statements of JavaScript in a way that isn’t allowed. In this case, you need to
look closely at the line the error was found on and try to figure out what mis-
take you made—unfortunately, these types of errors often require experience
with and understanding of the JavaScript language to fix.

As you can see from the list above, many errors you’ll make simply involve forget-
ting to type one of a pair of punctuation marks—like quote marks or parentheses.
Fortunately, these are easy to fix, and as you get more experience programming,
you’ll eventually stop making them almost completely (no programmer ever does).

Displaying the Internet Explorer Error Dialog Box
The Internet Explorer console uses a disruptive error dialog box. If you turn the
console on, you’ll get an annoying error dialog box each time IE encounters an
error (see Figure 1-7). To turn it on anyway, choose Tools ➝ Internet Options.
Click the Advanced tab, and then turn on the “Display a notification about every
script error” checkbox. When you’re tired of those annoying error dialogs appear-
ing on every site you visit, repeat these steps to hide the console.

Fortunately, there’s a more selective (and less obnoxious) way to view errors in IE:
when IE encounters a JavaScript error, a small yellow alert (!) triangle appears in
the bottom-left corner of the browser. (It’s circled in Figure 1-7.) Just click this
icon, and the dialog box appears.

36 JavaScript: The Missing Manual

Tracking Down
Errors

Internet Explorer’s error console, unfortunately, is usually not very helpful. Not
only are the error messages often cryptic, the line number the console identifies as
the location of the error usually isn’t correct.

Accessing the Safari Error Console
Safari 3’s error console is available from the Develop menu: Develop ➝ Show Error
Console (on the Mac you can use the keyboard shortcut Option-c-C). However,
the Debug menu isn’t normally turned on when Safari is installed, so there are a
couple of steps to get to the JavaScript console. The process is slightly different,
depending on whether you’re using the Mac or Windows version of Safari.

On a Mac, choose Safari ➝ Preferences and click the Advanced button. Check the
“Show Develop menu in menu bar” box and close the Preferences window.

Note: If you’re using Safari 2 on a Mac, the Develop menu is actually called the Debug Menu. To enable
this menu for Safari 2, you must launch the Terminal application (Applications ➝ Utilities ➝ Terminal). In
the Terminal window, type the following:

defaults write com.apple.Safari IncludeDebugMenu 1

Figure 1-7:
The Internet Explorer error
dialog box lists JavaScript
errors that occur on a page.
Sometimes, the actual error
is hidden; if so, click Show
Details.

Chapter 1: Writing Your First JavaScript Program 37

Tracking Down
Errors

On Windows, you need to edit a file named Defaults.plist, which is located at C:\
Program Files\Safari\Safari.Resources\Defaults.plist. Use a plain text editor, like
WordPad, and add the text shown in bold to the end of the file, just before the
closing </dict> tag. The last four lines of the file should look like the following:

<key>IncludeDebugMenu</key>

 <true />

</dict>

</plist>

When you restart Safari, the Develop menu will appear between the Bookmarks
and Window menus in the menu bar at the top of the screen. Select Develop ➝

Show Error Console to open the console (see Figure 1-8).

Figure 1-8:
The Safari Error
Console displays
the name of the
JavaScript error,
the file name (and
location) and the
line on which
Safari
encountered the
error. Each tab or
browser window
has its own error
console, so if
you’ve already
opened the
console for tab,
you need to
choose Develop ➝
Error Console if
you wish to see an
error for another
tab or window.

39

Chapter 2chapter

2

The Grammar of
JavaScript

Learning a programming language is a lot like learning any new language: There
are words to learn, punctuation to understand, and a new set of rules to master.
And just as you need to learn the grammar of French to speak French, you must
become familiar with the grammar of JavaScript to program JavaScript. This chap-
ter covers the concepts that all JavaScript programs rely on.

If you’ve had any experience with JavaScript programming, many of these con-
cepts may be old hat, so you might just skim this chapter. But if you’re new to
JavaScript, or you’re still not sure about the fundamentals, this chapter introduces
you to basic (but crucial) topics.

Statements
A JavaScript statement is a basic programming unit, usually representing a single
step in a JavaScript program. Think of a statement as a sentence: Just as you string
sentences together to create a paragraph (or a chapter, or a book), you combine
statements to create a JavaScript program. In the last chapter you saw several
examples of statements. For example:

alert('Hello World!');

This single statement opens an alert window with the message “Hello World!” in
it. In many cases, a statement is a single line of code. Each statement ends with a
semicolon—it’s like a period at the end of a sentence. The semicolon makes it clear
that the step is over and that the JavaScript interpreter should move onto the next
action.

40 JavaScript: The Missing Manual

Commands

Note: Officially, putting a semicolon at the end of a statement is optional, and some programmers leave
them out to make their code shorter. Don’t be one of them. Leaving off the semicolon makes reading
your code more difficult and, in some cases, causes JavaScript errors. If you want to make your JavaScript
code more compact so that it downloads more quickly, see page 502.

The general process of writing a JavaScript program is to type a statement, enter a
semicolon, press Return to create a new, blank line, type another statement, fol-
lowed by a semicolon, and so on and so on until the program is complete.

Commands
JavaScript and Web browsers let you use various commands to make things hap-
pen in your programs and on your Web pages. For example, the alert() command
you encountered earlier makes the Web browser open a dialog box and display a
message. These commands are usually called functions or methods, and are like
verbs in a sentence. They get things done.

Some commands, like alert() or document.write(), which you encountered on
page 29, are specific to Web browsers. In other words, they only work with Web
pages, so you won’t find them when programming in other environments that use
JavaScript (like, for example, when scripting Adobe applications like Acrobat or
Dreamweaver or in Flash’s JavaScript-based ActionScript).

Other commands are universal to JavaScript and work anywhere JavaScript works.
For example, isNaN() is a command that checks to see if a particular value is a
number or not—this command comes in handy when you want to check if a visi-
tor has correctly supplied a number for a question that requires a numerical
answer (for example, “How many widgets would you like?”). You’ll learn about
isNaN() and how to use it in Chapter 4 on page 137.

JavaScript has many different commands, which you’ll learn about throughout this
book. One quick way to identify a command in a program is by the use of paren-
theses. For example, you can tell isNaN() is a command, because of the parentheses
following isNaN.

In addition, JavaScript lets you create your own functions, so you can make your
scripts do things beyond what the standard JavaScript commands offer. You’ll
learn about functions in Chapter 3, starting on page 97.

Types of Data
You deal with different types of information every day. Your name, the price of
food, the address of your doctor’s office, and the date of your next birthday are all
information that is important to you. You make decisions about what to do and
how to live your life based on the information you have. Computer programs are

Chapter 2: The Grammar of JavaScript 41

Types of Data

no different. They also rely on information to get things done. For example, to cal-
culate the total for a shopping cart, you need to know the price and quantity of
each item ordered. To customize a Web page with a visitor’s name (“Welcome
Back, Kotter”), you need to know his or her name.

Programming languages usually categorize information into different types, and
treat each type in a different way. In JavaScript, the three most common types of
data are number, string, and Boolean.

Numbers
Numbers are used for counting and calculating; you can keep track of the number
of days until summer vacation, or calculate the cost of buying two tickets to a
movie. Numbers are very important in JavaScript programming: you can use num-
bers to keep track of how many times a visitor has visited a Web page, to specify
the exact pixel position of an item on a Web page, or to determine how many
products a visitor wants to order.

In JavaScript, a number is represented by a numeric character; 5, for example, is
the number five. You can also use fractional numbers with decimals, like 5.25 or
10.3333333. JavaScript even lets you use negative numbers, like –130.

Since numbers are frequently used for calculations, your programs will often
include mathematical operations. You’ll learn about operators on page 48, but just
to provide an example of using JavaScript with numbers, say you wanted to print
the total value of 5 plus 15 on a Web page; you could do that with this line of code:

document.write(5 + 15);

This snippet of JavaScript adds the two numbers together and prints the total (20)
onto a Web page. There are many different ways to work with numbers, and you’ll
learn more about them starting on page 134.

Strings
To display a name, a sentence, or any series of letters, you use strings. A string is
just a series of letters and other symbols enclosed inside of quote marks. For exam-
ple, 'Welcome Hal', and “You are here” are both examples of strings. You used a
string in the last chapter with the alert command—alert('Hello World!');.

A string’s opening quote mark signals to the JavaScript interpreter that what fol-
lows is a string—just a series of symbols. The interpreter accepts the symbols liter-
ally, rather than trying to interpret the string as anything special to JavaScript like a
command. When the interpreter encounters the final quote mark, it understands
that it has reached the end of the string and continues onto the next part of the
program.

You can use either double quote marks ("hello world") or single quote marks
('hello world') to enclose the string, but you must make sure to use the same type of
quote mark at the beginning and end of the string (for example, "this is not right'

42 JavaScript: The Missing Manual

Types of Data

isn’t a valid string because it begins with a double-quote mark but ends with a single-
quote.)

So, to pop-up an alert box with the message Warning, warning! you could write:

alert('Warning, warning!');

or

alert("Warning, warning!");

You’ll use strings frequently in your programming—when adding alert messages,
when dealing with user input on Web forms, and when manipulating the contents
of a Web page. They’re so important that you’ll learn a lot more about using
strings starting on page 116.

Booleans
Whereas numbers and strings offer infinite possibilities, the Boolean data type is
simple. It is either one of two values: true or false. You’ll encounter Boolean data
types when you create JavaScript programs that respond intelligently to user input

FREQUENTLY ASKED QUESTION

Putting Quotes into Strings
When I try to create a string with a quote mark in it, my
program doesn’t work. Why is that?

In JavaScript, quote marks indicate the beginning and end
of a string, even when you don’t want them to. When the
JavaScript interpreter encounters the first quote mark, it
says to itself, “Ahh, here comes a string.” When it reaches a
matching quote mark, it figures it has come to the end of
the string. That’s why you can’t create a string like this: "He
said, "Hello."". In this case, the first quote mark (before the
word “He”) marks the start of the string, but as soon as the
JavaScript interpreter encounters the second quote mark
(before the word “Hello”), it figures that the string is over,
so you end up with the string "He said, " and the Hello.
part, which creates a JavaScript error.

There are a couple of ways to get around this conundrum.
The easiest method is to use single quotes to enclose a
string that has one or more double quotes inside it. For
example, 'He said, "Hello."' is a valid string—the single
quotes create the string, and the double quotes inside are
a part of the string. Likewise, you can use double quotes to
enclose a string that has a single quote inside it: "This isn’t
fair" for example.

Another method is to tell the JavaScript interpreter to just
treat the quote mark inside the string literally—that is, treat
the quote mark as part of the string, not the end of the
string. You do this using something called an escape char-
acter. If you precede the quote mark with a backward slash
(\), the quote is treated as part of the string. You could
rewrite the above example like this: "He said, \"Hello.\ "".
In some cases, an escape character is the only choice. For
example: 'He said, "This isn\'t fair."' Because the string is
enclosed by single quotes, the lone single quote in the
word “isn’t” has to have a backward slash before it: isn\'t.

You can even escape quote marks when you don’t neces-
sarily have to—as a way to make it clear that the quote mark
should be taken literally. For example. 'He said, "Hello."'.
Even though you don’t need to escape the double quotes
(since single quotes surround the entire string) some pro-
grammers do it anyway so that it’s clear to them that the
quote mark is just a quote mark.

Chapter 2: The Grammar of JavaScript 43

Variables

and actions. For example, if you want to make sure a visitor supplied an email
address before submitting a form, you can add logic to your page by asking the
simple question: “Did the user type in a valid email address?” The answer to this
question is a Boolean value: either the email address is valid (true) or it’s not
(false). Depending on the answer to the question, the page could respond in differ-
ent ways. For example, if the email address is valid (true), then submit the form; if
it is not valid (false), then display an error message and prevent the form from
being submitted.

You’ll learn how Boolean values come into play when adding logic to your pro-
grams in the box on page 80.

Variables
You can type a number, string, or Boolean value directly into your JavaScript pro-
gram, but these data types work only when you already have the information you
need. For example, you can make the string “Hi Bob” appear in an alert box like
this:

alert('Hi Bob');

But that statement only makes sense if everyone who visits the page is named Bob.
If you want to present a personalized message for different visitors, the name needs
to be different depending on who is viewing the page: 'Hi Mary,' 'Hi Joseph,' 'Hi
Ezra,' and so on. Fortunately, all programming languages provide something
known as a variable to deal with just this kind of situation.

A variable is a way to store information so that you can later use and manipulate it.
For example, imagine a JavaScript-based pinball game where the goal is to get the
highest score. When a player first starts the game, her score will be zero, but as she
knocks the pinball into targets, the score will get bigger. In this case, the score is a
variable since it starts at 0 but changes as the game progresses—in other words, a
variable holds information that can vary. See Figure 2-1 for an example of another
game that uses variables.

Think of a variable as a kind of basket: you can put an item into a basket, look
inside the basket, dump out the contents of a basket, or even replace what’s inside
the basket with something else. However, even though you might change what’s
inside the basket, it still remains the same basket.

Creating a Variable
Creating a variable is a two-step process that involves declaring the variable and
naming it. In JavaScript to create a variable named score you would type:

var score;

The first part, var, is a JavaScript keyword that creates, or, in programming-speak,
declares the variable. The second part of the statement, score, is the variable’s name.

44 JavaScript: The Missing Manual

Variables

What you name your variables is up to you, but there are a few rules you must follow
when naming variables:

• Variable names must begin with a letter, $, or _. In other words, you can’t
begin a variable name with a number or punctuation: so 1thing, and &thing
won’t work, but score, $score, and _score are fine.

• Variable names can only contain letters, numbers, $, and _. You can’t use
spaces or any other special characters anywhere in the variable name: fish&chips
and fish and chips aren’t legal, but fish_n_chips and plan9 are.

• Variable names are case-sensitive. The JavaScript interpreter sees uppercase
and lowercase letters as distinct, so a variable named SCORE is different from a
variable named score, which is also different from variables named sCoRE and
Score.

• Avoid keywords. Some words in JavaScript are specific to the language itself:
var for example is used to create a variable, so you can’t name a variable var. In
addition, some words, like alert, document, and window, are considered special
properties of the Web browser. You’ll end up with a JavaScript error if you try
to use those words as variable names. You can find a list of some reserved words
in Table 2-1. Not all of these reserved words will cause problems in all browsers,
but it’s best to steer clear of these names when naming variables.

Figure 2-1:
The game Real World
Racer (www.thomasscott.
net/realworldracer)
merges JavaScript with
Google Maps technology
to let you race your way
along any road in the
world. The game tracks
your speed, time, and the
number of checkpoints
you’ve crossed (in the
top-right box). These are
all examples of variables
since they change value
as the game goes on.

Chapter 2: The Grammar of JavaScript 45

Variables

In addition to these rules, aim to make your variable names clear and meaningful.
Naming variables according to what type of data you’ll be storing in them makes it
much easier to look at your programming code and immediately understand
what’s going on. For example, score is a great name for a variable used to track a
player’s game score. The variable name s would also work, but the single letter “s”
doesn’t give you any idea about what’s stored in the variable.

Table 2-1. Some words are reserved for use by JavaScript and the Web browser. Avoid using them as
variable names.

JavaScript keywords Reserved for future use Reserved for browser

break
case
catch
continue
default
delete
do
else
finally
for
function
if
in
instanceof
new
return
switch
this
throw
try
typeof
var
void
while
with

abstract
boolean
byte
char
class
const
debugger
double
enum
export
extends
final
float
goto
implements
import
int
interface
long
native
package
private
protected
public
short
static
super
synchronized
throws
transient
volatile

alert
blur
closed
document
focus
frames
history
innerHeight
innerWidth
length
location
navigator
open
outerHeight
outerWidth
parent
screen
screenX
screenY
statusbar
window

46 JavaScript: The Missing Manual

Variables

Likewise, make your variable names easy to read. When you use more than one
word in a variable name, either use an underscore between words or capitalize the
first letter of each word after the first. For example, imagepath isn’t as easy to read
and understand as image_path or imagePath.

Tip: If you want to declare a bunch of variables at one time, you can do it in a single line of code like this:

var score, players, game_time;

This line of code creates three variables at once.

Using Variables
Once a variable is created, you can store any type of data that you’d like in it. To
do so, you use the = sign. For example, to store the number 0 in a variable named
score, you could type this code:

var score;

score = 0;

The first line of code above creates the variable; the second line stores the number
0 in the variable. The equal sign is called an assignment operator, because it’s used
to assign a value to a variable. You can also create a variable and store a value in it
with just a single JavaScript statement like this:

var score = 0;

You can store strings, numbers and Boolean values in a variable:

var firstName = 'Peter';

var lastName = 'Parker';

var age = 22;

var isSuperHero = true;

Tip: To save typing, you can declare multiple variables with a single var keyword, like this:

var x, y, z;

You can even declare and store values into multiple variables in one JavaScript statement:

var isSuperHero=true, isAfraidOfHeights=false;

Once you’ve stored a value in a variable, you can access that value simply by using
the variable’s name. For example, to open an alert dialog box and display the value
stored in the variable score, you’d type this:

alert(score);

Notice that you don’t use quotes with a variable—that’s just for strings, so the code
alert('score') will display the word “score” and not the value stored in the variable
score. Now you can see why strings have to be enclosed in quote marks: the Java-
Script interpreter treats words without quotes as either special JavaScript objects
(like the alert() command) or a variable name.

Chapter 2: The Grammar of JavaScript 47

Working with Data
Types and Variables

Note: You only need to use the var keyword once—when you first create the variable. After that, you’re
free to assign new values to the variable without using var.

Working with Data Types and Variables
Storing a particular piece of information like a number or string in a variable is
usually just a first step in a program. Most programs also manipulate data to get
new results. For example, add a number to a score to increase it, multiply the
number of items ordered by the cost of the item to get a grand total, or personal-
ize a generic message by adding a name to the end: “Good to see you again, Igor.”
JavaScript provides various operators to modify data. An operator is simply a sym-
bol or word that can change one or more values into something else. For example,
you use the + symbol—the addition operator—to add numbers together. There
are different types of operators for the different data types.

FREQUENTLY ASKED QUESTION

Spaces, Tabs, and Carriage Returns in JavaScript
JavaScript seems so sensitive about typos. How do I know
when I’m supposed to use space characters, and when I’m
not allowed to?

You must put a space between keywords: varscore=0, for
example, doesn’t create a new variable named score. The
JavaScript interpreter needs the space between var and
score to identify the var keyword: var score=0. However,
space isn’t necessary between keywords and symbols like
the assignment operator (=) or the semicolon that ends a
statement.

JavaScript interpreters ignore extra space, so you’re free to
insert extra spaces, tabs and carriage returns to format your
code. For example, you don’t need a space on either side
of an assignment operator, but you can add them if you
find it easier to read. Both of the lines of code below work:

var formName='signup';
var formRegistration = 'newsletter' ;

In fact, you can insert as many spaces as you’d like, and
even insert carriage returns within a statement. So both of
the following statements also work:

var formName = 'signup';
var formRegistration
 =
 'newsletter';

Of course, just because you can insert extra space, doesn’t
mean you should. The last two examples are actually
harder to read and understand because of the extra space.
So the general rule of thumb is add extra space if it makes
your code easier to understand. You’ll see examples of how
space can make code easier to read with arrays (page 58)
and with JavaScript Object Literals (page 188).

One important exception to the above rules: you can’t
insert a carriage return inside a string; in other words you
can’t split a string over two lines in your code like this:

var name = 'Bob
 Smith';

Inserting a carriage return (pressing the Enter or Return
key) like this produces a JavaScript error and your program
won’t run.

48 JavaScript: The Missing Manual

Working with Data
Types and Variables

Basic Math
JavaScript supports basic mathematical operations such as addition, division, sub-
traction, and so on. Table 2-2 shows the most basic math operators and how to use
them.

You may be used to using an x for multiplication (4 × 5, for example), but in Java-
Script, you use the * symbol to multiply two numbers.

You can also use variables in mathematical operations. Since a variable is only a
container for some other value like a number or string, using a variable is the same
as using the contents of that variable.

var price = 10;

var itemsOrdered = 15;

var totalCost = price * itemsOrdered;

The first two lines of code create two variables (price and itemsOrdered) and store a
number in each. The third line of code creates another variable (totalCost) and
stores the results of multiplying the value stored in the price variable (10) and the
value stored in the itemsOrdered variable. In this case, the total (150) is stored in
the variable totalCost.

This sample code also demonstrates the usefulness of variables. Suppose you write
a program as part of a shopping cart system for an e-commerce Web site.
Throughout the program, you need to use the price of a particular product to
make various calculations. You could code the actual price throughout the pro-
gram (for example, say the product cost 10 dollars, so you type 10 in each place in
the program that price is used). However, if the price ever changes, you’d have to
locate and change each line of code that uses the price. By using a variable, on the
other hand, you can set the price of the product somewhere near the beginning of
the program. Then, if the price ever changes, you only need to modify the one line
of code that defines the product’s price to update the price throughout the program:

var price = 20;

var itemsOrdered = 15;

var totalCost = price * itemsOrdered;

There are lots of other ways to work with numbers (you’ll learn a bunch starting
on page 134), but you’ll find that you most frequently use the basic math opera-
tors listed in Table 2-2.

Table 2-2. Basic math with JavaScript

Operator What it does How to use it

+ Adds two numbers 5 + 25

– Subtracts one number from another 25 – 5

* Multiplies two numbers 5 * 10

/ Divides one number by another 15/5

Chapter 2: The Grammar of JavaScript 49

Working with Data
Types and Variables

The Order of Operations
If you perform several mathematical operations at once—for example, you total
up several numbers then multiply them all by 10—you need to keep in mind the
order in which the JavaScript interpreter performs its calculations. Some opera-
tors take precedence over other operators, so they’re calculated first. This fact can
cause some unwanted results if you’re not careful. Take this example:

4 + 5 * 10

You might think this simply is calculated from left to right: 4 + 5 is 9 and 9 * 10 is
90. It’s not. The multiplication actually goes first, so this equation works out to 5 *
10 is 50, plus 4 is 54. Multiplication (the * symbol) and division (the / symbol) take
precedence over addition (+) and subtraction (-).

To make sure that the math works out the way you want it, use parentheses to
group operations. For example, you could rewrite the equation above like this:

(4 + 5) * 10

Any math that’s performed inside parentheses happens first, so in this case the 4 is
added to 5 first and the result, 9, is then multiplied by 10. If you do want the multi-
plication to occur first, it would be clearer to write that code like this:

4 + (5*10);

Combining Strings
Combining two or more strings to make a single string is a common programming
task. For example, if a Web page has a form that collects a person’s first name in
one form field and his last name in a different field, you need to combine the two
fields to get his complete name. What’s more, if you want to display a message let-
ting the user know his form information was submitted, you need to combine the
generic message with the person’s name: “John Smith, thanks for your order.”

Combining strings is called concatenation, and you accomplish it with the + operator.
Yes, that’s the same + operator you use to add number values, but with strings it
behaves a little differently. Here’s an example:

var firstName = 'John';

var lastName = 'Smith';

var fullName = firstName + lastName;

In the last line of code above, the contents of the variable firstName are combined
(or concatenated) with the contents of the variable lastName—the two are literally
joined together and the result is placed in the variable fullName. In this example,
the resulting string is “JohnSmith”—there isn’t a space between the two names,
since concatenating just fuses the strings together. In many cases (like this one),
you need to add an empty space between strings that you intend to combine:

var firstName = 'John';

var lastName = 'Smith';

var fullName = firstName + ' ' + lastName;

50 JavaScript: The Missing Manual

Working with Data
Types and Variables

The ' ' in the last line of this code is a single quote, followed by a space, followed by
a final single quote. This code is simply a string that contains an empty space.
When placed between the two variables in this example, it creates the string "John
Smith". This last example also demonstrates that you can combine more than two
strings at a time; in this case, three strings.

Combining Numbers and Strings
Most of the mathematical operators only make sense for numbers. For example, it
doesn’t make any sense to multiply 2 and the string 'eggs'. If you try this example,
you’ll end up with a special JavaScript value NaN, which stands for “not a number.”
However, there are times when you may want to combine a string with a number.
For example, say you want to present a message on a Web page that specifies how
many times a visitor has been to your Web site. The number of times she’s visited
is a number, but the message is a string. In this case, you use the + operator to do
two things: convert the number to a string and concatenate it with the other string.
Here’s an example:

var numOfVisits = 101;

var message = 'You have visited this site ' + numOfVisits + ' times.';

In this case, message contains the string “You have visited this site 101 times.” The
JavaScript interpreter recognizes that there is a string involved, so it realizes it
won’t be doing any math (no addition). Instead, it treats the + as the concatena-
tion operator, and at the same time realizes that the number should be converted
to a string as well.

This example may seem like a good way to print words and numbers in the same
message. In this case, it’s obvious that the number is part of a string of letters that
makes up a complete sentence, and whenever you use the + operator with a string
value and a number, the JavaScript interpreter converts the number to a string.

That feature, known as automatic type conversion, can cause problems, however.
For example, if a visitor answers a question on a form (“How many pairs of shoes
would you like?”) by typing a number (2, for example), that input is treated like a
string—'2'. So you can run into a situation like this:

var numOfShoes = '2';

var numOfSocks = 4;

var totalItems = numOfShoes + numOfSocks;

You’d expect the value stored in totalItems to be 6 (2 shoes + 4 pairs of socks).
Instead, because the value in numOfShoes is a string, the JavaScript interpreter
converts the value in the variable numOfSocks to a string as well, and you end up
with the string '24' in the totalItems variable. There are a couple of ways to prevent
this error.

Chapter 2: The Grammar of JavaScript 51

Working with Data
Types and Variables

First, you add + to the beginning of the string that contains a number like this:

var numOfShoes = '2';

var numOfSocks = 4;

var totalItems = +numOfShoes + numOfSocks;

Adding a + sign before a variable (make sure there’s no space between the two)
tells the JavaScript interpreter to try to convert the string to a number value—if the
string only contains numbers like '2', you’ll end up with the string converted to a
number. In this example, you end up with 6 (2 + 4). Another technique is to use
the Number() command like this:

var numOfShoes = '2';

var numOfSocks = 4;

var totalItems = Number(numOfShoes) + numOfSocks;

Number() converts a string to a number if possible. (If the string is just letters and
not numbers, you get the NaN value to indicate that you can’t turn letters into a
number.)

In general, you’ll most often encounter numbers as strings when getting input
from a visitor to the page; for example, when retrieving a value a visitor entered
into a form field. So, if you need to do any addition using input collected from a
form or other source of visitor input, make sure you run it through the Number()
command first.

Changing the Values in Variables
Variables are useful because they can hold values that change as the program
runs—a score that changes as a game is played, for example. So how do you
change a variable’s value? If you just want to replace what’s contained inside a vari-
able, assign a new value to the variable. For example:

var score = 0;

score = 100;

However, you’ll frequently want to keep the value that’s in the variable and just
add something to it or change it in some way. For example, with a game score you
never just give a new score, you always add or subtract from the current score. To
add to the value of a variable, you use the variable’s name as part of the operation
like this:

var score = 0;

score = score + 100;

That last line of code may appear confusing at first, but it uses a very common
technique. Here’s how it works: All of the action happens to the right of the = sign
first; that is, the score + 100 part. Translated, it means “take what’s currently stored
in score (0) and then add 100 to it.” The result of that operation is then stored back
into the variable score. The final outcome of these two lines of code is that the vari-
able score now has the value of 100.

52 JavaScript: The Missing Manual

Working with Data
Types and Variables

The same logic applies to other mathematical operations like subtraction, division,
or multiplication:

score = score – 10;

score = score * 10;

score = score / 10;

In fact, performing math on the value in a variable and then storing the result back
into the variable is so common that there are shortcuts for doing so with the four
main mathematical operations, as pictured in Table 2-3.

The same rules apply when concatenating a string to a variable. For example, say
you have a variable with a string in it and want to add another couple of strings
onto that variable:

var name = 'Franklin';

var message = 'Hello';

message = message + ' ' + name;

As with numbers, there’s a shortcut operator for concatenating a string to a vari-
able. The += operator adds the string value to the right of the = sign to the end of
the variable’s string. So the last line of the above code could be rewritten like this:

 message += ' ' + name;

You’ll see the += operator frequently when working with strings, and throughout
this book.

Table 2-3. Shortcuts for performing math on a variable

Operator What it does How to use it The same as

+= Adds value on the right side of
equal sign to the variable on the
left.

score += 10; score = score + 10;

-= Subtracts value on the right side
of the equal sign from the vari-
able on the left.

score -= 10; score = score – 10;

*= Multiplies the variable on the left
side of the equal sign and the
value on the right side of the
equal sign.

score *= 10; score = score * 10

/= Divides the value in the variable
by the value on the right side of
the equal sign.

score /= 10 score = score / 10

++ Placed directly after a variable
name, ++ adds 1 to the variable.

score++ score = score + 1

-- Placed directly after a variable
name, -- subtracts 1 from the
variable.

score-- score = score - 1

Chapter 2: The Grammar of JavaScript 53

Tutorial: Using
Variables to Create

Messages

Tutorial: Using Variables to Create Messages
In this tutorial, you’ll use variables to print (that is, write) a message onto a Web
page.

Note: To follow along with the tutorials in this chapter you need to download the tutorial files from this
book’s companion Web site: www.sawmac.com/missing/js. See the note on page 27 for details.

1. In a text editor, open the file 2.1.html in the chapter02 folder.

This page is just a basic HTML file with a simple CSS-enhanced design. It
doesn’t yet have any JavaScript. You’ll use variables to write a message onto a
Web page.

2. Locate the <h1> tag (a little over half way down the file) and add the opening
and closing <script> tags, so that the code looks like this:

<h1>Using a Variable</h1>

<script type="text/javascript">

</script>

This HTML should be familiar by now: it simply sets the page up for the script
you’re about to write.

3. In between the <script> tags type:

var firstName = 'Cookie';

var lastName = 'Monster';

You’ve just created your first two variables—firstName and lastName—and
stored two string values into them. Next you’ll add the two strings together, and
print the results to the Web page.

4. Below the two variable declarations type:

document.write('<p>');

As you saw in Chapter 1, the document.write() command adds text directly to a
Web page. In this case, you’re using it to write HTML tags to your page. You
supply the command a string—'<p>'—and it outputs that string just as if you
had typed it into your HTML code. It’s perfectly OK to supply HTML tags as
part of the document.write() command. In this case, the JavaScript is adding the
opening tag for a paragraph to hold the text you’re going to print on the page.

Note: There are more efficient methods than document.write() to add HTML to a Web page. You’ll
learn about them on page 181.

5. Press Return and type the following JavaScript:

document.write(firstName + ' ' + lastName);

http://www.sawmac.com/missing/js

54 JavaScript: The Missing Manual

Tutorial: Asking for
Information

Here you use the values stored in the variables you created in step 3. The +
operator lets you put several strings together to create one longer string, which
the document.write() command then writes to the HTML of the page. In this
case, the value stored in firstName—'Cookie'—is added to a space character,
and then added to the value of lastName—'Monster'. The results are one string:
'Cookie Monster'.

6. Press return again and type document.write('</p>');.

The finished script should look like this:

<script type="text/javascript">

var firstName = 'Cookie';

var lastName = 'Monster';

document.write('<p>');

document.write(firstName + ' ' + lastName);

document.write('</p>');

</script>

7. Preview the page in a Web browser to enjoy the fruits of your labor (see
Figure 2-2).

The words “Cookie Monster” should appear below the headline “Using a Vari-
able.” If you don’t see anything, there’s probably a typo in your code. Compare
the script above with what you typed and check page 34 for tips on debugging a
script using Firefox.

8. Return to your text editor and change the second line of the script to read:

var lastName = 'Jar';

Save the page and preview it in a Web browser. Voila, the message now reads:
Cookie Jar. (The file complete_2.1.html has a working copy of this script.)

Tutorial: Asking for Information
In the last script, you saw how to create variables, but you didn’t get to experience
how variables can respond to the user and produce unique, customized content. In
this next tutorial, you’ll learn how to use the prompt() command to gather input
from a user and change the display of the page based on that input.

1. In a text editor, open the file 2.2.html in the chapter02 folder.

To make your programming go faster, the <script> tags have already been
added to this file. You’ll notice that there are two sets of <script> tags: one in
the head and one in the body. The JavaScript you’re about to add will do two
things. First, it will open up a dialog box that asks the user to type in an answer
to a question; second, in the body of the Web page, a customized message using
the user’s response will appear.

Chapter 2: The Grammar of JavaScript 55

Tutorial: Asking for
Information

2. Between the first set of <script> tags in the document head, type the bolded
code:

<script type="text/javascript">

var name = prompt('What is your name?', '');

</script>

The prompt() command produces a dialog box similar to the alert() com-
mand. However, instead of just displaying a message, the prompt() command
can also retrieve an answer (see Figure 2-3). In addition, to use the prompt()
command, you supply two strings separated by a comma between the parenthe-
ses. Figure 2-3 shows what happens to those two strings: the first string appears
as the dialog’s question (“What is your name?” in this example).

The second string appears in the field the visitor types into. This example uses
what’s called an empty string, which is just two single quote marks (' ') and
results in a blank text field. However, you can supply a useful instruction like
“Please type both your first and last names” for the second string, and it will
appear in the field. Unfortunately, a visitor will need to first delete that text
from the text field before entering his own information.

The prompt() command returns a string containing whatever the visitor typed
into the dialog box. In this line of JavaScript code, that result is stored into a
new variable named name.

Note: Many commands return a value. In plain English, that just means the command supplies some
information after it’s done. You can choose to ignore this information or store it into a variable for later
use. In this example, the prompt() command returns a string that you store in the variable name.

Figure 2-2:
While writing “Cookie
Monster” might not
exactly be the reason you
picked up a book on
JavaScript, this script
does demonstrate an
important concept: how
to create and use
variables in JavaScript.

56 JavaScript: The Missing Manual

Arrays

3. Save the page and preview it in a Web browser.

When the page loads, you’ll see a dialog box. Notice that nothing else hap-
pens—you don’t even see the Web page—until you fill out the dialog box and
click OK. You’ll also notice that nothing much happens after you click OK—
that’s because, at this point, you’ve merely collected and stored the response;
you haven’t used that response on the page. You’ll do that next.

4. Return to your text editor. Locate the second set of <script> tags and add the
code in bold:

<script type="text/javascript">

document.write('<p>Welcome ' + name + '</p>');

</script>

Here you take advantage of the information supplied by the visitor. As with the
script on page 53, you’re combining several strings—an opening paragraph tag
and text, the value of the variable, and a closing paragraph tag—and printing
the results to the Web page.

5. Save the page and preview it in a Web browser.

When the Prompt dialog appears, type in a name and click OK. Notice that the
name you type appears in the Web page (Figure 2-4). Reload the Web page and
type a new name—it changes! Just like a good variable should.

Arrays
Simple variables, like the ones you learned about in the previous section, only hold
one piece of information, such as a number or a string value. They’re perfect when
you only need to keep track of a single thing like a score, an age, or a total cost.
However, if you need to keep track of a bunch of related items—like the names of
all of the days in a week, or a list of all of the images on a Web page—simple variables
aren’t very convenient.

Figure 2-3:
The prompt() command is
one way to retrieve user
input. It works by providing
two strings to the command—
one to appear as the
question, and another that
pre-fills the prompt box with
text.

prompt('What is your name?', ");

Chapter 2: The Grammar of JavaScript 57

Arrays

For example, say you’ve created a JavaScript shopping cart system that tracks items
a visitor intends to buy. If you wanted to keep track of all of the items the visitor
adds to her cart using simple variables you’d have to write code like this:

var item1 = 'Xbox 360';

var item2 = 'Tennis shoes';

var item3 = 'Gift certificate';

But what if they wanted to add more items than that? You’d have to create more
variables—item4, item5, and so on. And, because you don’t know how many items
the visitor might want to buy, you really don’t know how many variables you’ll
have to create.

Fortunately, JavaScript provides a better method of tracking a list of items, called
an array. An array is a way of storing more than one value in a single place. Think
of an array like a shopping list. When you need to go to the grocery store, you sit
down and write a list of items to buy. If you just went shopping a few days earlier,
the list might only contain a few items; but if your cupboard is bare, your shop-
ping list might be quite long. Regardless of how many items on the list, though,
there’s still just a single list.

Without an array, you have to create a new variable for each item in the list. Imag-
ine, for example, that you couldn’t make a list of groceries on a single sheet of
paper, but had to carry around individual slips of paper—one for each item that
you’re shopping for. If you wanted to add another item to buy, you’d need a new
slip of paper; then you’d need to keep track of each slip as you shopped (see
Figure 2-5). That’s how simple variables work. But with an array you can create a
single list of items, and even add, remove, or change items at anytime.

Figure 2-4:
The power
of
variables:
this page
customizes
its message
based on a
visitor’s
response.

58 JavaScript: The Missing Manual

Arrays

Creating an Array
To create and store items in an array, you first declare the array’s name (just as you
would a variable) and then supply a list of comma separated values: each value rep-
resents one item in the list. As with variables, what you name your array is up to
you, but you need to follow the same naming rules listed on page 44. To indicate
an array, you put the list of items between opening and closing brackets—[]. For
example, to create an array containing abbreviations for the seven days of the
week, you could write this code:

var days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'];

The brackets—[]—are very important; they tell the JavaScript interpreter that it’s
dealing with an array. You can create an empty array without any elements like
this:

var playList = [];

Creating an empty array is the equivalent of declaring a variable as described on
page 43. You’ll create an empty array when you don’t add items to the array until
the program is running. For example, the above array might be used to track songs
that someone selects from a list on a Web page—you don’t know ahead of time
which songs the person will choose, so you declare an empty array and later fill it
with items as the person selects music. (Adding items to an array is described on
page 61.)

Note: When looking through other people’s JavaScript programs (or other JavaScript books), you may
encounter another way to create an array using the Array keyword, like this:

var days = new Array('Mon', 'Tues', 'Wed');

This method is valid, but the method used in this book (called an array literal) requires less typing and
less code.

Figure 2-5:
An array provides a simple, organized way to
track a list of related items. Adding another
item to the list is just like writing a new item at
the bottom of the list.

Chapter 2: The Grammar of JavaScript 59

Arrays

You can store any mix of values in an array. In other words, numbers, strings, and
Boolean values can all appear in the same array:

var prefs = [1, 223, 'www.oreilly.com', false];

Note: You can even store arrays and other objects as elements inside an array. This can help store complex
data. You’ll see an example of this advanced topic on page 108.

The array examples above show the array created on a single line. However, if
you’ve got a lot of items to add, or the items are long strings, trying to type all of
that on a single line can make your program difficult to read. Another option
many programmers use is to create an array over several lines, like this:

var authors = ['Ernest Hemingway',

 'Charlotte Bronte',

 'Dante Alighieri',

 'Emily Dickinson'

];

As mentioned in the box on page 47, a JavaScript interpreter skips extra space and
line breaks, so even though this code is displayed on five lines, it’s still just a single
statement, as indicated by the final semicolon on the last line.

Tip: To make the names line up as above, you’d type the first line — var authors = [‘Ernest Heming-
way’,—hit Return, then press the space key as many times as it takes to line up the next value—’Charlotte
Bronte’,.

Accessing Items in an Array
You can access the contents of a simple variable just by using the variable’s name.
For example alert(lastName) opens an alert box with the value stored in the vari-
able lastName. However, because an array can hold more than one value, you can’t
just use its name alone to access the items it contains. A unique number, called an
index, indicates the position of each item in an array. To access a particular item in
an array, you use that item’s index number. For example, say you’ve created an
array with abbreviations for the days of the week, and want to open an alert box
that displayed the first item. You could write this:

var days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'];

alert(days[0]);

This code opens an alert box with ‘Mon’ in it. Arrays are zero-indexed, meaning
that the first item in an array has an index value of 0, and the second item has an
index value of 1: in other words, subtract one from the item’s spot in the list to get
its index value—the fifth item’s index is 5 – 1; that is 4. Zero-indexing is pretty
confusing when you first get started with programming, so Table 2-4 shows how
the array days (from the above example) is indexed, the values it contains and how
to access each value.

60 JavaScript: The Missing Manual

Arrays

You can change the value of an item in an array by assigning a new value to the
index position. For example, to put a new value into the first item in the array
days, you could write this:

days[0] = 'Monday';

Because the index number of the last item in an array is always one less than the
total number of items in an array, you only need to know how many items are in
an array to access the last item. Fortunately, this is an easy task since every array
has a length property, which contains the total number of items in the array. To
access the length property, add a period followed by length after the array’s name:
for example, days.length returns the number of items in the array named days (if
you created a different array, playList, for example, you’d get its length like this:
playList.length). So you can use this tricky bit of JavaScript to access the value
stored in the last item in the array:

days[days.length-1]

This last snippet of code demonstrates that you don’t have to supply a literal num-
ber for an index (for example, the 0 in days[0]). You can also supply an equation
that returns a valid number: in this case days.length – 1 is a short equation: it first
retrieves the number of items in the days array (that’s 7 in this example) and sub-
tracts 1 from it. So, in this case, days[days.length-1] translates to days[6].

You can also use a variable containing a number as the index:

var i = 0;

alert(days[i]);

The last line of code is the equivalent of alert(days[0]);. You’ll find this technique
particularly useful when working with loops as described in the next chapter (page
90).

Table 2-4. Items in an array must be accessed using an index number that’s the equivalent to their place
in the list minus 1

Index value Item To access item

0 Mon days[0]

1 Tues days[1]

2 Wed days[2]

3 Thurs days[3]

4 Fri days[4]

5 Sat days[5]

6 Sun days[6]

Chapter 2: The Grammar of JavaScript 61

Arrays

Adding Items to an Array
Say you’ve created an array to track items that a user clicks on a Web page. Each
time the user clicks the page, an item is added to the array. JavaScript supplies sev-
eral ways to add contents to an array.

Adding an item to the end of an array

To add an item to the end of an array, you can use the index notation from page
59, using an index value that’s one greater than the last item in the list. For exam-
ple, say you’ve have created an array named properties:

var properties = ['red', '14px', 'Arial'];

At this point, the array has three items. Remember that the last item is accessed
using an index that’s one less than the total number of items, so in this case, the
last item in this array is properties[2]. To add another item, you could do this:

properties[3] = 'bold';

This line of code inserts 'bold' into the fourth spot in the array, which creates an
array with four elements: ['red', '14px', 'Arial', 'bold']. Notice that when you add
the new item, you use an index value that’s equal to the total number of elements
currently in the array, so you can be sure you’re always adding an item to the end
of an array by using the array’s length property as the index. For example, you can
rewrite the last line of code like this:

properties[properties.length] = 'bold';

You can also use an array’s push() command, which adds whatever you supply
between the parentheses to the end of the array. As with the length property, you
apply push() by adding a period to the array’s name followed by push(). For
example, here’s another way to add an item to the end of the properties array:

properties.push('bold');

Whatever you supply inside the parentheses (in this example the string 'bold') is
added as a new item at the end of the array. You can use any type of value, like a
string, number, Boolean, or even a variable.

One advantage of the push() command is that it lets you add more than one item
to the array. For example, say you want to add three values to the end of an array
named properties, you could do that like this:

properties.push('bold', 'italic', 'underlined');

Note: push(), unshift(), and the other commands associated with arrays are technically called array
methods. In this book, when you see the word method, you can just think of it as a command that accom-
plishes a task.

62 JavaScript: The Missing Manual

Arrays

Adding an item to the beginning of an array

If you want to add an item to the beginning of an array, use the unshift() com-
mand. Here’s an example of adding the ‘bold’ value to the beginning of the properties
array:

var properties = ['red', '14px', 'Arial'];

properties.unshift('bold');

After this code runs, the array properties contains four elements: ['bold', 'red',
'14px', 'Arial']. As with push(), you can use unshift() to insert multiple items at the
beginning of an array:

properties.unshift('bold', 'italic', 'underlined');

Note: Make sure you use the name of the array followed by a period and the method you wish to
use. In other words, push('new item') won’t work. You must first use the array’s name (whatever
name you gave the array when you created it) followed by a period, then the method like this:
authors.push('Stephen King');.

Choosing how to add items to an array

So far, this chapter has shown you three ways to add items to an array. Table 2-5
compares these techniques. Each of these commands accomplishes similar tasks, so
the one you choose depends on the circumstances of your program. If the order
that the items are stored in the array doesn’t matter, then any of these methods
work. For example, say you have a page of product pictures, and clicking one pic-
ture adds the product to a shopping cart. You use an array to store the cart items.
The order the items appear in the cart (or the array) doesn’t matter, so you can use
any of these techniques.

However, if you create an array that keeps track of the order in which something
happens, then the method you choose does matter. For example, say you’ve cre-
ated a page that lets visitors create a playlist of songs by clicking song names on the
page. Since a playlist lists songs in the order they should be played, the order is
important. So if each time the visitor clicks a song, the song’s name should go at
the end of the playlist (so it will be the last song played), then use the push()
method.

Table 2-5. Various ways of adding elements to an array

Method Original array Example code Resulting array Explanation

.length
property

var p =
[0,1,2,3]

p[p.length]=4 [0,1,2,3,4] Adds one value
to the end of an
array.

push() var p =
[0,1,2,3]

p.push(4,5,6) [0,1,2,3,4,5,6] Adds one or
more items to
the end of an
array.

Chapter 2: The Grammar of JavaScript 63

Arrays

The push() and unshift() commands return a value (see the Note on the page 55).
To be specific, once push() and unshift() complete their tasks, they supply the
number of items that are in the array. Here’s an example:

var p = [0,1,2,3];

var totalItems = p.push(4,5);

After this code runs, the value stored in totalItems is 6, because there are six items
in the p array.

Deleting Items from an Array
If you want to remove an item from the end or beginning of an array, use the pop()
or shift() commands. Both commands remove one item from the array: the pop()
command removes the item from the end of the array, while shift() removes one
item from the beginning. Table 2-6 compares the two methods.

unshift() var p =
[0,1,2,3]

p.unshift(4,5) [4,5,0,1,2,3] Adds one or
more item to
the beginning
of an array.

Table 2-5. Various ways of adding elements to an array (continued)

Method Original array Example code Resulting array Explanation

POWER USERS’ CLINIC

Creating a Queue
The methods used to add items to an array—push() and
unshift()—and the methods used to remove items from an
array—pop() and shift()—are often used together to pro-
vide a way of accessing items in the order they were cre-
ated. A classic example is a musical playlist. You create the
list by adding songs to it; then, as you play each song, it’s
removed from the list. The songs are played in the order
they appear in the list, so the first song is played and then
removed from the list. This arrangement is similar to a line
at the movies. When you arrive at the movie theater, you
take your place at the end of the line; when the movie’s
about to begin, the doors open and the first person in line
is the first to get in.

In programming circles, this concept is called FIFO for “First
In, First Out.” You can simulate this arrangement using
arrays and the push() and shift() commands. For example
say you had an array named playlist. To add a new song to
the end of the list you’d use push() like this:

playlist.push('Yellow Submarine');

To get the song that’s supposed to play next, you get the
first item in the list like this:

nowPlaying = playlist.shift();

This code removes the first item from the array and stores
it in a variable named nowPlaying. The FIFO concept is use-
ful for creating and managing queues such as a playlist, a
to-do list, or a slideshow of images.

64 JavaScript: The Missing Manual

Arrays

As with push() and unshift(), pop() and shift() return a value once they’ve com-
pleted their tasks of removing an item from an array. In fact, they return the value
that they just removed. So, for example, this code removes a value and stores it in
the variable removedItem:

var p = [0,1,2,3];

var removedItem = p.pop();

The value of removedItem after this code runs is 3 and the array p now contains
[0,1,2].

Note: This chapter’s files include a Web page that lets you interactively test out the different array com-
mands. It’s named array_methods.html and it’s in the tutorials ➝ chapter02 folder. Open the file in a
Web browser and click the various buttons on the Web page to see how the array methods work. (By the
way, all the cool interactivity of that page is all thanks to JavaScript.)

Adding and Deleting with splice()
The techniques in the previous sections for adding and removing array items only
work for the beginning and end of arrays. What if you want to insert an item in the
middle of an array, or remove the item that’s in the third position in the array? For
example, say you write a program that lets visitors create slideshows by selecting
images from a Web page. You could store their selections (for example, informa-
tion about each image such as the src attribute) in an array. However, the visitor
may want to edit his selections—perhaps remove one of the pictures he previously
selected.

JavaScript provides one command—splice()—that lets you add items to an array
and delete items from an array. It’s a powerful command and a little hard to
understand, so we’ll explain it in stages.

Deleting items with splice()

To remove items from an array, tell the splice() command where it should begin
deleting (the index number of the first item to remove) and how many items it
should delete. For example, say you create an array named fruits like this:

var fruit=['apple','pear','kiwi','pomegranate'];

Table 2-6. Two ways of removing an item from an array

Method Original array Example code Resulting array Explanation

pop() var p =
[0,1,2,3]

p.pop() [0,1,2] Removes the last
item from the
array.

shift() var p =
[0,1,2,3]

p.shift() [1,2,3] Removes the first
item from the
array.

Chapter 2: The Grammar of JavaScript 65

Arrays

This code creates an array of four items. To remove 'pear' and 'kiwi' from the
array, you need to tell splice() to begin with the second item (which has an index
of 1, remember) and delete two items like this:

fruit.splice(1,2);

The result as diagrammed in Figure 2-6, is an array with just two strings—'apple'
and 'pomegranate'—left.

Adding items with splice()

The splice() command does double duty: it can also add items in the middle of an
array. To use splice() in this way, provide the index value where the new items
should be located, 0 to indicate that you don’t want to delete any items, then the
list of items to insert: one or more values separated by commas. For example, say
you start out with the fruit array again:

var fruit=['apple','pear','kiwi','pomegranate'];

If you want to add two items in between ‘pear’ and ‘kiwi’ in this list, you can use
splice() like this:

fruit.splice(2,0,'grape','orange');

This code adds two strings—'grape' and 'orange'—starting at index 2. In other
words, 'grape' becomes the third item in the list, 'orange' the fourth, and 'kiwi' and
'pomegranate' are moved to the end. You can see this diagrammed in Figure 2-7.

Figure 2-6:
The splice() method requires two pieces of
information to delete elements from an
array: the index value of where to start
hacking away, and the number of elements
to remove.

66 JavaScript: The Missing Manual

Arrays

Replacing items with splice()

If you want to get really tricky, you can add and delete elements from an array in a
single operation. This maneuver can come in handy when you want to replace one
or more elements in an array with new items, for example, if someone wants to
replace one song in a playlist with another song.

The process is the same as for adding an item, but instead of specifying 0 for the
second piece of information that you supply splice(), you indicate the number of
items you wish to remove. So, if you start with the fruit array again:

var fruit=['apple','pear','kiwi','pomegranate'];

Say you want to replace both 'kiwi' and 'pomegranate' with 'grape' and 'orange',
you can write this statement:

fruit.splice(2,2,'grape','orange');

In this case, the first 2 identifies which index position to start at, the second 2 spec-
ifies how many items to remove, and the other items indicate what should replace
the deleted items. See Figure 2-8 for a clear picture of the process.

Figure 2-7:
Add items in the middle of an array using
splice(). The first number you provide
splice() represents the index position in the
array where the new items will go. Make
sure the second number is a 0; otherwise,
you’ll also delete elements from the array
as you insert new items.

Chapter 2: The Grammar of JavaScript 67

Tutorial: Writing to
a Web Page Using

Tutorial: Writing to a Web Page Using
Arrays
You’ll use arrays in many of the scripts in this book, but to get a quick taste of
creating and using arrays, try this short tutorial.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 2.3.html in the chapter02 folder.

You’ll start by simply creating an array containing four strings. As with the pre-
vious tutorial, this file already contains <script> tags in both the head and body
regions.

2. Between the first set of <script> tags, type the bolded code:

<script type="text/javascript">

var authors = ['Ernest Hemingway',

 'Charlotte Bronte',

 'Dante Alighieri',

 'Emily Dickinson'

];

</script>

Figure 2-8:
When you want to replace items in an array with
new items, you can turn to the splice() method.

68 JavaScript: The Missing Manual

Tutorial: Writing to
a Web Page Using

This code comprises a single JavaScript statement, but it’s broken over five
lines. To create it, type the first line—var authors = ['Ernest Hemingway',—hit
Return, then press the Space bar until you line up under the ' (about 16 spaces),
and then type 'Charlotte Bronte',.

Note: Most HTML editors use a monospaced font like Courier or Courier New for your HTML and Java-
Script code. In a monospaced font, each character is the same width as every other character, so it’s easy
to line up columns (like all the author names in this example). If your text editor doesn’t use Courier or
something similar, you may not be able to line up the names perfectly.

As mentioned on page 59, when you create an array with lots of elements, you
can make your code easier to read if you break it over several lines. You can tell
it’s a single statement since there’s no semicolon until the end of line 5.

This line of code creates an array named authors and stores the names of 4
authors (4 string values) into the array. Next, you’ll access an element of the
array.

3. Locate the second set of <script> tags, and add the code in bold:

<script type="text/javascript">

document.write('<p>The first author is ');

document.write(authors[0] + '</p>');

</script>

The first line starts a new paragraph with some text and an opening
tag—just plain HTML. The next line prints the value stored in the first item of
the authors array and prints the closing and </p> tags to create a
complete HTML paragraph. To access the first item in an array, you use a 0 as
the index—authors[0]—instead of 1.

At this point, it’s a good idea to save your file and preview it in a Web browser.
You should see “The first author is Ernest Hemingway” printed on the screen.
If you don’t, you may have made a typo either when you created the array in
step 2 or 3.

Note: Remember to use the Firefox Error Console described on page 34 to help you locate the source of
any JavaScript errors.

4. Return to your text editor and add the two lines of bolded code below to your
script:

document.write('<p>The last author is ');

document.write(authors[4] + '</p>');

This step is pretty much the same as the previous one, except that you’re print-
ing a different array item. Save the page and preview it in a browser. You’ll see
“undefined” in place of an author’s name (see Figure 2-9). Don’t worry; that’s

Chapter 2: The Grammar of JavaScript 69

Tutorial: Writing to
a Web Page Using

intentional. Remember that an array’s index values begin at 0, so the last item is
actually the total number of items in the array minus 1. In this case, there are
four strings stored in the authors array, so that last item would actually be
accessed with authors[3].

Note: If you try to read the value of an item using an index value that doesn’t exist, you’ll end up with
the JavaScript “undefined” value. All that means is that there’s no value stored in that index position.

Fortunately, there’s an easy technique for retrieving the last item in an array no
matter how many items are stored in the array.

5. Return to your text editor and edit the code you just entered. Erase the 4 and
add the bolded code in its place:

document.write('<p>The last author is ');

document.write(authors[authors.length-1] + '</p>');

As you’ll recall from page 60, an array’s length property stores the number of
items in the array. So the total number of items in the authors array can be
found with this code authors.length. At this point in the script, that turns out to
be 4.

Knowing that the index value of the last item in an array is always 1 less than
the total number of items in an array, you just subtract one from the total to get
the index number of the last item: authors.length-1. You can provide that little
equation as the index value when accessing the last item in an array:
authors[authors.length-1].

You’ll finish up by adding one more item to the beginning of the array.

Figure 2-9:
If you try to access an
array element that
doesn’t exist, then you’ll
end up with the value
“undefined.”

70 JavaScript: The Missing Manual

Tutorial: Writing to
a Web Page Using

6. Add another line of code after the ones you added in step 5:

authors.unshift('Stan Lee');

As you read on page 62, the unshift() method adds one or more items to the
beginning of an array. After this line of code runs the authors array will now be
['Stan Lee', 'Ernest Hemingway',

Finally, you’ll print out the newly added item on the page.

7. Add the three more lines (bolded below) so that your final code looks like this:

document.write('<p>The first author is ');

document.write(authors[0] + '</p>');

document.write('<p>The last author is ');

document.write(authors[authors.length-1] + '</p>');

authors.unshift('Stan Lee');

document.write('<p>I almost forgot ');

document.write(authors[0]);

document.write('</p>');

Save the file and preview it in a Web browser. You should see something like
Figure 2-10. If you don’t, remember the error console in Firefox can help you
locate the error (page 34).

Figure 2-10:
OK, Stan Lee may not be
your idea of a literary
giant, but at least he’s
helping you learn how
arrays work.

Chapter 2: The Grammar of JavaScript 71

Comments

Comments
There are times when you’re in the midst of programming and you feel like you
understand everything that’s going on in your program. Every line of code makes
sense, and better yet, it works! But a month or two later, when your boss or a client
asks you to make a change or add a new feature to that cool script you wrote, you
might find yourself scratching your head the moment you look at your once-familiar
JavaScript: what’s that variable for? Why’d I program it like that? What’s going on
in this section of the program?

It’s easy to forget how a program works and why you wrote your code the way you
did. Fortunately, most programming languages provide a way for programmers to
leave notes for themselves or other programmers who might look through their
code. JavaScript lets you leave comments throughout your code. If you’ve used
HTML or CSS comments, these should feel familiar. A comment is simply a line or
more worth of notes: the JavaScript interpreter ignores them, but they can provide
valuable information on how your program works.

The syntax for JavaScript comments is the same as for CSS. To create a single line
comment, precede the comment with double forward slashes:

// this is a comment

You can also add a comment after a JavaScript statement:

var price = 10; // set the initial cost of the widget

The JavaScript interpreter executes everything on this line until it reaches the //,
and then it skips to the beginning of the next line.

You can also add several lines worth of comments by beginning the comments
with /* and ending them with */. The JavaScript interpreter ignores all of the text
between these two sets of symbols. For example, say you want to give a description
of how a program works at the beginning of your code. You can do that like this:

/*

 JavaScript Slideshow:

 This program automates the display of

 images in a pop-up window.

*/

You don’t need to leave the /* and */ on their own lines, either. In fact, you can
create a single line JavaScript comment with them:

/* this is a single line comment */

In general, if you want to just write a short, one-line comment, use //. For several
lines of comments, use the /* and */ combination.

72 JavaScript: The Missing Manual

Comments

When to Use Comments
Comments are an invaluable tool for a program that’s moderately long or com-
plex and that you want to keep using (and perhaps changing) in the future. While
the simple scripts you’ve learned so far are only a line or two of code, you’ll even-
tually be creating longer and much more complex programs. To make sure you
can quickly figure out what’s going on in a script, it’s a good idea to add com-
ments to help you understand the overall logic of the program and to explain any
particularly confusing or complex bits.

Tip: Adding lots of comments to a script makes the script larger (and slower to download). However, as
you’ll learn on page 502, there are ways to make JavaScript files smaller and faster.

Many programmers add a block of comments at the beginning of an external Java-
Script file. These comments can explain what the script is supposed to do, identify
the date the script was created, include a version number for frequently updated
scripts, and provide copyright information.

For example, at the beginning of the jQuery library’s JavaScript file, you’ll find
this comment:

/*

 * jQuery 1.2.6 - New Wave Javascript

 *

 * Copyright (c) 2008 John Resig (jquery.com)

 * Dual licensed under the MIT (MIT-LICENSE.txt)

 * and GPL (GPL-LICENSE.txt) licenses.

 *

 * $Date$

 * $Rev: 5685 $

 */

At the beginning of the script, you might also include instructions on how to use
the script: variables that might need to be set, anything special you might need to
do to your HTML to make the script work, and so on.

You should also add a comment before a series of complex programming steps.
For example, say you write a script that animates an image across a visitor’s
browser window. One part of that script is determining the image’s current posi-
tion in the browser window. This can take several lines of complex programming;
it’s a good idea to place a comment before that section of the program, so when
you look at the script later, you’ll know exactly what that part of the program does:

// determine x and y positions of image in window

The basic rule of thumb is to add comments anywhere you’ll find them helpful later.
If a line of code is painfully obvious, you probably don’t need a comment. For exam-
ple, there’s no reason to add a comment for simple code like alert(‘hello’), because
it’s pretty obvious what it does (opens an alert box with the word “hello” in it).

Chapter 2: The Grammar of JavaScript 73

Comments

Comments in this Book
Comments are also very helpful when explaining JavaScript. In this book, com-
ments frequently explain what a line of programming does or indicate the results
of a particular statement. For example, you might see a comment like the follow-
ing to show the results of an alert statement:

var a = 'Bob';

var b = 'Smith';

alert(a + ' ' + b); // 'Bob Smith';

The third line ends with a comment that indicates what you should see when you
preview this code in a Web browser. If you want to test the code that you read in
this book by adding it to a Web page and viewing it in a Web browser, you can
leave out comments like these when typing the code into a Web page. These types
of comments are intended simply to help you understand what’s happening in the
code as you read along with the book.

As you start to learn some of the more complex commands available in JavaScript,
you’ll begin to manipulate the data in variables. You’ll often see comments in this
book’s code to display what should be stored in the variable after the command is
run. For example, the charAt() command lets you select a character at a specific
point in a string. When you read about how to use that command in this book,
you might see code like this:

var x = "Now is the time for all good programmers.";

alert(x.charAt(2)); // 'w'

The comment // 'w' that appears at the end of the second line indicates what you
should see in an alert dialogue if this code were actually run in a Web browser.
(And, yes, 'w' is correct. Strings are like arrays in that the first letter in a string has
an index position of 0. So charAt(2) retrieves the third character from the string.
Sometimes programming just hurts your brain.)

75

Chapter 3chapter

3

Adding Logic and
Control to Your
Programs

So far you’ve learned about some of JavaScript’s basic building blocks. But simply
creating a variable and storing a string or number in it doesn’t accomplish much.
And building an array with a long list of items won’t be very useful unless there’s
an easy way to work your way through the items in the array. In this chapter, you’ll
learn how to make your programs react intelligently and work more efficiently by
using conditional statements, loops, and functions.

Making Programs React Intelligently
Our lives are filled with choices: “What should I wear today?”, “What should I eat
for lunch?”, “What should I do Friday night?”, and so on. Many choices you make
depend on other circumstances. For example, say you decide you want to go to the
movies on Friday night. You’ll probably ask yourself a bunch of questions like “Are
there any good movies out?”, “Is there a movie playing at the right time?”, “Do I
have enough money to go to the movies (and buy a $17 bag of popcorn)?”

Suppose there is a movie that’s playing at just the time you want to go. You then
ask yourself a simple question: “Do I have enough money?” If the answer is yes,
you’ll head out to the movie. If the answer is no, you won’t go. But on another Fri-
day, you do have enough money, so you go to the movies. This scenario is just a
simple example of how the circumstances around us affect the decisions we make.

JavaScript has the same kind of decision-making feature called conditional state-
ments. At its most basic, a conditional statement is a simple yes or no question.

76 JavaScript: The Missing Manual

Making Programs
React Intelligently

If the answer to the question is yes, your program does one thing; if the answer is
no, it does something else. Conditional statements are one of the most important
programming concepts: they let your programs react to different situations and
behave intelligently. You’ll use them countless times in your programming, but
just to get a clear picture of their usefulness here are a few examples of how they
can come in handy:

• Form validation. When you want to make sure someone filled out all of the
required fields in a form (“Name,” “Address,” “E-mail”, and so on), you’ll use
conditional statements. For example, if the Name field is empty, don’t submit
the form.

• Drag and drop. If you add the ability to drag elements around your Web page,
you might want to check where the visitor drops the element on the page. For
example, if he drops a picture onto an image of a trash can, you make the photo
disappear from the page.

• Evaluating input. If you pop-up a window to ask a visitor a question like
“Would you like to answer a few questions about how great this Web site is?”,
you’ll want your script to react differently depending on how the visitor answers
the question.

Figure 3-1 shows an example of an application that makes use of conditional
statements.

Figure 3-1:
It takes a lot of work to
have fun. A JavaScript-
based game like Solitaire
(http://worldofsolitaire.
com) demonstrates how
a program has to react
differently based on the
conditions of the
program. For example,
when a player drags and
drops a card, the
program has to decide if
the player dropped the
card in a valid location or
not, and then perform
different actions in each
case.

Chapter 3: Adding Logic and Control to Your Programs 77

Making Programs
React Intelligently

Conditional Statement Basics
Conditional statements are also called “if/then” statements, because they perform a
task only if the answer to a question is true: “If I have enough money then I’ll go to
the movies.” The basic structure of a conditional statement looks like this:

if (condition) {

 // some action happens here

}

There are three parts to the statement: if indicates that the programming that fol-
lows is a conditional statement; the parentheses enclose the yes or no question,
called the condition (more on that in a moment); and the curly braces ({ }) mark
the beginning and end of the JavaScript code that should execute if the condition is
true.

Note: In the code listed above, the “// some action happens here” is a JavaScript comment. It’s not code
that actually runs; it’s just a note left in the program, and, in this case, points out to you, the reader, what’s
supposed to go in that part of the code. See page 71 for more on comments.

In many cases, the condition is a comparison between two values. For example, say
you create a game that the player wins when the score is over 100. In this program,
you’ll need a variable to track the player’s score and, at some point, you need to
check to see if that score is more than 100 points. In JavaScript, the code to check if
the player won could look like this:

if (score > 100) {

 alert('You won!');

}

The important part is score > 100. That phrase is the condition, and it simply tests
whether the value stored in the score variable is greater than 100. If it is, then a
“You won!” dialog box appears; if the player’s score is less than or equal to 100,
then the JavaScript interpreter skips the alert and moves onto the next part of the
program. In addition to > (greater than), there are several other operators used to
compare numbers (see Table 3-1).

Tip: Type two spaces (or press the tab key once) before each line of JavaScript code contained within a
pair of braces. The spaces (or tab) indent those lines and makes it easier to see the beginning and ending
brace and to figure out what code belongs inside the conditional statement. Two spaces is a common
technique, but if four spaces make your code easier for you to read, then use four spaces. The examples
in this book always indent code inside braces.

More frequently, you’ll test to see if two values are equal or not. For example, say
you create a JavaScript-based quiz, and one of the questions asks, “How many

78 JavaScript: The Missing Manual

Making Programs
React Intelligently

moons does Saturn have?” The person’s answer is stored in a variable named
answer. You might then write a conditional statement like this:

if (answer == 31) {

 alert('Correct. Saturn has 31 moons.');

}

The double set of equal signs (==) isn’t a typo; it instructs the JavaScript inter-
preter to compare two values and decide whether they’re equal. Remember, in
JavaScript, a single equal sign is the assignment operator that you use to store a
value into a variable:

var score = 0; //stores 0 into the variable score

Because the JavaScript interpreter already assigns a special meaning to a single
equal sign, you need to use two equal signs whenever you want to compare two
values to determine if they’re equal or not.

You can also use the == (called the equality operator) to check to see if two strings
are the same. For example, say you let the user type a color into a form, and if they
type 'red', then you change the background color of the page to red. You could use
the conditional operator for that:

if (enteredColor == 'red') {

 document.body.style.backgroundColor='red';

}

Note: In the code above, don’t worry right now about how the page color is changed. You’ll learn how
to dynamically control CSS properties using JavaScript on page 186.

You can also test to see if two values aren’t the same using the inequality operator:

if (answer != 31) {

 alert("Wrong! That's not how many moons Saturn has.");

}

The exclamation mark translates to “not”, so != means “not equal to.” In this
example, if the value stored in answer is not 31, then the poor test taker would see
the insulting alert message.

Table 3-1. Use these comparison operators to test values as part of a conditional statement

Comparison operator What it means

= = Equal to. Compares two values to see if they’re the same. Can be
used to compare numbers or strings.

!= Not equal to. Compares two values to see if they’re not the same.
Can be used to compare numbers or strings.

Chapter 3: Adding Logic and Control to Your Programs 79

Making Programs
React Intelligently

The code that runs if the condition is true isn’t limited to just a single line of code
as in the previous examples. You can have as many lines of JavaScript between the
opening and closing curly braces as you’d like. For example, as part of the Java-
Script quiz example, you might keep a running tally of how many correct answers
the test-taker gets. So, when the Saturn question is answered correctly, you also
want to add 1 to the test-taker’s total. You would do that as part of the conditional
statement:

if (answer == 31) {

 alert('Correct. Saturn has 31 moons.');

 numCorrect = numCorrect + 1;

}

And you could add additional lines of JavaScript code between the braces as well—
any code that should run if the condition is true.

Adding a Backup Plan
But what if the condition is false? The basic conditional statement in the previous
section doesn’t have a backup plan for a condition that turns out to be false. In the
real world, as you’re deciding what to do Friday night and you don’t have enough
money for the movies, you’d want to do something else. An if statement has its
own kind of backup plan, called an else clause. For example, say as part of the

> Greater than. Compares two numbers and checks if the number
on the left side is greater than the number on the right. For exam-
ple, 2 > 1 is true, since 2 is a bigger number than 1, but 2 > 3 is
false, since 2 isn’t bigger than 3.

< Less than. Compares two numbers and checks if the number on
the left side is less than the number on the right. For example, 2 < 3
is true, since 2 is a smaller number than 3, but 2 < 1 is false, since 2
isn’t less than 1.

>= Greater than or equal to. Compares two numbers and checks if
the number on the left side is greater than or the same value as the
number on the right. For example, 2 >= 2 is true, since 2 is the
same as 2, but 2 >= 3 is false, since 2 isn’t a bigger number 3, nor is
it equal to 3.

<= Less than or equal to. Compares two numbers and checks if the
number on the left side is greater than or the same value as the
number on the right. For example, 2 <= 2 is true, since 2 is the
same as 2, but 2 <= 1 is false, since 2 isn’t a smaller number than 1,
nor is 2 equal to 1.

Table 3-1. Use these comparison operators to test values as part of a conditional statement (continued)

Comparison operator What it means

80 JavaScript: The Missing Manual

Making Programs
React Intelligently

JavaScript testing script, you want to notify the test-taker if he gets the answer
right, or if he gets it wrong. Here’s how you can do that:

if (answer == 31) {

 alert('Correct. Saturn has 31 moons.');

 numCorrect = numCorrect + 1;

} else {

 alert("Wrong! That's not how many moons Saturn has.");

}

This code sets up an either/or situation; only one of the two messages will appear.
If the number 31 is stored in the variable answer, then the “correct” alert appears;
otherwise, the “wrong” alert appears.

To create an else clause, just add “else” after the closing brace for the conditional
statement followed by another pair of braces. You add the code that should exe-
cute if the condition turns out to be false in between the braces. Again, you can
have as many lines of code as you’d like as part of the else clause.

POWER USERS’ CLINIC

The Return of the Boolean
On page 42, you learned about the Boolean values—true
and false. Booleans may not seem very useful at first, but
you’ll find out they’re essential when you start using condi-
tional statements. In fact, since a condition is really just a
yes or no question, the answer to that question is a Boolean
value. For example, check out the following code:

var x = 4;
if (x == 4) {
 //do something
}

The first line of code stores the number 4 into the variable
x. The condition on the next line is a simple question: is the
value stored in x equal to 4? In this case, it is, so the Java-
Script between the curly braces runs. But here’s what really
happens in between the parentheses: the JavaScript inter-
preter converts the condition into a Boolean value; in pro-
gramming-speak, the interpreter evaluates the condition. If
the condition evaluates to true (meaning the answer to the
question is yes), then the code between the braces runs.
However, if the condition evaluates to false, then the code
in the braces is skipped.

One common use of Booleans is to create what’s called a
flag—a variable that marks whether something is true. For
example, when validating a form full of visitor submitted
information, you might start by creating a valid variable
with a Boolean value of true—this means you’re assuming,
at first, that they filled out the form correctly. Then, you’d
run through each form field, and if any field is missing infor-
mation or has the wrong type of information, you change
the value in valid to false. After checking all of the form
fields, you test what’s stored in valid, and if it’s still true, you
submit the form. If it’s not true (meaning one or more form
fields were left blank), you display some error messages
and prevent the form from submitting:

var valid = true;
// lot of other programming gunk happens
in here
// if a field has a problem then you set
valid to false
if (valid) {
 //submit form
} else {
 //print lots of error messages
}

Chapter 3: Adding Logic and Control to Your Programs 81

Making Programs
React Intelligently

Testing More Than One Condition
Sometimes you’ll want to test several conditions and have several possible out-
comes: think of it like a game show where the host says, “Would you like the prize
behind door #1, door #2, or door #3?” You can only pick one. In your day-to-day
activities, you also are often faced with multiple choices like this one.

For example, return to the “What should I do Friday night?” question. You could
expand your entertainment options based on how much money you have and are
willing to spend. For example, you could start off by saying, “If I have more than
$50 I’ll go out to a nice dinner and a movie (and have some popcorn too).” If you
don’t have $50, you might try another test: “If I have $35 or more, I’ll go to a nice
dinner.” If you don’t have $35, then you’d say, “If I have $12 or more, I’ll go to the
movies.” And finally, if you don’t have $12, you might say, “Then I’ll just stay at
home and watch TV.” What a Friday night!

JavaScript lets you perform the same kind of cascading logic using else if state-
ments. It works like this: you start with an if statement, which is option number 1;
you then add one or more else if statements to provide additional questions that
can trigger additional options; and finally, you use the else clause as the fallback
position. Here’s the basic structure in JavaScript:

if (condition) {

 // door #1

} else if (condition2) {

 // door #2

} else {

 // door #3

}

This structure is all you need to create a JavaScript “Friday night planner” pro-
gram. It asks visitors how much money they have, and then determines what they
should do on Friday (sound familiar?). You can use the prompt() command that
you learned about on page 55 to collect the visitor’s response and a series of if/else
if statements to determine what he should do:

var fridayCash = prompt('How much money can you spend?', '');

if (fridayCash >= 50) {

 alert('You should go out to a dinner and a movie.');

} else if (fridayCash >= 35) {

 alert('You should go out to a fine meal.');

} else if (fridayCash >= 12) {

 alert('You should go see a movie.');

} else {

 alert('Looks like you'll be watching TV.');

}

Here’s how this program breaks down step-by-step: The first line opens a prompt
dialog asking the visitor how much he can spend. Whatever the visitor types is

82 JavaScript: The Missing Manual

Making Programs
React Intelligently

stored in a variable named fridayCash. The next line is a test: Is the value the visi-
tor typed 50 or more? If the answer is yes, then an alert appears telling him to go
get a meal and see a movie. At this point, the entire conditional statement is done.
The JavaScript interpreter skips the next else if statement, the following else if state-
ment, and the final else clause. With a conditional statement, only one of the out-
comes can happen, so once the JavaScript interpreter encounters a condition that
evaluates to true, then it runs the JavaScript code between the braces for that con-
dition and skips everything else within the conditional statement.

Suppose the visitor typed 25. The first condition, in this case, wouldn’t be true,
since 25 is a smaller number than 50. So the JavaScript interpreter skips the code
within the braces for that first condition and continues to the else if statement: “Is
25 greater than or equal to 35?” Since the answer is no, it skips the code associated
with that condition and encounters the next else if. At this point, the condition
asks if 25 is greater than or equal to 12; the answer is yes, so an alert box with the
message, “You should go see a movie” appears and the program ends, skipping the
final else clause.

Tip: There’s another way to create a series of conditional statements that all test the same variable, as in
the fridayCash example. Switch statements do the same thing, and you’ll learn about them on page 499.

More Complex Conditions
When you’re dealing with many different variables, you’ll often need even more
complex conditional statements. For example, when validating a required email
address field in a form, you’ll want to make sure both that the field isn’t empty and
that the field contains an email address (and not just random typed letters). Fortu-
nately, JavaScript lets you do these kinds of checks as well.

Making sure more than one condition is true

You’ll often need to make decisions based on a combination of factors. For exam-
ple, you may only want to go to a movie if you have enough money and there’s a
movie you want to see. In this case, you’ll go only if two conditions are true; if
either one is false, then you won’t go to the movie. In JavaScript, you can combine
conditions using what’s called the logical AND operator, which is represented by
two ampersands (&&). You can use it between the two conditions within a single
conditional statement. For example, if you want to check if a number is between 1
and 10, you can do this:

if (a < 10 && a > 1) {

 //the value in a is between 1 and 10

 alert("The value " + a + " is between 1 and 10");

}

Chapter 3: Adding Logic and Control to Your Programs 83

Making Programs
React Intelligently

In this example, there are two conditions: a < 10 asks if the value stored in the vari-
able a is less than 10; the second condition, a > 1, is the same as “Is the value in a
greater than 1?” The JavaScript contained between the braces will run only if both
conditions are true. So if the variable a has the number 0 stored in it, the first con-
dition (a < 10) is true (0 is less than 10), but the second condition is false (0 is not
greater than 1).

You’re not limited to just two conditions. You can connect as many conditions as
you need with the && operator:

if (b>0 && a>0 && c>0) {

 // all three variables are greater than 0

}

This code checks three variables to make sure all three have a value greater than 0.
If just one has a value of 0 or less, then the code between the braces won’t run.

Making sure at least one condition is true

Other times you’ll want to check a series of conditions, but you only need one to
be true. For example, say you’ve added a keyboard control for visitors to jump
from picture to picture in a photo gallery. When the visitor presses the N key, the
next photo appears. In this case, you want her to go to the next picture when she
types either n (lowercase) or, if she has the Caps Lock key pressed, N (uppercase).
You’re looking for a kind of either/or logic: either this key or that key was pressed.
The logical OR operator, represented by two pipe characters (||), comes in handy:

if (key == 'n' || key == 'N') {

 //move to the next photo

}

Tip: To type a pipe character, press Shift-\. The key that types both backslashes and pipe characters is
usually located just above the Return key.

With the OR operator, only one condition needs to be true for the JavaScript that
follows between the braces to run.

As with the AND operator, you can compare more than two conditions. For exam-
ple, say you’ve created a JavaScript racing game. The player has a limited amount
of time, a limited amount of gas, and a limited number of cars (each time he
crashes he loses one car). To make the game more challenging, you want it to come
to an end when any of these three things runs out:

if (gas <= 0 || time <= 0 || cars <= 0) {

 //game is over

}

84 JavaScript: The Missing Manual

Making Programs
React Intelligently

When testing multiple conditions, it’s sometimes difficult to figure out the logic of
the conditional statement. Some programmers group each condition in a set of
parentheses to make the logic easier to grasp:

 if ((key == 'n') || (key == 'N')) {

 //move to the next photo

}

To read this code, simply treat each grouping as a separate test; the results of the
operation between parentheses will always turn out to be either true or false.

Negating a condition

If you’re a Superman fan, you probably know about Bizarro, an anti-hero who
lived on a cubical planet named Htrae (Earth spelled backwards), had a uniform
with a backwards S, and was generally the opposite of Superman in every way.
When Bizarro said “Yes,” he really meant “No”; and when he said “No,” he really
meant “Yes.”

JavaScript programming has an equivalent type of character called the NOT opera-
tor, which is represented by an exclamation mark (!). You’ve already seen the NOT
operator used along with the equal sign to indicate “not equal to”: !=. But the NOT
operator can be used by itself to completely reverse the results of a conditional
statement; in other words, it can make false mean true, and true mean false.

You use the NOT operator when you want to run some code based on a negative
condition. For example, say you’ve created a variable named valid that contains a
Boolean value of either true or false (see the box on page 80). You use this variable
to track whether a visitor correctly filled out a form. When the visitor tries to sub-
mit the form, your JavaScript checks each form field to make sure it passes the
requirements you set up (for example, the field can’t be empty and it has to have
an email address in it). If there’s a problem, like the field is empty, you could then
set valid to false (valid = false).

Now if you want to do something like print out an error and prevent the form
from being submitted, you can write a conditional statement like this:

if (! valid) {

 //print errors and don't submit form

}

The condition ! valid can be translated as “if not valid,” which means if valid is
false, then the condition is true. To figure out the results of a condition that uses the
NOT operator, just evaluate the condition without the NOT operator, then reverse
it. In other words, if the condition results to true, the ! operator changes it to false,
so the conditional statement doesn’t run.

As you can see the NOT operator is very simple to understand (translated from
Bizarro-speak: it’s very confusing, but if you use it long enough, you’ll get used to
it).

Chapter 3: Adding Logic and Control to Your Programs 85

Making Programs
React Intelligently

Nesting Conditional Statements
In large part, computer programming entails making decisions based on informa-
tion the visitor has supplied or on current conditions inside a program. The more
decisions a program makes, the more possible outcomes and the “smarter” the
program seems. In fact, you might find you need to make further decisions after
you’ve gone through one conditional statement.

Suppose, in the “What to do on Friday night?” example, you want to expand the
program to include every night of the week. In that case, you need to first deter-
mine what day of the week it is, and then figure out what to do on that day. So you
might have a conditional statement asking if it’s Friday, and if it is, you’d have
another series of conditional statements to determine what to do on that day:

if (dayOfWeek == 'Friday') {

 var fridayCash = prompt('How much money can you spend?', '');

 if (fridayCash >= 50) {

 alert('You should go out to a dinner and a movie.');

 } else if (fridayCash >= 35) {

 alert('You should go out to a fine meal.');

 } else if (fridayCash >= 12) {

 alert('You should go see a movie.');

 } else {

 alert('Looks like you'll be watching TV.');

 }

}

In this example, the first condition asks if the value stored in the variable dayOf-
Week is the string 'Friday'. If the answer is yes, then a prompt dialog appears, gets
some information from the visitor, and another conditional statements is run. In
other words, the first condition (dayOfWeek == 'Friday') is the doorway to
another series of conditional statements. However, if dayOfWeek isn’t 'Friday',
then the condition is false and the nested conditional statements are skipped.

Tips for Writing Conditional Statements
The example of a nested conditional statement in the last section may look a little
scary. There are lots of (), {}, elses, and ifs. And if you happen to mistype one of
the crucial pieces of a conditional statement, your script won’t work. There are a
few things you can do as you type your JavaScript that can make it easier to work
with conditional statements.

• Type both of the curly braces before you type the code inside them. One of the
most common mistakes programmers make is forgetting to add a final brace to
a conditional statement. To avoid this mistake, type the condition and the

86 JavaScript: The Missing Manual

Tutorial: Using
Conditional
Statements

braces first, then type the JavaScript code that executes when the condition is
true. For example, start a conditional like this:

if (dayOfWeek=='Friday') {

}

In other words, type the if clause and the first brace, hit Return twice, and then
type the last brace. Now that the basic syntax is correct, you can click in the
empty line between the braces and add JavaScript.

• Indent code within braces. You can better visualize the structure of a condi-
tional statement if you indent all of the JavaScript between a pair of braces:

if (a < 10 && a > 1) {

 alert("The value " + a + " is between 1 and 10");

}

By using several spaces (or pressing the Tab key) to indent lines within braces,
it’s easier to identify which code will run as part of the conditional statement. If
you have nested conditional statements, indent each nested statement:

if (a < 10 && a > 1) {

 //first level indenting for first conditional

 alert("The value " + a + " is between 1 and 10");

 if (a==5) {

 //second level indenting for 2nd conditional

 alert(a + " is half of ten.");

 }

}

• Use == for comparing equals. When checking whether two values are equal,
don’t forget to use the equality operator, like this:

if (name == 'Bob') {

A common mistake is to use a single equal sign, like this:

if (name = 'Bob') {

A single equal sign stores a value into a variable, so in this case, the string 'Bob'
would be stored in the variable name. The JavaScript interpreter treats this step
as true, so the code following the condition will always run.

Tutorial: Using Conditional Statements
Conditional statements will become part of your day-to-day JavaScript toolkit. In
this tutorial, you’ll try out conditional statements to control how a script runs.

Note: See the note on page 27 for information on how to download the tutorial files.

Chapter 3: Adding Logic and Control to Your Programs 87

Tutorial: Using
Conditional
Statements

1. In a text editor, open the file 3.1.html in the chapter03 folder.

You’ll start by simply prompting the visitor for a number. This file already con-
tains <script> tags in both the head and body regions.

2. Between the first set of <script> tags, in the page’s <head> section, type the
code in bold:

<script type="text/javascript">

var luckyNumber = prompt('What is your lucky number?','');

</script>

This line of code opens a JavaScript prompt dialog box, asks a question, and
stores whatever the visitor typed into the luckyNumber variable. Next, you’ll add
a conditional statement to check what the visitor typed into the prompt dialog
box.

3. Locate the second set of <script> tags down in the body of the page, and add
the code in bold:

<script type="text/javascript">

if (luckyNumber == 7) {

</script>

Here’s the beginning of the conditional statement; it simply checks to see if the
visitor typed 7.

4. Press Return twice and type the closing brace, so that the code looks like this:

<script type="text/javascript">

if (luckyNumber == 7) {

}

</script>

The closing brace ends the conditional statement. Any JavaScript you add
between the two braces will only run if the condition is true.

Tip: As mentioned on page 85, it’s a good idea to add the closing brace before writing the code that runs
as part of the conditional statement.

5. Click into the empty line above the closing brace. Hit the Space bar twice and
type:

document.write("Hey, 7 is my lucky number too!");

The two spaces before the code indent the line so you can easily see that this
code is part of the conditional statement. The actual JavaScript here should feel
familiar by now—it simply writes a message to the page.

88 JavaScript: The Missing Manual

Tutorial: Using
Conditional
Statements

6. Save the file and preview it in a Web browser. Type 7 when the prompt dialog
appears.

You should see the message “Hey, 7 is my lucky number too!” below the head-
line when the page loads. If you don’t, go over your code and make sure you
typed it correctly (see page 32 for tips on dealing with a broken script). Reload
the page, but this time type a different number. This time, nothing appears
underneath the headline. You’ll add an else clause to print another message.

7. Return to your text editor, and add the bolded text to your page:

<script type="text/javascript">

if (luckyNumber == 7) {

 document.write("Hey, 7 is my lucky number too!");

} else {

 document.write("The number " + luckyNumber + " is lucky for you!");

}

</script>

The else clause provides a backup message, so that if the visitor doesn’t type 7,
she’ll see a different message that includes her lucky number. To round out this
exercise, you’ll add an else if statement to test more values and provide another
message.

8. Add the two bolded lines below to your script:

<script type="text/javascript">

if (luckyNumber == 7) {

 document.write("Hey, 7 is my lucky number too!");

} else if (luckyNumber == 13 || luckyNumber == 24) {

 document.write("Wooh. " + luckyNumber + "? That's an unlucky number!");

} else {

 document.write("The number " + luckyNumber + " is lucky for you!");

}

</script>

At this point, the script first checks to see if 7 is stored in the variable luckyNumber;
if luckyNumber holds a value other than 7, then the else if kicks in. This condi-
tional statement is made up of two conditions, luckyNumber == 13 and lucky-
Number == 24. The ||, called the logical OR operator, makes the entire condi-
tional statement turn out to be true if either of the conditions are true. So if the
visitor types in 13 or 24, a “That’s an unlucky number” message is printed to the
page.

Tip: You add the logical OR operator by typing Shift-\ twice to get ||.

Preview the page in a Web browser, and type 13 when the prompt dialogue
appears. Press the browser’s reload button, and try different numbers as well as

Chapter 3: Adding Logic and Control to Your Programs 89

Tutorial: Using
Conditional
Statements

letters or other characters. You’ll notice that if you type a word or other non-
number character the final else clause kicks in, printing a message like, “The
number asdfg is lucky for you!” Since that doesn’t make a lot of sense, you’ll
pop up another prompt dialog box if your visitor enters a nonnumber the first
time.

9. Return to your text editor, and locate the first set of <script> tags in the
<head> of the page. Add the code in bold:

<script type="text/javascript">

var luckyNumber = prompt('What is your lucky number?','');

luckyNumber = parseInt(luckyNumber, 10);

</script>

This line of code runs the value of luckyNumber through a function named
parseInt(). This JavaScript command takes a value and tries to convert it to an
integer, which is a whole number like 1, 5, or 100. You’ll learn about this com-
mand in the next chapter, on page 135, but for now just realize that if the visi-
tor types in text like “ha ha,” the parseInt() command won’t be able to convert
that to a number; instead, the command will provide a special JavaScript value,
NaN, which stands for “not a number.” You can use that information to pop-
up another prompt dialog box if a number isn’t entered the first time.

10. Add the bolded code to your script:

<script type="text/javascript">

var luckyNumber = prompt('What is your lucky number?','');

luckyNumber = parseInt(luckyNumber);

if (isNaN(luckyNumber)) {

 luckyNumber = prompt('Please, tell me your lucky number.','');

}

</script>

Here again, a conditional statement comes in handy. The condition
isNaN(luckyNumber) uses another JavaScript command that checks to see if
something is a number. Specifically, it checks to see if the value in luckyNumber
is not a number. If the value isn’t a number (for example, the visitor types askls-
dkl), a second prompt appears and asks the question again. If the visitor did
type a number, the second prompt is skipped.

Save the page and preview it in a Web browser again. This time, type a word and
click OK when the prompt dialog box appears. You should then see a second
prompt. Type a number this time. Of course, this script assumes the visitor made
an honest mistake by typing a word the first time, but won’t make the same mis-
take twice. Unfortunately, if the visitor types a word in the second prompt, you
end up with the same problem—you’ll learn how to fix that in the next section.

Note: You’ll find a completed version of this tutorial in the chapter03 tutorial folder: complete_3.1.html.

90 JavaScript: The Missing Manual

Handling Repetitive
Tasks with Loops

Handling Repetitive Tasks with Loops
Sometimes a script needs to repeat the same series of steps over and over again. For
example, say you have a Web form with 30 text fields. When the user submits the
form, you want to make sure that none of the fields are empty. In other words, you
need to perform the same set of actions—check to see if a form field is empty—30
times. Since computers are good at performing repetitive tasks, it makes sense that
JavaScript includes the tools to quickly do the same thing repeatedly.

In programming-speak, performing the same task over and over is called a loop,
and because loops are so common in programming JavaScript offers several differ-
ent types. All do the same thing, just in slightly different ways.

While Loops
A while loop repeats a chunk of code as long as a particular condition is true; in
other words, while the condition is true. The basic structure of a while loop is this:

while (condition) {

 // javascript to repeat

}

The first line introduces the while statement. As with a conditional statement, you
place a condition between the set of parentheses that follow the keyword while.
The condition is any test you’d use in a conditional statement, such as x > 10 or
answer == ‘yes’. And just like a conditional statement, the JavaScript interpreter
runs all of the code that appears between the opening and closing braces if the con-
dition is true.

However, unlike a conditional statement, when the JavaScript interpreter reaches
the closing brace of a while statement, instead of continuing to the next line of the
program, it jumps back to the top of the while statement and tests the condition a
second time. If the condition is again true, the interpreter runs JavaScript between
the braces a second time. This process continues until the condition is no longer
true; then the program continues to the next statement following the loop (see
Figure 3-2).

Figure 3-2:
A while loop runs the JavaScript code between
curly braces as long as the test condition (x < 10 in
this case) is true.

Chapter 3: Adding Logic and Control to Your Programs 91

Handling Repetitive
Tasks with Loops

Say you want to print the numbers 1 to 5 on a page. One possible way to do that is
like this:

document.write('Number 1
');

document.write('Number 2
');

document.write('Number 3
');

document.write('Number 4
');

document.write('Number 5
');

Notice that each line of code is nearly identical: only the number changes from line
to line. In this situation, a loop provides a more efficient way to achieve the same
goal:

var num = 1;

while (num <= 5) {

 document.write('Number ' + num + '
');

 num = num + 1;

}

The first line of code—var num = 1;—isn’t part of the while loop: it sets up a vari-
able to hold the number to be printed to the page. The second line is the start of
the loop. It sets up the test condition. As long as the number stored in the variable
num is less than or equal to 5, the code between the braces runs. When the test
condition is encountered for the first time, the value of num is 1, so the test is true
(1 is less than 5), and the document.write() command executes, writing ‘Number
1
’ to the page (the
 is just an HTML line break to make sure each line
prints onto a separate line on the Web page).

Tip: A more compact way to write num = num +1 (which just adds one to the current number stored in
the variable num) is like this:

num++

This shorthand method also adds one to the variable num (see Table 2-3 on page 52 for more information.)

The last line of the loop—num = num + 1—is very important. Not only does it
increase the value of num by 1 so the next number (2, for example) will print, but
it also makes it possible for the test condition to eventually turn out to be false.
Because the JavaScript code within a while statement repeats as long as the condi-
tion is true, you must change one of the elements of the condition so that the con-
dition eventually becomes false in order to stop the loop and move onto the next
part of the script. If the test condition never turns out to be false, you end up with
what’s called an infinite loop—a program that never ends. Notice what would hap-
pen if you left that line out of the loop:

var num = 1;

while (num <= 5) { // this is an endless loop

 document.write('Number ' + num + '
');

}

92 JavaScript: The Missing Manual

Handling Repetitive
Tasks with Loops

The first time through this loop, the test would ask: Is 1 less than or equal to 5?
The answer is yes, so document.write() runs. At the end of the loop (the last brace),
the JavaScript interpreter goes back to the beginning of the loop and tests the con-
dition again. At this point, num is still 1, so the condition is true again and the
document.write() executes. Again, the JavaScript interpreter returns to the begin-
ning of the loop and tests the condition a third time. You can see where this goes:
an endless number of lines that say “Number 1.”

This simple example also shows some of the flexibility offered by loops. Say, for
example, you wanted to write the numbers 1–100, instead of just 1–5. Instead of
adding lots of additional lines of document.write() commands, you just alter the
test condition like this:

var num = 1;

while (num <= 100) {

 document.write('Number ' + num + '
');

 num = num + 1;

}

Now the loop will execute 100 times, writing 100 lines to the Web page.

Loops and Arrays
You’ll find loops come in handy when dealing with a common JavaScript ele-
ment—an array. As you recall from page 56, an array is a collection of data. You
can think of an array as a kind of shopping list. When you go shopping, you actu-
ally perform a kind of loop: You walk around the store looking for an item on your
list and, when you find it, you put it into your cart; then you look for the next item
on your list, put it into the cart, and so on, and so on until you’ve gone through
the entire list. Then you’re done (this is the same as exiting the loop) and go to the
check out counter (in other words, move to the next step of your “program”).

You can use loops in JavaScript to go through items in an array and perform a task
on each item. For example, say you’re building a program that generates a calen-
dar (see Figure 3-3). The calendar is completely generated using JavaScript, and
you want to print the name of each day of the week on the calendar. You might
start by storing the names of the weeks into an array like this:

var days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', ↵
 'Friday', 'Saturday', 'Sunday'];

Note: The ↵ symbol that appears in the code above indicates that this line of JavaScript code belongs on
a single line. Since the width of this book’s pages sometimes prevents a single line of code from fitting on
a single printed line, this book uses the ↵ symbol to indicate code that should appear together on a sin-
gle line. If you were going to type this code into a text editor, you’d type it as one long line (and leave out
the ↵).

Chapter 3: Adding Logic and Control to Your Programs 93

Handling Repetitive
Tasks with Loops

You can then loop through each item in the array and print it to the page. Remem-
ber that you access one item in an array using the item’s index value. For example,
the first item in the days array above (Monday), is retrieved with days[0]. The sec-
ond item is days[1], and so on.

Here’s how you can use a while loop to print each item in this array:

var counter = 0;

while (counter < days.length) {

 document.write(days[counter] + ', ');

 counter++;

}

The first line—var counter = 0—sets up (or initializes in programmer-speak) a
counter variable that’s used both as part of the test condition, and as the index for
accessing array items. The condition—counter < days.length—just asks if the cur-
rent value stored in the counter variable is less than the number of items in the
array (remember, as described on page 60, the number of items in an array is
stored in the array’s length property). In this case, the condition checks if the
counter is less than 7 (the number of days in the week). If counter is less than 7
then the loop begins, the day of the week is written to the page (followed by a

Figure 3-3:
MooMonth is a free,
open-source JavaScript
calendar system: www.
moomonth.com/demo.

94 JavaScript: The Missing Manual

Handling Repetitive
Tasks with Loops

comma and a period), and the counter is incremented by 1 (counter++ is the same
as counter = counter + 1 [see the Tip on page 91]). After the loop runs, it tries the
test again; the loop continues to run until the test turns out to be false. This pro-
cess is diagrammed in Figure 3-4.

For Loops
JavaScript offers another type of loop, called a for loop, that’s a little more compact
(and a little more confusing). For loops are usually used for repeating a series of
steps a certain number of times, so they often involve some kind of counter vari-
able, a conditional test, and a way of changing the counter variable. In many cases,
a for loop can achieve the same thing as a while loop, with fewer lines of code. For
example, here’s the while loop shown on page 92:

var num = 1;

while (num <= 100) {

 document.write('Number ' + num + '
');

 num = num + 1;

}

You can achieve the same effect using a for loop with only three lines of code:

for (var num=1; num<=100; num++) {

 document.write('Number ' + num + '
');

}

At first, for loops might look a little confusing, but once you figure out the differ-
ent parts of the for statement, they aren’t hard. Each for loop begins with the key-
word for, followed by a set of parentheses containing three parts, and a pair of

Figure 3-4:
For this loop, the condition is
tested 8 times. The last test asks
if 7 is less than 7. It isn’t, so the
while statement is completed,
and the JavaScript interpreter
skips the loop and continues
with the next part of the script.
The final result of this script will
be “Monday, Tuesday,
Wednesday, Thursday, Friday,
Saturday, Sunday”.

Chapter 3: Adding Logic and Control to Your Programs 95

Handling Repetitive
Tasks with Loops

curly braces. As with while loops, the stuff inside curly braces (document.
write('Number ' + num + '
'); in this example) is the JavaScript code that exe-
cutes as part of the loop.

Table 3-2 explains the three parts inside the parentheses, but in a nutshell, the first
part (var num=1;) initializes a counter variable. This step only happens once at the
very beginning of the statement. The second part is the condition, which is tested
to see if the loop is run; the third part is an action that happens at the end of each
loop—it usually changes the value of the counter, so that the test condition even-
tually turns out to be false and the loop ends.

Since for loops provide an easy way to repeat a series of steps a set number of
times, they work really well for working through the elements of an array. The
while loop in Figure 3-4, which writes each item in an array to the page, can be
rewritten using a for loop, like this:

var days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', ↵
 'Friday', 'Saturday', 'Sunday'];

for (var i=0; i<days.length; i++) {

 document.write(days[i] + ', ');

}

Tip: Seasoned programmers often use a very short name for counter variables in for loops. In the code
above, the letter i acts as the name of the counter. A one-letter name (i, j, and z are common) is fast to
type; and since the variable isn’t used for anything except running the loop, there’s no need to provide a
more descriptive name like counter.

The examples so far have counted up to a certain number and then stopped the
loop, but you can also count backwards. For example, say you want to print the
items in an array in reverse order (in other words, the last item in the array prints
first). You can do this:

var example = ['first','second','third','last'];

for (var j = example.length ; j > 0; j--) {

 document.write(example[j-1] + '
');

}

Table 3-2. Understanding the parts of a for loop

Parts of loop What it means When it’s applied

for Introduces the for loop

var num = 1; Set variable num to 1 Only once; at the very beginning of
the statement.

num <= 100; Is num less than or equal to 100? If
yes, then loop again. If not, then
skip loop and continue script

At beginning of the statement and
before each time through the loop

num++ Add 1 to variable num. Same as num
= num + 1

At end of each time through loop

96 JavaScript: The Missing Manual

Handling Repetitive
Tasks with Loops

In this example, the counter variable j starts with the total number of items in the
array (4). Each time through the loop, you test to see if the value in j is greater than
0; if it is, the code between the curly braces is run. Then, 1 is subtracted from j (j--),
and the test is run again. The only tricky part is the way the program accesses the
array item (example[j-1]). Since arrays start with an index of 0, the last item in an
array is one less than the total number of items in the array (as explained on page
59). Here j starts with the total number of items in the array, so in order to access
the last item, you must subtract 1 from j to get the proper item.

Do/While Loops
There’s another, less common type of loop, known as a do/while loop. This type of
loop works nearly identically to a while loop. Its basic structure looks like this:

do {

 // javascript to repeat

} while (condition) ;

In this type of loop, the conditional test happens at the end, after the loop has run.
As a result, the JavaScript code within the curly braces always run at least once.
Even if the condition isn’t ever true, the test isn’t run until after the code runs
once.

There aren’t too many cases where this comes in handy, but it’s very useful when
you want to prompt the user for input. The tutorial you did earlier in this chapter
(page 86) is a good example. That script asks visitors to type in a number. It
includes a bit of a fail-safe system, so that if they don’t type a number, the script
asks them one more time to type a number. Unfortunately, if someone’s really
stubborn and types something other than a number the second time, a nonsensi-
cal message is printed to the page.

However, with a do/while loop, you can continually prompt the visitor for a number
until she types one in. To see how this works, you’ll edit the page you completed
on page 89:

1. In a text editor, open the 3.1.html page you completed on page 89.

(If you didn’t complete that tutorial, you can just open the file complete_3.1.
html.) You’ll replace the code near the top of the page with a do/while loop.

2. Locate the code between the <script> tags in the <head> of the page, and
delete the code in bold below:

var luckyNumber = prompt('What is your lucky number?','');

luckyNumber = parseInt(luckyNumber, 10);

if (isNaN(luckyNumber)) {

 luckyNumber = prompt('Please, tell me your lucky number.','');

}

The code you deleted provided the second prompt dialog box. You won’t need
that anymore. Instead, you’ll wrap the code that’s left inside a do/while loop.

Chapter 3: Adding Logic and Control to Your Programs 97

Functions: Turn
Useful Code Into

Reusable Commands

3. Place the cursor before the first line of code (the line that begins with var
luckyNumber) and type:

do {

This code creates the beginning of the loop. Next, you’ll finish the loop and add
the test condition.

4. Click at the end of the last line of JavaScript code in that section and type:
} while (isNaN(luckyNumber));. The completed code block should look like this:

do {

 var luckyNumber = prompt('What is your lucky number?','');

 luckyNumber = parseInt(luckyNumber, 10);

} while (isNaN(luckyNumber));

Save this file and preview it in a Web browser. Try typing text and other non-
numeric symbols in the prompt dialog. That annoying dialog continues to appear
until you actually type a number.

Here’s how it works: the do keyword tells the JavaScript interpreter that it’s about
to enter a do/while loop. The next two lines are then run, so the prompt appears
and the visitor’s answer is converted to a whole number. It’s only at this point that
the condition is tested. It’s the same condition as the script on page 89: it just
checks to see if the input retrieved from the visitor is “not a number.” If the input
isn’t a number, the loop repeats. In other words, the prompt will keep reappearing
as long as a nonnumber is entered. The good thing about this approach is that it
guarantees that the prompt appears at least once, so if the visitor does type a num-
ber in response to the question, there is no loop.

Functions: Turn Useful Code Into Reusable
Commands
Imagine that at work you’ve just gotten a new assistant to help you with your every
task (time to file this book under “fantasy fiction”). Suppose you got hungry for a
piece of pizza, but since the assistant was new to the building and the area, you had
to give him detailed directions: “Go out this door, turn right, go to the elevator,
take the elevator to the first floor, walk out of the building…” and so on. The assis-
tant follows your directions and brings you a slice. A couple hours later you’re
hungry again, and you want more pizza. Now, you don’t have to go through the
whole set of directions again— “Go out this door, turn right, go to the eleva-
tor…”. By this time, your assistant knows where the pizza joint is, so you just say,
“Get me a slice of pizza,” and he goes to the pizza place and returns with a slice.

In other words, you only need to provide detailed directions a single time; your
assistant memorizes those steps and with the simple phrase “Get me a slice” he
instantly leaves and reappears a little while later with a piece of pizza. JavaScript
has an equivalent mechanism called a function. A function is a series of program-
ming steps that you set up at the beginning of your script—the equivalent of

98 JavaScript: The Missing Manual

Functions: Turn
Useful Code Into
Reusable Commands

providing detailed directions to your assistant. Those steps aren’t actually run
when you create the function; instead, they’re stored in the Web browser’s mem-
ory, where you can call upon them whenever you need those steps performed.

Functions are invaluable for efficiently performing multiple programming steps
repeatedly: for example, say you create a photo gallery Web page filled with 50
small thumbnail images. When someone clicks one of the small photos, you might
want the page to dim, a caption to appear, and a larger version of that image to fill
the screen (you’ll learn to do just that on page 254). Each time someone clicks an
image, the process repeats, so on a Web page with 50 small photos, your script
might have to do the same series of steps 50 times. Fortunately, you don’t have to
write the same code 50 times to make this photo gallery work. Instead, you can
write a function with all the necessary steps, and then, with each click of the
thumbnail, you run the function. You write the code once, but run it any time you
like.

The basic structure of a function looks like this:

function functionName() {

 // the JavaScript you want to run

}

The keyword function lets the JavaScript interpreter know you’re creating a func-
tion—it’s similar to how you use if to begin an if/else statement or var to create a
variable. Next you provide a function name; as with a variable, you get to choose
your own function name. Follow the same rules listed on page 44 for naming vari-
ables. In addition, it’s common to include a verb in a function name like calculateTax,
getScreenHeight, updatePage, or fadeImage. An active name makes it clear that it
does something and makes it easier to distinguish between function and variable
names.

Directly following the name, you add a pair of parentheses, which are another
characteristic of functions. After the parentheses, there’s a space followed by a
curly brace, one or more lines of JavaScript and a final, closing curly brace. As with
if statements, the curly braces mark the beginning and end of the JavaScript code
that make up the function.

Tip: As with if/else statements, functions are more easily read if you indent the JavaScript code between
the curly braces. Two spaces (or a tab) at the beginning of each line are common.

Here’s a very simple function to print out the current date in a format like “Sun
May 12 2008”:

function printToday() {

 var today = new Date();

 document.write(today.toDateString());

}

Chapter 3: Adding Logic and Control to Your Programs 99

Functions: Turn
Useful Code Into

Reusable Commands

The function’s name is printToday. It has just two lines of JavaScript code that
retrieve the current date, convert the date to a format we can understand (that’s
the toDateString() part), and then print the results to the page using our old friend
the document.write() command. Don’t worry about how all of the date stuff
works—you’ll find out in the next chapter.

Programmers usually put their functions at the beginning of a script, which sets up
the various functions that the rest of the script will use later. Remember that a
function doesn’t run when it’s first created—it’s like telling your assistant how to
get to the pizza place without actually sending him there. The JavaScript code is
merely stored in the browser’s memory, waiting to be run later, when you need it.

But how do you run a function? In programming-speak you call the function
whenever you want the function to perform its task. Calling the function is just a
matter of writing the function’s name, followed by a pair of parentheses. For
example, to make our printToday function run, you’d simply type:

printToday();

As you can see, making a function run doesn’t take a lot of typing—that’s the
beauty of functions. Once they’re created, you don’t have to add much code to get
results.

Note: When calling a function, don’t forget the parentheses following the function. That’s the part that
makes the function run. For example, printToday won’t do anything, but printToday() executes the function.

Mini-Tutorial
Because functions are such an important concept, here’s a series of steps for you to
practice creating and using a function on a real Web page:

1. In a text editor, open the file 3.2.html.

You’ll start by adding a function in the head of the document.

2. Locate the code between the <script> tags in the <head> of the page, and type
the following code:

function printToday() {

 var today = new Date();

 document.write(today.toDateString());

}

The basic function is in place, but it doesn’t do anything yet.

3. Save the file and preview it in a Web browser.

Nothing happens. Well, actually something does happen; you just don’t see it.
The Web browser read the function statements into memory, and was waiting
for you to actually call the function, which you’ll do next.

100 JavaScript: The Missing Manual

Functions: Turn
Useful Code Into
Reusable Commands

4. Return to your text editor and the 3.2.html file. Locate the <p> tag that begins
with “Today is”, and between the two tags, add the following bolded
code:

<p>Today is <script type="text/javascript">printToday();↵
</script></p>

Note: Remember, when you see the ↵ character, that just means the full line of code wouldn’t fit across
the page of this book. You just type the code on one line in your text editor. Don’t start a new line, and
don’t attempt to type a ↵ character.

Save the page and preview it in a Web browser. The current date is printed to the
page. If you wanted to print the date at the bottom of the Web page as well, all
you’d need to do is call the function a second time.

Giving Information to Your Functions
Functions are even more useful when they receive information. Think back to your
assistant—the fellow who fetches you slices of pizza. The original “function”
described on page 97 was simply directions to the pizza parlor and instructions to
buy a slice and return to the office. When you wanted some pizza, you “called” the
function by telling your assistant “Get me a slice!” Of course, depending on how
you’re feeling, you might want a slice of pepperoni, cheese, or olive pizza. To make
your instructions more flexible, you can tell your assistant what type of slice you’d
like. Each time you request some pizza, you can specify a different type.

JavaScript functions can also accept information, called parameters, which the
function uses to carry out its actions. For example, if you want to create a function
that calculates the total cost of a person’s shopping cart, then the function needs to
know how much each item costs, and how many of each item was ordered.

To start, when you create the function, place the name of a new variable inside the
parentheses—this is the parameter. The basic structure looks like this:

function functionName(parameter) {

 // the JavaScript you want to run

}

The parameter is just a variable, so you supply any valid variable name (see page 44
for tips on naming variables). For example, let’s say you want to save a few key-
strokes each time you print something to a Web page. You create a simple func-
tion that lets you replace the Web browser’s document.write() function with a
shorter name:

function print(message) {

 document.write(message);

}

Chapter 3: Adding Logic and Control to Your Programs 101

Functions: Turn
Useful Code Into

Reusable Commands

The name of this function is print and it has one parameter, named message. When
this function is called, it receives some information (the message to be printed)
and then it uses the document.write() function to write the message to the page. Of
course, a function doesn’t do anything until it’s called, so somewhere else on your
Web page, you can call the function like this:

print('Hello world.');

When this code is run, the print function is called and some text—the string 'Hello
world.'—is sent to the function, which then prints “Hello World.” to the page.
Technically, the process of sending information to a function is called “passing an
argument.” In this example, the text—'Hello world.'—is the argument.

Even with a really simple function like this, the logic of when and how things work
can be a little confusing if you’re new to programming. Here’s how each step
breaks down, as shown in the diagram in Figure 3-5:

1. The function is read by the JavaScript interpreter and stored in memory. This
step just prepares the Web browser to run the function later.

2. The function is called and information—“Hello world.”—is passed to the
function.

3. The information passed to the function is stored in a new variable named mes-
sage. This step is equivalent to var message = 'Hello World.';

4. Finally, the function runs, printing the value stored in the variable message to
the Web page.

A function isn’t limited to a single parameter, either. You can pass any number of
arguments to a function. You just need to specify each parameter in the function,
like this:

function functionName(parameter1, parameter2, parameter3) {

 // the JavaScript you want to run

}

And then call the function with the same number of arguments in the same order:

functionName(argument1, argument2, argument3);

Figure 3-5:
When working with functions, you usually create the
function before you use it. The print() function here is
created in the first three lines of code, but the code inside
the function doesn’t actually run until the last line.

102 JavaScript: The Missing Manual

Functions: Turn
Useful Code Into
Reusable Commands

In this example, when functionName is called, argument1 is stored in parameter1,
argument2 in parameter2, and so on. Expanding on the print function from above,
suppose in addition to printing a message to the Web page, you want to specify an
HTML tag to wrap around the message. This way, you can print the message as a
headline or a paragraph. Here’s what the new function would look like:

function print(message,tag) {

 document.write('<' + tag + '>' + message +'</' + tag + '>');

}

The function call would look like this:

print('Hello world.', 'p');

In this example, you’re passing two arguments—'Hello world.' and 'p'—to the
function. Those values are stored in the function’s two variables—message and tag.
The result is a new paragraph—<p>Hello world.</p>—printed to the page.

You’re not limited to passing just strings to a function either: you can send any
type of JavaScript variable or value to a function. For example, you can send an
array, a variable, a number, or a Boolean value as an argument.

Retrieving Information from Functions
Sometimes a function simply does something like write a message to a page, move
an object across the screen, or validate the form fields on a page. Other times,
you’ll want to get something back from a function: after all, the “Get me a slice of
pizza” function wouldn’t be much good if you didn’t end up with some tasty pizza
at the end. Likewise, a function that calculates the total cost of items in a shopping
cart isn’t very useful unless the function lets you know the final total.

Some of the built-in JavaScript functions we’ve already seen return values. For
example the prompt() command (see page 55) pops up a dialog box with a text
field, whatever the user types in to the box is returned. As you’ve seen, you can
then store that return value into a variable and do something with it:

var answer = prompt('What month were you born?', '');

The visitor’s response to the prompt dialog is stored in the variable answer; you
can then test the value inside that variable using conditional comments or do any
of the many other things JavaScript lets you do with variables.

To return a value from your own functions, you use return followed by the value
you wish to return:

function functionName(parameter1, parameter2) {

 // the JavaScript you want to run

 return value;

}

Chapter 3: Adding Logic and Control to Your Programs 103

Functions: Turn
Useful Code Into

Reusable Commands

For example, say you want to calculate the total cost of a sale including sales tax.
You might create a script like this:

var TAX = .08; // 8% sales tax

function calculateTotal(quantity, price) {

 var total = quantity * price * (1 + TAX);

 var formattedTotal = total.toFixed(2);

 return formattedTotal;

}

The first line stores the tax rate into a variable named TAX (which lets you easily
change the rate simply by updating this line of code). The next three lines define
the function. Don’t worry too much about what’s happening inside the function—
you’ll learn more about working with numbers in the next chapter. The important
part is the fourth line of the function—the return statement. It returns the value
stored in the variable formattedTotal.

To make use of the return value you usually store it inside a variable, so in this
example, you could call the function like this:

var saleTotal = calculateTotal(2, 16.95);

document.write('Total cost is: $' + saleTotal);

In this case, the values 2 and 16.95 are passed to the function. The first number
represents the number of items purchased, and the second their individual cost.
The result is returned from the function and stored into a new variable—sale-
Total—which is then used as part of a document.write() command to print the
total cost of the sale including tax.

You don’t have to store the return value into a variable, however. You can use the
return value directly within another statement like this:

document.write('Total: $' + calculateTotal(2, 16.95));

In this case, the function is called and its return value is added to the string 'Total:
$', which is then printed to the document. At first, this way of using a function
may be hard to read, so you might want to take the extra step of just storing the
function’s results into a variable and then using that variable in your script.

Tip: A function can only return one value. If you want to return multiple items, store the results in an
array and return the array.

Keeping Variables from Colliding
One great advantage of functions is that they can cut down the amount of pro-
gramming you have to do. You’ll probably find yourself using a really useful func-
tion time and time again on different projects. For example, a function that helps
calculate shipping and sales tax could come in handy on every order form you cre-
ate, so you might copy and paste that function into other scripts on your site or on
other projects.

104 JavaScript: The Missing Manual

Functions: Turn
Useful Code Into
Reusable Commands

One potential problem arises when you just plop a function down into an already
created script. What happens if the script uses the same variable names as the func-
tion? Will the function overwrite the variable from the script, or vice versa? For
example:

var message = 'Outside the function';

function warning(message) {

 alert(message);

}

warning('Inside the function'); // 'Inside the function'

alert(message); // 'Outside the function'

Notice that the variable message appears both outside the function (the first line of
the script) and as a parameter in the function. A parameter is really just a variable
that’s filled with data when the function’s called. In this case, the function call—
warning('Inside the function');—passes a string to the function and the function
stores that string in the variable message. It looks like there are now two versions of
the variable message. So what happens to the value in the original message variable
that’s created in the first line of the script?

You might think that the original value stored in message is overwritten with a new
value, the string 'Outside the function'; it’s not. When you run this script, you’ll
see two alert dialogues: the first will say “Inside the function” and the second
“Outside the function.” There are actually two variables named message, but they
exist in separate places (see Figure 3-6).

The JavaScript interpreter treats variables inside of a function differently than vari-
ables declared and created outside of a function. In programming-speak, each
function has its own scope. A function’s scope is like a wall that surrounds the
function—variables inside the wall aren’t visible to the rest of the script outside the
wall. Scope is a pretty confusing concept when you first learn about it, but it’s very
useful. Because a function has its own scope, you don’t have to be afraid that the
names you use for parameters in your function will overwrite or conflict with vari-
ables used in another part of the script.

Figure 3-6:
A function parameter is only visible inside the
function, so the first line of this function—function
warning(message)—will create a new variable
named message that can only be accessed inside
the function. Once the function is done, that
variable disappears.

Chapter 3: Adding Logic and Control to Your Programs 105

Functions: Turn
Useful Code Into

Reusable Commands

So far, the only situation we’ve discussed is the use of variables as parameters. But
what about a variable that’s created inside the function, but not as a parameter,
like this:

var message = 'Outside the function';

function warning() {

 var message ='Inside the function';

 alert(message);

}

warning(); // 'Inside the function'

alert(message); //'Outside the function'

Here, the code creates a message variable twice—in the first line of the script, and
again in the first line inside the function. This situation is the same as with param-
eters—by typing var message inside the function, you’ve created a new variable
inside the function’s scope. This type of variable is called a local variable, since it’s
only visible within the walls of the function—the main script and other functions
can’t see or access this variable.

However, variables created in the main part of a script (outside a function) exist in
global scope. All functions in a script can access variables that are created in its
main body. For example, in the code below, the variable message is created on the
first line of the script—it’s a global variable, and it can be accessed by the function.

var message = 'Global variable';

function warning() {

 alert(message);

}

warning(); // 'Global variable'

This function doesn’t have any parameters and doesn’t define a message variable,
so when the alert(message) part is run, the function looks for a global variable
named message. In this case, that variable exists, so an alert dialog with the text
“Global variable” appears.

There’s one potential gotcha with local and global variables—a variable only exists
within the function’s scope if it’s a parameter, or if the variable is created inside the
function with the var keyword. Figure 3-7 demonstrates this situation. The top
chunk of code demonstrates how both a global variable named message and a func-
tion’s local variable named message can exist side-by-side. The key is the first line
inside the function—var message ='Inside the function';. By using var, you create a
local variable.

Compare that to the code in the bottom half of Figure 3-7. In this case, the func-
tion doesn’t use the var keyword. Instead, the line of code message='Inside the
function'; doesn’t create a new local variable; it simply stores a new value inside the
global variable message. The result? The function clobbers the global variable,
replacing its initial value.

106 JavaScript: The Missing Manual

Tutorial: A Simple
Quiz

The notion of variable scope is pretty confusing, so the preceding discussion may
not make a lot of sense for you right now. But just keep one thing in mind: if the
variables you create in your scripts don’t seem to be holding the values you expect,
you might be running into a scope problem. If that happens, come back and reread
this section.

Tutorial: A Simple Quiz
Now it’s time to bring together the lessons from this chapter and create a com-
plete program. In this tutorial, you’ll create a simple quiz system for asking ques-
tions and evaluating the quiz-taker’s performance. First, this section will look at a
couple of ways you could solve this problem, and discuss efficient techniques for
programming.

As always, the first step is to figure out what exactly the program should do. There
are a few things you want the program to accomplish:

• Ask questions. If you’re going to quiz people, you need a way to ask them ques-
tions. At this point, you know one simple way to get feedback on a Web page:
the prompt() command. In addition, you’ll need a list of questions; since arrays
are good for storing lists of information, you’ll use an array to store your quiz
questions.

Figure 3-7:
There’s a subtle yet crucial
difference when assigning values to
variables within a function. If you
want the variable to only be
accessible to the code inside the
function, make sure to use the var
keyword to create the variable
inside the function (top). If you
don’t use var, you’re just storing a
new value inside the global
variable (bottom).

Chapter 3: Adding Logic and Control to Your Programs 107

Tutorial: A Simple
Quiz

• Let quiz-taker know if she’s right or wrong. First, you need to determine if the
quiz-taker gave the right answer: a conditional statement can take care of that.
Then, to let the quiz taker know if she’s right or wrong, you can use the alert()
command.

• Print the results of the quiz. You need a way to track how well the quiz-taker’s
doing—a variable that keeps track of the number of correct responses will work.
Then, to announce the final results of the quiz, you can either use the alert()
command or the document.write() method.

There are many ways to solve this problem. Some beginning programmers might
take a blunt-force approach and repeat the same code to ask each question. For
example, the JavaScript to ask the first two questions in the quiz might look like
this:

var answer1=prompt('How many moons does Earth have?','');

if (answer1 == 1) {

 alert('Correct!');

} else {

 alert('Sorry. The correct answer is 1');

}

var answer2=prompt('How many moons does Saturn have?','');

if (answer2 == 31) {

 alert('Correct!');

} else {

 alert('Sorry. The correct answer is 31');

}

This kind of approach seems logical, since the goal of the program is to ask one
question after another. However, it’s not an efficient way to program. Whenever
you see the same steps written multiple times in a program, it’s time to consider
using a loop or a function instead. We’ll create a program that does both: uses a
loop to go through each question in the quiz, and a function that performs the
question asking tasks:

1. In a text editor, open the file 3.3.html.

You’ll start by setting up a few variables that can track the number of correct
answers and the questions for the quiz.

2. Locate the code between the <script> tags in the <head> of the page, and type
the following code:

var score = 0;

This variable stores the number of answers the quiz-taker gets right. At the
beginning of the quiz, before any questions have been answered, you set the
variable to 0. Next, you’ll create a list of questions and their answers.

108 JavaScript: The Missing Manual

Tutorial: A Simple
Quiz

3. Hit Return to add a new line and type var questions = [

You’ll be storing all of the questions inside an array, which is really just a vari-
able that can hold multiple items. The code you just typed is the first part of an
array statement. You’ll be typing the array over multiple lines as described on
page 59.

4. Press Return twice to add two new lines and type];. Your code should now
look like this:

var score = 0;

var questions = [

];

Since the quiz is made up of a bunch of questions, it makes sense to store each
question as one item in an array. Then, when you want to ask the quiz ques-
tions, you simply go through each item in the list and ask the question. How-
ever, every question also has an answer, so you need a way to keep track of the
answers as well.

One solution is to create another array—answers[], for example—that holds all
of the answers. To ask the first question, look for the first item in the questions
array, and to see if the answer is correct, look in the first item of the answers
array. However, this has the potential drawback that the two lists might get out
of sync: for example, you add a question in the middle of the questions array,
but put the answer at the beginning of the answers array. At that point, the first
item in the questions array no longer matches the first item in the answers
array.

A better alternative is to use a nested array or (if you really want to sound scary
and out-of-this-world) a multidimensional array. All this really means is that
you create an array that includes the question and the answer, and you store
that array as one item in the questions array. In other words, you create a list
where each item in the list is another list.

5. Click in the empty line between the [and]; and add the code in bold below:

var questions = [

 ['How many moons does Earth have?', 1],

];

The code ['How many moons does Earth have?', 1] is an array of two items. The
first item is a question, and the second item is the answer. This array is the first
item in the array questions. You don’t give this array a name, since it’s nested
inside another array. The comma at the end of the line marks the end of the first
item in the questions array and indicates that another array item will follow.

Chapter 3: Adding Logic and Control to Your Programs 109

Tutorial: A Simple
Quiz

6. Hit Return to create a new, empty line and add the following two bolded lines
to the script:

var questions = [

 ['How many moons does Earth have?', 1],

 ['How many moons does Saturn have?',31],

 ['How many moons does Venus have?', 0]

];

These are two more questions for the quiz. Note that after the last item in an
array, you don’t type a comma. Setting up all of your questions in a single array
provides for a lot of flexibility. If you want to add another question to the list,
just add another array containing a new question and answer.

Now that the basic variables for the quiz are set up, it’s time to figure out how
to ask each question. The questions are stored in an array, and you want to ask
each question in the list. As you’ll recall from page 92, a loop is a perfect way to
go through each item in an array.

7. Click after the]; (the end of the answers array) and hit Return to create a new,
empty line and add the following code:

for (var i=0; i<questions.length; i++) {

This line is the first part of a for loop (page 94). It does three things: First, it cre-
ates a new variable named i and stores the number 0 in it. This variable is the
counter that keeps track of the number of times through the loop. The second
part—i<questions.length—is a condition, as in an if/else statement. It tests to see
if the value in i is less than the number of items in the questions array—if that’s
true, the loop runs again. As soon as i is equal to or greater than the total num-
ber of items in the array, the loop is over. Finally, i++ changes the value of i
each time through the loop—it adds 1 to the value of i.

Now it’s time for the core of the loop—the actual JavaScript that’s performed
each time through the loop.

8. Hit Return to create a new, empty line and add the following line of code:

askQuestion(questions[i]);

Instead of putting all of the programming code for asking the question in the
loop, you’ll merely run a function that asks the questions. The function (which
you’ll create in a moment) is named askQuestion(). Each time through the
loop, you’ll send one item from the questions array to the function—that’s the
questions[i] part. Remember that you access an item in an array using an index
value, so questions[0] is the first item in the array, questions[1] is the second
item, and so on.

By creating a function that asks the questions, you make a more flexible pro-
gram. You can move and reuse the function to another program if you want.
Finally, you’ll finish the loop code.

110 JavaScript: The Missing Manual

Tutorial: A Simple
Quiz

9. Hit Return to create a new, empty line and type } to indicate the end of the
loop. The finished loop code should look like this:

for (var i=0; i<questions.length; i++) {

 askQuestion(questions[i]);

}

Yes, that’s all there is to it—just a simple loop that calls a function with every
question in the quiz. Now, you’ll create the heart of the quiz, the askQuestion()
function.

10. Create an empty line before the for loop you just added.

In other words, you’ll add the function between the two statements that define
the basic variables at the beginning of the script and the loop you just added.
It’s OK to define functions anywhere in your script, but most programmers
place functions near the beginning of the program. In many scripts, global vari-
ables—like score and questions in this script—are defined first, so that you can
see and change those easily; functions appear next, since they usually form the
core of most scripts; and finally the step-by-step actions like the loop appear
last.

11. Add the following code:

function askQuestion(question) {

}

This code indicates the body of the function—it’s always a good idea to type
both the beginning and ending curly braces of a function and then add the
script within them. That way, you won’t accidentally forget to add the closing
curly brace.

This function receives a single argument and stores it in a variable named ques-
tion. Note that this isn’t the same as the questions[] array you created in step 6.
In this case, the question variable will actually be filled by one item from the
questions[] array. As you saw in step 8, one item from that array is actually
another array containing two items, the question and the answer.

12. Add the line in bold below:

function askQuestion(question) {

 var answer = prompt(question[0],'');

}

This should look familiar—your old friend the prompt() command. The only
part that might feel new is question[0]. That’s how you access the first element
in the array question. In this example, the function receives one array, which
includes a question and answer: for example, the first array will be ['How many
moons does Earth have?', 1]. So question[0] accesses the first item—'How many
moons does Earth have'—which is passed to the prompt() command as the
question that will appear in the prompt dialog box.

Chapter 3: Adding Logic and Control to Your Programs 111

Tutorial: A Simple
Quiz

Your program stores whatever the quiz-taker types into the prompt dialog in
the variable answer. Next, you’ll compare the quiz-taker’s response with the
question’s actual answer.

13. Complete the function by adding the code in bold below:

function askQuestion(question) {

 var answer = prompt(question[0],'');

 if (answer == question[1]) {

 alert('Correct!');

 score++;

 } else {

 alert('Sorry. The correct answer is ' + question[1]);

 }

}

This code is just a basic if/else statement. The condition—answer == ques-
tion[1]— checks to see if what the user entered (answer) is the same as the
answer, which is stored as the second item in the array (question[1]). If they
match, then the quiz-taker was right: an alert appears to let her know she got it
right, and her score is increased by one (score++). Of course, if she doesn’t
answer correctly, an alert appears displaying the correct answer.

At this point, the quiz is fully functional. If you save the file and load it into a
Web browser, you’ll be able to take the quiz. However, you haven’t yet pro-
vided the results to the quiz-taker so she can see how many she got correct.
You’ll add a script in the <body> of the Web page to print out the results.

14. Locate the second pair of <script> tags near the bottom of the Web page and
type:

var message = 'You got ' + score;

Here, you create a new variable and store the string 'You got ' plus the quiz-
taker’s score. So if she got all three right, the variable message would be 'You got
3'. To make the script easier to read, you’ll build up a longer message over several
lines.

15. Press return and type:

message += ' out of ' + questions.length;

This adds ' out of ' and the total number of questions to the message string, so
at this point, the message will be something like “You got 3 out of 3”. Now to
finish up the message and print it to the screen.

16. Add the bolded lines of code to your script:

var message = 'You got ' + score;

message += ' out of ' + questions.length;

message += ' questions correct.';

document.write(message);

112 JavaScript: The Missing Manual

Tutorial: A Simple
Quiz

Save the page, and open it in a Web browser. Take the quiz and see how well
you do (see Figure 3-8). If the script doesn’t work, remember to try some of the
troubleshooting techniques mentioned on page 32. You can also compare your
script with a completed, functional version in the file complete_3.3.html.

Try adding additional questions to the questions[] array at the beginning of the
script to make the quiz even longer.

Figure 3-8:
The results of your simple
quiz program. After you
learn more about how to
manipulate a Web page
on page 155, try to
rewrite this quiz program
so that the questions
appear directly within the
web page, and the score
is dynamically updated
after each answer. In
other words, you’ll soon
learn how to ditch that
clunky prompt()
command.

113

Chapter 4chapter

4

Working with Words,
Numbers, and Dates

Storing information in a variable or an array is just the first step in effectively using
data in your programs. As you read in the last chapter, you can use data to make
decisions in a program (“Is the score 0?”). You’ll also frequently manipulate data
by either searching through it (trying to find a particular word in a sentence, for
example), manipulating it (rounding a number to a nearest integer), or reformat-
ting it to display properly (formatting a number like 430 to appear in the proper
monetary format, like $430.00).

This chapter will show you how to accomplish common tasks when working with
strings and numbers. In addition, it’ll introduce the JavaScript Date object, which
lets you determine the current date and time on a visitor’s computer.

A Quick Object Lesson
So far in this book, you’ve learned that you can write something to a Web page
with the document.write() command, and to determine how many items are in an
array, you type the name of the array followed by a period and the word “length,”
like so: days.length. You’re probably wondering what those periods are about.
You’ve made it through three chapters without learning the particulars of this fea-
ture of JavaScript syntax, and it’s time to address them.

You can conceptualize many of the elements of the JavaScript language, as well as
elements of a Web page, as objects. The real world, of course, is filled with objects
too, such as a dog or a car. Most objects are made up of different parts: a dog has a
tail, a head, and four legs; a car has doors, wheels, headlights, a horn, and so on.
An object might also do something—a car can transport passengers, a dog can

114 JavaScript: The Missing Manual

A Quick Object
Lesson

bark. In fact, even a part of an object can do something: for example, a tail can
wag, and a horn can honk. Table 4-1 illustrates one way to show the relationships
between objects, their parts, and actions.

The world of JavaScript is also filled with objects: a browser window, a document,
an array, a string, and a date are just a few examples. Like real-world objects, Java-
Script objects are also made up of different parts. In programming-speak, the parts
of an object are called properties. The actions an object can perform are called
methods, which are basically functions (like the ones you created in the previous
chapter) that are specific to an object (see Table 4-2).

Note: You can always tell a method from a property because methods end in parentheses: write(), for
example.

Each object in JavaScript has its own set of properties and methods. For example,
the array object has a property named length, and the document object has a
method named write(). To access an object’s property or execute one of its meth-
ods, you use dot-syntax—those periods! The dot (period) connects the object with
its property or method. For example, document.write() means “run the write()
method of the document object.” If the real world worked like that, you’d have a
dog wag his tail like this: dog.tail.wag() (of course, in the real world, a doggy treat
works a lot better).

And just as you might own several dogs in the real world, your JavaScript pro-
grams can have multiple versions of the same kind of object. For example, say you
create two simple variables like this:

var first_name = 'Jack';

var last_name = 'Hearts';

Table 4-1. A simplified view of the world

Object Parts Actions

dog bark

tail wag

car transport

horn honk

Table 4-2. Some methods and properties of an array object (see page 56 for more information on
arrays)

An array object Property Method

['Bob', 'Jalia', 'Sonia'] length

push()

pop()

shift()

Chapter 4: Working with Words, Numbers, and Dates 115

A Quick Object
Lesson

You’ve actually created two different string objects. Strings (as you’ll see in this
chapter) have their own set of properties and methods, which are different from
the methods and properties of other objects, like arrays. When you create an object
(also called creating an instance of that object) you can access all of the properties
and methods for that object. You’ve actually been doing that in the last few chap-
ters without even realizing it. For example, you can create an array like this:

var names = ['Jack', 'Queen', 'King'];

The variable names is an instance of an array object. To find out the number of
items in that array, you access that array’s length property using dot notation:

names.length

Likewise, you can add an item to the end of that array by using the array object’s
push() method like this (see page 61 for a refresher on array methods):

names.push('Ace');

Whenever you create a new variable and store a value into it, you’re really creating
a new instance of a particular type of object. So each of these lines of JavaScript
create different types of JavaScript objects:

var first_name = 'Bob'; // a string object

var age = 32; // a number object

var valid = false; // a Boolean object

var data = ['Julia', 22, true]; // an array object composed of other objects

In fact, when you change the type of information stored in a variable, you change
the type of object it is as well. For example, if you create a variable named data that
stores an array, then store a number in the variable, you’ve changed that variable’s
type from an array to a number object:

var data = ['Julia', 22, true]; // an array object composed of other objects

data = 32; //changes to number object

The concepts of objects, properties, methods, and dot-syntax may seem a little
weird at first glance. However, since they are a fundamental part of how JavaScript
works, you’ll get used to them pretty quickly.

Tip: As you continue reading this book, keep in mind these few facts:

• The world of JavaScript is populated with lots of different types of objects.

• Each object has its own properties and methods.

• You access an object’s property or activate an object’s method using dot-syntax: document.write(), for
example.

116 JavaScript: The Missing Manual

Strings

Strings
Strings are the most common type of data you’ll work with: input from form
fields, the path to an image, a URL, and HTML that you wish to replace on a page
are all examples of the letters, symbols, and numbers that make up strings. Conse-
quently, JavaScript provides lot of methods for working with and manipulating
strings.

Determining the Length of a String
There are times when you want to know how many characters are in a string. For
example, say you want to make sure that when someone creates an account on
your top secret Web site, they create a new password that’s more than 6 letters but
no more than 15. Strings have a length property that gives you just this kind of
information. Add a period after the name of the variable, followed by length to get
the number of characters in the string: name.length.

For example, to make sure a password has the proper number of characters, you
could use a conditional statement to test the password’s length like this:

var password = 'sesame';

if (password.length <= 6) {

 alert('That password is too short.');

} else if (password.length > 15) {

 alert('That password is too long.');

}

Note: In the above example, the password is just directly assigned to the variable var password = ‘ses-
ame’. In a real world scenario, you’d get the password from a form field, as described on page 312.

Changing the Case of a String
JavaScript provides two methods to convert strings to all uppercase or all lower-
case, so you can change 'hello' to 'HELLO' or 'NOT' to 'not'. Why, you might ask?
Converting letters in a string to the same case makes comparing two strings easier.
For example, say you created a Quiz program like the one from last chapter (see
page 106) and one of the questions is “Who was the first American to win the Tour
De France?” You might have some code like this to check the quiz-taker’s answer:

var correctAnswer = 'Greg LeMond';

var response = prompt('Who was the first American to win the Tour De↵
France?', '');

if (response == correctAnswer) {

 // correct

} else {

 // incorrect

}

Chapter 4: Working with Words, Numbers, and Dates 117

Strings

The answer is Greg LeMond, but what if the person taking the quiz typed Greg
Lemond? The condition would look like this: 'Greg Lemond' == 'Greg LeMond'.
Since JavaScript treats uppercase letters as different than lowercase letters, the low-
ercase ‘m’ in Lemond wouldn’t match the 'M' in LeMond, so the quiz-taker would
have gotten this question wrong. The same would happen if her key-caps key was
down and she typed GREG LEMOND.

To get around this difficulty, you can convert both strings to the same case and
then compare them:

if (response.toUpperCase() == correctAnswer.toUpperCase()) {

 // correct

} else {

 // incorrect

}

In this case, the conditional statement converts both the quiz-taker’s answer and
the correct answer to uppercase, so 'Greg Lemond' becomes 'GREG LEMOND'
and 'Greg LeMond' becomes 'GREG LEMOND'.

To get the string all lowercase, use the toLowerCase() method like this:

var answer = 'Greg LeMond';

alert(answer.toLowerCase()); // 'greg lemond'

Note that neither of these methods actually alters the original string stored in the
variable—they just return that string in either all uppercase or all lowercase. So in
the above example, answer still contains 'Greg LeMond' even after the alert
appears. (In other words, these methods work just like a function that returns
some other value as described on page 102.)

Searching a String: indexOf() Technique
JavaScript provides several techniques for searching for a word, number, or other
series of characters inside a string. Searching can come in handy, for example, if
you want to know which Web browser a visitor is using to view your Web site.
Every Web browser identifies information about itself in a string containing a lot
of different statistics. You can see that string for yourself by adding this bit of Java-
Script to a page and previewing it in a Web browser:

<script type="text/javascript">

alert(navigator.userAgent);

</script>

Navigator is one of a Web browser’s objects, and userAgent is a property of the
navigator object. The userAgent property contains a long string of information; for
example, on Internet Explorer 7 running on Windows XP, the userAgent property
is: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1). So, if you want to see if
the Web browser was IE 7, you can just search the userAgent string for “MSIE 7”.

118 JavaScript: The Missing Manual

Strings

One method of searching a string is the indexOf() method. Basically, after the
string you add a period, indexOf() and supply the string you’re looking for. The
basic structure looks like this:

string.indexOf('string to look for')

The indexOf() method returns a number: if the search string isn’t found, the
method returns –1. So if you want to check for Internet Explorer, you can do this:

var browser = navigator.userAgent; // this is a string

if (browser.indexOf('MSIE') != -1) {

 // this is Internet Explorer

}

In this case, if indexOf() doesn’t locate the string 'MSIE' in the userAgent string, it
will return –1, so the condition tests to see if the result is not (!=) –1.

When the indexOf() method does find the searched for string, it returns a number
that’s equal to the starting position of the searched for string. The following exam-
ple makes things a lot clearer:

var quote = 'To be, or not to be.'

var searchPosition = quote.indexOf('To be'); // returns 0

Here, indexOf()searches for the position of 'To be' inside the string 'To be, or not
to be.' The larger string begins with 'To be', so indexOf() finds 'To be' at the first
position. But in the wacky way of programming, the first position is considered 0,
the second letter (o) is at position 1, and the third letter (a space in this case) is 2
(as explained on page 59, arrays are counted in the same way).

The indexOf() method searches from the beginning of the string. You can also
search from the end of the string by using the lastIndexOf() method. For example,
in the Shakespeare quote, the word 'be' appears in two places, so you can locate the
first 'be' using indexOf() and the last 'be' with lastIndexOf():

var quote = "To be, or not to be."

var firstPosition = quote.indexOf('be'); // returns 3

var lastPosition = quote.lastIndexOf('be'); // returns 17

The results of those two methods are pictured in Figure 4-1. In both cases, if 'be'
didn’t exist anywhere in the string, the result would be –1, and if there’s only one
instance of the searched-for word, indexOf() and lastIndexOf() will return the
same value—the starting position of the searched for string within the larger
string.

Extracting Part of a String with slice()
To extract part of a string, use the slice() method. This method returns a portion
of a string. For example, say you had a string like “http://www.sawmac.com” and

Chapter 4: Working with Words, Numbers, and Dates 119

Strings

you wanted to eliminate the http:// part. One way to do this is to extract every
character in the string that follows the http:// like this:

var url = 'http://www.sawmac.com';

var domain = url.slice(7); // www.sawmac.com

The slice() method requires a number that indicates the starting index position for
the extracted string (see Figure 4-2). In this example—url.slice(7)—the 7 indicates
the eighth letter in the string (remember, the first letter is at position 0). The
method returns all of the characters starting at the specified index position to the
end of the string.

You can also extract a specific number of characters within a string by supplying a
second argument to the slice() method. Here’s the basic structure of the slice()
method:

string.slice(start, end);

The start value is a number that indicates the first character of the extracted string;
the end value is a little confusing—it’s not the position of the last letter of the
extracted string; it’s actually the position of the last letter + 1. For example, if you
wanted to extract the first five letters of the string 'To be, or not to be.', you would
specify 0 as the first argument, and 5 as the second argument. As you can see in
Figure 4-3, 0 is the first letter in the string, and 5 is the sixth letter, but the last
letter specified is not extracted from the string. In other words, the character speci-
fied by the second argument is never part of the extracted string.

Tip: If you want to extract a specific number of characters from a string, just add that number to the start-
ing value. For example, if you want to retrieve the first 10 letters of a string, the first argument would be 0
(the first letter) and the last would be 0 + 10 or just 10: slice(0,10).

You can also specify negative numbers, for example quote.slice(-6,-1). A negative
number counts backwards from the end of the string, as pictured in Figure 4-3.

Figure 4-1:
The indexOf() and lastIndexOf() methods search for a particular
string inside a larger string. If the search string is found, its position in
the larger string is returned.

Figure 4-2:
If you don’t supply a second argument to the slice() method, it just
extracts a string from the specified position (7 in this example) all
the way to the end of the string.

120 JavaScript: The Missing Manual

Finding Patterns in
Strings

Tip: If you want, say, to extract a string that includes all of the letters from the 6th letter from the end of
the string all the way to the end, you leave off the second argument:

quote.slice(-6);

Finding Patterns in Strings
Sometimes you wish to search a string, not for an exact value, but for a specific
pattern of characters. For example, say you want to make sure when a visitor fills
out an order form, he supplies a phone number in the correct format. You’re not
actually looking for a specific phone number like 503-555-0212. Instead you’re
looking for a general pattern: 3 numbers, a hyphen, three numbers, another
hyphen, and four numbers. You’d like to check the value the visitor entered, and if
it matches the pattern (for example, it’s 415-555-3843, 408-555-3782, or 212-555-
4828, and so on) then everything’s OK. But if it doesn’t match that pattern (for
example, the visitor typed 823lkjxdfglkj) then you’d like to post a message like
“Hey buddy, don’t try to fool us!”

JavaScript lets you use regular expressions to find patterns within a string. A regular
expression is a series of characters that define a pattern that you wish to search for.
As with many programming terms, the name “regular expression” is a bit mislead-
ing. For example, here’s what a common regular expression looks like:

/^[-\w.]+@([a-zA-Z0-9][-a-zA-Z0-9]+\.)+[a-zA-Z]{2,4}$/

Unless you’re a super-alien from Omicron 9, there’s nothing very regular-looking
about a regular expression. To create a pattern you use characters like *, +, ?, and \
w, which are translated by the JavaScript interpreter to match real characters in a
string like letters, numbers, and so on.

Note: Pros often shorten the name regular expression to regex.

Figure 4-3:
The slice() method extracts a portion of a string. The
actual string is not changed in any way. For instance, the
string contained in the quote variable in this example isn’t
changed by quote.slice(0,5). The method simply returns
the extracted string, which you can store inside a variable,
display in an alert box, or even pass as an argument to a
function.

Chapter 4: Working with Words, Numbers, and Dates 121

Finding Patterns in
Strings

Creating and Using a Basic Regular Expression
To create a regular expression in JavaScript, you must create a regular expression
object, which is a series of characters between two forward slashes. For example, to
create a regular expression that matches the word 'hello', you’d type this:

var myMatch = /hello/;

Just as an opening and closing quote mark creates a string, the opening / and clos-
ing / create a regular expression.

There are several string methods that take advantage of regular expressions (you’ll
learn about them starting on page 131), but the most basic method is the search()
method. It works very much like the indexOf() method, but instead of trying to
find one string inside another, larger string, it searches for a pattern (a regular
expression) inside a string. For example, say you want to find 'To be' inside the
string 'To be or not to be.' You saw how to do that with the indexOf() method on
page 117, but here’s how you can do the same thing with a regular expression:

var myRegEx = /To be/; // no quotes around regular expression

var quote = 'To be or not to be.';

var foundPosition = quote.search(myRegEx); // returns 0

If the search() method finds a match, it returns the position of the first letter
matched, and if it doesn’t find a match, it returns –1. So in the above example, the
variable foundPosition is 0, since ‘To be’ begins at the very beginning (the first let-
ter) of the string.

As you’ll recall from page 117, indexOf() method works in the same way. You
might be thinking that if the two methods are the same, why bother with regular
expressions? The benefit of regular expressions is that they can find patterns in a
string, so they can make much more complicated and subtle comparisons than the
indexOf() method, which always looks for a match to an exact string. For exam-
ple, you could use the indexOf() method to find out if a string contains the Web
address http://www.missingmanuals.com/, but you’d have to use a regular expres-
sion to find any text that matches the format of a URL—exactly the kind of thing
you want to do when verifying if someone supplied a Web address when posting a
comment to your blog.

However, to master regular expressions, you need to learn the often confusing
symbols required to construct a regular expression.

Building a Regular Expression
While a regular expression can be made up of a word or words, more often you’ll
use a combination of letters and special symbols to define a pattern that you hope
to match. Regular expressions provide different symbols to indicate different types
of characters. For example, a single period (.) represents a single character, any
character, while \w matches any letter or number (but not spaces, or symbols like $
or %). Table 4-3 provides a list of the most common pattern-matching characters.

http://www.missingmanuals.com/

122 JavaScript: The Missing Manual

Finding Patterns in
Strings

Note: If this entire discussion of “regular” expressions is making your head hurt, you’ll be glad to know
this book provides some useful regular expressions (see page 126) that you can copy and use in your
own scripts (without really knowing how they work).

Learning regular expressions is a topic better presented by example, so the rest of
this section walks you through a few examples of regular expressions to help you
wrap your mind around this topic. Assume you want to match five numbers in a
row—perhaps to check if there’s a U. S. Zip code in a string:

1. Match one number.

The first step is simply to figure out how to match one number. If you refer to
Table 4-3, you’ll see that there’s a special regex symbol for this, \d, which
matches any single number.

2. Match five numbers in a row.

Since \d matches a single number, a simple way to match five numbers is with
this regular expression: \d\d\d\d\d. (Page 124, however, covers a more com-
pact way to write this.)

3. Match only five numbers.

A regular expression is like a precision-guided missile: It sets its target on the
first part of a string that it matches. So, you sometimes end up with a match
that’s part of a complete word or set of characters. This regular expression
matches the first five numbers in a row that it encounters. For example, it will
match 12345 in the number 12345678998. Obviously, 12345678998 isn’t a Zip
code, so you need a regex that targets just five numbers.

The \b character (called the word boundary character) matches any nonletter or
nonnumber character, so you could rewrite your regular expression like this:
\b\d\d\d\d\d\b. You can also use the ^ character to match the beginning of a
string and the $ character to match the end of a string. This trick comes in
handy if you want the entire string to match your regular expression. For exam-
ple, if someone typed “kjasdflkjsdf 88888 lksadflkjsdkfjl” in a Zip code field on
an order form, you might want to ask the visitor to clarify (and fix) their Zip
code before ordering. After all, you’re really looking for something like 97213
(with no other characters in the string). In this case, the regex would be ^\d\d\
d\d\d$.

Note: Zip codes can have more than five numbers. The ZIP + 4 format includes a dash and four addi-
tional numbers after the first five, like this: 97213-1234. For a regular expression to handle this possibility,
see page 126.

Chapter 4: Working with Words, Numbers, and Dates 123

Finding Patterns in
Strings

4. Put your regex into action in JavaScript.

Assume you’ve already captured a user’s input into a variable named zip, and
you want to test to see if the input is in the form of a valid five-number Zip
code:

var zipTest = /^\d\d\d\d\d$/; //create regex

if (zip.search(zipTest) == -1) {

 alert('This is not a valid zip code');

} else {

 // is valid format

}

Table 4-3.

Character Matches

. Any one character—will match a letter, number, space, or other symbol
\w Any word character including a–z, A–Z, the numbers 0–9, and the underscore

character: _.
\W Any character that’s not a word character. It’s the exact opposite of \w.
\d Any digit 0–9.
\D Any character except a digit. The opposite of \d.
\s A space, tab, carriage return, or new line.
\S Anything but a space, tab, carriage return, or new line.
^ The beginning of a string. This is useful for making sure no other characters

come before whatever you’re trying to match.
$ The end of a string. Use $ to make sure the characters you wish to match are at

the end of a string. For example, /com$/ matches the string "com", but only
when it’s the last three letters of the string. In other words, /com$/ would match
"com" in the string "Infocom," but not 'com' in 'communication'.

\b A space, beginning of the string, end of string, or any nonletter or number char-
acter such as +, =, or '. Use \b to match the beginning or ending of a word, even
if that word is at the beginning or ending of a string.

[] Any one character between the brackets. For example, [aeiou] matches any one
of those letters in a string. For a range of characters, use a hyphen: [a-z]
matches any one lower case letter; [0-9] matches any one number (the same as
\d.)

[^] Any character except one in brackets. For example, [^aeiouAEIOU] will match
any character that isn’t a vowel. [^0-9] matches any character that’s not a num-
ber (the same as \D).

| Either the characters before or after the | character. For example, a|b will match
either a or b, but not both. (See page 130 for an example of this symbol in action.)

\ Used to escape any special regex symbol (*,.,\,/, for instance) to search for a lit-
eral example of the symbol in a string. For example, . in regex-speak means
“any character,” but if you want to really match a period in a string you need to
escape it, like this: \. .

124 JavaScript: The Missing Manual

Finding Patterns in
Strings

The regex example in these steps works, but it seems like a lot of work to type \d
five times. What if you want to match 100 numbers in a row? Fortunately, Java-
Script includes several symbols that can match multiple occurrences of the same
character. Table 4-4 includes a list of these symbols. You place the symbol directly
after the character you wish to match.

For example, to match five numbers, you can write \d{5}. The \d matches one
number, then the {5} tells the JavaScript interpreter to match five numbers. So
\d{100} would match 100 digits in a row.

Let’s go through another example. Say you wanted to find the name of any GIF file
in a string. In addition, you want to extract the file name and perhaps use it some-
how in your script (for example, you can use the match() method described on
page 131). In other words, you want to find any string that matches the basic pat-
tern of a GIF file name, such as logo.gif, banner.gif or ad.gif.

1. Identify the common pattern between these names.

To build a regular expression, you first need to know what pattern of charac-
ters you’re searching for. Here, since you’re after GIFs, you know all the file
names will end in .gif. In other words, there can be any number of letters or
numbers or other characters before .gif.

2. Find .gif.

Since you’re after the literal string '.gif', you might think that part of the regular
expression would just be .gif. However, if you check out Table 4-3, you’ll see
that a period has special meaning as a “match any character” character. So .gif
would match “.gif,” but it would also match “tgif.” A period matches any single
character so in addition to matching a period, it will also match the “t” in tgif.
To create a regex with a literal period, add a slash before it; so \. translates to
“find me the period symbol”. So the regex to find .gif would be \.gif.

3. Find any number of characters before .gif.

To find any number of characters, you can use .*, which translates to “find one
character (.) zero or more times (*).” That regular expression matches all of the
letters in any string. However, if you used that to create a regular expression like
.*\.gif, you could end up matching more than just a file name. For example, if
you have the string 'the file is logo.gif', the regex .*\.gif will match the entire
string, when what you really want is just logo.gif. To do that, use the \S charac-
ter, which matches any nonspace character: \S*\.gif matches just logo.gif in the
string.

4. Make the search case-insensitive.

There’s one more wrinkle in this regular expression: it only finds files that end
in .gif, but .GIF is also a valid file extension, so this regex wouldn’t pick up on a
name like logo.GIF. To make a regular expression ignore the difference between

Chapter 4: Working with Words, Numbers, and Dates 125

Finding Patterns in
Strings

upper and lowercase letters, you use the i argument when you create the regu-
lar expression:

/\S*\.gif/i

Notice that the i goes outside of the pattern and to the right of the / that defines
the end of the regular expression pattern.

5. Put it into action:

var testString = 'The file is logo.gif'; // the string to test

var gifRegex = /\S*\.gif/i; // the regular expression

var results = testString.match(gifRegex);

var file = results[0]; // logo.gif

This code pulls out the file name from the string. (You’ll learn how the match()
method works on page 131.)

Grouping Parts of a Pattern
You can use parentheses to create a subgroup within a pattern. Subgroups come
in very handy when using any of the characters in Table 4-4 to match multiple
instances of the same pattern.

For example, say you want to see if a string contains either “Apr” or “April”—both
of those begin with “Apr,” so you know that you want to match that, but you can’t
just match “Apr,” since you’d also match the “Apr” in “Apricot” or “Aprimecorp.”
So, you must match “Apr” followed by a space or other word ending (that’s the \b
regular expression character described in Table 4-3) or April followed by a word

Table 4-4. Characters used for matching multiple occurrences of the same character or pattern

Character Matches

? Zero or one occurrences of the previous item, meaning the previous item is
optional, but if it does appear, it can only appear once. For example the regex
colou?r will match both “color” and “colour,” but not “colouur.”

+ One or more occurrences of the previous item. The previous item must appear
at least once.

* Zero or more occurrences of the previous item. The previous item is optional
and may appear any number of times. For example, .* matches any number of
characters.

{n} An exact number of occurrences of the previous item. For example \d{3} only
matches three numbers in a row.

{n, } The previous item n or more times. For example, a{2,} will match the letter “a”
two or more times: that would match “aa” in the word “aardvark” and “aaaa”
in the word “aaaahhhh.”

{n,m} The previous item at least n times but no more than m times. So \d{3,4} will
match three or four numbers in a row (but not two numbers in a row, nor five
numbers in a row).

126 JavaScript: The Missing Manual

Finding Patterns in
Strings

ending. In other words, the “il” is optional. Here’s how you could do that using
parentheses:

var sentence = 'April is the cruelest month.';

var aprMatch = /Apr(il)?\b/;

if (sentence.search(aprMatch) != -1) {

 // found Apr or April

} else {

 //not found

}

The regular expression used here—/Apr(il)?\b/—makes the “Apr” required, but
the subpattern—(il)—optional (that ? character means zero or one time). Finally,
the \b matches the end of a word, so you won’t match “Apricot” or “Aprilshowers.”
(See the box on page 133 for another use of subpatterns.)

Tip: You can find a complete library of regular expressions at www.regexlib.com. At this Web site, you’ll
find a regular expression for any situation.

Useful Regular Expressions
Creating a regular expression has its challenges. Not only do you need to under-
stand how the different regular expression characters work, but you then must fig-
ure out the proper pattern for different possible searches. For example, if you want
to find a match for a Zip code, you need to take into account the fact that a Zip
code may be just five numbers (97213) or 5+4 (97213-3333). To get you started on
the path to using regular expressions, here are a few common ones.

Note: If you don’t feel like typing these regular expressions (and who could blame you), you’ll find them
already set up for you in a file named example_regex.txt in the chapter04 folder that’s part of the tutorial
download. (See page 27 for information on downloading the tutorial files.)

U.S. Zip code

Postal codes vary from country to country, but in the United States they appear as
either five numbers, or five numbers followed by a hyphen and four numbers.
Here’s the regex that matches both those options:

\d{5}(-\d{4})?

Tip: For regular expressions that match the postal codes of other countries visit http://regexlib.com/
Search.aspx?k=postal+code.

That regular expression breaks down into the following smaller pieces:

• \d{5} matches five digits, as in 97213.

http://www.regexlib.com
http://regexlib.com/Search.aspx?k=postal+code
http://regexlib.com/Search.aspx?k=postal+code

Chapter 4: Working with Words, Numbers, and Dates 127

Finding Patterns in
Strings

• () creates a subpattern. Everything between the parentheses is considered a sin-
gle pattern to be matched. You’ll see why that’s important in a moment.

• -\d{4} matches the hyphen followed by four digits, like this: -1234.

• ? matches zero or one instance of the preceding pattern. Here’s where the
parentheses come in: (-\d{4}) is treated as a single unit, so the ? means match
zero or one instance of a hyphen followed by four digits. Because you don’t
have to include the hyphen + four, that pattern might appear zero times. In
other words, if you’re testing a value like 97213, you’ll still get a match because
the hyphen followed by four digits is optional.

Tip: To make sure an entire string matches a regular expression, begin the regex with ^ and end it with
$. For example, if you want to make sure that someone only typed a validly formatted Zip code into a Zip
code form field, use the regex ^\d{5}(-\d{4})?$. to prevent a response like “blah 97213 blah blah.”

U.S. phone number

U.S. phone numbers have a three-digit area code followed by seven more digits.
However, people write phone numbers in many different ways, like 503-555-1212,
(503) 555-1212, 503.555.1212, or just 503 555 1212. A regex for this pattern is:

\(?(\d{3})\)?[-.](\d{3})[-.](\d{4})

Tip: For regular expressions that match the phone number format of other countries, visit http://regexlib.
com/Search.aspx?k=phone+number.

This regex looks pretty complicated, but if you break it down (and have a good
translation like the following) it comes out making sense:

• \(matches a literal opening parenthesis character. Because parentheses are used
to group patterns (see the Zip code example previously), the opening parenthe-
ses has special meaning in regular expressions. To tell the JavaScript interpreter
to match an actual opening parenthesis, you need to escape the character (just
like escaping the quotes discussed on page 42) with the forward slash character.

• ? indicates that the (character is optional, so a phone number without paren-
theses like 503-555-1212 will still match.

• (\d{3}) is a subpattern that matches any three digits.

• \)? matches an optional closing parenthesis.

• [-.] will match either a space, hyphen, or period. (Note that normally you have
to escape a period like this \. in order to tell the JavaScript interpreter that you
want to match the period character and not treat it as the special regular expres-
sion symbol that matches any character; however, when inside brackets, a
period is always treated literally.)

• (\d{3}) is another subpattern that matches any three digits.

http://regexlib.com/Search.aspx?k=phone+number
http://regexlib.com/Search.aspx?k=phone+number

128 JavaScript: The Missing Manual

Finding Patterns in
Strings

• [-.] will match either a space, hyphen or period.

• (\d{4}) is the last subpattern, and it matches any four digits.

Note: Subpatterns are patterns that appear inside parentheses, as in (\d{3}) in the phone number regu-
lar expression above. They come in very handy when you use the replace(), method as described in the
box on page 133.

Email address

Checking for a valid email address is a common chore when accepting user input
from a form. A lot of people try to get away without trying to provide a valid email
using a response like “none of your business,” or people just mistype their email
address (missing@sawmac.commm for example). The following regex can check to
see if a string contains a properly formatted email address:

[-\w.]+@([A-z0-9][-A-z0-9]+\.)+[A-z]{2,4}

Note: This regex doesn’t check to see if an address is somebody’s real, working email address, it just
checks that it’s formatted like a real email address.

This regex breaks down like this:

• [-\w.]+ matches a hyphen, any word character, or a period one or more times.
So it will match “bob,” “bob.smith,” or “bob-smith.”

• @ is the @ sign you find in an email address: missing@sawmac.com.

• [A-z0-9] matches one letter or number.

• [-A-z0-9]+ matches one or more instances of a letter, number, or hyphen.

• \. is a period character so it would match the period in sawmac.com.

• + matches one or more instances of the pattern that includes the above three
matches. This character allows for subdomain names like bob@mail.sawmac.
com.

• [A-z]{2,4} is any letter 2, 3, or 4 times. This matches the com in .com, or uk in .uk.

Note: The email regex listed above doesn’t match all technically valid email addresses. For example,
!#$%&'*+-/=?^_`.{|}~@example.com is technically a valid email address, but the regex described here
won’t match it. It’s designed to find email addresses that people would actually use. If you really want to
be accurate, you can use the following regex. Type this expression on a single line:

/^[\w!#$%&\'*+\/=?^`{|}~.-]+@(?:[a-z\d][a-z\d-]*(?:\.[a-z\d][a-z\d-]*)?)+\.
(?:[a-z][a-z\d-]+)$/i

missing@sawmac.commm

Chapter 4: Working with Words, Numbers, and Dates 129

Finding Patterns in
Strings

Date

A date can be written in many different ways; for example, 09/28/2008, 9-28-2007,
09 28 2007, or even 09.28.2007. (And those are just formats for the United States.
In other part of the world, the day appears before the month like 28.09.2007.)
Because your visitors may enter a date in any one of these formats, you need a way
to check to see if they supplied a validly formatted date. (In the box on page 133,
you’ll learn how to convert any of these formats into a single, standard format, so
that you can make sure all the dates you receive on a form are formatted correctly.)

Here’s the regex that checks for a correctly entered date:

([01]?\d)[-\/ .]([0123]?\d)[-\/ .](\d{4})

• () surrounds the next two regex patterns to group them. Together they form
the number for the month.

• [01]? matches either 0 or 1 and the ? makes this optional. This is for the first
number in a month. Obviously it can’t be bigger than 1—there’s no 22 month.
In addition, if the month is January through September, you might just get 5
instead of 05. That’s why it’s optional.

• \d matches any number.

• [-\/ .] will match a hyphen, a forward slash, a period, or a space character.
These are the acceptable separators between the month and day, like 10/21, 10 21,
10.21, or 10-21.

• () is the next subpattern, which is meant to capture the day of the month.

• [0123]? matches either 0, 1, 2, or 3 zero or more times. Since there’s no 40th day
of the month, you limit the first number of the month to one of these four dig-
its. This pattern is optional (as determined by the ? character), because some-
one might just type 9 instead of 09 for the ninth day of the month.

• \d matches any digit.

• [-\/ .] is the same as above.

• () captures the year.

• \d{4} matches any four digits, like 1908 or 2880.

Web address

Matching a Web address is useful if you’re asking a visitor for his Web site address
and you want to make sure he’s supplied one, or if you want to scan some text and
identify every URL listed. A basic regular expression for URLs is:

((\bhttps?:\/\/)|(\bwww\.))\S*

This expression is a little tricky because it uses lots of parentheses to group differ-
ent parts of the expression. Figure 4-4 can help guide you through this regular

130 JavaScript: The Missing Manual

Finding Patterns in
Strings

expression. One set of parentheses (labeled 1) wraps around two other parentheti-
cal groups (2 and 3). The | character between the two groups represents “or”. In
other words, the regular expression needs to match either 2 or 3.

• (is the start of the outer group (1 in Figure 4-4).

• (is the start of inner group (2 in Figure 4-4).

• \b matches the beginning of a word.

• http matches the beginning of a complete Web address that begins with http.

• s? is an optional s. Since a Web page may be sent via a secure connection, a valid
Web address may also begin with https.

• :\/\/ matches ://. Since the forward slash has meaning in regular expressions,
you need to precede it by a backslash to match the forward slash character.

•) is the end of the inner group (2 in Figure 4-4). Taken all together, this group
will match either http:// or https://.

• | matches either one or the other group (2 or 3 in Figure 4-4).

• (is the start of second inner group (3 in Figure 4-4).

• \b matches the beginning of a word.

• www\. matches www..

•) is the end of the second inner group (3 in Figure 4-4). This group will capture
a URL that is missing the http:// but begins with www.

•) is the end of the outer group (1 in Figure 4-4). At this point, the regular
expression will match text that begins with http://, https://, or www.

• \S* matches zero or more nonspace characters.

This expression isn’t foolproof (for example, it would match a nonsensical URL
like http://#$*%&*@*), but it’s relatively simple, and will successfully match real
URLs like http://www.sawmac.com/missing/js/index.html.

Tip: To see if a string only contains a URL (nothing comes before or after the URL), use the ^ and
$ characters at the beginning and end of the regular expression and remove the \b characters:
^((https?:\/\/)|(www\.))\S*$.

Figure 4-4:
You can group expressions using parentheses and look for
either one of two expressions by using the | (pipe) character.
For example, the outer expression (1) will match any text that
matches either 2 or 3.

http://www.sawmac.com/missing/js/index.html

Chapter 4: Working with Words, Numbers, and Dates 131

Finding Patterns in
Strings

Matching a Pattern
The search() method described on page 121 is one way to see if a string contains a
particular regular expression pattern. The match() method is another. You can use
it with a string to not only see if a pattern exists within the string, but to also cap-
ture that pattern so that you can use it later in your script. For example, say you
have a text area field on a form for a visitor to add a comment to your site. Per-
haps you want to check if the comments include a URL, and if so, get the URL for
further processing.

The following code finds and captures a URL using match():

// create a variable containing a string with a URL

var text='my web site is www.missingmanuals.com';

// create a regular expression

var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/

// find a match for the regular expression in the string

var url = text.match(urlRegex);

alert(url[0]); // www.missingmanuals.com

First, the code creates a variable containing a string that includes the URL www.
missingmanuals.com. Next, a regular expression matches a URL (see page 129 for
the details on this regex). Finally, it runs the match() method on the string. The
match() function is a string method, so you start with the name of a variable con-
taining a string, add a period, followed by match(). You pass the match() method
a regular expression to match.

In the above example, the variable url holds the results of the match. If the regular
expression pattern isn’t found in the string, then the result is a special JavaScript
value called null. If there is a match, the script returns an array—the first value of
the array is the matched text. For instance, in this example, the variable url con-
tains an array, with the first array element being the matched text. In this case,
url[0] contains www.missingmanuals.com (see page 56 for more on arrays).

Tip: In JavaScript, a null value is treated the same as false, so you could test to see if the match()
method actually matched something like this:

var url = text.match(urlRegex);
if (! url) {
 //no match
} else {
 //match
}

Matching every instance of a pattern

The match() method works in two different ways, depending on how you’ve set up
your regular expression. In the above example, the method returns an array with
the first matched text. So, if you had a long string containing multiple URLs, only

http://www.missingmanuals.com
http://www.missingmanuals.com
http://www.missingmanuals.com

132 JavaScript: The Missing Manual

Finding Patterns in
Strings

the first URL is found. However, you can also turn on a regular expression’s global
search property to search for more than one match in a string.

You make a search global by adding a g at the end of a regular expression when
you create it (just like the i used for a case-insensitive search, as discussed on page
125):

var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/g

Notice that the g goes outside of the ending / (which is used to enclose the actual
pattern). This regular expression performs a global search; when used with the
match() method, it searches for every match within the string and will return an
array of all matched text—a great way to find every URL in a blog entry, for exam-
ple, or every instance of a word in a long block of text.

You could rewrite the code from page 131 using a global search, like this:

// create a variable containing a string with a URL

var text='there are a lot of great web sites like ↵
 www.missingmanuals.com and http://www.oreilly.com';

// create a regular expression with global search

var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/g

// find a match for the regular expression in the string

var url = text.match(urlRegex);

alert(url[0]);

alert(url[1]); // http://www.oreilly.com

You can determine the number of matches by accessing the length property of the
resulting array: url.length. This example will return the number 2, since two URLs
were found in the tested string. In addition, you access each matched string by
using the array’s index number (as described on page 59); so in this example,
url[0] is the first match and url[1] is the second.

Replacing Text
You can also use regular expression to replace text within a string. For example, say
you have a string that contains a date formatted like this: 10.28.2008. However,
you want the date to be formatted like this: 10/28/2008. The replace() method can
do that. It takes this form:

string.replace(regex,'replace');

The replace() method takes two arguments: the first is a regular expression that
you wish to find in the string; the second is a string that replaces any matches to
the regular expression. So, to change the format of 10.28.2008 to 10/28/2008, you
could do this:

1 var date='10.28.2008'; // a string

2 var replaceRegex = /\./g // a regular expression

3 var date = date.replace(replaceRegex, '/'); // replace . with /

4 alert(date); // 10/28/2008

Chapter 4: Working with Words, Numbers, and Dates 133

Finding Patterns in
Strings

Line 1 creates a variable and stores the string '10.28.2008' in it. In a real program,
this string could be input from a form. Line 2 creates the regular expression: the /
and / marks the beginning and end of the regular expression pattern; the \. indi-
cates a literal period; and the g means a global replace—every instance of the
period will be replaced. If you left out the g, only the first matched period would be
replaced, and you’d end up with '10 /28.2008'. Line 3 performs the actual replace-
ment—changing each . to a /, and stores the result back into the date variable.
Finally the newly formed date—10/28/2008—is displayed in an alert box.

Trying Out Regular Expressions
As mentioned on page 126, you’ll find sample regular expressions in the example_
regex.txt file that accompanies the Chapter 4 tutorial files. In addition, you’ll find a
file named regex_tester.html. You can open this Web page in a browser and try
your hand at creating your own regular expressions (see Figure 4-5). Just type the
string you’d like to search in the “String to Search” box, and then type a regular
expression in the box (leave out the beginning and ending / marks used when cre-
ating a regex in JavaScript and just type the search pattern). You can then select the
method you’d like to use—Search, Match, or Replace—and any options, like case-
insensitivity or global search. Click the Run button and see how your regex works.

POWER USERS’ CLINIC

Using Subpatterns to Replace Text
The replace() method not only can replace matched text
(like the . in 10.28.2008) with another string (like /), but it
can also remember subpatterns within a regular expression
and use those subpatterns when replacing text. As
explained in the Note on page 128, a subpattern is any part
of a regular expression enclosed in parentheses. For exam-
ple the (il) in the regular expression /Apr(il)?\b/ is a subpat-
tern.

The use of the replace() method demonstrated on page
132 changes 10.28.2008 to 10/27/2008. But what if you
also want to put other formatted dates like 10 28 2008 or
10-28-2008 into the same 10/27/2008 format? Instead of
writing multiple lines of JavaScript code to replace periods,
spaces, and hyphens, you can create a general pattern to
match any of these formats:

var date='10-28-2008';
var regex = /([01]?\d)[-\/ .]([0123]?\d)[-
\/ .](\d{4})/;
date = date.replace(regex, '$1/$2/$3');

This example uses the regular expression described on
page 129 to match a date. Notice the groups of patterns
within parentheses—for example, ([01]?\d). Each subpat-
tern matches one part of the date. The replace() method
remembers matches to those subpatterns, and can use
them as part of the replacement string. In this case, the
replacement string is ‘$1/$2/$3’. A dollar sign followed by a
number represents one of the matched subpatterns. $1, for
example, matches the first subpattern—the month. So this
replacement string translates to “put the first subpattern
here, followed by a /, followed by the second subpattern
match, followed by another /, and finally followed by the
last subpattern.”

134 JavaScript: The Missing Manual

Numbers

Numbers
Numbers are an important part of programming. They let you perform tasks like
calculating a total sales cost, determining the distance between two points, or sim-
ulating the roll of a die by generating a random number from 1 to 6. JavaScript
gives you many different ways of working with numbers.

Changing a String to a Number
When you create a variable, you can store a number in it like this:

var a = 3.25;

However, there are times when a number is actually a string. For example, if you
use the prompt() method (page 55) to get visitor input, even if someone types 3.25,
you’ll end up with a string that contains a number. In other words, the result will
be '3.25' (a string) and not 3.25 (a number). Frequently, this method doesn’t cause
a problem, since the JavaScript interpreter usually converts a string to a number
when it seems like a number is called for. For example:

var a = '3';

var b = '4';

alert(a*b); // 12

Figure 4-5:
This sample page,
included with the tutorial
files, lets you test out
regular expressions using
different methods—like
Search or Match—and try
different options such as
case-insensitive or global
searches.

Chapter 4: Working with Words, Numbers, and Dates 135

Numbers

In this example, even though the variables a and b are both strings, the JavaScript
interpreter converts them to numbers to perform the multiplication (3 × 4) and
return the result: 12.

However, when you use the + operator, the JavaScript interpreter won’t make that
conversion, and you can end up with some strange results:

var a = '3';

var b = '4';

alert(a+b); // 34

In this case, both a and b are strings; the + operator not only does mathematical
addition, it also combines (concatenates) two strings together (see page 49). So
instead of adding 3 and 4 to get 7, in this example, you end up with two strings
fused together: 34.

When you need to convert a string to a number, JavaScript provides several ways:

• Number() converts whatever string is passed to it into a number, like this:

var a = '3';

a = Number(a); // a is now the number 3

So the problem of adding two strings that contain numbers could be fixed like
this:

var a = '3';

var b = '4';

var total = Number(a) + Number(b); // 7

A faster technique is the + operator, which does the same thing as Number().
Just add a + in front of a variable containing a string, and the JavaScript inter-
preter converts the string to a number.

var a = '3';

var b = '4';

var total = +a + +b // 7

The downside of either of these two techniques is that if the string contains any-
thing except numbers, a single period or a + or – sign at the beginning of the
string, you’ll end up with a nonnumber, or the JavaScript value NaN, which
means “not a number” (see page 50).

• parseInt() tries to convert a string to a number as well. However, unlike
Number(), parseInt() will try to change even a string with letters to a number,
as long as the string begins with numbers. This command can come in handy
when you get a string like '20 years' as the response to a question about some-
one’s age:

var age = '20 years';

age = parseInt(age,10); //20

136 JavaScript: The Missing Manual

Numbers

The parseInt() method looks for either a number or a + or – sign at the begin-
ning of the string and continues to look for numbers until it encounters a non-
number. So in the above example, it returns the number 20 and ignores the
other part of the string, ' years'.

Note: You’re probably wondering what the 10 is doing in parseInt(age,10);. JavaScript can handle Octal
numbers (which are based on 8 different digits 0-7, unlike decimal numbers which are based on 10 differ-
ent digits 0-9); when you add the ,10 to parseInt(), you’re telling the JavaScript interpreter to treat what-
ever the input is as a decimal number. That way, JavaScript correctly interprets a string like ‘08’ in a
prompt window or form field—decimally. For example, in this code age would be equal to 0:

var age = '08 years';
age = parseInt(age);

However, in the following code the variable age would hold the value 8:

var age = '08 years';
age = parseInt(age,10);

In other words, always add the ,10 when using the parseInt() method.

This method is also helpful when dealing with CSS units. For example, if you
want to find the width of an element on a page (you’ll learn how to do that on
page 186), you often end up with a string like this: '200px' (meaning 200 pixels
wide). Using the parseInt() method, you can retrieve just the number value and
then perform some operation on that value.

• parseFloat() is like parseInt(), but you use it when a string might contain a dec-
imal point. For example, if you have a string like '4.5 acres' you can use
parseFloat() to retrieve the entire value including decimal places:

var space = '4.5 acres';

space = parseFloat(space); // 4.5

If you used parseInt() for the above example, you’d end up with just the num-
ber 4, since parseInt() only tries to retrieve whole numbers (integers).

Which of the above methods you use depends on the situation: If your goal is to
add two numbers, but they’re strings, then use Number() or + operator. However,
if you want to extract a number from a string that might include letters, like
'200px' or '1.5em', then use parseInt() to capture whole numbers (200, for exam-
ple) or parseFloat() to capture numbers with decimals (1.5, for example).

Testing for Numbers
When using JavaScript to manipulate user input, you often need to verify that the
information supplied by the visitor is of the correct type. For example, if you ask
for people’s years of birth, you want to make sure they supply a number. Likewise,
when you’re performing a mathematical calculation, if the data you use for the cal-
culation isn’t a number, then your script might break.

Chapter 4: Working with Words, Numbers, and Dates 137

Numbers

To verify that a string is a number, use the isNaN() method. This method takes a
string as an argument and tests whether the string is “not a number.” If the string
contains anything except a plus or minus (for positive and negative numbers) fol-
lowed by numbers and an optional decimal value, it’s considered “not a number,”
so the string '-23.25' is a number, but the string '24 pixels' is not. This method
returns either true (if the string is not a number) or false (if it is a number). You
can use isNaN() as part of a conditional statement like this:

var x = '10'; // is a number

if (isNaN(x)) {

 // is NOT a number

} else {

 // it is a number

}

Rounding Numbers
JavaScript provides a way to round a fractional number to an integer—for exam-
ple, rounding 4.5 up to 5. Rounding comes in handy when you’re performing a
calculation that must result in a whole number. For example, say you’re using
JavaScript to dynamically set a pixel height of a <div> tag on the page based on the
height of the browser window. In other words, the height of the <div> is calcu-
lated using the window’s height. Any calculation you make might result in a deci-
mal value (like 300.25), but since there’s no such thing as .25 pixels, you need to
round the final calculation to the nearest integer (300, for example).

You can round a number using the round() method of the Math object. The
syntax for this looks a little unusual:

Math.round(number)

You pass a number (or variable containing a number) to the round() method, and
it returns an integer. If the original number has a decimal place with a value below
.5, the number is rounded down; if the decimal place is .5 or above, it is rounded
up. For example, 4.4 would round down to 4, while 4.5 rounds up to 5.

var decimalNum = 10.25;

var roundedNum = Math.round(decimalNum); // 10

Note: JavaScript provides two other methods for rounding numbers Math.ceil() and Math.floor().
You use them just like Math.round(), but Math.ceil() always rounds the number up (for example,
Math.ceil(4.0001) returns 5), while Math.floor() always rounds the number down: Math.floor(4.99999)
returns 4. To keep these two methods clear in your mind, think a ceiling is up, and a floor is down.

Formatting Currency Values
When calculating product costs or shopping cart totals, you’ll usually include the
cost, plus two decimals out, like this: 9.99. But even if the monetary value is a
whole number, it’s common to add two zeros, like this: 10.00. And a currency

138 JavaScript: The Missing Manual

Numbers

value like 8.9 is written as 8.90. Unfortunately, JavaScript doesn’t see numbers that
way: it leaves the trailing zeros off (10 instead of 10.00, and 8.9 instead of 8.90, for
example).

Fortunately, there’s a method for numbers called toFixed(), which lets you con-
vert a number to a string that matches the number of decimal places you want. To
use it, add a period after a number (or after the name of a variable containing a
number), followed by toFixed(2):

var cost = 10;

var printCost = '$' + cost.toFixed(2); // $10.00

The number you pass the toFixed() method determines how many decimal places
to go out to. For currency, use 2 to end up with numbers like 10.00 or 9.90; if you
use 3, you end up with 3 decimal places, like 10.000 or 9.900.

If the number starts off with more decimal places than you specify, the number is
rounded to the number of decimal places specified. For example:

var cost = 10.289;

var printCost = '$' + cost.toFixed(2); // $10.29

 In this case, the 10.289 is rounded up to 10.29.

Note: The toFixed() method only works with numbers. So if you use a string, you end up with an error:

var cost='10';//a string
var printCost='$' + cost.toFixed(2);//error

To get around this problem, you need to convert the string to a number as described on page 134, like
this:

var cost='10';//a string
cost = +cost;
var printCost='$' + cost.toFixed(2);//$10.00

Creating a Random Number
Random numbers can help add variety to a program. For example, say you have an
array of questions for a quiz program (like Script 3.3 on page 106). Instead of ask-
ing the same questions in the same order each time, you can randomly select one
question in the array. Or, you could use JavaScript to randomly select the name of
a graphic file from an array and display a different image each time the page loads.
Both of these tasks require a random number.

JavaScript provides the Math.random() method for creating random numbers.
This method returns a randomly generated number between 0 and 1 (for exam-
ple .9716907176080688 or .10345038010895868). While you might not have much
need for numbers like those, you can use some simple math operations to generate
a whole number from 0 to another number. For example, to generate a number
from 0 to 9, you’d use this code:

Math.floor(Math.random()*10);

Chapter 4: Working with Words, Numbers, and Dates 139

Numbers

This code breaks down into two parts. The part inside the Math.floor() method—
Math.random()*10—generates a random number between 0 and 10. That will
generate numbers like 4.190788392268892; and since the random number is
between 0 and 10, it never is 10. To get a whole number, the random result is
passed to the Math.floor() method, which rounds any decimal number down to
the nearest whole number, so 3.4448588848 becomes 3 and .1111939498984
becomes 0.

If you want to get a random number between 1 and another number, just multiply
the random() method (case issue) by the uppermost number and add one to the
total. For example, if you want to simulate a die roll to get a number from 1 to 6:

var roll = Math.floor(Math.random()*6 +1); // 1,2,3,4,5 or 6

Randomly selecting an array element

You can use the Math.random() method to randomly select an item from an array.
As discussed on page 59, each item in an array is accessed using an index number.
The first item in an array uses an index value of 0, and the last item in the array is
accessed with an index number that’s 1 minus the total number of items in the
array. Using the Math.random() method makes it really easy to randomly select an
array item:

var people = ['Ron','Sally','Tricia','Bob']; //create an array

var random = Math.floor(Math.random() * people.length);

var rndPerson = people[random]; //

The first line of this code creates an array with four names. The second line does
two things: First, it generates a random number between 0 and the number of
items in the array (people.length)—in this example, a number between 0 and 4.
Then it uses the Math.floor() method to round down to the nearest integer, so it
will produce the number 0, 1, 2, or 3. Finally, it uses that number to access one ele-
ment from the array and store it in a variable named rndPerson.

A function for selecting a random number

Functions are a great way to create useful, reusable snippets of code (page 97). If
you use random numbers frequently, you might want a simple function to help
you select a random number between any two numbers—for example, a number
between 1 and 6, or 100 and 1,000. The following function is called using two
arguments; The first is the bottom possible value (1 for example), and the second
is the largest possible value (6 for example):

function rndNum(from, to) {

 return Math.floor((Math.random()*(to – from + 1)) + from);

}

To use this function, add it to your Web page (as described on page 98), and then
call it like this:

var dieRoll = rndNum(1,6); // get a number between 1 and 6

140 JavaScript: The Missing Manual

Dates and Times

Dates and Times
If you want to keep track of the current date or time, turn to JavaScript’s Date
object. This special JavaScript object lets you determine the year, month, day of the
week, hour, and more. To use it, you create a variable and store a new Date object
inside it like this:

var now = new Date();

The new Date() command creates a Date object containing the current date and
time. Once created, you can access different pieces of time and date information
using various date-related methods as listed in Table 4-5. For example, to get the
current year use the getFullYear() method like this:

var now = new Date();

var year = now.getFullYear();

Note: new Date() retrieves the current time and date as determined by each visitor’s computer. In other
words, if someone hasn’t correctly set their computer’s clock, then the date and time won’t be accurate.

Getting the Month
To retrieve the month for a Date object, use the getMonth() method, which
returns the month’s number:

var now = new Date();

var month = now.getMonth();

However, instead of returning a number that makes sense to us humans (as in 1
meaning January), this method returns a number that’s one less. For example,

Table 4-5. Methods for accessing parts of the Date object

Method What it returns

getFullYear() The year: 2008, for example.
getMonth() The month as an integer between 0 and 11: 0 is January and 11 is December.
getDate() The day of the month—a number between 1 and 31.
getDay() The day of the week as a number between 0 and 6. 0 is Sunday, and 6 is

Saturday.
getHours() Number of hours on a 24-hour clock (i.e. a number between 0 and 23). For

example, 11p.m. is 23.
getMinutes() Number of minutes between 0 and 59.
getSeconds() Number of seconds between 0 and 59.
getTime() Total number of milliseconds since January 1, 1970 at midnight (see box on

page 142).

Chapter 4: Working with Words, Numbers, and Dates 141

Dates and Times

January is 0, February is 1, and so on. If you want to retrieve a number that
matches how we think of months, just add 1 like this:

var now = new Date();

var month = now.getMonth()+1;//matches the real month

There’s no built-in JavaScript command that tells you the name of a month. Fortu-
nately, JavaScript’s strange way of numbering months comes in handy when you
want to determine the actual name of the month. You can accomplish that by first
creating an array of month names, then accessing a name using the index number
for that month:

var months = ['January','February','March','April','May',

 'June','July','August','September',

 'October','November','December'];

var now = new Date();

var month = months[now.getMonth()];

The first line creates an array with all twelve month names, in the order they occur
(January–December). Remember that to access an array item you use an index
number, and that arrays are numbered starting with 0 (see page 59). So to access
the first item of the array months, you use months[0]. So, by using the getMonth()
method, you can retrieve a number to use as an index for the months array and
thus retrieve the name for that month.

Getting the Day of the Week
The getDay() method retrieves the day of the week. And as with the getMonth()
method, the JavaScript interpreter returns a number that’s one less than what
you’d expect: 0 is considered Sunday, the first day of the week, while Saturday is 6.
Since the name of the day of the week is usually more useful for your visitors, you
can use an array to store the day names and use the getDay() method to access the
particular day in the array, like this:

var days = ['Sunday','Monday','Tuesday','Wednesday',

 'Thursday','Friday','Saturday'];

var now = new Date();

var dayOfWeek = days[now.getDay()];

In the tutorial on page 146, you’ll see use both the getDay() and getMonth() tech-
niques to create a useful function for creating a human-readable date.

Getting the Time
The Date object also contains the current time, so you can display the current time
on a Web page or use the time to determine if the visitor is viewing the page in the
a.m. or p.m. You can then do something with that information, like display a
background image of the sun during the day, or the moon at night.

142 JavaScript: The Missing Manual

Dates and Times

You can use the getHours(), getMinutes(), and getSeconds() methods to get the
hours, minutes, and seconds. So to display the time on a Web page, add the follow-
ing in the HTML where you wish the time to appear:

var now = new Date();

var hours = now.getHours();

var minutes = now.getMinutes();

var seconds = now.getSeconds();

document.write(hours + ":" + minutes + ":" + seconds);

This code produces output like 6:35:56 to indicate 6 a.m., 35 minutes, and 56 sec-
onds. However, it will also produce output that you might not like, like 18:4:9 to
indicate 4 minutes and 9 seconds after 6 p.m. One problem is that most people

POWER USERS’ CLINIC

The Date Object Behind the Scenes
JavaScript lets you access particular elements of the Date
object, such as the year or the day of the month. However,
the JavaScript interpreter actually thinks of a date as the
number of milliseconds that have passed since midnight on
January 1, 1970. For example, Wednesday, July 2, 2008 is
actually 1214982000000 to the JavaScript interpreter.

That isn’t a joke: As far as JavaScript is concerned, the
beginning of time was January 1, 1970. That date (called
the “Unix epoch”) was arbitrarily chosen in the 70s by pro-
grammers creating the Unix operating system, so they
could all agree on a way of keeping track of time. Since
then, this way of tracking a date has become common in
many programming languages and platforms.

Whenever you use a Date method like getFullYear(), the
JavaScript interpreter does the math to figure out (based on
how many seconds have elapsed since January 1, 1970)
what year it is. If you want to see the number of millisec-
onds for a particular date, you use the getTime() method:

var sometime = new Date();
var msElapsed = sometime.getTime();

Tracking dates and times as milliseconds makes it easier to
calculate differences between dates. For example, you can
determine the amount of time until next New Year’s day by
first getting the number of milliseconds that will have
elapsed from 1/1/1970 to when next year rolls around and
then subtracting the number of milliseconds that have
elapsed from 1/1/1970 to today:

// milliseconds from 1/1/1970 to today
var today = new Date();
// milliseconds from 1/1/1970 to next new
year
var nextYear = new Date(2009, 0, 1);
// calculate milliseconds from today to
next year
var timeDiff = nextYear - today;

The result of subtracting two dates is the number of milli-
seconds difference between the two. If you want to convert
that into something useful, just divide it by the number of
milliseconds in a day (to determine how many days) or the
number of milliseconds in an hour (to determine how
many hours), and so on.

var second = 1000; // 1000 milliseconds in
a second
var minute = 60*second; // 60 seconds in a
minute
var hour = 60*minute; // 60 minutes in an
hour
var day = 24*hour; // 24 hours in a day
var totalDays = timeDiff/day; // total
number of days

(In this example, you may have noticed a different way to
create a date: new Date(2009,0,1). You can read more
about this method on page 145.)

Chapter 4: Working with Words, Numbers, and Dates 143

Dates and Times

reading this book, unless they’re in the military, don’t use the 24-hour clock. They
don’t recognize 18 as meaning 6 p.m. An even bigger problem is that times should
be formatted with two digits for minutes and seconds (even if they’re a number
less than 10), like this: 6:04:09. Fortunately, it’s not difficult to adjust the above
script to match those requirements.

Changing hours to a.m. and p.m.

To change hours from a 24-hour clock to a 12-hour clock, you need to do a cou-
ple of things. First, you need to determine if the time is in the morning (so you can
add ‘am’ after the time) or in the afternoon (to append ‘pm’). Second, you need to
convert any hours greater than 12 to their 12-hour clock equivalent (for example,
change 14 to 2 p.m.).

Here’s the code to do that:

1 var now = new Date();

2 var hour = now.getHours();

3 if (hour < 12) {

4 meridiem = 'am';

5 } else {

6 meridiem = 'pm';

7 }

8 hour = hour % 12;

9 if (hour==0) {

10 hour = 12;

11 }

12 hour = hour + ' ' + meridiem;

Note: The column of numbers at the far left is just line numbering to make it easier for you to follow the
discussion below. Don’t type these numbers into your own code!

Lines 1 and 2 grab the current date and time and store the current hour into a vari-
able named hour. Lines 3–7 determine if the hour is in the afternoon or morning;
if the hour is less than 12 (the hour after midnight is 0), then it’s the morning
(a.m.); otherwise, it’s the afternoon (p.m.).

Line 8 introduces a mathematical operator called modulus and represented by a
percent (%) sign. It returns the remainder of a division operation. For example, 2
divides into 5 two times (2 × 2 is 4), with 1 left over. In other words, 5 % 2 is 1. So
in this case, if the hour is 18, 18 % 12 results in 6 (12 goes into 18 once with a
remainder of 6). 18 is 6 p.m., which is what you want. If the first number is smaller
than the number divided into it (for example, 8 divided by 12), then the result is
the original number. For example, 8 % 12 just returns 8; in other words, the mod-
ulus operator doesn’t change the hours before noon.

144 JavaScript: The Missing Manual

Dates and Times

Lines 9–11 take care of two possible outcomes with the modulus operator. If the
hour is 12 (noon) or 0 (after midnight), then the modulus operator returns 0. In
this case, hour is just set to 12 for either 12 p.m. or 12 a.m.

Finally, line 12 combines the reformatted hour with a space and either “am” or
“pm”, so the result is displayed as, for example, “6 am” or “6 pm”.

Padding single digits

As discussed on page 142, when the minutes or seconds values are less than 10, you
can end up with weird output like 7:3:2 p.m. To change this output to the more
common 7:03:02 p.m., you need to add a 0 in front of the single digit. It’s easy with
a basic conditional statement:

1 var minutes = now.getMinutes();

2 if (minutes<10) {

3 minutes = '0' + minutes;

4 }

Line 1 grabs the minutes in the current time, which in this example could be 33 or
3. Line 2 simply checks if the number is less than 10, meaning the minute is a sin-
gle digit and needs a 0 in front of it. Line 3 is a bit tricky, since you can’t normally
add a 0 in front of a number: 0 + 2 equals 2, not 02. However, you can combine
strings in this way so '0' + minutes means combine the string '0' with the value in
the minutes variable. As discussed on page 50, when you add a string to a number,
the JavaScript interpreter converts the number to a string as well, so you end up
with a string like '08'.

You can put all of these parts together to create a simple function to output times
in formats like 7:32:04 p.m., or 4:02:34 a.m., or even leave off seconds altogether
for a time like 7:23 p.m.:

function printTime(secs) {

 var sep = ':'; //seperator character

 var hours,minutes,seconds,time;

 var now = new Date();

 hours = now.getHours();

 if (hours < 12) {

 meridiem = 'am';

 } else {

 meridiem = 'pm';

 }

 hours = hours % 12;

 if (hours==0) {

 hours = 12;

 }

Chapter 4: Working with Words, Numbers, and Dates 145

Dates and Times

 time = hours;

 minutes = now.getMinutes();

 if (minutes<10) {

 minutes = '0' + minutes;

 }

 time += sep + minutes;

 if (secs) {

 seconds = now.getSeconds();

 if (seconds<10) {

 seconds = '0' + seconds;

 }

 time += sep + seconds;

 }

 return time + ' ' + meridiem;

}

You’ll find this function in the file printTime.js in the chapter04 folder in the Tuto-
rials. You can see it in action by opening the file time.html (in that same folder) in
a Web browser. To use the function, either attach the printTime.js file to a Web
page (see page 23), or copy the function into a Web page or another external Java-
Script file (page 22). To get the time, just call the function like this: printTime(),
or, if you want the seconds displayed as well, printTime(true). The function will
return a string containing the current time in the proper format.

Creating a Date Other Than Today
So far, you’ve seen how to use new Date() to capture the current date and time on
a visitor’s computer. But what if you want to create a Date object for next Thanks-
giving or New Year’s? JavaScript lets you create a date other than today in a few
different ways. You might want to do this if you’d like to do a calculation between
two dates: for example, “How many days until the new year?” (Also see the box on
page 142.)

When using the Date() method, you can also specify a date and time in the future
or past. The basic format is this:

new Date(year,month,day,hour,minutes,seconds,milliseconds);

For example, to create a Date for noon on New Year’s Day 2010, you could do this:

var ny2010 = new Date(2010,0,1,12,0,0,0);

This code translates to “create a new Date object for January 1, 2010 at 12 o’clock,
0 minutes, 0 seconds, and 0 milliseconds.” You must supply at least a year and
month, but if you don’t need to specify an exact time, you can leave off millisec-
onds, seconds, minutes, and so on. For example, to just create a date object for
January 1, 2010, you could do this:

var ny2010 = new Date(2010,0,1);

146 JavaScript: The Missing Manual

Tutorial

Note: Remember that JavaScript uses 0 for January, 1 for February, and so on, as described on page 141.

Creating a date that’s one week from today

As discussed in the box on page 142, the JavaScript interpreter actually treats a date
as the number of milliseconds that have elapsed since Jan 1, 1970. Another way to
create a date is to pass a value representing the number of milliseconds for that
date:

new Date(milliseconds);

So another way to create a date for January 1, 2010 would be like this:

var ny2010 = new Date(1262332800000);

Of course, since most of us aren’t human calculators, you probably wouldn’t think
of a date like this. However, milliseconds come in very handy when you’re creat-
ing a new date that’s a certain amount of time from another date. For example,
when setting a cookie using JavaScript, you need to specify a date at which point
that cookie is deleted from a visitor’s browser. To make sure a cookie disappears
after one week, you need to specify a date that’s one week from today.

To create a date that’s one week from now, you could do the following:

var now = new Date(); // today

var nowMS = now.getTime(); // get # milliseconds for today

var week = 1000*60*60*24*7; // milliseconds in one week

var oneWeekFromNow = new Date(nowMS + week);

The first line stores the current date and time in a variable named now. Next, the
getTime() method extracts the number of milliseconds that have elapsed from Jan-
uary 1, 1970 to today. The third line calculates the total number of milliseconds in
a single week (1000 milliseconds * 60 seconds * 60 minutes * 24 hours * 7 days).
Finally, the code creates a new date by adding the number of milliseconds in a
week to today.

Tutorial
To wrap up this chapter, you’ll create a useful function for outputting a date in
several different human-friendly formats. The function will be flexible enough to
let you print out a date, as in “January 1, 2009,” “1/1/09,” or “Monday, February 2,
2009.” In addition, you’ll use some of the date and string methods covered in this
chapter to build this function.

Overview
As with any program you write, it’s good to start with a clear picture of what you
want to accomplish and the steps necessary to get it done. For this program, you
want to output the date in many different formats, and you want the function to
be easy to use.

Chapter 4: Working with Words, Numbers, and Dates 147

Tutorial

In other programming languages (like PHP or .NET), it’s common to use special
characters or tokens to symbolize elements of a date that are formatted in a specific
way. In PHP, for example, a lowercase l used with that language’s date function
outputs the name of a month, like “January.”

In this program, you’ll use a similar approach by assigning special tokens to different
parts of a date (see Table 4-6). The function will accept a date and a string contain-
ing these tokens, and return a human-friendly date.

For example, you’ll be able to call your function like this:

dateString(new Date(), '%N/%D/%Y');

This code returns a string, like '01/25/2009'. In other words, the function replaces
each token in the supplied string with a properly formatted part of the date. Note
that the tokens listed in Table 4-6 aren’t any special JavaScript mojo; they’re just
arbitrary characters that the author decided to use. You could just as easily change
the function in this tutorial to accept different formatted tokens, like #YEAR#
instead of %Y, or #DAY# instead of %D.

Writing the Function
Now it’s time to get down to coding and create your function. If you’re still a little
unsure of what a function is and how it works, turn to page 97 for a refresher.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 4.1.html in the chapter04 folder.

You’ll start by beginning the function definition.

Table 4-6. Tokens for the date-formatting function

Token Replaced with

%Y Four digit year: 2009
%y Last two digits of year: 09
%M Full month name: January
%m Abbreviated month name: Jan
%N Number of month, with leading zero if necessary: 01
%n Number of month without leading zero: 1
%W Full name of weekday: Monday
%w Abbreviated name of weekday: Mon
%D Day of month with leading zero if necessary: 05
%d Day of month without leading zero: 5

148 JavaScript: The Missing Manual

Tutorial

2. Between the first set of <script> tags in the page’s <head> section, type the
code in bold:

<script type="text/javascript">

function dateString(date,string) {

</script>

This code creates a new function named dateString(), which accepts two pieces
of information (arguments) and stores them in variables named date and string
(see page 99 for more on creating functions). The date variable will hold a Java-
Script Date object, while the string variable will hold a string containing the special
tokens like %D.

It’s always a good idea to close any opening braces immediately, so you don’t
forget later.

3. Press Return twice to create two empty lines, and then type }.

This closing brace marks the end of the function. All the code you enter
between the braces makes up the steps in the function.

This function will have two parts: the first part will get the different parts of the
date in the proper formats; the second part of the function will then replace any
tokens in the supplied string with correctly formatted parts of the date. First,
you’ll determine the year.

4. Click in the empty line above the closing brace you just typed and add the code
in bold below:

<script type="text/javascript">

function dateString(date,string) {

 var year=date.getFullYear();

}

</script>

This creates a new variable and stores the date’s full, four-digit year in it. Next
you’ll get the date’s month and modify it for a few different format options.

5. Hit Return to create a new, blank line, and then add the following code:

var month=date.getMonth();

var realMonth=month+1;

The first line of code retrieves the number of the date’s month. Remember that
JavaScript assigns a number that’s one less than you’d normally use for a
month. For example, January is 0. So, the next line creates a variable named
realMonth, which is simply the month plus 1. In other words, if the month is
January, the realMonth variable will hold the number 1. Next, you’ll take care of
the case when the month has to be two digits long: 11 or 08, for example.

Chapter 4: Working with Words, Numbers, and Dates 149

Tutorial

6. Press Return, and type:

var fillMonth = realMonth;

if (realMonth<10) {

 fillMonth = '0' + realMonth;

}

First, you declare a new variable named fillMonth, and store the current
month’s value in it. This conditional statement adds zero in front of the value in
realMonth, if realMonth is less than 10 and stores that value in fillMonth. This is
the variable you’ll use if you want to format a date like this: 08/10/2008.

Now you’ll get the name of the month.

7. Hit Return and then add the following code:

var months = ['January','February','March','April','May',

 'June','July','August','September',

 'October','November','December'];

var monthName=months[month];

The first line creates an array that stores the name of each month of the year. To
get the proper name, you can use the value stored in the month variable as the
index. For example, if the month is January, then the month variable will be 0:
months[0] is the first item in the array, or the string 'January' (see page 141 for a
detailed explanation).

Next, you’ll retrieve the day of the month.

8. Hit Return and then type:

var day=date.getDate();

var fillDate=day;

if (day<10) {

 fillDate='0' + day;

}

The first line just gets the day of the month: if it’s January 5, then the date will
be 5. The rest of the code above works like step 6, and adds a zero in front of
any date that is less than 10, so 5 becomes 05.

Now you’ll get the day of the week.

9. Hit Return, and then add the following code:

var weekday=date.getDay();

var weekdays = ['Sunday','Monday','Tuesday','Wednesday', ↵
 'Thursday','Friday','Saturday'];

var dayName=weekdays[weekday];

150 JavaScript: The Missing Manual

Tutorial

These three lines of code retrieve the name of the date’s day of the week. The
method is similar to step 7: the names of the days of the week are stored in an
array, then the correct name is retrieved using an index value retrieved from the
getDay() method. For example, if the day of the week is Sunday, getDay() returns
0, and weekdays[0] returns the string 'Sunday'.

At this point, the function has collected all of the different parts of a date that
you might need (year, month, and so on) and stored them into separate vari-
ables. Now, you’ll replace the tokens inside the string that was passed to the
function with properly formatted date elements. First, you’ll tackle the year.

10. Hit Return, and then type:

string = string.replace(/%Y/g,year);

Remember that string is a variable that’s created at the beginning of the func-
tion (see step 2), and it’s filled with a string full of tokens that the function will
replace with formatted date parts. The heart of the process of replacing those
tokens is the replace() method, which takes a regular expression and replaces
any matches with another string (see page 132). So string.replace() tells the
JavaScript interpreter to execute the replace() method on the contents con-
tained in the string variable.

The first argument sent to replace() is a regular expression: /%Y/g. The first /
marks the beginning of the regular expression pattern; %Y is the pattern to
match. In other words, if the string contains the two characters %Y anywhere
inside it, then there’s a match. The second / marks the end of the regex pattern,
and the final g indicates that the replacement should be global. In other words,
every instance of %Y should be replaced, not just the first one (see page 132 for
a discussion of the g flag in regular expressions). The second argument—year—
is the variable created in step 4.

To break down this code into plain English: Replace every instance of %Y with
the value stored in the variable year and store the results back into string. In
other words, this line will replace %Y with something like 2009. If the charac-
ters %Y aren’t found in the string, then the string remains unchanged.

Next, you’ll insert an abbreviated two-digit year when requested.

11. Hit Return, and type:

string = string.replace(/%y/g,year.toString().slice(-2));

The token %y is to be replaced with just the last two digits of the year: 08, for
example. This line of code uses the same replace() method described in step 10,
but the replacement string (the year) is reduced to the last two digits using the
slice() method described on page 118.

The rest of the lines of code in this function are all just variations on this theme:
replace a token with one of the parts of the date.

Chapter 4: Working with Words, Numbers, and Dates 151

Tutorial12. Hit Return and then type this code:

string = string.replace(/%M/g,monthName);

string = string.replace(/%m/g,monthName.slice(0,3));

string = string.replace(/%N/g,fillMonth);

string = string.replace(/%n/g,realMonth);

string = string.replace(/%W/g,dayName);

string = string.replace(/%w/g,dayName.slice(0,3));

string = string.replace(/%D/g,fillDate);

string = string.replace(/%d/g,day);

These lines of code replace various tokens with the different formatted date ele-
ments created in the first part of this function. Once the program does all of the
replacing, it returns the revised string.

13. Press Return, and then type return string;

The complete function should look like this:

function dateString(date,string) {

 var year=date.getFullYear();

 var month=date.getMonth();

 var realMonth=month+1;

 var fillMonth=realMonth;

 if (realMonth<10) {

 fillMonth = ‘0’ + realMonth;

 }

 var months = ['January','February','March','April','May',

 'June','July','August','September',

 'October','November','December'];

 var monthName=months[month];

 var day=date.getDate();

 var fillDate=day;

 if (day<10) {

 fillDate='0' + day;

 }

 var weekday=date.getDay();

 var weekdays = ['Sunday','Monday','Tuesday','Wednesday',

 'Thursday','Friday','Saturday'];

 var dayName=weekdays[weekday];

 string = string.replace(/%Y/g,year); //2008

 string = string.replace(/%y/g,year.toString().slice(-2)); //08

 string = string.replace(/%M/g,monthName); //January

 string = string.replace(/%m/g,monthName.slice(0,3)); //Jan

 string = string.replace(/%N/g,fillMonth); //01

152 JavaScript: The Missing Manual

Tutorial

 string = string.replace(/%n/g,realMonth); // 1

 string = string.replace(/%W/g,dayName); //Monday

 string = string.replace(/%w/g,dayName.slice(0,3)); //Mon

 string = string.replace(/%D/g,fillDate); //05

 string = string.replace(/%d/g,day); // 5

 return string;

}

Now that the function is complete, you can use it to print many differently for-
matted dates to a page.

14. Locate the second set of <script> tags down in the body of the page, and add
the code in bold:

<script type="text/javascript">

var today = new Date();

</script>

This code creates a new variable named today and stores a Date object with the
current date and time in it. You’ll use that Date object to call the newly created
function

15. Press Return and then type:

var message = dateString(today, 'Today is %W, %M %d, %Y');

Here you call the function by passing the Date object created previously as well
as the string 'Today is %W, %M %d, %Y'. Basically, the function takes the date,
extracts different parts of the date, and then looks for and replaces any special
token values in the string. You can refer to Table 4-6 to see what each of these
tokens is replaced with, but, in a nutshell, this line of code will return a string
like 'Today is Sunday, January 6, 2008' and store it into the variable message.
Finally, you just need to print that string to the page.

16. Hit Return one last time, and then type document.write(message);

The final script should look like this.

<script type="text/javascript">

var today = new Date();

var message = dateString(today, 'Today is %W, %M %d, %Y');

document.write(message);

</script>

Save the file and preview it in a Web browser. The result should look some-
thing like Figure 4-6. The file complete_4.1.html contains the finished version of
this tutorial. In addition, you’ll find a slightly more advanced version of this
function in the file dateString.js. That function supports one other token, %O,
which returns the date plus the correct ordinal for the date: 1st, 2nd, or 3rd,
instead of 1, 2, or 3.

Chapter 4: Working with Words, Numbers, and Dates 153

Tutorial

Figure 4-6:
The dateString() function
you created in this
tutorial lets you output a
date in many different
formats. Try rewriting the
code in step 16 using
different tokens listed in
Table 4-6 to produce
dates in different
formats.

155

Chapter 5chapter

5

Dynamically Modifying
Web Pages

JavaScript gives you the power to change a Web page before your very eyes. Using
JavaScript, you can add pictures and text, remove content, or change the appear-
ance of an element on a page instantly. In fact, dynamically changing a Web page is
the hallmark of the newest breed of JavaScript-powered Web sites. For example,
Google Maps (http://maps.google.com/) provides access to a map of the world;
when you zoom into the map or scroll across it, the page gets updated without the
need to load a new Web page. Similarly, when you mouse over a movie title at Net-
flix (www.netflix.com) an information bubble appears on top of the page provid-
ing more detail about the movie (see Figure 5-1). In both of these examples,
JavaScript is changing the HTML that the Web browser originally downloaded.

The first four chapters of this book covered many of the fundamentals of the Java-
Script programming language—the keywords, concepts, and syntax of JavaScript.
Now that you have a handle on how to write a basic JavaScript program and add it
to a Web page, it’s time to see what JavaScript programming is all about. This
chapter, and the next one on JavaScript events, together show you how to create
the great interactive effects you see on the Web these days.

Modifying Web Pages: An Overview
In this chapter, you’ll learn how to alter a Web page using JavaScript. You’ll add
new content, HTML tags and HTML attributes, and also alter content and tags
that are already on the page. In other words, you’ll use JavaScript to generate new
HTML and change the HTML that’s already on the page.

http://maps.google.com/
http://www.netflix.com

156 JavaScript: The Missing Manual

Modifying Web
Pages: An Overview

Whenever you change the content or HTML of a page—whether you’re adding a
navigation bar complete with pop-up menus, creating a JavaScript-driven slide
show, or simply adding alternating stripes to table rows (like you did in the tuto-
rial in Chapter 1)—you’ll perform two main steps.

1. Identify an element on a page.

An element is any existing tag, and before you have to do anything with that
element, you need to identify it in your JavaScript (which you’ll learn how to do
in this chapter). For example, to add a color to a table row, you first must iden-
tify the row you wish to color; to make a pop-up menu appear when you mouse
over a button, you need to identify that button. Even if you simply want to use
JavaScript to add text to the bottom of a Web page, you need to identify a tag to
insert the text either inside, before, or after that tag.

2. Do something with the element.

OK, “do something” isn’t a very specific instruction. That’s because there’s
nearly an endless number of things you can do with an element to alter the way
your Web page looks or acts. In fact, most of this book is devoted to teaching
you different things to do to page elements. Here are a few examples:

• Add/remove a class attribute. In the example on page 30, you used Java-
Script to assign a class to every other row of a table. The JavaScript didn’t
actually “color” the row; it merely applied a class, and the Web browser used
the information in the CSS style sheet to change the appearance of the row.

• Change a property of the element. When animating a <div> across a page,
for example, you change that element’s position on the page.

Figure 5-1:
JavaScript can make Web
pages simpler to scan
and read, by only
showing content when
it’s needed. At
Netflix.com, movie
descriptions are hidden
from view, but revealed
when the mouse travels
over the movie title or
thumbnail image.

Chapter 5: Dynamically Modifying Web Pages 157

Understanding the
Document Object

Model

• Add new content. If, while filling out a Web form, a visitor incorrectly fills
out a field, it’s common to make an error message appear—“Please supply
an email address,” for example. In this case, you’re adding content some-
where in relation to that form field.

• Remove the element. In the Netflix example pictured in Figure 5-1, the pop-
up bubble disappears when you mouse off the movie title. In this case, Java-
Script removes that pop-up bubble from the page.

• Extract information from the element. Other times, you’ll want to know
something about the tag you’ve identified. For example, to validate a text
field, you need to identify that text field, then find out what text was typed
into that field—in other words, you need to get the value of that field.

The first step above—identifying an element on a page—is mainly what this chapter
is about. To understand how to identify and modify a part of a page using Java-
Script you first need to get to know the Document Object Model.

Understanding the Document Object Model
When a Web browser loads an HTML file, it displays the contents of that file on
the screen (appropriately styled with CSS, of course). But that’s not all the Web
browser does with the tags, attributes, and contents of the file: it also creates and
memorizes a “model” of that page’s HTML. In other words, the Web browser
remembers the HTML tags, their attributes, and the order in which they appear in
the file—this representation of the page is called the Document Object Model, or
DOM for short.

The DOM provides the information needed for JavaScript to communicate with
the elements on the Web page. The DOM also provides the tools necessary to navi-
gate through, change, and add to the HTML on the page. The DOM itself isn’t
actually JavaScript—it’s a standard from the World Wide Web Consortium (W3C)
that most browser manufacturers have adopted and added to their browsers. The
DOM lets JavaScript communicate with and change a page’s HTML.

To see how the DOM works, take look at this very simple Web page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html>

<head>

<title>A web page</title>

</head>

<body class="home">

<h1 id="header">A headline</h1>

<p>Some important text</p>

</body>

</html>

158 JavaScript: The Missing Manual

Understanding the
Document Object
Model

On this and all other Web sites, some tags wrap around other tags—like the
<html> tag, which surrounds all other tags, or the <body> tag, which wraps
around the tags and contents that appear in the browser window. You can repre-
sent the relationship between tags with a kind of family tree (see Figure 5-2). The
<html> tag is the “root” of the tree—like the great-great-great granddaddy of all of
the other tags on the page—while other tags represent different “branches” of the
family tree; for example, the <head> and <body> tags, which each contain their
own set of tags.

In addition to HTML tags, Web browsers also keep track of the text that appears
inside a tag (for example, “A headline” inside the <h1> tag in Figure 5-2), as well
as the attributes that are assigned to each tag (the class attribute applied to the
<body> and <h1> tags in Figure 5-2). In fact, the DOM treats each of these—tags
(also called elements), attributes, and text—as individual units called nodes.

Selecting a Page Element
A Web browser thinks of a Web page simply as an organized collection of tags, tag
attributes, and text, or, in DOM-talk, a bunch of nodes. So for JavaScript to manip-
ulate the contents of a page, it needs a way to communicate with a page’s nodes.
There are two main methods for selecting nodes: getElementById() and
getElementsByTagName().

getElementById()

Getting an element by ID means locating a single node that has a unique ID
applied to it. For example, in Figure 5-2, the <h1> tag has an ID attribute with the
value of header. The following JavaScript selects that node:

document.getElementById('header')

In plain English, this line means, “Search this page for a tag with an ID of 'header'
assigned to it.” The document part of document.getElementById('header') is a key-
word that refers to the entire document. It’s not optional, so you can’t type

Figure 5-2:
The basic nested structure of an HTML
page, where tags wrap around other
tags, is often represented in the form of a
family tree, where tags that wrap around
other tags are called ancestors, and tags
inside other tags are called descendents.

Chapter 5: Dynamically Modifying Web Pages 159

Understanding the
Document Object

Model

getElementById() by itself. The command getElementById() is the method name (a
command for the document) and the 'header' part is simply a string (the name of
the ID you’re looking for) that’s sent to the method as an argument. (See page 101
for the definition of an argument.)

Note: The getElementById() method requires a single string—the name of a tag’s ID attribute. For example:

document.getElementById('header')

However, this doesn’t mean you have to provide a literal string to the method: you can also pass a vari-
able that contains a string with the sought after ID:

var lookFor = 'header';
var foundNode = document.getElementById(lookFor);

Frequently, you’ll assign the results of this method to a variable to store a refer-
ence to the particular tag, so you can later manipulate it in your program. For
example, say you want to use JavaScript to change the text of the headline in the
HTML pictured on page 157. You can do this:

var headLine = document.getElementById('header');

headLine.innerHTML = 'JavaScript was here!';

The getElementById() command returns a reference to a single node, which in this
example is stored in a variable named headline. Storing the results of
getElementById() in a variable is very convenient; it lets you refer simply to the
variable name each time you wish to manipulate that tag, rather than the much
more longwinded document.getElementById('idName'). For example, the second
line of code uses the variable to access the tag’s innerHTML property: headline.
innerHTML (you’ll learn what innerHTML is on page 163).

getElementsByTagName()

Sometimes, you’ll want more than just the single element that getElementById()
provides. For example, maybe you’d like to find every link on a Web page and do
something to those links—like force every link that points outside your site to
open in a new window. In that case, you need to get a list of elements, not just one
element marked with an ID. The command getElementsByTagName() does the
trick.

This method works similarly to getElementById() but instead of providing the
name of an ID, you supply the name of the tag you’re looking for. For example, to
find all of the links on a page, you write this:

var pageLinks = document.getElementsByTagName('a');

Translated, this means, “Search this document for every <a> tag and store the
results in a variable named pageLinks.” The getElementsByTagName() method
returns a list of nodes, instead of just a single node. In that sense, the list acts a lot

160 JavaScript: The Missing Manual

Understanding the
Document Object
Model

like an array: You can access a single node using the same index notation, find the
total number of elements using the length property, and loop through the list of
elements using a for loop (see page 94).

For example, the first item in the pageLinks variable from the code above is
pageLinks[0]—the first <a> tag on the page—and pageLinks.length is the total
number of <a> tags on the page.

Tip: It’s easy to make a typo with these two methods. Most commonly, beginners (and pros) will capital-
ize both letters of Id. Only the first letter is capitalized. Likewise, Elements is plural in
getElementsByTagName()—don’t forget the s:

document.getElementById('banner');
document.getElementsByTagName('a');

You can also use getElementById() and getElementsByTagName() together. For
example, say you have a Web page containing a <div> tag, and that <div> tag has
an ID of ‘banner’ applied to it. If you want to find out how many links were in just
that <div>, you can use getElementById() to retrieve the <div>, and then use
getElementsByTagName() to search the <div>. Here’s how it works:

var banner = document.getElementById('banner');

var bannerLinks = banner.getElementsByTagName('a');

var totalBannerLinks = bannerLinks.length;

While searching for an element with an ID is one method of searching within the
document (document.getElementById()), you can find tags of a particular type by
searching the entire document (document.getElementsByTagName()) or by search-
ing the tags within a particular node. For example, in the above code, the variable
banner contains a reference to a <div> tag, so the code banner.getElementsByTag-
Name('a') only searches for <a> tags inside that <div>.

Selecting nearby nodes

As mentioned earlier, text is also considered a node, so the text “A headline” inside
the <h1> tag on page 157 is a separate node from the <h1> tag that surrounds it.
In other words, if you select that <h1> tag using the techniques you’ve just
learned, you’ve just selected that tag and not the text inside. So, what if you want
to get at that text? Unfortunately, the way the DOM provides to do so involves a
rather roundabout technique: You have to start at the <h1> node, move to the text
node, and then get the value of the text node.

To understand how this process works, you need to understand how tags are
related to each other. If you’ve spent some time working with Cascading Style
Sheets, you’re probably familiar with descendent selectors—one of the most power-
ful tools in CSS. In a nutshell, a descendent selector lets you format a particular tag
based on its relationship to another tag. Thus, using a descendent selector, you can
make a paragraph (<p>) tag look one way when it’s in the sidebar of a page, and
look another way when that same tag is in the footer of the page.

Chapter 5: Dynamically Modifying Web Pages 161

Understanding the
Document Object

Model

Descendent selectors rely on the kind of relationship pictured in Figure 5-2; if a tag
is inside another tag, it’s called a descendent. The <h1> tag in the sample HTML
on page 157 is a descendent of the <body> tag, and, because it’s also inside the
<html> tag, it’s a descendent of that tag as well. Tags that wrap around other tags are
called ancestors; so in Figure 5-2, the <p> tag is an ancestor of the tag.

The DOM also thinks of tags that wrap around other tags as being related, but the
DOM only provides access to the “immediate family.” That is, the DOM can access
a “parent” node, “child” node, or “sibling” node. Figure 5-3 demonstrates these
relationships: If a node is directly inside another node, like the text “Some” inside
the <p> tag, then it’s a child; a node that directly surrounds another node, like the
 tag surrounding the text “important”, is a parent. Nodes that share the
same parent, like the two text nodes—“Some” and “text”—and the tag
are like brothers and sisters, so they’re called siblings.

The DOM provides several methods of accessing nearby nodes:

• .childNodes is a property of a node. It contains a list of all nodes that are direct
children of that node. The list of nodes works just like the list that’s returned by
the getElementsByTagName() method (see page 159). For example, suppose you
add the following JavaScript to the HTML file on page 157:

var headline = document.getElementById('header');

var headlineKids = headline.childNodes;

The variable headlineKids will contain a list of all nodes that are children of the
tag that has the ID of ‘headline’ (the <h1> tag in this example). In this case,
there’s only one child, the text node containing the text “A headline.” So, if you
want to know what the text inside that node is, add an additional line of code,
like this:

var headlineText = headlineKids[0].nodeValue;

Figure 5-3:
There are no first cousins, great aunts, or even
grandparents in the current DOM standard. The DOM
only recognizes parents, children, and sibling
relationships between tags.

162 JavaScript: The Missing Manual

Understanding the
Document Object
Model

The first child in the list is headlineKids[0]—since there is only one child for the
headline (see Figure 5-2), it’s also the only node in the list. To get the text inside
a text node, you access the nodeValue property. (On the other hand, there’s also
an easier way to do so, as you’ll see on page 181.)

• .parentNode is a node property that represents the direct parent of a particular
node. For example, if you wanted to know what tag wraps around the <h1> tag
in Figure 5-2, you could write this:

var headline = document.getElementById('header');

var headlineParent = headline.parentNode;

The variable headlineParent is a reference to the <body> tag in this case.

• .nextSibling and .previousSibling are properties that point to the node that
comes directly after the current node, or the node that comes before. For exam-
ple, in Figure 5-2, the <h1> and <p> tags are siblings: the <p> tag comes
directly after the ending </h1> tag.

var headline = document.getElementById('header');

var headlineSibling = headline.nextSibling;

The variable headlineSibling is a reference to the <p> tag that follows the <h1>
tag. If you try to access a sibling node that doesn’t exist, JavaScript returns the
value of null (see the Tip on page 131). For example, you can check to see if a
node has a previousSibling like this:

var headline = document.getElementById('header');

var headlineSibling = headline.prevSibling;

if (! headlineSibling) {

 alert('This node does not have a previous sibling!');

} else {

 // do something with the sibling node

}

As you can see, it takes a fair amount of gymnastics to move around a page’s DOM
structure. For instance, to get all of the text inside the <p> tag in Figure 5-2, you’d
have to get a list of all of the <p> tags children, and then go through each child
node and look for text. In the case of the tag pictured in Figure 5-2,
you’d have to look at its child nodes to get the text inside it! Fortunately, there’s a
much easier way to work with the DOM, as you’ll see on page 169.

Adding Content to a Page
JavaScript programs frequently need to add, delete, or change content on a page.
For example, in the quiz program you wrote in Chapter 3 (page 106), you used the
document.write() method to add the test-taker’s final score to the page. On the
Netflix site (Figure 5-1), a description appears on the page when a visitor mouses
over a movie title.

Chapter 5: Dynamically Modifying Web Pages 163

Understanding the
Document Object

Model

Note: In earlier chapters you used the document.write() command to add JavaScript-generated content
to a page (see page 29 for an example). That command is easy to learn and use, but very limited in what
it can do—for example, document.write() lets you add new content, but not alter what’s already on the
page. Furthermore, that command works when the page loads, so you can’t use it to add content to a
page later (for example, when a visitor clicks a button or types into a form field).

Adding content using the DOM is a big chore. It involves creating each node of the
content you require, and then injecting the results into the page. In other words, if
you want to add a <div> tag with a couple of other tags and some text, you have to
create each node individually and place them in the proper relation to each other.
Fortunately, browser manufacturers have provided a much simpler method: the
innerHTML property.

The innerHTML property isn’t a standard part of the DOM. It was first imple-
mented in Internet Explorer, but all current, JavaScript-savvy Web browsers sup-
port it. Basically, innerHTML represents all of the HTML inside of a node. For
example, if you look at the HTML code on page 157, the <p> tag wraps around
other HTML. So the innerHTML for that <p> tag node is Some impor-
tant text. Here’s how you use JavaScript to access that HTML:

//get a list of all <p> tags on page

var pTags = document.getElementsByTagName('p');

//get the first <p> tag on page

var theP = pTags[0];

alert(theP.innerHTML);

In this case, the variable theP represents the node for the first paragraph on the
page. The last line of code opens an alert box that displays all of the code inside
that tag. For example, adding this JavaScript to the HTML on page 157 would
make an alert box appear with the text “Some important text”.

Note: innerHTML is a proposed part of the new HTML 5 standard that is being developed at the W3C
(see www.w3.org/TR/html5).

Not only can you find out what’s inside a node using innerHTML, you can also
change the contents inside the node by setting the innerHTML property:

var headLine = document.getElementById('header');

headLine.innerHTML = 'JavaScript was here!';

In this example, the contents inside the tag with an ID of 'header' is changed to
“JavaScript was here!” You aren’t limited to just text either: you can set the
innerHTML property to complete chunks of HTML, including tags and tag
attributes. You’ll see an example of this in the next section.

http://www.w3.org/TR/html5

164 JavaScript: The Missing Manual

Understanding the
Document Object
Model

The Moon Quiz Revisited
In Chapter 3, you created a JavaScript program that used the prompt() command
to ask quiz questions, and the document.write() command to write the test-taker’s
results to the page. In this short tutorial, you’ll rewrite that script to take advan-
tage of the DOM techniques you’ve learned in this chapter.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 5.1.html in the chapter05 folder.

This file is the completed version of tutorial 3.3 from page 112. The first step is
to get rid of the JavaScript in the body of the page.

2. Locate the HTML, and delete the JavaScript that’s bolded in this code:

<p>

 <script type="text/javascript">

 var message = 'You got ' + score;

 message += ' out of ' + questions.length;

 message += ' questions correct.';

 document.write(message);

 </script>

</p>

You’re left with an empty paragraph. When the quiz program runs, the test-
taker’s results will appear inside this paragraph. To make it easy to later select
this tag, you’ll add an ID attribute to the <p> tag.

3. Add id="quizResults" to the <p> tag. The final HTML should look like this:

<h1>A Simple Quiz Revisited</h1>

<p id="quizResults"></p>

</div>

Next, you’ll create a function that goes through the list of questions, and then
prints the results on the page.

4. Locate the for loop in the block of JavaScript near the top of the page. Add the
following bolded code around the loop:

function doQuiz() {

 //go through the list of questions and ask each one

 for (var i=0; i<questions.length; i++) {

 askQuestion(questions[i]);

 }

}

Chapter 5: Dynamically Modifying Web Pages 165

Understanding the
Document Object

Model

Don’t forget the closing brace on the last line; it marks the end of the new func-
tion. At this point, you’ve just turned the original for loop (which looped
through each item in the questions array) into a function. You’ll find out why
you want a function here in a moment.

Next, you’ll build the results message; it’s the same code as in the finished
3.3.html tutorial.

5. Between the closing brace for the loop and the closing brace of the new func-
tion, add the following three lines of JavaScript:

var message = 'You got ' + score;

message += ' out of ' + questions.length;

message += ' questions correct.';

This code is straight from Tutorial 3.3, so, if you don’t feel like typing, you can
copy from that tutorial and past the code into this page. At this point, you
haven’t done much different from Tutorial 3.3—give your visitor a quiz and
report the results. Now it’s time to use the DOM. You’ll start by getting a refer-
ence to the empty <p> tag on the page.

6. Hit Return to add a new blank after the three lines of code you just added, and
then type:

var resultArea = document.getElementById('quizResults');

This line searches the document for a tag with an ID of 'quizResults'—you cre-
ated that in step 3—and stores a reference to that tag in a variable named
resultArea. Now you can place the results message there.

7. Hit Return again, and type resultArea.innerHTML = message;. The complete
code for the function should now look like this:

function doQuiz() {

 //go through the list of questions and ask each one

 for (var i=0; i<questions.length; i++) {

 askQuestion(questions[i]);

 }

 var message = 'You got ' + score;

 message += ' out of ' + questions.length;

 message += ' questions correct.';

 var resultArea = document.getElementById('quizResults');

 resultArea.innerHTML = message;

}

This final line of the function assigns the contents of the variable message to the
innerHTML property of the <p> tag. In other words, it simply writes the mes-
sage into that paragraph just like the document.write() command. The
innerHTML approach is simpler, since you don’t need to add a second block of
JavaScript code in the main body of the page as you do when using the docu-
ment.write() command.

166 JavaScript: The Missing Manual

Understanding the
Document Object
Model

Remember, functions don’t run until the program calls them (see page 99). So
even though you’ve finished setting up a function that asks the quiz questions
and writes the test-taker’s results onto the page, your program won’t actually
ask the questions until the doQuiz() function runs. You’ll add the code for that
now.

8. Locate the closing </script> tag (below all of the JavaScript code on this page,
inside the <head>) and add the code in bold below:

window.onload=doQuiz;

</script>

Welcome to the wonderful world of JavaScript events. The line of code you
added in this step instructs the JavaScript interpreter to run the doQuiz() func-
tion after the page finishes loading. The onload part is what’s called an event
handler. An event is the moment when something happens in the Web browser
or on the page. When the page finishes loading, for example, the load event
happens. When a visitor moves her mouse over a link, a mouseover event
occurs. An event handler assigns a function to the event—in other words, tells
the browser what to do when the event occurs. You’ll learn all about events in
the next chapter.

So, why can’t you just run the quiz before the page loads? After all, that’s what you
did in Tutorial 3.3 on page 106. If you open your completed 3.3.html file (or the
supplied complete_3.3.html file in the chapter03 tutorial folder) in a Web browser,
you’ll see something different about how that quiz works. Notice that the page is
completely blank while the quiz questions are being asked (top image in
Figure 5-4). That’s because the JavaScript code on that page runs as soon as the
JavaScript interpreter encounters the for loop. It doesn’t wait until the HTML is
read and displayed by the Web browser, so the Web browser has to wait until all of
the questions have been asked and answered before displaying the HTML.

Now, save the 5.1.html file you’ve just finished, and preview it in a Web browser.
See how the browser draws the page before the questions are asked (bottom image
in Figure 5-4)? That’s what the window.onload=doQuiz does. It instructs the Java-
Script interpreter to wait until the page is loaded and drawn to the screen before
running the quiz. Not only does this method look a bit better—a completely blank
Web page is a little distracting—but you must do it this way when you use the
DOM to manipulate a page’s content.

Think of it this way: the JavaScript code comes before the HTML on the page.
When the code is loaded, the browser is unaware of any of the HTML that follows
it. So the paragraph tag into which the program writes the final results—“You got
3 out of 3 questions right”—doesn’t yet exist for the Web browser. If you tried to
run the JavaScript code immediately (before the HTML is loaded), the Web
browser would spit out an error at the moment the program tried to get the <p>
tag and write the message into it—again, because that <p> tag doesn’t yet exist to
the JavaScript interpreter.

Chapter 5: Dynamically Modifying Web Pages 167

Understanding the
Document Object

Model

That’s why, in step 4, you put the loop, the results message, and the steps that
select the <p> tag and write the message into that paragraph into a function. The
function lets you wait until Web browser has read and stored the Web page and its
HTML into its memory and only then execute all of the steps that create the quiz.

Figure 5-4:
When you run a
JavaScript program
before a page loads, the
page won’t appear until
after the program is
completed. In the page
pictured at the top of this
image, the JavaScript
must finish asking each
question of the quiz
before the browser
displays any of the Web
page. However, if you
use the onload event,
you can have the Web
browser load and display
a Web page and then
run your JavaScript
program (bottom
image).

168 JavaScript: The Missing Manual

Understanding the
Document Object
Model

Finally, you may be wondering why the function doesn’t have any parentheses
after it in the line window.onload=doQuiz. As you read on page 98, you always
include the parentheses when calling a function, like this: doQuiz(). The short
answer is that when you include the (), the function runs immediately—in other
words, if you had typed window.onload=doQuiz(), the quiz would run immedi-
ately, not after the page loads. However, window.onload=doQuiz merely points to
the function and doesn’t run it. The function only runs after the page loads. Con-
fusing? Certainly, but that’s how JavaScript works. You’ll learn about this topic in
more depth on page 218.

The Problem with the DOM
The Document Object Model is a powerful tool for JavaScript programmers, but it
has some shortcomings. As you saw on page 160, moving from node to node in the
DOM is a time-consuming process. Also, the DOM only supplies a couple of ways
to get to tags—by ID name and by tag name. It doesn’t provide an easy way, for
example, to find all tags with a specific class name—a useful task if you want to
manipulate a bunch of related elements (for example, make all images with a class
of slideshow part of a JavaScript-driven photo slideshow).

A further complication is that the major browsers interpret the DOM differently.
The techniques presented in the earlier pages of this chapter are all cross-browser
compatible, but other parts of the DOM standard aren’t. For example, Internet
Explorer handles events differently from other browsers; the same HTML can pro-
duce more text nodes in Firefox and Safari than in Internet Explorer; and IE
doesn’t always retrieve HTML tag attributes in the same way as Firefox, Safari, or
Opera. In addition, different browsers treat white space (like tabs and spaces) in
HTML differently—in some cases treating white space like additional text nodes
(Firefox and Safari) and in other cases ignoring that white space (Internet
Explorer). And those are just a few of the differences between how the most com-
mon Web browsers handle the DOM.

Overcoming cross-browser JavaScript problems is such a huge task for JavaScript
programmers that an entire (very boring) book could be dedicated to the subject.
In fact, many JavaScript books spend a lot of time showing you the code needed to
make the various browsers behave themselves. But life is too short—you’d rather
be building interactive user interfaces and adding cool effects to your Web sites,
instead of worrying about how to get your script to work identically in Internet
Explorer, Firefox, Safari, and Opera. That’s why this book skips a lot of the mind-
numbing details required to make basic DOM functions work across browsers.
Instead, it takes advantage of some very advanced, free JavaScript programming
that you can use to build JavaScript-driven pages that will work well in all brows-
ers in a fraction of the time. You’ll start learning where to find this free JavaScript
in the next section.

Chapter 5: Dynamically Modifying Web Pages 169

Introducing
JavaScript Libraries

Introducing JavaScript Libraries
Many JavaScript programs have to deal with the same set of Web page tasks again
and again: selecting an element, adding new content, hiding and showing content,
modifying a tag’s attributes, determining the value of form fields, and making pro-
grams react to different user interactions. The details of these basic actions can
turn out to be quite complicated—especially if you want the program to work in
all major browsers. Fortunately, JavaScript libraries offer a way to leap-frog past
many time-consuming programming details.

A JavaScript library is simply a collection of JavaScript code that provides simple
solutions to many of the mundane, day-to-day details of JavaScript. You can think
of a library as a collection of prewritten JavaScript functions that you add to your
Web page. These functions make it easy to complete common tasks. In many cases,
you can replace many lines of your own JavaScript programming (and the hours
required to test them) with a single function from a JavaScript library. A sizable
chunk of your programming has already been done for you! There are lots of Java-
Script libraries out there and many of them are in use on major Web sites such as
Yahoo, NBC, Amazon, Digg, CNN, Apple, Microsoft, Twitter, and many more.

This book uses the popular jQuery library (www.jquery.com). There are other Java-
Script libraries (see the box on page 170), but jQuery has many advantages:

• Relatively small file size. A minimized version of the library is only 55K, and a
more fully compressed version weighs in at only 30K.

• Friendly to Web designers. jQuery doesn’t assume you’re a computer scientist.
It takes advantage of knowledge about CSS that most Web designers already
have.

• It’s tried and true. jQuery is used on thousands of sites, including many popu-
lar, highly trafficked Web sites like Digg, Dell, the Onion, Warner Bros.
Records, NBC, and Newsweek. Even Google uses it in some places. The fact that
jQuery is so popular is a testament to how good it is.

• It’s free. Hey, you can’t beat that!

• Large developer community. As you read this, scores of people are working on
the jQuery project—writing code, fixing bugs, adding new features, and updat-
ing the Web site with documentation and tutorials. A JavaScript library created
by a single programmer (or one supplied by a single author) can easily disap-
pear if the programmer (or author) grows tired of the project. jQuery, on the
other hand, should be around a long time, supported by the efforts of program-
mers around the world. It’s like having a bunch of JavaScript programmers
working for you for free.

• Plug-ins, plug-ins, plug-ins. jQuery lets other programmers create plug-ins—
add-on JavaScript programs that work in conjunction with jQuery to make cer-
tain tasks, effects, or features incredibly easy to add to a Web page. In this book,

http://www.jquery.com

170 JavaScript: The Missing Manual

Introducing
JavaScript Libraries

you’ll learn about plug-ins that make validating forms, adding drop-down navi-
gation menus, and building interactive slideshows a half-hour’s worth of work,
instead of a two-week project. There are literally hundreds of other plug-ins
available for jQuery.

You’ve actually used jQuery in this book already. In the tutorial for Chapter 1
(page 30), you added just a few lines of JavaScript code to quickly and easily add
stripes to alternating rows in a table.

Getting Started with jQuery
The first step in using jQuery is downloading it—the jquery.js file is a single Java-
Script file that you link to a Web page to use. The tutorial files you downloaded for
this book at www.sawmac.com/js/ include the jQuery library file, but since the
jQuery team updates the library on a regular basis, you can always find the latest
version at http://docs.jquery.com/Downloading_jQuery, listed under the Current
Release headline (circled in Figure 5-5).

The jQuery file comes in three versions on the download site. Which file you pick
depends on how you want to use it:

• Uncompressed. The uncompressed jQuery file has the largest file size (the
uncompressed version of jQuery 1.2.6, for example, is 97.8K) You shouldn’t use
this file on your Web site, but it’s helpful if you want to learn how the jQuery
library is put together. The code includes lots of comments (page 71) that help
make clear what the different parts of the file do. (But in order to understand
the comments, you need to know a lot about JavaScript.)

UP TO SPEED

Other Libraries
jQuery isn’t the only JavaScript library in town. There are
many, many others. Some are designed to perform specific
tasks, and others are all-purpose libraries aimed at solving
every JavaScript task under the sun. Here are a few of the
most popular:

Yahoo User Interface Library (http://developer.yahoo.
com/yui/) is a project of Yahoo, and indeed the company
uses it throughout its site. Yahoo programmers are con-
stantly adding to and improving the library, and they pro-
vide very good documentation on the YUI site.

Prototype (http://www.prototypejs.org/) was one of the
first JavaScript libraries available. Weighing in at a hefty
124K, it lets you do all sorts of things from selecting making

manipulating the DOM easier, to simplifying the task of
communicating with a Web server using Ajax. It’s often
used in combination with a visual effects library named
scriptaculous (http://script.aculo.us/), which adds anima-
tion and other user interface goodies.

Dojo Toolkit (http://dojotoolkit.org/) is another library
that’s been around a long time. It’s a very powerful and very
large collection of JavaScript files that tackle nearly every
JavaScript task around.

Mootools (http://mootools.net/) is another popular library
with good documentation and a great looking Web site.

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://www.prototypejs.org/
http://script.aculo.us/
http://dojotoolkit.org/
http://mootools.net/
http://www.sawmac.com/js/
http://docs.jquery.com/Downloading_jQuery,

Chapter 5: Dynamically Modifying Web Pages 171

Introducing
JavaScript Libraries

• Packed. The packed version of jQuery provides the smallest file size (the packed
version of jQuery 1.2.6 is only 30.3K). It provides all the same functions as the
uncompressed version, but the JavaScript code has been put through a clever
compression program (http://dean.edwards.name/packer/) that’s reduced the
number of characters needed in the file. The downside of a packed JavaScript
file is that the visitor’s Web browser has to “unpack” the file each time it’s
run—meaning it’s slightly slower than an unpacked version.

• Minified. The minified jQuery file uses a simpler compression method than a
packed file, but the file is a bit larger (the minified version of jQuery 1.2.6 is 54.
5K). However, since the minified version doesn’t need to be unpacked each
time it’s run, this file (once it’s downloaded) performs a bit faster than the
packed version. Also, since a Web browser usually caches the downloaded
jQuery file, file size isn’t the most important issue. The Web browser only needs
to download the file from your site once, then, when a visitor goes to another
page on your site, the browser simply uses the previously downloaded jQuery
file. Because the minified version has fairly small file size and runs quickly, this
book uses it in the tutorials.

Once you download the jQuery file, put it somewhere in your site, such as the site’s
root folder. Some Web designers create a separate folder just for JavaScript files (js
or libs are common names) and store the jQuery file as well as any other .js files in
it.

Figure 5-5:
The external JavaScript file for
the jQuery library comes in
three flavors. Make sure to
download the minified
version; it offers the best
combination of file size and
performance.

http://dean.edwards.name/packer/

172 JavaScript: The Missing Manual

Selecting Page
Elements (Revisited)

Tip: The jQuery file you download from jQuery.com includes the version number and compression
type—for example, jquery-1.2.6.min.js is the minified version of jQuery 1.2.6. You can rename this to
something simpler like jquery126.js or just jquery.js.

To use the file, you must attach it to your Web page. It’s just an external .js file, so
you attach it just like any external JavaScript file, as described on page 24. For
example, say you’ve stored the jquery.js file in a folder named js in your site’s root
folder. To attach the file to your home page, you’d add the following script tag to
the head of the page:

<script type="text/javascript" src="js/jquery.js"></script>

Once you’ve attached the jQuery file, you’re ready to add your own scripts that
take advantage of jQuery’s advanced functions. For example, you can attach
another external JavaScript file with your own programming in it, or add a second
<script> tag to the Web page and start programming:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript">

 // your script goes here

</script>

Selecting Page Elements (Revisited)
As you saw on page 158, the DOM provides two primary methods for selecting
an element on a Web page—document.getElementById() and document.
getElementsByTagName(). Unfortunately, these two methods don’t provide the
control needed to make more subtle kinds of selections. For example, if you want
to select every <a> tag with a class of navButton, you first need to select every tag,
and then go through each and find only the ones that have the proper class name.
Or (as you did in the tutorial in Chapter 1) you may want to select every other row
in a table.

Fortunately, jQuery offers a very powerful technique for selecting and working on
a collection of elements—CSS Selectors. That’s right, if you’re used to using Cas-
cading Style Sheets to style your Web pages, you’re ready to use jQuery. A CSS
selector is simply the instruction that tells a Web browser which tag the style
applies to. For example, h1 is a basic element selector, which applies a style to every
<h1> tag, while .copyright, is a class selector, which styles any tag that has a class
attribute of copyright like this:

<p class="copyright">Copyright, 2009</p>

With jQuery, you select one or more elements using a special command called the
jQuery object. The basic syntax is like this:

$('selector')

Chapter 5: Dynamically Modifying Web Pages 173

Selecting Page
Elements (Revisited)

You can use nearly all CSS 2.1 and many CSS 3 selectors when you create a jQuery
object (even if the browser itself doesn’t understand the particular selector—like IE
with certain CSS 3 selectors). For example, if you want to select a tag with a spe-
cific ID of banner in jQuery, you can write this:

$('#banner')

The #banner is the CSS selector used to style a tag with the ID name banner—the #
part indicates that you’re identifying an ID. Of course, once you select one or more
elements, you’ll want to do something with them—jQuery provides many tools for
working with elements. For example, say you want to change the HTML inside an
element; you can write this:

$('#banner').html('<h1>JavaScript was here</h1>');

You’ll learn more about how to work with page elements using jQuery starting on
page 181, and throughout the rest of this book. But first, you need learn more
about using jQuery to select page elements.

Basic Selectors
Basic CSS selectors like IDs, classes, and element selectors make up the heart of
CSS. They’re a great way to select a wide range of elements using jQuery.

Because reading about selectors isn’t the best way to gain an understanding of
them, this book includes an interactive Web page so you can test selectors. In the
chapter05 folder of the book’s tutorial files, you’ll find a file named selectors.html.
Open the file in a Web browser. You can test various jQuery selectors by typing
them into the selector box and clicking Apply (see Figure 5-6).

Note: See page 27 for information on where to find the tutorial files for this book.

ID selectors

You can select any page element that has an ID applied to it using jQuery and a
CSS ID selector. For example, say you have the following HTML in a Web page:

<p id="message">Special message</p>

To select that element using the old DOM way, you’d write this:

var messagePara = document.getElementById('message');

The jQuery method looks like this:

var messagePara = $('#message');

Unlike with the DOM method, you don’t just use the ID name ('message'); you
have to use the CSS-syntax for defining an ID selector ('#message'). In other words,
you include the pound sign before the ID name, just as if creating a CSS style for
that ID.

174 JavaScript: The Missing Manual

Selecting Page
Elements (Revisited)

Element selectors

jQuery also has its own replacement for the getElementsByTagName() method.
Just pass the tag’s name to jQuery. For example, using the old DOM method to
select every <a> tag on the page, you’d write this:

var linksList = document.getElementsByTagName('a');

With jQuery, you’d write this:

var linksList = $('a');

Note: jQuery supports an even wider range of selectors than are listed here. Although this book lists
many useful ones, you can find a complete list of jQuery selectors at http://docs.jquery.com/Selectors.

Class selectors

The DOM doesn’t have any built-in method to find all elements with a particular
class attribute, which unfortunately is a common task for JavaScript program-
mers. For example, suppose you want to create a navigation bar that includes
drop-down menus; when a visitor mouses over one of the main navigation but-
tons, you want a drop-down menu to appear. You need to use JavaScript to con-
trol those menus, and you need a way to program each of the main navigation
buttons to open a drop-down menu when someone mouses over the button.

Figure 5-6:
The file selectors.html,
provided with this book’s
tutorial files, lets you try
out jQuery selectors. Just
type a selector in the
Selector form field
(circled), and then click
Apply. The page converts
your selector into a
jQuery object, and any
elements that match the
selector you typed turn
red. Below the field is the
jQuery code used to select
the item, as well as the
total number or elements
selected. In this case, h2 is
the selector, and all <h2>
tags on the page (there
are five on this page) are
highlighted in red (which
looks surprisingly like
grey here).

http://docs.jquery.com/Selectors.

Chapter 5: Dynamically Modifying Web Pages 175

Selecting Page
Elements (Revisited)

Note: Because finding all elements with a particular class name is such a common task, some browsers
(like the latest versions of Firefox and Safari) have added that feature. But since not all browsers have a
built-in way to find elements of a specific class, a library like jQuery, which takes the different browsers
into account, is invaluable.

One technique is to add a class—like navButton—to each of the main navigation
bar links, and then use JavaScript to search for links with just that class name and
apply all of the magical menu-opening power to those links (you’ll learn how to do
that, by the way, on page 300). This scheme may sound confusing now, but the
important point for now is that to make this navigation bar work, you need a way
to select only the links with a specific class name.

Fortunately, jQuery provides an easy method to select all elements with the same
class name. Just use a CSS class selector like this:

$('.submenu')

Again, notice that you write the CSS class selector just like, well, a CSS class selec-
tor, with the period before the class name. Once you select those tags, you can
manipulate them using jQuery. For example, to hide all tags with the class name of
.submenu, you’d write this:

$('.submenu').hide();

You’ll learn more about the jQuery hide() function on page 243, but for now this
example gives you a bit of an idea of how jQuery works.

UP TO SPEED

Understanding CSS
Cascading Style Sheets are a big topic in any discussion of
JavaScript. To get the most out of this book, you need to
have at least some background in Web design and know a
bit about CSS and how to use it. CSS is the most important
tool a Web designer has for creating beautiful Web sites, so
if you don’t know much about it, now’s the time to learn.
Not only will CSS help you use jQuery, but you’ll find that
you can use JavaScript in combination with CSS to easily
add interactive visual effects to a Web page.

If you need some help getting up to speed with CSS, there
are plenty of resources at your disposal:

For a basic overview on CSS, try the HTML Dog CSS Tutori-
als www.htmldog.com/guides/. You’ll find basic, intermedi-
ate, and advanced tutorials at the site.

You can also pick up a copy of CSS: The Missing Manual,
which provides thorough coverage of CSS (including many
hands-on tutorials just like the ones in this book).

Most of all, when working with jQuery, it’s very important
to understand CSS selectors—the instructions that tell a
Web browser which tag a CSS rule applies to. To get a han-
dle on selectors, the resources in this box are very good.
There are also a few places to go if you just want a refresher
on the different selectors that are available:

• http://css.maxdesign.com.au/selectutorial/

• http://www.456bereastreet.com/archive/200601/
css_3_selectors_explained/

http://www.htmldog.com/guides/
http://css.maxdesign.com.au/selectutorial/
http://www.456bereastreet.com/archive/200601/css_3_selectors_explained/
http://www.456bereastreet.com/archive/200601/css_3_selectors_explained/

176 JavaScript: The Missing Manual

Selecting Page
Elements (Revisited)

Advanced Selectors
jQuery also lets you use more complicated CSS selectors to accurately pinpoint the
tags you wish to select. Don’t worry too much about mastering these right now:
Once you’ve read a few more chapters and gained a better understanding of how
jQuery works and how to use it to manipulate a Web page, you’ll probably want to
turn back to this section and take another look.

• Descendent selectors provide a way to target a tag inside another tag (see
“Selecting nearby nodes” on page 160). For example, say you’ve created an
unordered list of links and added an ID name of navBar to the list’s tag
like this: <ul id="navBar">. The jQuery expression $(‘a’) selects all <a> tags on
the page. However, if you want to select only the links inside the unordered list,
you use a descendent selector like this:

$('#navBar a')

Again, this syntax is just basic CSS: a selector, followed by a space, followed by
another selector. The selector listed last is the target (in this case, a), while each
selector to the left represents a tag that wraps around the target.

• Child selectors target a tag that’s the child of another tag. A child tag is the
direct descendent of another tag. For example, in the HTML diagrammed in
Figure 5-2, the <h1> and <p> tags are children of the <body> tag, but the
 tag is not (since it’s wrapped by the <p> tag). You create a child selec-
tor by first listing the parent element, followed by a >, and then the child ele-
ment. For example, to select <p> tags that are the children of the <body> tag,
you’d write this:

$('body > p')

• Adjacent sibling selectors let you select a tag that appears directly after another
tag. For example, say you have an invisible panel that appears when you click a
tab. In your HTML, the tab might be represented by a heading tag (say <h2>),
while the hidden panel is a <div> tag that follows the header. To make the
<div> tag (the panel) visible, you’ll need a way to select it. You can easily do so
with jQuery and an adjacent sibling selector:

$('h2 + div')

To create an adjacent sibling selector, just add a plus sign between two selectors
(which can be any type of selector: IDs, classes, or elements). The selector on
the right is the one to select, but only if it comes directly after the selector on the
left.

• Attribute selectors let you select elements based on whether the element has a
particular attribute, and even check to make sure the attribute matches a spe-
cific value. With an attribute selector, you can find tags that have the alt
attribute set, or even match an tag that has a particular alt text value. Or
you could find every link tag that points outside your site, and add code to just
those links, so they’ll open in new windows.

Chapter 5: Dynamically Modifying Web Pages 177

Selecting Page
Elements (Revisited)

You add the attribute selector after the name of the element whose attribute
you’re checking. For example, to find tags that have the alt attribute set,
you write this:

$('img[alt]')

There are a handful of different attribute selectors:

• [attribute] selects elements that have the specified attribute assigned in the
HTML. For example, $(a[href]) locates all <a> tags that have an href
attribute set. Selecting by attribute lets you exclude named anchors——that are simply used as an in-page link.

• [attribute=value] selects elements that have a particular attribute with a spe-
cific value. For example, to find all text boxes in a form, you can use this:

$('input[type=text]')

Since most form elements share the same tag—<input>—the only way to
tell the type of form element is to check its type attribute (selecting form ele-
ments is so common that jQuery includes specific selectors just for that pur-
pose, as described on page 311).

• [attribute^=value] matches elements with an attribute that begins with a spe-
cific value. For example, if you want to find links that point outside your site,
you can use this code:

$('a[href^=http://]')

Notice that the entire attribute value doesn’t have to match just the begin-
ning. So href^=http:// matches links that point to http://www.yahoo.com,
http://www.google.com, and so on. Or you could use this selector to identify
mailto: links like this:

$('a[href^=mailto:]')

• [attribute$=value] matches elements whose attribute ends with a specific
value, which is great for matching file extensions. For example, with this
selector you can locate links that point to PDF files (maybe to use JavaScript
to add a special PDF icon, or dynamically generate a link to Adobe.com so
your visitor can download the Acrobat Reader program). The code to select
links that point to PDF files looks like this:

$('a[href$=.pdf]')

• [attribute*=value] matches elements whose attribute contains a specific value
anywhere in the attribute. For example, you can find any type of link that
points to a particular domain. For example, here’s how to find a link that
points to missingmanuals.com:

$('a[href*=missingmanuals.com]')

http://www.yahoo.com
http://www.google.com

178 JavaScript: The Missing Manual

Selecting Page
Elements (Revisited)

This selector provides the flexibility to find not only links that point to http://
www.missingmanuals.com, but also http://missingmanuals.com and http://
www.missingmanuals.com/library.html.

Note: jQuery has a set of selectors that are useful when working with forms. They let you select ele-
ments such as text fields, password fields, and selected radio buttons. You’ll learn about these selectors on
page 311.

jQuery Filters
jQuery also provides a way to filter your selections based on certain characteris-
tics. For example, the :even filter lets you select every even element in a collection
of elements (you used this filter in the tutorial on page 30 to highlight every other
row in a table). In addition, you can find elements that contain particular tags, spe-
cific text, elements that are hidden from view, and even elements that do not match
a particular selector. To use a filter, you add a colon followed by the filter’s name
after the main selector. For example, to find every even row of a table, write your
jQuery selector like this:

$('tr:even')

This code selects every even <tr> tag. To narrow down the selection, you may want
to just find every even table row in a table with class name of striped. You can do
that like this:

$('.striped tr:even')

Here’s how :even and other filters work:

• :even and :odd select every other element in a group. These filters work a little
counter-intuitively; just remember that a jQuery selection is a list of all ele-
ments that match a specified selector. In that respect, they’re kind of like arrays
(see page 56). Each element in a jQuery selection has an index number—
remember that index values for arrays always start at 0 (see page 59). So, since :
even filters on even index values (like 0, 2, and 4), this filter actually returns the
first, third, and fifth items (and so on) in the selection—in other words, it’s
really selecting every other odd element! The :odd filter works the same except it
selects every odd index number (1, 3, 5, and so on).

• You can use :not() to find elements that don’t match a particular selector type.
For example, say you want to select every <a> tag except ones with a class of
navButton. Here’s how to do that:

$('a:not(.navButton)');

You give the :not() function the name of the selector you wish to ignore. In this
case, .navButton is a class selector, so this code translates to “not with the class
of .navButton.” You can use :not() with any of the jQuery filters and with most

http://www.missingmanuals.com
http://www.missingmanuals.com
http://missingmanuals.com
http://www.missingmanuals.com/library.html
http://www.missingmanuals.com/library.html

Chapter 5: Dynamically Modifying Web Pages 179

Selecting Page
Elements (Revisited)

jQuery selectors; so, for example, to find every link that doesn’t begin with
http://, you can write this:

$('a:not([href^=http://])')

• :has() finds elements that contain another selector. For example, say you want
to find all tags, but only if they have an <a> tag inside them. You’d do that
like this:

$('li:has(a)')

This setup is different from a descendent selector, since it doesn’t select the <a>;
it selects tags, but only those tags with a link inside them.

• :contains() finds elements that contain specific text. For example, to find every
link that says “Click Me!” you can create a jQuery object like this:

$('a:contains(Click Me!)')

• :hidden locates elements that are hidden, which includes elements that either
have the CSS display property set to none (which means you won’t see them on
the page), elements you hide using jQuery’s hide() function (discussed on page
243), or hidden form fields. (This selector doesn’t apply to elements whose CSS
visibility property is set to invisible.) For example, say you’ve hidden several
<div> tags; you can find them and then make them visible using jQuery, like
this:

$('div:hidden').show();

This line of code has no effect on <div> tags that are currently visible on the
page. (You’ll learn about jQuery’s show() function on page 243.)

• :visible is the opposite of :hidden. It locates elements that are visible on the page.

Understanding jQuery Selections
When you select one or more elements using the jQuery object—for example
$('#navBar a')—you don’t end up with a traditional list of DOM nodes, like the
ones you get if you use getElementById() or getElementsByTagName(). Instead,
you get a special jQuery-only selection of elements. These elements don’t under-
stand the traditional DOM methods; for example, you can’t use the innerHTML
property (page 163) with a jQuery object like this:

$('#banner').innerHTML = 'New text'; // won't work

In fact, if you learned about DOM methods in another book, you’ll find that none
of them work with the jQuery object as-is. That may seem like a major drawback,
but nearly all of the properties and methods of a normal DOM node have jQuery
equivalents, so you can do anything the traditional DOM can do—only usually
much faster and with fewer lines of code.

180 JavaScript: The Missing Manual

Selecting Page
Elements (Revisited)

There are, however, two big conceptual differences between how the DOM works
and how jQuery selections work. jQuery was built to make it a lot easier and faster
to program JavaScript. One of the goals of the library is to let you do a lot of stuff
with as few lines of code as possible. To achieve that, jQuery uses two unusual
principles.

Automatic loops

Normally, when you’re using the DOM and you select a bunch of nodes, you then
need to create a loop (page 90) to go through each node selected and do some-
thing to that node. For example, if you want to select all the images in a page then
hide them—something you might do if you want to create a JavaScript-driven
slideshow—you must first select the images and then create a loop to go through
the list of images.

Because looping through a collection of elements is so common, jQuery functions
have that feature built right in. In other words, when you apply a jQuery function
to a selection of elements, you don’t need to create a loop yourself, since the func-
tion does it automatically.

For example, to select all images inside a <div> tag with an ID of slideshow and
then hide those images, you write this in jQuery:

$('#slideshow img').hide();

The list of elements created with $(‘#slideshow img’) might include 50 images. The
hide() function automatically loops through the list, hiding each image individu-
ally. This setup is so convenient (imagine the number of for loops you won’t have
to write) that it’s surprising that this great feature isn’t just part of the DOM.

Chaining functions

Sometimes you’ll want to perform several operations on a selection of elements.
For example, say you want to set the width and height of a <div> tag (with an ID
of popUp) using JavaScript. Normally, you’d have to write at least two lines of
code. But jQuery lets you do so with a single line:

$('#popUp').width(300).height(300);

jQuery uses a unique principle called chaining, which lets you add functions one
after the other. Each function is connected to the next by a period, and operates on
the same jQuery collection of elements as the previous function. So the code above
changes the width of the element with the ID popUp, and changes the height of the
element. Chaining jQuery functions lets you concisely carry out a large number of
actions. For example, say you not only want to set the width and height of the
<div> tag but also want to add text inside the <div> and make it fade into view
(assuming it’s not currently visible on the page). You can do that very succinctly
like this:

$('#popUp').width(300).height(300).text('Hi!').fadeIn(1000);

Chapter 5: Dynamically Modifying Web Pages 181

Adding Content to a
Page

This code applies four jQuery functions (width(), height(), text(), and fadeIn()) to
the tag with an ID name of popUp.

Tip: A long line of chained jQuery functions can be hard to read, so some programmers break it up over
multiple lines like this:

$('#popUp').width(300)
 .height(300)
 .text('Message')
 .fadeIn(1000);

As long as you only add a semicolon on the last line of the chain, the JavaScript interpreter treats the lines
as a single statement.

The ability to chain functions is pretty unusual and is a specific feature of jQuery—
in other words, you can’t add non-jQuery functions (either ones you create or
built-in JavaScript functions) in the chain.

Adding Content to a Page
jQuery provides many functions for manipulating elements and content on a page,
from simply replacing HTML, to precisely positioning new HTML in relation to a
selected element, to completely removing tags and content from the page.

Note: An example file, content_functions.html, located in the chapter05 tutorial folder lets you take each
of these jQuery functions for a test drive. Just open the file in a Web browser, type some text in the text
box, and click any of the “Run It” boxes to see how each function works.

To study the following examples of these functions, assume you have a page with
the following HTML:

<div id="container">

 <div id="errors">

 <h2>Errors:</h2>

 </div>

</div>

• .html() works like the DOM’s innerHTML property. It can read the current
HTML inside an element as well as replace the current contents with some
other HTML. You use the html() function in conjunction with a jQuery selection.

To retrieve the HTML currently inside the selection, just add .html() after the
jQuery selection. For example, you can run the following command using the
HTML snippet at the beginning of this section:

alert($('#errors').html());

182 JavaScript: The Missing Manual

Adding Content to a
Page

This code creates an alert box with the text “<h2>Errors:</h2>” in it. When you
use the html() function in this way, you can make a copy of the HTML inside a
specific element and paste it into another element on a page.

• If you supply a string as an argument to .html(), you replace the current con-
tents inside the selection:

$('#errors').html('<p>There are four errors in this form</p>');

This line of code replaces all of the HTML inside an element with an ID of
errors. It would change the example HTML snippet to:

<div id="container">

 <div id="errors">

 <p>There are four errors in this form</p>

 </div>

</div>

Notice that it replaces the <h2> tag that was already there. You can avoid
replacing that HTML using other functions listed below.

Note: jQuery also has a function named text() that works just like html(), except that any HTML tags
that are passed to text() are encoded so that <p> is translated to <p>—use it if you want you to actu-
ally display the brackets and tag names on the page. For example, you can use it to display example HTML
code for other people to view.

• append() adds HTML as the last child element of the selected element. For
example, say you select a <div> tag, but instead of replacing the contents of the
<div>, you just want to add some HTML before the closing </div> tag. The
.append() function is a great way to add an item to the end of a bulleted ()
or numbered () list. As an example, say you run the following code on a
page with the HTML listed at the beginning of this section:

$('#errors').append('<p>There are four errors in this form</p>');

After this function runs, you end up with HTML like this:

<div id="container">

 <div id="errors">

 <h2>Errors:</h2>

 <p>There are four errors in this form</p>

 </div>

</div>

Notice that the original HTML inside the <div> remains the same, and the new
chunk of HTML is added after it.

• prepend() is just like append(), but adds HTML directly after the opening tag
for the selection. For example, say you run the following code on the same
HTML listed previously:

$('#errors').prepend('<p>There are four errors in this form</p>');

Chapter 5: Dynamically Modifying Web Pages 183

Adding Content to a
Page

After this prepend() function, you end up with the following HTML:

<div id="container">

 <div id="errors">

 <p>There are four errors in this form</p>

 <h2>Errors:</h2>

 </div>

</div>

Now the newly added content appears directly after the <div>’s opening tag.

• If you want to add HTML just outside of a selection, either before the selected
element’s opening tag or directly after the element’s closing tag, use the before()
or after() functions. For example, it’s common practice to check a text field in a
form to make sure that the field isn’t empty when your visitor submits the
form. Assume that the HTML for the field looks like the following before the
form is submitted:

<input type="text" name="userName" id="userName">

Now suppose that when the visitor submits the form, this field is empty. You
can write a program that checks the field and then adds an error message after
the field. To add the message after this field (don’t worry right now about how
you actually check that the contents of form fields are correct—you’ll find out
on page 330), you can use the .after() function like this:

$('#userName').after('User name required');

That line of code makes the Web page show the error message, and the HTML
component would look like this:

<input type="text" name="userName" id="userName">

User name required

The .before() function simply puts the new content before the selected element.

Replacing and Removing Selections
At times you may want to completely replace or remove a selected element. For
example, say you’ve created a pop-up dialog box using JavaScript (not the old-
fashioned alert() method, but a more professional-looking dialog box that’s
actually just an absolutely-positioned <div> floating on top of the page). When the
visitor clicks the “Close” button on the dialog box, you naturally want to remove
the dialog from the page. To do so, you can use the jQuery remove() function. Say
the pop-up dialog had an ID of popup; you can use the following code to delete it:

$('#popup').remove();

The .remove() function isn’t limited to just a single element. Say you want to
remove all tags that have a class of error applied to them; you can do this:

$('span.error').remove();

184 JavaScript: The Missing Manual

Adding Content to a
Page

You can also completely replace a selection with new content. For example, sup-
pose you have a page with photos of the products your company sells. When a visi-
tor clicks on an image of a product, it’s added to a shopping cart. You might want
to replace the tag with some text when the image is clicked (“Added to
cart,” for example). You’ll learn how to make particular elements react to events
(like an image being clicked) in the next chapter, but for now just assume there’s
an tag with an ID of product101 that you wish to replace with text. Here’s
how you do that with jQuery:

$('#product101').replace('<p>Added to cart</p>');

This code removes the tag from the page and replaces it with a <p> tag.

Note: jQuery also includes a function named clone() that lets you make a copy of a selected element.
You’ll see this function in action in the tutorial on page 199.

HELPFUL TOOL ALERT

View Source Chart Provides Clear View
One problem with using JavaScript to manipulate the DOM
by adding, changing, deleting, and rearranging HTML code
is that it’s hard to figure out what the HTML of a page looks
like when JavaScript is finished. For example, the View
Source command available in every browser only shows
the Web page file as it was downloaded from the Web
server. In other words, you see the HTML before it was
changed by JavaScript, which can make it very hard to fig-
ure out if the JavaScript you’re writing is really producing
the HTML you’re after. For example, if you could see what
the HTML of your page looks like after your JavaScript adds
10 error messages to a form page, or after your JavaScript
program creates an elaborate pop-up dialog box complete
with text and form fields, it would be a lot easier to see if
you’re ending up with the HTML you want.

Fortunately, there are a couple of Firefox extensions
that can help with this dilemma. The View Source
Chart extension (http://jennifermadden.com/scripts/
ViewRenderedSource.html) shows you the current state of
the DOM whenever you open the View Source Chart win-
dow. In other words, if you open the View Source Chart
window after JavaScript has added or changed a bunch of
HTML, you’ll see the new JavaScript-enhanced HTML.

To use the extension, open Firefox, visit the URL above, and
install the extension. Then, when you want to view the cur-
rent state of a page’s HTML, choose View Source Chart
from Firefox’s View menu. When you open the window, it
shows the current state of the HTML. If you then do some-
thing on the Web page that once again changes the DOM
using JavaScript (like click an image or try to submit a
form), you need to close the View Source Chart window
and open it again to see the just-created HTML.

Another extension, the Web Developer Toolbar (http://
chrispederick.com/work/web-developer/), provides a simi-
lar tool. Using Firefox, visit the URL listed and install the
extension. After Firefox restarts, you’ll see a new toolbar of
options (there are lots of useful tools for Web developers).
If you choose View Source ➝ View Generated Source,
you’ll see the JavaScript-modified DOM. However, the
HTML this tool displays isn’t as well formatted as the View
Source Chart extension, so it’s a bit harder to read.

http://jennifermadden.com/scripts/ViewRenderedSource.html
http://jennifermadden.com/scripts/ViewRenderedSource.html
http://chrispederick.com/work/web-developer/
http://chrispederick.com/work/web-developer/

Chapter 5: Dynamically Modifying Web Pages 185

Setting and Reading
Tag Attributes

Setting and Reading Tag Attributes
Adding, removing, and changing elements isn’t the only thing jQuery is good at—
and it’s not the only thing you’ll want to do with a selection of elements. You’ll
often want to change the value of an element’s attribute—add a class to a tag, for
example, or change a CSS property of an element. You can also get the value of an
attribute—for instance, what URL does a particular link point to?

Classes
Cascading Style Sheets are a very powerful technology, letting you add all sorts of
sophisticated visual formatting to your HTML. One CSS rule can add a colorful
background to a page, while another rule might completely hide an element from
view. You can create some really advanced visual effects simply by using JavaScript
to remove, add, or change a class applied to an element. Because Web browsers
process and implement CSS instructions very quickly and efficiently, simply add-
ing a class to a tag can completely change that tag’s appearance—even make it
disappear from a page.

For example, in the tutorial on page 30, you wrote a JavaScript program that
changed the background color of every other row in a table. Well, actually what
you did was write a program that added a particular class to every other row in the
table. CSS actually handled the coloring of the row’s background.

jQuery provides several functions for manipulating a tag’s class attribute:

• addClass() adds a specified class to an element. You add the addClass() after a
jQuery selection and pass the function a string, which represents the class name
you wish to add. For example, to add the class externalLink to all links pointing
outside your site, you can use this code:

$('a[href^=http://]').addClass('externalLink');

This code would take HTML like this:

And change it to the following:

For this function to be of any use, you’ll need to create a CSS class style before-
hand and add it to the page’s style sheet. Then, when the JavaScript adds the
class name, the Web browser can apply the style properties from the previously
defined CSS rule.

Note: When using the addClass() and removeClass() functions, you only supply the class name—leave
out the period you normally use when creating a class selector. For example, addClass('externalLink') is
correct, but addClass('.externalLink') is wrong.

186 JavaScript: The Missing Manual

Setting and Reading
Tag Attributes

This jQuery function also takes care of issues that arise when a tag already has a
class applied to it—the addClass() function doesn’t eliminate the old classes
already applied to the tag; the function just adds the new class as well.

Note: Adding multiple class names to a single tag is perfectly valid and frequently very helpful. Check out
http://webdesign.about.com/od/css/qt/tipcssmulticlas.htm for more information on this technique.

• removeClass() is the opposite of addClass(). It removes the specified class from
the selected elements. For example, if you wanted to remove a class named
highlight from a <div> with an ID of alertBox, you’d do this:

$('#alertBox').removeClass('highlight');

• Finally, you may want to toggle a particular class—meaning add the class if it
doesn’t already exist, or remove the class if it does. Toggling is a popular way to
show an element in either an on or off state. For example, when you click a
radio button, it’s checked (on); click it again, and the checkmark disappears
(off).

Say you have a button on a Web page that, when clicked, changes the <body>
tag’s class. By so doing, you can add a complete stylistic change to a Web page
by crafting a second set of styles using descendent selectors. When the button is
clicked again, you want the class removed from the <body> tag, so that the page
reverts back to its previous appearance. For this example, assume the button the
visitor clicks to change the page’s style has an ID of changeStyle and you want to
toggle the class name altStyle off and on with each click of the button. Here’s
the code to do that:

$('#changeStyle').click(function() {

 $('body').toggleClass('altStyle');

});

At this point, don’t worry about the first and third lines of code above; those
have to do with events (Chapter 6), which let scripts react to actions—like click-
ing the button—that happen on a page. The bolded line of code demonstrates
the toggleClass() function; it either adds or removes the class altStyle with each
click of the button.

Reading and Changing CSS Properties
jQuery’s css() function also lets you directly change CSS properties of an element,
so instead of simply applying a class style to an element, you can immediately add
a border or background-color, or set a width or positioning property. You can use
the css() function in three ways: to find the current value for an element’s CSS
property, to set a single CSS property on an element, or to set multiple CSS prop-
erties at once.

http://webdesign.about.com/od/css/qt/tipcssmulticlas.htm

Chapter 5: Dynamically Modifying Web Pages 187

Setting and Reading
Tag Attributes

To determine the current value of a CSS property, pass the name of the property to
the css() function. For example, say you want to find the background color of a
<div> tag with an ID of main:

var bgColor = $('#main').css('background-color');

After this code runs, the variable bgColor will contain a string with the element’s
background-color value (jQuery returns either 'transparent' if no color is set, or an
RGB color value like this: 'rgb(255, 255, 0)').

Note: jQuery may not always return CSS values the way you expect. For example, jQuery doesn’t under-
stand shorthand CSS properties like font, margin, padding, or border. Instead, you have to use the spe-
cific CSS properties like font-face, margin-top, padding-bottom, or border-bottom-width to access styles
that can be combined in CSS shorthand. In addition, jQuery translates all unit values to pixels, so even if
you use CSS to set the <body> tag’s font-size to 150%, jQuery returns a pixel value when checking the
font-size property.

The css() function also lets you set a CSS property for an element. To use the func-
tion this way, you supply two arguments to the function: the CSS property name
and a value. For example, to change the font size for the <body> tag to 200% size,
you can do this:

$('body').css('font-size', '200%');

The second argument you supply can be a string value, like '200%', or a numeric
value, which jQuery translates to pixels. For example, to change the padding inside
all of the tags with a class of .pullquote to 100px, you can write this code:

$('.pullquote').css('padding',100);

In this example, jQuery sets the padding property to 100 pixels.

Note: When you set a CSS property using jQuery’s .css() function, you can use the CSS shorthand
method. For example, here’s how you could add a black, one-pixel border around all paragraphs with a
class of highlight:

$('p.highlight').css('border', '1px solid black');

It’s often useful to change a CSS property based on its current value. For example,
say you want to add a “Make text bigger” button on a Web page, so when a visitor
clicks the button, the page’s font-size doubles. To make that happen, you read the
value, and then set a new value. In this case, you first determine the current font-
size and then set the font-size to twice that value. It’s a little trickier than you
might think. Here’s the code, and a full explanation follows:

var baseFont = $('body').css('font-size');

baseFont = parseInt(baseFont,10);

$('body').css('font-size',baseFont * 2);

188 JavaScript: The Missing Manual

Setting and Reading
Tag Attributes

The first line retrieves the <body> tag’s font-size value—the returned value is in
pixels and is a string like this: '16px'. Since you want to double that size—multiply-
ing it by 2—you must convert that string to a number by removing the “px” part
of the string. The second line accomplishes that using the JavaScript parseInt()
method discussed on page 135. That function essentially strips off anything follow-
ing the number, so after line two baseFont contains a number, like 16. Finally, the
third line resets the font-size property by multiplying the baseFont value by 2.

Note: This code affect the page’s type size only if the other tags on the page—paragraphs, headlines, and
so on—have their font-size set using a relative value like ems or percentages. If the other tags use absolute
values like pixels, changing the <body> tag’s font size won’t affect them.

Changing Multiple CSS Properties at Once
If you want to change more than one CSS property on an element, you don’t need
to resort to multiple uses of the .css() function. For example, if you want to
dynamically highlight a <div> tag (perhaps in reaction to an action taken by a visi-
tor), you can change the <div> tag’s background color and add a border around it,
like this:

$('#highlightedDiv').css('background-color','#FF0000');

$('#highlightedDiv').css('border','2px solid #FE0037');

Another way is to pass what’s called an object literal to the .css() function. Think of
an object literal as a list of property name/value pairs. After each property name,
you insert a colon (:) followed by a value; each name/value pair is separated by a
comma, and the whole shebang is surrounded by braces—{}. Thus, an object lit-
eral for the two CSS property values above looks like this:

{ 'background-color' : '#FF0000', 'border' : '2px solid #FE0037' }

Because an object literal can be difficult to read if it’s crammed onto a single line,
many programmers break it up over multiple lines. The following is functionally
the same as the previous one-liner:

{

 'background-color' : '#FF0000',

 'border' : '2px solid #FE0037'

}

The basic structure of an object literal is diagrammed in Figure 5-7.

Warning: When creating an object literal, make sure to separate each name/value pair by adding a
comma after the value (for instance, in this example the comma goes after the value '#FF0000’. However,
the last property/value pair should not have a comma after it, since no property/value pair follows it. If you
do add a comma after the last value, some Web browsers (including Internet Explorer) will generate an
error.

Chapter 5: Dynamically Modifying Web Pages 189

Reading, Setting,
and Removing HTML

Attributes

To use an object literal with the css() function, just pass the object to the function
like this:

$('#highlightedDiv').css({

 'background-color' : '#FF0000',

 'border' : '2px solid #FE0037'

});

Study this example closely, because it looks a little different from what you’ve seen
so far, and because you’ll be encountering lots of code that looks like it in future
chapters. The first thing to notice is that this code is merely a single JavaScript
statement (essentially just one line of code)—you can tell because the semicolon
that ends the statement doesn’t appear until the last line. The statement is broken
over four lines to make the code easier to read.

Next, notice that the object literal is an argument (like one piece of data) that’s
passed to the css() function. So in the code css({, the opening parenthesis is part of
the function, while the opening { marks the beginning of the object. The three
characters in the last line break down like this: } is the end of the object and the
end of the argument passed to the function;) marks the end of the function, the
last parenthesis in css(); and ; marks the end of the JavaScript statement.

And if all this object literal stuff is hurting your head, you’re free to change CSS
properties one line at a time, like this:

$('#highlightedDiv').css('background-color','#FF0000');

$('#highlightedDiv').css('border','2px solid #FE0037');

Reading, Setting, and Removing HTML
Attributes
Since changing classes and CSS properties using JavaScript are such common tasks,
jQuery has built-in functions for them. But the addClass() and css() functions are
really just shortcuts for changing the HTML class and style attributes. jQuery
includes general-purpose functions for handling HTML attributes—the attr() and
removeAttr() functions.

Figure 5-7:
A JavaScript object literal provides a way to create a list
of properties and values. JavaScript treats the object
literal as a single block of information—just as an array
is a list of values. You’ll use an object literal like this
frequently when setting options for jQuery plugins.

190 JavaScript: The Missing Manual

Creative Headlines

The attr() function lets you read a specified HTML attribute from a tag. For exam-
ple, to determine the current graphic file a particular points to, you pass
the string 'src' (for the tag’s src property) to the function:

var imageFile = $('#banner img').attr('src');

The attr() function returns the attributes value as it’s set in the HTML. This code
returns the src property for the first tag inside another tag with an ID of
banner, so the variable imageFile would contain the path set in the page’s HTML:
for instance, 'images/banner.png' or 'http://www.thesite.com/images/banner.png'.

Note: When passing an attribute name to the .attr() function, you don’t need to worry about the case of
the attribute name—href, HREF, or even HrEf will work.

If you pass a second argument to the attr() function, you can set the tag’s
attribute. For example, to swap in a different image, you can change an
tag’s src property like this:

$('#banner img').attr('src','images/newImage.png');

If you want to completely remove an attribute from a tag, use the removeAttr()
function. For example, this code removes the bgColor property from the <body>
tag:

$('body').removeAttr('bgColor');

Creative Headlines
In this tutorial, you’ll use jQuery in combination with CSS to create a unique
headline effect (see Figure 5-8). The basic concept is to overlay a transparent PNG
image on top of each headline. The PNG acts as a kind of mask that covers parts of
the headlines. In this example, an image made of fading horizontal lines will lie
over several headlines to give the appearance that the text itself has stripes.

The key to this effect is to add an empty tag inside each headline’s tag.
Using CSS, you can format this tag so that it sets on top of the headline
and displays a transparent image inside it.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 5.2.html in the chapter05 folder.

The first step is to link to the jQuery library file.

2. In the empty line, just before the closing </head> tag, add:

<script type="text/javascript" src="../js/jquery.js"></script>

Chapter 5: Dynamically Modifying Web Pages 191

Creative Headlines

This line of code loads the jQuery library file. This line must appear before any
other JavaScript code that uses a jQuery function, so it’s a good idea to always
list this line before any other <script> tags on the page.

Next, you’ll start your own JavaScript.

3. Press return to create a new blank line and type:

 <script type="text/javascript">

While you’re here, it’s a good idea to close the <script> tag as well.

4. Press return twice and type </script>.

Now you’ll get started with some jQuery.

5. Add the code that’s bolded below to your page:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

});

</script>

Figure 5-8:
With some clever CSS
and a little JavaScript, it’s
easy to add visual flair to
headlines and text. To
see more examples of
this effect and read more
about how it works,
check out www.
webdesignerwall.com/
tutorials/css-gradient-
text-effect and http://
cssglobe.com/lab/
textgradient.

192 JavaScript: The Missing Manual

Creative Headlines

You encountered this code before in the tutorial on page 30. You’ll learn about
this strange-looking stuff in detail in the next chapter, but in a nutshell, this
code makes sure that the HTML for the page has loaded before your JavaScript
program runs. That’s very important when using JavaScript to manipulate a
Web page, because if JavaScript tries to add, delete, or rearrange HTML before
the page’s HTML has loaded, you’ll end up with an error.

Now you’ll create a jQuery selection object.

6. Between the two lines of code you just added, type $('#main h2') so your code
now looks like this:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 $('#main h2')

});

</script>

The #main h2 is a CSS descendent selector that matches every <h2> tag that
appears inside another tag with an ID of #main, so this code selects every <h2>
tag within the main area of the page. Now you’ll do something with those tags.

7. Type .prepend(''); so that your finished
code looks like this:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 $('#main h2').prepend('');

});

</script>

The .prepend() function adds content just after the opening tag of the matched
element. In other words, this code will add an empty tag inside each
<h2> tag, transforming the HTML from, for example, <h2>A Mysterious Head-
line</h2> to <h2>A Mysterious Headline</h2>.

8. Save the page and preview it in a Web browser.

The three big, bold, and blue headlines should look like Figure 5-8 (you can
find all of the finished code in the file complete_5.2.html). The real secret of this
technique isn’t really JavaScript or jQuery, but the CSS. In a nutshell, each
 tag added to the headlines has a CSS style applied to it that turns the
span into a 36-pixel-tall box that floats above and over the headlines. A trans-
parent image is tiled inside that box, creating a mask that blocks part of each
headlines text (note the .headEffect class style defined in the internal style sheet
near the top of the document).

Chapter 5: Dynamically Modifying Web Pages 193

Acting on Each
Element in a

Selection

So, you may be asking, if the effect is really a CSS effect, why use JavaScript? With-
out JavaScript, you’d need to manually add the tags inside each headline
you wanted the effect for. That’s a lot of extra work, not to mention extra code
added to your Web page. What’s more, if you grew tired of this effect (is that even
possible?), you’d have to search all of your pages and remove the no-longer-
needed tags. This way, you just have a little JavaScript code to remove.

Acting on Each Element in a Selection
As discussed on page 180, one of the unique qualities of jQuery is that most of its
functions automatically loop through each item in a jQuery selection. For exam-
ple, to make every on a page fade out, you only need one line of JavaScript
code:

$('img').fadeOut();

The .fadeOut() function causes an element to disappear slowly, and when attached
to a jQuery selection containing multiple elements, the function loops through the
selection and fades out each element. There are plenty of times when you’ll want to
loop through a selection of elements and perform a series of actions on each ele-
ment. jQuery provides the .each() function for just this purpose.

For example, say you want to list of all of the external links on your page in a bibli-
ography box at the bottom of the page, perhaps titled “Other Sites Mentioned in
This Article.” (OK, you may not ever want to do that, but just play along.) Any-
way, you can create that box by:

1. Retrieving all links that point outside your site.

2. Getting the HREF attribute of each link (the URL).

3. Adding that URL to the other list of links in the bibliography box.

jQuery doesn’t have a built-in function that performs these exact steps, but you
can use the each() function to do it yourself. It’s just a jQuery function, so you slap
it on at the end of a selection of jQuery elements like this:

$('selector').each();

Anonymous Functions
To use the each() function, you pass a special kind of argument to it—an anony-
mous function. The anonymous function is simply a function containing the steps
that you wish to perform on each selected element. It’s called anonymous because,
unlike the functions you learned to create on page 97, you don’t give it a name.
Here’s an anonymous function’s basic structure:

function() {

 //code goes here

}

194 JavaScript: The Missing Manual

Acting on Each
Element in a
Selection

Because there’s no name, you don’t have a way to call the function. Instead, you
use the anonymous function as an argument that you pass to another function
(strange, confusing, but true!). Here’s how you incorporate an anonymous func-
tion as part of the each() function:

$('selector').each(function() {

 // code goes in here

});

Figure 5-9 diagrams the different parts of this construction. The last line is particu-
larly confusing, since it includes three different symbols that close up three parts of
the overall structure. The } marks the end of the function (that’s also the end of the
argument passed to the each() function); the) is the last part of the each() func-
tion; and ; indicates the end of a JavaScript statement. In other words, the Java-
Script interpreter treats all of this code as a single instruction.

Now that the outer structure’s in place, it’s time to put something inside the anony-
mous function: all of the stuff you want to happen to each element in a selection.
The each() function works like a loop—meaning the instructions inside the anony-
mous function will run once for each element you’ve retrieved. For example, say
you have 50 images on a page and add the following JavaScript code to one of the
page’s scripts:

$('img').each(function() {

 alert('I found an image');

});

Fifty alert dialog boxes with the message “I found an image” would appear. (That’d
be really annoying, so don’t try this at home.)

this and $(this)
When using the each() function, you’ll naturally want to access or set attributes of
each element—for example, to find the URL for each external link. To access the
current element through each loop, you use a special keyword called this. The this
keyword refers to whatever element is calling the anonymous function. So the first
time through the loop, this refers to the first element in the jQuery selection, while
the second time through the loop, this refers to the second element.

Figure 5-9:
jQuery’s each() function lets you loop
through a selection of page elements and
perform a series of tasks on each
element. The key to using the function is
understanding anonymous functions.

Chapter 5: Dynamically Modifying Web Pages 195

Acting on Each
Element in a

Selection

The way jQuery works, this refers to a traditional DOM element, so you can access
traditional DOM properties like innerHTML (page 163) or childNodes (page 161).
But, as you’ve read in this chapter, the special jQuery selection lets you tap into all
of the wonderful jQuery functions. So to convert this to its jQuery equivalent, you
write $(this).

At this point, you’re probably thinking that all of this this stuff is some kind of
cruel joke intended to make your head swell. It’s not a joke, but it sure is confus-
ing. To help make clear how to use $(this), take another look at the task described
at the beginning of this section—creating a list of external links in a bibliography
box at the bottom of a page.

Assume that the page’s HTML already has a <div> tag ready for the external links.
For example:

<div id="bibliography">

<h3>Web pages referenced in this article</h3>

<ul id="bibList">

</div>

The first step is to get a list of all links pointing outside your site. You can do so
using an attribute selector (page 177):

$('a[href^=http://]')

Now to loop through each link, we add the each() function:

$('a[href^=http://]').each()

Then add an anonymous function:

$('a[href^=http://]').each(function() {

});

The first step in the anonymous function is to retrieve the URL for the link. Since
each link has a different URL, you must access the current element each time
through the loop. The $(this) keyword lets you do just that:

$('a[href^=http://]').each(function() {

var extLink = $(this).attr('href');

});

The code in the middle, bolded line does several things: First, it creates a new vari-
able (extLink) and stores the value of the current element’s href property. Each
time through the loop, $(this) refers to a different link on the page, so each time
through the loop, the extLink variable changes.

196 JavaScript: The Missing Manual

Automatic Pull
Quotes

After that, it’s just a matter of appending a new list item to the tag (see the
HTML on page 195), like this:

$('a[href^=http://]').each(function() {

 var extLink = $(this).attr('href');

$('#bibList').append('' + extLink + '');

});

You’ll use the $(this) keyword almost every time you use the each() function, so in
a matter of time, $(this) will become second nature to you. To help you practice
this concept, you’ll try it out in another tutorial.

Note: The example script used in this section is a good way to illustrate the use of the $(this) keyword,
but it probably isn’t the best way to accomplish the task of writing a list of external links to a page. First, if
there are no links, the <div> tag (which was hardcoded into the page’s HTML) will still appear, but it’ll be
empty. In addition, if someone visits the page without JavaScript turned on, he won’t see the links, but will
see the empty box. A better approach is to use JavaScript to create the enclosing <div> tag as well. You
can find an example of that in the file bibliography.html accompanying the tutorials for this chapter.

Automatic Pull Quotes
In the final tutorial for this chapter, you’ll create a script that makes it very easy to
add pull quotes to a page (like the one pictured in Figure 5-10). A pull quote is a
box containing an interesting quote from the main text of a page. Newspapers,
magazines, and Web sites all use these boxes to grab readers’ attention and empha-
size an important or interesting point. But adding pull quotes manually requires
duplicating text from the page and placing it inside a <div> tag, tag, or
some other container. Creating all that HTML takes time and adds extra HTML
and duplicate text to the finished page. Fortunately, with JavaScript you can
quickly add any number of pull quotes to a page, adding just a small amount of
HTML.

Overview
The script you’re about to create will do several things:

1. Locate every tag containing a special class named pq (for pull quote).

The only work you have to do to the HTML of your page is to add tags
around any text you wish to turn into a pull quote. For example, suppose
there’s a paragraph of text on a page and you want to highlight a few words
from that paragraph in pull quote box. Just wrap that text in the , tag
like this:

...and that's how I discovered the Loch Ness monster.

Chapter 5: Dynamically Modifying Web Pages 197

Automatic Pull
Quotes

2. Duplicate each tag.

Each pull quote box is essentially another span tag with the same text inside it,
so you can use JavaScript to just duplicate the current tag.

3. Remove the pq class from the duplicate and add a new class pullquote.

The formatting magic—the box, larger text, border, and background color—
that makes up each pull quote box isn’t JavaScript’s doing. The page’s style
sheet contains a CSS class selector, .pullquote, that does all of that. So by simply
using JavaScript to change the duplicate tags’ class name, you completely
change the look of the new tags.

4. Add the duplicate tag to the page.

Finally, you add the duplicate tag to the page. (Step 2 just makes a copy
of the tag in the Web browser’s memory, but doesn’t actually add that tag to the
page yet. This gives you the opportunity to further manipulate the duplicated
tag before displaying it for the person viewing the page.)

Programming
Now that you have an idea of what you’re trying to accomplish with this script, it’s
time to open a text editor and make it happen.

Note: See the note on page 27 for information on how to download the tutorial files.

Figure 5-10:
Adding pull quotes
manually to the HTML of
a page is a pain.
Especially when you can
just use JavaScript to
automate the process.

198 JavaScript: The Missing Manual

Automatic Pull
Quotes

1. In a text editor, open the file 5.3.html in the chapter05 folder.

The page already contains the code to link the jquery.js file to the page, as well as
a <script> tag, including that strange $(document).ready stuff you encountered
in step 5 on page 191.

2. Click in the empty line between after the $(document).ready stuff, and then
add the code that’s in bold below:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('span.pq')

5

6 });

7 </script>

Note: The line numbers to the left of each line of code are just for your reference. Don’t actually type
them as part of the script on the Web page.

The $('span.pq') is a jQuery selector that locates every tag with a class of
pq applied to it. Next you’ll add the code needed to loop through each of these
 tags and do something to them.

3. Add the bolded code below on lines 4 and 6:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('span.pq').each(function() {

5

6 });

7 });

8 </script>

As discussed on page 193, .each() is a jQuery function that lets you loop through a
selection of elements. The function takes one argument, which is itself a function.

Next you’ll start to build the function that will apply to each matching
tag on this page: the first step is creating a copy of the .

4. Add the code listed in bold on line 5 below to the script:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('span.pq').each(function() {

5 var quote=$(this).clone();

6 });

7 });

8 </script>

Chapter 5: Dynamically Modifying Web Pages 199

Automatic Pull
Quotes

This function starts by creating a new variable named quote, which contains a
“clone” (just a copy) of the current (see page 194 if you forgot what
$(this) means). The jQuery .clone() function duplicates the current element,
including all of the HTML within the element. In this case, it makes a copy of
the tag, including the text inside the that will appear in the pull
quote box.

Cloning an element copies everything, including any attributes applied to it. In
this instance, the original had a class named pq. You’ll remove that class
from the copy.

5. Add the two lines of code listed in bold on lines 6 and 7 below to the script:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('span.pq').each(function() {

5 var quote=$(this).clone();

6 quote.removeClass('pq');

7 quote.addClass('pullquote');

8 });

9 });

10 </script>

As discussed on page 186, the removeClass() function removes a class name
from a tag, while the .addClass() function adds a class name to a tag. In this
case, we’re replacing the class name on the copy, so you can use a CSS class
named .pullquote to format the as a pull quote box.

Finally, you’ll add the to the page.

6. Add the bolded line of code (line 8 below) to the script:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('span.pq').each(function() {

5 var quote=$(this).clone();

6 quote.removeClass('pq');

7 quote.addClass('pullquote');

8 $(this).before(quote);

9 });

10 });

11 </script>

This line is the final piece of the function—up until this line, you’ve just been
manipulating a copy of the in the Web browser’s memory. No one
viewing the page would see it until the copy is actually added to the DOM.

200 JavaScript: The Missing Manual

Automatic Pull
Quotes

In this case, you’re inserting the copy of the tag, just before the one in
your HTML. In essence, the page will end up with HTML sort of like this:

...and that's how I discovered the Loch Ness monster.

 ...and that's how I discovered the Loch Ness

monster.

Although the text looks like it will appear duplicated side by side, the CSS for-
matting makes the pull quote box float to the right edge of the page.

Note: To achieve the visual effect of a pull quote box, the page has a CSS style that uses the CSS float
property. The box is moved to the right edge of the paragraph in which the text appears, and the other
text in the paragraph wraps around it. If you’re unfamiliar with this technique, you can learn about the CSS
float property at http://css.maxdesign.com.au/floatutorial/.

At this point, all of the JavaScript is complete. However, you won’t see any pull
quote boxes until you massage the HTML a bit.

7. Find the first <p> tag in the page’s HTML. Locate a sentence and wrap around it. For example:

Nullam ut nibh sed orci tempor rutrum.

You can repeat this process to add pull quotes to other paragraphs as well.

8. Save the file and preview it in a Web browser.

The final result should look something like Figure 5-10. If you don’t see a pull
quote box, make sure you added the tag in step 12 correctly. Also,
check out the tips on page 32 for fixing a malfunctioning program. You can find
a completed version of this tutorial in the file complete_5.3.html.

http://css.maxdesign.com.au/floatutorial/

201

Chapter 6chapter

6

Action/Reaction:
Making Pages Come
Alive with Events

When you hear people talk about JavaScript, you usually hear the word “interac-
tive” somewhere in the conversation: “JavaScript lets you make interactive Web
pages.” What they’re really saying is that JavaScript lets your Web pages react to
something a visitor does: moving a mouse over a navigation button produces a
menu of links; selecting a radio button reveals a new set of form options; clicking a
form’s submit button alerts you to form fields that were left blank.

All the different visitor actions that a Web page can respond to are called events.
JavaScript is an event-driven language: without events, your Web pages wouldn’t be
able to respond to visitors or do anything really interesting. It’s like your desktop
computer. Once you start it up in the morning, it doesn’t do you much good until
you start clicking files, making menu selections, and moving your mouse around
the screen.

What Are Events?
Web browsers are programmed to recognize basic actions like the page loading,
someone moving a mouse, typing a key, or resizing the browser window. Each of
the things that happens to a Web page is an event. To make your Web page interac-
tive, you write programs that respond to events. In this way, you can make a <div>
tag appear or disappear when a visitor clicks the mouse, a new image appear when
she mouses over a link, or check the contents of a text field when she clicks a
form’s Submit button.

202 JavaScript: The Missing Manual

What Are Events?

An event represents the precise moment when something happens. For example,
when you click a mouse, the precise moment you release the mouse button, the
Web browser signals that a click event has just occurred. The moment that the Web
browser indicates that an event has happened is when the event fires, as program-
mers put it.

Web browsers actually fire several events whenever you click the mouse button.
First, as soon as you press the mouse button, the mousedown event fires, then
when you let go of the button the mouseup event fires, and finally the click event
fires (see Figure 6-1).

Note: Understanding when and how these events fire can be tricky. To let you test out different event
types, this chapter includes a demo Web page with the tutorial files. Open events.html (in the chapter06
folder) in a Web browser. Then move the mouse, click, and type to see some of the many different events
that constantly occur on a Web page (see Figure 6-1).

Figure 6-1:
While you may not be
aware of it, Web browsers
are constantly firing off
events whenever you
type, mouse around, or
click. The events.html file
(included with the tutorial
files for this chapter)
shows you many of these
events in action. For
example, clicking a link
(circled) fires the
mousedown, mouseup,
and click events.

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 203

What Are Events?

Preparing a Web page to respond to an event is a two-stage process:

1. Identify the page element that you wish to respond to an event.

While the entire document can respond to a mouse click anywhere on a Web
page, it’s more common to attach events to particular page elements like spe-
cific links, form fields, or even a particular paragraph of text. For example, if
you want a menu to pop up when a visitor moves his mouse over a navigation
link, you need to attach the mouseover event to that particular link. After all, it
wouldn’t make much sense for the pop-up menu to appear whenever the
mouse passes over just any part of the page.

This step of the process—selecting a page element—is easy (you learned how to
do it in the last chapter).

2. Assign an event and define a function to run when the event occurs.

There are several methods of assigning a function to respond to an event (as
you’ll learn starting on page 207). But the basic idea is that you create a func-
tion that runs whenever the event fires. For example, you can write a function
that makes a previously hidden <div> appear (a <div> containing links that are
part of a menu, for example), and then assign that function to respond to the
mouseover event of a particular link. Then, when the visitor mouses over the
link, the function runs and makes the <div> appear.

You’ll learn how to assign events to page elements on page 207, but before you do,
you should learn about the events available to most Web browsers. The following
sections cover events that work in all currently shipping browsers.

Mouse Events
Ever since Steve Jobs introduced the Macintosh in 1984, the mouse has been a crit-
ical device for all personal computers. Folks use it to open applications, drag files
into folders, select items from menus, and even to draw. Naturally, Web browsers
provide lots of ways of tracking how a visitor uses a mouse to interact with a Web
page:

• click. The click event fires after you click and release the mouse button. You’ll
commonly assign a click event to a link: for example, a link on a thumbnail
image when clicked can display a larger version of that image. However, you’re
not limited to just links. You can also make any tag on a page respond to an
event—even just clicking anywhere on the page.

Note: The click event can also be triggered on links via the keyboard. If you tab to a link, then press the
Enter (Return) key, the click event fires.

204 JavaScript: The Missing Manual

What Are Events?

• dblclick. When you press and release the mouse button twice, a double-click
(dblclick) event fires. It’s the same action you use to open a folder or file on your
desktop. Double-clicking a Web page isn’t a usual Web-surfer action, so if you
use this event, you should make clear to visitors where they can double-click
and what will happen after they do. Also note that a double-click event is the
same thing as two click events, so don’t assign click and double-click events to
the same tag. Otherwise, the function for the click will run twice before the
double-click function runs.

• mousedown. The mousedown event is the first half of a click—the moment
when you click the button before releasing it. This event is handy for dragging
elements around a page. You can let visitors drag items around your Web page
just like they drag icons around their desktop—by clicking on them (without
releasing the button) and moving them, then releasing the button to drop them.

• mouseup. The mouseup event is the second half of a click—the moment when
you release the button. This event is handy for responding to the moment when
you drop an item that has been dragged.

• mouseover. When you move your mouse over an element on a page, a
mouseover event fires. You can assign an event handler to a navigation button
using this event and have a submenu pop up when a visitor mouses over the
button. (If you’re used to the CSS :hover pseudo-class, then you know how this
event works.)

• mouseout. Moving a mouse off an element triggers the mouseout event. You
can use this event to signal when a visitor has moved her mouse off the page, or
to hide a pop-up menu when the mouse travels outside the menu.

• mousemove. Logically enough, the mousemove event fires when the mouse
moves—which means this event fires all of the time. You use this event to track
the current position of the cursor on the screen. In addition, you can assign this
event to a particular tag on the page—a <div> for example—and respond only
to movements within that tag.

Note: Some Web browsers, like Internet Explorer support many events (http://msdn2.microsoft.com/en-
us/library/ms533051(VS.85).aspx), but most browsers share just a handful of events.

Document/Window Events
The browser window itself understands a handful of events that fire from when the
page loads to when the visitor leaves the page:

• load. The load event fires when the Web browser finishes downloading all of a
Web page’s files: the HTML file itself, plus any linked images, Flash movies, and
external CSS and JavaScript files. Web designers have traditionally used this
event to start any JavaScript program that manipulated the Web page. How-
ever, loading a Web page and all its files can take a long time if there are a lot of

http://msdn2.microsoft.com/en-us/library/ms533051(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms533051(VS.85).aspx

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 205

What Are Events?

graphics or other large linked files. In some cases, this meant the JavaScript
didn’t run for quite some time after the page was displayed in the browser. For-
tunately, jQuery offers a much more responsive replacement for the load event,
as described on page 218.

• resize. When you resize your browser window by clicking the maximize but-
ton, or dragging the browser’s resize handle, the browser triggers a resize event.
Some designers use this event to change the layout of the page when a visitor
changes the size of his browser. For example, after a visitor resizes his browser
window, you can check the window’s width—if the window is really wide, you
could change the design to add more columns of content to fit the space.

Note: Internet Explorer, Opera, and Safari fire multiple resize events as you resize the window, whereas
Firefox only fires the resize event a single time after you’ve let go of the resize handle.

• scroll. The scroll event is triggered whenever you drag the scroll bar, or use the
keyboard (up/down/home/end and so on keys) or mouse scroll wheel to scroll a
Web page. If the page doesn’t have scrollbars, no scroll event is ever triggered.
Some programmers use this event to help figure out where elements (after a
page has scrolled) appear on the screen.

• unload. When you click a link to go to another page, close a browser tab, or
close a browser window, a Web browser fires an unload event. It’s like the last
gasp for your JavaScript program and gives you an opportunity to complete one
last action before the visitor moves on from your page. Nefarious programmers
have used this event to make it very difficult to ever leave a page. Each time a
visitor tries to close the page, a new window appears and the page returns. But
you can also use this event for good: for example, a program can warn a visitor
about a form they’ve started to fill out but haven’t submitted, or the program
could send form data to the Web server to save the data before the visitor exits
the page.

Note: Safari and Internet Explorer fire unload events whenever you click a link to leave a page or even
just close a window or tab with the page. Opera and Firefox let you click the window’s close button with-
out firing the unload event.

Form Events
In the pre-JavaScript days, people interacted with Web sites mainly via forms cre-
ated with HTML. Entering information into a form field was really the only way
for visitors to provide input to a Web site. Because forms are still such an impor-
tant part of the Web, you’ll find plenty of form events to play with.

• submit. Whenever a visitor submits a form, the submit event fires. A form
might be submitted by clicking the Submit button, or simply by hitting the
Enter (Return) key while the cursor is in a text field. You’ll most frequently use

206 JavaScript: The Missing Manual

What Are Events?

the submit event with form validation—to make sure all required fields are
correctly filled out before the data is sent to the Web server. You’ll learn how to
validate forms on page 330.

• reset. Although not as common as they used to be, a Reset button lets you undo
any changes you’ve made to a form. It returns a form to the state it was when
the page was loaded. You can run a script when the visitor tries to reset the
form by using the reset event. For example, if the visitor has made some changes
to the form, you might want to pop up a dialog box that asks “Are you sure you
want to delete your changes?” The dialog could give the visitor a chance to click
a “No” button and prevent the process of resetting (erasing) the form.

• change. Many form fields fire a change event when their status changes: for
instance, when someone clicks a radio button, or makes a selection from a
drop-down menu. You can use this event to immediately check the selection
made in a menu, or which radio button was selected.

• focus. When you tab or click into a text field, it gives the field focus. In other
words, the browser’s attention is now focused on that page element. Likewise,
selecting a radio button, or clicking a checkbox, gives those elements focus. You
can respond to the focus event using JavaScript. For example, you could add a
helpful instruction inside a text field —“Type your full name.” When a visitor
clicks in the field (giving it focus), you can erase these instructions, so he has an
empty field he can fill out.

• blur. The blur event is the opposite of focus. It’s triggered when you exit a cur-
rently focused field, by either tabbing or clicking outside the field. The blur
event is another useful time for form validation. For example, when a person
types her email address in a text field, then tabs to the next field, you could
immediately check what she’s entered to make sure it’s a valid email address.

Note: Focus and blur events also apply to links on a page. When you tab to a link, a focus event fires;
when you tab (or click) off the link, the blur event fires.

Keyboard Events
Web browsers also track when visitors use their keyboard, so you can assign com-
mands to keys or let your visitors control a script by pressing various keys. For
example, pressing the Space bar could start and stop a JavaScript animation.

Unfortunately, the different browsers handle keyboard events differently, even
making it hard to tell which letter was entered! (You’ll find one technique for iden-
tifying which letter was typed on a keyboard in the tip on page 223.)

• keypress. The moment you press a key, the keypress event fires. You don’t have
to let go of the key, either. In fact, the keypress event continues to fire, over and
over again, as long as you hold the key down.

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 207

Using Events with
Functions

• keydown. The keydown event is like the keypress event—it’s fired when you
press a key. Actually, it’s fired right before the keypress event. In Firefox and
Opera, the keydown event only fires once. In Internet Explorer and Safari, the
keydown event behaves just like the keypress event—it fires over and over as
long as the key is pressed.

• keyup. Finally, the keyup event is triggered when you release a key.

Using Events with Functions
To take advantage of events, you need to tell the Web browser to run a function
when a particular event happens to a specific tag. For example, to make a row in a
table change color when a visitor mouses over it, you attach a mouseover event to
the table row and assign a function to the event (the function provides the instruc-
tions to change the row’s color). There are several ways to accomplish this.

Inline Events
The simplest way to run a function when an event fires is called inline event regis-
tration. If you’ve ever tried JavaScript programming before, you’re probably famil-
iar with this technique, which lets you assign an event handler directly to the
HTML of your page. For example, to make an alert box appear when you mouse
over a particular link, you write this:

A link

In this case, the event is mouseover and the event handler is called onmouseover.
You add the event handler directly to the HTML of the tag and assign a command
to the handler (in this example, an alert() command). Event handler names are
created by simply adding the word on to the beginning of the event, so a mouseover
event handler is written as onmouseover, a click event handler as onclick, and so on.

Note: You can think of on as “when” so onmouseover just means “when the mouse moves over” the
element.

You can even use the inline technique to call a previously created function, like
this:

<body onload="startSlideShow()">

The line of code above calls a function (that’s been defined somewhere else on the
page) named startSlideShow() after the page and all its required files have loaded.

Adding an event handler directly to a HTML tag is certainly convenient, and lots of
programmers use this technique. However, it’s not the best way to go. When you
add inline event handlers, you end up sprinkling JavaScript throughout your
HTML. For example, if you have several buttons that each do something when
clicked, you need to manually add inline event handlers to the each button in the

208 JavaScript: The Missing Manual

Using Events with
Functions

HTML. This arrangement can make future updates to your site a real chore, since
you’ll have to scan your HTML carefully to find all of the JavaScript code you need
to update. Most professional JavaScript programmers aim to separate JavaScript
from HTML as much as possible (see the box below). You’ll learn how to do this
next.

The Traditional Model
Any Web browser that understands JavaScript can take advantage of another tech-
nique for assigning an event handler to a tag. There’s no official name for this tech-
nique, but most programmers call it the traditional model. It lets you assign an
event handler to a page element without having to muck around in the HTML
within the body of a page. This method involves identifying the page element you
wish to add the event to, then assigning an event handler to the element.

Note: You used the traditional model of assigning an event to an element in one of the tutorials from
the previous chapter. See step 8 on page 166.

For example, say you wanted to have an alert box appear after the page loads. You
could do that by adding the following code either within <script> tags in the
<head> of the page or in an external JavaScript file (page 24).

function message() {

 alert("Welcome...");

}

window.onload=message;

UP TO SPEED

Don’t Let JavaScript Get in the Way
If you’ve been building Web pages for a long time, you’ll
remember that in the days before CSS, you had to style all
of your pages using various HTML tags. So to change the
look of text, you’d add additional HTML to a page like this:

<font face="Arial, Helvetica, sans-serif"
size="2" color="#EEFF00">
The stylish text.

When CSS came around, you learned how to put all of your
style information in a style sheet located in either the
<head> of the page or in a separate, external CSS file. Sud-
denly, your HTML was free from a lot of extra markup.
HTML was reserved for content and structure, while format-
ting was controlled by CSS that was defined in a single loca-
tion (a style sheet).

Most professional JavaScript programmers argue that put-
ting your JavaScript code directly inside a tag—for example,
<a href="page.html" onmouseover="alert('where you
going?');">a link—is akin to those bad old days before
CSS. It clutters up your HTML with JavaScript, adding extra
code to your HTML and making it hard to separate out the
content and structure (HTML) from the page’s behavior
(JavaScript).

Fortunately, without much effort you can keep all of your
JavaScript code confined to an external file or just inside
<script> tags in the <head> of the page. jQuery’s event
functions (page 210) or even the so-called “traditional
model” of event handlers (below) are much better than
using inline event registration.

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 209

Using Events with
Functions

The first three lines create a simple function named message. When a program calls
this function, it opens an alert box with “Welcome…” inside it. The event magic
happens in line four, where the onload event handler is assigned to the window
object—that is, when the page loads (see page 204 for more on the load event), the
function is called.

Notice that the function is assigned to the onload event handler much like a value
is assigned to a variable. The equal sign in window.onload=message; essentially
stores a reference to the function in the event handler. That’s why there are no
parentheses after the function’s name: message instead of message(). When paren-
theses appear after a function name, you’re telling the function to run immedi-
ately. So the code window.onload=message() actually calls the function before the
page loads. By omitting the parentheses, you’re letting the onload event handler
know which function to call when the time comes—when the page finishes loading.

The Modern Way
The two previously described methods of responding to events on a Web page
have been around since Netscape Navigator 3 (that’s a long time), and all Web
browsers understand them. There’s one main drawback to those techniques,
though—you can only assign a single function per event per tag. For example, only
one function can respond to the onload event handler, so in the code below the
second event handler essentially erases the first:

window.onload=message;

window.onload=setUpPage;

In this example, only the setUpPage() function will run when the page loads. This
gotcha may not sound like too big a problem, since you can just combine the com-
mands in the two functions into a single function. But when you’re placing scripts
on pages that already have JavaScript on them, scripts can easily end up erasing
each other’s event handlers. The danger gets worse when you start to include
scripts from other programmers—like JavaScript libraries or the cool jQuery plug-
ins you’ll be learning about in future chapters.

To deal with this and other problems associated with the old event handler meth-
ods, the W3C introduced a new innovation called event listeners. The underlying
concept is pretty much the same as event handlers: select an element (a link, for
example), and assign a function that runs when a particular event (like mouseover)
occurs. Any page element can have multiple event listeners, so you can assign mul-
tiple functions to the same event for the same tag.

Firefox, Safari, and Opera all use the W3C’s event listener model…and then there’s
Microsoft Internet Explorer, which long ago went off on its own path for dealing
with events. Internet Explorer has a completely different model for how events
work and a unique syntax for assigning functions to respond to events. For the
longest time, this meant that if a JavaScript programmer wanted her programs to
work in all browsers, she had to learn two different techniques for handling the
same task, and write different sets of code to make sure a site worked in all browsers.

210 JavaScript: The Missing Manual

Using Events with
Functions

Fortunately, you don’t have to worry about browser differences when using events
if you use a JavaScript library, like jQuery, which creates a single way for handling
events that works in all current Web browsers.

The jQuery Way
Many JavaScript books spend a lot of time talking about how Internet Explorer
handles events differently than Firefox, Safari, and Opera. In fact, a lot of Java-
Script books dedicate an entire chapter to dealing with the way IE and other
browsers handle events. In the end, most JavaScript books just provide boilerplate
code to make events work across browsers, and this book won’t bore you with the
details of the two different event models—see the box above for some information
if you’re curious. This section cuts to the chase, providing a simple, cross-browser
compatible method for attaching events to elements using jQuery.

As you learned in the last chapter, JavaScript libraries like jQuery solve a lot of the
problems with JavaScript programming—including pesky browser incompatibili-
ties. In addition, libraries often simplify basic JavaScript-related tasks. jQuery
makes assigning events and event helpers (the functions that deal with events) a
breeze. Here’s the basic process:

1. Select one or more elements.

The last chapter explained how jQuery lets you use CSS selectors to choose the
parts of the page you want to manipulate. When assigning events, you want to
select the elements that the visitor will interact with. For example, what will a
visitor click—a link, a table cell, an image? If you’re assigning a mouseover
event, what page element does a visitor mouse over to make the action happen?

UP TO SPEED

The Mixed-Up World of Events
Much to the frustration of Web programmers everywhere,
Internet Explorer implements events in a way that’s very dif-
ferent from all other Web browsers. This situation has
forced JavaScript programmers to come up with two differ-
ent methods to get the same job done.

Most Web browsers let you assign an event listener to an ele-
ment using the method supported by the W3C. Using the
addEventListener() method, you can assign both an event
and a function to respond to the event to any element on a
Web page. Internet Explorer, on the other hand, has the
attachEvent() method to accomplish the same thing.

In addition, while all browsers let you inspect an event—that
is, find out information about the event, such as whether a
key was pressed or the mouse position when the event
fired—IE handles the event object (see page 222) differently
than everybody else.

Fortunately, when you use a JavaScript library like jQuery,
you don’t usually have to worry about any of these differ-
ences—all the cross-browser madness is resolved by the
programming in the library, so you only have to learn one
way to accomplish the same goal for all browsers.

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 211

Using Events with
Functions

2. Assign an event.

In jQuery, most DOM events have an equivalent jQuery function. So to assign
an event to an element, you just add a period, the event name, and a set of
parentheses. So, for example, if you want to add a mouseover event to every link
on a page, you can do this:

$('a').mouseover();

To add a click event to a element with an ID of menu, you’d write this:

$('#menu').click();

You can use any of the event names listed on pages 203-207 (and a couple of
jQuery-only events discussed on page 220).

After adding the event, you still have some work to do. In order for something
to happen when the event fires, you must provide a function for the event.

3. Pass a function to the event.

Finally, you need to define what happens when the event fires. To do so, you
pass a function to the event. The function contains the commands that will run
when the event fires: for example, making a hidden <div> tag visible or high-
lighting a moused-over element.

You can pass a previously defined function’s name like this:

$('#start').click(startSlideShow);

As mentioned on page 209, when you assign a function to an event, you omit
the () that you normally add to the end of a function’s name to call it. In other
words, the following won’t work:

$('#start').click(startSlideShow())

You can also pass an anonymous function to the event. You read about anony-
mous functions on page 193—they’re basically a function without a name. The
basic structure of an anonymous function looks like this:

function() {

// your code here

}

The basic structure for using an anonymous function with an event is pictured
in Figure 6-2.

Note: To learn more about how to work with jQuery and events, visit http://docs.jquery.com/Events.

Here’s a simple example. Assume you have a Web page with a link that has an ID
of menu applied to it. When a visitor moves his mouse over that link, you want a
hidden list of additional links to appear—assume that the list of links has an ID of

http://docs.jquery.com/Events

212 JavaScript: The Missing Manual

Tutorial:
Highlighting Table
Rows

submenu. So what you want to do is add a mouseover event to the menu, and then
call a function that shows the submenu. The process breaks down into four steps:

1. Select the menu:

$('#menu')

2. Attach the event:

$('#menu').mouseover();

3. Add an anonymous function:

$('#menu').mouseover(function() {

});

4. Add the necessary actions (in this case, it’s showing the submenu):

$('#menu').mouseover(function() {

 $('#submenu').show();

});

A lot of people find the crazy nest of punctuation involved with anonymous func-
tions very confusing (that last }); is always a doozy). And it is confusing, but the
best way to get used to the strange world of JavaScript is through lots of practice,
so the following hands-on tutorial should help reinforce the ideas just presented.

Note: The show() function is discussed on page 243.

Tutorial: Highlighting Table Rows
So far the tutorials you’ve completed for this book have been almost entirely free
of events (although in the first tutorial in Chapter 5 (page 164), you used the load
event to trigger a function). In this chapter, you finally get to pull out the tech-
niques that let your pages take the most advantage of JavaScript and really respond
to visitors.

Figure 6-2:
In jQuery, an event works like a function, so you
can pass an argument to the event. You can
think of an anonymous function, then, as really
just an argument—like a single piece of data
that’s passed to a function. If you think of it that
way, it’s easier to see how all of the little bits of
punctuation fit together. For example, in the last
line, the } marks the end of the function (and the
end of the argument passed to the mouseover
function); the) is the end of the mouseover()
function; and the semicolon is the end of the
entire statement that began with the selector
$('a').

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 213

Tutorial:
Highlighting Table

Rows

In this tutorial, you’ll expand on the exercise from Chapter 1, in which you used
JavaScript to add alternating colored rows to a table. Now you’ll add some interac-
tivity to the table, so that when a visitor mouses over a row, that row is highlighted
(see Figure 6-3). In essence, you have to do two things:

1. Add a mouseover event to each row in the table.

2. Assign a function to that event that changes the background color of that row.

You’ll use jQuery to tackle this problem, following the three-step process outlined
on page 210.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 6.1.html in the chapter06 folder.

This file is the completed version of the 1.3.html file you created on page 30. It
already has the jQuery.js file linked to it, and the <script> tags to which you’ll
add more programming:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 $('table.striped tr:even').addClass('even');

});

</script>

Figure 6-3:
While Web browsers
offer lots of different
events, responding to a
mouseover event is one
of the most common.

214 JavaScript: The Missing Manual

Tutorial:
Highlighting Table
Rows

The first step is to create a jQuery selector to identify the elements to which you
wish to add the mouseover event. In this case, that action will happen when a
visitor mouses over one of the table rows, so you need to create a selector to tar-
get those rows.

2. Add the code in bold below to the script:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 $('table.striped tr:even').addClass('even');

$('table.striped tbody tr')

});

</script>

The particular CSS selector used here—table.striped tbody tr—certainly isn’t the
only selector you could use. A far simpler selector would be tr alone, like this:
$('tr'). That would work fine with the HTML on this page; however, the simple
tr selector selects every table row, so if you happen to have other tables on the
page (for a calendar, for example, or even for your page layout) the rows in
those tables would also be highlighted!

The selector you use here targets only the rows inside a table with the class
striped applied to it—that’s the table.striped part. In addition, you limit the
selection to just table rows within a tbody tag. This way, you make sure to not
highlight a table row that appears in the table head, so the row of column names
that appear at the top of this table won’t be highlighted when you mouse over
them.

Next, you’ll add the event.

3. Directly after the code you just entered, type .mouseover(); so the code looks
like this:

$('table.striped tbody tr').mouseover();

As described under “Automatic Loops” on page 180, jQuery has a nifty feature
built into each of its functions—like the mouseover() function here. Every
jQuery function automatically loops through all of the elements in the selec-
tion, so in this case, the mouseover event will be attached to every table row in
the jQuery selection.

Note: Step 3 is deceptively simple…thanks to jQuery. Without jQuery, you’d first have to write a really
complicated function to retrieve each of the table rows. You’d then have to create a loop (see page 90) to
attach the event to each element—and remember, you’d have to attach the event differently depending
upon whether the Web browser was Internet Explorer or Firefox, Safari, or Opera (page 210). In other
words, this one line of code represents the dozens of lines you don’t have to write yourself.

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 215

Tutorial:
Highlighting Table

Rows

Next you’ll add an anonymous function as an argument for the mouseover()
function.

4. Click between the two parentheses in mouseover() and type function() {. Hit
Return (or Enter) twice, and then type a }. The code should now look like this:

$('table.striped tbody tr').mouseover(function() {

});

The anonymous function holds the actual programming that the browser will
run when the event is triggered—highlighting a table row, the heart of the effect
we’re after.

5. Click in the empty line between the anonymous function’s opening and clos-
ing brace, hit the Space bar twice, and then type $(this).

The two spaces, while not required, indent the code and help indicate that this
line of code is a part of the anonymous function, making the code easier to
read.

As mentioned on page 194, $(this) is a way to refer to the page element that’s
currently being worked on. Since this code is looping through a long list of table
rows, you need a way to assign an action to each particular row so you can tell
the Web browser “when a visitor mouses over this specific row, highlight this
specific row.”

6. Directly after $(this), type .addClass(‘highlight’); so the code looks like this:

$('table.striped tbody tr').mouseover(function() {

 $(this).addClass('highlight');

});

You can read more about jQuery’s addClass() function on page 185. On page
32, you used the same function to stripe table rows; it simply applies a CSS class
to the element. If you want, you can use JavaScript to add some crazy highlight
effect, but it’s usually faster to simply assign a CSS style that you’ve previously
created. In this case, the page has a CSS style sheet with a class style named high-
light, with a yellow background color. So when you mouse over a row, its back-
ground color changes to yellow.

Tip: The nice thing about using a CSS class style instead of just pure JavaScript to highlight the table row
is that if you want to change the appearance of the highlight—for example, use a different font, change the
font color or size—you simply add additional CSS formatting properties to the style. You don’t have to do
anything at all to the JavaScript.

216 JavaScript: The Missing Manual

Tutorial:
Highlighting Table
Rows

7. Save the page and preview it in a Web browser. When you do, make sure you
move your mouse over the table rows.

The rows’ background color should change to a yellowish color when you
mouse over them; if it doesn’t, double-check your code for any typos. The only
problem is that the yellowish background color doesn’t go away! To make the
row revert back to its old background color, you must add a mouseout event.

8. Add the bolded code (shown on lines 6–8 below), so the finished script looks
like this:

1 $(document).ready(function() {

2 $('table.striped tr:even').addClass('even');

3 $('table.striped tbody tr').mouseover(function() {

4 $(this).addClass('highlight');

5 });

6 $('table.striped tbody tr').mouseout(function() {

7 $(this).removeClass('highlight');

8 });

9 });

This new code should look familiar now—it’s basically the opposite of the
mouseover function. That is, the class is removed when you move your mouse
off the row.

Save the page and preview it in a Web browser. The rows should now revert to
their old style when you mouse off them. The program works fine, but it’s
slightly inefficient. Notice that for both the mouseover and mouseout functions
you have the same jQuery object: $('table.striped tbody tr').

The jQuery object is really a kind of function that runs through the HTML of a
page and finds all elements that match the given CSS selector. Each time you
call the jQuery object, jQuery has to search the page. Depending on how com-
plicated a CSS selector you use, creating the jQuery object can take some time,
and while jQuery is fast, there’s no need to waste time creating the same selec-
tion twice. A method that’s more efficient (meaning your script will be a tad
faster) is to store any jQuery object you use multiple times into a variable. The
next steps show you how.

9. Insert a blank line just below line 2 (see numbered code in step 8 above), and
type:

var rows = $('table.striped tbody tr');

This line of code creates a variable, rows, which holds a jQuery object contain-
ing all of the rows you want to add events to. All you need to do is replace two
other jQuery objects with the variable name.

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 217

Tutorial:
Highlighting Table

Rows

10. On lines 4 and 8, replace $('table.striped tbody tr') with rows. The finished code
should look like this:

1 $(document).ready(function() {

2 $('table.striped tr:even').addClass('even');

3 var rows = $('table.striped tbody tr')

4 rows.mouseover(function() {

5 $(this).addClass('highlight');

6 });

7 rows.mouseout(function() {

8 $(this).removeClass('highlight');

9 });

10 });

Now jQuery has to search the page’s HTML only once to find the desired table
rows; the results get stored in a variable that can be used any number of times.
(jQuery provides another technique for applying multiple functions to the same
jQuery object, called chaining. See the box below for more detail.)

Save the page and preview it in a Web browser.

POWER USERS’ CLINIC

Efficient Programming with jQuery Chaining
As discussed on page 180, jQuery lets you use a technique
known as chaining to string together a series of functions
and apply them to a single jQuery object. For example, say
you want to change the text inside a currently hidden DIV
with an ID of popup, and make the DIV fade into view. You
can do that with two lines of code like these:

$('#popUp').text('Hi!');
$('#popUp').fadeIn(1000);

Or, using chaining, on a single line, like this:

$('#popUp').text('Hi!').fadeIn(1000);

Chaining also means you don’t have to use a temporary
variable like you did in step 10 above to store a jQuery
object that you want to apply several functions to. Instead,
you can simply chain the two events from that example—
mouseover and mouseout—onto the single jQuery object.

You can replace lines 3–9 in step 10 with code like this:

$('table.striped tbody tr')
 .mouseover(function() {
 $(this).addClass('highlight');
 })
 .mouseout(function() {
 $(this).removeClass('highlight');
 });

This code is a little scary looking, for sure, but, believe it or
not, it works. Even though the code spans seven lines, it’s
really just a single JavaScript statement (notice the semico-
lon at the end). To make reading the statement clearer, the
events .mouseover() and .mouseout() are placed on their
own lines. Since JavaScript mostly ignores white space (see
page 47), breaking the code into multiple lines is perfectly
legal (see the Tip on page 181 for more on this technique).

218 JavaScript: The Missing Manual

More jQuery Event
Concepts

More jQuery Event Concepts
Because events are a critical ingredient for adding interactivity to a Web page,
jQuery includes some special jQuery-only functions that can make your program-
ming easier and your pages more responsive.

Waiting for the HTML to Load
When a page loads, a Web browser tries immediately to run any scripts it encoun-
ters. So scripts in the head of a page might run before the page fully loads—you
saw an example of this in the last chapter in the top image of Figure 5-4. Unfortu-
nately, this phenomenon often causes problems. Since a lot of JavaScript program-
ming involves manipulating the contents of a Web page—displaying a pop-up
message when a particular link is clicked, hiding specific page elements, adding
stripes to the rows of a table, and so on—you’ll end up with JavaScript errors if
your program tries to manipulate elements of a page that haven’t yet been loaded
and displayed by the browser.

The most common way to deal with that problem has been to use the load event to
wait until a page is fully downloaded and displayed before executing any Java-
Script. You used that technique in the last chapter in the revised quiz program: In
step 8 on page 166, you added the onload event handler to the page to make sure
the function doQuiz didn’t run until the page had loaded.

Unfortunately, waiting until a page fully loads before running JavaScript code can
create some pretty strange results. The load event only fires after all of a Web
page’s files have downloaded—meaning all images, movies, external style sheets,
and so on. As a result, on a page with lots of graphics, the visitor might actually be
staring at a page for several seconds while the graphics load before any JavaScript
runs. If the JavaScript makes a lot of changes to the page—for example, styles table
rows, hides currently visible menus, or even controls the layout of the page—visitors
will suddenly see the page change before their very eyes.

Fortunately, jQuery comes to the rescue. Instead of relying on the load event to
trigger a JavaScript program, jQuery has a special function named ready() that
waits just until the HTML has been loaded into the browser and then runs the
page’s scripts. That way, the JavaScript can immediately manipulate a Web page
without having to wait for slow-loading images or movies. (That’s actually a com-
plicated and useful feat—another reason to use a JavaScript library.)

You’ve already used the ready() function in a few of the tutorials in this book. The
basic structure of the function goes like this:

$(document).ready(function() {

 //your code goes here

});

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 219

More jQuery Event
Concepts

Basically, all of your programming code goes inside this function. In fact, the
ready() function is so fundamental, you’ll probably include it on every page on
which you use jQuery. You only need to include it once, and it’s usually the first
and last line of a script. You must place it within a pair of opening and closing
<script> tags (it is JavaScript, after all) and after the <script> tag that adds jQuery
to the page.

So, in the context of a complete Web page, the function looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/

html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>Page Title</title>

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 // all of your JavaScript goes in here.

}); // end of ready() function

</script>

</head>

<body>

The Web page content...

</body>

</html>

As you’ve already seen, the }); appears frequently when using anonymous func-
tions (page 193). See step 4 on page 215 for an example. Trying to figure out which
statement a particular }); belongs to can be tricky, so it’s a good idea to add a com-
ment at the end makes of the ready() function to easily identify it:

}); // end of ready() function

Tip: Because the ready() function is used nearly anytime you add jQuery to a page, there’s a shorthand
way of writing it. You can remove the $(document).ready part, and just type this: $(function() { // do
something on document ready });

$(function() {

});

220 JavaScript: The Missing Manual

More jQuery Event
Concepts

jQuery Events
jQuery also provides special events for dealing with two very common interactiv-
ity issues—moving the mouse over and then off of something, and switching
between two actions when clicking.

The hover() event

The mouseover and mouseout events are frequently used together. For example,
when you mouse over a button, a menu might appear; move your mouse off the
button, and the menu disappears. Because coupling these two events is so com-
mon, jQuery provides a shortcut way of referring to both. jQuery’s hover() func-
tion works just like any other event, except that instead of taking one function as
an argument, it accepts two functions. The first function runs when the mouse
travels over the element, and the second function runs when the mouse moves off
the element. The basic structure looks like this:

$('#selector').hover(function1, function2);

You’ll frequently see the hover() function used with two anonymous functions.
That kind of code can look a little weird; the following example will make it
clearer. Suppose when someone mouses over a link with an ID of menu, you want
a (currently invisible) DIV with an ID of submenu to appear. Moving the mouse
off of the link hides the submenu again. You can use hover() to do that:

$('#menu').hover(function() {

 $('#submenu').show();

}, function() {

 $('#submenu').hide();

});

To make a statement containing multiple anonymous functions easier to read,
move each function to its own line. So a slightly more readable version of the code
above would look like this:

$('#menu').hover(

 function() {

 $('#submenu').show();

 },

 function() {

 $('#submenu').hide();

 }

);

Figure 6-4 diagrams how this code works for the mouseover and mouseout events.

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 221

More jQuery Event
Concepts

If the anonymous function method is just too confusing, you can still use plain old
functions (page 97) to get the job done. First, create a named function to run when
the mouseover event triggers; create another named function for the mouseout
event; and finally, pass the names of the two functions to the hover() function. In
other words, you could rewrite the code above like this:

function showSubmenu() {

 $('#submenu').show();

}

function hideSubmenu() {

 $('#submenu').hide();

}

$('#menu').hover(showSubmenu, hideSubmenu);

If you find this technique easier, then use it. There’s no real difference between the
two, though some programmers like the fact that by using anonymous functions
you can keep all of the code together in one statement, instead of spread out
amongst several different statements.

The toggle() Event

jQuery’s toggle() event works identically to the hover() event, except that instead
of responding to mouseover and mouseout events, it responds to clicks. One click
triggers the first function; the next click triggers the second function. Use this event
when you want to alternate between two states using clicks. For example, you
could make an element on a page appear with the first click and disappear with the
next click. Click again, and the element reappears.

Figure 6-4:
jQuery’s hover() function lets you assign two
functions at once. The first function is run
when the mouse moves over the element,
while the second function runs when the
mouse moves off the element.

222 JavaScript: The Missing Manual

More jQuery Event
Concepts

For example, say you want to make the submenu <div> (from the hover() exam-
ples above) appear when you first click the link, then disappear when the link is
next clicked. Just swap “toggle” for “hover” like this:

$('#menu').toggle(

 function() {

 $('#submenu').show();

 },

 function() {

 $('#submenu').hide();

 }

);

Or, using named functions, like this:

function showSubmenu() {

 $('#submenu').show();

}

function hideSubmenu() {

 $('#submenu').hide();

}

$('#menu').toggle(showSubmenu, hideSubmenu);

The Event Object
Whenever a Web browser fires an event, it records information about the event
and stores it in what’s called an event object. The event object contains information
that was collected when the event occurred, like the vertical and horizontal coordi-
nates of the mouse, the element on which the event occurred, or whether the Shift
key was pressed when the event was triggered.

In jQuery, the event object is available to the function assigned to handling the
event. In fact, the object is passed as an argument to the function, so to access it,
you just include a parameter name with the function. For example, say you want to
find the X and Y position of the cursor when the mouse is clicked anywhere on a
page.

$(document).click(function(evt) {

 var xPos = evt.pageX;

 var yPos = evt.pageY;

 alert('X:' + xPos + ' Y:' + yPos);

});

The important part here is the evt variable. When the function is called (by click-
ing anywhere in the browser window) the event object is stored in the evt variable.
Within the body of the function, you can access the different properties of the
event object using dot syntax—for example, evt.pageX returns the horizontal loca-
tion of the cursor (in other words, the number of pixels from the left edge of the
window). (The chapter06 tutorials folder contains a file named coordinates.html,
which will let you see a version of this code in action.)

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 223

More jQuery Event
Concepts

Note: In this example, evt is just a variable name supplied by the programmer. It’s not a special Java-
Script keyword, just a variable used to store the event object. You could use any name you want such as
event or simply e.

The event object has many different properties, and (unfortunately) the list of
properties varies from browser to browser. Table 6-1 lists some common properties.

Tip: If you access the event object’s which property with the keypress() event, you’ll get a numeric code
for the key pressed. If you want the specific key that was pressed (a, K, 9, and so on), you need to run the
which property through a JavaScript method that converts the key number to the actual letter, number, or
symbol on the keyboard:

String.fromCharCode(evt.which)

Stopping an Event’s Normal Behavior
Some HTML elements have preprogrammed responses to events. A link, for exam-
ple, when clicked usually loads a new Web page; a form’s Submit button when
clicked sends the form data to a Web server for processing. Sometimes you don’t
want the Web browser to go ahead with its normal behavior. For example, when a
form is submitted (the submit() event), you might want to stop the form data
from being sent if the person filling out the form left out important data.

You can prevent the Web browser’s normal response to an event with the
preventDefault() function. This function is actually a part of the event object (see
the previous section), so you’ll access it within the function handling the event. For

Table 6-1. Every event produces an event object with various properties that you can access within the
function handling the event

Event property Description

pageX The distance (in pixels) of the mouse pointer from the left edge of the
browser window.

pageY The distance (in pixels) of the mouse pointer from the top edge of the
browser window.

screenX The distance (in pixels) of the mouse pointer from the left edge of the
monitor.

screenY The distance (in pixels) of the mouse pointer from the top edge of the
monitor.

shiftKey Is true if the shift key is down when the event occurs.

which Use with the keypress event to determine the numeric code for the key
that was pressed (see tip below).

target The object that was the “target” of the event—for example, for a click()
event, the element that was clicked.

data A jQuery object used with the bind() function to pass data to an event han-
dling function (see page 225).

224 JavaScript: The Missing Manual

More jQuery Event
Concepts

example, say a page has a link with an ID of menu. The link actually points to
another menu page (so that visitors with JavaScript turned off will be able to get to
the menu page). However, you’ve added some clever JavaScript, so when a visitor
clicks the link, the menu appears right on the same page. Normally, a Web browser
would follow the link to the menu page, so you need to prevent its default behavior,
like this:

$('#menu').click(function(evt){

 // clever javascript goes here

evt.preventDefault(); // don't follow the link

});

Another technique is simply to return the value false at the end of the event func-
tion. For example, the following is functionally the same as the code above:

$('#menu').click(function(evt){

 // clever javascript goes here

return false; // don't follow the link

});

Removing Events
At times, you might want to remove an event that you had previously assigned to a
tag. jQuery’s unbind() function lets you do just that. To use it, first create a jQuery
object with the element you wish to remove the event from. Then add the unbind()
function, passing it a string with the event name. For example, if you want to pre-
vent all tags with the class tabButton from responding to any click events, you can
write this:

$('.tabButton').unbind('click');

Take a look at a short script to see how the unbind() function works.

1 $('a').mouseover(function() {

2 alert('You moved the mouse over me!');

3 });

4 $('#disable').click(function() {

5 $('a').unbind('mouseover');

6 });

Lines 1–3 add a function to the mouseover event for all links (<a> tags) on the
page. Moving the mouse over the link opens an alert box with the message “You
moved your mouse over me!” However, because the constant appearance of alert
messages would be annoying, lines 4–6 let the visitor turn off the alert. When the
visitor clicks a tag with an ID of disable (a form button, for example), the mouseover
events are unbound from all links, and the alert no longer appears.

Note: For more information on jQuery’s unbind() function, visit http://docs.jquery.com/Events/unbind.

http://docs.jquery.com/Events/unbind

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 225

Advanced Event
Management

Advanced Event Management
You can live a long, happy programming life using just the jQuery event methods
and concepts discussed on the previous pages. But if you really want to get the
most out of jQuery’s event-handling techniques, then you’ll want to learn about
the bind() function.

Note: If your head is still aching from the previous section, you can skip ahead to the tutorial on page
227 until you’ve gained a bit more experience with event handling.

The bind() method is a more flexible way of dealing with events than jQuery’s
event-specific functions like click() or mouseover(). It not only lets you specify an
event and a function to respond to the event, but also lets you pass additional data
for the event-handling function to use. This lets different elements and events (for

POWER USERS’ CLINIC

Stopping an Event in Its Tracks
Both Internet Explorer and the W3C event model supported
by Firefox, Safari, and Opera let an event pass beyond the
element that first receives the event. For example, say
you’ve assigned an event helper for click events on a partic-
ular link; when you click the link, the click event fires and a
function runs. The event, however, doesn’t stop there. Each
ancestor tag can also respond to that same click. So if
you’ve assigned a click event helper for a <div> tag that the
link is inside, the function for that <div> tag’s event will run
as well.

This concept, known as event bubbling, means that more
than one element can respond to the same action. Here’s
another example: say you add a click event to an image so
when the image is clicked, a new graphic replaces it. The
image is inside a <div> tag to which you’ve also assigned a
click event. In this case, an alert box appears when the
<div> is clicked. Now when you click the image, both func-
tions will run. In other words, even though you clicked the
image, the <div> also receives the click event.

You probably won’t encounter this situation too frequently,
but when you do, the results can be disconcerting. Suppose
in the example in the previous paragraph, you don’t want
the <div> to do anything when the image is clicked. In this
case, you have to stop the click event from passing on to the

<div> tag without stopping the event in the function that
handles the click event on the image. In other words, when
the image is clicked, the function assigned to the image’s
click event should swap in a new graphic, but then stop the
click event.

jQuery provides a function called stopPropagation() that
prevents an event from passing onto any ancestor tags. The
function is a method of the event object (see page 222), so
you access it within an event-handling function:

$('#theLink').click(function(evt) {
 // do something
 evt.stopPropagation(); // stop the
event from continuing
});

You can see how event bubbling works in the events.html
file in the chapter06 tutorial folder. The right sidebar has
two links. One, when clicked, doesn’t stop the event, so
you’ll see a list of all of the tags that receive the click event
and can respond to the event. The second link uses the
stopPropagation() function, so the click event only affects
that one link. For more information on controlling event
bubbling with jQuery, visit http://docs.jquery.com/Events_
%28Guide.

http://docs.jquery.com/Events_%28Guide
http://docs.jquery.com/Events_%28Guide

226 JavaScript: The Missing Manual

Advanced Event
Management

example a click on one link, or a mouseover on another image) pass different
information to the same event-handling function—in other words, one function
can act differently based on which event is triggered.

The basic format of the bind() function is the following:

$('#selector').bind('click', myData, functionName);

The first argument is a string containing the name of the event (like click, mouseover,
or any of the other events listed on page 204). The second argument is the data you
wish to pass to the function—either an object literal or a variable containing an
object literal. An object literal (discussed on page 188) is basically a list of property
names and values:

{

 firstName : 'Bob',

 lastName : 'Smith'

}

You can store an object literal in a variable like so:

var linkVar = {message:'Hello from a link'};

The third argument passed to the bind() function is another function—the one
that does something when the event is triggered. The function can either be an
anonymous function or named function—in other words, this part is the same as
when using a regular jQuery event, as described on page 211.

Note: Passing data using the bind() function is optional. If you want to use bind() merely to attach an
event and function, then leave the data variable out:

$('selector').bind('click', functionName);

This code is functionally the same as:

$('selector').click(functionName);

Suppose you wanted to pop up an alert box in response to an event, but you
wanted the message in the alert box to be different based on which element trig-
gered the event. One way to do that would be to create variables with different
object literals inside, and then send the variables to the bind() function for differ-
ent elements. Here’s an example:

var linkVar = { message:'Hello from a link'};

var pVar = { message:'Hello from a paragraph};

function showMessage(evt) {

 alert(evt.data.message);

}

$('a').bind('click',linkVar,showMessage);

$('p').bind('mouseover',pVar,showMessage);

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 227

Tutorial: A One-
Page FAQ

Figure 6-5 breaks down how this code works. It creates two variables, linkVar on
the first line and pVar on the second line. Each variable contains an object literal,
with the same property name, message, but different message text. A function,
showMessage(), takes the event object (see page 222) and stores it in a variable
named evt. That function runs the alert() command, displaying the message prop-
erty (which is itself a property of the event object’s data property). Keep in mind
that message is the name of the property defined in the object literal.

Tutorial: A One-Page FAQ
“Frequently Asked Questions” pages are a common sight on the Web. They can
help improve customer service by providing immediate answers 24/7. Unfortu-
nately, most FAQ pages are either one very long page full of questions and complete
answers, or a single page of questions that link to separate answer pages. Both solu-
tions slow down the visitors’ quest for answers.

In this tutorial, you’ll solve this problem by creating a JavaScript-driven FAQ page.
All of the questions will be visible when the page loads, so it’s easy to locate a given
question. The answers, however, are hidden until the question is clicked—then the
desired answer fades smoothly into view (see Figure 6-6).

Figure 6-5:
jQuery’s bind() function lets you pass
data to the function responding to the
event. That way, you can use a single
named function for several different
elements (even with different types of
events), while letting the function use
data specific to each event helper.

228 JavaScript: The Missing Manual

Tutorial: A One-
Page FAQ

Overview of the Task
The JavaScript for this task will need to accomplish several things:

• When a question is clicked, the corresponding answer will appear.

• When a question whose answer is visible is clicked, then the answer should
disappear.

In addition, you’ll want to use JavaScript to hide all of the answers when the page
loads. Why not just use CSS? For example, setting the CSS display property to none
for the answers is another way to hide the answers. The problem with this tech-
nique is what happens to visitors who don’t have JavaScript turned on: They won’t
see the answers when the page loads, nor will they be able to make them visible by
clicking the questions. To make your pages viewable to both those with JavaScript
enabled and those with JavaScript turned off, it’s best to use JavaScript to hide any
page content.

Note: See the note on page 27 for information on how to download the tutorial files.

The Programming
1. In a text editor, open the file 6.2.html in the chapter06 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 218) is in place. First, you’ll hide all of the answers when the
page loads.

2. Click in the empty line after the $(document).ready() function, and then type
$('.answer').hide();.

The text of each answer is contained within a <div> tag with the class of answer
applied to it. This one line of code selects each <div> and hides it (the hide()
function is discussed on page 243). Save the page and open it in a Web browser.
The answers should all be hidden.

The next step is determining which elements you need to add an event listener
to. Since the answer appears when a visitor clicks the question, you must select
every question in the FAQ. On this page, each question is a <h2> tag in the
page’s main body.

3. Press return to create a new line and add the code in bold below to the script:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 $('.answer').hide();

 $('#main h2')

}); // end of ready()

</script>

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 229

Tutorial: A One-
Page FAQ

That’s a basic descendent selector used to target every <h2> tag inside an ele-
ment with an ID of main (so it doesn’t affect the <h2> tag in the left sidebar).
Now it’s time to add an event. The click event is a good candidate; however, you
can better meet your requirements—that clicking the question either shows or
hides the answer—using the jQuery toggle() function (see page 221). This func-
tion lets you switch between two different functions with each mouse click.

4. Immediately following the code you typed in step 2 (on the same line), type
.toggle(.

This code marks the beginning of the toggle() function, which takes two anony-
mous functions (page 193) as arguments. The first anonymous function runs
on the first click, the second function runs on the next click. You’ll get the basic
structure of these functions in place first.

5. Press Return to create a new line, and then type:

function() {

}

This code is the basic shell of the function and represents the first argument
passed to the toggle() function. You’ll add the basic structure for the second
function next.

6. Add the code in bold, so that your script looks like this:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('.answer').hide();

5 $('#main h2').toggle(

6 function() {

7

8 },

9 function() {

10

11 }

12); // end of toggle()

13 }); // end of ready()

14 </script>

Be sure you don’t leave out the comma at the end of line 8 above. Remember
that the two functions here act like arguments passed to a function (page 100).
When you call a function, you separate each argument with a comma, like this:
prompt('Question', 'type here'). In other words, the comma on line 8 separates
the two functions. (You can leave out the comment on line 12—// end of tog-
gle—if you want. It’s just there to make clear that that line marks the end of the
toggle() function.)

230 JavaScript: The Missing Manual

Tutorial: A One-
Page FAQ

Now it’s time to add the effect you’re after: the first time the <h2> tag is clicked,
the associated answer needs to appear. While each question is contained in a
<h2> tag, the associated answer is in a <div> tag immediately following the
<h2> tag. In addition, the <div> has a class of answer applied to it. So what you
need is a way to find the <div> tag following the clicked <h2>.

7. Within the first function (marked as line 6 in step 5 above), add $(this)
.next('.answer').fadeIn(); to the script.

As discussed on page 194, $(this) refers to the element currently responding to
the event—in this case, a particular <h2> tag. jQuery provides several func-
tions to make moving around a page’s structure easier. The .next() function
finds the tag immediately following the current tag. In other words, it finds the
tag following the <h2> tag. You can further refine this search by passing an
additional selector to the .next() function—the code .next(‘answer’) finds the
first tag following the <h2> that also has the class answer applied to it. Finally,
.fadeIn() gradually fades the answer into view (the fadeIn() function is dis-
cussed on page 244).

Note: The .next() function is just one of the many jQuery functions that help you navigate through a
page’s DOM. To learn about other helpful functions, visit http://docs.jquery.com/Traversing.

Now’s a good time to save the page and check it out in a Web browser. Click
one of the questions on the page—the answer below it should open (if it
doesn’t, double-check your typing and refer to the troubleshooting tips on page
32).

In the next step you’ll complete the second half of the toggling effect—hiding
the answer when the question is clicked a second time.

8. Add the code bolded on line 10 below:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('.answer').hide();

5 $('#main h2').toggle(

6 function() {

7 $(this).next('.answer').fadeIn();

8 },

9 function() {

10 $(this).next('.answer').fadeOut();

11 }

12); // end of toggle()

13 }); // end of ready()

14 </script>

http://docs.jquery.com/Traversing

Chapter 6: Action/Reaction: Making Pages Come Alive with Events 231

Tutorial: A One-
Page FAQ

Now the answer fades out on a second click. Save the page and give it a try.
While the page functions fine, there’s one nice design touch you can add. Cur-
rently, each question has a small plus sign to the left of it. The plus sign is a
common icon used to mean, “Hey, there’s more here.” To indicate that a visi-
tor can click to hide the answer, replace the plus sign with a minus sign. You
can do it easily by just adding and removing classes from the <h2> tags.

9. Add two final lines of code (lines 8 and 12 below). The finished code should
look like this:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('.answer').hide();

5 $('#main h2').toggle(

6 function() {

7 $(this).next('.answer').fadeIn();

8 $(this).addClass('close');

9 },

10 function() {

11 $(this).next('.answer').fadeOut();

12 $(this).removeClass('close');

13 }

14); //end toggle

15 });

16 </script>

This code simply adds a class named close to the <h2> tag when it’s clicked the
first time, then removes that class when it’s clicked a second time. The minus
sign icon is defined within the style sheet as a background image. (Once again,
CSS makes JavaScript programming easier.)

Save the page and try it out. Now when you click a question, not only does the
answer appear, but the question icon changes (see Figure 6-6).

232 JavaScript: The Missing Manual

Tutorial: A One-
Page FAQ

Figure 6-6:
With just a few lines of
JavaScript, you can make
page elements appear or
disappear with a click of
the mouse.

233

Chapter 7chapter

7

Improving Your Images

Web designers use images to improve a page’s design, decorate navigation bars,
highlight elements on a page—and to show the world what fun they had on their
last vacation. Adding an image to a Web page immediately adds interest and visual
appeal. When you add JavaScript to the mix, however, you can really add excite-
ment by dynamically changing images on a page, presenting an animated photo
gallery, or showing off a series of photos in a self-running slideshow. In this chap-
ter, you’ll learn a slew of tricks for manipulating and presenting images on your
Web site.

Swapping Images
Probably the single most common use of JavaScript is the simple image rollover:
when move your mouse over an image, it changes to another image. This basic
technique has been used since the dawn of JavaScript to create interactive naviga-
tion bars whose buttons change appearance when the mouse hovers over them.

But in the past couple of years, more and more designers have turned to CSS to
achieve this same effect (for example, see www.monkeyflash.com/css/image-rollover-
navbar/). However, even if you’re using CSS to create interactive navigation bars,
you still need to understand how to use JavaScript to swap one image for if you
want to create slide shows, image galleries, and adding other types of interactive
graphic effects to a Web page.

http://www.monkeyflash.com/css/image-rollover-navbar/
http://www.monkeyflash.com/css/image-rollover-navbar/

234 JavaScript: The Missing Manual

Swapping Images

Changing an Image’s src Attribute
Every image displayed on a Web page has a src (short for source) attribute that
indicates a path to a graphic file; in other words, it points to an image on a Web
server. If you change this property to point to a different graphic file, the browser
displays the new image instead. Say you have an image on a page and you assign it
an ID of photo. Using the traditional DOM (page 157), you can store a reference to
that image in a variable like this:

var photo = document.getElementById('photo');

In this example, the variable photo is a DOM object—the actual tag in the
page’s HTML. The object has all of the properties of a normal tag, so to
change the src attribute, you can do the following:

photo.src = 'images/newImage.jpg';

This line of code makes the Web browser download the file newImage.jpg and
replace the current image on the page with it.

Using jQuery, you can achieve the same effect like this:

$('#photo').attr('src','images/newImage.jpg');

Note: When you change the src property of an image using JavaScript, the path to the image file is
based on the page location, not the location of the JavaScript code. This point can be confusing when you
use an external JavaScript file (page 24) located in a different folder. In the example above, the Web
browser would try to download the file newImage.jpg from a folder named images, which is located in
the same folder as the Web page. That method works even if the code is included in an external file
located in another folder elsewhere on the site. Accordingly, it’s often easier to use root relative links
inside external JavaScript files (see the box on page 25 for more information on the different links types).

Changing an image’s src attribute doesn’t change any of the tag’s other
attributes, however. For example, if the alt attribute is set in the HTML, the
swapped-in image has the same alt text as the original. In addition, if the width and
height attributes are set in the HTML, changing an image’s src property makes the
new image fit inside the same space as the original. If the two graphics have differ-
ent dimensions, then the swapped-in image will be distorted.

In a situation like rollover images in a navigation bar, the two images will most
likely be the same size and share the same alt attribute, so you don’t get that prob-
lem. But you can avoid the image distortion problem entirely by simply leaving off
the width and height property of the original image in your HTML. Then when the
new image is swapped in, the Web browser displays the image at the dimensions
set in the file.

Chapter 7: Improving Your Images 235

Swapping Images

Another solution is to first download the new image, get its dimensions, then
change the src, width, height, and alt attributes of the tag:

1 var newPhoto = new Image();

2 newPhoto.src = 'images/newImage.jpg';

3 var photo = document.getElementById('photo');

4 photo.src = newPhoto.src;

5 photo.width = newPhoto.width;

6 photo.height = newPhoto.height;

Note: The line numbers on the left aren’t part of the code, so don’t type them. They’re just to make the
code easier to read.

The key to this technique is line 1, which creates a new image object. To a Web
browser, the code new Image()says, “Browser, I’m going to be adding a new image
to the page, so get ready.” The next line tells the Web browser to actually down-
load the new image. Line 3 gets a reference to the current image on the page, and
lines 4–6 swap in the new image and change the width and height to match the
new image.

In jQuery, the code would look like this:

1 var newPhoto = new Image();

2 newPhoto.src = 'images/newImage.jpg';

3 var photo = $('#photo');

4 photo.attr('src',newPhoto.src);

5 photo.attr('width',newPhoto.width);

6 photo.attr('height',newPhoto.height);

Tip: The jQuery attr() function can set multiple HTML attributes at once. Just pass an object literal (see
page 188) that contains each attribute name and new value. You could write the jQuery code from above
more succinctly, like this:

var newPhoto = new Image();
newPhoto.src = 'images/newImage.jpg';
$('#photo').attr({
 src: newPhoto.src,
 width: newPhoto.width,
 height: newPhoto.height
});

Preloading Images
There’s one problem with swapping in a new image using the techniques listed above:
when you swap the new file path into the src attribute, the browser has to download
the image. If you wait until someone mouses over an image before downloading the
new graphic, there’ll be an unpleasant delay before the new image appears. In the case
of a navigation bar, the rollover effect will feel sluggish and unresponsive.

236 JavaScript: The Missing Manual

Swapping Images

To avoid that delay, preload any images that you want to immediately appear in
response to an action. For example, when a visitor mouses over a button on a navi-
gation bar, the rollover image should appear instantly. Preloading an image simply
means forcing the browser to download the image before you plan on displaying it.
When the image is downloaded, it’s stored in the Web browser’s cache so that any
subsequent requests for that file are served from the visitor’s hard drive instead of
downloaded a second time from the Web server.

Preloading an image is as easy as creating a new image object and setting the
object’s src property. In fact, you already know how to do that:

var newPhoto = new Image();

newPhoto.src = 'images/newImage.jpg';

What makes this preloading is that you do it before you need to replace an image
currently on the Web page. One way to preload is to create an array at the begin-
ning of a script containing the paths to all graphics you wish to preload, then loop
through that list, creating a new image object for each one:

1 var preloadImages = ['images/roll.png',

2 'images/flower.png',

3 'images/cat.jpg'];

4 var imgs = [];

5 for (var i=0; i<preloadImages.length;i++) {

6 imgs[i] = new Image();

7 imgs[i].src = preloadImages[i];

8 }

Lines 1–3 are a single JavaScript statement that creates an array named preload-
Images, containing three values—the path to each graphic file to preload. (As men-
tioned on page 59, it’s often easier to read an array if you place each array item on
its own line.) Line 4 creates a new empty array, imgs, which will store each of the
preloaded images. Lines 5–8 show a basic JavaScript for loop (see page 94), which
runs once for each item in the array preloadImages. Line 6 creates a new image
object, while line 7 retrieves the file path from the preloadImages array—that’s the
magic that causes the image to download.

Rollover Images
A rollover image is just an image swap (as discussed on page 234) triggered by the
mouse moving over an image. In other words, you simply assign the image swap to
the mouseover event. For example, say you have an image on the page with an ID
of photo. When the mouse rolls over that image, you want the new image to
appear. You can accomplish that with jQuery like this:

1 <script type="text/javascript" src="jquery.js"></script>

2 <script type="text/javascript">

3 var newPhoto = new Image();

4 newPhoto.src = 'images/newImage.jpg';

Chapter 7: Improving Your Images 237

Swapping Images

5 $(document).ready(function() {

6 $('#photo').mouseover(function() {

7 $(this).attr('src', newPhoto.src);

8 });

9 });

10 </script>

Lines 3 and 4 preload the image that you want to swap in. Line 5 waits until the
HTML has loaded, so the JavaScript can access the HTML for the current photo.
The rest of the code assigns a mouseover event to the image, with a function that
changes the image’s src attribute to match the new photo.

Since rollover images usually revert back to the old image once you move the
mouse off the image, you need to also add a mouseout event to swap back the
image. As discussed on page 220, jQuery provides its own event, called hover(),
which takes care of both the mouseover and mouseout events:

1 <script type="text/javascript" src="jquery.js"></script>

2 <script type="text/javascript">

3 var newPhoto=new Image();

4 newPhoto.src='images/newImage.jpg';

5 $(document).ready(function() {

6 var oldSrc=$('#photo').attr('src');

7 $('#photo').hover(

8 function() {

9 $(this).attr('src', newPhoto.src);

10 },

11 function() {

12 $(this).attr('src', oldSrc);

13 });

14 });

15 </script>

The hover() function takes two arguments: the first argument is a function telling
the browser what to do when the mouse moves over the image; the second argu-
ment is a function telling the browser what to do when the mouse moves off the
image. This code also adds a variable, oldSrc, for tracking the original src
attribute—the path to the file that appears when the page loads.

You aren’t limited to rolling over just an image, either. You can add a hover()
function to any tag—a link, a form element, even a paragraph. In this way, any tag
on a page can trigger an image elsewhere on the page to change. For example, say
you want to make a photo swap out when you mouseover a page’s <h1> tag.
Assume that the target image is the same as the previous example. You just change
your code as shown here in bold:

1 <script type="text/javascript" src="jquery.js"></script>

2 <script type="text/javascript">

3 var newPhoto = new Image();

238 JavaScript: The Missing Manual

Tutorial: Adding
Rollover Images

4 newPhoto.src = 'images/newImage.jpg';

5 $(document).ready(function() {

6 var oldSrc = $('#photo').attr('src');

7 $('h1').hover(

8 function() {

9 $('#photo').attr('src', newPhoto.src);

10 },

11 function() {

12 $('#photo').attr('src', oldSrc);

13 });

14 });

15 </script>

Tutorial: Adding Rollover Images
In this tutorial, you’ll add a rollover effect to a series of images (see Figure 7-1).
You’ll also add programming to preload the rollover images in order to eliminate
any delay between mousing over an image and seeing the rollover image. In addi-
tion, you’ll learn a new a technique to make the process of preloading and adding
the rollover effect more efficient.

Overview of the Task
The tutorial file 7.1.html (located in the chapter07 tutorial folder) contains a series
of six images (see Figure 7-2). Each image is wrapped by a link that points to a
larger version of the photo, and all of the images are wrapped in a <div> tag with
an ID of gallery. Basically, you’re trying to achieve two things:

• Preload the rollover image associated with each of the images inside the <div>.

Figure 7-1:
Make a navigation bar,
link, or simply a photo
more visually interactive
with rollovers.

Chapter 7: Improving Your Images 239

Tutorial: Adding
Rollover Images

• Attach a hover() function to each image inside the <div>. The hover()function
swaps the rollover image when the mouse moves over the image, then swaps
back to the original image when the mouse moves off.

From this description, you can see that both steps are tied to the images inside the
<div>, so one way to approach this problem is to first select the images inside the
<div>, then loop through the selection, preloading each images’ rollover and
attaching a hover() function.

Note: See the note on page 27 for information on how to download the tutorial files.

The Programming
1. In a text editor, open the file 7.1.html in the chapter07 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 218). The first step is to select all of the images within the <div>
tag and set up a loop with the jQuery each() function discussed on page 193.

2. Click in the empty line after the $(document).ready() function and type
$('#gallery img').each(function() {.

The selector #gallery img selects all tags within a tag that has the ID gal-
lery. jQuery’s each() function provides a quick way to loop through a bunch of
page elements, performing a series of actions on each element. The each() func-
tion takes an anonymous function (page 193) as its argument. It’s a good idea
to provide the code that completes the function, so you’ll do that next.

Figure 7-2:
The basic structure of the HTML for this tutorial
includes a <div> tag that surrounds a series of links
with images in them. To make swapping in the new
image easy, its file name is simply a version of the
original image’s file name.

240 JavaScript: The Missing Manual

Tutorial: Adding
Rollover Images

3. Press Return twice, and then type }); // end each to close the anonymous func-
tion, end the call to the each() function, and terminate the JavaScript state-
ment. Your code should now look like this:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('#gallery img').each(function() {

5

6 }); // end each

7 }); // end ready

At this point, the script loops through each of the images in the gallery, but
doesn’t actually do anything yet. The first order of business is to capture the
image’s src property and store it in a variable that you’ll use later on in the
script.

Note: The JavaScript comments—// end each and // end ready—aren’t required for this script to work.
However, they do make it easier to identify what part of the script the line goes with.

4. Click inside the empty line (line 5 in step 3) and type var imgFile = $(this).
attr('src');.

As described on page 194, you can use $(this) to refer to the current element in
the loop; in other words, $(this) will refer to each of the image tags in turn. The
jQuery attr() function (see page 189) retrieves the specified HTML attribute. In
this case, it retrieves the src property of the image and stores it in a variable
named imgFile. For example, for the first image, the src property is images/
small/blue.jpg, which is the path to the image that appears on the page.

You can use that very src value to preload the image.

5. Hit Return to create a blank line, and then add the following two lines of code:

var preloadImage = new Image();

var imgExt = /(\.\w{3,4}$)/;

preloadImage.src = imgFile.replace(imgExt,'_h$1');

As described on page 236, to preload an image you must first create an image
object. In this case, the variable preloadImage is created to store the image
object. Next, we preload the image by setting the Image object’s src property.

One way to preload images (as discussed on page 235) is to create an array of
images you wish to preload, then loop through each item in the array, creating
an image object and adding the image’s source to the object.

In this example, you’ll use a more creative (and less labor-intensive method) to
preload images. You just have to make sure you store the rollover image in the
same location as the original image and name it similarly. For this Web page,

Chapter 7: Improving Your Images 241

Tutorial: Adding
Rollover Images

each image on the page has a corresponding rollover image with an _h added to
the end of the image name. For example, for the image blue.jpg, there’s a roll-
over image named blue_h.jpg. Both files are stored in the same folder, so the
path to both files is the same.

Here’s the creative part: Instead of manually typing the src of the rollover to
preload it like this, preloadImage.src='images/small/blue_h.jpg', you can let Java-
Script figure out the src by simply changing the name of the original image’s
source so it reflects the name of the rollover. That’s what the other two lines of
code do. The first line—var imgExt = /(\.\w{3,4}$)/;—creates a regular expres-
sion (see page 121) that matches a period followed by three or four characters at
the end of a string. For example, it will match both .jpeg in /images/small/blue.
jpeg and .gif in /images/orange.gif.

The next line—preloadImage.src = imgFile.replace(imgExt,'_h$1');—uses the
replace() method (see page 132) to replace the matched text with something
else. Here a .jpg in the path name will be replaced with _h.jpg, so images/small/
blue.jpg is changed to images/small/blue_h.jpg. This technique is a little tricky
since it uses a regular expression subpattern (see the box on page 133 for full
details), so you may want to reread the regular expression section of Chapter 4
(page 121).

Now that the rollover image is preloaded you can assign the hover() event to
the image.

6. Hit Return and then add the code listed on lines 9–11 below:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('#gallery img').each(function() {

5 var imgFile = $(this).attr('src');

6 var preloadImage = new Image();

7 var imgExt = /(\.\w{3,4}$)/;

8 preloadImage.src = imgFile.replace(imgExt,'_h$1');

9 $(this).hover(

10

11); // end hover

12 }); // end each

13 }); // end ready

jQuery’s hover() function is just a shortcut method of applying a mouseover
and mouseout event to an element (see page 220). To make it work, you pass
two functions as arguments. The first function runs when the mouse moves
over the element—in this case, the image changes to the rollover. The second
function runs when the mouse moves off the element—here, the rollover image
swaps back to the original image.

242 JavaScript: The Missing Manual

jQuery Effects

7. In the empty line (line 9 in step 6), add the following three lines of code:

function() {

 $(this).attr('src', preloadImage.src);

},

This first function simply changes the src property of the current image to the
src of the rollover image. The comma at the end of the last line is required
because the function you just added is acting as the first argument in a call to
the hover() function—a comma separates each argument passed to a function.

8. Finally, add the second function (lines 12–14 below). The finished script
should look like this:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript">

3 $(document).ready(function() {

4 $('#gallery img').each(function() {

5 var imgFile = $(this).attr('src');

6 var preloadImage = new Image();

7 var imgExt = /(\.\w{3,4}$)/;

8 preloadImage.src = imgFile.replace(imgExt,'_h$1');

9 $(this).hover(

10 function() {

11 $(this).attr('src', preloadImage.src);

12 },

13 function() {

14 $(this).attr('src', imgFile);

15 }

16); // end hover

17 }); // end each

18 }); // end ready

This second function simply changes the src attribute back to the original
image. In line 5, the path to the image originally on the page is stored in the
variable imgFile. In this function (line 13), you access that value again to set the
src back to its original value. Save the page, view it in a Web browser, and
mouse over each of the black and white images to see them pop into full color.

jQuery Effects
Making elements on a Web page appear and disappear is a common JavaScript
task. Drop-down navigation menus, pop-up tooltips, and automated slideshows all
rely on the ability to show and hide elements when you want to. jQuery supplies a
handful of functions that achieve the goal of hiding and showing elements.

Chapter 7: Improving Your Images 243

jQuery Effects

To use each of these effects, you apply them to a jQuery selection, like any other
jQuery function. For example, to hide all tags with a class of submenu, you can
write this:

$('.submenu').hide();

Each effect function also can take an optional speed setting and a callback func-
tion. The speed represents the amount of time the effect takes to complete, while a
callback is a function that runs when the effect is finished. (See the box on page
246 for details on callbacks.)

To assign a speed to an effect, you supply one of three string values—'fast', 'nor-
mal', or 'slow'—or a number representing the number of milliseconds the effect
takes (1,000 is 1 second, 500 is half of a second, and so on). For example, the code
to make an element fade out of view slowly would look like this:

$('element').fadeOut('slow');

Or if you want the element to fade out really slowly, over the course of 10 seconds:

$('element').fadeOut(10000);

When you use an effect to make an element disappear, the element isn’t actually
removed from the DOM. Its code is still in the browser’s memory, but its display
setting (same as the CSS display setting) is set to none. Because of that setting, the
space taken up by the element is removed, so other content on the page may move
into the position previously taken up by the hidden element. You can see all of the
jQuery effects in action on the effects.html file include in the chapter07 tutorial
folder (see Figure 7-3).

Note: jQuery’s User Interface library (see the box on page 361) includes an official set of add-on effects.
It builds on jQuery’s basic features and offers more eye-catching effects, like scaling an item, shaking an
element, bouncing an element, and so on. You can learn more about these additional effects at http://
docs.jquery.com/UI/Effects.

Basic Showing and Hiding
jQuery provides three functions for basic hiding and showing of elements:

• show() makes a hidden element visible. It doesn’t have any effect if the element
is already visible on the page. If you don’t supply a speed value, the element
appears immediately. However, if you supply a speed value—show(1000), for
example—the element animates from the top-left corner down to the bottom-
left corner.

• hide() hides a visible element. It doesn’t have any effect if the element is already
hidden, and as with the show() function, if you don’t supply a speed value, the
element immediately disappears. However, with a speed value the element ani-
mates out of view in a kind of shrinking motion.

http://docs.jquery.com/UI/Effects
http://docs.jquery.com/UI/Effects

244 JavaScript: The Missing Manual

jQuery Effects

• toggle() switches an element’s current display value. If the element is currently
visible, toggle() hides the element; if the element is hidden, then toggle() makes
the element appear. This function is ideal when you want to have a single con-
trol (like a button) alternately show and hide an element.

In the tutorial on page 228 of the previous chapter, you saw both the hide() and
toggle() functions in action. That script uses hide() to make all of the answers on
an FAQ page disappear when the page’s HTML loads, then uses toggle() to alter-
nately show and hide those answers when you click the question.

Fading Elements In and Out
For a more dramatic effect, you can fade an element out or fade it in—in either
case, you’re just changing the opacity of the element over time. jQuery provides
three fade-related functions:

• fadeIn() makes a hidden element fade into view. First, the space for the ele-
ment appears on the page (this may mean other elements on the page move out

Figure 7-3:
You can test out jQuery’s
visual effects on the
effects.html file located in
the chapter07 tutorials
file. Click the function
text—fadeOut('#photo'),
for example—to see how
text and images look
when they fade out, slide
up, or appear. Some
effects will appear in grey
to indicate that they don’t
apply to the element. For
example, it doesn’t make
much sense for the code
to make a photo appear
if it’s already visible on
the page.

Chapter 7: Improving Your Images 245

jQuery Effects

of the way); then the element gradually becomes visible. This function doesn’t
have any effect if the element is already visible on the page. If you don’t supply a
speed value, the element fades in using the 'normal' setting (400 milliseconds).

• fadeOut() hides a visible element by making it fade out of view like a ghost. It
doesn’t have any effect if the element is already hidden, and like the fadeIn()
function, if you don’t supply a speed value, the element fades out over the
course of 400 milliseconds.

• fadeTo() works slightly differently than other effect functions. It fades an image
to a specific opacity. For example, you can make an image fade so that it’s semi-
transparent. Unlike other effects, you must supply a speed value. In addition,
you supply a second value from 0 to 1 that indicates the opacity of the element.
For example, to fade all paragraphs to 75% opacity, you’d write this:

$('p').fadeTo('normal',.75);

This function changes an element’s opacity regardless of whether the element is
visible or invisible. For example, say you fade a currently hidden element to
50% opacity. If you then show that element using show() or fadeIn(), the ele-
ment will appear at 50% opacity. Likewise, if you hide a semitransparent ele-
ment and then make it reappear, its opacity setting is recalled.

If you fade an element to 0 opacity, the element is no longer visible, but the
space it occupied on the page remains. In other words, unlike the other disap-
pearing effects, fading to 0 will leave an empty spot on the page where the ele-
ment is.

Tip: Firefox sometimes makes text on a page temporarily change appearance during a fade-in or -out. To
stop this distraction, you need to set the opacity of the page to just less than 100%. A simple way to do
that is to add a body tag style to a page’s style sheet, like this:

body {
 -moz-opacity:.999;
}

Sliding Elements
For a little more visual action, you can also slide an element in and out of view.
The functions are similar to the fading elements in that they make page elements
appear and disappear from view, and may have a speed value:

• slideDown() makes a hidden element slide into view. First, the top of the ele-
ment appears and anything below the element is pushed down as the rest of the
element appears. It doesn’t have any effect if the element is already visible on
the page. If you don’t supply a speed value, the element slides in using the 'nor-
mal' setting (400 milliseconds).

246 JavaScript: The Missing Manual

jQuery Effects

• slideUp() removes the element from view by hiding the bottom of the element
and moving anything below the element up until the element disappears. It
doesn’t have any effect if the element is already hidden, and as with the
slideDown() function, if you don’t supply a speed value, the element slides out
over the course of 400 milliseconds.

• slideToggle() applies the slideDown() function if the element is currently hid-
den, and the slideUp() function if the element is visible. This function lets you
have a single control (like a button) both show and hide an element.

Animation
jQuery also provides an animate() function that lets you animate any CSS prop-
erty that accepts pixel, em, or percentage values. For example, you can animate the
size of text, the position of an element on a page, the opacity of an object, or the
width of a border.

Note: jQuery, by itself, can’t animate color—for example, the color of text, the background color, or bor-
der color. However, the jQuery UI library (see the box on page 170) builds on jQuery’s basic animate()
function and, among other cool additions, includes the ability to animate color. See http://docs.jquery.
com/UI/Effects/ColorAnimations for more information.

POWER USERS’ CLINIC

Performing an Action After an Effect Is Completed
Sometimes you want to do something once an effect is
complete. For example, suppose that when a particular
photo fades into view, you want a caption to appear. In
other words, the caption must pop onto the page after the
photo finishes fading into view. Normally, effects aren’t per-
formed one after the other; they all happen at the same
time they’re called. So if your script has one line of code to
fade the photo into view, and another line of code to make
the caption appear, the caption will appear while the photo
was still fading in.

To get around this dilemma, you can pass a callback func-
tion to any effect; that’s a function that runs only after the
effect is completed. The callback function is passed as the
second argument to most effects (the third argument for
the fadeTo() function).

For example, say you have an image on a page with an ID
of photo, and a paragraph below it with an ID of caption.
To fade the photo into view and then make the caption
appear, you can use a callback function like this:

$('#photo').fadeIn(1000, function() {
 $('#caption').show();
});

Of course, if you want to run the function when the page
loads, you’d want to hide the photo and caption first, then
do the fadeIn effect:

$('#photo, #caption').hide();
$('#photo').fadeIn(1000, function() {
 $('#caption').show();

});

You’ll see an example of a callback in step 8 of the tutorial
on page 252.

http://docs.jquery.com/UI/Effects/ColorAnimations
http://docs.jquery.com/UI/Effects/ColorAnimations

Chapter 7: Improving Your Images 247

jQuery Effects

To use this function, you must pass an object literal (page 188) containing a list of
CSS properties you wish to change and the values you wish to animate to. For
example, say you want to animate an element by moving it 650 pixels from the left
edge of the page, changing its opacity to 50%, and enlarging its font size to 24 pix-
els. The following code creates an object with those properties and values:

{

 left: '650px',

 opacity: .5,

 fontSize: '24px'

}

Note: JavaScript doesn’t accept hyphens for CSS properties. For example, font-size is a valid CSS prop-
erty, but JavaScript doesn’t understand it because the hyphen has special meaning (it’s JavaScript’s minus
operator). When using CSS properties in JavaScript, remove the hyphen and capitalize the first letter of
the word following the hyphen. For example, font-size becomes fontSize, and border-width becomes
borderWidth.

Suppose you want to animate an element with an ID of message using these set-
tings. You can use the animate() function like this:

$('#message').animate(

{

 left: '650px',

 opacity: .5,

 fontSize: '24px'

},

1500

);

The animate() function can take several arguments. The first is an object literal
containing the CSS properties you wish to animate. The second is the duration (in
milliseconds) of the animation. In the above example, the animation lasts 1,500
milliseconds, or 1.5 seconds. Finally, you can pass a third argument: a callback
function to run after the animation is complete (see the box on page 246).

You can also set a property relative to its current value using += or -= as part of
the animation options. For example, say you want to animate an element by mov-
ing it 50 pixels to the right each time you click on it. Here’s how:

$('#moveIt').click(function() {

 $(this).animate({left:'+=50px'},1000);

});

Note: In order to animate a position of an element using the CSS left, right, top, or bottom properties,
you must set that element’s CSS position property to either absolute or relative. Those are the only two
positioning properties that let you assign positioning values to them.

248 JavaScript: The Missing Manual

Tutorial: Photo
Gallery with Effects

Tutorial: Photo Gallery with Effects
Now you’ll expand on the last tutorial to create a single-page photo gallery. You’ll
be able to load a larger image onto the page when a visitor clicks a thumbnail
image (see Figure 7-4). In addition, you’ll use a couple of jQuery’s effect functions
to make the transition between larger images more visually interesting.

Overview of Task
The way the gallery works is pretty straightforward—click a thumbnail to see a
larger image. However, this tutorial shows you how to add a few features that
make the presentation more interesting by using fade effects to swap larger images
in and out of the page.

Another important technique you’ll use here is unobtrusive JavaScript. That simply
means that users who have JavaScript turned off will still be able to access the
larger versions of the photos. To achieve that, each thumbnail image is wrapped in
a link that points to the larger image file (see Figure 7-5). For those without Java-
Script, clicking the link exits the current Web page and follows the link to load the
larger image file. It won’t look fantastic, since the visitor has to exit the gallery page

Figure 7-4:
The finished photo
gallery page. Clicking a
thumbnail makes a
larger image fade into
view and the current
image fade out. The
completed version of this
tutorial file,
completed_7.2.html,
is in the chapter07
folder. In the same
folder, you’ll find a
more advanced version
(complete_7.2_
advanced.html) that
highlights the currently
selected thumbnail.

Chapter 7: Improving Your Images 249

Tutorial: Photo
Gallery with Effects

and will see just the single larger image, but the photos will at least be accessible.
For folks who have JavaScript turned on, clicking a link will make the larger image
fade into view on the page.

All of the action occurs when the link is clicked, so this script uses the link’s click
event to achieve the following steps:

• Stop the default behavior of the link. Normally, clicking a link takes you to
another page. On this page, clicking the link around a thumbnail exits the Web
page and displays a larger image. Since you’ll use JavaScript to display the
image, you can add some JavaScript code to prevent the browser from follow-
ing that link.

• Get the href value of the link. The link actually points to the larger image, so by
retrieving the link’s href, you’re also getting the path to the larger image file.

• Create a new image tag to insert into the page. This image tag will include the
path from the href value.

• Fade the old image out while fading the new image in. The current image fades
out of view as the large version of the clicked thumbnail fades into view.

The tutorial includes a few additional nuances, but these four steps cover the basic
process.

The Programming
This tutorial expands on the previous one, but the starting Web page has been
reorganized a little: the thumbnails are now in a left column, and a <div> tag with
an ID of photo has been added to the page (see Figure 7-5).

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 7.2.html in the chapter07 folder.

This file contains the programming from the previous tutorial, plus a new
<div> tag to display the large version of each thumbnail image. Since the pro-
cess of displaying a gallery image is triggered by clicking one of the links
wrapped around the thumbnail images, the first step is to create a selection of
those links and add the click event to each.

2. Locate the JavaScript comment that reads “insert script 7.2 below this line”
and add the following code:

$('#gallery a').click(function(evt) {

}); // end click

The selector #gallery a selects all link tags inside another tag with the ID gallery.
The .click is a jQuery function for adding an event handler (see page 210 if you

250 JavaScript: The Missing Manual

Tutorial: Photo
Gallery with Effects

need a refresher on events). Also, the code passes an anonymous function to the
click event (as mentioned on page 222, functions that are executed in response
to an event automatically have the event object passed to them). In this case, the
variable evt stores that event object. You’ll use it in the next step to stop the
browser from following the clicked link.

3. Between the two lines of code you added in step 2, type evt.preventDefault();.

Normally, clicking a link makes the Web browser load whatever the link points
to (a Web page, graphic file, PDF document, and so on). In this case, the link is
just there so that people who don’t have JavaScript turned on will be able to go
to a larger version of the thumbnail image. To prevent the Web browser from
following the link for those who have JavaScript enabled, you run the event
object’s preventDefault() function (see page 223).

Next, we’ll get the href attribute for the link.

Figure 7-5:
The basic structure of the
photo gallery. All of the
thumbnail images are
wrapped in links that
point to the larger
version of the photo.
Clicking each link will
load the larger image
inside a <div> tag with
the ID of photo.

Chapter 7: Improving Your Images 251

Tutorial: Photo
Gallery with Effects

4. Hit Return to create a new, blank line, and then type var imgPath = $(this).
attr('href');

$('#gallery a').click(function(evt) {

 evt.preventDefault();

var imgPath = $(this).attr('href');

}); // end click

Here, $(this) refers to the element that’s clicked—in other words, a link. A link’s
href attribute points to the page or resource the link goes to. In this case, each
link contains a path to the larger image. That’s important information, since
you can use it to add an image tag that points to the image file. But before you
do that, you need to get a reference to the large image that’s currently displayed
on the page. After all, you need to know what it is so you can fade it out of view.

Tip: You’ll see that each line of code inside the click() event in step 4 is indented. That’s optional, but it
helps make the code more readable, as described in the box on page 47. Many programmers use two
spaces (or a tab) for each level of indentation.

5. Hit Return and type var oldImage = $('#photo img');.

The variable oldImage holds a jQuery selection containing the tag inside
the photo <div> (see Figure 7-5). Now it’s time to create a tag for the new
image.

6. Hit Return again and add var newImage = $(''); to
the script.

There are quite a few things going on here. jQuery lets you select an element
that’s in the page’s DOM. For example, $('img') selects all images on the page.
In addition, the jQuery object can add a new element to the DOM. For exam-
ple, $('<p>Hello</p>') creates a new paragraph tag containing the word Hello.
This line creates a new tag and stores it in a variable named newImage.

Since the jQuery object expects a string as an argument ('<p>Hello</p>', for
example), this line of code concatenates or combines several strings to make one.
The first string (surrounded by single quotes) is <img src="; the second string is
stored in the variable imgPath (which you created in step 4) and is the path to
the image file (for example, images/large/red.jpg); the third string (also sur-
rounded by single quotes) is ">. Taken altogether, they add up to an HTML tag:
. When the script passes it to the jQuery object
like this, $(''), the browser creates a DOM ele-
ment. It isn’t displayed on the page yet, but the browser is ready to add it to the
page at anytime.

252 JavaScript: The Missing Manual

Tutorial: Photo
Gallery with Effects

7. Add the code listed below on lines 6–8, so the code you’ve added so far looks
like this:

1 $('#gallery a').click(function(evt) {

2 evt.preventDefault();

3 var imgPath = $(this).attr('href');

4 var oldImage = $('#photo img');

5 var newImage = $('');

6 newImage.hide();

7 $('#photo').prepend(newImage);

8 newImage.fadeIn(1000);

9 }); // end click

In line 6, the newly created image (which is stored in the variable newImage) is
hidden using the hide() function described on page 243. This step is necessary
because if you just added the image tag created in line 5, the image would be
immediately visible on the page—no cool fade in effect. So you first hide the
image, and then add it to the page inside the photo <div> (line 7). The
prepend() function (described on page 182) adds HTML inside a tag. Specifi-
cally, it adds the HTML at the very beginning of the tag. At this point, there are
two images on the page inside the photo <div>—Figure 7-6 shows how one
image can sit on top of the other. The image on top is invisible, but in line 8, the
fadeIn() function makes the image slowly fade in over the course of 1,000 milli-
seconds (1 second).

Now it’s time to make the original image fade out.

8. Press Return and then add these three lines of code:

oldImage.fadeOut(1000,function(){

 $(this).remove();

});

Figure 7-6:
To achieve the effect where two photos appear
in the same spot on the page, but one photo
fades in and another fades out, you need to use
some creative CSS. Absolute positioning lets an
element sit above the page, and even on top of
another element. In this case, both images are
absolutely positioned within the <div> tag,
making them float one on top of the other. The
style sheet gallery.css included in the chapter07
folder has all the CSS required—make sure to
check out the #photo img style.

Chapter 7: Improving Your Images 253

Tutorial: Photo
Gallery with Effects

In step 5, you created a variable named oldImage and stored a reference to the
original image on the page into it. That’s the image we want to fade out, so you
apply the fadeOut() function. You pass two arguments to the function: The first
is the duration of the effect—1,000 milliseconds (1 second); and the second is a
callback function (as described in the box on page 246). The callback function
runs after the fade out effect finishes, and removes the tag for that
image.

Note: The remove() function is discussed on page 183. It actually removes the tag from the DOM,
which erases the HTML from the browser’s memory, freeing up computer resources. If you didn’t take this
step, each time your visitor clicks a thumbnail, a new tag would be added (see step 7), but the old
one would simply be hidden, not deleted. You’d end up with lots and lots of hidden tags still
embedded in the Web page, slowing down the responsiveness of the Web browser.

There’s one final step—loading the first image. Currently the <div> tag where
the photo goes is empty. You could type an tag in that spot, so when the
page loads there’d be a larger image for, say, the first thumbnail. But why
bother—you’ve got JavaScript!

9. Add one last line after the end of the click() function (line 13 below), so your
completed code looks like this:

1 $('#gallery a').click(function(evt) {

2 evt.preventDefault();

3 var imgPath = $(this).attr('href');

4 var oldImage = $('#photo img');

5 var newImage = $('');

6 newImage.hide();

7 $('#photo').prepend(newImage);

8 newImage.fadeIn(1000);

9 oldImage.fadeOut(1000,function(){

10 $(this).remove();

11 });

12 }); // end click

13 $('#gallery a:first').click();

This last statement has two parts. First the selector—#gallery a:first—selects just
the first link only in the gallery <div>. Next is the click() function. So far,
you’ve used jQuery’s click() function to assign a function that runs when the
event occurs. However, if you don’t pass any arguments to an event function,
jQuery simply triggers that event, causing any previously defined event han-
dlers to run. So, this line triggers a click on the first link that makes the Web
browser run the function that you created earlier in lines 1–11. That is, it makes
the larger image for the first thumbnail fade into view when the page loads.

254 JavaScript: The Missing Manual

Advanced Gallery
with jQuery
lightBox

Save the page and preview it in a Web browser. Not only do the thumbnails
change color when you mouse over them, clicking a thumbnail makes its associ-
ated large image fade into view. (If you’re having trouble with your code, the
file complete_7.2.html contains a working copy of the script.)

Advanced Gallery with jQuery lightBox
Displaying a gallery of photos is such a common task that you’ll find dozens of dif-
ferent ways to show off your imagery. One very popular technique dims the Web
page and displays the larger version of the thumbnail as if it were floating on top of
the browser window (see Figure 7-7). The most well known version of this method
is a JavaScript program called Lightbox (www.huddletogether.com/projects/
lightbox2/). There have been many imitations of the original, as well as one script
created to work with jQuery. jQuery lightBox (http://leandrovieira.com/projects/
jquery/lightbox/) is a jQuery plug-in that, with just a single line of code, creates a
spectacular way to present images as part of a portfolio, gallery, or slideshow.

Note: Before continuing, you might want to open the file complete_7.3.html in the chapter07 folder
included with this book’s tutorial files. It has a working demo of jQuery lightBox. Watching it in action first
will probably make the rest of this section easier to understand.

Figure 7-7:
The jQuery lightBox plug-
in, created by Leandro
Vieira Pinho, is a very
easy way to create an
attractive, single-page
photo gallery. You can
navigate through a series
of photos by clicking a
Next or Previous button
that appears when you
mouse over the image. In
addition, the left and
right arrow keys, as well
as the P and N keys, let
you navigate through the
gallery of large images.

http://www.huddletogether.com/projects/lightbox2/
http://www.huddletogether.com/projects/lightbox2/
http://leandrovieira.com/projects/jquery/lightbox/
http://leandrovieira.com/projects/jquery/lightbox/

Chapter 7: Improving Your Images 255

Advanced Gallery
with jQuery

lightBox

The Basics
jQuery lightBox is very easy to use—you just need to set up your Web page with
links to the images you wish to display, attach .css and .js files to the page, and add
one line of code to call the light box into action.

1. Set up your gallery page.

There’s not really much you need to do—just add links to the larger images you
wish to display on the page. These could be links added to thumbnail images, so
when the thumbnail is clicked the larger image appears (that’s how the gallery
you programmed in the previous tutorial worked). The important thing to
remember is that the link points to a graphic file—a .png, .jpeg, or .gif file—not
to a Web page.

In addition, you need a way to identify just the gallery links (as opposed to
other links on the page). One way is to wrap the links in a <div> tag with a spe-
cific ID—gallery, for example. Then you can target just those links with a selec-
tor like '#gallery a'. Another approach is to add specific class names to each
gallery link: for example, . Then
you can target those links with a selector like 'a.gallery'. This last method is
handy if the links are scattered around the page and aren’t contained in a single
<div>.

Tip: To add a caption to a photo, just supply a title attribute to the <a> tag that links to the large image.
For example:

2. Download the jQuery lightBox files and put them into your site.

You can find the files at http://leandrovieira.com/projects/jquery/lightbox/.
They’re also provided with the tutorial files for this book. There are a handful of
files you’ll need: a JavaScript file, a CSS file, and several graphics files:

• The JavaScript file is named something like jquery.lightbox-0.5.js, where 0.5
represents a version number. Your best bet is the minified version—jquery.
lightbox-0.5.min.js—which is a compressed version of the file. A version of
the file, jquery.lightbox.js, is located in the js folder of the tutorial files for this
book. You can place this file anywhere in your site, though a common
approach is to put external JavaScript files in a folder (named something like
js or libs) in the root folder of your site.

• The CSS file, jquery.lightbox-0.5.css, can also go anywhere in your site. You
might want to put this in a folder where you keep all of your external CSS
files, or, if you’re just adding the light box effect to a single page on your site,
you can put the file in the same folder as the light box enhanced Web page.
You’ll also find the CSS file in a folder named css in the chapter07 tutorial
folder, where it’s named lightbox.css.

http://leandrovieira.com/projects/jquery/lightbox/

256 JavaScript: The Missing Manual

Advanced Gallery
with jQuery
lightBox

• jQuery lightBox depends on five graphic files: lightbox-blank.gif, lightbox-
btn-close.gif, lightbox-btn-next.gif, lightbox-btn-prev.gif, and lightbox-ico-
loading.gif. Some of these images are buttons for moving between images
and closing the large image overlay. All five files should be located in a folder
named images, which is located in the same folder as your lightBox-
enhanced Web page. In other words, the jQuery lightBox plug-in expects the
images to be in a specific location (you’ll learn how to change the location, if
you wish, on page 259).

3. Attach the external style sheet to your page.

jQuery lightBox uses some fancy CSS to achieve the dark, transparent overlay
effect and display the pop-up image. Attach this file as you would any CSS file.
For example:

<link href="css/lightbox.css" rel="stylesheet" type="text/css">

Most JavaScript programmers place any style sheet information before their
JavaScript programming—some JavaScript programs depend on having the
style sheet information available first, in order for the program to work cor-
rectly. That’s especially true of many jQuery plug-ins, so get in the habit of plac-
ing all style sheets before JavaScript files and programs.

4. Attach the JavaScript files.

jQuery lightBox gets most of its power from the jQuery library (no surprise), so
you must first attach the jQuery file to the page (see page 172 for a recap of this
procedure). Also, the lightBox JavaScript file (like any JavaScript that uses
jQuery) must be attached after the jQuery file. For example:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/jquery.lightbox.js"></script>

5. Add a <script> tag, the jQuery ready() function, and call lightBox.

Believe it or not, steps 1–4 above are the hardest part of the whole process. Get-
ting lightBox to work requires just a single line of JavaScript. Of course, as you
read on page 218, you should put that code inside a jQuery ready() function, so
the browser has processed the HTML and is ready to manipulate the DOM. For
example:

<script type="text/javascript">

$(document).ready(function() {

 $('#gallery a').lightBox();

});

</script>

The lightBox() function must be applied to just the links that point to the image
files you wish to display. You use a jQuery selector ($('#gallery a'), for example)
to tell lightBox which links to use: in this example, any <a> tag inside another

Chapter 7: Improving Your Images 257

Advanced Gallery
with jQuery

lightBox

tag with an ID of gallery becomes part of the lightBox effect. As mentioned in
step 1, you need to set up your HTML so you can use jQuery to identify the
specific links that make up your light box.

Tip: lightBox works really well with a gallery of thumbnails to create a slideshow effect where a visitor can
click a Next button to step through each photo in the gallery. However, you can also use it to display a sin-
gle image on a page. Or you can apply lightBox to different images on a page so they aren’t part of the
same “gallery.” In other words, each image will open independently, so the images aren’t connected with
Next or Previous buttons. You just need to supply a jQuery selector to select a single image—for example,
apply an ID to a link, then call lightBox on just that one link:

$('#soloImage').lightBox();

And that’s it. Now, when you click each of the gallery links, a transparent back-
ground appears over the page, and a large version of the image appears in the middle
of the window.

Customizing lightBox
While the general look of the lightBox effect is really nice, you may want to tinker a
bit with its appearance. You can customize a variety of different parts of the light-
Box look, including the buttons that let you close the lightBox window or navigate
to the previous and next images; you can also change the color and opacity of the
transparent background that overlays the page or change the background color of
the caption box and picture frame.

lightBox options

The lightBox plug-in lets you supply custom options that affect the appearance of
the light box effect. Basically, you pass a JavaScript object literal (see page 188) to
the lightBox function containing the names of the options you wish to set and the
values you wish to set them to. For example, to change the background color and
opacity of the background placed over the page, you can create a variable contain-
ing your new settings and pass that to lightBox like this:

var lbOptions = {

 overlayBgColor: '#FF0033',

 overlayOpacity: .5

}

$('#gallery a').lightBox(lbOptions);

In this example, the color of the overlay is set to a bright red (#FF0033), and its
opacity is set to 50% (.5). jQuery lightBox accepts a lot of different options (visit
http://leandrovieira.com/projects/jquery/lightbox/ for the complete list), but here are
the most useful:

• overlayBgColor. The background color that covers the page while lightBox dis-
plays an image. This option accepts a hex color value like #FF0033, which must
be inside quotes: overlayBgColor: '#FF0033'.

http://leandrovieira.com/projects/jquery/lightbox/

258 JavaScript: The Missing Manual

Advanced Gallery
with jQuery
lightBox

• overlayOpacity. The opacity of the overlay. This option sets how much of the
page below the overlay should show through. You specify a number from 0 to 1:
.5, for example, is 50% opacity. If you don’t want to be able to see through the
overlay—for example, you want to completely black out the rest of the Web
page while the image appears—set this option to 1.

• containerResizeSpeed. When you move from image to image in a lightBox-
powered page, the box containing the image is animated as it changes size from
the dimensions of the current image to match the dimensions of the next
image. You can control the speed of this transition by setting this option. The
default is 400, meaning 400 milliseconds, or slightly less than half of a second.

• txtImage. When displaying multiple images, a message appears below the cur-
rent image announcing which image you’re viewing and the total number of
images. For example, “Image 1 of 20.” You can change the default word
“Image” to something else (like “Photo”) by setting this option.

• txtOf. Same as txtImage, but replaces the default “of” with the word of your
choice. Changing this setting comes in handy if the page uses a language other
than English, or you want the message to read something universal, like “Photo
1/6”.

• imageBtnClose. The path to the image used for the Close button on the pop-up
image window. Normally, this option points to images/lightbox-btn-close.gif, but
you can change that setting to point to a different location, or to a different file
name or type (for example, a PNG file).

• imageBtnPrev. The path to the image used for the Previous button on the pop-
up image window: normally images/lightbox-btn-prev.gif.

• imageBtnNext. The path to the image used for the Close button on the pop-up
image window: normally images/lightbox-btn-next.gif.

• imageLoading. The path to the image that appears in the pop-up window
before the image is loaded and displayed. Normally this points to images/
lightbox-ico-loading.gif, but you can change the setting to point to a different
location, or to a different file name or type (for example, a PNG file).

• imageBlank. Internet Explorer 6 needs a special image that allows it to respond
correctly to the mouse hovering over the image to display Next and Previous
buttons. Normally, this option points to images/lightbox-blank.gif. There’s really
no reason to change this setting, unless you want to move the image to a differ-
ent folder, thus changing the path.

Here’s an example of how you might set these options. Say you want to change the
caption text to read “Photo 1/6” and the speed at which the images change size
while navigating through the gallery, and you want to use PNG files for the Close,

Chapter 7: Improving Your Images 259

Advanced Gallery
with jQuery

lightBox

Previous, and Next buttons. Just set up an object literal with those values and pass
it to the lightBox function like this:

var lbOptions = {

 txtImage: 'Photo',

 txtOf: '/',

 containerResizeSpeed: 1000,

 imageBtnClose: 'images/close.png',

 imageBtnPrev: 'images/previous.png',

 imageBtnNext: 'images/next.png'

}

$('#gallery a').lightBox(lbOptions);

In this example, the lightBox options are stored in a variable (lbOptions in this
case) and then passed to the lightBox() function. You can also simply pass the
object literal to the function (and skip the creating a variable step). For example,
the above code could also be written like this:

$('#gallery a').lightBox({

 txtImage: 'Photo',

 txtOf: '/',

 containerResizeSpeed: 1000,

 imageBtnClose: 'images/close.png',

 imageBtnPrev: 'images/previous.png',

 imageBtnNext: 'images/next.png'

});

Both examples work exactly the same way, so use the method that’s easiest for you.
In the tutorial on page 261, you’ll use the second approach—just passing the object
literal directly to the function.

lightBox images

As mentioned in the previous section, you can use any images you’d like to replace
the ones supplied with the lightBox plug-in. You only need to set the proper
options (like imageBtnClose or imageBtnPrev) to point to your new image files.

Another method to use your own images is to simply name your images identi-
cally to the ones supplied with the plug-in and put your new images into the
images folder. That way you don’t need to change any of the plug-in’s default settings.

However, the images you use should be close in size to the ones supplied with the
plug-in, as shown in Figure 7-8. The Close, Previous, and Next buttons are all 63
pixels wide by 32 pixels tall, while the loading image is 32 pixels square.

Tip: Create your own “This image is now loading” icon at the hip, Web 2.0, Ajax icon generator: www.
ajaxload.info. At this site, you can choose from over 20 different animated designs, and even choose
background and foreground colors for the icon.

http://www.ajaxload.info
http://www.ajaxload.info

260 JavaScript: The Missing Manual

Advanced Gallery
with jQuery
lightBox

lightBox CSS

A few of lightBox’s visual elements can only be controlled via CSS. For example, to
change the font used for captions, you have to edit the #lightbox-image-details-
caption style in the CSS file supplied with lightBox (see Figure 7-8).

In addition, to change the:

• Background color of the frame surrounding the pop-up image, edit the back-
ground-color property of the #lightbox-container-image-box style.

• Background color of the caption box, edit the #lightbox-container-image-data-
box style.

Figure 7-8:
You don’t need to use lightBox’s option
settings to customize the look of your
lightBox. Simply replacing the supplied
graphics and altering the CSS file lets
you tweak the design to better match
your site.

Chapter 7: Improving Your Images 261

Tutorial: lightBox
Photo Gallery

• Text formatting for the caption, edit the #lightbox-image-details-caption style.

• Text formatting for the photo numbers, edit the #lightbox-image-details-
currentNumber style.

Tutorial: lightBox Photo Gallery
Although jQuery lightBox is really easy to use, it’s always helpful to have a step-by-
step tutorial showing you how it’s done. In this tutorial, you’ll take a page with a
basic set of thumbnail images and turn it into a fancy lightBox slide show.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 7.3.html in the chapter07 folder.

This file is the same as the one you started with for the first tutorial in this
chapter—a simple group of thumbnail images. Each image is linked to a larger
version of the photo, and all of the thumbnails are contained within a <div> tag
with an ID of gallery.

The first step is to attach the CSS file used by lightBox.

2. In the <head> of the document, locate the empty line below the <link> tag,
which attaches the gallery.css style sheet file (it’s the blank line that appears
directly above the first <script> tag). On that line, type:

<link href="css/lightbox.css" rel="stylesheet" type="text/css">

The lightbox.css file contains all of the styles used to format the background that
lies over the Web page, the pop-up image, and the photo caption text. Next,
you need to attach the plug-in’s JavaScript file.

3. On the blank line immediately after the <script> tag that attaches the jquery.js
file to this page, type:

<script type="text/javascript" src="../js/jquery.lightbox.js"></script>

All of the JavaScript files supplied with the tutorials are kept in a folder named
js, which is located in the main tutorial folder. Remember that you need to load
any jQuery plug-in files after the jquery.js file itself.

This page already has another <script> tag, complete with the jQuery ready()
function and the preloading/rollover magic you created in the first tutorial in
this chapter. You just need to add the lightBox function and you’re good to go.

4. Click in blank line directly below $(document).ready(function(), and type:

$('#gallery a').lightBox();

262 JavaScript: The Missing Manual

Tutorial: lightBox
Photo Gallery

All of the links that point to larger images are contained inside a <div> tag with
the ID gallery, so $('#gallery a') selects those, and the .lightBox() function
applies the lightBox effect to the page.

Believe it or not, you’re done! Save the page and preview it in a Web browser.
Click one of the thumbnail images to see the magic happen (Figure 7-7). Now
you can see why plug-ins are so useful—you don’t really have to do any pro-
gramming to get some fantastic effects!

One thing that’s missing however, are captions for each photo. To add a cap-
tion, you don’t need any JavaScript, just an HTML title attribute added to an
<a> tag.

5. In the <body> of the page, locate and add
title="Blue still life" to the tag, so it looks like this:

Save the file and preview it in a Web browser. Click the first thumbnail on the
left—voila, the caption appears. Add title attributes to the other <a> tags in this
<div>. Now, you’ll tweak some of lightBox’s default settings to customize its
look.

6. Change the code you added in step 4 by adding an object literal between the
lightBox() function’s parentheses. The new code is bolded below:

$('#gallery a').lightBox({

txtImage: 'Photo',

overlayOpacity: .5,

overlayBgColor: '#003376'

});

This code passes an object literal (page 188) to the lightBox() function. An
object literal is made up of a property name, followed by a colon and then a
value. So txtImage is the name of an option for lightBox (see page 257), and
you’re setting its value to 'Photo'. This particular option changes the default text
that appears in a pop-up box (“Image 1 of 6”) to read “Photo 1 of 6.” The next
two options change the opacity to 50% and assign a different background color
for the overlay on the page.

Note: Object literals look kind of weird and have some strange rules. Make sure to add a comma after
each property/value pair for each pair except the last one. For example, the last line above overlayBg-
Color: '#003376' must not have a comma at the end. You’ll find more information about object literals on
page 188.

7. Save the page and preview it in a Web browser.

Who says JavaScript is hard! The file complete_7.3.html is a completed, working
version of the tutorial.

Chapter 7: Improving Your Images 263

Animated
Slideshows with

Cycle

Animated Slideshows with Cycle
The slideshow galleries presented earlier in this chapter provide a great way to dis-
play a series of images. However, none of them are self-running—the visitor has to
click to see each photo—and the effect as one image transitions to the next is lim-
ited. Another jQuery plug-in, Cycle, solves both of these problems.

The Cycle plug-in, written by Mike Alsup, lets you automatically cycle through a
series of images using one of the plug-in’s many transition effects such as zoom,
fade out, scroll right, and shuffle (as in a deck of cards). In addition, the plug-in
lets you add “paging” controls so you can jump immediately to a given image, and
even pause and restart the slideshow (see Figure 7-9).

The Basics
As with the lightBox plug-in, using the Cycle plug-in isn’t all that hard. Here’s an
overview of the steps required (you’ll put this knowledge into action in the tuto-
rial on page 267).

Figure 7-9:
Unfortunately, a book
can’t adequately
demonstrate the great
animation effects
available with the Cycle
plug-in. To see the plug-
in in action, open the file
complete_7.4.html in a
Web browser, or visit the
Cycle Web site at www.
malsup.com/jquery/
cycle/.

264 JavaScript: The Missing Manual

Animated
Slideshows with
Cycle

1. Set up the gallery Web page.

Unlike the other gallery pages mentioned in this chapter, the Cycle plug-in is
intended to show a series of larger images without the need for clicking a
smaller, thumbnail image. You must enclose the images inside of a <div> tag
with an ID, like this:

<div id="photos">

</div>

If you view the page in a Web browser at this point, all of these images will
appear together on the page. The Cycle plug-in adds the magic that hides all but
one image at a time.

The plug-in cycles through the immediate children of the <div> tag, so you can
even enclose the images in another <div> tag and include a caption with each
image. The plug-in will then show each photo and caption. In other words, it
cycles through each <div> before transitioning to the next <div> containing
another photo and caption (hence the name). The HTML for that might look
like this:

<div id="photos">

 <div>

 <p>An elephant!</p>

 </div>

 <div>

 <p>A tiger!</p>

 </div>

 <div>

 <p>A lion!</p>

 </div>

</div>

2. Set up the CSS for the container and images.

The Cycle plug-in does some pretty fancy on-the-fly manipulation of the
images, including animating them on the screen. This process involves chang-
ing the images’ CSS position property to absolute. Absolute positioning can do
some funny things to a page layout, so it’s recommended that you set a specific
width and height for both the container and the elements you’re cycling through.
For example, the CSS for the first example in step 1 might look like this:

#photos { width: 150px; height: 150px }

#photos img { width: 150px; height: 150px}

Chapter 7: Improving Your Images 265

Animated
Slideshows with

Cycle

The plug-in works best with images that are all the same size. But you can still
use images of different sizes successfully—just wrap each image in a <div> and
set a specific width and height for those <div> tags. The tutorial on page 267,
for example, uses different-size photos.

3. Attach the Cycle plug-in JavaScript file to the page.

You can download the Cycle file from www.malsup.com/jquery/cycle/download.
html. Version 2.22 of the plug-in is included with the tutorial files: it’s named
jquery.cycle.js and is located in the js folder in the tutorial files folder. Make sure
to attach this file after the jquery.js file:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/jquery.cycle.js"></script>

4. Add a <script> tag, the jQuery ready() function (page 218), and call the cycle(
) function.

Apply the cycle() function to the containing <div>. You only need to specify
the type of transition you want to appear between slides, such as fade,
scrollRight, and the others listed on page 244. For example, for the HTML in
step 1, the containing <div> tag has an ID of photos, so the code to start the
Cycle slideshow might look like this:

<script type="text/javascript">

$(document).ready(function() {

 $('#photos').cycle('fade');

});

</script>

In addition to the type of transition effect, there are a ton of other preferences you
can set to make this plug-in act the way you want it to. Read on.

Customizing the Cycle Plug-in
As with the jQuery lightBox plug-in (see page 254), the cycle() function accepts an
object literal containing the names of options and their settings. You can tweak the
performance and look of the plug-in by passing in new values for any of the many
options the plug-in supports. You can find a complete list of options at www.
malsup.com/jquery/cycle/options.html, but here are some of the most useful.

Effects

The Cycle plug-in actually comes in two forms. The basic plug-in has a single effect
(fade) but lets you define your own custom effects. The complete package includes
15 additional effects such as fadeZoom, scrollLeft, slideX, and more. You can find a
complete list at www.malsup.com/jquery/cycle/download.html. You should experi-
ment with the different effect types to see which ones work for you.

http://www.malsup.com/jquery/cycle/download.html
http://www.malsup.com/jquery/cycle/download.html
http://www.malsup.com/jquery/cycle/options.html
http://www.malsup.com/jquery/cycle/options.html
http://www.malsup.com/jquery/cycle/download.html

266 JavaScript: The Missing Manual

Animated
Slideshows with
Cycle

To apply an effect to the slideshow, you can just pass the effect’s name as a string
to the plug-in like this:

$('#photos').cycle('shuffle');

If you want to set other options for the plug-in, you must include the effect inside
an object literal using the assigned property name fx. For example, you can rewrite
the code above this way using an object literal:

$('#photos').cycle({

 fx: 'shuffle'

});

Note: You can create your own transition effects for the Cycle plug-in. For more info, visit www.malsup.
com/jquery/cycle/adv.html.

Speed

Several options control the speed at which transition and effects occur.

• timeout. Each slide in the slideshow stays visible for four seconds before the
next slide begins to appear. If four seconds is too long or too short, you can set
your own timing by supplying the number of milliseconds you want the image
to stay visible. For example, 1,000 is 1 second, while 6,000 is 6 seconds.

• speed. This option controls the slide transition’s duration. Normally, the transi-
tion between one slide and another is one second (1,000 milliseconds). To make
the effect go faster or slower, supply a number in milliseconds for this option.

• delay. When the Web page first loads, the initial slide stays on the screen a bit
longer than the timeout setting, giving the visitor a bit more time to view the
entire page and image before the slideshow begins. The delay setting controls
how long to pause before starting the slideshow. The normal setting is 0, so if
you want the initial image to stay visible for a longer time before the slideshow
begins, set this option to a positive number (1,000, for example, makes the first
slide stay on the page for 1 second longer than normal). You can also supply a
negative number to get the show started more quickly (for example, –2,000
makes the slideshow begin 2 seconds sooner than it normally would).

For example, say you want the slides to move more quickly, the transition between
slides to be slower, and the delay before the slideshow starts to go away. You can
call the cycle() function with those options like this:

$('#photos').cycle({

 timeout: 3000,

 speed: 2000,

 delay: -1000

});

http://www.malsup.com/jquery/cycle/adv.html
http://www.malsup.com/jquery/cycle/adv.html

Chapter 7: Improving Your Images 267

Animated
Slideshows with

Cycle

Navigating slides

A regular Cycle slideshow steps through each slide in the order they appear in the
page’s HTML. You can offer visitors more control by letting them skip immedi-
ately to the next or previous slide, or by providing one button for each slide which,
when clicked, immediately displays the associated slide.

To add a “Previous slide” and “Next slide” buttons, you need to do two things:

1. Add HTML to the page where the buttons should go, and identify those buttons
with unique IDs.

For example, you could add the following HTML to create side-by-side “Previ-
ous slide” and “Next slide” buttons:

Previous slide

Next slide

You can put the HTML anywhere you want the buttons to appear.

2. Pass the IDs of the buttons to the cycle() function.

The Cycle plug-in supports two options—prev and next—that let you specify
which elements should become the Previous and Next links. For example, using
the HTML from above, you could add Previous and Next links like this:

$('#photos').cycle({

 prev: '#previous',

 next: '#next'

});

The Cycle plug-in provides another method of navigating a slideshow—slide paging.
Paging simply refers to the ability to jump to any slide by clicking a button associ-
ated with the particular slide (see Figure 7-9). To add pager buttons to a slideshow:

1. Add an empty tag to the page’s HTML. The tag should have a unique ID, and
should appear in the spot where you want the buttons to appear.

For example, you could insert a <div> tag with an ID like this:

<div id="pager"></div>

Tip: It needn’t be a <div> tag. You could just as easily add an ID to a tag or <td> tag. Just make
sure there’s no other content inside the tag—otherwise, the pager won’t function correctly.

2. Pass the tag’s ID to the cycle() function.

The Cycle plug-in’s pager option lets you specify which element the pager but-
tons should appear in. For example, using the HTML from above, you can add
paging to a slideshow like this:

$('#photos').cycle({

 pager: '#pager'

});

268 JavaScript: The Missing Manual

Tutorial: An
Automated
Slideshow

You can combine any or all of these options. For example, on page 270 of the next
tutorial, you’ll add pager buttons, as well as Previous and Next links.

You can also use CSS to style the buttons the Cycle plug-in creates. The pager but-
tons are simply <a> tags inside the element you specified as the pager box, so a
descendent selector would work well. For example, say you add the pager links to a
<div> tag with an ID of pager; you can then use the CSS selector #pager a to style
those buttons. In addition, the plug-in adds a class, activeSlide, to the button asso-
ciated with the currently displayed slide. To style that button, just create a style
named #pager a.activeSlide (assuming, of course, that the wrapper <div> has the
ID pager).

Starting and stopping the slideshow

Although a Cycle slideshow automatically starts when the page loads, you can
pause and resume the slideshow after it has begun by re-calling the cycle() func-
tion and passing the string 'pause' to stop the slideshow or 'resume' to start it again.
For example, suppose when the page loads you want the slideshow to pause and
only start again when you click a Play button. You can do that with the following
code:

$('#gallery').cycle(); //start slideshow

$('#gallery').cycle('pause'); //stop slideshow

$('#play').click(function() { // add click event

 $('#gallery').cycle('resume'); //start slideshow

});

In this example, the play button is assumed to be some tag with an ID of play. The
actual tag could be a form button, an anchor, or simply a tag that you
attach a click event to.

In addition, you can combine the pause and resume functions into a single button
that toggles the automated slideshow so that you can pause it, then start it again.
You’ll see an example of that in the tutorial below.

Tip: The Cycle plug-in isn’t really limited to just photos. In fact, you don’t need to use photos at all. For
example, you can have a page with a series of <div> tags containing other kinds of material that cycle like
a slideshow. Or, you can control them using navigation buttons.

Tutorial: An Automated Slideshow
In this tutorial, you’ll use the jQuery Cycle plug-in to create an automated slide-
show. To allow some user control, you’ll also add buttons to move around the
slides or pause the slideshow (see Figure 7-9).

Note: See the note on page 27 for information on how to download the tutorial files.

Chapter 7: Improving Your Images 269

Tutorial: An
Automated
Slideshow

1. In a text editor, open the file 7.4.html in the chapter07 folder.

If you look at the HTML, you’ll see that there’s a <div> tag with an id of gal-
lery. Inside that <div> are five other <div> tags, each with an image and a para-
graph of text. You’ll use the Cycle plug-in to display the <div> tags one at a
time.

Another thing to note is that in the CSS file for the slideshow (slideshow.css in
the css folder), two styles define a specific height and width for the container
<div> and the <div> tags inside it (see the styles #gallery and #gallery div in the
style sheet). As mentioned on page 264, because the Cycle plug-in manipulates
the positioning of the slides, you need specific dimensions for the animated
slide transitions to work properly.

The first step is to attach the plug-in’s JavaScript files.

2. On the blank line immediately after the <script> tag for the jquery.js file, type:

<script type="text/javascript" src="../js/jquery.cycle.js"></script>

This page already has a <script> tag and jQuery’s .ready() function added, so
you just need to add the code to call the cycle plug-in.

3. Click in the blank line below $(document).ready() and type $('#gallery').
cycle('fade');. The code at this point should look like this:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript" src="../js/jquery.cycle.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 $('#gallery').cycle('fade');

}); // end ready()

</script>

You apply the cycle() function to the container <div>. In this case, since the
<div> has the ID name gallery, the jQuery selector $('#gallery') will select that
<div>. Passing the cycle() function to the string 'fade' sets the type of transition
effect, so that each photo will fade into view.

There’s more to do, but if all you want is for the slideshow to work, you can
stop now. Save the page and preview it in a Web browser. (It takes a few sec-
onds for the first image to disappear and the next to appear.)

The fade effect isn’t too inspiring, especially since the Cycle plug-in provides
many more visually interesting effects. In addition, the slideshow gets off to a
slow start, and it runs a bit slowly. By supplying a few optional settings, you can
tweak the plug-in to fix these problems.

4. Edit the line you added in the previous step, so it looks like this:

$('#gallery').cycle({

 fx: 'scrollRight',

270 JavaScript: The Missing Manual

Tutorial: An
Automated
Slideshow

 timeout: 3000,

 speed: 500,

 delay: -2000

});

You’ve just passed an object literal (page 188) to the cycle() function (don’t for-
get the opening { and closing }). The object literal contains four option settings:
fx controls the type of effect (in this case, the images slide off towards the right
edge of the screen); the timeout option sets the time each slide stays on the
screen (each image appears for three seconds before the next slide moves into
place); the speed setting controls the speed at which the images slide through the
transition (in this example, it takes just half a second, or 500 milliseconds, for
an image to slide across the screen and out of view); finally, setting the delay
option to –2,000 makes the slideshow begin 2 seconds earlier.

Save the page and test this new version out in a Web browser.

To make the slideshow more functional for those viewing it, you’ll next add
buttons that let a visitor jump immediately to any one of the photos. To do this,
you first need to add some HTML to the page.

5. On the blank line underneath the HTML <h1>Cycle Slideshow</h1>, add the
following HTML:

<div id="controls">

</div>

This new <div> holds several different buttons for controlling how the slide-
show plays. The first controller will be a set of numbered buttons—one for each
photo—that let you jump to an photo in the slideshow. The tag with
the ID of pager will hold those buttons. Fortunately, you don’t have to do any-
thing else to add those buttons except tell the Cycle plug-in where to put them.

6. In the object literal you added in step 4, add a comma after delay: -2000, hit
return and type pager: '#pager'.

As mentioned on page 268, the Cycle plug-in’s pager option lets you specify the
ID of an element on the page (in this case, the empty tag you added in
the last step), where the plug-in inserts buttons to navigate the slideshow. If you
save the page now and view it in a Web browser, you’ll see five numbered but-
tons. Click them to move to specific slides.

It would also be handy to have Previous and Next buttons as well.

7. Directly before the tag you added in step 5, type <span id="prev"
class="control">Previous. Directly after the closing , type
Next.

In other words, you’ve just inserted two spans on either side of the paging but-
tons you added in the previous two steps. These two spans will be the Previous

Chapter 7: Improving Your Images 271

Tutorial: An
Automated
Slideshow

and Next buttons—you just have to tell the cycle() function about them. The
ID for each tag lets the Cycle plug-in identify them (the classes on each
span are just for formatting the buttons with CSS).

8. Edit the JavaScript you’ve added to the page so it looks like this:

$('#gallery').cycle({

 fx: 'scrollRight',

 timeout: 3000,

 speed: 500,

 delay: -2000,

 pager: '#pager',

 next: '#next',

 prev: '#prev'

});

In other words, add a comma after pager: '#pager' and add two new options to
the object literal. Save the file and preview it in a Web browser.

For a final touch, you’ll add a button that lets you stop and start the slideshow.
First, you need to add the HTML for the button.

9. Add Pause just before the
closing </div> you added in step 5. The HTML for that <div> should now
look like this:

<div id="controls">

 Previous

 Next

 Pause

</div>

You can’t add the ability to stop and start simply by adding another option to
the object literal passed to the cycle() function. You’ll have to add some custom
programming for that.

10. Insert a blank line after the cycle() function and add $('#playControl').toggle();
to the script.

The $('#playControl') selects the you added in the last step, while
toggle() adds event magic to that . As discussed on page 221, the toggle()
function requires two functions, which are alternately triggered by each mouse
click—for example, the first mouse click on the element runs the first function,
while the next mouse click runs the second function. For this page, since the
slideshow automatically starts when the page loads, the first click on the Pause
button pauses the slideshow, the second click starts it up again, the third click
pauses it again, and so on.

272 JavaScript: The Missing Manual

Tutorial: An
Automated
Slideshow

11. Click between the toggle() function’s opening and closing parentheses. Press
Return, and then type:

function() {

 $('#gallery').cycle('pause');

 $(this).text('Play');

}

The first function does two things: pauses the slideshow and changes the text on
the button from Pause to Play. As mentioned on page 268, you can pause the
slideshow by applying the cycle() function to the <div> containing the slide-
show slides and passing the string 'pause'. Since clicking the Pause button stops
the slideshow, it makes sense to change the text on that button to Play so visi-
tors will know they can click the same button to make the slideshow start again.
The $(this) refers to the element being clicked—in this case, the tag—
while the text() function changes the text inside that to Play (see the
note on page 182 for more on the text() function).

12. Add the second function, so the complete code for the toggle() is:

1 $('#playControl').toggle(

2 function() {

3 $('#gallery').cycle('pause');

4 $(this).text('Play');

5 },

6 function() {

7 $('#gallery').cycle('resume');

8 $(this).text('Pause');

9 });

Make sure to include the comma (line 5) and make sure the functions close
properly (line 9). The second function just undoes the first function: starts the
slideshow and changes the button’s text back to Pause.

13. Save the page and preview it in a Web browser.

The finished page should look like Figure 7-9. Try out all the buttons and make
sure they work. You’ll find a finished version of the tutorial in the chapter07
folder (complete_7.4.html).

2
II.Part Two:
Building Web Page
Features

Chapter 8: Improving Navigation

Chapter 9: Enhancing Web Forms

Chapter 10: Expanding Your Interface

275

Chapter 8chapter

8

Improving Navigation

Links make the Web go around. Without the instant access to information pro-
vided by linking from page to page and site to site, the Web wouldn’t have gotten
very far. In fact, it wouldn’t be a web at all. Since links are one of the most com-
mon and powerful pieces of HTML, it’s only natural that there are lots of Java-
Script techniques for enhancing how links work. In this chapter, you’ll learn the
basics of using JavaScript to control links, and how to open links in new windows
and in windows within a page. In addition, you’ll learn how to make links more
usable by creating larger link targets and navigation bars with multiple levels of
menus.

Some Link Basics
You undoubtedly know a lot about links already. After all, they’re the heart of the
Web, and the humble <a> tag is one of the first pieces of HTML a Web designer
learns. Adding JavaScript to a page can turn a basic link into a supercharged gate-
way of interactivity…but only if you know how to use JavaScript to control your
links. Once you’ve got the basics, later sections of this chapter will give you real-
world techniques for controlling links with JavaScript.

Selecting Links with JavaScript
To do anything with a link on a Web page, you must first select it. You can select
all of the links on a page, just one, or a particular group of related links—for example,
links that are grouped together in the same part of a page, or that share a certain
characteristic such as external links that point to other Web sites.

276 JavaScript: The Missing Manual

Some Link Basics

As discussed on page 159, all Web browsers let you select every instance of a partic-
ular tag using the getElementsByTagName() method, so you can create an array
containing all links on a page like this:

var allLinks = document.getElementsByTagName('a');

Of course, you’ve hopefully learned by now that a JavaScript library like jQuery
gives you greater flexibility in selecting document elements. For example, the code
$('a') creates a jQuery selection of all links on a page. Furthermore, jQuery lets you
refine your selections, so you can quickly select all the links within a particular area
of a page. For example, you can select all of the links contained inside a bulleted
list with an ID of mainNav like this: $('#mainNav a'). Likewise, you can use
attribute selectors (page 177) to select links whose HREF values (the paths to the
files they point to) match a certain pattern such as links that point to other sites, or
which point to PDF files (see “Opening External Links in a New Window” on page
278 for an example).

And once you’ve used jQuery to select those links, you can use the jQuery func-
tions to work with those links. For example, you can loop through each link using
the each() function (page 193), apply a class to those links (page 174), or add event
functions to them (page 207). You’ll see many examples of what you can do to
links later in this chapter.

Determining a Link’s Destination
After you’ve selected one or more links, you may be interested in where they lead.
For example, in the slideshow you built on page 268 each link pointed to a larger
image; by retrieving the path, you used JavaScript to display that larger image. In
other words, you extracted the link’s href value and used that path to create a new
 tag on the page. Likewise, you can retrieve the href value that leads to
another Web page and, instead of going to that page when you click the link, you
can actually display the new Web page on top of the current page. (See page 286 to
learn how to do that.)

In each case, you need to access the href attribute, which is an easy process using
jQuery’s attr() function (page 189). For example, say you’ve applied an ID to the
link that leads back to a site’s home page. You can retrieve that link’s path like this:

var homePath = $('#homeLink').attr('href');

You’ll find this information handy in many instances. For example, say you want
to add the full URL of a link pointing outside of your site next to the link text itself.
In other words, suppose you have a link with the text “Learn more about bark
beetles” that points to http://www.barkbeetles.org/. Now suppose you’d like to
change the text on the page to read “Learn more about bark beetles (www.bark-
beetles.org)” (so when people print the page they’ll know where that link leads to).

http://www.barkbeetles.org/

Chapter 8: Improving Navigation 277

Some Link Basics

You can do that easily with the following JavaScript:

1 $('a[href^=http://]').each(function() {

2 var href = $(this).attr('href');

3 href = href.replace('http://','');

4 $(this).after(' (' + href + ')');

5 });

Note: The line numbers at left aren’t part of the code, so don’t type them. They’re just for examining the
code line by line.

Line 1 selects all external links (page 177) then runs the each() function (page
193), which simply looks through each link and applies a function to it. In this
case, lines 2–4 make up the function body. Line 2 retrieves the link’s href of the
link (for example, http://www.barkbeetles.org). Line 3 is optional—it just simplifies
the URL for display purposes by removing the http://, so the href variable now
holds something like www.barkbeetles.org. Finally, line 4 adds the contents of the
variable href (wrapped in parentheses) after the link: (www.barkbeetles.org), and
line 5 closes the function.

Don’t Follow That Link
When you add a click event to a link, you may not want the Web browser to follow
its normal behavior of exiting the current page and loading the link’s destination.
For example, in the image gallery on page 248, when you click a link on a thumb-
nail image, the page loads a larger image. Normally, clicking that link would exit
the page and show the larger image by itself on a blank page. However, in this case,
instead of following the link to the image, you stay on the same page, where the
larger image is loaded.

There are a couple of ways you can stop a link in its tracks—you can return a false
value or use jQuery’s preventDefault() function (page 223). For example, say you
have a link that takes a visitor to a login page. To make your site feel more respon-
sive, you want to use JavaScript to show a login form when the visitor clicks that
link. In other words, if the visitor’s browser has JavaScript turned on, when he
clicks that link a form will appear on the page; if the browser has JavaScript turned
off, clicking the link will take the visitor to the login page.

There are several steps to achieve this goal:

1. Select the login link.

See the first part of this section on the previous page, if you need ideas for how
to do this.

2. Attach a click event.

You can use jQuery’s click() function (page 222) to do so. The click() function
takes another function as an argument. That function contains the steps that
happen when a user clicks the link. In this example only two steps are required.

http://www.barkbeetles.org
http://www.barkbeetles.org
http://www.barkbeetles.org

278 JavaScript: The Missing Manual

Opening External
Links in a New
Window

3. Show the login form.

The login form might be hidden from view when the page loads—perhaps an
absolutely positioned <div> tag directly under the link. You can show the form
using the show() function or one of jQuery’s other show effects (see page 243).

4. Stop the link!

This step is the most important. If you don’t stop the link, the Web browser will
simply leave the current page and go to the login Web page.

Here’s how to stop the link using the “return false” method. Assume that the link
has an ID of showForm and the hidden <div> tag with the login form has an ID of
loginForm:

1 $('#showForm').click(function() {

2 $('#loginForm').fadeIn('slow');

3 return false;

4 });

Line 1 accomplishes both steps 1 and 2 on page 277; line 2 displays the hidden
form. Line 3 is the part that tells the Web browser “Stop! Don’t follow that link.”
You must put the return false; statement as the last line of the function, because
once the JavaScript interpreter encounters a return statement, it exits the function.

You can also use jQuery’s preventDefault() function, like this:

1 $('#showForm').click(function(evt) {

2 $('#loginForm').fadeIn('slow');

3 evt.preventDefault();

4 });

The basic details of this script are the same as the one before it. The main differ-
ence is that the function assigned to the click event now accepts an argument—
evt—which represents the event itself (the event object is described on page 222).
The event has its own set of functions and properties—the preventDefault() func-
tion simply stops any default behavior associated with the event: for a click on a
link, that’s loading a new Web page.

Opening External Links in a New Window
Losing visitors is one of the great fears for any site that depends on readership.
Online magazines that make money from ad revenue don’t want to send people
away from their site if they can help it; an e-commerce site doesn’t want to lose a
potential customer by letting a shopper click a link that leaves the site behind; and
while displaying a portfolio of completed Web sites, a Web designer might not
want to let a potential client leave her site while viewing one of the designer’s
finished projects.

Chapter 8: Improving Navigation 279

Opening External
Links in a New

Window

Many sites deal with these fears by opening a new window whenever a link to
another site is clicked. That way, when the visitor finishes viewing the other site
and closes its window, the original site is still there. HTML has long provided a
method of doing that using a link’s target attribute—if you set that attribute to
_blank, a Web browser knows to open that link in a new window (or, with brows-
ers that use tabs, open the link a new tab).

Note: There’s a quite a bit of debate amongst Web usability experts about whether the strategy of open-
ing new windows is a good or bad idea. For example, see www.useit.com/alertbox/990530.html.

Unfortunately, the HTML target attribute isn’t valid HTML for the strict versions
of HTML 4.01 and XHTML 1.0, so including that attribute in your HTML can
mean your Web pages won’t pass validation (see the box on page 6). An even big-
ger pain, however, is having to manually place the target attribute on each link that
points to a page outside your own Web site—a time-consuming process that’s
prone to error.

Fortunately, using JavaScript and jQuery, there’s a quick, easy method to force
Web browsers to open external links (or really any links you want) in a new win-
dow or browser tab. The basic process is simple:

1. Identify the links you wish to open in a new window.

In this chapter, you’ll use a jQuery selector (page 172) to identify those links.

2. Add the target attribute with a value of _blank to the link.

You might be thinking, “Hey, that’s invalid HTML, I can’t do that.” Well, first
it’s only invalid for the strict versions of HTML 4.01 and XHTML 1.0, so it’s
fine for any other document type. Second, your page will still validate, since an
HTML validator (for example, http://validator.w3.org/) only analyzes the actual
HTML code in the Web page file and not any HTML that JavaScript adds. And,
lastly, every browser understands the target attribute, so you know that the link
will open in a new window, regardless of the standards for strict document
types. While, in general, you don’t want your JavaScript to produce invalid
HTML, in this case it won’t cause any harm, and will work in all browsers.

Note: The HTML 5 standard that’s currently under development returns the target attribute to the <a>
tag. In other words, target will, in the not-to-distant future, again be legal to use on links.

In jQuery you can complete the previous two steps in one line of code:

$('a[href^=http://]').attr('target','_blank');

The jQuery selector—$('a[href^=http://]')—uses an attribute selector (page 177)
to identify <a> tags that begin with http:// (for example, http://www.yahoo.com).
The selector identifies all of these types of links and then uses the jQuery attr()
function (page 189) to set the target attribute to _blank for each link. And that’s it!

http://www.useit.com/alertbox/990530.html
http://validator.w3.org/
http://www.yahoo.com

280 JavaScript: The Missing Manual

Opening External
Links in a New
Window

If you use absolute paths to specify links to files on your own site, you need one
more step. For example, if your site’s address is www.your_site.com, and you link to
other pages or files on your site like this: http://www.your_site.com/a_page.html,
then the previous code also forces those links to open in a new window. If you
don’t want to open up a new window for every page of your site (your poor visi-
tors), you need code like the following:

var myURL = location.protocol + '//' + location.hostname;

$('a[href^=http://]').not('[href^='+myURL+']').attr('target','_blank');

This code first specifies the URL for your site and assigns it to a variable—myURL.
The URL of your site is accomplished with a little bit of help from the browser’s
window object. A browser knows the protocol used for accessing a URL—http:, or
for secured sites https:. It’s stored in the location object’s protocol property. Like-
wise, the name of the site—www.sawmac.com, for example—is stored in the host-
name property. So the JavaScript location.protocol + '//' + location.hostname
generates a string that looks like http://www.sawmac.com. Of course, the hostname
in this case changes depending upon where the page with this JavaScript code
comes from. For example, if you put this code on a page that comes from http://
www.your_site.com, then when someone views the page from that site location.
hostname would be www.your_site.com.

The second line of code, starts with a jQuery selector which retrieves all links that
start with http://. Then, the not() function removes any links start with your
URL—in this example, for example links that point to http://www.sawmac.com.
(The not() function is a useful way of excluding some elements from a jQuery
selection—to learn about it, visit http://docs.jquery.com/Traversing/not#expr.)

So to actually use this code on a page, you just link to the jQuery file, add the
$(document).ready() function (page 218), and then insert the previous code inside
like this:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 var myURL = location.protocol + '//' + location.hostname;

 $('a[href^=http://]').not('[href^='+myURL+']').attr('target','_blank');

});

</script>

Another approach would be to create an external JavaScript file (see page 24); in
that file, create a function that runs the code to make external links open in a new
window; attach that file to the page; and then call the function on that page.

For example, you could create a file named open_external.js with the following
code:

function openExt() {

 var myURL = location.protocol + '//' + location.hostname;

 $('a[href^=http://]').not('[href^='+myURL+']').attr('target','_blank');

}

http://www.sawmac.com
http://docs.jquery.com/Traversing/not#expr

Chapter 8: Improving Navigation 281

Creating New
Windows

Then add the following code to each page on your site that you’d like to apply this
function to:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/open_external.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 openExt();

 // add any other JavaScript code to the page

});

</script>

The benefit of using an external file is that if you’ve used this function throughout
your site on hundreds of pages, you can easily update the script so it’s fancier—for
example, you can later change the openExt() function to open external pages in a
frame within the current page (see page 286 for how to do that). In other words,
an external .js file makes it easier for you to keep your scripts consistent across
your entire site.

Creating New Windows
Web browsers let you open new windows and customize many of their properties,
like width and height, onscreen placement, and even whether they display scroll-
bars, menus, or the location (address) bar. The basic technique uses the open()
method, which follows this basic structure:

open(URL, name, properties)

The open() method takes three arguments. The first is the URL of the page you
wish to appear in the new open window—the same value you’d use for the href
attribute for a link (http://www.google.com, /pages/map.html, or ../../portfolio.html,
for example). The second argument is a name for the window, which can be any
name you’d like to use; follow the same naming rules used for variables as
described on page 44. Finally, you can pass a string containing the settings for the
new window (its height and width, for example).

In addition, when opening a new window you usually create a variable to store a
reference to that window. For example, if you want to open Google’s home page in
a new window that’s 200 pixels square, you can write this code:

var newWin= open('http://www.google.com/', ↵
'theWin','height=200,width=200');

Note: The ↵ symbol at the end of a line of code indicates that the next line should really be typed as
part of the first line. But since a really long line of JavaScript code won’t fit on this book’s page, it’s broken
up over two lines.

http://www.google.com
/pages/map.html
../../portfolio.html

282 JavaScript: The Missing Manual

Creating New
Windows

This code opens a new window and stores a reference to that window in the vari-
able newWin. The section “Use the Window Reference” on the next page describes
how to use this reference to control the newly opened window.

Note: The name you provide for the new window ('theWin' in this example) doesn’t do much. How-
ever, once you’ve provided a name, if you try to open another window using the same name, you won’t
get a new window. Instead, the Web page you request with the open() method just loads in the previ-
ously created window with the same name.

Window Properties
Browser windows have many different components: scrollbars, resize handles,
toolbars, and so on (see Figure 8-1). In addition, windows have a width and height
and a position on the screen. You can set most of these properties when creating a
new window by creating a string containing a comma-separated list of each prop-
erty and its setting as the third argument for the open() method. For example, to
set the width and height of a new window and to make sure the location bar
appears, you can write this:

var winProps = 'width=400,height=300,location=yes';

var newWin = open('about.html','aWin',winProps);

Warning: Don’t include any spaces in the string defining the new window’s properties. For example, var
winProps='width = 400,height = 600’ won’t work because of the spaces before and after the = signs.

You set the properties that control the size or position of the window using pixel
values, while the other properties take either the value yes (to turn on that prop-
erty) or no (to turn off that property). In the case of any of the yes/no properties
(like toolbar or location), if you don’t specify a property value, the Web browser
turns that property off (for example, if you don’t set the location property, the
Web browser hides the location field that normally appears at the top of the window).

• height dictates the height of the window, in pixels. You can’t specify percentage
values or any other measurement besides pixels. If you don’t specify a height,
the Web browser matches the height of the current window.

• width specifies the width of the window. As with height, you can only use pix-
els, and if you leave this property out, the Web browser matches the width of
the current window.

• left is the position, in pixels, from the left edge of the monitor.

• top is the position, in pixels, from the top edge of the monitor.

• resizable specifies whether a visitor can resize the window by dragging.

• scrollbars appear at the right and bottom edges of a browser window whenever a
page is larger than the window itself. To completely hide the scrollbar, set this
property to no. You can’t control which scrollbar is hidden (it’s either both or
neither).

Chapter 8: Improving Navigation 283

Creating New
Windows

• status controls the appearance of the status bar at the bottom of the window.
Firefox and Internet Explorer normally don’t let you hide the status bar, so it’s
always visible in those browsers.

• toolbar sets the visibility of the toolbar containing the navigation buttons, book-
mark button, and other controls available to the particular browser. On Safari,
the toolbar and location settings are the same: turning on either one displays
both the toolbar buttons and the location field.

• location specifies whether the location field is visible. Also known as the address
bar, this field displays the pages URL and lets visitors go to another page by typ-
ing a new URL. Opera, IE 7, and Firefox don’t let you hide a page’s location
entirely. If you don’t turn on the location property, then the page’s URL appears
up in the title bar. This feature is supposed to stop nefarious uses of JavaScript
like opening a new window and sending you off to another site that looks like
the site you just left. Also, Safari displays the toolbars as well as the location field
with this property turned on.

• menubar applies to browsers that have a menu at the top of their windows (for
example, the common File and Edit menus that appear on most programs).
This setting applies only to Windows browsers—Macs have the menu at the top
of the screen, not the individual window. And it doesn’t apply to IE 7, which
doesn’t normally display a menu bar.

Use the window reference

Once you open a new window, you can use the reference to that window to con-
trol it. For example, say you open a new window with the following code:

var newWin = open('products.html','theWin','width=300,height=300');

Figure 8-1:
The different properties of a browser window
like scrollbars, toolbars, and resize handles
are collectively called a browser’s “chrome.”
Each browser has its own take on these
properties, and in, general, Web developers
have little control over how these work or
look. However, when creating a new window
using JavaScript, you can turn off some of
these features.

284 JavaScript: The Missing Manual

Creating New
Windows

The variable newWin, in this case, holds a reference to the new window. You can
then apply any of the browser’s window methods to that variable to control the
window. For example, if you want to close that window, you could use the close()
method like this:

newWin.close();

Browsers support many different methods for the window object, but here are
some of the most commonly used to control the window itself:

• close() closes the specified window. For example, the command close() closes
the current window. But you can also apply this to a window reference: newWin.
close(), for example. You can use any event to trigger this close, like a mouse
click on a button that says, “Close this window.”

Note: If you use any one of these commands by itself, it applies to the window running the script. For
example, adding the statement close(); to a script closes the window the script is in. However, if you’ve
opened a window and have a reference to that window (for example, a variable that you created when the
window was opened like newWin) then you can close that window from the page that originally created
the window using the reference like this: newWin.close().

• blur() forces the window to “lose focus.” That is, the window moves behind any
already opened windows. It’s a way to hide an opened window, and Web adver-
tisers use it to create “pop under” ads—windows that open underneath any
current windows, so when the visitor closes all of his windows, there’s an
annoying ad waiting for him.

• focus() is the opposite of blur() and forces the window to come to the top of
the stack of other windows.

• moveBy() lets you move the window a set number of pixels to the right and
down. You provide two arguments to the method—the first specifies the num-
ber of pixels to move to the right, and the second specifies how many pixels to
move the window down. For example, newWin.moveBy(200,300); moves the
window that’s referenced by the newWin variable 200 pixels to the right and 300
pixels down on the screen.

• moveTo() moves the window to a specific spot on the monitor specified by a
left and top values. This command is the same as setting the left and top proper-
ties (page 282) when opening a new window. For example, to move a window
to the top-left corner of the monitor, you can run this code: moveTo(0,0);.

• resizeBy() changes the width and height of the window. It takes two arguments:
the first specifies how many pixels wider to make the window; the second specifies
how many pixels taller the window should be. For example, resizeBy(100,200);
makes the current window 100 pixels taller and 200 pixels wider. You use nega-
tive numbers to make the window smaller.

Chapter 8: Improving Navigation 285

Creating New
Windows

• resizeTo() changes the windows dimensions to a set width and height. For
example, resizeTo(200,400); changes the current window so it’s 200 pixels wide
and 400 pixels tall.

• scrollBy() scrolls the document inside the window by the specified number of
pixels to the right and down. For example, scrollBy(100,200); scrolls the current
document down 200 pixels and 100 pixels to the right. If the document can’t
scroll (in other words, the document fits within the window without scrollbars
or the document has been scrolled to the end), then this function has no effect.

• scrollTo() scrolls the document inside the window to a specific pixel location to
the right and from the top of the page. For example, scrollTo(100,200); scrolls
the current document down 200 pixels from its top and 100 pixels from its left
edge. If the document can’t scroll (in other words, the document fits within the
window without scrollbars or the document has been scrolled to the end), then
this function has no effect.

Note: The jQuery ScrollTo plug-in provides a simple way to control document scrolling using JavaScript.
Find out more about this plug-in at http://plug-ins.jquery.com/project/ScrollTo.

Events that can open a new window

In the short history of the Web, pop-up windows have gotten a bad name. Unfor-
tunately, many Web sites have abused the open() method to force unwanted pop-
up ads on unsuspecting visitors. These days, most browsers have a pop-up blocking
feature that prevents unwanted pop-up windows, so even though you can add the
JavaScript code to make a new window open as soon as a page loads, or when the
visitor closes a window, most browsers won’t let it happen. The visitor will either
see a message letting her know that the browser prevented a new window from
opening, or maybe get no indication at all that a pop-up window was blocked.

In fact, many browsers won’t let you open a browser window using most events
like mouseover, mouseout, or keypress. The only reliable way to use JavaScript to
open windows is to trigger the action when the user clicks a link or submits a form.
To do so, you add a click event to any HTML element (it doesn’t have to be a link)
and open a new window. For example, say you want some links on a page to open
in a new window that’s 300 pixels square, has scrollbars, and is resizable, but
doesn’t have any of the other browser chrome like toolbars. You can add a class
name—popup, for example—to each of those special links, and then add this
jQuery code to your page:

$('.popup').click(function() {

 var winProps='height=300,width=300,resizable=yes,scrollbars=yes';

 var newWin=open($(this).attr('href'),'aWin',winProps);

}

http://plug-ins.jquery.com/project/ScrollTo

286 JavaScript: The Missing Manual

Opening Pages in a
Window on the
Page

Opening Pages in a Window on the Page
Opening new windows can be problematic. Not only do many browsers try to
block pop-up windows, but like many designers, you may not like the fact that you
can’t really control how the browser window looks. What if you just want a clean,
simple way to display a new Web page without exiting the current page? Use Java-
Script, of course! You can create a window-within-a-page effect by using Java-
Script to dynamically add an iframe to a page and display another Web page within
that iframe. The final effect looks as if the linked page is simply floating above the
current page (see Figure 8-2).

The HTML <iframe> tag lets you create something like a window onto another
Web page. The <iframe> (short for inline frame) is similar to old-school HTML
frames, but you can insert an iframe anywhere in a page’s HTML. By setting the
dimensions of the iframe and specifying a src attribute (a Web page address), you
can load another Web page so it looks like it’s part of the current page. To make
the process easy, you can use a jQuery plug-in called Greybox2 to handle all of the
heavy lifting, so you can concentrate on the design.

Figure 8-2:
You can quickly create a
page-within-a-page effect
using the Greybox2
jQuery plug-in. The
original Greybox was
written by the creator of
jQuery, John Resig (see
http://jquery.com/demo/
grey). This book’s author
expanded on that
original code and turned
it into an easy-to-use
plug-in.

Chapter 8: Improving Navigation 287

Opening Pages in a
Window on the

Page

Note: You can learn more about iframes at http://www.w3schools.com/tags/tag_iframe.asp. The
<iframe> tag is not valid HTML for HTML 4.01 Strict or XHTML 1.0 Strict. However, the Greybox plug-in
uses JavaScript to add the <iframe> tag, so your actual HTML will pass validation. In addition, since HTML
5 supports the <iframe> tag, all major browsers will continue to support it into the future.

To use the Greybox2 plug-in, follow these steps:

1. Create a Web page with the links that open inside a window-within-the-page.

You don’t need to apply this effect to every link on a page. Perhaps you want
most of the links on the page to work normally (that is, clicking the link simply
exits the current page and loads the linked page), with only some links using the
window-within-the-page effect. For example, you might want the page listing
your company’s contact info your site’s legal disclaimer to appear on the same
page, or page, with external links working the normal way.

In this case, you need a way to identify those specific links. Since jQuery pro-
vides such a flexible way of selecting elements (see page 172 for a refresher), you
can achieve this goal in several ways. For example, you can add a class to each
link (named something like pageWindow, for instance), and then use jQuery to
select just those links—with $('.pageWindow'), for example. Or, if all of the
links are grouped together in one area of the page, you can apply a class to a
containing tag like a <div> or (bulleted list) tag; you can then use a
descendent selector with jQuery to select those links—$('.pageWindow a').

Note: The required Greybox2 files are included in the chapter08 tutorial folder. Page 290 presents a
step-by-step tutorial for using the Greybox2 plug-in.

The Greybox2 plug-in also puts a short caption above the iframe identifying the
linked page (see Figure 8-2). The plug-in uses the text inside the link (for exam-
ple, “Click here to see more info”) as the caption, but you can set up a different
caption by adding a title attribute to the link tag:

Click here to see more info

If the above link had the Greybox effect applied to it, “More about product
XYZ” would appear as the caption.

2. Attach the greybox2.css file to the Web page.

Attach the file as you would any external style sheet:

<link href="greybox2.css" rel="stylesheet" type="text/css">

The greybox2.css file contains various CSS styles that control the appearance of
the effect, including the color of the transparent overlay, the border color and
size, and the “loading page” animated GIF. (On page 290, you’ll learn which
styles you can edit to change the look of the effect.)

http://www.w3schools.com/tags/tag_iframe.asp

288 JavaScript: The Missing Manual

Opening Pages in a
Window on the
Page

3. Attach the jquery.js and jquery.greybox2.js files to the Web page.

The jquery.greybox2.js file contains the code that lets you create the window-in-
page effect, but since it uses the jQuery library to perform its magic, you need
jQuery as well. Any file that uses jQuery must be linked after the jQuery file.
Attach the files as you would any external JavaScript file, as described on page
24. For example, assuming the jquery and greybox2 files are in the same folder as
the page you’re linking them to, add the following code to the <head> region of
the page:

<script type="text/javascript" src="jquery.js"></script>

<script type="text/javascript" src="jquery.greybox2.js"></script>

4. Add another <script> tag with the jQuery $(document).ready() function.

To do so, add this code after the <script> tags you added in step 3:

1 <script type="text/javascript">

2 $(document).ready(function() {

3

4 });

5 </script>

The .ready() function is described in detail on page 218. Basically, when using
jQuery you always add this function to your page and put all of your JavaScript
inside this function (line 3 in this code sample).

5. Set up any Greybox2 options.

The Greybox2 plug-in includes just four options, which control the height and
width of the in-page window, the height of the caption area, and whether to use
a fix that lets the Mac version of Firefox 2 display Flash content inside the window:

• gbWidth defines the width in pixels for the in-page window. If you don’t
specify a value, the window will be 400 pixels wide.

• gbHeight sets the window’s height in pixels. As with gbWidth, if you don’t set
this option, the window will be 400 pixels tall.

• captionHeight specifies the height of the caption area in pixels. The caption
area appears above the linked Web page and contains a text caption and a
“Close this window” button. If you don’t change it, this option is set to 18
pixels, but you’ll probably want to change it if you adjust the size of the font
used in the caption (see page 290).

• ffMacFlash, if set to true, changes how the overlay (the transparent back-
ground that covers the Web page while the iframe is visible) is created. You
may want to use this setting if the page displayed in the iframe contains a
Flash movie and you want that movie to play. Due to a bug in Firefox 2 on

Chapter 8: Improving Navigation 289

Opening Pages in a
Window on the

Page

the Mac, if you set the opacity of an object on a Web page (the overlay in this
case), Firefox 2 can’t play a Flash movie in an iframe (now that’s a weird
bug!). Firefox 3 for Mac doesn’t have this problem, nor does any version of
Firefox for Windows. (See page 290 for more on this problem.)

To set any of these options, create a variable containing an object literal (see
page 188). You can then pass that variable to the greybox() function. For exam-
ple, say you want to set the width of the window to 600 pixels, the height to 550,
the height of the caption to 22 pixels, and turn on the Mac Firefox fix, you can
create a variable like this:

<script type="text/javascript">

$(document).ready(function() {

 var gbOptions = {

 gbWidth: 600,

 gbHeight: 500,

 captionHeight: 22,

 ffMacFlash: true

 };

});

</script>

6. Apply greybox() to links.

Finally, you apply the greybox() function to the links. You do this by first creat-
ing a jQuery selector to select the desired links, and then call the greybox()
function passing the options you set in step 5. For example, say you added the
class pageWindow to each link you want to open in an iframe on the page. You
can apply greybox() to the code in bold:

<script type="text/javascript">

$(document).ready(function() {

 var gbOptions = {

 gbWidth: 600,

 gbHeight: 500,

 captionHeight: 22,

 ffMacFlash: true

 };

 $('.pageWindow').greybox(gbOptions);

});

</script>

And that’s it! The specified links are now greyboxed—meaning that clicking any
of them opens the linked page in a nice 600 × 500 pixel in-page window.

290 JavaScript: The Missing Manual

Opening Pages in a
Window on the
Page

Customizing the Look of a Greybox Window
All of the formatting for the Greybox window is controlled by the greybox2.css style
sheet. To change the look of the window effect, just open the greybox2.css style
sheet. As shown in Figure 8-3, the top section of the file contains styles that con-
trol the look of the following elements:

• The loading image is an animated GIF named loading.gif. The #GB_loading style
in the style sheet points to the image file and specifies the background color for
the loading area. The CSS file included with the tutorials sets the background to
white and assumes that the image is in the same folder as the style sheet. If you
wish to move the file or change its name, edit the #GB_loading style accordingly.

• The transparent overlay is controlled by the .GB_overlayBG style. The stock
style sheet sets the color to black (#000), and the opacity to 40%. There are two
opacity properties—one for IE (filter:alpha(opacity=40);) and one for other
browsers (opacity: 0.40;)—so if you wish to change the opacity, you must
change both properties.

• Create an overlay for Firefox 2 for Mac. Due to a bug in the Mac version of
Firefox 2, Flash movies displayed inside an iframe on a page that also includes
transparent elements won’t play (this problem doesn’t affect Firefox 3 on the
Mac). For that browser, you need to create a PNG32 transparent image. (That’s
just a small file containing a solid color set to a transparency setting of your
choosing. You can create one in either Photoshop or Fireworks.)

The file used in the supplied style sheet is named macFFBgHack.png. It’s defined
in the .GB_overlayMacFFBGHack style and is only used if you set the ffMac-
Flash option to true when setting up the Greybox options (see the previous
page). If you won’t be displaying any Flash movies using the Greybox plug-in,
or your audience doesn’t use Firefox 2 for Mac, you don’t need to even worry
about this style or the graphic.

• Basic window properties like the background color, border width, and border
color are controlled by the #GB_window style.

• The caption area is defined by the #GB_caption style. Edit this style to change
the font, font size, background color, or other properties affecting the look of
the caption area. In addition, this style puts a background image (named close.gif
in the stylesheet), which contains the text “Close window” and a small close
box. Actually, the entire caption area acts as a close button, so this graphic is
merely to inform the visitor that he can close the window by clicking this area
(clicking anywhere on the transparent overlay also closes the window).

Tutorial: Opening a Page Within a Page
In this tutorial, you’ll take the Greybox2 plug-in for a spin by applying it to a page
and customizing its appearance.

Chapter 8: Improving Navigation 291

Opening Pages in a
Window on the

Page

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 8.1.html in the chapter08 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 218). In addition, there’s a bulleted list of links on the page.
These are the links you’ll apply the greybox effect to. The first step is to attach
the greybox2.css file to the page.

2. Click in the empty line after <link href="../css/global.css" rel="stylesheet"
type="text/css">

<link href="greybox/greybox2.css" rel="stylesheet" type="text/css">

This CSS file contains the styles that will control the look of the Greybox win-
dow. The greybox2.css file is inside a folder named greybox. That folder holds the
other files required for the Greybox2 plug-in to work, including some graphic
files and the Greybox JavaScript file, which you’ll attach to this page next.

Figure 8-3:
You can control the look of a Greybox
window by editing the greybox2.css file and
by changing the image files used for the
close window button and loading page
image. The file has CSS comments pointing
out which styles you should edit.

292 JavaScript: The Missing Manual

Opening Pages in a
Window on the
Page

3. Click in the empty line below the <script> tag that attaches the jquery.js file
and type:

<script type="text/javascript" src="greybox/jquery.greybox2.js"></script>

This code tells the Web browser to load the plug-in file after it has loaded the
jquery.js file. You’ll notice that the file begins with “jquery”—jquery.greybox2.js.
Adding jquery to the beginning of an external JavaScript file is a convention that
jQuery plug-in programmers use as a way to identify a JavaScript file that’s
dependent on the jQuery library.

Next, you’ll define the width and height for the greybox window.

4. Click in the empty line after the $(document).ready() function and add the
code listed on lines 3–6 below:

1 <script type="text/javascript">

2 $(document).ready(function() {

3 var gbOptions = {

4 gbWidth: 700,

5 gbHeight: 550

6 };

7 }); end ready()

8 </script>

The variable gbOptions contains a JavaScript object—essentially a list of proper-
ties and values. In this case, you’ve set two properties for the Greybox window—
its width (gbWidth) and height (gbHeight) in pixels. You’ll pass these settings to
the greybox() function in a moment, but first, you’ll tinker with the page’s
HTML so that you can more accurately target the links you wish to appear
inside the iframe created by the Greybox2 plug-in.

5. Locate the tag (directly below the <h1> tag) that contains the links, and
then add a class attribute with the value inpage, so the tag looks like this:

<ul class="inpage">

You probably won’t want to trap every link on a page inside the Greybox iframe
window. To pinpoint the links you want to apply the effect to, you need a way
to uniquely identify them. You could apply a class to each link, but, in this case,
since all of the links are inside a single bulleted list, you only have to apply a
class to the tag. Now you’ll target those links using JavaScript.

6. Add an empty line below the JavaScript object you created in step 4, and type
$('.inpage a').greybox(gbOptions); so the completed script looks like this:

<script type="text/javascript">

$(document).ready(function() {

 var gbOptions = {

 gbWidth: 700,

 gbHeight: 550

 };

Chapter 8: Improving Navigation 293

Opening Pages in a
Window on the

Page

 $('.inpage a').greybox(gbOptions);

}); // end ready()

</script>

The $('.inpage a') is a jQuery selector that simply selects all of the links inside
the bulleted list (.inpage refers to the class you added to the list in the previous
step). The rest of the line applies the Greybox effect to each link while applying
the options you set up in step 4.

And that’s it. Save the file and preview it in a Web browser. Click any of the
links in the main section of the page to see the Greybox effect (see Figure 8-2).
If it isn’t working, double-check the code you typed.

Next you’ll customize the effect a little.

7. In the greybox folder, open the greybox2.css file. Locate the #GB_window style
at the top of the file and change the border color from #aaa to #000.

This changes the border color that appears around the iframe from grey to
black. You’ll next change the caption background color to black as well.

8. In the style sheet, locate the style #GB_caption and change its background
property to the following (changes are in bold):

background: #000 url(close2.gif) no-repeat right center;

Now the caption’s background is black (#000) and you’ve changed the “Close
this window” image (close2.gif) to a GIF that matches the black background.
Finally, you’ll adjust the opacity of the overlay to make it a little less transparent.

9. Locate the .GB_overlayBG style and change its opacity settings to match the
style below (changes are in bold):

.GB_overlayBG {

 background-color:#000;

 filter:alpha(opacity=60);

 opacity: .60;

}

You need to adjust both the filter and opacity properties. The filter property
applies to Internet Explorer, while opacity applies to Firefox, Safari, and other
Web browsers. You could, of course, make other changes if you’d like: for
example, to add a colorful background, just change this style’s background-color
property.

Save the CSS and HTML files and preview 8.1.html in a Web browser.

The file complete_8.1.html includes the finished JavaScript and HTML, and
complete_greybox2.css in the chapter08 folder has the final version of the CSS file
for this tutorial.

294 JavaScript: The Missing Manual

Tutorial: Making
Bigger Links

Tutorial: Making Bigger Links
Most Web usability books (for example, Steve Krug’s excellent Don’t Make Me
Think, published by New Riders Press) emphasize that the less you make a visitor
think and work, the more likely they’ll visit, enjoy, and benefit from your site. And
if you haven’t read any of these types of books, just think iPod—it’s the easiest
MP3 player to use, and it’s the most successful. The typical HTML link is one of
those things that make visitors work—a single, linked word, for example, is a
pretty small target that requires good aim to hit. That’s one of the reasons Web
designers make nice navigation bars with buttons that are bigger than the text
inside them.

For really important links, it would be even better to enlarge the clickable area to
include an entire block-level tag like a <div>. That way, you could include a lot of
information and make the link very easy to follow. For example, in Figure 8-4 four
major methods of finding a house are emphasized in four areas of the page. If you
mouse over one section (circled), it gets highlighted—thanks to the power of CSS.
Unfortunately, clicking anywhere in that section other than the linked text (“value
of your home”) has no effect. That’s because links are inline elements and can’t
wrap around block-level elements like paragraphs, list items, or divs.

Figure 8-4:
The four areas numbered
1–4 provide important
information about finding
homes in the Kansas City
area. Mousing over any of
these regions highlights it
(circled) thanks to some
clever CSS. Although this
page looks like it has big,
easy-to-click links, due to
the limitation of HTML,
only the underlined text in
each box is clickable.

Chapter 8: Improving Navigation 295

Tutorial: Making
Bigger Links

Although HTML alone can’t turn a <div> tag into a link, JavaScript can. In this
tutorial you’ll learn how to make any block-level element containing a link into a
giant, clickable link (complete with a highlighted rollover effect).

Overview
To turn a block-level element into a clickable link, you bring together HTML, CSS,
and JavaScript. The HTML provides a block-level element like a <div> or tag
that you wish to turn into a big button-like link. Inside that element go a link and
whatever other content you wish; for example, you might add a <div> tag to a
page and inside it include the link, a photo, and a descriptive paragraph. The big
button’s URL comes from the link inside the <div>. Also, you need to identify the
block-level element with a class like bigLink or clickable, so that you can use Java-
Script to select those block-level elements that you wish to turn into links.

To provide a hover style for the large links, you must add a CSS class style to your
style sheet (name it something like .hoverLink or .bigLinkHover). You can then use
JavaScript to dynamically add that class to the block-level element when a visitor
mouses over the element. In the style sheet, you can add visual properties to that
class that will make the block-level element stand out—like a background color,
border, change of text color, and so on. For example, to add a bright yellow back-
ground to a <div> when the mouse moves over it, start by creating a style like this:

.bigLinkHover {

 background-color: #FF0;

}

In addition, you can create descendent selectors based on this class style to format
the other tags inside the block-level element. For example, if, when a visitor
mouses over the block-level element, you want a paragraph of text to change
appearance as well, you can create a descendent selector like this:

.bigLinkHover p {

 color: #F20;

}

The JavaScript programming breaks down into three steps:

1. Find each of the block-level elements you wish to turn into a link.

As mentioned above, you want to add a special class name to each of these ele-
ments’ tags (<div class="bigLink">, for example) so you can use jQuery’s selector
functions to access these tags and then manipulate them.

2. Add a mouseover/mouseout event combination to each element.

When the mouse moves over the element, you can apply a special hover CSS
style you created. In addition, you can put the URL of the link in the browser
window’s status bar to simulate what a browser does when you mouse over an
<a> tag. When the mouse moves off the element, you want your JavaScript to

296 JavaScript: The Missing Manual

Tutorial: Making
Bigger Links

remove that class and change the status bar back. You can use jQuery’s hover()
function (page 220) to add the mouseover/mouseout combo.

3. To each element, add a click event that opens the linked Web page.

You need to use JavaScript to first find the URL for the link. This involves
searching for the <a> tag inside the block-level element and getting its href
property. Once you have the URL, you can write a function to open that URL
when your visitor clicks the block-level element.

The Programming
Now that you understand the process, it’s time to make it happen.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 8.2.html in the chapter08 folder.

This file contains three <div> tags, which contain a <h2> tag, and a paragraph
of text. The <h2> tag contains a link, and the <div> has a class named bigLink
applied to it. Here’s an example of the HTML for one of these divs:

<div class="bigLink">

<h2>CosmoFarmer.com</h2>

<p>Your online guide to apartment farming.</p>

</div>

The goal is to convert this entire <div> into a link that points to www.
cosmofarmer.com (or whatever link is inside the <div>). Before you jump into
the JavaScript, you’ll attach a style sheet containing the formatting instructions
for these <div>s.

2. Click in the empty line after <link href="../css/global.css"
rel="stylesheet"type="text/css">

<link href="css/bigLink.css" rel="stylesheet" type="text/css">

This CSS file contains the styles that will control the look of the <div>. The first
set of styles in the style sheet defines how the <div> tags look, while .hoverBig-
Link style defines a hover style for the divs. Next, you’ll set up a couple of vari-
ables for storing basic information for this script.

The page already has the jQuery.js file attached to it and the obligatory $(docu-
ment).ready() function (see page 218 for more on this).

3. Click in the empty line inside the .ready() function and add the code in bold
below:

$(document).ready(function() {

 var target = '.bigLink';

 var hoverClass = 'hoverBigLink';

});

http://www.cosmofarmer.com
http://www.cosmofarmer.com

Chapter 8: Improving Navigation 297

Tutorial: Making
Bigger Links

The first variable, target, defines the CSS selector that jQuery will use to iden-
tify which block-level elements to turn into links. In this case, since the class
name bigLink is applied to each of the <div> tags in this page’s HTML, .bigLink
is the CSS selector that applies to each div. You can use any CSS selector that
identifies the block-level element you wish to turn into a link. For example, you
want to turn every tag within a tag with an ID of links, you could use
this CSS selector: #links ul li. Or, in other words, change the variable definition
above to:

var target = '#links ul li';

The second variable, hoverClass, sets the name of the class style that will be
applied to each block-level element when the mouse moves over it (the CSS
selector, .hoverBigLink, is defined in the style sheet you attached in step 2). In
other words, this class represents a kind of hover style so you can change the
appearance of the block-level elements when visitors mouse over them. In this
case, the class is named hoverBigLink, and it will be applied to the <div> tag
when a visitor mouses over it.

4. Hit Return and type:

$(target).each(function() {

 });

The first part of this code—$(target)—is a jQuery selector. It’s a little different
from, other jQuery selectors you’ve seen (like $('#banner') or $('a')) in that
we’re passing a variable (target) instead of a literal string ('#banner'). But ulti-
mately, it works the same way: $(target) simply translates to $('.bigLink'), since
the JavaScript interpreter replaces the variable name with the value stored in the
variable (step 3).

The next part of the code taps in the each() function (described on page 193),
which lets you loop through each element in a jQuery selection and apply a
function to it. You’ll start by adding a hover() event.

5. Add the code in bold below to the script:

$(target).each(function() {

 $(this).hover(

);

});

The hover() function, as described on page 220, takes two functions as argu-
ments: the first function runs when the mouse moves over the element, while
the second function runs when the mouse moves off the element. You’ll start
with the mouseover function.

298 JavaScript: The Missing Manual

Tutorial: Making
Bigger Links

6. Add the bolded code below (lines 3–6) to your script:

1 $(target).each(function() {

2 $(this).hover(

3 function() {

4 $(this).addClass(hoverClass);

5 status=$(this).find('a').attr('href');

6 }

7);

8 });

This anonymous function (see page 193 for a definition) does two things. First
it adds a class name to each targeted <div> tag—the class (which you set in step
3) represents the hover style for the <div>. (The jQuery addClass() function is
described on page 185.)

Secondly, line 5 changes the status bar at the bottom of the browser window to
display the href value for the link. This way, visitors can look down at the status
bar and see where they’ll go if they click the <div> tag. It replicates what brows-
ers normally do when you mouse over an <a> tag.

Note: Firefox doesn’t let JavaScript control the status bar, so line 5 in this step won’t have any affect in
that browser.

Now, you’ll add the mouseout function, which essentially undoes the mousever
function.

7. Type a comma, hit Return, and add another anonymous function (lines 6–10
below) so the code for the each() function looks like this:

1 $(target).each(function() {

2 $(this).hover(

3 function() {

4 $(this).addClass(hoverClass);

5 status=$(this).find('a').attr('href');

6 },

7 function() {

8 $(this).removeClass(hoverClass);

9 status='';

10 }

11);

12 });

Note: Don’t forget the comma after the first function passed to the hover() function (see line 6). That
comma marks the end of the first argument passed to hover().

Chapter 8: Improving Navigation 299

Tutorial: Making
Bigger Links

This function simply removes the hover class and sets the status bar to an empty
string—erasing the URL that the mouseover function added.

Now you’ll make the <div> act like a link by making it load a new Web page
when clicked.

8. Add a new click() event to the script immediately between the closing paren-
thesis of the hover() function (line 11 in the previous step) and the close of the
each() function (line 12):

$(this).click(function() {

 location = $(this).find('a').attr('href');

});

This code adds a function that runs whenever that particular <div> tag is
clicked. To be specific, it loads a new Web page. To understand how it works,
you first need to learn about the browser window’s location object. You proba-
bly know that by typing a URL into the location field at the top of a browser
window you can go to a new Web page; the same is true when you set the
browser’s location object. This object is programmed into all Web browsers, and
you can access it to find out what page the browser is currently displaying or set
it to load a new page. For example, to produce an alert box with the current
page’s URL, you could use this code:

alert('You are at: ' + location);

Likewise, you can use JavaScript to load a new page like this:

location = 'http://www.google.com/';

In this case, you’re changing the location to $(this).find('a').attr('href'). In other
words, you’re changing it to the href assigned to the <a> tag inside the <div>.
But how does it do that? As you can see, jQuery lets you write very short code
that does a lot—unfortunately, that also can make it hard to figure out what the
code does. Here’s the translation:

• $(this) refers to the <div> tag (remember the each() function from step 4
that loops through each element in a jQuery selection). In this case, it loops
through each element with a class name of bigLink.

• .find('a') uses another jQuery function to search for another element inside
the current element. This code finds all <a> tags inside the current <div>
tag. (See http://docs.jquery.com/Traversing/find#expr to learn more about the
jQuery find() function.)

• .attr('href') retrieves the value stored in the <a> tag’s href attribute—the
URL of the page to load.

Although the code looks confusing, what it does is pretty basic—gets the HREF
value of the link and loads that page. In so doing, it lets the visitor click the
<div> and go to a page, making the block-level tag behave like an <a> tag!

http://docs.jquery.com/Traversing/find#expr

300 JavaScript: The Missing Manual

Animated
Navigation Menus

There’s just one last task: currently if you mouse over the <div>, its appearance
might change (thanks to swapping in a new CSS class). However, the cursor
doesn’t change, which may confuse your visitors. When you mouse over an <a>
tag, the cursor is supposed to change to a pointing hand—a subtle clue that the
page element is clickable. Fortunately, you can fake this with a little CSS.

9. Add one last line of code (right before the end of the each() function), so the
finished script looks like this:

<script type="text/javascript">

$(document).ready(function() {

 var target = '.bigLink';

 var hoverClass = 'hoverBigLink';

 $(target).each(function() {

 $(this).hover(

 function() {

 $(this).addClass(hoverClass);

 status=$(this).find('a').attr('href');

 },

 function () {

 $(this).removeClass(hoverClass);

 status='';

 });

 $(this).click(function() {

 location = $(this).find('a').attr('href');

 });

 $(this).css('cursor','pointer');

 });

});

</script>

This code uses jQuery’s css() function (page 186) to simply set a CSS property
(cursor) to a new value ('pointer'). The CSS cursor property lets you assign the
type of cursor the browser uses when the mouse is over a particular element. In
this case, when a visitor mouses over the <div> tag, the cursor changes to the
familiar pointing hand.

Save the file, view it in a browser, and mouse over one of the boxes in the mid-
dle of the page (Figure 8-5). The file complete_8.2.html is a finished, working
copy of the tutorial.

Animated Navigation Menus
As Web sites grow in size, it gets harder and harder to provide access to every sec-
tion of a site without overwhelming the page (and its visitors) with links. To make
navigating a site more manageable, many Web designers use drop-down menu sys-
tems to keep links hidden until they’re asked for (see Figure 8-6). While there are

Chapter 8: Improving Navigation 301

Animated
Navigation Menus

CSS-only solutions to this problem, they don’t work in Internet Explorer 6. And
even though you can kick IE 6 into shape with a little JavaScript, a pure CSS solu-
tion isn’t ideal. First, CSS-only pop-up menus are temperamental: If you roll off
the menu for just a split second, the menu disappears. In addition, CSS doesn’t let
you add any visual effects, like fading the menu into view or animating it into position.

Fortunately, with just a little JavaScript, you can create an animated menu system
that works smoothly for your visitors in all browsers. This navigation menu relies a
lot more on HTML and CSS than other JavaScript techniques you’ve learned in
this book so far. You’ll use HTML to create a nested set of links, and CSS to for-
mat those links to look like a navigation bar and position and hide any submenus.
You’ll then add some JavaScript to animate the display of menus as the mouse
moves over the navigation bar’s buttons.

The HTML
The HTML for your navigation menu is a straightforward bulleted list created with
the tag. Each of the top-level tags represent the main buttons on the
navigation bar. To create a submenu, you add a nested tag within the
tag the menu belongs to. For example, the HTML for the menu pictured in
Figure 8-6 looks like this:

<ul class="nav">

 Home

 Our Products

 Books

Figure 8-5:
You can’t make block-
level elements like <div>
and tags into links
using HTML. But with a
little JavaScript magic,
you can create large,
block-level links that
make easily clickable
targets.

302 JavaScript: The Missing Manual

Animated
Navigation Menus

 Used

 New

 CDs

 DVDs

 About Us

 Contact Info

 Driving Directions

The three main navigation buttons are Home, Our Products, and About Us. Under
Our Products is a menu, represented by a nested list, which includes the options
Books, CDs, and DVDs. The Books button has its own submenu (another nested
list) containing the options Used and New. A nested list is just another list that’s
indented one more level. Visually, the HTML above translates to a list like the
following:

• Home

• Our Products

• Books

• Used

Figure 8-6:
Navigating a Web site
filled with many pages
and sections can be
confusing. A navigation
bar with drop-down
menus is an elegant way
to simplify the
presentation of your
site’s links. It lets you
include many navigation
options and reduce
clutter on your page.

Chapter 8: Improving Navigation 303

Animated
Navigation Menus

• New

• CDs

• DVDs

• About Us

• Contact Info

• Driving Directions

Keep in mind that that a nested list actually goes within the tag of its parent
item. For example, the tag containing the list items Used and New above is
contained within the tag for the Books list item (if you need a refresher on
creating HTML lists, check out www.htmldog.com/guides/htmlbeginner/lists/).

Tip: Always make sure that the top-level links (Home, Our Products, and About Us in this section’s exam-
ple) point to a page that links to the subpages in its section (for example, the Contact Info and Driving
Directions links under About Us). That way, if the browser doesn’t have JavaScript turned on, it can still
access the links in the submenus.

The CSS
The style sheet for the navigation menu actually does most of the work. It takes a
stack of bulleted and indented list items and converts the first list into side-by-side
buttons, an indented list into a menu that appears below its parent button, and a
third-level menu that sticks out of the right edge of its parent link.

The file horz_menu.css included in the superfish folder inside the chapter08 tutori-
als folder contains styles to achieve the kind of navigation menu picture in
Figure 8-7. Basically, each of the list items in the top-level menu are floated so that
they appear side by side (that’s defined in the .nav li style); each list item in a
nested list is not floated (so they appear stacked one on top of the other). The pop-
up menus are all absolutely positioned so they float above the page (and over any
content that appears below the navigation bar).

All of the real style of each link—the text, color, background and so on—is defined
for the <a> tags themselves (the .nav a style in the style sheet), and the rollover
effect is created by the .nav a:hover style.

The JavaScript
The basic concept behind using JavaScript to control the display of menus is simple.
Mouse over a list item, and if it has a nested list (a pop-up menu), then show that
nested list; mouse off the list, and hide any nested lists.

There are a few subtleties that make this basic idea a bit more complicated. For
example, pop-up menus that disappear the very instant the mouse moves off of its
parent list item require precise mouse technique. It’s easy to mouse off a list item

http://www.htmldog.com/guides/htmlbeginner/lists/

304 JavaScript: The Missing Manual

Animated
Navigation Menus

when trying to navigate to a pop-up menu. If the menu suddenly disappears, your
visitor is forced to move the mouse back over the original list item to open the
menu again. And when there are a couple of levels of pop-up menus, it’s frustrat-
ingly easy to miss the target and lose the menus.

To deal with this problem, most navigation menu scripts add a timer feature that
delays the disappearance of pop-up menus. This timer accommodates not-so-
precise mouse technique and makes the pop-up menus feel less fragile.

In addition, some visitors can’t use mice (or don’t like to), and use the Tab key to
move from link to link in the menu. A good menu script accommodates this
method of navigation as well, so that when a visitor tabs onto a link that includes a
submenu, the menu pops into view and can also be navigated with the tab key.

The Superfish jQuery plug-in is a lightweight script that makes it easy for you to
convert a list of links into an interactive navigation bar. To use Superfish to help
create your navigation menu, just add the Superfish JavaScript file to your page,
point the superfish() function to the tag containing the navigation bar, and
you’re done. The following tutorial takes you through the process.

Note: To learn more about Joel Birch’s Superfish jQuery plug-in, visit http://users.tpg.com.au/j_birch/
plug-ins/superfish/.

The Tutorial
Now that you understand the basics of creating a navigation menu, here’s how to
make it happen. In this tutorial, you’ll add CSS and JavaScript to transform the
basic HTML menu list shown on page 301 into a navigation bar.

Note: See the note on page 27 for information on how to download the tutorial files.

Figure 8-7:
The layout of a navigation menu like
this one is controlled almost entirely
by CSS. The file horz_menu.css,
supplied with the tutorial files, defines
the style of this menu. The style names
for each part of the menu are listed
here. Superfish can just as easily work
with vertical menus—to find a style
sheet for vertical menus visit http://
users.tpg.com.au/j_birch/plugins/
superfish/vertical-example.

http://users.tpg.com.au/j_birch/plug-ins/superfish/
http://users.tpg.com.au/j_birch/plug-ins/superfish/

Chapter 8: Improving Navigation 305

Animated
Navigation Menus

1. In a text editor, open the file 8.3.html in the chapter08 folder.

This file contains the bulleted list of links that you’ll turn into a navigation bar.
To see what it looks like without any styling, open the file in a Web browser.

The first step is to attach the style sheet.

2. Click in the empty line after <link href="../css/global.css" rel="stylesheet"
type="text/css">.

<link href="superfish/horz_menu.css" rel="stylesheet" type="text/css">

This style sheet controls the placement and look of the nav bar buttons. Next
you’ll attach the Superfish JavaScript file.

3. Click in the empty line after <script type="text/javascript" src="../js/jquery.js">
</script>.

<script type="text/javascript" src="superfish/superfish.js"></script>

The JavaScript file is inside the superfish folder in the chapter08 folder. It con-
tains all of the code to show and hide the pop-up menus. Making it work
requires just one line of code.

4. Click in the empty line inside the $(document).ready() function and add the
following code in bold below:

$(document).ready(function() {

 $('.nav').superfish();

});

To activate the menu, you first use jQuery to select the tag used for the
main navigation bar—in this example, that tag has the class nav applied to it, so
the code $('.nav') selects that tag, and the .superfish() applies the Superfish pro-
gramming to the menu. Save the file, and preview it. You already have a work-
ing navigation bar with drop-down menus!

You may notice that the delay before the drop-down menus disappears is pretty
long. That is, once you move your mouse off a link with a menu attached, it
takes a while for that menu to go away. Fortunately, you can set a delay prop-
erty for the Superfish function that lets you shorten the time before menus
disappear.

5. Edit the code you just added so that it looks like the code below (additions are
in bold):

1 $(document).ready(function() {

2 $('.nav').superfish({

3 delay: 400

4 });

5 });

306 JavaScript: The Missing Manual

Animated
Navigation Menus

At this point, the menu is fully functioning, but there aren’t any visual clues as
to which buttons contain hidden menus. A nice addition would be arrows on
the buttons that include menus, providing visitors a clue about each link. One
way is to simply add classes to each tag that includes a nested list, and then
create a CSS style for that class that changes the appearance of links inside that
 tag—for example, adding a background image of an arrow to indicate that
mousing over that link opens a menu.

A better approach is to let JavaScript add the class. That way, you don’t have to
manually add the class names to the appropriate tags.

6. Add an empty line after the Superfish function call (in other words, insert a
blank link) between lines 4 and 5 in the code in step 5. Type:

$('.nav li:has(ul)').find('a:first').addClass('sub');

This code really brings out the power of jQuery. There’s a lot going on in this
one line of code, so here’s a breakdown.

The $('.nav li:has(ul)') is a jQuery selector. It finds tags inside another tag
with the class nav applied to it. However, it only selects those tags that have
a tag inside them. The :has(ul) part is a clever jQuery filter that lets you
select tags (in this case) that contain another specific tag inside them (
in this case). In other words, this filter selects a list item only if it includes a
nested (indented) list inside it—that is, an item containing a menu.

Note: You can find out more about the jQuery :has() filter at http://docs.jquery.com/Selectors/
has#selector.

Next, the .find('a:first') is a way to search through a selection of elements to find
another element. In other words, this code looks through the list of tags
selected by the previous code, and selects the first <a> tag it encounters. Finally,
the .addClass('sub') adds the class name sub to those <a> tags. At this point,
each navigation button that opens a menu has the specific class; then with a CSS
style like .nav .sub, you can easily format the look of those buttons differently.
In the case of the horz_menu.css file used in this tutorial, a .nav .sub style adds a
down-pointing arrow to those links.

7. Save the page and preview it in a browser.

You should now see a down-pointing arrow on all buttons that contain a menu.
Mouse over the “Our Products” link and notice that the “Books” link also has a
down-pointing arrow. The first level pop-up menus drop down below the main
navigation buttons, so the main nav buttons with menus have a down-pointing
arrow; however, the second-level menus pop out to the right of their parent
buttons, and it makes sense to apply a different style to those buttons, so that
they can have a right pointing arrow (see Figure 8-7). The next step is to add
another class name for those buttons.

http://docs.jquery.com/Selectors/has#selector.
http://docs.jquery.com/Selectors/has#selector.

Chapter 8: Improving Navigation 307

Animated
Navigation Menus

8. Add an empty line after the code you added in the last step, and type: $('.nav ul
li:has(ul)').find('a:first').removeClass('sub').addClass('subsub');. The completed
code should look like this:

1 <link href="superfish/horz_menu.css" rel="stylesheet" type="text/css">

2 <script type="text/javascript" src="../js/jquery.js"></script>

3 <script type="text/javascript" src="superfish/superfish.js"></script>

4 <script type="text/javascript">

5 $(document).ready(function() {

6 $('.nav').superfish({

7 delay: 400

8 });

9 $('.nav li:has(ul)').find('a:first').addClass('sub');

10 $('.nav ul li:has(ul)').find('a:first').removeClass('sub').

addClass('subsub');

11 });

12 </script>

This new line of code is similar to the code in step 6, but it searches one level
deeper, looking for links that live inside of a nested list. It also removes the class
added in step 6, since that class was added to all list items that contained menus,
and then adds a new class named subsub. Save the page and try it out in a Web
browser.

In all likelihood, you’ll be using a navigation menu like this throughout your
site. To decrease the amount of code per page and make it easier to maintain
the JavaScript that controls the navigation bar, you should move the JavaScript
code into a separate external JavaScript file. This technique is always the way to
go when you use the same JavaScript code on more than one page of a site.

9. Create a new, empty file named site.js and save it in the superfish folder inside
the chapter08 folder.

Although you’ve been working with multiple external files like jquery.js and
superfish.js, you’ll probably want to create a single JavaScript file that contains
the code used throughout your site, instead of lots of little files for each of your
own programs (like this navigation script). That way you can collect all of your
custom-programmed code into a single file that’s easy to find and edit.

Tip: You’ll learn even more strategies for external files on page 443.

10. Return to the 8.3.html file. Cut the JavaScript code (lines 5–11 in step 8) and
paste that code into the site.js file. Save the site.js file and close it.

You’ve created an external JavaScript file; now you just need to link it to your
page.

308 JavaScript: The Missing Manual

Animated
Navigation Menus

11. Change the last <script> tag on the page so its src attribute points to the site.js
file. The 8.3.html file should now have the following HTML code:

<link href="superfish/horz_menu.css" rel="stylesheet" type="text/css">

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript" src="superfish/superfish.js"></script>

<script type="text/javascript" src="superfish/site.js"></script>

Save the file and preview it in a Web browser. If the navigation bar isn’t work-
ing, you may have either saved the site.js file in a different location, or the src
attribute may not be pointing to it correctly.

309

Chapter 9chapter

9

Enhancing Web Forms

Since the earliest days of the Web, forms have made it possible for Web sites to col-
lect information from their visitors. Forms can gather email addresses for a news-
letter, collect shipping information to complete an online sale, or simply receive
visitor feedback. Forms also require your site’s visitors to think: read labels, type
information, make selections, and so on. Since some sites depend entirely on
receiving form data—Amazon wouldn’t be in business long if people couldn’t use
forms to order books—Web designers need to know how to make their forms as
easy to use as possible. Fortunately, JavaScript’s ability to inject interactivity into
forms can help you build forms that are easier to use and ensure more accurate
visitor responses.

Understanding Forms
HTML provides a variety of tags to build a Web form like the one pictured in
Figure 9-1. The most important tag is the <form> tag, which defines the begin-
ning (the opening <form> tag) and the end (the closing </form> tag) of the form.
It also indicates what type of method the form uses to send data (post or get), and
specifies where on the Web the form data should be sent.

You create the actual form controls—the buttons, text fields, and menus—using
either the <input>, <textarea>, or <select> tags. Most of the form elements use
the <input> tag. For example, text fields, password fields, radio buttons, check-
boxes, and submit buttons all share the <input> tag, and you specify which one
with the type attribute. For example, you create a text field by using the <input>
tag and setting the type attribute to text like this:

<input name="user" type="text">

310 JavaScript: The Missing Manual

Understanding
Forms

Here’s the HTML that creates the form pictured in Figure 9-1; the <form> tag and
form elements are shown in bold:

<form action="process.php" method="post" name="signup" id="signup">

 <div>

 <label for="username" class="label">Name</label>

 <input name="username" type="text" id="username" size="36">

 </div>

 <div>Hobbies

 <input type="checkbox" name="hobby" id="heliskiing" value="heliisking">

 <label for="heliskiing">Heli-skiing</label>

 <input type="checkbox" name="hobby" id="pickle" value="pickle">

 <label for="pickle">Pickle eating</label>

 <input type="checkbox" name="hobby" id="walnut" value="walnut">

 <label for="walnut">Making walnut butter</label>

 </div>

 <div>

 <label for="planet" class="label">Planet of Birth</label>

 <select name="planet" id="planet">

 <option>Earth</option>

 <option>Mars</option>

 <option>Alpha Centauri</option>

 <option>You've never heard of it</option>

 </select>

 </div>

 <div class="labelBlock">Would you like to receive annoying e-mail from

us?</div>

 <div class="indent">

 <input type="radio" name="spam" id="yes" value="yes" checked="checked">

 <label for="yes">Yes</label>

 <input type="radio" name="spam" id="definitely" value="definitely">

 <label for="definitely">Definitely</label>

 <input type="radio" name="spam" id="choice" value="choice">

 <label for="choice">Do I have a choice?</label>

 </div>

 <div>

 <input type="submit" name="submit" id="submit" value="Submit">

 </div>

</form>

Note: The <label> tag in this sample is another tag commonly used in forms. It doesn’t create a form
control like a button, though. It lets you add a text label, visible on the page, that explains the purpose of
the form control.

Chapter 9: Enhancing Web Forms 311

Understanding
Forms

Selecting Form Elements
As you’ve seen repeatedly in this book, working with elements on the page first
requires selecting those elements. To determine the value stored in a form field, for
example, you must select that field. Likewise, if you want to hide or show form ele-
ments, you must use JavaScript to identify those elements.

The easiest way to select a single form element is to assign an ID to it, like this:

<input name="user" type="text" id="user">

You can then use the DOM’s getElementById() method (page 158) to select that
element:

var userField = document.getElementById('user');

Or, you could use jQuery’s selection function:

var userField = $('#user');

Once you select a field, you can do something with it. For example, say you want
to determine the value in a field—to check what a visitor has typed into the field,
for instance. If the form field has an ID of user, you can use jQuery to access the
field’s value like this:

var fieldValue = $('#user').val();

Note: The jQuery val() function is discussed on page 314.

Figure 9-1:
A basic form can include many
different types of controls
including text fields, radio buttons,
checkboxes, menu lists, submit
buttons, and so on. For a
complete rundown on HTML form
fields and how to use them, visit
www.w3schools.com/html/html_
forms.asp.

312 JavaScript: The Missing Manual

Understanding
Forms

But what if you wanted to select all form elements of a particular type? For exam-
ple, you might want to add a click event (page 203) to every radio button on a
page. The traditional DOM method of selecting elements (page 158) isn’t a great
help when it comes to forms. For example, the getElementsByTagName() method
lets you select all of a form’s <input> tags like this:

var fields = document.getElementsByTagName('input');

However, since the <input> tag is used for radio buttons, text fields, password
fields, checkboxes, submit buttons, reset buttons, and hidden fields, the only way
you can find all of the fields of a particular type is to select all input fields and then
loop through the list checking to see if the type attribute matched the element you
want (radio, for example).

Fortunately, jQuery has taken the burden out of selecting specific types of form
fields (see Table 9-1). Using one of the jQuery form selectors, you can easily iden-
tify and work with all fields of a particular type. For example, suppose when the
visitor submits the form you want to check to make sure all text fields hold some
value (you’ll see the full code for this example on page 331). You can select all text
fields like this:

$(':text')

Then, you simply loop through the results using the .each() function (see page
193) to make sure there’s a value in each field. (You’ll learn a lot more about vali-
dating form fields on page 330.)

You can combine the form selectors with other selectors as well. For example, say
you have two forms on a page, and you want to select the text fields in just one of

Table 9-1. jQuery includes lots of selectors to make it easy to work with specific types of form fields

Selector Example What it does

:input $(':input') Selects all input, textarea, select, and button elements.
In other words, it selects all form elements.

:text $(':text') Selects all text fields.
:password $(':password') Selects all password fields.
:radio $(':radio') Selects all radio buttons.
:checkbox $(':checkbox') Selects all checkboxes.
:submit $(':submit') Selects all submit buttons.
:image $(':image') Selects all image buttons.
:reset $(':reset') Selects all reset buttons.
:button $(':button') Selects all fields with type button.
:file $(':file') Selects all file fields (used for uploading a file).
:hidden $(':hidden') Selects all hidden fields.

Chapter 9: Enhancing Web Forms 313

Understanding
Forms

the forms. Assuming that the form with the fields you’re after has an ID of signup,
you can select text fields in that form only like this:

$('#signup :text')

In addition, jQuery provides a few very useful filters that find form fields match-
ing a particular state:

• :checked selects all fields that are checkmarked or tuned on—that is, checkboxes
and radio buttons. For example, if you want to find all checkboxes and radio
buttons that are turned on, you can use this code:

$(':checked')

Even better, you can use this filter to find which radio button within a group
has been selected. For example, say you have a group of radio buttons and want
to find the value of the radio button that your visitor has selected. A group of
related radio buttons all share the same HTML name attribute; assume that you
have a group of radio buttons that share the name email. You can use jQuery’s
attribute selector (page 177) in conjunction with the :checked filter to find the
value of the checked radio button like this:

var checkedValue = $('input[name=email]:checked').val();

• :selected selects all selected option elements within a list or menu, which lets you
find which selection a visitor makes from a menu or list (<select> tag). For
example, say you have a <select> tag with an ID of state, listing all 50 U.S.
states. To find which state the visitor has selected, you can write this:

var selectedState=$('#state :selected').val();

Notice that unlike in the example for the :checked filter, there’s a space between
the ID name and the filter (‘#state :selected’). That’s because this filter selects the
<option> tags, not the <select> tag. To put it in English, this jQuery selection
means “find all selected options that are inside the <select> tag with an ID of
state.” The space makes it work like a CSS descendent selector: first it finds the
element with the proper ID, and then searches inside that for any elements that
have been selected.

Note: You can enable multiple selections for a <select> menu. This means that the :selected filter can
potentially return more than one element.

Getting and Setting the Value of a Form Element
At times you’ll want to check the value of a form element. For example, you may
want to check a text field to make sure an email address was typed into it. Or you
may want to determine a field’s value to calculate the total cost of an order. On the
other hand, you may want to set the value of a form element. Say, for example, you
have an order form that asks for both billing and shipping information. It would

314 JavaScript: The Missing Manual

Understanding
Forms

helpful to give your visitors a “Same as billing” checkbox and have the shipping
information fields automatically filled out using the information from the billing
fields.

jQuery provides a simple function to accomplish both tasks. The val() function
can both set and read the value of a form field. If you call the function without
passing any arguments, it reads the field’s value; if you pass a value to the func-
tion, it sets the form field’s value. For example, say you have a field for collecting a
user’s email address with an ID of email. You can find the contents of that field like
this:

var fieldValue = $('#email').val();

Note: The val() function even finds the value of a selected option on a menu (the <select> tag). It’s
cumbersome to use regular DOM techniques to determine which element in a list is selected.

You can set the value of a field simply by passing a value to the val() function. For
example, say you have a form for ordering products and you wanted to automati-
cally calculate the total cost of a sale based on the quantity a visitor specifies
(Figure 9-2). You can get the quantity the visitor supplies, multiply it by the cost of
the products, and then set the value in the total field.

The code to retrieve the quantity and set the total cost for the form in Figure 9-2
looks like this:

1 var unitCost=9.95;

2 var amount=$('#quantity').val(); // get value

3 var total=amount * unitCost;

4 total=total.toFixed(2);

5 $('#total').val(total); // set value

The first line of code creates a variable that stores the cost for the product. The sec-
ond line creates another variable and retrieves the amount the visitor entered into
the field with an ID of quantity. Line 3 determines the total cost by multiplying the
order amount by the unit cost, and line 4 formats the result to include two deci-
mal places (see page 138 for a discussion of the toFixed() method). Finally, line 5
sets the value in the field with ID total to the total cost. (You’ll learn how to trigger
this code using an event on page 315.)

Determine Whether Buttons and Boxes Are Checked
While the val() function is helpful for getting the value of any form element, for
some fields, the value is important only if the visitor has selected the field. For
example, radio buttons and checkboxes require visitors to make a choice by select-
ing a particular value. You saw on page 313 how you can use the :checked filter to
find checked radio buttons and checkboxes, but once you find it, you need a way
to determine the status of a particular button or box.

Chapter 9: Enhancing Web Forms 315

Understanding
Forms

In HTML, the checked attribute determines whether a particular element is
checked. For example, to turn on a box when the Web page is loaded, you add the
checked attribute like this:

<input type="checkbox" name="news" id="news" checked="checked" />

Since checked is an HTML attribute, you can easily use jQuery to check the status
of the box like this:

if ($('#news').attr('checked')) {

 // the box is checked

} else {

 // the box is not checked

}

The code $('#news').attr('checked') returns the value true if the box is checked. If
it’s not, it returns the value undefined, which the JavaScript interpreter considers
the same as false. So this basic conditional statement lets you perform one set of
tasks if the box is turned on or a different set of tasks if the box is turned off. (If
you need a refresher on conditional statements, turn to page 77.)

The checked attribute applies to radio buttons as well. You can use the attr() func-
tion in the same way to check whether the radio button’s checked attribute is set.

Form Events
As you read in Chapter 6, events let you add interactivity to your page by respond-
ing to different visitor actions. Forms and form elements can react to many different
events, so you can tap into a wide range of events to make your forms respond
intelligently to your visitors’ actions.

Figure 9-2:
jQuery makes it easy to
both retrieve the value of a
form field and set the
value of a form field.

316 JavaScript: The Missing Manual

Understanding
Forms

Submit

Whenever a visitor submits a form by clicking a submit button or pressing Enter
or Return when typing into a text field, the submit event is triggered. You can tap
into this event to run a script when the form is submitted. That way, JavaScript can
validate form fields to make sure they’re correctly filled out. When the form is sub-
mitted, a JavaScript program checks the fields, and if there’s a problem JavaScript
can stop the form submission and let the visitor know what’s wrong; if there are no
problems, then the form is submitted as usual.

To run a function when the form’s submit event is triggered, first select the form,
then use jQuery’s submit() function to add your script. For example, say you want
to make sure that the name field on the form pictured in Figure 9-1 has something
in it when the form is submitted—in other words, a visitor can’t leave the field
blank. You can do so by adding a submit event to the form, and checking the value
of the field before the form is submitted. If the field is empty, you want to let the
visitor know and stop the submission process; otherwise, the form will be allowed
to go through.

If you look at the HTML for the form on page 310, you can see that the form has
an ID of signup and the name field has an ID of username. So you can validate this
form using jQuery like this:

1 $(document).ready(function() {

2 $('#signup').submit(function() {

3 if ($('#username').val() == '') {

4 alert('Please supply a name in the Name field.');

5 return false;

6 }

7 }); // end submit()

8 }); // end ready()

Line 1 sets up the required $(document).ready() function so the code runs only
after the page’s HTML has loaded (see page 218). Line 2 attaches a function to the
form’s submit event (see page 310 if you need a reminder of how to use events).
Lines 3–6 are the validation routine. Line 3 checks to see if the value of the field is
an empty string (''), meaning the field is empty. If the field has nothing in it, then
an alert box appears letting the visitor know what he did wrong.

Line 5 is very important: it stops the form from being submitted. If you omit this
step, then the form will be submitted anyway, without the visitor’s name. Line 6
completes the conditional statement, and line 7 is the end of the submit() function.

Tip: You can also stop the form from submitting by using the event object’s preventDefault() function,
described on page 223.

Chapter 9: Enhancing Web Forms 317

Understanding
Forms

The submit event only applies to forms, so you must select a form and attach the
submit event function to it. You can select the form either by using an ID name
that’s supplied in the <form> tag of the HTML, or, if there’s just a single form on
the page, you can use a simple element selector like this:

$('form').submit(function() {

 // code to run when form is submitted

});

Focus

Whenever someone either clicks into a text field on a form or tabs into a text field,
that field receives what’s called focus. Focus is an event that the browser triggers to
indicate that a visitor’s cursor is on or in a particular field; you can be sure that
that’s where your visitor’s attention is focused. You probably won’t use this event
very often, but some designers use it to erase any text that’s already present in a
field. For example, say you have the following HTML inside a form:

<input name="username" type="text" id="username" ↵
value="Please type your user name">

This code creates a text field on the form with the text “Please type your user
name” inside it. This technique lets you provide instructions as to how the visitor
is supposed to fill out the field. Then instead of forcing the visitor filling out the
form to erase all that text herself, you can erase it when she focuses on the field,
like this:

1 $('#username').focus(function() {

2 var field = $(this);

3 if (field.val()==field.attr('defaultValue')) {

4 field.val('');

5 }

6 });

Line 1 selects the field (which has an ID of username) and assigns a function to the
focus event. Line 2 creates a variable, field, that stores a reference to the jQuery
selection; as discussed on page 194, $(this) refers to the currently selected element
within a jQuery function—in this case, the form field.

Line 4 is what actually erases the field. It sets the value of the field to an empty
string—represented by the two single quote marks—thus removing any value from
the field. But you don’t want to erase this field every time the field gets the focus.
For example, say someone comes to the form and clicks in the form field; the first
time, that erases the “Please type your user name” text. However if the visitor then
types his name in the field, clicks outside the field, and then clicks back into the
field, you don’t want his name to suddenly disappear. That’s where the condi-
tional statement in line 3 comes into play.

318 JavaScript: The Missing Manual

Understanding
Forms

Text fields have an attribute called defaultValue, which represents the text inside
the field when the page first loads. Even if you erase that text, the Web browser still
remembers what was in the field when the page was loaded. The conditional state-
ment checks to see if what is currently inside the field (field.val()) is the same as
what was originally inside the field (field.attr('defaultValue')). If they are the same,
then the JavaScript interpreter erases the text in the field.

Here’s an example that explains the entire process. When the HTML on the previ-
ous page first loads, the text field has the value “Please type your user name.”
That’s the field’s defaultValue. So when a visitor first clicks into that field, the con-
ditional statement asks the question “Is what’s currently in the field the same as
what was first in the field when the page loaded?” In other words, is “Please type
your user name” equal to “Please type your user name"? The answer is yes, so that
field is erased.

However, say you typed helloKitty as your username, then tabbed into another
field, and then realized that you mistyped your username. When you click back
into the field to fix the mistake, the focus event is triggered again, and the function
assigned to that event runs again. This time the question is “Is 'helloKitty' equal to
'Please type your username.'” The answer is no, so the field isn’t erased and you
can fix your typo.

Blur

When you tab out of a field or click outside of the currently focused field, the
browser triggers a blur event. This event is commonly used with text and textarea
fields to run a validation script when someone clicks or tabs out of a field. For
example, say you have a long form with a lot of questions, many of which required
particular types of values (for example email address, numbers, Zip codes, and so
on). Say a visitor doesn’t fill out any of those fields correctly, but hits the submit
button—and is faced with a long list of errors pointing out how she failed to fill
out the form correctly. Rather than dumping all of those errors on her at once, you
can also check fields as she fills out the form. That way, if she makes a mistake
along the way, she’ll be notified immediately and can fix the mistake right then.

Say, for instance, that you have a field for collecting the number of products the
visitor wants. The HTML for that might look like this:

<input name="quantity" type="text" id="quantity">

You want to make sure that the field contains numbers only (for example 1, 2, or
9, but not One, Two, or Nine). You can check for that after the visitor clicks out of
the field like this:

1 $('#quantity').blur(function() {

2 var fieldValue=$(this).val();

3 if (isNaN(fieldValue)) {

4 alert('Please supply a number');

5 }

6 });

Chapter 9: Enhancing Web Forms 319

Understanding
Forms

Line 1 assigns a function to the blur event. Line 2 retrieves the value in the field
and stores it in a variable named fieldValue. Line 3 checks to make sure that the
value is numeric using the isNaN() method (see page 137). If it’s not a number,
then line 4 runs and an alert appears.

Click

The click event is triggered when any form element is clicked. This event is particu-
larly useful for radio buttons and checkboxes, since you can add functions that
alter the form based on the buttons your visitor selects. For example, say you have
an order form that provides separate fields for both billing and shipping informa-
tion. To save visitors whose shipping and billing information are the same from
having to type their information twice, you can provide a checkbox—“Same as
billing information”, for example—that when checked hides the shipping informa-
tion fields and makes the form simpler and more readable. (You’ll see this exam-
ple in action on page 328.)

Like other events, you can use jQuery’s click() function to assign a function to a
form field’s click event:

$(':radio').click(function() {

 //function will apply to every radio button when clicked

});

Note: The click event also applies to text fields, but it’s not the same as the focus event. Focus is trig-
gered whenever you click or tab into a text field, while the click event is only triggered when the field is
clicked into.

Change

The change event applies to form menus (like the “Planet of Birth” menu pictured
in Figure 9-1). Whenever you make a selection from the menu, the change event is
triggered. You can use this event to run a validation function: for example, many
designers commonly add an instruction as the first option in a menu, like “Please
choose a country.” To make sure a visitor doesn’t pick a country, then accidentally
change the menu back to the first option (“Please choose a country”), you can
check the menu’s selected value each time someone makes a new selection from
the menu.

Or, you could program the form to change based on a menu selection. For exam-
ple, you can run a function so that whenever an option is selected from a menu,
the options available from a second menu change. For example, Figure 9-3 shows a
form with two menus; selecting an option from the top menu changes the list of
available colors from the bottom menu.

320 JavaScript: The Missing Manual

Adding Smarts to
Your Forms

To apply a change event to a menu, use jQuery’s change() function. For example,
say you have a menu listing the names of countries; the menu has an ID of coun-
try, and each time a new selection is made you want to make sure the new selec-
tion isn’t the instruction text “Please choose a country.” You could do so like this:

$('#country').change(function() {

 if ($(this).val()=='Please choose a country') {

 alert('Please select a country from this menu.');

 }

}

Adding Smarts to Your Forms
Web forms demand a lot from your site’s visitors: text fields need to be filled out,
selections made, checkboxes turned on, and so on. If you want people to fill out
your forms, it’s in your interest to make the forms as simple as possible. Fortu-
nately, JavaScript can do a lot to make your Web forms easier to use. For example,

Figure 9-3:
A form menu’s change event lets you do interesting things when a user
selects an option from a menu. In this case, selecting an option from
the top menu dynamically changes the options presented in the
second menu. Choose a product from the top menu, and the second
menu displays the colors that product is available in.

Chapter 9: Enhancing Web Forms 321

Adding Smarts to
Your Forms

you can hide form fields until they’re needed, disable form fields that don’t apply,
and calculate totals based on form selections. JavaScript gives you countless ways
to improve the usability of forms.

Focus the First Field in a Form
Normally, to begin filling out a form, you have to click into the first text field and
start typing. On a page with a login form, why make your visitors go to the extra
trouble of moving their mouse into position and clicking into the login field before
they can type? Why not just place the cursor in the field, ready to accept their login
information immediately? With JavaScript, that’s a piece of cake.

The secret lies in focus, which isn’t just an event JavaScript can respond to but a
command that you can issue to place the cursor inside a text field. You simply
select the text field, and then run the jQuery focus() function. Let’s say, for exam-
ple, that you’d like the cursor to be inside the name field pictured in Figure 9-1
when the page loads. If you look at the HTML for this form on page 310, you’ll see
that that field’s ID is username. So the JavaScript to place the focus on—that is,
place the cursor in—that field looks like this:

$(document).ready(function() {

 $('#username').focus();

});

In this example, the text field has the ID username. However, you can also create a
generic script that always focuses the first text field of a form, without having to
assign an ID to the field:

$(document).ready(function() {

 $(':text')[0].focus();

});

As you read on page 312, jQuery provides a convenient method of selecting all text
fields—$(':text'). So in this case, you first select all text fields (which returns an
array of elements), then access just the first item in the array—that’s the [0] part.
Finally, you focus that element with .focus();.

If you have more than one form on a page (for example a “search this site” form,
and a “signup for our newsletter” form), you need to refine the selector to identify
the form whose text field should get focus. For example, say you want the first text
field in a signup form to have the cursor blinking in it, ready for visitor input, but
the first text field is in a search form. To focus the signup form’s text field, just add
an ID (signup, for example) to the form, and then use this code:

$(document).ready(function() {

 $('#signup :text')[0].focus();

});

Now, the selector—$('#signup :text')—only selects the text fields inside the signup
form.

322 JavaScript: The Missing Manual

Adding Smarts to
Your Forms

Disabling and Enabling Fields
Form fields are generally meant to be filled out—after all, what good is a text field
if you can’t type into it? However, there are times when you might not want a visi-
tor to be able to fill out a text field, check a checkbox, or select an option from a
menu. Say you have a field that should only be filled out if a previous box was
turned on. For example, on the 1040 form used for determining U.S. income tax,
there’s a field for collecting your spouse’s Social Security number. You’d fill out
that field only if you’re married.

To “turn off” a form field that shouldn’t be filled out, you can disable it using Java-
Script. Disabling a field means it can’t be checked (radio buttons and checkboxes),
typed into (text fields), selected (menus), or clicked (submit buttons). Some brows-
ers also change the color of the form control—dimming it using a light gray color.

To disable a form field, simply set the field’s disabled attribute to true. For exam-
ple, to disable all input fields on a form, you can use this code:

$(':input').attr('disabled', true);

You’ll usually disable a field in response to an event. Using the 1040 form exam-
ple, for instance, you can disable the field for collecting a spouse’s Social Security
number when the “single” button is clicked. Assuming that the radio button for
declaring yourself as single has an ID of single, and the field for a spouse’s SSN has
an ID of spouseSSN, the JavaScript code will look like this:

$('#single').click(function() {

 $('#spouseSSN').attr('disabled', true);

});

Of course, if you disable a field, you’ll probably want a way to enable it again. To
do so, simply set the disabled attribute to false. For example, to enable all fields on
a form:

$(':input').attr('disabled', false);

Note: When disabling a form field, make sure to use the Boolean values (page 42) true or false and not
the strings ’true’ or ’false’. For example, this is wrong:

$(':input').attr('disabled', 'false');

And this is right:

$(':input').attr('disabled', false);

Back to the tax form example: If the visitor selects the “married” option, then you
need to make sure that the field for collecting the spouse’s Social Security number
is active. Assuming the radio button for the married option has an ID of married,
you can add the following code:

$('#married').click(function() {

 $('#spouseSSN').attr('disabled', false);

});

Chapter 9: Enhancing Web Forms 323

Adding Smarts to
Your Forms

You’ll run through an example of this technique in the tutorial on page 324.

Hiding and Showing Form Options
In addition to disabling a field, there’s another way to make sure visitors don’t
waste time filling out fields unnecessarily—just hide the unneeded fields. For
instance, using the tax form example from the last section, you may want to hide
the field for a spouse’s Social Security number when the “single” option is selected
and show the field when the “married” option is turned on. You can do so like
this:

$('#single').click(function() {

 $('#spouseSSN').hide();

});

$('#married').click(function() {

 $('#spouseSSN').show();

});

FREQUENTLY ASKED QUESTION

Stopping Multiple Submissions
Sometimes I get the same form information submitted
more than once. How can I prevent that from happening?

Web servers aren’t always the fastest creatures…and nei-
ther is the Internet. Often, there’s a delay between the time
a visitor presses a form’s submit button, and when a new
“We got your info” page appears. Sometimes this delay can
be pretty long, and impatient Web surfers hit the submit
button a second (or third, or fourth) time, thinking that the
first time they submitted the form, it simply didn’t work.

This phenomenon can lead to the same information being
submitted twice. In the case of an online sale, it can also
mean a credit card is charged more than once! Fortunately,
with JavaScript, there’s an easy way to disable a submit but-
ton once the form submission process has begun. Using
the submit button’s disabled attribute, you can “turn it off”
so it can’t be clicked again.

Assume the form has an ID of formID, and the submit but-
ton has an ID of submit. First, add a submit() function to
the form, and then, within the function, disable the submit
button, like this:

$('#formID').submit(function() {
 $('#submit').attr('disabled',true);
});

If the page has only a single form, you don’t even need to
use IDs for the tags:

$('form').submit(function() {
 $('input[type=submit]').
attr('disabled',true);
});

In addition, you can change the message on the submit
button by changing the button’s value. For example, the
button says “Submit” at first, but when the form is submit-
ted, the button changes to say “…sending information”
You could do that like this:

$('#formID').submit(function() {
 var subButton = $(this).find(':submit');
 subButton.attr('disabled',true);
 subButton.val('...sending information');
});

Make sure to put this code inside a $(document).ready()
function, as described on page 218.

324 JavaScript: The Missing Manual

Tutorial: Basic Form
Enhancements

Tip: jQuery’s hide() and show() functions (as well as other functions for revealing and concealing ele-
ments) are discussed on page 243.

One usability benefit of hiding a field (as opposed to just disabling it) is that it
makes the layout of the form simpler. After all, a disabled field is still visible and
can still attract (or more accurately, distract) a person’s attention.

In many cases, you’ll want to hide or show more than just the form field: you’ll
probably want to hide that field’s label and any other text associated with it. One
strategy is to wrap the code you wish to hide (field, labels, and whatever other
HTML) in a <div> tag, add an ID to that <div>, and then hide the <div>. You’ll
see an example of this technique in the following tutorial.

Tutorial: Basic Form Enhancements
In this tutorial, you’ll add three usability improvements to a basic ordering form
composed of fields for collecting billing and shipping information. First, you’ll
place the text cursor in the first field of the form when the page loads. Second,
you’ll disable or re-enable form fields based on selections a visitor makes. Finally,
you’ll hide an entire section of the form when it’s not needed (see Figure 9-4).

Note: See the note on page 27 for information on how to download the tutorial files.

Figure 9-4:
Using JavaScript, you can increase the
usability of your Web forms and add
interactive features, like hiding fields
that aren’t needed and disabling fields
that shouldn’t be filled out.

Chapter 9: Enhancing Web Forms 325

Tutorial: Basic Form
Enhancements

Focusing a Field
The first field on this tutorial’s order form page collects the name of the person
placing the order (see Figure 9-4). To make using the form easier to fill out, you’ll
place the cursor in this field when the page loads.

1. In a text editor, open the file 9.1.html in the chapter09 folder.

This file already contains a link to the jQuery file and the $(document).ready()
function (page 218). There’s a form that includes two sections—one for collect-
ing billing information and another form collecting shipping information.
(Check the page out in a Web browser before continuing.)

The first step (actually, the only step for this part of the tutorial) is to focus the
field.

2. Click in the empty line after the $(document).ready() function and type
$('#name').focus();, so the code looks like this:

$(document).ready(function() {

 $('#name').focus();

}); // end ready()

The first field has an ID of name, so it’s a simple matter of applying the focus()
function to that field to make a browser place the insertion point in it.

Save the file and preview it in a Web browser.

When the page loads, the first field should have a blinking insertion bar—
meaning that field has focus, and you can immediately start filling it out.

Disabling Form Fields
That last section was just a warm-up. In this part of the tutorial, you’ll disable or
enable two form fields in response to selections on the form. If you preview the
form in a Web browser (or just look at Figure 9-4), you’ll see that at the end of the
billing information section of the form, there are three radio buttons for selecting a
payment method: PayPal, Visa, and MasterCard. In addition, there are two fields
below that for collecting a card number and expiration date. Those two options
only apply for credit cards, not for PayPal payments, so you’ll disable those fields
when the PayPal button is clicked.

The HTML for that section of the page looks like this (the form fields are in bold):

1 <div>Payment Method

2 <input type="radio" name="payment" id="paypal" value="paypal">

3 <label for="paypal">PayPal</label>

4 <input type="radio" name="payment" id="visa" value="visa">

5 <label for="visa">Visa</label>

6 <input type="radio" name="payment" id="mastercard" value="mastercard">

7 <label for="mastercard">MasterCard</label>

8 </div>

326 JavaScript: The Missing Manual

Tutorial: Basic Form
Enhancements

9 <div id="creditCard" class="indent">

10 <div>

11 <label for="cardNumber" class="label">Card Number</label>

12 <input type="text" name="cardNumber" id="cardNumber">

13 </div>

14 <div>

15 <label for="expiration" class="label">Expiration Date</label>

16 <input type="text" name="expiration" id="expiration">

17 </div>

18 </div>

1. Return to your text editor and the file 9.1.html.

You’ll add to the code you created in the previous section. First, assign a func-
tion to the click event for the PayPal radio button.

2. To the script at the top of the page, add the code in bold below:

$(document).ready(function() {

 $('#name').focus();

 $('#paypal').click(function() {

 });

}); // end ready()

The radio button for the PayPal option has an ID of paypal (see line 2 in the
HTML code), so selecting that field is just a matter of typing $('#paypal'). The
rest of the code assigns an anonymous function to the click event (if this isn’t
clear, check out the discussion on assigning functions to events on page 210). In
other words, not only does clicking the PayPal radio button select it (that’s nor-
mal Web browser behavior), but it also triggers the function you’re about to
create.

Next, you’ll disable the credit card number and expiration date fields, since they
don’t apply when the PayPal option is selected.

3. Inside the anonymous function you added in the previous step, add a new line
of code (line 4 below):

1 $(document).ready(function() {

2 $('#name').focus();

3 $('#paypal').click(function() {

4 $('#creditCard input').attr('disabled', true);

5 });

6 }); // end ready()

Although you want to disable two form fields, there’s a simple way to do that
with just one line of code. Both of the form fields are inside a <div> tag with an
ID of creditCard (see line 9 of the HTML code above). So, the jQuery selector
$(‘#creditCard input’) translates to “select all <input> tags inside of an element
with the ID creditCard.” This flexible approach makes sure you select all of the

Chapter 9: Enhancing Web Forms 327

Tutorial: Basic Form
Enhancements

input fields, so if you add another field, such as a CVV field, it gets selected as
well (CVVs are those 3 numbers on the back of your credit card that Web forms
often request to enhance the security of online orders).

To disable the fields, all you have to do is set the disabled attribute to true (see
page 322). However, this doesn’t do anything to the text labels (“Card Num-
ber” and “Expiration Date”). Even though the fields themselves are disabled,
those text labels remain bold and black, sending the potentially confusing sig-
nal that the visitor can fill out the fields. To make the disabled status clearer,
you’ll change the labels to a light shade of gray. While you’re at it, you’ll also
add a gray color to the background of the fields to make them look disabled.
(Most browsers already do that, but in Internet Explorer, disabled text fields
don’t look any different than enabled ones.)

4. Add the bolded code below to your script:

1 $(document).ready(function() {

2 $('#name').focus();

3 $('#paypal').click(function() {

4 $('#creditCard input').attr('disabled', true)↵
5 .css('backgroundColor','#E5E5E5');

6 $('#creditCard label').css('color','#CCC');

7 });

8 }); // end ready()

Note: The ↵ symbol at the end of a line of code indicates that you should type the next line as part of
the previous line. Since a really long line of JavaScript code won’t fit on this book’s page, it’s broken up
over two lines.

First, you use the jQuery’s css() function to alter the background color of the
text fields (note that the code is part of line 4, so you should type it onto the
same line as the attr() function. Next, you use the css() function to adjust the
font color of any <label> tags inside the <div> tag (the css() function is
described on page 186).

If you preview the page in a Web browser at this point, you’ll see that clicking
the PayPal button does indeed disable the credit card number and expiration
date fields and dims the label text. However, if you click either the Visa or Master-
Card buttons, the fields stay disabled! You need to re-enable the fields when
either of the other radio buttons is selected.

5. After the click() function, add a new blank line (you’re adding new code
between lines 6 and 7 in step 5) and then add the following:

$('#visa, #mastercard').click(function() {

 $('#creditCard input').attr('disabled', false) ↵
 .css('backgroundColor','');

 $('#creditCard label').css('color','');

});

328 JavaScript: The Missing Manual

Tutorial: Basic Form
Enhancements

The selector $('#visa, #mastercard') selects both of the other radio buttons (see
lines 4 and 6 of the HTML on page 325). Notice that to remove the background
color and text colors added by clicking the PayPal button, you simply pass an
empty string as the color value: $('#creditCard label').css('color',");. That
removes the color for that element, but leaves in place the color originally
defined in the style sheet.

You’re nearly done with this tutorial. In the final section, you’ll completely hide
a part of the page based on a form selection.

Hiding Form Fields
As is common on many product order forms, this tutorial’s form includes sepa-
rate fields for collecting billing and shipping information. In many cases, this
information is exactly the same, so there’s no need to make someone fill out both
sets of fields if they don’t have to. You’ll frequently see a “Same as billing” check-
box on forms like these to indicate that the information is identical for both sets of

JQUERY PLUG-IN ALERT

Making It Easier to Select a Date
Whether you’re joining a social network site, reserving seats
on a plane, or searching a calendar of events, you’ll fre-
quently encounter forms that ask you to enter a date. In
most cases, you’ll see a basic text field into which you’re
supposed to type a date. Unfortunately, you don’t always
know what the date is going to be two Fridays from now. In
addition, an empty text field means a visitor is free to type
a date in any format he’d like: 10-20-2009, 10.20.2009, 10/
20/2009, or even 20/10/2009.

The best way to make selecting a date easy and ensuring
you’ll receive dates in the same format is to use a calendar
widget—a pop-up calendar that lets visitors select a date by
clicking a day on the calendar. Although calendar widgets
are useful, they can be hard to program yourself. Fortu-
nately, you can download a jQuery plug-in that makes add-
ing calendar widgets to your forms a piece of cake.

The jQuery UI Datepicker plug-in, by Marc Grabanski and
Keith Wood, is a sophisticated date-picking pop-up calen-
dar that you can customize in many ways. To use it, you
need to get the plug-in from Datepicker Web site at http://
marcgrabanski.com/code/ui-datepicker/. Then, on the
page to which you want to add the date picker, you have to

attach the ui.datepicker.css file (which contains all of the
style rules that format the calendar); attach the jQuery
library (see page 172); and then link to the ui.datepicker.js
file (follow the instructions for linking to an external Java-
Script file on page 24).

After you set up all of those basic steps, you just need to
apply the datepicker() function to a text field. For example,
say you have a form and a text field with an ID of
dateOfBirth. To make it so that when someone clicks inside
that field a pop-up calendar appears, add a <script> tag
with the basic $(document).ready() function (see page
218 for instructions on this) and invoke the Datepicker like
this:

$('#dateOfBirth').datepicker();

Of course, $('#dateOfBirth') is the old jQuery way of select-
ing the text field; the datepicker() function then handles
the rest. The Datepicker plug-in supports options that
include selecting a range of dates, opening the pop-up cal-
endar by clicking a calendar icon, and more. To learn more
about this useful plug-in, visit http://marcgrabanski.com/
code/ui-datepicker/.

http://marcgrabanski.com/code/ui-datepicker/
http://marcgrabanski.com/code/ui-datepicker/
http://marcgrabanski.com/code/ui-datepicker/
http://marcgrabanski.com/code/ui-datepicker/

Chapter 9: Enhancing Web Forms 329

Tutorial: Basic Form
Enhancements

fields. However, wouldn’t it be even more useful (not to mention cooler) if you
could completely hide the shipping fields when they aren’t needed? With Java-
Script, you can.

1. Open the file 9.1.html in a text editor.

You’ll expand on the code you’ve been writing in the last two sections of this
tutorial. First, add a function to the click event for the checkbox that has the
label “Same as billing.” The HTML for that checkbox looks like this:

<input type="checkbox" name="hideShip" id="hideShip">

2. Add the following code after the code you added in step 5 on page 327, but
before the end of the script (the last line of code, which reads }); // end ready()):

$('#hideShip').click(function() {

});

Since the checkbox has the ID hideShip, the code above selects it and adds a
function to the click event. In this case, instead of hiding just a single field, you
want the entire group of fields to disappear when the box is checked. To make
that easier, the HTML that makes up the shipping information fields is wrapped
in a <div> tag with the ID of shipping: to hide the fields, you just need to hide
the <div> tag.

However, you’ll only want to hide those fields when the box is checked. If
someone clicks the box a second time to uncheck it, the <div> tag and its form
fields should return. So the first step is to find out whether the box is checked.

3. Add the code in bold below:

$('#hideShip').click(function() {

 if ($(this).attr('checked')) {

 }

});

A simple conditional statement (page 77) makes it easy to test the state of the
checkbox and either hide or show the form fields. The $(this) refers to the
object being clicked—the checkbox in this case. The element’s checked attribute
lets you know if the box is checked or not. If it’s checked, then this attribute
returns true; otherwise, it returns false. To finish this code, you just need to add
the steps for hiding and showing the form fields.

4. Add the bolded code below (lines 14–16) to your script. The completed script
should look like this:

1 <script type="text/javascript">

2 $(document).ready(function() {

3 $('#name').focus();

4 $('#paypal').click(function() {

330 JavaScript: The Missing Manual

Form Validation

5 $('#creditCard input').attr('disabled', true) ↵
6 .css('backgroundColor','#E5E5E5');

7 $('#creditCard label').css('color','#CCC');

8 });

9 $('#visa, #mastercard').click(function() {

10 $('#creditCard input').attr('disabled', false) ↵
11 .css('backgroundColor','');

12 $('#creditCard label').css('color','');

13 });

14 $('#hideShip').click(function() {

15 if ($(this).attr('checked')) {

16 $('#shipping').slideUp('fast');

17 } else {

18 $('#shipping').slideDown('fast');

19 }

20 });

21 }); // end ready()

22 </script>

The $('#shipping') refers to the <div> tag with the form fields, while the
slideUp() and slideDown() functions (described on page 245) hide and show
the <div> tag by sliding the <div> up and out of view or down and into view.

A finished version of this tutorial—complete_9.1.html—is in the chapter09
folder. If your version isn’t working, compare your code with the finished tuto-
rial and refer to the troubleshooting steps on page 32.

Form Validation
It can be frustrating to look over feedback that’s been submitted via a form on
your Web site, only to notice that your visitor failed to provide a name, email
address, or some other piece of critical information. That’s why, depending on the
type of form you create, you might want to make certain information mandatory.

For instance, a form used for subscribing to an email newsletter isn’t much use if
the would-be reader doesn’t type in an email address for receiving the newsletter.
Likewise, if you need a shipping address to deliver a brochure or product, you’ll
want to be sure that the visitor includes his address on the form.

In addition, when receiving data from a Web form, you want to make sure the data
you receive is in the correct format—a number, for example, for an order quan-
tity, or a correctly formatted URL for a Web address. Making sure a visitor inputs
information correctly is known as form validation, and with JavaScript you can
identify any errors before the visitor submits incorrect information.

Basically, form validation requires checking the form fields before the form is sub-
mitted to make sure required information is supplied and that information is
properly formatted. The form’s submit event—triggered when the visitor clicks a

Chapter 9: Enhancing Web Forms 331

Form Validation

submit button or presses Return when the cursor’s in a text field—is usually where
the validation occurs. If everything is fine, the form information travels, as it nor-
mally would, to the Web server. However, if there’s a problem, the script stops the
submission process and displays errors on the page—usually next to the problem
form fields (Figure 9-5).

Checking to make sure a text field has been filled out is easy. As you read on page
314, you can simply access the form’s value property (using the jQuery val() func-
tion, for example) and if the value is an empty string, then the field is empty. But it
gets trickier when you’re checking other types of fields, like checkboxes, radio but-
tons, and menus. In addition, you need to write some complicated JavaScript when
you want to check to make sure the visitor submits particular types of informa-
tion, like email addresses, Zip codes, numbers, dates, and so on. Fortunately, you
don’t need to write the code yourself; there’s a wealth of form validation scripts on
the Web, and one of the best is a plug-in for the jQuery library.

jQuery Validation Plug-in
The Validation plug-in (http://bassistance.de/jquery-plug-ins/jquery-plug-in-
validation/) is a powerful but easy-to-use jQuery plug-in created by Jörn Zaefferer.
It can check a form to make sure all required fields have been filled out, and check
to make sure that visitor input meets particular requirements. For example, a
quantity field must contain a number, and an email field must contain an email
address. If a visitor doesn’t fill out a form correctly, the plug-in will display error
messages describing the problems.

Figure 9-5:
When you sign up for a
Yahoo account, you’ll be
faced with a sea of red
error messages (circled)
if you fail to fill out the
form properly.

http://bassistance.de/jquery-plug-ins/jquery-plug-in-validation/
http://bassistance.de/jquery-plug-ins/jquery-plug-in-validation/

332 JavaScript: The Missing Manual

Form Validation

Here’s the basic process of using the Validation plug-in:

1. Download and attach the jquery.js file to the Web page containing the form
you wish to validate.

Read “Getting Started with jQuery” (on page 170) for more info on download-
ing the jQuery library. The Validation plug-in uses the jQuery library, so you
need to attach the jquery.js file to the page first.

2. Download and attach the Validation plug-in.

You can find the plug-in at http://bassistance.de/jquery-plug-ins/jquery-plug-in-
validation/. The download includes lots of extra stuff, including a demo, tests,
and more. You really only need the jquery.validate.min.js file. (You’ll also find
this plug-in in the chapter09 tutorial folder, named jquery.validate.js—see the
tutorial on page 325). This file is just an external JavaScript file, so follow the
instructions on page 24 for linking the file to your page.

3. Add validation rules.

Validation rules are just the instructions that say “make this field required,
make sure that field gets an email address,” and so on. In other words, this step
is where you assign which fields get validated and how. There are a couple of
methods for adding validation rules: a simple way using just HTML (page 333),
and a more flexible but slightly more complicated way using JavaScript (page
336).

4. Add error messages.

This step is optional. The Validation plug-in comes with a predefined set of
error messages, like “This field is required,” “Please enter a valid date,” “Please
enter a valid number,” and so on. These basic messages are fine and to the
point, but you may want to customize them for your form, so that the errors
provide more definite instruction for each form field—for example, “Please
type your name,” or “Please tell us your date of birth.”

There are two methods for adding error messages—the simple way is discussed
on page 335, and the more flexible method on page 340.

Note: You can also control the style and placement of error messages as described on page 342.

5. Apply the validate() function to the form.

The plug-in includes a function that makes all of the magic happen: validate().
To apply it, you first use jQuery to select the form, and then attach the function
to that selection. For example, say you have a form with an ID of signup applied
to it. The HTML might look like this:

<form action="process.php" method="post" name="signup" id="signup">

The simplest way to apply validation would be like this:

$('#signup').validate();

http://bassistance.de/jquery-plug-ins/jquery-plug-in-validation/
http://bassistance.de/jquery-plug-ins/jquery-plug-in-validation/

Chapter 9: Enhancing Web Forms 333

Form Validation

The validate() function can accept many different pieces of information that
affect how the plug-in works. For example, while you can specify validation
rules and error messages in the HTML of the form (see below), you can also
specify rules and errors when you call the validate() function. (You’ll learn
about this method on page 336.)

The entire JavaScript code for a very basic form validation (including the two
steps already described in this section) could be as simple as this:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/jquery.validate.js"></script>

<script type="text/javascript">

$(document).ready(function() {

 $('#signup').validate();

});

</script>

Tip: Remember to always wrap your script in jQuery’s document.ready() function to make sure the
script runs after the page’s HTML is loaded (see page 218).

Basic Validation
Using the Validation plug-in can be as simple as attaching the plug-in’s JavaScript
file, adding a few class and title attributes to the form elements you want to vali-
date, and applying the validate() function to the form. The validate() method is
the easiest way to validate a form, and may be all you need for most forms. (How-
ever, if you need to control where error messages are placed on a page, or apply
more than one rule to a form field, or set a minimum or maximum number of
characters for a text field, you’ll need to use the advanced method described on
page 336.)

To add validation, follow the basic steps outlined in the previous sections (attach-
ing the jQuery and Validation plug-in files, and so on), but in addition, you can
embed rules and error messages in your form fields’ HTML.

Adding validation rules

The simplest way to validate a field using the Validation plug-in is to assign one or
more of the class names listed in Table 9-2 to the form element. The plug-in is clev-
erly programmed to scan the class names for each form element to determine if
one of the validation terms are present, and if so, to apply the particular validation
rule to that field.

For example, say you have a text field to collect a person’s name. The basic HTML
might look like this:

<input name="name" type="text">

334 JavaScript: The Missing Manual

Form Validation

To tell the plug-in that the field is mandatory—in other words, the form can’t be
submitted unless the visitor types something into this field—add a required class to
the tag. For example, to make this text field required, add a class attribute to the
tag like this:

<input name="name" type="text" class="required">

Adding a class in this way actually has nothing to do with CSS, even though usu-
ally you assign a class to a tag to provide a way of formatting that tag by creating a
CSS class style. In this case, you’re using a class name to provide the plug-in the
information it needs to determine what kind of validation you’re applying to that
field.

Requiring visitors to fill out a field is probably the most common validation task,
but often you also want to make sure the data supplied matches a particular for-
mat. For example, if you’re asking how many widgets someone wants, you’re
expecting a number. To make a field both mandatory and contain a specific type of
value, you add both the required class plus one of the other classes listed in
Table 9-2.

For example, say you have a field asking for someone’s date of birth. This informa-
tion is not only required, but should also be in a date format. The HTML for that
field could look like this:

<input name="dob" type="text" class="required date">

Notice that the class names—required and date—are separated by a space.

If you exclude the required class and just use one of the other validation types—for
example, class="date"—then that field is optional, but if someone does type some-
thing into the field, it must be in the proper format (a date).

Tip: When you require a specific format for field information, make sure to include specific instructions
in the form so your visitors know how they should add their information. For example, if you require a
field to be a date, add a message near the field that says something like “Please enter a date in the format
01/25/2009.”

Table 9-2. The Validation plug-in includes methods that cover the most common validation
needs

Validation rule Explanation

required The field won’t be submitted unless this field is filled out, checked, or
selected.

date Information must be in the format MM/DD/YYYY. For example, 10/30/
2009 is considered valid, but 10-30-2009 is not.

url Must be a full, valid Web address like http://www.chia-vet.com. Partial
URLs like www.chia-vet.com or chia-vet.com are considered invalid.

http://www.chia-vet.com
http://www.chia-vet.com
chia-vet.com

Chapter 9: Enhancing Web Forms 335

Form Validation

Adding error messages

The Validation plug-in supplies generic error messages to match the validation
problems it checks for. For example, if a required field is left blank, the plug-in dis-
plays the message “This field is required.” If the field requires a date, then the mes-
sage “Please enter a valid date” appears. You can, however, override these basic
messages and supply your own.

The easiest way is to add a title attribute to the form field and supply the error
message as the title’s value. For example, say you’re using the required class to
make a field mandatory, like this:

<input name="name" type="text" class="required">

To supply your own message, just add a title attribute:

<input name="name" type="text" class="required" ↵
title="Please give us your name.">

Normally, Web designers use the title attribute to increase a form field’s accessibil-
ity by providing specific instructions that appear when someone mouses over the
field, or for screen-reading software to read aloud. But with the Validation plug-in,
you use the title attribute to supply the error message you wish to appear. The
plug-in scans all validated fields and sees if there’s a title attribute. If there is, then
the plug-in uses the attribute’s value as the error-message text.

If you use more than one validation method, you should supply a title that makes
sense for either situation. For example, if you have a field that’s required and that
also must be a date, a message like “This field is required” doesn’t make much
sense if the visitor enters a date in the wrong format. Here’s an example of an error
message that makes sense whether the visitor leaves the field blank or enters the
date the wrong way:

<input name="dob" type="text" class="required date" ↵
title="Please enter a date in the format 01/28/2009.">

email Must be formatted like an email address: bob@chia-vet.com. This class
doesn’t actually check to make sure the email address is real, so some-
one could still enter nobody@noplace.com and the field would pass
validation.

number Must be a number like 32 or 102.50 or even –145.5555. However, the
input can’t include any symbols, so $45.00 and 100,000 are invalid.

digits Can only include positive integers. So 1, 20, 12333 are valid, but 10.33
and –12 are not valid.

creditcard Must be a validly formatted credit card number.

Table 9-2. The Validation plug-in includes methods that cover the most common validation
needs (continued)

Validation rule Explanation

336 JavaScript: The Missing Manual

Form Validation

Adding validation rules and error messages by adding class names and titles to
fields is easy, and it works great. But sometimes you may have more complicated
validation needs; the Validation plug-in offers a second, more advanced method of
adding validation to a form. For example, you may want to have different error
messages based on the type of error—like one message when a field is left blank
and another when the visitor enters the wrong type of information. You can’t do
that using the basic validation method described in this section. Fortunately, the
Validation plug-in offers a second, more advanced method that lets you imple-
ment a wider range of validation rules.

For example, you must use the advanced method if you want to make sure a mini-
mum number of characters is entered into a field. When setting a password, for
instance, you might want to make sure the password is at least six characters long.

Advanced Validation
The Validation plug-in provides another way of adding validation to a form that
doesn’t require changing the fields’ HTML. In addition, the plug-in supports a
wide variety of additional options for controlling how the plug-in works. You set
these options by passing an object literal (page 188) to the validate() function,
containing separate objects for each option. For example, to specify a validation
rule, you pass one object containing the code for the rule. First, you include an
opening brace directly after the first parentheses for the validation function and a
closing brace directly before the closing parentheses:

$('idOfForm').validate({

 // options go in here

}); // end validate();

These braces represent an object literal, which will contain the option settings.
Using the Validation plug-in in this way gets a little confusing, and the best way to
understand how the plug-in’s author intended it to work is to look at a simple
example, like the one in Figure 9-6.

Note: You can combine the basic validation method described on page 333 and the advanced method
described here on the same form. For fields that have just one validation rule and error message, you can
use the simple method since it’s fast, and just use the advanced method for more complicated validation.
The tutorial on page 343, for instance, uses both methods for validating a single form.

The HTML for the form in Figure 9-6 is as follows:

<form action="process.php" method="post" id="signup">

 <div>

 <label for="name">Name</label>

<input name="name" type="text">

 </div>

Chapter 9: Enhancing Web Forms 337

Form Validation

 <div>

 <label for="email">E-mail Address</label>

<input name="email" type="text">

 </div>

 <div>

 <input type="submit" name="submit" value="Submit">

 </div>

</form>

This form contains two text fields, shown in bold, one for a person’s name and one
for an email address. This section walks through the process of validating both of
these fields using advanced rules to make sure the name field is filled and the email
field is both filled in and correctly formatted.

Note: You can find a complete list of options for the Validation plug-in at http://docs.jquery.com/Plug-
ins/Validation/validate#options.

Advanced rules

The advanced way to specify validation rules involves passing an object (see page
188) containing the names of the form fields and the validation rule or rules you
want to apply to the field. The basic structure of that object looks like this:

rules: {

 fieldname : 'validationType'

}

The object is named rules, and inside it you specify the fields and validation types
you want to apply to the field. The entire object is then passed to the validate()
function. For example, in the form pictured in Figure 9-6, to make the name field
mandatory you apply the validate() function to the form as described on the pre-
vious page, and then pass the rules object to the function like this:

$('#signup').validate({

 rules: {

 name: 'required'

 }

}); // end validate()

Figure 9-6:
Even with a simple form like this one, you can use the Validation plug-in’s
advanced options for greater control.

http://docs.jquery.com/Plug-ins/Validation/validate#options
http://docs.jquery.com/Plug-ins/Validation/validate#options

338 JavaScript: The Missing Manual

Form Validation

In this case, the field is named name (see the HTML on page 336), and the rule
specifies that the field is required. To apply more than one validation rule to a
form field, you must create another object for that field. For example, to expand
the validation rules for the form in Figure 9-6, you can add a rule that would not
only make the email field required, but also specify that the email address must
be validly formatted:

1 $('#signup').validate({

2 rules: {

3 name: 'required',

4 email: {

5 required:true,

6 email:true

7 }

8 }

9 }); // end validate()

Note: According to the rules of JavaScript object literals, you must end each name/value pair except the
last one with a comma. For example, in line 3 above, name: ‘required’ must have a comma after it,
because another rule (for the email field) follows it. Turn to page 188 for a refresher on how object liter-
als work.

Lines 4–7, shown in bold, specify the rules for the email field. The field’s name is
email, as specified in the HTML (see page 337); required:true make the field
required; and email:true makes sure the field contains an email address.

You can use any of the validation types listed in Table 9-2. For example, say you
add a field named birthday to the form used in this example. To ensure that a date
is entered into the field, you can expand the list of rules like this:

$('#signup').validate({

 rules: {

 name: 'required',

 email: {

 required:true,

 email:true

 },

 birthday: 'date'

 }

}); // end validate()

If you also want the birthday field to be required, adjust the code as follows:

$('#signup').validate({

 rules: {

 name: 'required',

 email: {

Chapter 9: Enhancing Web Forms 339

Form Validation

 required:true,

 email:true

 },

 birthday: {

 date:true,

 required:true

 }

 }

}); // end validate()

As mentioned earlier, one of the most powerful and useful things you can do with
advanced validation rules is require visitors’ entries to be a certain minimum or
maximum length. For example, on a complaint report form, you may want to limit
comments to, say, 200 characters in length, so your customers will get to the point
instead of writing War and Peace. There are also rules to make sure that numbers
entered are within a certain range; so if your form isn’t easy enough for a caveman
to do it, you won’t accept birth years earlier than 1900.

• minlength. The field must contain at least the specified number of characters.
For example, the rule to make sure that at least six characters are entered into a
field is this:

minlength:6

• maxlength. The field must contain no more than the specified number of charac-
ters. For example, the rule to ensure that no more than 100 characters are
entered into the field looks like this:

maxlength:100

• rangelength. A combination of both minlength and maxlength. Specifies both the
minimum and maximum number of characters allowed in a field. For example,
the rule to make sure a field contains at least 6 characters but no more than 100
is as follows:

rangelength:[6,100]

• min. Requires that the field contain a number that’s equal to or greater than the
specified number. For example, the following rule requires that the field both
contains a number and that the number is greater than or equal to 10.

min:10

In this example, if the visitor enters 8, the field won’t validate because 8 is less
than 10. Likewise, if your visitor types a word—eight, for example—the field
won’t validate and she’ll get an error message.

• max. Like min, but specifies the largest number the field can contain. To make
sure a field contains a number less than 1,000, for example, use the following:

max:1000

340 JavaScript: The Missing Manual

Form Validation

• range. Combines min and max to specify both the smallest and largest numbers
that the field must contain. For example, to make sure a field contains at least
10 but no more than 1,000, use this:

range:[10,1000]

• equalTo. Requires that a field’s contents match another field. For example, on a
signup form, it’s common to ask a visitor to enter a password and then verify
that password by typing it a second time. This way, the visitor can make sure he
didn’t mistype the password the first time. To use this method, you must spec-
ify a string containing a valid jQuery selector. For example, say the first pass-
word field has an ID of password applied to it. If you want to make sure the
“verify password” field matches the first password field, you use this code:

equalTo: '#password'

Note: The Validation plug-in supports some even more advanced validation methods. To learn about
them, visit http://docs.jquery.com/Plug-ins/Validation#Validation_methods.

You can use these advanced validation rules in combination. Just take it one field
at a time. Here’s an example of how they work together: Assume you have a form
that includes two fields, one for creating a password, and another for confirming
that password. The HTML for those two fields might look like this:

<input name="password" type="password" id="password">

<input name="confirm_password" type="password" id="confirm_password">

Both fields are required, and the password must be at least 8 characters but no
more than 16. And finally, you want to make sure the “confirm password” field
matches the other password field. Assuming the form has an ID of signup, you can
validate those two fields with the following code:

$('#signup').validate({

 rules: {

 password: {

 required:true,

 rangelength:[8,16]

 },

 confirm_password: {

 equalTo:'#password'

 }

 }

}); // end validate()

Advanced error messages

As you read on page 335, you can easily add an error message for a field by adding
a title with the error message text. However, this approach doesn’t let you create

http://docs.jquery.com/Plug-ins/Validation#Validation_methods

Chapter 9: Enhancing Web Forms 341

Form Validation

separate error messages for each type of validation error. For example, say a field is
required and must have a number in it. You might want two different messages for
each error: “This field is required”, and “Please enter a number.” You can’t do that
using the title attribute. Instead, you must pass a JavaScript object to the validate()
function.

The process is similar to creating advanced rules, as described in the previous sec-
tion. The basic structure of the messages object is as follows:

messages: {

fieldname: {

methodType: 'Error message'

 }

}

POWER USERS’ CLINIC

Validating with the Server
While JavaScript validation is great for quickly checking user
input, sometimes you need to check in with the server to
see if a field is valid. For example, say you have a signup
form that lets visitors create their own username for use on
the forums of your site. No two people can share the same
username, so it would be helpful if you could inform the
person filling out the form if the username he wants is
already taken before submitting the form. In this case, you
have to consult with the server to find out whether the user-
name is available.

The Validation plug-in provides an advanced validation
method, named remote, that lets you check in with the
server. This method lets you pass both the field name and
the value the visitor has typed into that field to a server-side
page (like a PHP, JSP, ASP, or Cold Fusion page). The
server-side page can then take that information and do
something with it, such as check to see if a username is
available, and then respond to the form with either a value
of true (passed validation) or false (failed validation).

Assume you have a field named “username” that’s both
required and must not be a name currently in use on your

site. To create a rule for the field (using the advanced rules
method described on page 336), you can add the following
to the rules object:

username : {
 required: true,
 remote: 'check_username.php'
}

The remote method takes a string containing the path from
the current page to a page on the Web server. In this exam-
ple, the page is named check_username.php. When the
validation plug-in tries to validate this field, it sends the
field’s name (username) and the visitor’s input to the
check_username.php, which then determines if the user-
name is available. If the name is available, the PHP page
returns the word ‘true’; if the username is already taken, the
page returns the word ‘false’, and the field won’t validate.

All of this magic takes place via the power of Ajax, which
you’ll learn about in Part 3. To see a working example of
this validation method, visit http://jquery.bassistance.de/
validate/demo/milk.

http://jquery.bassistance.de/validate/demo/milk
http://jquery.bassistance.de/validate/demo/milk

342 JavaScript: The Missing Manual

Form Validation

In the above example, replace fieldname with the field you’re validating, and method-
Type with one of the assigned validation methods. For example, to combine the
validation methods for the password fields and messages for each of those errors,
add the following code shown in bold:

$('#signup').validate({

 rules: {

 password: {

 required:true,

 rangelength:[8,16]

 },

 confirm_password: {

 equalTo:'#password'

 }

 }, // end of rules

messages: {

password: {

required: "Please type the password you'd like to use.",

rangelength: "Your password must be between 8 and 16 characters long."

},

confirm_password: {

equalTo: "The two passwords don't match."

}

} // end of messages

}); // end validate()

Styling Error Messages
When the Validation plug-in checks a form and finds an invalid form field, it does
two things: first, it adds a class to the form field; then it adds a <label> tag contain-
ing an error message. For example, say your page has the following HTML for an
email field:

<input name="email" type="text" class="required">

If you add the Validation plug-in to the page with this form and your visitor tries
to submit the form without filling out the email field, the plug-in would stop the
submission process and change the field’s HTML, adding an additional tag. The
new HTML would look like this:

<input name="email" type="text" class="required error">

<label for="email" generated="true" class="error">

This field is required.</label>

In other words, the plug-in adds the class name error to the form field. It also
inserts a <label> tag with a class named error containing the error-message text.

Chapter 9: Enhancing Web Forms 343

Validation Tutorial

To change the appearance of the error messages, you simply need to add a style to
your style sheet defining the look for that error. For example, to make the error
text bold and red, you can add this style to your style sheet:

label.error {

 color: #F00;

 font-weight: bold;

}

Since the Validation plug-in also adds an error class to the invalid form field, you
can create CSS styles to format those as well. For example, to place a red border
around invalid fields, you can create a style like this:

input.error, select.error {

 border: 1px red solid;

}

Note: Browsers vary significantly in their support for formatting form fields. Some browsers let you use
many CSS properties to control the look of fields, while other browsers limit that control. For example,
Safari 3 and earlier don’t let you put a border around a checkbox. For more information on formatting
form fields, visit www.456bereastreet.com/archive/200705/why_styling_form_controls_with_css_is_
problematic.

Validation Tutorial
In this tutorial, you’ll take a form and add both basic and advanced validation
options to it (see Figure 9-7).

Note: See the note on page 27 for information on how to download the tutorial files.

Basic Validation
In this tutorial, you’ll get started with the Validation plug-in by applying the basic
validation methods described on page 333. Then you’ll learn more complex valida-
tion procedures using the advanced method discussed on page 336. As you’ll see,
it’s perfectly OK to mix and match the two approaches on the same form.

1. In a text editor, open the file 9.2.html in the chapter09 folder.

This file contains a form with a variety of form fields, including text fields,
checkboxes, radio buttons, and menus. You’ll add validation to this form, but
first you need to attach the validation plug-in to the page.

2. On the blank line immediately after the <script> tag that attaches the jquery.js
file to this page, type:

<script type="text/javascript" src="validation/jquery.validate.js">

</script>

http://www.456bereastreet.com/archive/200705/why_styling_form_controls_with_css_is_problematic
http://www.456bereastreet.com/archive/200705/why_styling_form_controls_with_css_is_problematic

344 JavaScript: The Missing Manual

Validation Tutorial

The validation plug-in is contained in a folder named validation in the
chapter09 folder.

This page already has another <script> tag, complete with the jQuery ready()
function. You just need to add the validate() function to this page’s form.

3. In the blank line directly below $(document).ready(function(), type:

$('#signup').validate();

The form has an ID of signup:

<form action="process.php" method="post" name="signup" id="signup">

So $('#signup') uses jQuery to select that form, and validate() applies the vali-
dation plug-in to the form. However, the form won’t get validated until you
specify some validation rules. So first, you’ll make the name field required and
supply a custom error message.

Figure 9-7:
Don’t let visitors submit
your forms incorrectly!
With a little help from the
jQuery Validation plug-in,
you can make sure that
you get the information
you’re after.

Chapter 9: Enhancing Web Forms 345

Validation Tutorial

4. Locate the HTML for the name field— <input name="name" type="text"
id="name">— and add class and title attributes, so the tag looks like this
(changes are in bold):

<input name="name" type="text" id="name" ↵
class="required" title="Please type your name.">

The class="required" part of the code lets the Validation plug-in know that this
field is mandatory, while the title attribute specifies the error message that the
visitor will see if she doesn’t fill out this field.

5. Save the page, open it in a Web browser, and click Submit.

Since the name field isn’t filled out, an error message appears to the right of the
field (circled in Figure 9-8).

Congratulations—you’ve just added validation to your form using the basic
method discussed on page 333. Next, you’ll add another validation rule for the
“date of birth” field.

Tip: If you don’t see an error message and instead get a page with the headline “Form Processed,” the
validation didn’t work and the form was submitted anyway. Go over steps 1–4 again to make sure you
didn’t make any typos.

6. Locate the HTML for the date of birth field—<input name="dob" type="text"
id="dob">— and add class and title attributes so the tag looks like this
(changes are in bold):

<input name="dob" type="text" id="dob" class="date" ↵
title="Please type your date of birth using this format: 01/19/2000">

Figure 9-8:
Don’t worry about the
appearance of the error
message just yet. You’ll
learn how to format
errors on page 352.

346 JavaScript: The Missing Manual

Validation Tutorial

Because you didn’t add the required class, filling out this field is optional. How-
ever, if the visitor does type anything into the field, the class="date" tells the
plug-in that the input must be formatted like a date. You use the title attribute
again to hold the error message if this field isn’t valid. Save the page and try it
out in a Web browser—type something like kjsdf in the date of birth field and
try to submit the form.

Note: If you did want to require that the visitor fill out the date of birth field and that they entered a valid
date just add required to the class attribute. Just make sure date and required are separated by a space:

<input name="dob" type="text" id="dob"
class="date required" title="Please type your date of birth using this
format: 01/19/2000">

You can use the same technique for validating a menu (<select> tag).

7. Locate the HTML for the opening select tag—<select name="planet"
id="planet">—and add class and title attributes so that the tag looks like this
(changes are in bold):

<select name="planet" id="planet" class="required" ↵
title="Please choose a planet.">

You can validate menus just like text fields by adding a validation class and title
attribute.

Now it’s time to try the advanced validation method.

Advanced Validation
As mentioned on page 333, there are some things you can’t do with the basic vali-
dation methods, like assign different error messages for different validation prob-
lems, or require a specific number of characters for input. In these cases, you need
to use the Validation plug-in’s advanced approach for creating validation rules and
error messages.

To start you’ll add two validation rules and two different error messages for the
form’s email field.

1. In the JavaScript code near the top of the file, locate the line $('#signup').
validate(); and edit it to look like this:

 $('#signup').validate({

}); // end validate()

In other words, add opening and closing braces between the parentheses in
validate(), add an empty line between the braces, and add a JavaScript com-
ment at the end. The comment is a note to identify the end of the validate()

Chapter 9: Enhancing Web Forms 347

Validation Tutorial

function. You’ll soon be filling the script with braces and parentheses, so it can
get tricky to remember which brace goes with what. This comment can help
keep you from getting confused, but like all comments in code, it’s optional.

Next, you’ll create the basic skeleton for adding validation rules.

2. In the empty line (between the braces) you added in the last step, type:

rules: {

} //end rules

To make the code easier to read, you might also want to put two spaces before
the rules and }. Indenting those lines makes it more visually obvious that these
lines of code are part of the validate() function.

This code creates an empty object, which you’ll fill with specific field names and
validation methods. In addition, a JavaScript comment identifies the end of the
rules object. Next, you’ll add rules for the email field.

3. Edit the validate() function so that it looks like this (changes are in bold):

$('#signup').validate({

 rules: {

 email: {

 required: true,

 email: true

 }

 } // end rules

}); // end validate()

Here, you’ve added another JavaScript object. The first part, email, is the name
of the field you wish to validate and matches the field’s name in the HTML.
Next, two validation methods are specified—the field is required (meaning visi-
tors must fill it in if they want to submit the form), and the input must match
the form of an email address.

Now you’ll add error messages for this field.

4. Type a comma after the closing brace for the rules object (but before the // end
rules comment), and then type:

messages: {

} // end messages

This code represents yet another JavaScript object, named messages. This object
will contain any error messages you wish to add to your form fields. Again, the
comment at the end—// end messages—is optional. Now you’ll add the actual
error messages for the email field.

348 JavaScript: The Missing Manual

Validation Tutorial

5. Edit the validate() function so it looks like this (the additions are in bold):

1 $('#signup').validate({

2 rules: {

3 email: {

4 required: true,

5 email: true

6 }

7 }, //end rules

8 messages: {

9 email: {

10 required: "Please supply your e-mail address.",

11 email: "This is not a valid e-mail address."

12 }

13 } // end messages

14 }); // end validate(),

Save the page and preview it in a Web browser. Try to submit the form without
filling out the email address field. You should get a “Please supply your e-mail
address” error. Now, type something like “hello” into the email field and try to
submit the form. This time you should get the “This is not a valid e-mail
address” error.

If you don’t get any error messages and, instead, end up on the “Form Pro-
cessed!” page, there’s a JavaScript error somewhere in your code. The most
likely culprit is a missing comma after the rules object (see line 7), or in the
email message object (see line 10).

Now it’s time to add validation rules for the two password fields.

6. Edit the rules object so that it looks like this (changes are in bold):

1 rules: {

2 email: {

3 required: true,

4 email: true

5 },

6 password: {

7 required: true,

8 rangelength:[8,16]

9 },

10 confirm_password: {

11 equalTo:'#password'

12 }

13 }, //end rules

Don’t miss the comma on line 5—it’s necessary to separate the email rules from
the password rules.

Chapter 9: Enhancing Web Forms 349

Validation Tutorial

The first set of rules applies to the first password field. It makes the field manda-
tory and requires the password to be at least 8 but not more than 16 characters
long. The second rule applies to the email confirmation field and requires that
its contents match the value in the first password field (details on how these
rules work can be found on page 339).

Tip: It’s a good idea to save the file and test it after each step in this tutorial. That way, if the validation
stops working, you know which step you made the error in.

These rules also need accompanying error messages.

7. Edit the messages object so that it looks like this (changes in bold):

1 messages: {

2 email: {

3 required: "Please supply an e-mail address.",

4 email: "This is not a valid email address."

5 },

6 password: {

7 required: 'Please type a password',

8 rangelength: 'Password must be between 8 and 16 characters long.'

9 },

10 confirm_password: {

11 equalTo: 'The two passwords do not match.'

12 }

13 } // end messages

Don’t forget the comma on line 5.

At this point, you should be feeling comfortable adding rules and error messages.
Next you’ll add validation for the checkboxes and radio buttons.

Validating Checkboxes and Radio Buttons
Checkboxes and radio buttons usually come in groups, and typically, adding vali-
dation to several checkboxes or radio buttons in a single group is a tricky process
of finding all boxes or buttons in a group. Fortunately, the Validation plug-in takes
care of the hard parts, and makes it easy for you to quickly validate this form fields.

1. Locate the HTML for the first checkbox— <input name="hobby" type="check-
box" id="heliskiing" value="heliskiing">— and add class and title attributes so
that the tag looks like this (changes are in bold):

<input name="hobby" type="checkbox" id="heliskiing"

value="heliskiing" class="required"

title="Please check at least 1 hobby.">

Here, you’re using the basic validation technique described on page 333. You
could also use the advanced technique and include the rules and error messages as

350 JavaScript: The Missing Manual

Validation Tutorial

part of the validate() function, but if you only require one validation rule and
error message, the basic technique is more straightforward and less error-prone.

In this case, all three checkboxes share the same name, so the Validation plug-in
treats them as a group. In other words, this validation rule applies to all three
boxes, even though you’ve only added the class and title attributes to one box. In
essence, you’ve required that visitors checkmark at least one box before they can
submit the form.

You’ll do the same thing for the radio buttons at the bottom of the form.

2. Locate the HTML for the first radio button—<input type="radio"
name="spam" id="yes" value="yes">—and add class and title attributes so the
tag looks like this (changes are in bold):

<input type="radio" name="spam" id="yes" value="yes"

class="required" title="Please select an option">

A related group of radio buttons always shares the same name (spam, in this
case), so even though you’ve added a rule and error message to just one button,
it will apply to all three. Because the field is required, visitors must select one of
the three radio buttons to submit the form.

3. Save the file, preview it in a Web browser, and click Submit.

You may notice something looks a bit odd: When the error messages for the
checkbox and radio buttons appear, they come directly after the first checkbox
and radio button (circled in Figure 9-9). Even worse, the messages appear
between the form field and its label (for example, between the checkbox and the
label “Heli-skiing”).

The Validation plug-in places the error message directly after the form field that
you apply the validation rule to. Normally, that’s OK: when the message
appears directly after a text field or menu, it looks fine (as in the earlier exam-
ples in this tutorial). But in this case, the message should go somewhere else,
preferably after all of the checkboxes or radio buttons.

Fortunately, the Validation plug-in has a way to control the placement of error
messages. You can create your own rules for error-message placement by pass-
ing another JavaScript object to the validate() function.

4. Locate the validation script you added earlier, and type a comma after the clos-
ing brace for the messages object (but before the // end messages comment).
Insert a blank line after the messages object, and then type:

 errorPlacement: function(error, element) {

 if (element.is(":radio") || element.is(":checkbox")) {

 error.appendTo(element.parent());

 } else {

 error.insertAfter(element);

 }

 } // end errorPlacement

Chapter 9: Enhancing Web Forms 351

Validation Tutorial

The Validation plug-in is programmed to accept an optional errorPlacement
object, which is just a JavaScript function that determines where the error mes-
sage is placed. The function receives both the error message and the form ele-
ment the error applies to, so you can use a conditional statement (page 77) to
check whether the form field is either a radio button of a checkbox. If it is, the
error message is added to the end of the element containing the button or
checkbox. In this page’s HTML, a <div> tag wraps around the group of check-
boxes, and another <div> tag wraps the radio buttons. So the error message is
placed just before the closing </div> tag using jQuery’s appendTo() function
(see page 182).

You’re done with all of the JavaScript programming for this form. Here’s the com-
plete script, including the $(document).ready() function:

1 $(document).ready(function() {

2 $('#signup').validate({

3 rules: {

4 email: {

5 required: true,

6 email: true

7 },

8 password: {

9 required: true,

10 rangelength:[8,16]

11 },

12 confirm_password: {equalTo:'#password'},

13 spam: "required"

Figure 9-9:
The Validation plug-in
places error messages
after the invalid form
field. In the case of
checkboxes and radio
buttons, that looks awful.
In order to place the error
message elsewhere, you
need to provide some
instruction to the plug-in’s
validate() function.

352 JavaScript: The Missing Manual

Validation Tutorial

14 }, //end rules

15 messages: {

16 email: {

17 required: "Please supply an e-mail address.",

18 email: "This is not a valid email address."

19 },

20 password: {

21 required: 'Please type a password',

22 rangelength: 'Password must be between 8 and 16 characters long.'

23 },

24 confirm_password: {

25 equalTo: 'The two passwords do not match.'

26 }

27 }, // end messages

28 errorPlacement: function(error, element) {

29 if (element.is(":radio") || element.is(":checkbox")) {

30 error.appendTo(element.parent());

31 } else {

32 error.insertAfter(element);

33 }

34 } // end errorPlacement

35 }); // end validate

36 }); // end ready()

Formatting the Error Messages
Now the page has working form validation, but the error messages don’t look very
good. Not only are they spread around the page, but they don’t stand out the way
they should. They’d look a lot better if they were bold, red, and appeared under-
neath the form field they apply to. You can make all of those formatting changes
with a little simple CSS.

1. Open the file form.css located in the css folder in the chapter09 folder. At the
bottom of the file, add the following CSS rule:

#signup label.error {

 font-size: 0.8em;

 color: #F00;

 font-weight: bold;

 display: block;

 margin-left: 150px;

}

The CSS selector #signup label.error targets any <label> tag with a class of error
that appears inside another element with the ID signup. In this case, the <form>
tag has an ID signup, and the Validation plug-in puts error messages inside a
<label> tag and adds the class error (see page 342). In other words, this CSS rule
only applies to the error message inside this form.

Chapter 9: Enhancing Web Forms 353

Validation Tutorial

The CSS properties themselves are pretty basic: first, the font size is reduced
to .8 em; next, the color is changed to red, and the text is bolded. The display:
block instruction informs the browser to treat the <label> tag as a block-level
element. That is, instead of putting the error message next to the form field, the
browser treats the error like a paragraph of its own, with line breaks above and
below. Finally, to make the error message line up with the form fields (which
are indented 150 pixels from the left edge of the main content area), you need
to add a left margin.

To make it even clearer which fields have validation problems, you can add CSS
rules to change the look of invalid form fields.

2. Add one final rule to the form.css file:

#signup input.error, #signup select.error {

 background: #FFA9B8;

 border: 1px solid red;

}

This rule highlights an invalid form field by adding a red border around its
edges and a background color to the field.

That’s all there is to it. Save the CSS file and preview the 9.2.html page in a Web
browser to see how the CSS affects the error messages (you may need to hit the
browser’s reload button to see the changes you made to the CSS file).

The final form should look like Figure 9-7. You can find a completed version of
the tutorial (complete_9.2.html) in the chapter09 folder, and the final CSS file
(complete_form.css) in the css folder in the chapter09 folder.

355

Chapter 10chapter

10

Expanding Your
Interface

A Web page can feel like a long one-page brochure. Visitors are overwhelmed if
there seems to be acres of text and pictures to scroll through, and they are unable
to quickly get the information they need when they need it. It’s up to you to pro-
vide your visitors tools to find what they’re after. Using JavaScript, you can stream-
line your Web page and make it simpler for visitors to deal with—hiding content
until it’s required, and providing easier access to information.

In this chapter, you’ll learn four common techniques to make your pages easier to
read and use. Accordion panels and tabbed panels fit lots of information in a small
space and let visitors click a tab to access content in smaller chunks. Tooltips—
pop-up windows with additional information about moused-over links, form
fields, and other HTML elements—provide supplemental information. Finally,
sortable tables make data in your HTML tables more usable—visitors can sort the
data right on the page by clicking a column header.

Hiding Information with Accordion Panels
Putting too much information on a page can overwhelm your visitors and make a
Web page look crowded. JavaScript gives you many ways to present a lot of infor-
mation in a small space. One technique is the accordion effect. An accordion lets
you put content into separate panels, only one of which is visible at a time. When
your visitor clicks a tab above a hidden panel, the currently visible panel disap-
pears and the hidden panel rises into place, as Figure 10-1 illustrates.

356 JavaScript: The Missing Manual

Hiding Information
with Accordion
Panels

The jQuery Accordion plug-in is a quick way to add an accordion effect to your
site. Thanks to the programming power of this plug-in, creating a complex accor-
dion is just a four-step process:

1. Attach the Accordion plug-in and several other external JavaScript files to your
page.

In addition to the jQuery library, you must also link to two additional files:
ui.core.js, and ui.accordion.js. The ui.core.js file provides some basic functions
that are used by all of jQuery’s UI (user interface) plug-ins (see the box on page
361). The jQuery UI components, along with the Accordion plug-in itself, are
available from http://ui.jquery.com/.

You attach these files as you would any external JavaScript file, as described on
page 24. Just make sure you attach them in order: jquery.js, ui.core.js, and ui.
accordion.js. You’ll have three <script> tags, something like this:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/ui.core.js"></script>

<script type="text/javascript" src="js/ui.accordion.js">

Note: You’re not stuck with the file names supplied by the downloaded JavaScript files. For example,
although the programmers of the plug-in named the file ui.accordion.js, you’re free to rename this file to
something else, like accordion.js. Just make sure your <script> tags use the new file name.

2. Provide an HTML tag to act as a container for the accordion elements.

One HTML tag needs to contain the accordion tabs and panels and nothing
else. A simple technique is to wrap the accordion HTML (described in the next
step) in a <div> tag with an ID:

<div id="accordion">

 <!-- accordion HTML here -->

</div>

Another approach is to build the accordion using a definition list (a <dl> tag),
in which each accordion tab is a <dt> tag and accordion panel is <dd> tag. In
this case you could add an ID to the <dl> tag: <dl id="accordion">. (See www.
htmldog.com/reference/htmltags/dl/ for information on definition lists.)

You can add more than one accordion to a page. Make sure to provide a unique
ID for each accordion’s container element.

3. Structure the HTML for the accordion.

The Accordion plug-in expects your HTML to be structured in a specific way.
There must be one tag that acts as the trigger—the tab that opens an accordion
panel. Then, the element following that tab acts as the accordion panel.

http://ui.jquery.com/
http://www.htmldog.com/reference/htmltags/dl/
http://www.htmldog.com/reference/htmltags/dl/

Chapter 10: Expanding Your Interface 357

Hiding Information
with Accordion

Panels

One simple way is to use a heading tag for the trigger, followed by a <div> for
each accordion element. For example:

<div id="accordion">

 <h2>Accordion Tab 1</h2>

 <div>Content for accordion panel 1 goes here</div>

 <h2>Accordion Tab 2</h2>

 <div>Content for accordion panel 2 goes here</div>

</div>

In this case, the <h2> tags are the tabs, while each <div> is an accordion panel.
You can, of course, put anything you want inside each accordion panel, so you
could have photos, paragraphs, and any other element or content inside the
<div>.

Another approach is to use a definition list like this:

<dl id="accordion">

 <dt>Accordion Tab 1</dt>

 <dd>Content for accordion panel 1 goes here</dd>

 <dt>Accordion Tab 2</dt>

 <dd>Content for accordion panel 2 goes here</dd>

</dl>

The <dt> tag can only accept inline content (like the or tags),
but the <dd> tag can accept any block-level element, so you can add para-
graphs, headlines, <div>s, and images to the <dd> tag to create an accordion
panel that looks like a little Web page of its own.

Figure 10-1:
An accordion like this one lets you put content into
hidden panels that open when their associated tab is
clicked.

358 JavaScript: The Missing Manual

Hiding Information
with Accordion
Panels

4. Apply the accordion() function to the container element, and then identify the
tab elements.

To create the accordion effect, you must use jQuery to select the accordion con-
tainer and apply the accordion function to it. Of course, you must put this
function call inside the obligatory $(document).ready() jQuery function (page
218) to make sure that the page’s HTML has loaded first. In addition, you need
to tell the accordion function which element acts as the accordion panel tabs.
For example, if you use an <h2> tag as the tab (the element’s that clicked to
show an accordion panel), then the JavaScript code should look like this:

$(document).ready(function() {

 $('#accordion').accordion({

 header: 'h2'

 });

});

Here, a <div> tag with an ID of accordion is the container, and the accordion()
function is applied to it. The accordion() function takes a JavaScript object lit-
eral (page 188) as its argument—that object holds any options you wish to set
for the accordion.

In this case, only the header option is needed, and that option requires a string
that matches the element to be used as a tab. For example header: 'h2' means
that the accordion panel tabs are <h2> tags, whereas header:'.tab’ tells the
accordion function to use any tag with the class tab as the tab.

Customizing an Accordion
The normal behavior of the Accordion plug-in may be all you need, but you can
also change the way the accordion works by setting various options of the
accordion() function. In fact, you’ve already seen an example of that. In step 4 in
the previous section, you passed an object literal to the function containing the
header option to assign the element used as accordion tabs like this:

$('#accordion').accordion({

 header: 'h2'

});

To customize the accordion further, you can pass additional options (described
below) to the function. For example, to make a panel open when the mouse moves
over a tab, you’d add the event option with a value of mouseover to the object lit-
eral like this:

$('#accordion').accordion({

 header: 'h2',

 event: 'mouseover'

});

Chapter 10: Expanding Your Interface 359

Hiding Information
with Accordion

Panels

Note: For more information on object literals and how to create them, see page 188.

• Accordion height. Normally, the overall height of an accordion depends on the
height of each accordion tab and the height of the tallest accordion panel (in
other words, the panel with the most stuff in it). The plug-in displays accor-
dion panels at the same height as the tallest panel, which makes the accordion as
a whole a consistent height. So, as a visitor clicks on that accordion’s various
tabs to reveal new panels, the accordion doesn’t continually grow or shrink to
fit the different amounts of content in each.

If you’d rather the accordion change heights when you display panels with vary-
ing amounts of content, you can set the autoheight option to false:

autoHeight: false

Note: There are even more options available to customize the accordion plug-in. Visit http://docs.jquery.
com/UI/Accordion/accordion#options for details.

• Triggering event. Usually, an accordion panel opens when a visitor clicks an
accordion tab. In other words, the click event (page 203) triggers the action of
opening the panel (and hiding the currently visible panel). You can assign a dif-
ferent event using the event option. The most commonly used alternative to the
click event for accordions is the mouseover event; in this way, simply mousing
over an accordion tab will open its associated panel. You can assign a new event
like this:

event: 'mouseover'

• Initially open panel. The Accordion plug-in opens the top accordion panel
when the page loads. However, you can change this so any of the accordion
panels is open, or so no panels are open, when the page loads. A simple way to
make sure an accordion panel is open is to first give a class to its tab (for exam-
ple, the <h2> or <dt> tag that opens the panel):

<h2 class="open">Accordion Tab</h2>

Then, assign the class selector to the accordion() function’s active option:

active: '.open'

This option is part of the object literal that’s passed to the accordion() function.
(You’ll see this technique in action in the tutorial on page 360.)

Most Web designers make sure that one accordion panel is open when the page
loads, so the visitor doesn’t have to click anything to see content; however, it’s
also possible (if your design warrants it) to start with all accordion panels
closed. To do so, set the option to false:

active: false

http://docs.jquery.com/UI/Accordion/accordion#options
http://docs.jquery.com/UI/Accordion/accordion#options

360 JavaScript: The Missing Manual

Hiding Information
with Accordion
Panels

• Applying a class to the currently selected Tab. You may want the tab of the cur-
rently opened panel to be highlighted—a kind of “you are here” indicator. You
can tell the accordion plug-in to assign a particular class to a selected tab, so
that when you click the tab to open its panel, the class is applied to the tab ele-
ment, and when you click on a different tab, the class is removed. To do this, set
the Accordion plug-in’s selectedClass option like this:

selectedClass:'current'

You can use any class name you’d like (in this example, it’s current) and create a
class style in your CSS that defines the look of that style. That way, when some-
one clicks the tab, that style is applied to the tab as long as its panel is open.
(You’ll see this in action in the tutorial.)

The visual appearance of the accordion is controlled entirely by CSS. You just cre-
ate the appropriate CSS styles to format the accordion tabs and panels. A good
approach is to use a descendent selector (see page 176) that lets you control the
appearance of just the particular tags inside the accordion. For example, say you
created a <div> tag with an ID of accordion to hold the accordion tabs and panels.
Each tab is an <h2> tag and each panel is a <div> tag. A descendent selector to
format the tabs would be #accordion h2, while the style for formatting the panels
would be #accordion div.

Tip: The Accordion plug-in creates tabs that stack vertically, one above the other. Another plug-in, the
Horizontal Accordion plug-in, lets you put the tabs side by side. You can find out more about this plug-in
at http://dev.portalzine.de/index?/Horizontal_Accordion.

Accordion Tutorial
In this tutorial, you’ll take a basic set of headlines and <div>s and turn them into a
collapsible accordion, like the one in Figure 10-3. The HTML for the page is very
simple: A <div> tag with an ID of accordion wraps around all of the elements of
the accordion. Each accordion tab (the part you click to see the accordion con-
tent) is an <h2> tag, while each accordion fold (the area with the content) is a
<div> tag containing one or more <p> tags. Once you add all the code for the
accordion, clicking an <h2> tag will reveal the <div> that follows it.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 10.1.html in the chapter10 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 218). But you also have to link additional files to build the accordion.

2. Click in the empty line following the <script> tag and add two more <script> tags:

<script type="text/javascript" src="../js/ui/ui.core.js"></script>

<script type="text/javascript" src="../js/ui/ui.accordion.js"></script>

http://dev.portalzine.de/index?/Horizontal_Accordion

Chapter 10: Expanding Your Interface 361

Hiding Information
with Accordion

Panels

As described on page 356, the first file provides additional programming that
the ui.accordion.js plug-in needs. Now you’re ready to set up another script to
turn this page’s HTML into an interactive accordion.

3. Hit Enter (or Return) and add another <script> tag with the $(document).
ready() function:

<script type="text/javascript">

$(document).ready(function() {

}); // end ready()

</script>

UP TO SPEED

The jQuery UI Project
The Accordion plug-in is part of a coordinated effort known
as jQuery UI. An official project of the jQuery team, jQuery
UI aims to provide plug-ins that solve basic user interface
problems: accordions, tabs (page 364), dialog boxes, calen-
dar widgets, and draggable page elements. The project has
its own Web site (http://ui.jquery.com/), where you can
find the latest code, along with demonstrations and a link
to documentation on the main jQuery web site.

Each individual plug-in deals with a specific problem—for
example, the ui.accordion.js plug-in lets you create the type
of accordion explained in this section. The UI Web site gives
you two ways to download the plug-in files. When getting
started, is best to download the “development bundle”
from this page: http://ui.jquery.com/download. The devel-
opment bundle contains lots of files, including examples
and 3 different versions of the plugins—use the minified
versions. Each plug-in is a separate file, you need to include
the file for each type of user interface element you want to
have on a page (tabs, accordion, calendar widget, and so
on).

In addition, each plug-in file depends on a basic file named
ui.core.js that includes functions commonly used by all of
the UI plug-ins. In other words, just as a jQuery plug-in
depends on the basic jquery.js file to work, the UI plug-ins
depend on the ui.core.js file to work. This simply means
that you not only have to link to the main jQuery library file,
but also the ui.core.js file whenever you want to use a UI
plug-in. For example, say you want to add an accordion and
a calendar widget to the same page. You need to use two

UI plug-ins, plus the jQuery library file and the ui.core.js file.
So, in the <head> of your document, you use four <script>
tags to link to these files. For example:

<script type="text/javascript"
src="jquery.js"></script>
<script type="text/javascript" src="ui.
core.js"></script>
<script type="text/javascript" src="ui.
accordion.js"></script>
<script type="text/javascript" src="ui.
datepicker.js"></script>

You can also create one file that contains just the plug-ins
you want to use from this page: http://ui.jquery.com/
download_builder. The download builder lets you hand-
pick the plug-ins you use and then creates a single external
JavaScript file containing the components you requested.
This approach is handy if you know exactly which compo-
nents you want to use. If you use all of the components, the
file is pretty huge (over 200k), and you probably won’t find
yourself needing all of the different plug-ins on a single site.
The best approach is to use the individual plug-in files as
you build a site; once you’re finished with the site, you can
then go to the download builder, create a file with just the
plug-ins you’re using on your site, and then replace the
individual files with that one. (Or you can just leave the indi-
vidual files, and skip the download builder entirely!)

Check the jQuery UI site often, since you’ll probably find
more useful user interface plug-ins added as the project
grows.

http://ui.jquery.com/
http://ui.jquery.com/download
http://ui.jquery.com/download_builder
http://ui.jquery.com/download_builder

362 JavaScript: The Missing Manual

Hiding Information
with Accordion
Panels

See page 218 if you need a refresher on jQuery’s $(document).ready() function.
Now you’ll call the accordion function.

4. Inside the $(document).ready() function, add the code below in bold:

$(document).ready(function() {

 $("#accordion").accordion({

 });

});

In this case $(‘#accordion’) identifies the <div> tag that contains the accordion
elements. The accordion doesn’t do anything yet—you need to identify which
elements will act as the tabs of the accordion. (This example uses <h2> tags, but
you can just as easily use an <a> tag or any tag with a particular class applied to
it.)

5. Add header:'h2' inside the accordion function, so the script now looks like this:

$(document).ready(function() {

 $("#accordion").accordion({

 header:'h2'

 });

});

If you save the file now, and preview it in a Web browser, the top accordion
panel should be open and the bottom two closed (Figure 10-2). The Accordion
plug-in lets you control which accordion panel is opened when the page loads,
but to do that you must first add a class name to the tab of the panel you wish
to open. In other words, you need to add a class to a <h2> tag in this page. For
this example, you’ll make it so the bottom panel is open when the page loads.

6. In the HTML, locate the <h2>Accordion 3</h2> and add class="open" to the
<h2> tag so that it looks like this:

<h2 class="open">Accordion 3</h2>

The class name (here, open) simply provides a way of informing the accordion
plug-in which panel to show first. You could use any class name. Next, you
need to tell the accordion() function which name you used.

7. In the script, inside the accordion() function add a comma after header:'h2',
hit the Enter key, and type:

active:'.open'

You don’t actually have to use a class name, but you do need to provide a
jQuery selector that uniquely identifies which tab to open. In this case, you need
to include the period—.open—to identify the class selector you’re using. Save
the file and preview it in a Web browser. Now you’ll see that the last panel is
open when the page loads.

Chapter 10: Expanding Your Interface 363

Hiding Information
with Accordion

Panels

Finally, you’ll tell the Accordion plug-in to add a class to the currently selected
tab. You can then use CSS to style that tab to give it a unique “I am selected”
style.

8. Add a comma after the line of code you added in the last step (line 5 below),
and add the code in line 6 below:

1 <script type="text/javascript">

2 $(document).ready(function() {

Figure 10-2:
Adding an accordion to a Web
page requires nothing more
than some basic HTML,
jQuery, the Accordion plug-in,
and a few lines of code.

364 JavaScript: The Missing Manual

Organizing
Information in
Tabbed Panels

3 $("#accordion").accordion({

4 header:'h2',

5 active:'.open',

6 selectedClass:'current'

7 });

8 });

9 </script>

Now, when the page is viewed in a Web browser, the Accordion plug-in adds
the class current to the <h2> tag when it’s clicked. You won’t see anything yet,
however, since the style for that hasn’t been created.

9. Open the file accordion.css, and add the following CSS rule to the bottom:

#accordion h2.ui-state-active {

 background: #036;}

}

Save all the accordion.css file and the 10.1.html file, and preview the Web page in
a browser. Now the selected tab has a dark blue background (see Figure 10-3).

Organizing Information in Tabbed Panels
Tabbed panels provide another approach to displaying lots of content in a com-
pact space (see Figure 10-4). Each tab has an associated panel; clicking the tab dis-
plays the panel and its contents. In other words, tabbed panels achieve the same
goal as an accordion, but present the tabs in a different way—straight along the top
of the panel. Another jQuery UI component—the Tabs plug-in—makes it easy to
add tabbed panels to a page.

Just follow these basic steps:

1. Attach the necessary external JavaScript files to your page.

In addition to the jQuery library, you must also link to two additional files:
ui.core.js and ui.tabs.js. As with the Accordion plug-in, you’ll need the ui.core.js
file, which is required by all jQuery’s UI plug-ins (see the box on page 361).
Finally, the Tabs plug-in (also available from http://ui.jquery.com/) provides the
tabbed panel functionality.

You attach these files as you would any external JavaScript file (see page 24);
just make sure you attach them in order: jquery.js, ui.core.js, and ui.tabs.js. In
other words, you’ll have three script tags, something like this:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/ui.core.js"></script>

<script type="text/javascript" src="js/ui.tabs.js"></script>

http://ui.jquery.com/

Chapter 10: Expanding Your Interface 365

Organizing
Information in
Tabbed Panels

2. Structure the HTML for the tabs.

A group of tabs is represented by a bulleted list (tag) and each tab is a sin-
gle list item (tag). The tag should contain the text you want to appear
on the tab—for example, the basic HTML for the tabs pictured in Figure 10-4
could start off like this:

<ul id="tabs">

 Description

Figure 10-3:
The Accordion plug-in
provides enough options to
control which accordion panel
displays when the page loads
and apply a style to the
currently selected accordion
tab.

366 JavaScript: The Missing Manual

Organizing
Information in
Tabbed Panels

 Experiments

 Video

As you’ll see in step 4, you need to add a bit more HTML to this unordered list,
but starting with this basic structure helps prevent errors later.

You’ll eventually need a way to identify this group of links using jQuery (step
5), so you’ve supplied an ID for the tag—tabs in this example—but you
can use any ID you want.

Next, you’ll add the HTML for the panels.

3. Add the HTML for the panels.

Each tab should have an associated panel represented in the HTML by a <div>
tag, and each <div> needs an ID that uniquely identifies it. So the basic HTML
for the tabs you created in the previous step goes like this:

<div id="description">

 <!—HTML for panel #1 goes in here -->

</div>

<div id="experiments">

 <!—HTML for panel #2 goes in here -->

</div>

<div id="video">

 <!—HTML for panel #3 goes in here -->

</div>

Figure 10-4:
A tabbed panel (like this one
from www.
stevespanglerscience.com) lets
you display content one panel
at a time. You’ll see this way of
compactly providing
information used frequently on
product pages that display the
same groups of information
from page to page, like
“Product Description,”
“Technical Details,” and
“Product Options.”

Chapter 10: Expanding Your Interface 367

Organizing
Information in
Tabbed Panels

Of course, since a <div> tag can hold any HTML, you can add any content you
wish inside each panel—headlines, paragraphs, images, video, and so on.

4. Add a link from each tab to each panel.

Besides being useful for JavaScript and CSS, an ID added to a HTML tag also
acts as a linked anchor, which lets you link directly to that element. For exam-
ple, Description creates a link that, when clicked,
scrolls the page to the element that has an ID of description. (See www.w3.org/
TR/html4/struct/links.html#h-12.2.3 for more information, and an example of
this technique.) The # symbol is placed before the ID of the element you wish to
link to. An anchor is one way to jump to a particular spot in a very long Web
page—you usually see them used on Web pages with long glossaries.

With the Tabs plug-in, you link from a tab to the anchor on the related panel.
In other words, each tab gets a link pointing to the panel’s ID. So, for example,
the list you created in step 3 above gets links like this:

 <ul id="tabs">

 Description

 Experiments

 Video

Using linked anchors in this way has one big benefit—if someone doesn’t have
JavaScript available, the links simply act like anchors normally do. That is, with-
out JavaScript, all of the panels will be visible, and clicking a link on a tab simply
makes the browser scroll to the appropriate location on the page.

Tip: You can actually put the unordered list containing the tabs and links to the panel elements any-
where on the page. The tabs don’t have to appear directly on top of the panels.

5. Apply the tabs() function to the tag containing the tabs.

As with all things jQuery, you need to first add the $(document).ready() function,
then include the function call:

<script type="text/javascript">

$(document).ready(function() {

 $('#tabs').tabs();

});

</script>

In this example, $('#tabs') selects an element with an ID of tabs (see the
tag in step 2 on page 365). You should change this to match your markup, so if
you added the ID of tabGroup to the tag, you’d use this jQuery selector:
$('#tabGroup').

http://www.w3.org/TR/html4/struct/links.html#h-12.2.3
http://www.w3.org/TR/html4/struct/links.html#h-12.2.3

368 JavaScript: The Missing Manual

Organizing
Information in
Tabbed Panels

The tabs() function takes care of the rest, but you still need to create a style
sheet to format the tabs and panels and also hide the panel groups not cur-
rently on display. You’ll cover that next.

Formatting Tabs and Panels
After you complete the steps in the previous section, your tabs won’t really seem to
do anything. In fact, all of the tabbed panels will be visible, and the tabs will still
look like a bulleted list of items, not an orderly, side-by-side arrangement of tabs.
You must create CSS styles to really make the tabbed panels look right. Fortu-
nately, the Tabs plug-in automatically updates your HTML so when the tabs()
function is called, the plug-in adds class names to the different tabs and panel ele-
ments. The tag, the tags for the tabs, and the <div> tags that contain the
panel content each have a different class applied to them (see Figure 10-5). Using
CSS, you can use these classes to make the tabs and panels look like Figure 10-4.

A required class style

You’ll create various styles to format the tabs and panels, but there’s one style that
you must include in your style sheet:

.ui-tabs-hide { display: none; }

The ui-tabs-hide class is applied to every panel (<div> tag) except the currently
displayed panel. Unfortunately, the Tabs plug-in doesn’t automatically hide those
panels, so you need to make the CSS do it. This simple CSS rule hides (display:
none) any tag with the ui-tabs-hide class applied to it. Don’t leave this rule out of
your style sheet; otherwise, you’ll see all of the panels all the time.

The tab group

The Web browser already applies some basic formatting to the tag that con-
tains the individual tabs; tags are usually indented and include bullet icons to
the left of each list item. If you wish to change the look of the tags on your
page, here’s a simple CSS style that eliminates those formatting rules from the
group of tabs:

.ui-tabs-nav {

 margin: 0;

 padding: 0;

 list-style: none;

}

Tabs

Each tab is represented by an tag. You can set the basic look of a tab with the
descendent selector .ui-tabs-nav li. To make the tabs appear side-by-side, either

Chapter 10: Expanding Your Interface 369

Organizing
Information in
Tabbed Panels

float the li elements or use display:inline to make the tabs appear in a line. For
example:

.ui-tabs-nav li {

 padding: 0;

 margin: 0 5px 0 0;

 float: left;

}

This style removes any padding around the tag, removes all but the right mar-
gin (five pixels, to add a bit of space between each tab), and floats the list items so
they appear next to each other.

Another important part of each tab is the <a> tag inside the tag. By removing
any padding from the tag and setting the <a> tag to be a block-level element
(display: block), you can make the <a> tag look like a tab by adding some padding
and borders to it like this:

.ui-tabs-nav a {

 text-decoration: none;

 display: block;

 padding: 5px 15px 3px 15px;

 border: 1px solid #999;

 border-bottom: none;

}

The text-decoration:none removes the underline that appears below links, while the
other style properties create the border and spacing that make up the tab pictured
in Figure 10-5. Of course, you can add additional properties such as a font, font
color, background color, and so on to improve the look of the basic tab.

Figure 10-5:
The Tabs plug-in dynamically
adds class names to the
different tags you use to create
tabbed panels. In addition, the
plug-in automatically adds an
empty at the end of
each <a> tag inside a tab. This
provides another tag you can
attach a style to. For example,
you can add a background
image to the <a> tag that
includes the left side of a
rounded corner, and another
background image on the
 to create graphical
rounded tab corners. You can
create the style .ui-tabs-nav a
span to style that tag.

370 JavaScript: The Missing Manual

Organizing
Information in
Tabbed Panels

Tip: You can add a rollover effect to the links by creating a style named .ui-tabs-nav a:hover.

When a tab is clicked, the Tabs plug-in adds the style named ui-tabs-selected to the
 tag, which lets you create a look for the currently selected tab. To customize
the look of that tab, create either a .ui-tabs-selected style or, if you’re formatting the
<a> tag, .ui-tabs-selected a style. For example, to add a background color to the
links, you could add this style to your style sheet:

.ui-tabs-selected a {

 background-color: #FF36A4;

}

Panels

The Tabs plug-in adds the class ui-tabs-panel to each panel. In addition, the panels
that aren’t currently visible have the class ui-tabs-hide applied to them (see “A
required class style” on page 368). To create the look of a visible panel, just add
a .ui-tabs-panel style to your style sheet. Generally, you’ll want to add some pad-
ding to the style (to indent the content from the edge of the panel), a border, and
perhaps a background color. In addition, if you floated the tags as suggested
on page 369, make sure you add a clear:left style. Here’s an example:

.ui-tabs-panel {

 clear: left;

 border: 1px solid #999;

 padding: 10px;

 background-color: #FFC;

}

If you want to make the panel a set width, you can add a width property to the style
(for example width:500px).

Customizing the Tabs Plug-in
The Tabs plug-in has many different features—including the ability to load content
dynamically from a Web server into a tab panel—and you can set many different
options to control how the tabs work. However, Web designers use two options
more often than any others: choosing the panel that’s initially visible, and assign-
ing a different event to the tab.

Tip: For more examples of tab options, see http://docs.jquery.com/UI/Tabs/tabs#options.

Selecting a tab when the page loads

Normally, the Tabs plug-in selects the first tab and panel when the page loads. But
you may want to have the second, third, or last panel visible instead. To do this,
you just pass an object literal (page 188) to the tabs() function with the option

http://docs.jquery.com/UI/Tabs/tabs#options

Chapter 10: Expanding Your Interface 371

Organizing
Information in
Tabbed Panels

selected set to the index value of the tab whose panel you wish to display. For exam-
ple, say the tabs are contained in an unordered list with the ID tabs. The JavaScript
code $('#tabs').tabs() will create the tabbed panels, but say you want the second
instead of the first panel displayed when the page loads. You can use this code instead:

$('#tabs').tabs({

 selected:1

});

The { selected:1 } is the object literal, selected is the Tabs plug-in option, and 1 indi-
cates the second tab (the first tab is 0). In addition, you can start the page with no
panels visible by setting the selected option to null like this:

$('#tabs').tabs({

 selected:null

});

When no panels are visible, if a visitor clicks a tab, that panel will pop into view.

Note: You can also “link” to a particular tab by adding the panel’s ID to the page link. For example, say
you add a tab to a file named products.html. On that page, there’s a group of tabbed panels, and one of
the panels (a <div> tag) has an ID of panel3. The link products.html#panel3 will load the products.html
page and open that panel.

Using a different event to open a panel

You may want to use an event other than the click event to open a panel. For exam-
ple, you can make a panel open when the visitor mouses over a tab, or even double-
clicks a tab. To set a new event, you pass the event option, along with a string
containing the event name, as part of an object literal sent to the tabs() function:

$('#tabs').tabs({

 event:'mouseover'

});

You can use any of the events commonly used with links (see page 203) such as
click, mouseover, doubleclick, or focus.

Automating the display of panels

A visitor usually accesses a panel by clicking its associated tab, but you may want to
create a kind of slideshow effect—displaying each panel in order after a slight
delay. For example, perhaps you’ve created a tabbed panel group, where each tab
represents a different part of a portfolio (“Web Design,” “Print Design,” and so
on). Each panel has thumbnails displaying examples of each type of work. You can
display a panel, wait a few seconds, and then open the next panel. To create a slide-
show like this, you need to call the tabs() function a second time, and pass two
arguments to it: the string 'rotate' and the time, in milliseconds, before the next
panel is displayed.

372 JavaScript: The Missing Manual

Organizing
Information in
Tabbed Panels

For example, say you want to display each panel for five seconds and then move on
to the next:

$('#tabs').tabs();

$('#tabs').tabs('rotate',5000);

The first line of code creates the tabbed panels, while the second line starts the
rotation effect.

Tabbed Panels Tutorial
In this tutorial, you’ll take a basic unordered list and a series of <div> tags and create a
set of tabbed panels like the one illustrated in Figure 10-6.

Note: See the note on page 27 for information on how to download the tutorial files.

Figure 10-6:
The Tabs plug-in lets you
take some basic HTML
(an unordered list and
several <div> tags) as
pictured on the bottom
page, and turn them into
a tabbed-panel interface
(top).

Chapter 10: Expanding Your Interface 373

Organizing
Information in
Tabbed Panels

1. In a text editor, open the file 10.2.html in the chapter10 folder.

Before you start adding any JavaScript to this page, you’ll modify the HTML a
bit. First, you’ll add an ID to the tag so you can later easily use jQuery to
select it and use the Tabs plug-in with it.

2. Locate the tag and add the ID tabSet so that it looks like this:

<ul id="tabSet">

On this page there are also three <div> tags. Each <div> represents one panel
and is associated with one of the list items in the bulleted list. Each div also has
an ID—for example, <div id="panel1">. To make the Tabs plug-in work, you
must add links from the list item to each panel.

3. Add a link inside each list item so the unordered list looks like this (changes in
bold):

<ul id="tabSet">

 Tab 1

 Tab 2

 Tab 3

You’ve just added links to each <div> tag. These links act like anchors, so click-
ing the link scrolls the page to the proper div. The Tabs plug-in uses this infor-
mation to know which tab goes with which panel. Now it’s time to add some
JavaScript.

4. Locate the empty line directly before the closing </head> tag, and add the
following code:

1 <script type="text/javascript" src="../js/jquery.js"></script>

2 <script type="text/javascript" src="../js/ui/ui.core.js"></script>

3 <script type="text/javascript" src="../js/ui/ui.tabs.js"></script>

4 <script type="text/javascript">

5 $(document).ready(function() {

6

7 });

8 </script>

The first three lines link to the external JavaScript files: the jQuery library, the
ui.core.js file that all jQuery’s UI plug-ins use (see the box on page 361), and the
ui.tabs.js file that contains all the programming magic to produce the tabbed
panels. The last four lines should also look familiar by now: they set up a new
script to run when the page’s HTML loads.

5. Inside the $(document).ready() function (line 6 in step 4), type:

$('#tabSet').tabs();

374 JavaScript: The Missing Manual

Organizing
Information in
Tabbed Panels

If you save the file now and preview it in a Web browser, you won’t actually see
anything happen. You need to add one crucial CSS style to make the whole
thing work.

6. Open the file tabs.css, and add the following style:

.ui-tabs-hide {

 display: none;

}

The Tabs plug-in applies the class ui-tabs-hide to each of the panels that aren’t vis-
ible when the page loads. To actually hide those panels, you need to include this
CSS rule. Save the page now and preview it in a Web browser, and you’ll see that
just the first panel is visible. Click the Tab 2 link, and you’ll see the second panel
pop into view and the first disappear. Next, you’ll get rid of the margins around
the unordered list, remove the bullets, and make the tabs appear side-by-side.

7. Add two more styles to the tabs.css file:

.ui-tabs-nav {

 margin: 0;

 padding: 0;

 list-style: none;

 zoom: 1;

}

.ui-tabs-nav li {

 padding: 0;

 margin: 0 5px 0 0;

 float: left;

}

Most of the properties listed here should make sense (see “Formatting Tabs and
Panels” on page 368 for more details). The .ui-tabs-nav style applies to the
tag, while the .ui-tabs-nav li style applies to the list items (tags) that repre-
sent the actual tabs.

Note: You might be wondering about the zoom:1 style declaration above. It’s an IE-only property that’s
used to fix various Internet Explorer display problems. In this case, without this property IE would take the
bottom margin from the <h1> tag above the tabs and place it between the tabs and panels, creating a big
empty space between the two. (There’s a reason these types of weird problems are called bugs.) For
more on this workaround, visit www.satzansatz.de/cssd/onhavinglayout.html.

Now, it’s time to create the actual tab look by formatting the link within each
 tag.

8. Add the following style to the tabs.css file:

.ui-tabs-nav a {

 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;

http://www.satzansatz.de/cssd/onhavinglayout.html

Chapter 10: Expanding Your Interface 375

Organizing
Information in
Tabbed Panels

 font-weight: bold;

 color: #999;

 text-decoration: none;

 display: block;

 padding: 5px 15px 3px 15px;

 border: 1px solid #999;

 border-bottom: none;

}

The first three properties just set various font attributes. By setting the text-
decoration property to none, you remove the underline beneath a link. The
display:block declaration turns the link into a block-level element, which lets
you add top and bottom padding as well as treat the entire area of the link (even
the space around the text) as clickable. In other words, it lets you create a big-
ger, clickable area. Finally, the last two properties set a border around the link,
and then remove the bottom border. (As you’ll see next, the panels also have a
border around them, so a bottom border on the tabs would create an unattrac-
tive double border line below each tab— the tab’s bottom border resting on top
of the panel’s top border.)

You’ll format the panel next.

9. Add another style to the stylesheet:

.ui-tabs-panel {

 clear: left;

 border: 1px solid #999;

 margin: 0;

 padding: 10px;

 background: #FFC;

 width: 500px;

}

Because the tabs are floated to the left, the panels will try to wrap around their
right side. The clear:left declaration forces the panels to drop below the tabs—
exactly where they belong. The padding setting adds white space around the
inside of the panel so the content doesn’t touch the panel borders. This style
also adds a background color and sets a width for the panel. If you don’t set a
width, the panel will grow to fit the available space on the page.

Note: If you’re not completely comfortable with floats, you can get up to speed quickly at http://css.
maxdesign.com.au/floatutorial/.

If you save the CSS file and preview the 10.2.html page in a Web browser, you
should see something like Figure 10-7. Click a tab to display another panel. The
tab of the currently visible panel doesn’t look any different than the other tabs.
The final step is to make that tab look more like the panel, to create a “you’ve
clicked this tab” effect.

http://css.maxdesign.com.au/floatutorial/
http://css.maxdesign.com.au/floatutorial/

376 JavaScript: The Missing Manual

Tooltips

10. Finally, add one last style to tabs.css:

.ui-tabs-selected a {

 color: #000;

 background: #FFC;

 position: relative;

 top: 1px;

}

The Tabs plug-in adds the class name ui-tabs-selected to the currently selected
tab’s tag (see page 370). This style applies to an <a> tag inside the current
tab. First, the text color is made black and the background color is set to match
the background of the panel. In addition, to make the tab appear as part of the
panel (as if they’re connected), you need to move the tab so that it appears on
top of the panel’s top border. To do that, you change the position property of
the link and set its top position to one pixel. This setting change moves the link
down from its current position by one pixel, and stacks the link on top of the
border, giving the appearance that the tab and panel are joined.

Save the file and preview the Web page in a browser. The final product should look
like Figure 10-6. If it doesn’t, you can compare your work to the complete_10.2.html
page and the complete_tabs.css file located in the chapter10 folder of the tutorials.

Tooltips
Tooltips are common interface elements for desktop applications. When you
mouse over a toolbar icon, and you’ll often see pop-up box with that tool’s name,
like the top image in Figure 10-8. Tooltips also appear when you add a title
attribute to a link (middle image in Figure 10-8). With a little JavaScript magic,
you can add tooltips to any HTML element, using any message you like, formatted
to match the look of your site, as shown at the bottom of Figure 10-8.

Figure 10-7:
Firefox adds a fuzzy
outline around a clicked
link (circled). That’s how
that browser shows that
the link has the focus. If
you want to eliminate that
outline, just add the
following style to your
style sheet: .ui-tabs-nav a:
focus { outline: none; }.

Chapter 10: Expanding Your Interface 377

Tooltips

A tooltip is just a message that appears when you mouse over an element. The
Cluetip jQuery plug-in, created by Karl Swedberg, offers a full-featured toolkit for
adding tooltips to your Web pages.

To use the Cluetip plug-in, visit the Cluetip Web site (http://plugins.learningjquery.
com/cluetip/) and download the latest version of the plug-in. The plug-in is also
included along with the tutorial files for this book. The exact process for using the
plug-in depends on how you want to supply the tooltip’s content. You can add
tooltips using text from a tag’s title attribute, from another HTML page, or even
from a hidden tag (like a <div> tag containing the tooltip text). In addition, you
can include images as well as text in a tooltip.

Tooltips Using the Title Attribute
A simple way to add a tooltip is to simply embed the tooltip message in a tag’s title
attribute. The Cluetip plug-in sees a tooltip as composed of two parts—a tooltip
title and a tooltip message (see Figure 10-9)—and displays the title above the tool-
tip’s main content. You can put both the title and tooltip text inside a HTML tag’s
title attribute. You just need to use any obscure character to separate the two. For
example, using the | (pipe) character, you can add both a tooltip title and content
to an <a> tag like this:

<a href="http://www.chia-vet.com/" class="tip"

title="Chia-Vet.com|Every Chia pet needs a Chia vet">

Chia-Vet

Figure 10-8:
Tooltips are a common
user interface
enhancement in desktop
programs like Microsoft
Word (top). Web
browsers also display
tooltips on links that have
their title attribute set
(middle). With a little
JavaScript, you can add
tooltips to any element
on a Web page, even a
form field (bottom). A
JavaScript-generated
tooltip also gives you
greater control over the
tooltip’s look and
content.

http://plugins.learningjquery.com/cluetip/
http://plugins.learningjquery.com/cluetip/

378 JavaScript: The Missing Manual

Tooltips

In this case, the | character separates the title (Chia-Vet.com) and the tip message
(“Every Chia pet needs a Chia vet”).

In addition, you’ll need a way to identify just those elements that need to have the
Cluetip plug-in applied to them. The easiest way is to apply a class name to those
HTML tags. In the above example, the class name tip is applied to the <a> tag. As
you’ll see in a moment, you can then use jQuery to select every element with that
class and apply the cluetip() function to them.

After you add title tags (and class names) to each tag that will display a tooltip, you
can then turn to the JavaScript.

1. Link to the necessary external JavaScript files.

These include the jQuery library and the Cluetip plug-in itself. For example:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/jquery.cluetip.js"></script>

(See page 24 if you need a refresher on how to use external JavaScript files.)

2. Add another <script> tag and the $(document).ready() function:

<script type="text/javascript">

$(document).ready(function() {

}); // end ready

</script>

You should know what this function does by now—if not, turn to page 218.

3. Apply the cluetip() function to the HTML tags you’ve added the title attribute to.

For example, if you added the class name tip to each tag you wish to display a
tooltip, then the JavaScript would look like this:

$('.tip').cluetip();

Figure 10-9:
The easiest way to add a tooltip is to
store both the tooltip’s title and content
inside the title attribute of a tag.

Chapter 10: Expanding Your Interface 379

Tooltips

The Cluetip plug-in isn’t set up to work with just the title attribute, so to tell it
what you want you’ll need one more step—pass an option to the function.

4. Pass an object literal (page 188) to the cluetip() function with the splitTitle
keyword and the character you’re using to separate the title from the message.

For example, assuming you use the | character to separate the title and message,
your final code would look like this:

$('.tip').cluetip({

splitTitle: '|'

});

To set the various options for the Cluetip plug-in, you pass an object literal to
the cluetip() function. You’ll learn about additional options on page 382.

Tooltips Using Another Web Page
Another way to use the Cluetip plug-in is to put the tooltip’s title inside the HTML
tag’s title attribute, and put the body of the tooltip inside a separate HTML file. It’s
the easiest approach of all, and as a bonus it lets you put other HTML elements like
images, tables, and so on inside the tooltip.

The process for using Cluetip this way is similar to the method you learned in the
previous section:

1. Create an HTML file containing the information you want to see in the tooltip
body.

This file can contain any HTML tags, like images, tables, headlines, and so on.

Tip: It’s easiest to save the file inside the same folder as the page with the tooltip, but you don’t have to.
However, due to security restrictions on Web browsers, both the page containing the tooltip text and the
page that displays the tooltip must be in the same site.

2. Add a title attribute and class name to the HTML element. For example:

<a href="http://www.chia-vet.com/" class="tip"

title="Chia-Vet.com">

The class name provides a way to use jQuery to identify just the elements you’re
adding tooltips to. The title attribute will act as the title of the tooltip.

3. Add a rel attribute to the tag, including a path to the HTML file you created in
step 1.

For example, say the content for the tooltip is stored in a file named chia.html.
If the chia.html file is in the same folder, the HTML would now look like this:

<a href="http://www.chia-vet.com/" class="tip"

title="Chia-Vet.com" rel="chia.html">

380 JavaScript: The Missing Manual

Tooltips

4. Attach the external JavaScript files, add another <script> tag, and then add the
jQuery $(document).ready() function.

This step is exactly the same as steps 1 and 2 on page 378.

5. Apply the cluetip() function to the HTML tags and pass an object literal.

For example, if you added the class name tip to each tag you wish to display a
tooltip, then the JavaScript would look like this:

$('.tip').cluetip();

And that’s it. You don’t need to pass any additional settings to make the Cluetip
plug-in work—the plug-in is programmed to retrieve the title of the tooltip
from the tag’s title attribute and the content of the tooltip from the Web page
referenced in the rel attribute if you’re using additional HTML files for the tool-
tip content.

Note: This method is particularly good if you want to dynamically generate tooltips from a database or a
server-side program. You don’t have to point to a real Web page (chia.html, for example). You can point
to a dynamic page—products.php?id=834, for example.

Tooltips Using Hidden Content
If you don’t like the idea of putting the tooltip content into a separate HTML file,
you can add the HTML for the tooltip in the page itself. For example, you can
create a <div> tag containing the HTML you wish to appear in the tooltip.

Figure 10-10:
Yet another way to add a tooltip to a
page is to put the tooltip content in a
separate HTML file. Then you add a
title attribute (containing the tooltip’s
title) and a rel attribute with the path
to the HTML file containing the tooltip
content. This approach lets you use
any HTML, including images, inside a
tooltip.

Chapter 10: Expanding Your Interface 381

Tooltips

The Cluetip plug-in will hide that content when the page loads, then put it into a
tooltip when a visitor mouses over the element to which you’ve added the tooltip.

To use the plug-in this way, follow these steps:

1. On the page where you’re adding the tooltip, create the HTML for the tooltip
content.

For example, you can have a <div> tag containing paragraphs, images, or any
other HTML elements. Make sure to give the <div> tag an ID, so you can asso-
ciate this <div> with the specific tag that will display the tooltip. Here’s a simple
example:

<div id="nameInfo">

<p>Please fill out this form field with your

complete name, like this Bob Smith.</p>

</div>

You can place this HTML anywhere on the page—the Cluetip plug-in will hide
it when the page loads—though a good place for it would be directly after the
element that gets the tooltip (see Figure 10-11, top). That way, if your visitors
have JavaScript turned off, they’ll still see the content that would have appeared
in the tooltip, right near the tag the tooltip goes with.

2. Add a title attribute and ID or class name to the HTML element. For example:

<a href="http://www.chia-vet.com/" class="localtip"

title="Chia-Vet.com">

A class name or ID provides a way to use jQuery to identify the elements you’re
adding the tooltip to. The title attribute acts as the tooltip’s title.

3. Add a rel attribute to the tag, with the ID selector for the HTML you added in
step 1.

For example, if you store the HTML for the tooltip content in a <div> with the
ID nameInfo (see step 1), your HTML would look like this:

<a href="http://www.chia-vet.com/" class="localtip"

title="Chia-Vet.com" rel="#nameInfo">

Make sure to include the # symbol before the ID name. The # represents an ID
selector, which lets the Cluetip plug-in identify and pull out the proper content
for the tooltip.

4. Attach the external JavaScript files, add another <script> tag, and add the
jQuery $(document).ready() function.

This step is the same as steps 1 and 2 on page 378.

382 JavaScript: The Missing Manual

Tooltips

5. Apply the cluetip() function to the HTML tags you’ve added the title attribute
to and pass an object literal (page 188) to the cluetip() function with the local
keyword set to true.

For example, assuming you assigned the class name localtip to every tag that
gets a tooltip, you’d call the function like this:

$('.localtip').cluetip({

local:true

});

The local option is just a way to tell Cluetip that the content for the tooltips is
contained “locally” on the same page. You can add additional options for this
plug-in as described below.

Note: You probably won’t use all three techniques discussed here to add tooltips. For simple, one-line
tooltips, the title attribute method (page 377) is the most straightforward. However, if you want a tooltip
that includes images or multiple lines of text, use either the separate HTML file method (page 379) or
<div> tags placed on the same page (page 380).

Controlling the Display of Tooltips
The Cluetip plug-in provides a lot of flexibility. Not only are there multiple meth-
ods of adding a tooltip, as discussed earlier in this chapter, but you can also control
the display of tooltips by passing optional parameters to the cluetip() function.
You’ve already seen the splitTitle option used to place a tooltip inside a title
attribute (page 377) and the local option to retrieve tooltip content from a <div>
on the page. As with many jQuery plug-ins, you can pass optional parameters to a
function as part of an object literal (page 188). For example, to set the width of a
tooltip, you use the width option:

$('.tip').cluetip({

 width: 300

});

Figure 10-11:
Another approach to using the Cluetip plug-
in involves adding the HTML for the tooltip
directly on the Web page (top). The Cluetip
plug-in puts that HTML into a tooltip box
(bottom) when the visitor mouses over the
correct element (a text box in this case).

Chapter 10: Expanding Your Interface 383

Tooltips

You can find a complete list of Cluetip options at http://plug-ins.learningjquery.
com/cluetip/#options. Here are some of the most useful:

• width sets the width of the tooltip in pixels. For example, to make a tooltip 275
pixels wide:

width:275

• height sets the height of the tooltip in pixels. Use this option only if you’re certain
that the content inside the tooltip won’t exceed the height you specify. Other-
wise, the tooltip simply clips off the extra content and your visitors won’t be
able to read it. The normal behavior is to make the tooltip grow to the height of
the content inside it.

• arrows accepts either the value true or false. You can skip setting it to false—
that’s what it does normally. However, if you want to add an arrow that points
from the tooltip to the element being moused over, set this option to true. (See
the middle image in Figure 10-13 for an example.)

POWER USERS’ CLINIC

Even More Advanced Interfaces
The power of JavaScript to transform a Web page from a
humdrum brochure to an interactive information kiosk is
almost unlimited. The plug-ins discussed in this chapter are
among the most popular, but they’re not by any means the
only ones available. Here are a few other jQuery plug-ins
you should check out:

• Coda Slider (www.ndoherty.com/demos/coda-
slider) provides a fun, animated approach to tabbed
panels. Clicking a tab doesn’t merely make a panel
appear; it also scrolls the current panel out of view
as it scrolls the requested panel into place. Very
cool.

• UI Dialog. The JavaScript alert box and prompt dia-
log box you learned about in the first few chapters
of this book actually aren’t the most professional
looking. If you want to create your own dialog boxes
to pop up messages, ask questions and take answers
in a text field, or confirm actions (“Do you really
want to delete that?”), try the UI Dialog plug-in. It’s
part of the official jQuery UI project (see the box on
page 361). You can download it from http://ui.
jquery.com and find out how to use it at http://docs.
jquery.com/UI/Dialog.

• Treeview. If you want to create the familiar look of
a tree view found in many desktop applications, you
can turn to Jörn Zaefferer’s Treeview plug-in (http://
jquery.bassistance.de/treeview/). Treeviews are a
common way to display a nested list of items, and
you’ll frequently see them used to display a list of
folders and files. They’re interactive: when you click
a + symbol next to a folder, it opens and a list of
files inside it appears.

• Columnize List. A long bulleted list of one or two
word items usually creates a large empty space on a
page. A list of items in side-by-side columns often
looks better, but creating one with regular HTML
and CSS is an unpleasant task. With jQuery and Ingo
Schommer’s columnizeList plug-in (www.chillu.com/
2007/9/30/jquery-columnizelist-plug-in), you’ll be
able to quickly convert long lists into space-saving
columns.

And if that’s not enough, you can cruise on over to the
jQuery plug-ins repository and check out the “User Inter-
face” category at http://plugins.jquery.com/project/
Plugins/category/21. As of this writing, there are over 134
different user interface plug-ins available.

http://www.ndoherty.com/demos/coda-slider
http://www.ndoherty.com/demos/coda-slider
http://ui.jquery.com
http://ui.jquery.com
http://docs.jquery.com/UI/Dialog
http://docs.jquery.com/UI/Dialog
http://jquery.bassistance.de/treeview/
http://jquery.bassistance.de/treeview/
http://www.chillu.com/2007/9/30/jquery-columnizelist-plug-in
http://www.chillu.com/2007/9/30/jquery-columnizelist-plug-in
http://www.chillu.com/2007/9/30/jquery-columnizelist-plug-in
http://plugins.jquery.com/project/Plugins/category/21
http://plugins.jquery.com/project/Plugins/category/21
http://plug-ins.learningjquery.com/cluetip/#options
http://plug-ins.learningjquery.com/cluetip/#options

384 JavaScript: The Missing Manual

Tooltips

You can control how this arrow looks, as described on page 388. To add arrows
to a tooltip:

arrows:true

• dropShadow determines whether the tooltip has a drop shadow, lending a three-
dimensional, professional look. The plug-in is set to always show drop shadows
unless you tell it otherwise. However, in real world usage, the Cluetip plug-in
frequently has trouble effectively drawing drop shadows. To turn them off:

dropShadow:false

• dropShadowSteps defines how thick the drop shadow is. By default, drop shad-
ows are six pixels wide. To make drop shadows that are 10 pixels wide, pass this
option to the cluetip() function:

dropShadowSteps: 10

• positionBy determines where the tooltip is positioned in relation to the element.
The normal behavior is to place the tooltip to the element’s right; however, if
the tooltip won’t fit (because the browser window isn’t wide enough to display
the tooltip to the right), the tooltip appears to the element’s left. You can
change this positioning and place the tooltip in relationship to where the mouse
is. In other words, you can make the tooltip appear directly to the right or left of
the mouse when it moves over the element. To get this effect, use the value
'mouse' like this:

positionBy:'mouse'

You can also position the tooltip either above or below the element by using the
'bottomTop' value:

positionBy:'bottomTop'

With this setting, the plug-in first tries to position the tooltip below the ele-
ment; but if the tooltip won’t be visible below the element (because the element
is at the bottom of the browser window), the plug-in will display the tip on top.

• topOffset controls how many pixels from the top of the element the tooltip
appears. Normally, it’s set to 15 pixels, but you can change that. For example, if
you want the tooltip to appear over the element, covering it, use a negative value.

• leftOffset controls how many pixels from the right edge of the element the tool-
tip appears. In other words, it adds space on the left of the tooltip. Normally, it’s
set to 15 pixels, but you can change this value. Also, if the Cluetip plug-in dis-
plays a tooltip to the element’s left because it won’t fit on the right, it subtracts
the leftOffset value from the tooltip position, forcing it further to the right.

Sounds confusing, but you can think of it this way: use a negative value to place
the tooltip over the element, a positive value to move it away. For example, to
position a tooltip over an element, you can use a value like this one:

leftOffset: -20

Chapter 10: Expanding Your Interface 385

Tooltips

• sticky determines whether a tooltip remains open after you mouse off an ele-
ment. Normally, a tooltip immediately disappears once you mouse off the ele-
ment with the tooltip. However, you can make the tooltip stick around until a
visitor clicks a “close” link. You can use this effect to make a small form appear
when a visitor mouses over a “login” link, for instance. The tooltip with the
form remains open until the visitor fills out the form.

You use this option by setting its value to true:

sticky:true

You can control the text and position of the “close” link using the next two
options.

• closePosition controls where the “close” link appears when creating a “sticky”
tooltip (see the sticky option above). This option has three settings: 'top', 'bot-
tom', or 'title'. The 'top' setting positions the “close” link at the top of the tool-
tip’s content region, while the 'bottom' setting positions it at the bottom of the
tooltip. The 'title' option places the link in the right side of the tooltip title bar.

closePosition:'bottom'

• closeText specifies the text that appears in the “close” link when using the sticky
option, as described in the previous two options. Normally, the setting uses the
word “close,” but you can change the text to, say, “close this tooltip,” like this:

closeText:'close this tooltip'

In addition, you can supply HTML instead of just text, so if you want to use a
graphic image as a close button, you can simply supply a valid tag like this:

closeText:''

• fx lets you add “special effects” to the appearance of a tooltip. You can either
slide in a tooltip, or make a tooltip fade into view. This option is a bit trickier
than the other ones, since it requires another object literal that specifies both
the effect and its speed. For example, to make a tooltip fade in over the course
of one second, use this code:

fx: {

 open:'fadeIn',

 openSpeed: 1000

}

To make a tooltip slide down into view in half a second, use the following:

fx: {

 open:'slideDown',

 openSpeed: 500

}

The fx option relies on the slideDown and fadeIn jQuery effects discussed on
pages 245 and 244.

386 JavaScript: The Missing Manual

Tooltips

You can combine any number of these options to control the way a tooltip is dis-
played. For example, say you want to use the title method of displaying a tooltip
(see page 377). You also want the tooltip to fade into view, to not have a drop
shadow, to be 200 pixels wide, and to remain open until the visitor clicks a “close”
link in the tooltip’s title bar:

$('.tip').cluetip({

 splitTitle: '|',

 fx: {

 open:'fadeIn',

 openSpeed:1000

 },

 dropShadow:false,

 width:200,

 sticky:true,

 closePosition:'title'

});

Formatting Tooltips
The Cluetip plug-in comes with several predefined styles as provided in the jquery.
cluetip.css file. The basic style is called 'default', and there’s also a style called 'jtip'.
To define a new style name, you can pass a new value for the cluetipClass option to
the cluetip() function:

$('.tip').cluetip({

 clueTipClass: 'jtip'

});

However, you don’t really need to go to this bother (unless you like the look of the
pre-defined jtip styles). To customize the look of the tooltip, it’s a lot easier to just
edit the styles provided in the jquery.cluetip.css file.

To understand how the supplied styles work, you need to understand the struc-
ture of the HTML that the Cluetip plug-in produces when it creates a tooltip; take
a look at Figure 10-12. Basically there are a series of <div> tags that structure the
tooltip:

• The outer container is a <div> tag with an ID of cluetip-default. Actually, the
“default” part of the ID can change if you set the clueTipClass option, discussed
on page 393. For example, if you set the clueTipClass to jtip, then the ID of the
tooltip’s outer <div> tag will be cluetip-jtip.

In the jquery.cluetip.css file, you’ll find the style .cluetip-default. That style formats
this <div>.

Chapter 10: Expanding Your Interface 387

Tooltips

In addition, a tooltip can appear either to the left, right, top, or bottom of the
element. Depending upon the tooltip’s placement, a second class name is added
to the container <div>: either clue-right-default, clue-left-default, clue-top-
default, or clue-bottom-default. These different class names are used for format-
ting arrows (see the arrows option on page 383).

• Inside the main tooltip <div> is another <div> with the ID cluetip-outer. This
<div> contains the tooltip title, the tooltip content, and (if the sticky option is
turned on) the link to close an open tooltip. The style .cluetip-default #cluetip-
outer in the jquery.cluetip.css file formats this <div>, adding an overall back-
ground color to the tooltip.

• The tooltip title is an <h3> tag with the ID cluetip-title. The style .cluetip-default
h3#cluetip-title in the style sheet formats the appearance of the tooltip title. So if
you want to change the font, font-size, or background of the title, edit this style.

• The body of the tooltip is placed into a <div> with the ID cluetip-inner. The
style supplied in the style sheet, .cluetip-default #cluetip-inner, sets 10 pixels of
padding on the element, but you can add additional CSS properties to change
the look of the content inside.

In addition, you can create descendent selectors to target different elements
inside the tooltip. For example, say the tooltip content includes HTML pulled
from a HTML file (see page 379 for more on how this technique works). The
HTML includes several <p> tags; the following descendent selector will apply to
those tags:

.cluetip-default #cluetip-inner p

Figure 10-12:
To create a tooltip, the Cluetip plug-in
produces a somewhat complex nest of <div>
tags to hold the different parts of a tooltip
(like the title and tooltip content). Each
element has a unique ID that makes it easy
to style a tooltip using CSS. The jquery.
cluetip.css file includes styles using these IDs.
To change the look of the tooltips, just edit
the CSS in that style sheet.

388 JavaScript: The Missing Manual

Tooltips

• If you’re using the sticky option (page 385), the close link is contained inside a
<div> with the ID cluetip-close. The style .cluetip-default div#cluetip-close con-
trols the formatting for that <div>. To control the look of the link itself, add the
style .cluetip-default div#cluetip-close a to the style sheet and add the CSS prop-
erties you wish to use.

• A tooltip arrow—displayed if the arrows option is turned on—is represented by
an empty <div> tag with the ID cluetip-arrows. Since the placement of the tool-
tip dictates where the arrow appears (on the left, right, top, or bottom) of the
tooltip, there are four different styles that define which graphics are used in
each case. For example, the style .clue-right-default .cluetip-arrows assigns the
graphic used when a tooltip appears to the right of an element. If you want to
replace the images the Cluetip plug-in normally uses with arrows of your own
creation, just replace the files darrowleft.gif, darrowright.gif, darrowdown.gif, and
darrowup.gif in the images folder. You can also rename the images in the jquery.
cluetip.css file.

Cluetip Tutorial
In this tutorial, you’ll use each of the techniques described on page 377 for adding
tooltips to a page. The finished product will look like Figure 10-13.

Note: See the note on page 27 for information on how to download the tutorial files.

Adding a tooltip using the title attribute

1. In a text editor, open the file 10.3.html in the chapter10 folder.

The Cluetip plug-in relies on an external style sheet that creates the basic tool-
tip look. You need to attach that file to the page.

2. Click in the empty line directly below the link to the style sheet global.css (just
before the first <script> tag), and type: <link href="jquery.cluetip.css"
rel="stylesheet" type="text/css">.

As discussed on page 378, this style sheet provides the necessary style informa-
tion to display a tooltip.

This file already has two external JavaScript files linked to the page: the jquery.js
and jquery.cluetip.js files. The Cluetip plug-in requires the jQuery file to work.
In addition, the page already has a <script> tag with the $(document).ready()
function in place. But before you add any JavaScript, you’ll add the necessary
HTML to add a tooltip.

3. A few lines below the opening <body> tag you’ll see the HTML <a href="http:/
/www.sawmac.com/missing/js/">. Modify that code to look like this:

<a href="http://www.sawmac.com/missing/js/" class="titleTip"

title="JavaScript: The Missing Manual|The supplemental Web site for this

book.">

Chapter 10: Expanding Your Interface 389

Tooltips

The class name will come in hand when you need to tell the Cluetip plug-in
which tags to add tooltips to. The title attribute is used here to supply both the
title and content of the tooltip (in other words, you’re using the method
described on page 377 to create the first tooltip). The | character is used to sepa-
rate the tooltip’s title (“JavaScript: The Missing Manual”) from the tooltip’s
content.

Now you can apply the Cluetip plug-in.

Figure 10-13:
You can use the Cluetip plug-in to add
tooltips to any tag on a page. The
flexibility of the plug-in lets you
position the tooltip (top) and add
effects to the tooltip (middle). The
plug-in even lets you choose different
styles and make a tooltip stay open
on a page until it’s closed (bottom).

390 JavaScript: The Missing Manual

Tooltips

4. Inside the $(document).ready() function, add the following code:

$('.titleTip').cluetip({

 splitTitle: '|'

});

This code starts by selecting every element with the class titleTip applied to it. It
then calls the cluetip() function and passes an object literal to the function. The
splitTitle option (see page 379) identifies which character separates the tooltip
title from the tooltip content in the tag’s title attribute.

5. Save the file and preview it in a Web browser. Move your mouse over the Post-
it note in the top right of the page (see Figure 10-13).

The tooltip should appear—however, it doesn’t appear very close to the ele-
ment you’re mousing over. By supplying a couple more options, you can move
the positioning of the tooltip.

6. Edit the code you added in step 4 so that it looks like this:

$('.titleTip').cluetip({

 splitTitle: '|',

 leftOffset: -30

});

By changing the leftOffset option (discussed on page 384), you can move the
tooltip. Using a negative number draws the tooltip closer to and over the ele-
ment you’re mousing over.

Adding a tooltip using another Web page

In this part of the tutorial, you’ll load the content of an external Web page into the
tooltip’s body. In this case, there’s a file named chia.html containing the HTML
elements that you want to display when someone mouses over the “Let’s go to
Chia-Vet!” link.

First, you’ll modify the HTML a bit.

1. In the 10.3.html file, locate the code and
change it so that it looks like this:

<a href="http://www.chia-vet.com/" class="tip"

title="Chia-Vet.com" rel="chia.html">

You’ve just added three different attributes to this tag. The first, class="tip", will
give jQuery a way to identify this tag as something that should have a tooltip
(see step 2 on page 379). Next, the title attribute supplies the title that will
appear at the top of the tooltip. Finally, the rel attribute points to the file—chia.
html—containing the main body of the tooltip.

Now you just need to add the JavaScript to make it work.

Chapter 10: Expanding Your Interface 391

Tooltips

2. Add an empty line after the last cluetip() function you called in step 6 of the
previous section of the tutorial, and add this code:

$('.tip').cluetip();

That’s all you need to do—all of the information for the Cluetip plug-in is in
the HTML you added in the previous step.

Note that this one line of code would work for any tag that has the class of tip
and the proper title and rel attributes set. In other words, this one line of code
could set up tooltips for dozens of different elements—as long as those ele-
ments have the proper attributes set up in the HTML.

Now, you’ll add an option to display an arrow next to the tooltip’s title.

3. Edit the code you created in the last step so it looks like this:

$('.tip').cluetip({

 arrows: true

});

If you save the file and preview it in a Web browser, you’ll now see an arrow
pointing from the tooltip title to the link. A fade-in effect might look good here.

4. Once again, modify the JavaScript code so it looks like this:

$('.tip').cluetip({

 arrows: true,

 fx: {

 open: 'fadeIn',

 openSpeed: 500

 }

});

The fx option (see page 385) lets you control how the tooltip appears. In this
case, the tooltip will fade into view in half a second (500 milliseconds).

5. Save the page and preview it in Web browser. Mouse over the Chia-Vet.com
link.

The tooltip fades into view (see Figure 10-13).

Adding a tooltip using HTML on the page

In this final part of the tutorial, you’ll learn how to add a tooltip that takes content
from a <div> on the current page. This technique is described on page 380.

When you previewed this page earlier in the tutorial, you probably noticed the sen-
tence “Please fill out this form field with your complete name. For example: Bob

392 JavaScript: The Missing Manual

Tooltips

Smith.” The text is inside a <p> tag, which is, in turn, inside a <div> tag. That
<div> tag has the ID nameInfo. The HTML for this <div> looks like this:

<div id="nameInfo">

<p>Please fill out this form field with your complete name. For example:

Bob Smith.</p>

</div>

The contents of this <div> will end up being the content of the tooltip. First, you
need to add some HTML.

1. Locate the HTML <input type="text" name="name" id="name"> and add two
attributes so it looks like this:

<input type="text" name="name" id="name" class="localTip"

title="Your name here" rel="#nameInfo">

As with the previous method for adding a tooltip (page 390), the class name
provides a way to identify the tags you want to add a tooltip to. The title
attribute is used to provide the title of the tooltip. The rel attribute identifies the
selector used to select the <div> tag containing the tooltip content. In this case,
it points to the <div> tag with the ID nameInfo. You need to include the #
symbol—you’re essentially providing the selector jQuery needs to select the
<div> tag.

Now you just need a little JavaScript to make the tooltip work.

2. Insert a blank line after the previous code you added (see step 4 on page 391)
and type:

$('.localTip').cluetip({

 local: true

});

By now this code should be looking familiar—it selects all tags with the class
name localTip and applies the cluetip() function to them. When you pass the
option local and set it to true, the Cluetip plug-in knows that the content for the
tooltip will come from HTML on this page. If you save the page and preview it,
you’ll see that mousing over the form field opens a tooltip.

Next, you’ll make the tooltip “sticky”—meaning it will stay in place until you
click a “close” link.

3. Add two more options for the cluetip() function:

$('.localTip').cluetip({

 local: true,

sticky: true,

closePosition: 'bottom'

});

Chapter 10: Expanding Your Interface 393

Tooltips

The sticky option makes the tooltip stay open until a “close” link is clicked,
while the closePosition option dictates where the “close” link goes. Finally, you’ll
change the style of the tooltip and add an arrow.

4. Add two final options to the code:

$('.localTip').cluetip({

 local: true,

 sticky: true,

 closePosition: 'bottom',

arrows: true,

cluetipClass: 'jtip'

 });

});

The clueTipClass option (page 386), lets you choose a class name that gets
applied to the tooltip. In this case, the jtip class refers to a set of styles included
with the jquery.cluetip.css style sheet, so the finished tooltip will have a new look.
At this point, the completed script should look like this:

$(document).ready(function() {

 $('.titleTip').cluetip({

 splitTitle: '|',

 leftOffset: -30

 });

 $('.tip').cluetip({

 arrows: true,

 fx: {

 open: 'fadeIn',

 openSpeed: 500

 }

 });

 $('.localTip').cluetip({

 local: true,

 sticky: true,

 closePosition: 'bottom',

 arrows: true,

 cluetipClass: 'jtip'

 });

});

5. Save the file and preview it in a Web browser.

The completed page should have three tooltips that look like Figure 10-13. You
can see a completed version of the tutorial in the complete_10.3.html file. As
mentioned in the Note on page 382, you probably won’t use all three of these

394 JavaScript: The Missing Manual

Creating Sortable
Tables

techniques on a single page—the title attribute technique is a quick way to add
simple tooltips, while the other two techniques provide a way to create more
elaborate tooltips containing different HTML tags.

Creating Sortable Tables
HTML data tables are great for displaying information in a spreadsheet format.
However, unlike spreadsheets in a program like Excel, HTML tables don’t let you
sort the information inside the table. If you want to see all the items in the first col-
umn sorted in alphabetical order, for example, you’re out of luck—unless you use
JavaScript.

The Tablesorter jQuery plug-in, written by Christian Bach, makes an otherwise
complex task a simple matter of adding a single line of JavaScript. Then your visi-
tors can view your information sorted any way they like just by clicking a column
heading.

1. Create a HTML data table.

If you’ve been building Web sites for a while, you know that Web designers
have used HTML tables for lots of different things, from structuring forms to
laying out Web pages. The Tablesorter plug-in depends on having the table’s
HTML structured in a particular way. Specifically, you must use the <thead>
tag to enclose the row containing column headers, and the <th> tag inside the
<thead> tag to indicate the cells that provide the header information (like
Product, and Cost shown in Figure 10-14).

You must also use the <tbody> tag around the rows that contain the actual data
for the table (<td> tags). If you’re unfamiliar with these tags and how to use
them, you can find more information at www.htmldog.com/reference/htmltags/
thead/ and www.htmldog.com/reference/htmltags/tbody/.

Here’s an example of a basic table using the <thead> and <tbody> tags:

<table>

<thead>

<tr>

 <th scope="col">Brand</th>

 <th scope="col">Price</th>

 <th scope="col">Power Source</th>

</tr>

</thead>

<tbody>

<tr>

 <td>Chinook Push-o-matic Indoor Mower</td>

 <td>$247.00</td>

 <td>Mechanical</td>

</tr>

http://www.htmldog.com/reference/htmltags/thead/
http://www.htmldog.com/reference/htmltags/thead/
http://www.htmldog.com/reference/htmltags/tbody/

Chapter 10: Expanding Your Interface 395

Creating Sortable
Tables

<tr>

 <td>Sampson Deluxe Apartment Mower</td>

 <td>$370.00</td>

 <td>Mechanical</td>

</tr>

</tbody>

</table>

2. Attach the jQuery file.

This part should be obvious by now: if you’re using a jQuery plug-in, you need
to include the jQuery library file first. See page 172 for instructions on adding
jQuery to a page.

3. Attach the Tablesorter file.

The Tablesorter plug-in is in a separate JavaScript file that you need to include
on the page after the jQuery file. You can download the plug-in at www.
tablesorter.com (how’s that for a straightforward domain name?). You can also
find it in the tutorial files, in the js folder, where it’s called jquery.tablesorter.js.
Of course, you attach this file as you would any external JavaScript file (page
24). For example:

<script type="text/javascript" src="jquery.tablesorter.js"></script>

4. Call the tablesorter() function.

This plug-in is very easy to use. If you don’t happen to need any of the plug-in’s
bells-and-whistles (described in the box on page 396), all you have to do is use
jQuery to select the table you wish to make sortable and then call the
tablesorter() function. As usual, you add your jQuery code within a <script> tag
and within jQuery’s $(document).ready() function:

<script type="text/javascript">

$(document).ready(function() {

 $('table').tablesorter();

});

</script>

Since $('table') is jQuery’s way of selecting every <table> tag element, the code
above assumes that there are only data tables on the page and that you want
every table to be sortable. If you want just a specific table to be sortable, add an
ID to the table (for example, <table id="sortable">), and then call the function
like this:

$('#sortable').tablesorter();

And that’s all there is to it. There are a handful of configuration options that you
can try, like sorting the table in a particular order when the page loads (see the box
on page 396).

http://www.tablesorter.com
http://www.tablesorter.com

396 JavaScript: The Missing Manual

Creating Sortable
Tables

Styling the Table
While you don’t need to add any formatting to the tables to make the Tablesorter
plug-in work, it’s a good idea to provide some feedback to let visitors know that
they can click on a column header to sort the table. Equally important, you can use
formatting to indicate which column is being sorted.

First, you’ll want to make sure that a column header looks clickable. Normally,
hovering over a <th> tag doesn’t make the cursor change into the familiar “you
can now click” finger that Web browsers use for links. To make the cursor change,
you just need to create a style for the table’s <th> tag. Open the style sheet for that
page and add a style like this:

th { cursor: pointer; }

If there are other tables on the page, you may want to pinpoint just the headers for
the sortable table. If you added a class name of sortable to the <table> tag for any
tables you wish to make sortable, you can create a more targeted style like this:

.sortable th { cursor: pointer; }

POWER USERS’ CLINIC

More Ways to Sort Tables
If the information in your HTML table isn’t already sorted
the way you want it, (hey, manually rearranging data in an
HTML table is a pain!), you can force the table to be sorted
when the page loads. Say your Web site’s been around for
a while, and you’ve added a lot of new products to your cat-
alog page. Adding new ones in alphabetical order to the
HTML table is tedious, and a single typo messes up the
whole table. It would be much easier to add new items at
the bottom of the table and then sort the table using Java-
Script. Furthermore, it would be great if you could sort the
table by price on one page, and by product category on
another.

All you do is pass an object literal (page 188) to the
tablesorter() function that includes the key sortList fol-
lowed by an array of sort options. For example, if you want
the table to be sorted by the first column in ascending order
(A–Z, 0–100), use the following:

$('table').tablesorter({
 sortList: [[0,0]]
});

In the object literal, sortList is the name of the option, while
[[0,0]] is the value for that option. The first 0 indicates col-
umn 1, while the second 0 means sort in ascending order
(use 1 to sort in descending order). You need both sets of
[], because you’re actually creating an array where each
array element is another array. In this way, you can sort the
table on two different columns at once. For example, say
column 1 displayed products prices. You might want to sort
by column 1 (so you can list items from cheapest to most
expensive), then for any products that have the same price,
you could then sort by product name, so that all the prod-
ucts that have the same price would be listed in alphabeti-
cal order. If column 3 displayed the product names, you
could pass the following code to the tablesorter() function:

$('table').tablesorter({
sortList : [[0,0],[2,0]]

});

The Tablesorter plug-in has more tricks up its sleeve,
although you probably won’t need them unless you use
lots of data tables on your site. You can learn about them at
http://tablesorter.com/docs/#Configuration.

http://tablesorter.com/docs/#Configuration

Chapter 10: Expanding Your Interface 397

Creating Sortable
Tables

In addition, the Tablesorter plug-in adds a class name whenever you click on a col-
umn header to sort the row. The first time you click on a column header, the class
headerSortDown is added to the <th> tag, and the table is sorted using the data in
the column in ascending order (A–Z, 0–100, or $1–$100). When you click the
header a second time, the table is sorted in descending order (Z–A, 100–0, $100–$0),
and the class headerSortUp is added to the <th> tag.

You can create styles to change the appearance of these headers when a visitor
clicks them. For example, the style th.headerSortDown will apply to the <th> tag
when it’s first clicked and the table is sorted on that column; the style th.headerSortUp
applies to the <th> tag when it’s clicked a second time and resorted. A common
technique is to add a background image of an arrow pointing in the direction the
data is sorted—you’ll see an example in the tutorial.

Using the Tablesorter plug-in to stripe tables

Back on page 30, you learned how to use jQuery to quickly add background color
to every other row in a table. If you plan on using the Tablesorter plug-in on a
table, you can skip that code you learned earlier—the plug-in has that ability built in.

To stripe a table using the Tablesorter plug-in, just pass this object literal to the
tablesorter() function: {widgets:['zebra']}. For example, here’s how you can rewrite
the code from step 6 on page 32 to add the table-striping functionality:

$('table').tablesorter({widgets:['zebra']});

Adding this code to the call to the Tablesorter function makes the plug-in add the class
even to every even row in the table and the class odd to every odd row in the table. The
only other step is creating styles to format the look of those table rows. For example:

tr.even { background-color: #F34; }

tr.odd { background-color: #034; }

Tablesorter Tutorial
In this tutorial, you’ll take a basic HTML table and turn it into an interactive data
table that your visitors can sort just by clicking a column heading (see
Figure 10-14).

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 10.4.html in the chapter10 folder.

The first step is to link to the required external JavaScript files—the jQuery
library and the Tablesorter plug-in file.

2. Locate the empty line directly before the closing </head> tag, and add the fol-
lowing code:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript" src="../js/jquery.tablesorter.js"></script>

398 JavaScript: The Missing Manual

Creating Sortable
Tables

The first line links to the jQuery library, while the second links to the plug-in.
Now you’ll add another <script> tag and the now-famous $(document).ready()
function.

3. Add a blank line after the two <script> tags you just inserted, and type:

<script type="text/javascript">

$(document).ready(function() {

}); // end ready()

</script>

4. Click in the empty line inside the ready() function (the third line in the previous
step) and type:

$('table.sortable').tablesorter();

The $('table.sortable') selects any <table> tag that has the class sortable applied
to it. Then the tablesorter() function is called. And that’s it, really. The table is
completely sortable. Preview it in a Web browser and click any of the column
headers to sort the table using that column’s data.

Tip: You can make more than one table per page sortable. For example, in step 4, every <table> tag with
the class sortable will have the magic Tablesorter plug-in applied to it.

Figure 10-14:
The Tablesorter plug-in is
a complicated set of
JavaScript programming
that’s very easy to use.

Chapter 10: Expanding Your Interface 399

Creating Sortable
Tables

Although the sorting works, it doesn’t provide any feedback about which column
was selected. In addition, you can’t really tell that you can click on a column
header because the mouse pointer doesn’t change.

5. In a text editor, open the file tables.css. Add the following style:

.sortable th { cursor: pointer;

This style changes the cursor to a pointer when the mouse moves over the <th>
tag—in other words, it behaves as if the visitor were mousing over a link. Next
you’ll add two styles to change the way the column headers appear when
clicked.

6. Add two more styles to the tables.css file:

th.headerSortDown {

 background: #A6B8C2 url(images/down_arrow.png) no-repeat 98% 7px;

}

th.headerSortUp {

 background: #A6B8C2 url(images/up_arrow.png) no-repeat 98% 5px;

}

These two styles simply add a background color and image to the header when
clicked. Each style is applied based on how the column is sorted (ascending or
descending).

Now you’ll add the code to stripe the table.

7. Return to the file 10.4.html and add {widgets:['zebra']} inside the tablesorter()
function. The completed script should look like this:

<script type="text/javascript">

$(document).ready(function() {

 $('table.sortable').tablesorter({widgets:['zebra']});

});

</script>

Although this code makes the plug-in add class names to alternating table rows,
you won’t see anything until you add a style to the style sheet.

8. In your text editor, return to the tables.css file and add one last style:

.sortable tr.even { background-color: #F34; }

This style changes the background color of any table row with the class even
that’s also inside another tag with the class sortable.

Save the file and preview 10.4.html in a Web browser. The table should look like
Figure 10-14. Notice that the table striping still works when the rows are moved
around each time you sort a column. Very slick.

A finished version of this tutorial (complete_10.4.html and complete_tables.css) is
in the chapter10 folder inside the tutorial folder.

3
III.Part Three:
Ajax: Communicating
with the Web Server

Chapter 11: Introducing Ajax

Chapter 12: Basic Ajax Programming

403

Chapter 11chapter

11

Introducing Ajax

JavaScript is great, but it can’t do everything. If you want to display information
from a database, dash off an email with results from a form, or just download
additional HTML, you need to communicate with a Web server. For these tasks,
you usually need to load a new Web page. For example, when you search a data-
base for information, you usually leave the search page and go to another page of
results.

Of course, waiting for new pages to load takes time. And, if you think about it, the
concept of a page disappearing and then reappearing is pretty strange in general.
Imagine if you were using Microsoft Word and every time you opened a new file
the program’s menus, panels, and windows suddenly disappeared and then reap-
peared when the new file opened. Sites like Flickr, Twitter, Google Maps, and
Gmail are blurring the line between Web sites and desktop computer programs. If
anything, people want Web sites to feel faster and more responsive, like their desk-
top programs. The technology that makes this new generation of Web applica-
tions possible is a programming technology called Ajax.

Ajax lets a Web page ask for and receive a response from a Web server and then
update itself without ever having to load a new Web page. The result is a Web site
that feels more responsive. When you visit Google Maps, for example (see
Figure 11-1), you can zoom into the map; move north, south, east, or west; and
even grab the map and drag it around. All of these actions happen without ever
loading a new Web page.

404 JavaScript: The Missing Manual

What Is Ajax?

What Is Ajax?
The term Ajax was originally coined in 2005 to capture the essence of new Web
sites coming from Google—Google Maps (http://maps.google.com), Gmail (www.
gmail.com), and Google Suggest (www.google.com/webhp?complete=1&hl=en). Ajax
stands for Asynchronous JavaScript and XML, but it isn’t an “official” technology
like HTML, JavaScript, or CSS. It’s a term that refers to the interaction of a mix of
technologies—JavaScript, the Web browser, and the Web server—to retrieve and
display new content without loading a new Web page.

Note: If you want to read the original blog post where the term Ajax was first used, visit www.
adaptivepath.com/ideas/essays/archives/000385.php.

In a nutshell, current Web browsers let you use JavaScript to send a request to a
Web server, which, in turn, sends some data back to the Web browser. The Java-
Script program takes that data, and does something with it. For example, if you’re

Figure 11-1:
Google Maps (http://
maps.google.com) was
one of the first large sites
to use Ajax to refresh
page content without
loading new Web pages.
The site’s responsiveness
is due to the fact that
only the map data
changes—the other parts
of the page such as the
logo, search box, search
results sidebar, and map
controls remain the same
even as you request new
map information.

(http://maps.google.com
http://www.gmail.com
http://www.gmail.com
http://www.google.com/webhp?complete=1&hl=en
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php

Chapter 11: Introducing Ajax 405

What Is Ajax?

on a Google Maps page and click the “north” arrow button, the page’s JavaScript
requests new map data from the Google server. That new information is then used
to display a new chunk of the map.

While you may not create the next Google Maps, there are many simple things that
you can do with Ajax technologies:

• Display new HTML content without reloading the page. For example, you can
use the Tabs plug-in that you learned about in the last chapter (page 364) to
request HTML from the server and display it in a tabbed panel. In other words,
you can create a lean Web page that loads quickly and only displays content as
it’s requested. You’ll learn how to do this on page 439.

• Submit a form and instantly display results. For example, imagine a “signup for
our newsletter” form; when someone fills out and submits the form, the form
disappears and a “you’re signed up for our newsletter” message immediately
appears. You’ll learn how to make such forms using Ajax on page 426.

• Log in without leaving the page. Here’s another form-related use of Java-
Script—a page with a small “login” form. Fill out the form, hit the “login” but-
ton, and you’re not only logged in, the page transforms to show your login
status, user name, and perhaps other information specific to you.

• Star-rating widget. On sites that list books, movies, and other products, you
often see a star rating—usually 1 to 5 stars—to indicate how visitors have rated
the item’s quality. These rating systems usually let you voice your opinion by
clicking a number of stars. Using Ajax, you can let your visitors cast votes with-
out actually leaving the Web page—all they have to do is click the stars. There’s
a cool jQuery plug-in that does just that: http://plugins.learningjquery.com/half-
star-rating/.

• Browsing through database information. Amazon is a typical example of an
online database you can browse. When you search Amazon for books on, say,
JavaScript, you get a list of the JavaScript books Amazon sells. Usually, there are
more books than can fit on a single Web page, so you need to jump from page
to page to see “the next 10 items.” Using Ajax, you can move through database
records without having to jump to another page.

There’s nothing revolutionary about any of the tasks listed above—except for the
“without loading a new page” part, you can achieve the same basic results using
regular HTML and some server-side programming (to collect form data, or access
database information, for example). However, Ajax makes Web pages feel more
responsive, and improves the user experience of a site. In fact, Ajax lets you create
Web sites that feel more like desktop programs and less like Web pages.

http://plugins.learningjquery.com/half-star-rating/
http://plugins.learningjquery.com/half-star-rating/

406 JavaScript: The Missing Manual

Ajax: The Basics

Ajax: The Basics
Taken together, the technologies behind Ajax are pretty complicated. They include
JavaScript, server-side programming, and the Web browser all working together.
However, the basic concept is easy to grasp, as long as you understand all of the
steps involved. Figure 11-2 shows the difference between how traditional HTML
Web pages and Web pages with Ajax communicate with the Web server.

Pieces of the Puzzle
Ajax isn’t a single technology—it’s a mixture of several different technologies that
work together to make a more effective user experience. In essence, Ajax brings
together three different components:

Figure 11-2:
The traditional way a Web browser communicates with
a server (top) involves requesting a file from the
server, and receiving a Web page back. It’s a constant
loading and reloading of Web pages. With Ajax, the
Web browser only requests information. The server
returns the requested data, and the Web page’s
content and appearance update (with JavaScript’s
help, of course).

Chapter 11: Introducing Ajax 407

Ajax: The Basics

• The Web browser. Obviously, you need a Web browser to view Web pages and
run JavaScript, but there’s a secret ingredient built into most Web browsers that
makes Ajax possible: the XMLHttpRequest object. This odd-sounding term is
what lets JavaScript talk to a Web server and receive information in response.

The XMLHttpRequest object was actually introduced in Internet Explorer 5
many years ago, but has gradually made its way into all the major Web brows-
ers. You’ll learn more about it on page 408.

• JavaScript does most of the heavy lifting in Ajax. It sends a request to the Web
server, waits for a response, processes the response, and (usually) updates the
page by adding new content or changing the display of the page in some way.
Depending upon what you want your program to do, you might have Java-
Script send information from a form, request additional database records, or
simply send a single piece of data (like the rating a visitor just gave to a book).
After the data is sent to the server, the JavaScript program will be ready for a
response back from the server—for example, additional database records or just
a simple text message like “Your vote has been counted.”

With that information, JavaScript will update the Web page—display new data-
base records, for example, or inform the visitor that he’s successfully logged in.
Updating a Web page involves manipulating a page’s DOM (Document Object
Model, discussed on page 157) to add, change, and remove HTML tags and
content. In fact, that’s what you’ve been doing for most of this book: changing a
page’s content and appearance using JavaScript.

• The Web server receives requests from and sends information back to the Web
browser. The server might simply return some HTML or plain text, or it might
return an XML document (see the box on page 427) or JSON data (page 432).
For example, if the Web server receives information from a form, then it might
add that information into a database and send back a confirmation message like
“record added.” Or, the JavaScript program might send a request for the next
10 records of a database search, and the Web server will send back the informa-
tion for those next 10 records.

The Web server part of the equation can get a bit tricky. It usually involves sev-
eral different types of technologies, including a Web server, application server,
and database server. A Web server is really kind of a glorified filing cabinet: it
stores documents and when a Web browser asks for a document, the Web
server delivers it. To do more complicated tasks such as putting data from a
form into a database, you also need an application server and a database server.
An application server understands a server-side programming language like
PHP, Java, C#, Ruby, or Cold Fusion Markup language and lets you perform
tasks that aren’t possible with only an HTML page, like sending email, checking
Amazon for book prices, or storing information in a database. The database
server lets you store information like the names and addresses of customers,
details of products you sell, or an archive of your favorite recipes. Common
database servers include MySQL, PostgreSQL, and SQL Server.

408 JavaScript: The Missing Manual

Ajax: The Basics

Note: The term server can refer either to a piece of hardware or software. In this book, the terms appli-
cation, Web server, and database server refer to different pieces of software that can (and often do) run
on the same machine.

There are many different combinations of Web servers, application servers, and
database servers. For example, you might use Microsoft’s IIS Web server, with
ASP.NET (application server) and SQL server (a database server). Or you can
use Apache (a web server), PHP (an application server), and MySQL (a database).

Note: The combination of Apache, PHP, and MySQL (often referred to simply as AMP) is free and very
common. You’ll find that most Web hosting companies provide these servers. This book’s examples also
use AMP (see the box below).

Talking to the Web Server
The core of any Ajax program is the XMLHttpRequest object. Sometimes just
referred to as XHR, the XMLHttpRequest object is a feature built into current Web
browsers that allows JavaScript to send information to a Web server and receive

UP TO SPEED

Setting Up a Web Server
Ajax works with a Web server—after all, its main purpose is
to let JavaScript send and retrieve information from a
server. While all but one of the tutorials in this and the fol-
lowing chapter will run on your local computer without a
Web server, you’ll probably want to have access to a Web
server if you want to further explore the world of Ajax. If
you’ve already got a Web site on the Internet, one choice is
to test your Ajax programs by moving your files to the Web
server. Unfortunately, this technique is cumbersome—you
have to create the pages on your computer and then move
them to your Web server using a FTP program just to see if
they work.

A better approach is to set up a development server, which
involves installing a Web server on your desktop computer
so you can program and test your Ajax pages directly on
your own computer. This task may sound daunting, but
there are plenty of free programs that make installing all of
the necessary components as easy as double-clicking a file.

On the Windows side, you can install Apache, PHP, and
MySQL using XAMPP (www.apachefriends.org/en/xampp-
windows.html). XAMPP is a free installer that sets up all of

the required elements needed to simulate a real Web site
hosted on the Internet. We’ve provided complete installa-
tion instructions at www.sawmac.com/xampp.

For Mac fans, MAMP (www.mamp.info/en/download.
html) provides an easy-to-use program that includes
Apache, PHP, and MySQL. It’s also free. You can find instal-
lation instructions for MAMP at www.sawmac.com/mamp.

The tutorial on page 426 requires AMP; the tutorials on
pages 413, 433, and 455 will work without a Web server. So
if you want to follow along with that tutorial, you’ll need to
install AMP on your computer using one of the two pro-
grams above. If you already have a Web site that uses a dif-
ferent Web server (for example Microsoft’s IIS), you’ll
probably want to install it on your computer if you plan to
create Ajax applications that you’d like to use on your real
Web site. There are many resources for installing IIS. If you
want to install IIS on Vista, visit http://learn.iis.net/page.
aspx/85/installing-iis7/. XP Pro users can visit www.
webwizguide.com/kb/asp_tutorials/installing_iis_winXP_
pro.asp.

http://www.apachefriends.org/en/xampp-windows.html
http://www.apachefriends.org/en/xampp-windows.html
http://www.sawmac.com/xampp
http://www.mamp.info/en/download.html
http://www.mamp.info/en/download.html
http://www.sawmac.com/mamp
http://learn.iis.net/page.aspx/85/installing-iis7/
http://learn.iis.net/page.aspx/85/installing-iis7/
http://www.webwizguide.com/kb/asp_tutorials/installing_iis_winXP_pro.asp
http://www.webwizguide.com/kb/asp_tutorials/installing_iis_winXP_pro.asp
http://www.webwizguide.com/kb/asp_tutorials/installing_iis_winXP_pro.asp

Chapter 11: Introducing Ajax 409

Ajax: The Basics

information in return. There are basically five steps, all of which can be accom-
plished with JavaScript.

1. Create an instance of the XMLHttpRequest object.

This first step simply tells the Web browser “Hey I want to send some informa-
tion to the Web server, so get ready.” In its most basic form, creating an
XMLHttpRequest object in JavaScript looks like this:

var newXHR = new XMLHttpRequest();

Unfortunately, while that code works in Firefox, Safari, Opera, and Internet
Explorer 7, IE 6 uses a different method altogether. In other words, to complete
this step so it works in the most common Web browsers, you need two differ-
ent sets of code. In fact, there are enough cross-browser problems with Ajax
that is better to use a JavaScript library—like jQuery—to make your Ajax
requests. You’ll learn the jQuery way on page 411.

2. Use the XHR’s open() method to specify what kind of data you’ll send and
where the data will go.

You can send data in two ways using either the GET or POST method—these
are the same options as used with HTML forms. The GET method sends any
information to the Web server as part of the URL—shop.php?productID=34,
for example. In this example, the data is the information that follows the ?:
productID=34, which indicates a name/value pair, where productID is the name
and 34 is the value. Think of the name like the name of a field on a form and
value as what a visitor would type into that field.

Note: The URL you specify for the open() method must be on the same Web site as the page making
the request. For security, Web browsers won’t let you make Ajax requests to other domains.

The POST method sends data separately from the URL. Usually, you use the
GET method to get data back from the server, and the POST method to update
information on the server (for example, to add, update, or delete a database
record). You’ll learn how to use both methods on page 418.

You also use the open() method to specify the page on the server the data is sent
to. That’s usually a page on your Web server that uses a server-side scripting
language like PHP to retrieve data from a database or perform some other pro-
gramming task, and you point to it by its URL. For example, the following code
tells the XHR object what method to use (GET) and which page on the server to
request:

newXHR.open('GET', 'shop.php?productID=34');

Note: The POST method also requires you to specify a request header, which dictates what type of data
the browser is sending to the Web server. But in this book you don’t have to worry about this step, since
you’ll be using jQuery’s Ajax tools, which take care of such details automatically.

410 JavaScript: The Missing Manual

Ajax: The Basics

3. Create a function to handle the results.

When the Web server returns a result like new database information, a confir-
mation that a form was processed, or just a simple text message, you usually
want to do something with that result. That could be as simple as writing the
message “form submitted successfully,” or replacing an entire table of database
records with a new table of records. In any case, you need to write a JavaScript
function to deal with the results—this function (called a callback function) is
often the meat of your program.

Usually, this function will manipulate the page’s content (that is, change the
page’s DOM) by removing elements (for example, removing a form that was
just submitted using Ajax), adding elements (a “form submitted successfully”
message, or a new HTML table of database records), or changing elements (for
example, highlighting the number of stars a visitor just clicked to rate a product).

You also need to tell the XHR object about the callback function with code like
the following:

newXHR.onreadystatechange = myCallbackFunction;

There are a few other steps involved here, but you’ll be using jQuery to handle
the details, so the only thing you really need to understand about the callback
function is that it’s the JavaScript that deals with the server’s response.

4. Send the request.

To actually send information to the Web server, you use the XHR object’s send()
method. Everything up to this point is just setup—this step is what tells the
Web browser, “We’re good to go…send the request!” If you’re using the GET
method, this step is as simple as:

newXHR.send(null);

The null part indicates that you’re not sending any additional data. (Remem-
ber, with the GET method, the data is sent in the URL like this: search.
php?q=javascript, where the q=javascript is the data.) With the POST method,
on the other hand, you must provide the data along with the send() method
like this:

newXHR.send('q=javascript');

Again, don’t sweat the details here—you’ll see how jQuery simplifies this pro-
cess greatly starting in the next section.

Once the request is sent, your JavaScript program doesn’t necessarily stop. The
“A” in Ajax stands for asynchronous, which means that once the request is sent,
the JavaScript program can continue doing other things. The Web browser
doesn’t just sit around and wait for the server to respond.

Chapter 11: Introducing Ajax 411

Ajax the jQuery
Way

5. Receive the response.

After the server has processed the request, it sends back a response to the Web
browser. Actually, the callback function you created in step 3 handles the
response, but meanwhile the XHR object receives several pieces of information
when the Web server responds, including the status of the request, a text
response, and possibly an XML response.

The status response is a number indicating how the server responded to the
request: you’re probably familiar with the status number 404—it means the file
wasn’t found. If everything went according to plan, you’ll get a status of 200 or
possibly 304. If there was an error processing the page, you’ll get a 500 “Inter-
nal Server Error” status report, and if the file you requested is password pro-
tected, you’ll get a 403 “Access Forbidden” error.

In addition, most of the time, you’ll receive a text response, which is stored in
the XHR object’s responseText property. This response could be a chunk of
HTML, a simple text message, or a complex set of JSON data (see page 432).
Finally, if the server responds with an XML file, it’s stored in the XHR object’s
responseXML property. Although XML is still used, it’s more common to pro-
gram server pages to return text, HTML, or JSON data, so you may never have a
need to process an XML response.

Whatever data the server returns, it’s available to the callback function to use to
update the Web page. Once the callback function finishes up, the entire Ajax
cycle is over. (However, you may have multiple Ajax requests shooting off at the
same time.)

Ajax the jQuery Way
There are enough differences between browsers that you have to write extra code
for your Ajax programs to work in Internet Explorer, Firefox, Safari, and Opera.
And although the basic XMLHttpRequest process isn’t too complicated, since you
must take so many steps each time you make an XHR request, your Ajax program-
ming will go faster if you turn to a JavaScript library.

The jQuery library provides several functions that greatly simplify the entire pro-
cess. After all, if you look at the five steps in an Ajax request (page 409), you’ll see
that the interesting stuff—the programming that actually does something with the
server’s response—happens in just a single step (step 3). jQuery simplifies all of the
other steps so you can concentrate on the really fun programming.

Using the load() Function
The simplest Ajax function offered by jQuery is load(). This function loads an
HTML file into a specified element on the page. For example, say you have an area
of a Web page dedicated to a short list of news headlines. When the page loads, the

412 JavaScript: The Missing Manual

Ajax the jQuery
Way

five most recent news stories appear. You may want to add a few links that let visi-
tors choose what type of news stories are displayed in this area of the page: for
example, yesterday’s news, local news, sports news, and so on. You can do this by
linking to separate Web pages, each of which contain the proper news items—but
that would force your visitors to move onto another Web page (and wouldn’t use
Ajax at all!).

Another approach would be to simply load the selected news stories into the news
headlines box on the page. In other words, each time a visitor clicks a different
news category, the Web browser requests a new HTML file from the server, and
then places that HTML into the headlines box—without leaving the current page
(see Figure 11-3).

To use the load() function, you first use a jQuery selector to identify the element
on the page where the requested HTML should go; you then call the load() func-
tion and pass the URL of the page you wish to retrieve. For example, say you have
a <div> tag with the ID headlines and you want to load the HTML from the file
todays_news.html into that div. You can do that like this:

$('#headlines').load('todays_news.html');

When this code runs, the Web browser requests the file todays_news.html from the
Web server. When that file is downloaded, the browser replaces whatever is cur-
rently inside the <div> with the ID headlines with the contents of the new file.

UP TO SPEED

Learning the Ways of the Server Side
Unless you’re using jQuery’s basic load() function (page
411) to insert HTML from a page on the server into the
page in the Web browser, you’ll need to have server-side
programming to use Ajax. The main point of Ajax is to let
JavaScript talk to and get information from the server. Most
of the time, that means there’s another script running on
the Web server that completes tasks JavaScript can’t do, like
reading information from a database, sending off an email,
or logging a user in.

This book doesn’t cover the server side, so you’ll need to
learn how to program using a server-side technology like
PHP, .NET, JSP, ASP, or Cold Fusion (or you’ll need some-
one who can program the server side bit for you). If you
haven’t picked a server-side language yet, PHP is a good
place to start: it’s one of the most popular Web server
programming languages, it’s free, and nearly every Web

hosting company offers PHP on its servers. It’s a powerful
language that’s built for the Web, and it’s relatively easy to
learn. If you want to get started learning server-side pro-
gramming with PHP, you should check out Learning PHP &
MySQL (O’Reilly), PHP & MySQL Web Development All-in-
One Desk Reference for Dummies (For Dummies), or PHP
Solutions: Dynamic Web Design Made Easy (Friends of
Ed). Any of these books is a good place to start.

There are also plenty of free online resources for learning
PHP. PHP 101 (http://devzone.zend.com/node/view/id/
627) from Zend (one of the main companies that supports
the development of PHP) has plenty of basic (and
advanced) information. The W3Schools web site also has a
lot of information for the beginning PHP programmer at
www.w3schools.com/PHP.

http://devzone.zend.com/node/view/id/627
http://devzone.zend.com/node/view/id/627
http://www.w3schools.com/PHP

Chapter 11: Introducing Ajax 413

Ajax the jQuery
Way

The HTML file can be a complete Web page (including the <html>, <head>, and
<body> tags), or just a snippet of HTML—for example, the requested file might
just have a single <h1> tag and a paragraph of text. It’s OK if the file isn’t a com-
plete Web page, since the load() function inserts only that HTML snippet into the
current (complete) page.

Note: You can only load HTML files from the same site. For example, you can’t load Google’s home
page into a <div> on a page from your site using the load() function. (You can display a page from
another Web site using an iframe—this is the technique used by the greybox2 plug-in presented on page 286.)

When using the load() function, you must be very careful with file paths. First, the
URL you pass to the load() function is in relation to the current page. In other
words, you use the same path as if you were linking from the current page to the
HTML file you wish to load. In addition, any file paths in the HTML don’t get
rewritten when the HTML is loaded into the document, so if you have a link or
include images in the HTML file that’s loaded, those URLs need to work in relation
to the page using the load() function. In other words, if you’re using document-
relative paths (see the box on page 25) and the loaded HTML file is located in
another folder on your Web site, images and links might not work when the
HTML is loaded into the current page. Here’s a simple workaround: just use root-
relative links, or make sure the file you load is located in the same directory as the
page that’s using the load() function.

The load() function even lets you specify which part of the downloaded HTML file
you wish to add to the page. For example, say the page you request is a regular
Web page from the site; it includes all of the normal Web page elements such as a
banner, navigation bar, and footer. You may just be interested in the content from
a single area of that page—for example just a particular <div> and its contents. To
specify which part of the page you wish to load, insert a space after the URL, fol-
lowed by a jQuery selector. For example, say in the above example you want to
insert the content only inside a <div> with the ID news in the todays_news.html
file. You could do that with this code:

$('#headlines').load('todays_news.html #news');

In this case, the Web browser downloads the page todays_news.html, but instead of
inserting the entire contents of the file into the headlines <div>, it extracts just the
<div> tag (and everything inside it) with an ID of news. You’ll see this technique in
the following tutorial.

Tutorial: The load() Function
In this tutorial, you’ll use jQuery to replace the traditional click-and-load method
of accessing HTML (Figure 11-3, top) with a more responsive method that simply
replaces content on the current page with new HTML (Figure 11-3, bottom).

414 JavaScript: The Missing Manual

Ajax the jQuery
Way

Overview

To get a handle on what you’ll be doing in this tutorial, you first need to under-
stand the HTML of the page you’re about to “Ajaxify.” Take a look at Figure 11-4:
The page has a bulleted list of links, each of which points to a different page con-
taining different news headlines. The tag used to create the list has the ID
links. In addition, there’s an empty <div> tag in the right sidebar (below the “News
Headlines” header). That div has an ID of headlines and is, at this point, an empty
placeholder. Eventually, once you use jQuery’s load() function, clicking one of the
links will load news stories into the <div>.

Currently, clicking a link just opens a Web page with a series of news items. In
other words, this page works the regular HTML way—it has links that point to
other pages. In fact, without the nifty JavaScript you’re about to add, the page

Figure 11-3:
The top set of images represents the normal method of
accessing additional HTML—links. Click a link on a page
(left) and it loads a brand new page (right). However,
using Ajax and jQuery’s load() function, you can access
the same HTML without leaving the current Web page
(bottom). Clicking a link loads the HTML content into a
<div> tag (circled).

Chapter 11: Introducing Ajax 415

Ajax the jQuery
Way

works perfectly fine—it’ll get any visitors to the news they’re after. That’s a good
thing, because not everyone has JavaScript enabled in their browsers. In addition,
if the only way to get to those news items is through JavaScript, search engines
would skip over that valuable content.

Note: You can use the load() function directly from your hard drive without a Web server, so you don’t
need to set up a server on your computer (see the box on page 408) to follow along.

This tutorial provides an example of progressive enhancement—it functions just
fine without JavaScript, but works even better with JavaScript. In other words,
everyone can access the content, and no one’s left out. To implement progressive
enhancement, you’ll add JavaScript to “hijack” the normal link function, then get
the URL of the link, and then download the link to the page and put its contents
into the empty <div>. It’s as simple as that.

Note: See the note on page 27 for information on how to download the tutorial files.

The programming

1. In a text editor, open the file 11.1.html in the chapter11 folder.

You’ll start by assigning a click event function to each of the links in the bul-
leted list in the main part of the page. The bulleted list (the tag) has an ID
of links, so you can easily use jQuery to select each of those links and assign a
click() function to them.

Figure 11-4:
When you want to use JavaScript
to add content to a page, it’s
common to insert an empty <div>
tag with an ID. You can then select
that <div> and insert content when
you want. For example, this page
has an empty div (<div
id="headlines">) in the right
sidebar. With a little Ajax power,
it’s a simple matter to fill that div
with the contents of any of the
three linked pages listed in the
middle of the page.

416 JavaScript: The Missing Manual

Ajax the jQuery
Way

2. Click in the empty line inside the $(document).ready() function, and type:

$('#links a').click(function() {

});

The $('#links a') is the jQuery way to select each of those links, and the .click()
function lets you assign a function (an event handler) to the click event (see
page 201 if you need a refresher on events).

The next step is to extract the URL from each link.

3. Inside the click() function (the blank line in step 2 above) type var url=$(this).
attr('href'); and press Return to create an empty line.

This line of code creates a new variable (url) and assigns it the value of the link’s
href attribute. As you’ll recall from page 180, when you attach a function (like
the click() function) to a jQuery selection ($('#links a') in this case), jQuery
loops through each element in the selection (each link) and applies the func-
tion to each one. The $(this) is just a way to get hold of the current element
being worked on. In other words $(this) will refer to a different link as jQuery
loops through the collection of elements. The attr() function (discussed on
page 189) can retrieve or set a particular element for a tag; in this case, the func-
tion extracts the href property to get the URL of the page the link points to. In
the next step, you’ll use that URL along with the load() function to retrieve the
page’s content and display it inside a <div> on the page.

4. Type $('#headlines').load(url); so the script looks like this:

$('#links a').click(function() {

 var url=$(this).attr('href');

 $('#headlines').load(url);

});

Remember that the empty <div> tag on the page—where the downloaded
HTML will go—has an ID of headlines, so $('#headlines') selects that <div>.
The load() function then downloads the HTML at the URL that the previous
line of code retrieved, and then puts that HTML in the <div> tag. Yes, there’s
actually lots of other stuff going on under the hood to make all that happen, but
thanks to jQuery, you don’t have to worry about it.

The page isn’t quite done yet. If you save the file and preview it in a Web
browser—go ahead, try it—you’ll notice that clicking one of the links doesn’t
load new content onto the page—it actually leaves the current page and loads
the linked page instead! What happened to the Ajax? It’s still there, it’s just that
the Web browser is following its normal behavior of loading a new Web page
when a link is clicked. To stop that, you have to prevent the browser from
following the link.

Chapter 11: Introducing Ajax 417

Ajax the jQuery
Way

5. Add a new empty line after the code you typed in the previous step and type
return false; so the script now looks like this:

$('#links a').click(function() {

 var url=$(this).attr('href');

 $('#headlines').load(url);

 return false;

});

This simple step tells the Web browser, “Hey, Web browser, don’t follow that
link.” It’s one way of preventing a browser from following its normal behavior
in response to an event. You can also use jQuery’s preventDefault() function as
described on page 223 to achieve the same effect.

6. Save the file and preview it in a Web browser. Click one of the links.

Now there’s another problem, as you can see in Figure 11-5. The load() func-
tion is working, it’s just that the downloaded file has a lot of HTML you don’t
want—like the same banner, layout, sidebar, and footer as the current page.
What you really want is only a portion of that Web page—the area containing
the news items. Fortunately, the load() function can help here as well.

7. Locate the line with the load() function and add + ' #newsItems' after url. The
finished code should look like this:

$('#links a').click(function() {

 var url=$(this).attr('href');

Figure 11-5:
jQuery’s load() function
will download all of the
HTML for a specified file
and place it into an
element on the current
page. If the downloaded
file includes unneeded
HTML, like a duplicate
banner, sidebar, and
footer, the result can look
like a page within a
page.

418 JavaScript: The Missing Manual

Ajax the jQuery
Way

 $('#headlines').load(url + ' #newsItems');

 return false;

});

As described on page 413, you can specify which part of a downloaded file you
want the load() function to add to the page. To do that, you add a space after
the URL followed by a selector that identifies the part of the downloaded page
you wish to display.

Here’s how the code breaks down into bit-sized chunks: First, on each of the
linked pages, there’s a <div> tag with the ID newsItems. That div contains the
HTML you want—the news items. So you can tell the load() function to only
insert that part of the downloaded HTML by adding a space followed by #news-
Items to the URL passed to load(). For example, if you want to load the file
today.html and place just the HTML inside the newsItems div inside the head-
lines div, you can use this code:

$('#headlines').load('today.html #newsItems');

In this case, you need to combine two strings—the contents of the url variable
and ' #newsItems' to get the proper code—so you use JavaScript’s string concat-
enation operator (the + symbol) like this: load(url + ' #newsItems'). (See page 49
if you need a refresher on how to combine two strings.)

8. Save the file and preview it in a Web browser. Click the links to test it out.

Now the news items—and only the news items—from each linked page should
appear in the right sidebar. Ajax in just a few lines of code! (You’ll find a com-
pleted version of the tutorial—complete_11.1.html—in the chapter11 file for
reference.)

The get() and post() Functions
The load() function described on page 411 is a quick way to get HTML from a
Web server and inject it into a page. But the server may not always return straight
HTML—it may return a message, a code number, or data that you then need to
process further using JavaScript. For example, if you want to use Ajax to get some
database records, the server may return an XML file containing those records (see
the box on page 427) or a JSON object (page 432). You wouldn’t just insert that
data into the page—you first have to get the data and process it in some way to
generate the HTML you want.

jQuery’s get() and post() functions provide simple tools to send data to and
retrieve data from a Web server. As mentioned in step 4 on page 410, you need to
treat the XMLHttpRequest object slightly differently when using either the GET or
POST method. However, jQuery takes care of any differences between the two
methods so the get() and post() functions work identically. (So which should you
use? Read the box on page 420.)

Chapter 11: Introducing Ajax 419

Ajax the jQuery
Way

The basic structure of these functions is:

$.get(url, data, callback);

Or:

$.post(url, data, callback);

Unlike most other jQuery functions, you don’t add get() or post() to a jQuery
selector—in other words, you’d never do something like this: $('#mainContent').
get('products.php'). The two functions stand by themselves and aren’t connected
with any element on the page, so you just use the $ symbol, followed by a period,
followed by either get or post: $.get().

The get() and post() functions accept three arguments: url is a string that contains
the path to the server-side script that processes the data (for example, 'processForm.
php'). The data argument is either a string or a JavaScript object literal containing
the data you want to send to the server (you’ll learn how to create this in the next
section). Finally, callback is the function that processes the information returned
from the server (see the box on page 246 for details on writing a callback function).

When either the get() or post() function runs, the Web browser sends off the data
to the specified URL. When the server sends data back to the browser, the browser
hands that data to the callback function, which then processes that information
and usually updates the Web page in some way. You’ll see an example of this in
action on page 426.

Formatting Data to Send to the Server
Most of the time when writing a JavaScript program that uses Ajax, you’ll be send-
ing some information to the server. For example, if you want to get information
about a particular product stored in a database, you could send a single number
representing a product. When the Web server gets the number from the XHR
request, it looks for a product in the database that matches that number, retrieves
the product information, and sends it back to the Web browser. Or, you might use
Ajax to submit an entire form’s worth of information as part of an online order or
a “sign up for our email newsletter” form.

In either case you need to format the data for your request in a way that the get()
and post() functions understand. The second argument sent to either function
contains the data you wish to send the server—you can format this data either as a
query string or as a JavaScript object literal, as described in the next two sections.

Query string

You’ve probably seen query strings before: they frequently appear at the end of a
URL following a ? symbol. For example, the query string is www.chia-vet.com/prod-
ucts.php?prodID=18&sessID=1234. This query string contains two name/value
pairs, prodID=18 and sessID=1234. This string does basically the same as creating

420 JavaScript: The Missing Manual

Ajax the jQuery
Way

two variables, prodID and sessID, and storing two values into them. A query string
is a common method for passing information in a URL.

You can also format data sent to the server using Ajax in this format. For example,
say you’ve created a Web page that lets visitors rate movies by clicking a number of
stars. Clicking five stars, for instance, submits a rating of five to the server. In this
case, the data sent to the server might look like this: rating=5. Assuming the name
of the page processing these ratings is called rateMovie.php, the code to send the
rating to the server using Ajax would look like this:

$.get('rateMovie.php','rating=5');

Or, if you’re using the POST method:

$.post('rateMovie.php','rating=5');

Note: jQuery’s get() and post() functions don’t require you to define data or a callback function. You
only need to supply the URL of the server-side page. However, you’ll almost always provide data as well.
For example, in this code $.get('rankMovie.php','rating=5'); only the URL and the data are supplied—no
callback function is specified. In this case, the visitor is merely submitting a ranking, and there’s no need
for the server to respond or for a callback function to do anything.

FREQUENTLY ASKED QUESTION

GET or POST?
The two methods for submitting data to a Web server, GET
and POST, seem pretty much the same. Which should I
use?

The answer really depends. In some cases, you don’t have
a choice. For example, suppose you’re sending information
to a server-side script that’s already up and running on your
server. In other words, the server-side programming is
already done, and you just need to use JavaScript to talk to
it. In that case, you use the method that the script is expect-
ing. Most likely, the programmer set up the script to accept
either GET or POST data. So you can either talk to the pro-
grammer or look at the script to see which method it uses,
then use the jQuery function that matches—either get() or
post().

If you (or another programmer) hasn’t yet written the
server-side script that your JavaScript program will talk to,
then you get to choose the method. The GET method is
suited to requests that don’t affect the state of a database

or files on the server. In other words, use it when you want
to get information, like requesting the price of a particular
product or obtaining a list of most popular products. The
POST method is for sending data that will change informa-
tion on the server, like a request to delete a file, update a
database, or insert new information into a database.

In reality, you can use either method, and often program-
mers will use a GET method to delete database informa-
tion, and the POST method just to retrieve information
from the server. However, there is one situation where
POST is required. If you’re submitting a lot of form data to
a server—for example, a blog post that might include hun-
dreds of words—use POST. The GET method has a built-in
limit on the amount of data it can send (this limit varies
from browser to browser but it’s usually around several
thousand characters). Most of the time, Web designers use
POST for forms that includes more than just a few fields.

Chapter 11: Introducing Ajax 421

Ajax the jQuery
Way

If you need to send more than one name/value pair to the server, insert a &
between each pair:

$.post('rateMovie.php','rating=5&user=Bob');

You need to be careful using this method, however, since some characters have
special meaning when you insert into a query string. For instance, you use the &
symbol to include additional name/value pairs to the string; the = symbol assigns a
value to a name. For example, the following query string isn’t valid:

'favFood=Mac & Cheese' // incorrect

The & symbol here is supposed to be part of “Mac & Cheese,” but when used as
part of a query string, the & will be interpreted to mean a second name/value pair.
If you want to use special characters as part of the name or value in a name/value
pair, you need to escape, or encode them so that they won’t be mistaken for a char-
acter with special meaning. For example, the space character is represented by
%20, the & symbol by %26, and the = sign by %3D. So you need to write out the
“Mac & Cheese” example like this:

'favFood=Mac%20%26%20Cheese' // properly escaped

JavaScript provides a method for properly escaping strings—the
encodeURIComponent() method. You supply the endcodeURIComponent()
method with a string, and it returns a properly escaped string. For example:

var queryString = 'favFood=' + encodeURIComponent('Mac & Cheese');

$.post('foodChoice.php', queryString);

Object literal

For short and simple pieces of data (that don’t include any punctuation symbols),
the query string method works well. But a more foolproof method supported by
jQuery’s get() and post() functions is to use an object literal to store data. As you’ll
recall from page 188, an object literal is a JavaScript method for storing name/
value pairs. The basic structure of an object literal is this:

{

 name1: 'value1',

 name2: 'value2'

}

You can pass the object literal directly to the get() or post() function. For exam-
ple, this code uses the query string method:

$.post('rankMovie.php','rating=5');

To use an object literal, rewrite the code like this:

$.post('rankMovie.php', { rating: 5 });

422 JavaScript: The Missing Manual

Ajax the jQuery
Way

You can either pass the object literal directly to the get() or post() functions, or
first store it in a variable and pass that variable to get() or post():

var data = { rating: 5 };

$.post('rankMovie.php', data);

Of course, you can include any number of name/value pairs in the object that you
pass to the get() or post() function:

var data = {

 rating: 5,

 user: 'Bob'

}

$.post('rankMovie.php', data);

jQuery’s serialize() function

Creating a query string or object literal for an entire form’s worth of name/value
pairs can be quite a chore. You have to retrieve the name and value for each form
element, and then combine them all to create one long query string or one large
JavaScript object literal. Fortunately, jQuery provides a function that makes it easy
to convert form information into data that the get() and post() functions can use.

You can apply the serialize()function to any form (or even just a selection of form
fields) to create a query string. To use it, first create a jQuery selection that
includes a form, then attach the serialize() function to it. For example, say you
have a form with an ID of login. If you wanted to create a query string for that
form, you can do so like this:

var formData = $('#login').serialize();

The var formData part just creates a new variable; $('#login') creates a jQuery selec-
tion containing the form; finally, .serialize() collects all of the field names and the
values currently in each field and creates a single query string.

To use this with either the get() or post() functions, just pass the serialized results
to the function as the second argument after the URL. For example, say you want
to send the contents of the login form to a page named login.php. You can do so
like this:

var formData = $('#login').serialize();

$.get('login.php',formData,loginResults);

This code sends whatever the visitor enters into the form to the login.php file using
the GET method. The final argument for get() here—loginResults—is the callback
function: the function that takes the data sent back from the server and does some-
thing with it. You’ll learn how to create a callback function next.

Chapter 11: Introducing Ajax 423

Ajax the jQuery
Way

Processing Data from the Server
Ajax is usually a two-way street—a JavaScript program sends some data to the
server and the server returns data to the JavaScript program, which can then use
that data to update the page. In the previous pages, you saw how to format data
and send it to a server using the get() and post() functions. Now you’ll learn how
to receive and process the server’s response.

As mentioned on page 408, when the Web browser sends off a request to the server
using the XMLHttpRequest object, it keeps listening for a response from the
server. When the server responds, a callback function handles the server’s
response. That function is passed several arguments that can be used by the func-
tion. First, and most important, the data returned by the server is sent as the first
argument.

You can format the data the server returns in any number of ways. The server-side
script can return a number, a word, a paragraph of text, or a complete Web page.
In cases where the server is sending a lot of information (like a bunch of records
from a database), the server often uses XML or JSON. (See the box on page 427 for
more about XML; see page 432 for a discussion of JSON.)

The second argument to the callback function is a string indicating the status of
the response. Most of the time, the status is “success”, meaning that the server has
successfully processed the request and returned data. However, sometimes a
request doesn’t succeed—for example, the request was made to a file that doesn’t
exist, or there was an error in the server-side programming. If a request fails, the
callback function receives an “error” status message.

The callback function processes the information in some way, and, most of the
time, updates the Web page in some way—replacing a submitted form with results
from the server, or simply printing a “request successful” message on the page, for
example. Updating the content of a Web page is easy using jQuery’s html() and
text() functions described on page 181. Other methods of manipulating a page’s
DOM are discussed in Chapter 5.

To get a handle on a complete request/response cycle, take a look at a basic movie-
rating example (see Figure 11-6). A visitor can rate a movie by clicking one of five
links. Each link indicates a different rating. When the visitor clicks a link, the rat-
ing and ID of the movie being rated are sent to a server-side program, which adds
the rating to the database, and then returns the average rating for that movie. The
average rating is then displayed on the Web page.

In order for this page to work without JavaScript, each of the links on the page
points to a dynamic server-side page that can process the visitor’s rating. For
example, the five-star rating link (see Figure 11-6) might be rate.
php?rate=5&movie=123. The name of the server-side file that processes the ratings
is called rate.php, while the query string (?rate=5&movie=123) includes two pieces

424 JavaScript: The Missing Manual

Ajax the jQuery
Way

of information for the server: a rating (rate=5) and a number that identifies the
movie being rated (movie=123). You can use JavaScript to intercept clicks on these
links and translate them into Ajax calls to the server:

1 $('#message a').click(function() {

2 var href=$(this).attr('href');

3 var querystring=href.slice(href.indexOf('?')+1);

4 $.get('rate.php', querystring, processResponse);

5 return false; // stop the link

6 });

Line 1 selects every link (<a> tag) inside of another tag with an ID of message (in
this example, each link used to rate the movie is contained within a <div> with the
ID message). A function is then applied to the click event for each of those links.

Figure 11-6:
On this page, a visitor clicks a link to rate the
movie (top). By adding Ajax to the mix, you
can submit the rating to the server without
leaving the page. In fact, using the response
from the server, you can update the page’s
contents (bottom).

Chapter 11: Introducing Ajax 425

Ajax the jQuery
Way

Line 2 extracts the HREF attribute of the link—so, for example, the href variable
might hold a URL like rate.php?rate=5&movie=123. Line 3 extracts just the part
after the ? in the URL using the slice() method (discussed on page 117) to extract
part of the string, and the indexOf() method (see page 118) to determine where
the ? is located (this information is used by the slice() method to determine where
to start slicing).

Line 4 is the Ajax request. Using the GET method, a request containing the query
string for the link is sent to the server file rate.php (see Figure 11-7). The results
will then go to the callback function processResponse. Line 5 just stops the normal
link behavior and prevents the Web browser from unloading the current page and
loading the linked-to page.

Note: If you need a refresher on how functions work and how to create them, see page 97.

Finally, it’s time to create the callback function. The callback function receives data
and a string with the status of the response ('success' if the server sent information
back). Remember the callback function’s name is used in the request (see line 4 of
the code on the previous page). So in this example, the function’s name is
processResponse. The code to deal with the server’s response might look like this:

1 function processResponse(data, status) {

2 var newHTML;

3 if (status=='success') {

4 newHTML = '<h2>Your vote is counted</h2>';

5 newHTML += '<p>The average rating for this movie is ';

6 newHTML += data + '.</p>';

7 } else {

8 newHTML='<h2>There has been an error.</h2>';

9 newHTML+='<p>Please try again later.</p>';

Figure 11-7:
In this diagram, you can see how
JavaScript and the Web server
interact. The get() function sends
information to the server, while the
callback function—
processResponse()—handles the
information returned by the server.

426 JavaScript: The Missing Manual

Ajax the jQuery
Way

10 }

11 $('#message').html(newHTML);

12 }

The function accepts two arguments—data and status. Line 2 creates a new vari-
able that holds the HTML that will be displayed on the page (for example, “Your
vote is counted”). In line 3, a conditional statement checks to make sure the server
responded successfully, and if it did, then the newHTML variable is filled with
some HTML, including a <h2> tag and a <p> tag. The server’s response doesn’t
come into play until line 6—there the response from the server (stored in the data
variable) is added to the newHTML variable. In this case, the server returns a string
with the average rating for the movie: for example, '3 stars'.

Tip: If you want to add a star rating system to your site, there’s a great jQuery plug-in that handles most
of the details available at http://plugins.learningjquery.com/half-star-rating/.

The else clause simply creates an error message in case the server didn’t success-
fully respond to the request.

Finally, line 11 modifies the HTML on the Web page using jQuery’s html() func-
tion (see page 181) by replacing the contents of the <div> with the ID of message
with the new HTML. The result is something like the bottom image in Figure 11-6.

In this example, the callback function was defined outside of the get() function;
however, you can use an anonymous function (see page 193) if you want to keep
all of the Ajax code together:

.get('file.php', data, function(data,status) {

// callback function programming goes here

});

Tutorial: Using the post() Function
In this tutorial, you’ll use Ajax to submit information from a login form. When a
visitor supplies the correct user name and password, a message will appear letting
him know he’s successfully logged in. If the login information isn’t correct, an
error message will appear on the same page—without loading a new Web page.

Note: In order to successfully complete this tutorial, you’ll need to have a running Web server to test the
pages on. See the box on page 408 for information on how to set up a testing server on your computer.

Overview

You’ll start with the form pictured in Figure 11-8. It includes fields for supplying a
username and password to the server. When the form is submitted, the server
attempts to verify that the user exists and the password matches. If the informa-
tion supplied matches valid login credentials, then the server logs the visitor in.

http://plugins.learningjquery.com/half-star-rating/

Chapter 11: Introducing Ajax 427

Ajax the jQuery
Way

You’ll add Ajax to the form by sending the login information via a XMLHttpRequest.
The server will send a message to the callback function, which removes the form
and displays a “logged in” message if the login information is valid, or an error
message if it’s not.

The programming

See the note on page 27 for information on how to download the tutorial files. The
starting file contains the HTML form, ready for you to add some jQuery and Ajax
programming.

1. In a text editor, open the file 11.2.html in the chapter11 folder.

The link to the jQuery library file and the $(document).ready() function are
already in place. You’ll start by selecting the form and adding a submit event to it.

POWER USERS’ CLINIC

Receiving XML from the Server
XML is a common format for exchanging data between
computers. Like HTML, XML lets you use tags to identify
information. Unlike HTML, you’re free to come up with tags
that accurately reflect the content of your data. For exam-
ple, a simple XML file might look like this:

<?xml version="1.0" encoding="ISO-8859-
1"?>
<message id="234">
 <from>Bob</from>
 <to>Janette</to>
 <subject>Hi Janette</subject>
 <content>Janette, let's grab lunch
today.</content>
</message>

As you can see, there’s a main tag (called the root element)
named <message>—the equivalent of HTML’s <html> tag—
and several other tags that define the meaning of each
piece of data.

When using Ajax, you might have a server program that
returns an XML file. jQuery has no problem reading and
extracting data from an XML file. When you use the get()
or post() functions, if the server returns an XML file, the
data argument that’s sent to the callback function (see page
423) will contain the DOM of the XML file. In other words,
jQuery will read the XML file and treat it like another docu-
ment. You can then use jQuery’s selector tools to access the
data inside the XML.

For example, say a server-side file named xml.php returned
the XML listed above, and you want to retrieve the text
within the <content> tag. The XML file becomes the
returned data, so the callback function can process it. You
can use the jQuery find() function to search the XML to
find a particular CSS element using any of the regular selec-
tors you’d use with jQuery. For example, you can find an
element, class, ID, or descendent selector (page 172), or
jQuery’s filters (page 178).

For example:

$.get('xml.php','id=234',processXML);
function processXML(data) {
 var messageContent=$(data).
find('content').text();
}

The key here is $(data).find('content'), which tells jQuery
to select every <content> tag within the data variable.
Since, in this case, the data variable contains the returned
XML file, this code tells jQuery to look for the <content> tag
within the XML.

For learn more about XML, visit www.w3schools.com/XML.
If you want a little information on how to produce XML
from a server, check out www.w3schools.com/XML/xml_
server.asp. And if you want to read about jQuery’s find()
function you’ll find more information at http://docs.jquery.
com/Traversing/find#expr.

http://www.w3schools.com/XML
http://www.w3schools.com/XML/xml_server.asp
http://www.w3schools.com/XML/xml_server.asp
http://docs.jquery.com/Traversing/find#expr
http://docs.jquery.com/Traversing/find#expr

428 JavaScript: The Missing Manual

Ajax the jQuery
Way

2. Click in the empty line inside the $(document).ready() function and type:

$('#login').submit(function() {

}); // end submit

The <form> tag has the ID login applied to it, so the jQuery selector—
$('#login')—selects that form, while the submit() function adds an event han-
dler to the submit event. In other words, when a visitor tries to submit the form,
the function you’re about to create will run.

The next step is to collect the information from the form and format it as a
query string to submit to the server. You could do this by finding each form
field, extracting the value that the visitor had typed in, then constructing query
string by concatenating those different pieces of information. Fortunately,
jQuery’s serialize() function takes care of all these details in one shot.

3. Hit return to create an empty line and type:

var formData = $(this).serialize();

This line starts by creating a new variable to hold the form data, and then
applies the serialize() function to the form. Recall that $(this) refers to the cur-
rent element, so in this case it refers to the login form, and is the same as
$('#login') (see page 194 for more on how $(this) works). The serialize() func-
tion (see page 422), takes a form and extracts the field names and values and
puts them in the proper format for submitting to the server.

Now you’ll use the post() function to set up the XMLHttpRequest.

Figure 11-8:
A basic login page is a
simple affair: just a
couple of fields and a
submit button. However,
there’s really no reason
to leave the page when
the user logs in. By
adding Ajax, you can
submit the visitor’s
credentials, then notify
whether he logged in
successfully or not.

Chapter 11: Introducing Ajax 429

Ajax the jQuery
Way

4. Hit Return to create another empty line and type:

$.post('login.php',formData,processData);

This code passes three arguments to the post() function. The first—'login.
php'—is a string identifying where the data should be sent—in this case, a file
on the server named login.php. The second argument is the query string con-
taining the data that’s being sent to the server—the login information. Finally,
processData refers to the callback function that will process the server’s
response. You’ll create that function now.

5. Add another blank line below the last one and type:

1 function processData(data) {

2

3 } // end processData

These lines form the shell of the callback function; there’s no programming
inside it yet. Notice that the function is set up to accept one argument (data),
which will be the response coming from the server. The server-side page is pro-
grammed to return a single word—pass if the login succeeded, or fail if the
login failed.

In other words, based on the response from the server, the script will either
print a message letting the visitor know he’s successfully logged on, or that he
hasn’t—this is the perfect place for a conditional statement.

Note: The server-side page used in this tutorial isn’t a full-fledged login script. It does respond if the
proper credentials are supplied, but it’s not something you could use to actually password-protect a site.
There are many ways to effectively password protect a site, but most require setting up a database or set-
ting up various configuration settings for the Web server—these steps are beyond this basic tutorial. For a
real, PHP-based login script that also uses jQuery, visit www.chazzuka.com/blog/?p=174. Once you’ve
complete the tutorial on that site, you will have everything you need to implement a login script like this one.

6. Inside the processData() function (in other words line 2 in step 5) type:

1 if (data=='pass') {

2 $('#content').html('<p>You have successfully logged on!</p>');

3 }

Line 1 here checks to see if the information returned from the server is the
string 'pass'. If it is, the login was successful and a success message is printed
(line 2). The form is inside a <div> tag with the ID content, so $('#content').
html('<p>You have successfully logged on!</p>') will replace whatever’s inside
that <div> with a new paragraph. In other words, the form disappears and the
success message appears in its place.

To finish up, you’ll add an else clause to let the visitor know if he didn’t supply
the correct login information.

http://www.chazzuka.com/blog/?p=174

430 JavaScript: The Missing Manual

Ajax the jQuery
Way

7. Add an else clause to the processData() function so that it looks like this (addi-
tions are in bold):

1 function processData(data) {

2 if (data=='pass') {

3 $('#content').html('<p>You have successfully logged on!</p>');

4 } else {

5 $('#content').prepend('<p id="fail">Incorrect ↵
6 login information. Please try again</p>');

7 }

8 } // end processData

Line 6 prints the message that the login failed. Notice that the prepend() func-
tion is used. As discussed on page 182, prepend() lets you add content to the
beginning of an element. It doesn’t remove what’s already there; it just adds
more content. In this case, you want to leave the form in place, so the visitor
can try again to log in a second time.

8. Save the file, and preview it in a Web browser.

You must view this page through a Web browser using a URL, like http://
localhost/chapter11/11.2.html, for this tutorial to work. See the box on page 408
for more information on how to set up a Web server.

9. Try to log into the site.

“But wait—you haven’t given me the username and password yet!” you’re
probably thinking. That’s the point—to see what happens when you don’t log
in correctly. Try to log in a second time: you’ll see the “Incorrect login informa-
tion” message appear a second time (see Figure 11-9). Since the prepend() func-
tion doesn’t remove the first error message, it just adds the message a second
time. That doesn’t look right at all. You need to add a conditional statement to
make sure you print the error message only if it isn’t already on the page.

10. Add another conditional statement (lines 5 and 7 below):

1 function processData(data) {

2 if (data=='pass') {

3 $('#content').html('<p>You have successfully logged on!</p>');

4 } else {

5 if ($('#fail').length==0) {

6 $('#content').prepend('<p id="fail">Incorrect ↵
7 login information. Please try again</p>');

8 }

9 }

10 } // end processData

Notice that the error message paragraph has an ID—fail—so you can use
jQuery to check to see if that ID exists on the page. If it doesn’t, then the pro-
gram writes the error message on the page. One way to check if an element

http://localhost/chapter11/11.2.html
http://localhost/chapter11/11.2.html

Chapter 11: Introducing Ajax 431

Ajax the jQuery
Way

already exists on the page is to try to use jQuery to select it. You can then check
the length attribute of the results. If jQuery couldn’t find any matching ele-
ments, the length attribute is 0. In other words, $('#fail') tries to find an ele-
ment with the ID fail. If jQuery can’t find it—in other words, the error message
hasn’t yet been written to the page—then the length attribute is 0, the condi-
tional statement will be true, and the program writes the error message. Once
the error message is on the page, the conditional statement always evaluates to
false, and the error message doesn’t appear again.

Finally, you need to tell the Web browser that it shouldn’t submit the form data
itself—you already did that using Ajax.

11. Add return false; at the end of the submit event (line 15 below). The finished
script should look like this:

1 $(document).ready(function() {

2 $('#login').submit(function() {

3 var formData = $(this).serialize();

4 $.post('login.php',formData,processData);

5 function processData(data) {

6 if (data=='pass') {

7 $('#content').html('<p>You have successfully logged on!</p>');

8 } else {

9 if (! $('#fail').length) {

10 $('#content').prepend('<p id="fail">Incorrect ↵
11 login information. Please try again</p>');

Figure 11-9:
jQuery’s prepend()
function adds HTML to
an already existing
element. It doesn’t delete
anything, so if you’re not
careful, you may end up
adding the same
message over and over
again.

432 JavaScript: The Missing Manual

JSON

12 }

13 }

14 } // end processData

15 return false;

16 }); // end submit

17 }); // end ready

12. Save the file and preview the page once again.

Try to log in again: the user name is 007 and the password is secret. A com-
pleted version of this tutorial complete_11.2.html is in the chapter11 folder.

Note: As mentioned on page 418, jQuery’s post() and get() functions work identically even though,
behind the scenes, jQuery has to do two different set of steps to make the Ajax request work correctly.
You can check this out yourself by just changing post to get in the script (see line 4 in step 11). The
server-side script for this tutorial is programmed to accept either GET or POST requests.

JSON
Another popular format for sending data from the server is called JSON, which
stands for JavaScript Object Notation. JSON is a data format that’s written in Java-
Script, and it’s kind of like XML (see the box on page 427), in that it’s a method for
exchanging data. However, for an Ajax application, JSON has two major benefits:
first, the data is stored as JavaScript, so it’s very easy for a JavaScript program to
work with. Secondly, you can request JSON data from other domains, so you can,
for example, request images from Flickr (www.flickr.com) and display them on a
page on your own site (as mentioned in the Note on page 409, usually you can
only make an Ajax request to your own domain).

You already learned how to create JSON back on page 188. In essence, JSON is
simply a JavaScript object literal, or a collection of name/value pairs. Here’s a simple
example of JSON:

{

 firstName: 'Frank',

 lastName: 'Smith',

 phone: '503-555-1212'

}

The { marks the beginning of the JSON object, while the } marks its end. In
between are sets of name/value pairs: for example, firstName: 'Frank'. Every name/
value pair is separated by a comma, but don’t put a comma at the end of the last
pair (otherwise Internet Explorer will cough up an error).

http://www.flickr.com

Chapter 11: Introducing Ajax 433

JSON

Note: Alternatively, you can put the name in the name/value pair in quotes as well, like this:

{
 'firstName': 'Frank',
 'lastName': 'Smith',
 'phone': '503-555-1212'
}

You must use quotes if the name has a space in it, or other non-alphanumeric characters.

Think of a name value/pair just like a variable—the name is like the name of the
variable, and the value is what’s stored inside that variable. In the above example,
lastName acts like a variable, with the string 'Smith' stored in it.

When the Web server responds to an Ajax request, it can return a string formatted
like a JSON. The server doesn’t actually send JavaScript: it just sends text that’s for-
matted like a JSON object. It isn’t actually real, usable JavaScript until the string is
converted into an actual JSON object. Fortunately, jQuery provides a special func-
tion, getJSON(), that handles all of the details. The getJSON() function looks and
works much like the get() and post() functions. The basic structure looks like this:

$.getJSON(url, data, callback);

The three arguments passed to the function are the same as for post() or get()—
the URL of the server-side page, data to send to the server-side page, and the name
of a callback function. The difference is that getJSON() will process the response
from the server (which is just a string) and convert it (through some JavaScript
wizardry) into a usable JSON object.

Note: PHP 5.2 has a built-in function to make it easy to create a JSON object out of a traditional PHP
array. Visit www.php.net/manual/en/function.json-encode.php to learn more.

In other words, getJSON() works just like post() or get() but the data passed to the
callback is a JSON object. To use the getJSON() function, then, you only need to
learn how to process a JSON object with the callback function. For a basic exam-
ple, say you want to use Ajax to request information on a single contact from a
server-side file named contacts.php; that file returns contact data in JSON format
(like the JSON example on the previous page). A basic request would look like this:

$.getJSON('contacts.php','contact=123',processContacts);

This code sends a query string—contact=123—to contacts.php. Say the contacts.php
file uses that information to locate a single contact in a database and retrieve that
contact’s information. The result is sent back to the Web browser and handed to
the callback function processContacts. The basic structure of the callback, then,
would look like this:

function processContacts(data) {

}

http://www.php.net/manual/en/function.json-encode.php

434 JavaScript: The Missing Manual

JSON

The processContacts() function has one argument—data—that contains the JSON
object from the server. Let’s look at how the callback can access information from
the JSON object.

Accessing JSON Data
There are two ways to access data in a JSON object: dot syntax or array notation.
Dot-syntax (see page 114) is a way of indicating an object’s property—specifically,
by adding a period between the name of the object and the property you wish to
access. You’ve seen this in use with properties of different JavaScript objects like
strings and arrays. For example, 'abc'.length accesses the string’s length property,
and, in this example, returns the number of letters in the string 'abc', which is 3.

For example, suppose you create a variable and store an object literal inside it like
this:

var bday = {

 person: 'Raoul',

 date: '10/27/1980'

};

In this case, the variable bday contains the object literal, so if you want to get the
value of person in the object, use dot syntax like this:

bday.person // 'Raoul'

To get the birth date:

bday.date // '10/27/1980'

The same is true with a JSON object that’s returned by the Web server. For example,
take the following getJSON() example and callback function:

$.getJSON('contacts.php','contact=123',processContacts);

function processContacts(data) {

}

Assuming that the server returned the JSON example on page 432, that JSON
object is assigned to the variable data (the argument for the callback function
processContacts()), just as if this code had been executed:

var data = {

 firstName: 'Frank',

 lastName: 'Smith',

 phone: '503-555-1212'

};

Now within the callback function, you can access the value of firstName like this:

data.firstName // 'Frank'

Chapter 11: Introducing Ajax 435

JSON

And retrieve the last name of the contact like this:

data.lastName // 'Smith'

So, let’s say the whole point of this little Ajax program is to retrieve contact infor-
mation and display it inside of a <div> with the ID info. All of the programming
for that might look like this:

$.getJSON('contacts.php','contact=123',processContacts);

function processContacts(data) {

 var infoHTML='<p>Contact: ' + data.firstName;

 infoHTML+=' ' + data.lastName + '
';

 infoHTML+='Phone: ' + data.phone + '</p>';

 $('#info').html(infoHTML);

}

The final outcome would be a paragraph added to the page that looks something
like this:

Contact: Frank Smith

Phone: 503-555-1212

Complex JSON Objects
You can create even more complex collections of information by using object liter-
als as the values inside a JSON object—in other words, object literals nested within
object literals. (Sorry, but don’t put down this book yet.)

Here’s an example: Say you want the server to send back contact information
for more than one individual using JSON. You’ll send a request to a file named
contacts.php with a query string that dictates how many contacts you wish
returned. That code may look something like this:

$.getJSON('contacts.php','limit=2',processContacts);

The limit=2 is the information sent to the server, and indicates how many contacts
should be returned. The Web server would then return two contacts. Say the con-
tact info for the first person matched the example above (Frank Smith), and a sec-
ond set of contact information was another JSON object like this:

{

 firstName: 'Peggy',

 lastName: 'Jones',

 phone: '415-555-5235'

}

The Web server may return a string that represents a single JSON object, which
combines both of these objects like this:

{

 contact1: {

 firstName: 'Frank',

436 JavaScript: The Missing Manual

JSON

 lastName: 'Smith',

 phone: '503-555-1212'

 },

 contact2: {

 firstName: 'Peggy',

 lastName: 'Jones',

 phone: '415-555-5235'

 }

}

Assume that the callback function accepts a single argument named data (for
example, function processContacts(data)). The variable data would then be assigned
that JSON object, just as if this code had been executed:

var data = {

 contact1: {

 firstName: 'Frank',

 lastName: 'Smith',

 phone: '503-555-1212'

 },

 contact2: {

 firstName: 'Peggy',

 lastName: 'Jones',

 phone: '415-555-5235'

 }

};

Now, you could access the first contact object within the callback function like
this:

data.contact1

And retrieve the first name of the first contact like this:

data.contact1.firstName

But, in this case, since you want to process multiple contacts, jQuery provides a
function that lets you loop through each item in a JSON object—the each() func-
tion. The basic structure of the function is this:

$.each(JSON,function(name,value) {

});

You pass the JSON object, and an anonymous function (page 193) to the each()
function. That anonymous function receives the name and value of each item in
the JSON object. Here’s how the JSON object would look in use in the current
example:

1 $.getJSON('contacts.php','limit=2',processContacts);

2 function processContacts(data) {

Chapter 11: Introducing Ajax 437

JSON

3 // create variable with empty string

4 var infoHTML='';

5

6 //loop through each object in the JSON data

7 $.each(data,function(contact, contactInfo) {

8 infoHTML+='<p>Contact: ' + contactInfo.firstName;

9 infoHTML+=' ' + contactInfo.lastName + '
';

10 infoHTML+='Phone: ' + contactInfo.phone + '</p>';

11 }); // end of each()

12

13 // add finished HTML to page

14 $('#info').html(infoHTML);

15 }

Here’s how the code breaks down:

1. Line 1 creates the Ajax request and assigns the callback function

2. Line 2 creates the callback function, which accepts the JSON object sent back
from the server and stores it in the variable data.

3. Line 4 creates an empty string. The HTML that eventually gets added to the
page will fill it.

4. Line 7 is the each() function, which will look through the objects in the JSON
data.

The each() function takes the JSON object as its first argument (data) and an
anonymous function as the second argument. The process is diagrammed in
Figure 11-10. Essentially, for each of the main objects (in this example contact1
and contact2), the anonymous function receives the name of the object as a
string (that’s the contact argument listed in line 7) and the value for that object
(that’s the contactInfo argument). In this case, the contactInfo variable will hold
the object literal containing the contact information.

5. Lines 8–10 extract the information from one contact.

Remember that the each() function is a loop, so lines 8–10 will run twice—once
for each of the contacts.

6. Line 14 updates the Web page by adding the HTML to the page.

The final result will be the following HTML:

<p>Contact: Frank Smith

Phone: 503-555-1212</p>

<p>Contact: Peggy Jones

Phone: 415-555-5235</p>

438 JavaScript: The Missing Manual

JSON

Figure 11-10:
You can use jQuery’s each()
function to loop through a JSON
object to perform tasks on nested
objects. You can also use the
each() function to loop through
arrays. To learn more about this
useful function, visit http://docs.
jquery.com/Utilities/jQuery.
each#objectcallback.

439

Chapter 12chapter

12

Basic Ajax
Programming

In the previous chapter you learned the basics of Ajax: what it is, how it works, and
how jQuery can simplify the process of Ajax programming. Since Ajax is all about
the two-way communication between Web browser and Web server, understand-
ing server-side programming is necessary if you really want to harness Ajax’s
power. However, you don’t need to be a server-side programming guru to use Ajax
successfully. To show you how simple and easy it can be to add Ajax to your site,
this chapter revisits the Tabs plug-in that you saw in Chapter 10 and introduces a
plug-in that makes it easy to add searchable Google Maps to your own Web pages.

Tabs Plug-in
In Chapter 10 you learned how to use the jQuery Tabs plug-in to create tabbed
panels that work with already existing Web page content. This plug-in provides a
way to divide a lot of content into separate manageable panels. But the Tabs plug-
in doesn’t just limit you to the content already in the page’s HTML; it also has an
Ajax mode that lets you dynamically load content from other files on your Web
server into panels on the page. In this way, you can have a single page act as a kind
of gateway to lots and lots of content on your site, without having to create a single,
very large (and slow to download) HTML page. When someone clicks an Ajaxified
tab, the data is retrieved from the Web server and displayed in a panel.

Most of the steps on pages 372-376 for creating regular tabbed panels apply to Ajax
Tabs, with one big exception. With regular tabs you create separate <div> tags for
each panel and insert the content for the panel into its assigned <div>; you then
add an anchor link from the tab to the <div>. With Ajax tabs, you don’t add those

440 JavaScript: The Missing Manual

Tabs Plug-in

<div>s, nor do you add the content of the panels—all you need is a bulleted list
containing the tab names, along with links to each page containing the content
that will be loaded into the panel.

Here are the basic steps for adding Ajax Tabs:

1. Attach several external JavaScript files to your page.

In addition to the jQuery library, you must also link to two additional files: ui.
core.js and ui.tabs.js. The ui.core.js file is part of jQuery’s user interface library
(see the box on page 361), while the Tabs plug-in (available from http://ui.
jquery.com) provides the tabbed panel functionality.

You attach these files as you would any external JavaScript file (see page 24);
just make sure you attach them in order: jquery.js, ui.core.js, and ui.tabs.js. In
other words, you’ll have three script tags that look something like this:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/ui.core.js"></script>

<script type="text/javascript" src="js/ui.tabs.js">

2. Structure the HTML for the tabs.

A group of tabs is represented by a bulleted list (tag) and each tab is a sin-
gle list item (tag). The tag should contain the text you want to appear
on the tab, and the text should link to the Web page you wish to load into a
panel. That’s the main difference with the regular tabbed panels discussed in
Chapter 10, in which, for example, the basic HTML for the tabs pictured in
Figure 12-1 may look like this:

<ul id="tabs">

 Specifications

 Photos

 Reviews

Notice that this HTML looks like a regular list of links—and it is! For people
visiting your site with JavaScript turned off, or for search engines indexing your
Web site, these links let them get to your content even if they don’t see the fancy
tabbed panels.

Note: When creating a bulleted list of links to work with the Tabs plug-in, you can only link to pages on
your own site. To enhance security, most browsers won’t let you use Ajax to load content from other Web
sites.

Keep in mind that you eventually need a way to identify this group of links
using jQuery (see step 3 below), so you should supply an ID for the tag.
This example uses an ID of tabs, but you could use any ID you want.

http://ui.jquery.com
http://ui.jquery.com

Chapter 12: Basic Ajax Programming 441

Tabs Plug-in

Unlike regular tabbed panels, you don’t need to add any additional HTML to
your page—no <div> tags and no new content. All you do is apply the tabs()
function and the plug-in takes care of the rest.

3. Apply the tabs() function to the tag containing the tabs.

As with all things jQuery, you need to first add the $(document).ready() func-
tion, then include the function call:

<script type="text/javascript">

$(document).ready(function() {

 $('#tabs').tabs();

});

</script>

In this example, $('#tabs') selects an element with an ID of tabs (see the
tag in step 2 above). You should change this to match your markup, so if you
added the ID of tabGroup to the tag, you’d use this jQuery selector:
$('#tabGroup').

The tabs() function takes care of the rest. You’ll need to create a style sheet that
formats the tabs and panels as well as hides the panel groups not currently on
display—those details are discussed on page 368.

Changing the Loading Text and Icon
The one visual difference between the tabs in Ajax mode and regular tabs shows up
when they’re loading. When you click an Ajax tab and the browser starts down-
loading the file to display in the panel, some text appears, letting you know the
content is loading (circled in Figure 12-1).

Figure 12-1:
An Ajax Tabbed panel
looks pretty much like the
regular tabbed panel
discussed on page 364.
However, the content for
each panel comes from a
separate HTML file that’s
loaded dynamically. The
only visual difference
you’ll see is the “Loading”
text and icon (circled) that
indicates the content is
being loaded and will
appear momentarily in its
own panel.

442 JavaScript: The Missing Manual

Tabs Plug-in

You can set the text, and even style the loading message area to include an ani-
mated GIF (those spinning dots, lines, and circles used everywhere on the Web to
indicate “Please wait…we’re getting the information you asked for…”). The plug-
in’s programmed to display the text “Loading…” unless you tell it otherwise. If
you want to change the loading message text, pass an object literal (page 188) con-
taining the name spinner and a string as the value. For example, if you want the
message to be “Retrieving,” you can write this:

$('#tabs').tabs({

 spinner: 'Retrieving'

});

Note that this option (just like the other tab options discussed on page 370) is set
when you call the tabs() function, as described in step 3 on page 441.

If you want to add an animated GIF, you can create a CSS style with a background
image. The plug-in adds the class ui-tabs-loading to a tab that’s downloading con-
tent, and surrounds the loading text with an tag. You can use both the class
and tag names as handles to create a descendent selector like this:

.ui-tabs-loading em {

 background: url(images/loading.gif) no-repeat left center;

 padding: 0 0 0 25px;

}

The CSS background property lets you add an image (even an animated GIF) to
the background of a tag. To make sure the loading text doesn’t overlap the image,
add some padding on the side the image appears. For example, in the style above,
the image is placed on the left side of the tag, so 25 pixels of left padding is added
to make room for the image. This style applies to the tab only when the content is
loading—once the content has been downloaded and displayed in a tabbed panel,
the plug-in removes the ui-tabs-loading class and the loading text from the tab.

Note: You can use the .ui-tabs-loading em style to alter the look of the loading text as well. For example,
if you wanted to change the text size and color, you could add a color and font-size property to the rule.

Turning off the “Loading” message

The “Loading” message (and spinning icon if you added one to your CSS) appears
every time you click a tab—even if the browser has already downloaded the tabs
content. In fact, in Ajax mode, the Tabs plug-in normally re-downloads the con-
tent each time you click a tab—a useful feature, if the content in the tab is dynami-
cally generated and changes frequently (for example, providing the scores of an
ongoing basketball game, or the current temperature and wind speed).

However, if the tabbed panel’s content doesn’t change, there’s no reason to down-
load the panel’s content over and over again. You can instruct the Tabs plug-in to
download the content for the panel just once, which has the happy side effect of

Chapter 12: Basic Ajax Programming 443

Tabs Plug-in

displaying the “Loading” message only the first time a tab is clicked. To do that, set
the cache option to true when calling the tabs() function:

$('#tabs').tabs({

 cache: true

});

Ajax Tabs Tutorial
In this tutorial, you’ll create a tabbed panel based on an unordered list of links.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 12.1.html in the chapter12 folder.

Before you start adding any JavaScript to this page, you’ll modify the HTML by
adding an unordered list of links.

Note: Even though this tutorial uses Ajax, you don’t need to have a running Web server to complete it.
The tutorial will work just fine running right off your desktop computer.

2. Locate the <h1> tag in the body of the page (<h1>Ajax Tabs</h1>). Click
inside the empty line directly below this tag and add:

<ul id="tabs">

 Specifications

 Photos

 Reviews

You’ve just added a simple list of links, which point to three other pages inside
the chapter12 folder. In addition, the ID tabs applied to the tag will make
it easy to turn this list into a set of tabs.

Now you’ll add some JavaScript. First, you’ll link to all of the external files
needed by this page.

3. Click in the empty line just above the closing </head> tag and type:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript" src="../js/ui/ui.core.js"></script>

<script type="text/javascript" src="../js/ui/ui.tabs.js"></script>

These three lines of code link the necessary JavaScript files needed for the tabs
effect. Next, you’ll link to another external JavaScript file.

4. Add one additional <script> tag below the ones you added in step 3:

<script type="text/javascript" src="myTabs.js"></script>

444 JavaScript: The Missing Manual

Tabs Plug-in

What’s this myTabs.js file? Well, it doesn’t exist yet. It’s an external JavaScript
file that you’re about to create. As mentioned on page 24, using external Java-
Script files is generally the most efficient way to create and use scripts that are
shared on multiple pages of a site. Instead of adding a ton of scripting into the
<head> of each document on your site, you can create external JavaScript files
that include scripts that are shared by multiple pages on the site.

In this case, assume that other pages on the site will have tabbed panels as well,
and that they’ll be structured similarly (that is, they’ll all have a tag with
the ID tabs). Every page on the site that has tabbed panels only needs to link to
the external JavaScript file you’re going to create next.

5. Create a new file, and save it as myTabs.js inside the chapter12 folder.

Make sure you save this file in the chapter12 folder; if you don’t the link to the
script you added in step 4 (which points to a file in the same folder as the
HTML page), the code won’t work. Now, to add the JavaScript:

6. In the myTabs.js file, type:

1 $(document).ready(function() {

2 $("#tabs").tabs();

3 }); // end ready

Note that you don’t need any <script> tags—those are just for HTML files.
Since this is an external JavaScript file, you add only pure JavaScript to it.

Lines 1 and 3 should be familiar by now—they’re jQuery’s function for making
sure your code doesn’t run until the HTML of the page has loaded.

Line 2 is the heart of the matter; in fact, it’s all you need to do! This one line
makes the magic happen.

7. Save both the myTabs.js and 12.1.html file. Preview the 12.1.html file in a Web
browser. Click each tab.

Since you’re working off your own computer, you probably won’t see the
“Loading…” message for long, but it should briefly pop into view. In fact, it
should appear over and over again, even if you’ve already downloaded the con-
tent that appears in the panel. Fortunately, you can make the plug-in display the
“Loading” message just the first time the content is downloaded.

8. Edit the code you added in the last step so that it looks like this:

$(document).ready(function() {

 $("#tabs").tabs({

cache: true

});

});

This option instructs the plug-in to just download the panel content once and
display the loading message once per tab (see page 442 for more on this option).

Chapter 12: Basic Ajax Programming 445

Adding Google
Maps to Your Site

While you’re there, why not change the loading message from “Loading…” to
just plain “Loading”? (Try it even if the ellipsis doesn’t bother you. It’s a chance
to practice editing the loading message.)

9. Edit the code one last time to change the loading message:

1 $(document).ready(function() {

2 $("#tabs").tabs({

3 cache: true,

4 spinner: 'Loading'

5 });

6 });

Don’t forget the comma at the end of line 3: it separates the name/value pairs in
the set of options passed to the tabs() function.

Finally, you’ll add one CSS rule to insert a spinning, animated GIF next to
“Loading.”

10. Open the file tabs.css and add the following rule to the end of the style sheet:

.ui-tabs-loading em {

 background: url(images/loading.gif) no-repeat left center;

 padding: 0 0 0 25px;

}

The tabs.css file is the same stylesheet you completed in Chapter 10 (page 374).
This final style adds an animated GIF—loading.gif—to the background of the
loading message.

11. Save and close the tabs.css and myTabs.js files. Open the 12.1.html file in a Web
browser and click the tabs.

The tabs and tabbed panels work as before, but you should notice (very briefly)
a spinning icon. It will only appear once per tab, thanks to the cache setting you
added in step 8. A completed version of this tutorial—complete_12.1.html—is in
the chapter12 folder.

Adding Google Maps to Your Site
Google Maps (http://maps.google.com) is an original poster-child for the JavaScript
revival. The ability to zoom in and out of a map, move around city streets, and get
driving directions in a flash makes Google Maps an incredibly useful site. And
thanks to the clever use of Ajax, the site’s responsiveness makes it feel nearly like a
desktop program.

But Google Maps offers even more power to Web designers: the Google Maps ser-
vice lets you embed a map in your own site. If you run a brick-and-mortar busi-
ness (or build sites for businesses), being able to provide an easy-to-understand
map and directions can bring more customers through your door. Fortunately,

http://maps.google.com

446 JavaScript: The Missing Manual

Adding Google
Maps to Your Site

thanks to jMaps, a jQuery plug-in, it’s easy to add interactive maps directly to your
own Web pages (see Figure 12-2).

The jMaps plug-in (http://jmaps.digitalspaghetti.me.uk), created by Tane Piper, lets
you add a Google map to any Web page, request driving directions between two
points on a map, add markers to highlight locations on a map, and much more.
The basic steps to using the plug-in are:

1. Get a Google Maps API key from http://code.google.com/apis/maps/signup.
html.

API stands for Advanced Programming Interface, and provides the set of
instructions for interacting with a complex computer program. In this case,
there’s an API that lets you communicate directly with Google Maps. Google
provides the API key for free, but has a built-in way to limit access to the Goo-
gle Maps service: if someone starts to misuse the Google Maps service, then
Google can revoke their key. A single API key is limited to a single Web site, so
if you want to put Google Maps on more than one Web site, you need to get
additional keys.

POWER USERS’ CLINIC

Going Further with jQuery and Ajax
There are loads of other jQuery plug-ins that can make Ajax
development go faster. In some cases, you need to provide
the server-side programming—the plug-in just takes care of
the JavaScript part. A few other programs supply the basic
server-side programming as well. Here are a few good
ones:

• Form plug-in. The jQuery Form plug-in is a simple
way to add Ajax to your form submissions. The plug-
in goes far beyond the basics discussed in the previ-
ous chapter and includes file uploading ability. It
works with form validation as well. For more infor-
mation, visit http://plug-ins.jquery.com/project/form.

• Ajax chat. Want to add a live, interactive chat fea-
ture to your Web site? You can, using this nifty plug-
in (available from http://plug-ins.jquery.com/
project/chat). It requires some server-side program-
ming to work, but the site provides some basic PHP.
For a more hands-on approach, you can follow an
article on creating your own Ajax chat with jQuery
available from sitepoint.com, at www.sitepoint.com/
article/ajax-jquery.

• dirlister. This plug-in provides an interactive view of
folders on a Web server. In other words, you could
make a folder of downloadable files on your site
into a directory listing—like you’d find on your desk-
top. It uses Ajax and some cool animations to let you
drill into folders and subfolders as well. Find out
more about this plug-in at http://plug-ins.jquery.
com/project/dirlister.

• Taconite. Using Ajax, you can receive information
from a server and update a Web page. However,
you may want to update multiple areas of a page—
for example, if a visitor logs in using an Ajax form,
you might want to show his login status in one part
of the page, a list of the pages he visited last time he
was at the site in another part of the page, and dis-
play a shopping cart in yet another area of the page.
The Taconite plug-in lets you receive a basic XML file
from the Web server with simple instructions on
what areas of a Web page to update and what infor-
mation to use. You can find out more about this
plug-in at http://plug-ins.jquery.com/project/taconite.

http://plug-ins.jquery.com/project/form
http://plug-ins.jquery.com/project/chat
http://plug-ins.jquery.com/project/chat
http://www.sitepoint.com/article/ajax-jquery
http://www.sitepoint.com/article/ajax-jquery
http://plug-ins.jquery.com/project/dirlister
http://plug-ins.jquery.com/project/dirlister
http://plug-ins.jquery.com/project/taconite
http://jmaps.digitalspaghetti.me.uk
http://code.google.com/apis/maps/signup.html
http://code.google.com/apis/maps/signup.html

Chapter 12: Basic Ajax Programming 447

Adding Google
Maps to Your Site

Once you sign up, a Google Web page will show you your key: a very long
sequence of numbers and letters like this: ABQIAAAAcodqE5Ud2u_
bV1oo7fjz7BRzIjhvYzTJQihahdS7VPkPLGAtRBRAtUCMgIDrN2B8zAyx6zaz6
RMU. You’ll need to use that key when accessing the Google Maps service, so
make sure you save that key information.

Note: For testing Google Maps on your own computer (not on a Web server), you don’t need a key at
all. But if you want to move a page that includes a Google Map up to your live Web server, you’ll need a
key.

2. Attach an external JavaScript file from Google Maps.

In order to access the maps service, you need to load a script from Google. The
<script> tag you use looks like this:

<script type="text/javascript" src="http://maps.google.com/

maps?file=api&v=2&key=YOUR_KEY_HERE"></script>

You need to replace the “YOUR_KEY_HERE” part with the API key you got
from Google in step 1.

Figure 12-2:
While a simple picture of
a map is a fine way to
indicate the location of
your (or your client’s)
business, an interactive
map like those available
at http://maps.google.
com is better. Visitors can
zoom into, zoom out of,
and pan across a Google
Map with ease.
Searching for driving
directions from one point
to another is a piece of
cake. Thanks to the
jMaps jQuery plug-in, it’s
easy to add a Google
Map to your Web site.

448 JavaScript: The Missing Manual

Adding Google
Maps to Your Site

3. Attach two jQuery files.

Of course, you need the jQuery library, as well as the jMaps file—jquery.jmap.js.
The jMaps file is available from http://jmaps.digitalspaghetti.me.uk. This file pro-
vides all the programming that makes adding a map to your site so easy. So in
addition to the <script> tag from step 2, you’ll add code that’s something like this:

<script type="text/javascript" src="js/jquery.js"></script>

<script type="text/javascript" src="js/jquery.jmap.js"></script>

Note: You can get the jMaps plug-in file from http://jmaps.digitalspaghetti.me.uk. It’s also included in
the js folder with this book’s tutorial files.

4. Add an empty <div> tag with an ID to the page.

jMaps will add a map in this empty tag, so place the <div> where you want the
map to appear on the page. Also, you need to provide a way of identifying that
tag, so add an ID. The HTML for this might look like this:

<div id="map"></div>

In addition, you can add a CSS rule to the page’s stylesheet to define the height
and width of the map on the page. For example:

#map {

 width: 500px;

 height: 500px;

}

5. If you want to provide driving directions with the map, add another empty
<div> tag.

As you’ll read on page 453, you can use jMaps and Google Maps to provide
driving directions from one location to another. For example, if you add a Google
Map for your business, you could add a form field that lets a customer type her
address and receive directions from her location to your business.

As with the <div> you added in step 4, this <div> should also have a unique ID.
For example:

<div id="directions"></div>

6. Call the jMaps function.

Finally, add a new <script> tag, the document.ready() function and call the
jmap() function. To use the jmap() function, you select the map <div> using a
jQuery selector—$('#map')—then add jmap():

<script type="text/javascript">

$(document).ready(function() {

 $('#map').jmap();

});

</script>

http://jmaps.digitalspaghetti.me.uk
http://jmaps.digitalspaghetti.me.uk

Chapter 12: Basic Ajax Programming 449

Adding Google
Maps to Your Site

Just calling the jmap() function, though, will give you a map that’s centered
somewhere in Edinburgh, Scotland. Most likely (unless you’re from Edin-
burgh) you’ll want to have the map point to a specific location (such as your or
your client’s business location). You’ll learn how to do that next.

Setting a Location for the Map
A Google Map has a center point as defined by numbers that represent the loca-
tion’s longitude and latitude. If you want to center your map on a place—such as
your business’s address or the location of your next birthday party—you need to
get that location’s longitude and latitude. That’s easy:

1. Go to http://maps.google.com and search for the location you want.

Google Maps lets you type an address, like 123 Main St., Oak Park, IL, or even a
landmark name, like Mount Rushmore. Once Google Maps has found the spot
you’re after, you just need to get the longitude and latitude.

2. In the browser’s location bar, type:

javascript:void(prompt('',gApplication.getMap().getCenter()));

Depending on your security settings, in Internet Explorer, a yellow security bar
may appear on the browser window. You must click this bar to let the “script-
able window” get the results. A JavaScript prompt window will appear with the
latitude and longitude (see Figure 12-3).

Figure 12-3:
Every Google Map has a
center point determined
by a longitude and
latitude value. For
example, here you can
see Minneapolis,
Minnesota is located at a
latitude of about 45˚ and
a longitude of about
–93˚.

http://maps.google.com

450 JavaScript: The Missing Manual

Adding Google
Maps to Your Site

Once you have the proper latitude and longitude values, you can send them to the
jmap() function as part of an object literal like this:

$('#map').jmap('init',{mapCenter:[43.878946,-103.459824]});

In this case, the jmap() function takes two arguments. The first, 'init', lets the
jMaps plug-in know that you are initializing (or creating) a new map. The second
argument is an object literal that defines various settings for the new map. The
most important setting, mapCenter, lets you specify the location the map will dis-
play. You supply the mapCenter option with an array (page 56) of two values—the
longitude and latitude:

mapCenter:[43.878946,-103.459824]

Note: The code in step 2 opens a dialog box that includes a pair of parentheses surrounding the longi-
tude and latitude values (see Figure 12-3). Don’t copy the parentheses—you only need the numbers.

Other jMap Options
In addition to mapCenter, you can set many other options when creating a new
map. You should incorporate each option into the object literal that’s passed as the
second argument to the jmap() function. For example, to center the map at a lon-
gitude and latitude of 43/–103, set the map so that’s zoomed in to show details,
and hide the jMap icon from the map, you’d initialize the map like this:

$('#map').jmap('init', {

 mapCenter:[43,-103],

 mapZoom: 13,

 mapShowjMapIcon: false

});

In other words, the options you’re reading about in this section are just passed in
as part of an object literal (see page 188 for a recap on object literals).

Here are a few options you can set.

• Remove the jMaps icon. Normally, when using the jMaps plug-in, you’ll see a
little icon in the bottom left of the map—next to the Google Maps icon. If you
want to remove the jMaps icon, you must set the mapShowjMapIcon option to
false:

mapShowjMapIcon: false

• Control the scale of the map. Sometimes you want your map focused on the
finest details, such as a street-level map. Other times, you might want to have a
broader picture and see an entire city or state on the screen. You can control
how zoomed-in the map is by providing a number for the mapZoom option. A
setting of 0 is completely zoomed out (that is, a map of the entire globe), while
each number above 0 represents greater zoom. As a general rule, 15 is a good

Chapter 12: Basic Ajax Programming 451

Adding Google
Maps to Your Site

setting if you want to see the names of each street, while 13 is good for more of
a bird’s-eye view. The upper limit (greatest amount of zoom) depends on how
detailed a map Google has for the area and varies anywhere from 17 to 23. Set
the option like this:

mapZoom:15

• Set the map controller size. A Google map usually provides a controller that lets
you zoom in and move around the map. You can choose from among three set-
tings for the mapControlSize option. The 'large' setting provides arrows for
moving around and a zoom slide to let you zoom in tight or zoom out com-
pletely to see the whole globe. You see this type of controller at maps.google.com
and in Figure 12-4. The 'small' setting provides a controller with arrows to
move around and + and – buttons to zoom in and out (Figure 12-2). Finally,
you can choose 'none' if you don’t want any controller to appear—but use this
option only if you don’t want your visitors to be able to zoom in and out. You
can set this option like this:

mapControlSize: 'large'

• Add a scale marker. It’s common on printed maps to have some kind of scale
listed on the map: 1" equals 1 mile, for example. A Google Map can also have a
scale marker (see Figure 12-4). To add a small visual scale marker to the lower
left of the map, set the mapEnableScaleControl to true:

mapEnableScaleControl:true

If you don’t want to see the scale marker, you don’t need to do anything—
jMaps normally doesn’t display a scale. If you do add a scale marker, make sure
you remove the jMaps icon (see the first item in this list); otherwise, the two
will overlap.

Adding Markers and HTML Bubbles
To highlight a point on a map you can add a red pushpin marker like the one in
Figure 12-4. These markers are a great way to mark the location of your business
or a point of interest on the map. To provide even more information for the
marker, you can also add a pop-up bubble with HTML (Figure 12-4). jMaps
makes adding these details easy.

To add a marker, you first need to add a map to a page as described above; then to
add a marker, you apply the jmap() function a second time, like this:

$('#map').jmap('addMarker', {pointLatLng:[43.878946, -103.459824]});

When creating a marker, the jmap() function takes two arguments. The first argu-
ment, 'addMarker', identifies the action you’re taking—adding a new marker to
the map. The second argument is an object literal, which indicates the longitude

maps.google.com

452 JavaScript: The Missing Manual

Adding Google
Maps to Your Site

and latitude of the spot where the marker should go. You can determine the longi-
tude and latitude for the marker by following the steps on page 449. You can add
multiple markers by calling the function multiple times:

$('#map').jmap('addMarker', {pointLatLng:[43, -103]});

$('#map').jmap('addMarker', {pointLatLng:[43.5, -103.5]});

In addition, you can add a pop-up bubble to each marker that appears when the
marker is clicked. To do that, add another item to the object literal containing the
name pointHTML and the HTML you wish to display. For example:

$('#map').jmap('addMarker', {

 pointLatLng:[43.878946, -103.459824],

 pointHTML: '<h2>Mount Rushmore</h2><p>Lorem Ipsum</p>'

});

You can also store the HTML in a variable and access the variable when passing the
object literal to the jmap() function like this:

var markerHTML='<h2>Mount Rushmore</h2><p>Lorem ipsum dolor sat</p>';

 $('#map').jmap('addMarker', {

 pointLatLng:[43.878946, -103.459824],

 pointHTML: markerHTML

});

Figure 12-4:
Beyond the map itself, a Google Map offers
various controls and information markers that
make it possible to zoom into a map, move the
map within the window, determine the scale of
the map, and pinpoint exact locations on the
map.

Chapter 12: Basic Ajax Programming 453

Adding Google
Maps to Your Site

You can add any HTML you wish, such as tables, images, and bulleted lists. How-
ever, the pop-up bubble doesn’t resize when you add content, so you should keep
the HTML short—otherwise, it will spill out of the bottom of the HTML bubble.

Tip: To style the HTML inside the HTML bubble, you can use a descendent selector. For example, if you
used the name map for the ID of the <div> containing the map (see step 4 on page 448), you could cre-
ate a descendent selector #map p to format the look of <p> tags inside the bubble.

Get Driving Directions
One of Google Maps’ best features is the ability to get a detailed set of driving
directions from point A to point B. For a brick-and-mortar store, providing an
easy way for visitors to your site to get directions to your store can translate into
more business. The jMaps plug-in lets you print driving directions from any two
points on a map directly on your Web page.

To use the jMaps plug-in to get driving directions, you need to add a map to your
Web page (as described on page 445), and then follow the steps described below.

1. Add an empty <div> for the directions.

Make sure the <div> has an ID so that you can later target the <div> to place
the directions inside it:

<div id="directions"></div>

This <div> can go anywhere on the page, but below or above the map are common
spots.

2. Add a form to the page.

If you know the destination for the directions (for example, you’re providing
directions to your store or one specific location), then you only need a single
text field so the visitor can type his address to get directions to the location you
specify. In addition, you should add a Submit button that the visitor can click.
Here’s some basic HTML that creates a form, a text field, and a Submit button:

<form name="getDirections" id="getDirections">

<p>

 <label for="from">From: </label>

 <input name="from" type="text" id="from">

</p>

<p>

 <input type="submit" name="submit" value="Get Directions">

</p>

</form>

You can also provide driving directions from two locations that the visitor spec-
ifies. In this case, add two text fields to the form.

454 JavaScript: The Missing Manual

Adding Google
Maps to Your Site

3. Add a submit event to the form and call jMaps.

This is the JavaScript code to search for driving directions, so it goes in the
<head> of the page within a <script> tag (you should already have added a
<script> tag to when you added the original map to the page). You add the
event as you would any other browser event (see page 204); for example, if the
form has an ID of getDirections, add a submit event handler like this:

$('#getDirections').submit(function() {

});

Inside the event handler you then call the jMap function, and pass the informa-
tion needed to get driving directions:

1 $('#getDirections').submit(function(){

2 $('#map').jmap('searchDirections', {

3 toAddress: '123 Main St., St. Paul, MN'

4 fromAddress: $('#from').val(),

5 directionsPanel: 'directions'

6 });

7 return false;

8 });

Line 2 calls the jmap() function, passing two arguments. The first, 'searchDirec-
tions', notifies the plug-in that it needs to get driving directions. The second
argument is an object literal with all of the information needed get driving
directions. For example, in line 3 the option toAddress sets the final destination.
In this example, it’s hard-coded to point to an exact spot (what you’d do if you
wanted to just allow visitors to get driving directions to your store).

Line 4 sets the starting point for the directions using the fromAddress option.
Since the visitor is supplying this information in a form field, you can extract
the address from the field using the val() function as described on page 314.
For example, $('#from').val() means “get whatever’s been typed into a field
with an ID of from.”

For the last part of the object literal passed to the jmap() function, you instruct
the plug-in where to put the results with the directionsPanel option. In this
example, an element with an ID of directions is specified on line 5.

Finally, you add return false (line 7) to stop the form from being submitted as it
normally would—in other words, you want to stop the browser’s normal
behavior and let JavaScript send the request to Google and handle Google’s
response (see page 223 for more information on stopping browsers normal
response to events).

Chapter 12: Basic Ajax Programming 455

Adding Google
Maps to Your Site

jMaps Tutorial
In this tutorial, you’ll go through the steps necessary to add the jMaps plug-in to a
Web page. You’ll also add programming so that visitors can request driving directions.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 12.2.html in the chapter12 folder.

Before you start adding any JavaScript to this page, you’ll modify the HTML by
adding an empty <div> to hold the map.

2. Locate the <h1> tag in the body of the page (<h1>Google Maps</h1>). Click
inside the empty line directly below this tag and add:

<div id="map"></div>

You’ve just created a placeholder, where the jMaps plug-in will eventually add a
Google Map.

Next, you’ll add a CSS style to set the height and width of the map.

3. Open the file map.css in the chapter12 folder and add a CSS rule at the bottom
of the stylesheet:

#map {

 height:500px;

 width:500px;

}

At this point, the map area is 500 pixels square. Now it’s time to add some Java-
Script.

4. Click in the empty line just above the closing </head> tag and type:

<script type="text/javascript" src="http://maps.google.com/

maps?file=api&v=2"></script>

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript" src="../js/jquery.jmap.js"></script>

The first <script> tag loads a JavaScript file from Google.com containing the
code needed to talk to the Google Maps service. Because you’re just testing this
page locally on your own computer, you don’t need a Google Maps API key
(see step 1 on page 446). However, if you wanted to move this page onto your
Web server, you’d need to get a key and add it to the URL used to access the
JavaScript file at Google.com (see step 2 on page 447).

The second <script> tag loads jQuery, while the third one loads the jMaps plug-
in file. Now, you’re ready to create the map.

456 JavaScript: The Missing Manual

Adding Google
Maps to Your Site

5. Add one additional <script> tag below the ones you added in step 4, and
include jQuery’s $(document).ready() function:

<script type="text/javascript">

$(document).ready(function() {

}); // end ready

</script>

Now, you just need to apply the jmap() function to the empty <div> you created
in step 2.

6. Inside the $(document).ready() function, add the following code:

$('#map').jmap('init', {

 mapCenter:[37.808445, -122.410161]

});

This initializes (or creates) the map, displaying a specific longitude and latitude
as the center point on the map. (In this case, it’s Fisherman’s Wharf in San
Francisco, but feel free to change these values, as described on page 450, if you
want to display a map with a different location.)

7. Save the file and preview it in a Web browser.

You can’t see the map by viewing the page through a locally running Web
browser—as you must with other Ajax-type pages. In other words, don’t access
this page like this: http://localhost/chapter12/12.2.html; you must use a local file
path like C:\Documents and Settings\Dave\Desktop\tutorials\chapter12\12.2.
html. Just use the File ➝ Open command in your Web browser and navigate to
and open the 12.2.html file on your hard drive; or, alternatively, just drag the
12.2.html file into an open browser window.

Provided you’re connected to the Internet (so the browser can contact Google.
com), you’ll see a 500-pixel square map.

Let’s zoom in a bit more on the map.

8. Edit the script by adding a comma after the mapCenter option and inserting a
mapZoom setting (changes are in bold):

$(document).ready(function() {

 $('#map').jmap('init', {

 mapCenter:[37.808445, -122.410161],

mapZoom: 14

 });

}); // end ready

You can zoom completely out (0), or in to street level (17). Feel free to save the
page and preview the changes in a Web browser. Next, you’ll remove the jMaps
icon.

http://localhost/chapter12/12.2.html

Chapter 12: Basic Ajax Programming 457

Adding Google
Maps to Your Site

9. Edit the script again. This time add a comma after the mapZoom option and
insert another line of code:

$(document).ready(function() {

 $('#map').jmap('init', {

 mapCenter:[37.808445, -122.410161],

 mapZoom: 14,

mapShowjMapIcon: false

 });

}); // end ready

The jMaps icon gets in the way of the next item you’ll add to the map—a scale
marker. While you’re at it, you’ll also change the map’s controller so that it
includes a zoom slider.

10. Edit the jmap() function one last time by adding two more options:

$(document).ready(function() {

 $('#map').jmap('init', {

 mapCenter:[37.808445, -122.410161],

 mapZoom: 14,

 mapShowjMapIcon: false,

mapEnableScaleControl: true,

mapControlSize: 'large'

 });

}); // end ready

The basic map is now in place. To highlight the location we’ve chosen for this
map, you’ll add a red pushpin marker.

11. After the jmap() function you added earlier, type:

$('#map').jmap('addMarker', {

 pointLatLng:[37.808445, -122.410161]

});

This sets up a marker at the same location as the center of the map. You can
provide different longitude and latitude values, of course, to add a marker else-
where on the map.

For the last part of this tutorial, you’ll add the ability to search for driving direc-
tions to Fisherman’s Wharf (or whatever you set the map’s center to). First, you
need to add an empty <div> where the directions will be placed.

12. Locate the closing </form> tag. Immediately after that is a closing </div> tag.
In the empty line following add <div id="directions"></div>. The code should
look like this (the new line is bolded):

 </form>

 </div>

 <div id="directions"></div>

</div>

458 JavaScript: The Missing Manual

Adding Google
Maps to Your Site

When the page loads, that <div> will remain empty. But if someone types an
address in the text field and presses the “Get Directions” button, the jMaps
plug-in will put the driving directions into that <div>.

Now you need to add a submit event handler for the form so that when visitors
fill out the “From” field and hit the Submit button, they’ll receive driving direc-
tions from the location they’ve specified.

13. In the <script> tag where you’ve been adding the programming, insert a blank,
empty line after the code you added in step 11 and type:

$('#getDir').submit(function(){

});

The <form> tag on this page has an ID of getDir (for “get directions”). So this
code selects that form and applies a submit event handler (see page 205). In other
words, the code you add next will only run when a visitor submits the form.

14. Inside the submit event function, add the code in bold:

$('#getDir').submit(function(){

 $('#map').jmap("searchDirections", {

 toAddress: 'Fisherman\'s Wharf, San Francisco, CA',

 fromAddress: $('#from').val(),

 directionsPanel: 'directions'

 });

});

This code calls the jmap() function again, but this time tells the plug-in that it
wants driving directions (that’s the "searchDirections" part) to Fisherman’s
Wharf, from whatever the visitor typed into the “From” field. On this form,
there’s a text field with the ID from, so you can use jQuerys val() function (see
page 314) to retrieve the address that was typed in that field. Finally, you’ll
direct the jmap() function to put the driving directions that Google supplies
into the <div> you added in step 12 (that <div> has the ID directions).

Note: The backward slash before the ’ in Fisherman’s Wharf in the code in this step is used to escape the
single quote mark, so the JavaScript interpreter doesn’t consider it the end of the string. See the box on
page 42 for more on escaping quote marks.

Next, you need to stop the Web browser from trying to submit the form infor-
mation. You’ve used JavaScript to intercept the submission, so you don’t want
the browser doing anything.

15. Insert a blank line directly before the final line of the submit() function and
type return false; so that the code looks like this:

$('#getDir').submit(function(){

 $('#map').jmap("searchDirections", {

Chapter 12: Basic Ajax Programming 459

Adding Google
Maps to Your Site

 toAddress: 'Fisherman\'s Wharf, San Francisco, CA',

 fromAddress: $('#from').val(),

 directionsPanel:"directions"

 });

 return false;

});

As discussed on page 224, you can use return false; on click and submit events to
prevent a browser from responding as it would normally to those events. Now
you’re ready to test this out.

16. Save the file and preview it in a Web browser. Type an address (like 123 Main
St., Boise, ID), or just a city and state like St Paul, MN. Press the Get Direc-
tions button.

The map will zoom out and draw a line from your starting point to Fisher-
man’s Wharf. In addition, a set of written driving directions will appear below
the form field (in the empty <div> you added back in step 12, as shown in
Figure 12-5).

If you now try to get driving directions from another address, you’ll notice that
the new directions will appear, but the old directions remain as well. There might
be an occasion where you’d like the search function to work that way, but most of
the time, you’ll just want to replace the old directions with the new ones.

17. Directly inside the submit event, type $('#directions').empty();. The completed
code for this page should now look like this:

$(document).ready(function() {

 $('#map').jmap('init', {

 mapCenter:[37.808445, -122.410161],

 mapZoom: 14,

 mapShowjMapIcon: false,

 mapEnableScaleControl: true,

 mapControlSize: 'large'

 });

 $('#map').jmap('addMarker', {

 pointLatLng:[37.808445, -122.410161]

 });

 $('#getDir').submit(function(){

 $('#directions').empty();

 $('#map').jmap("searchDirections", {

 toAddress: 'Fisherman\'s Wharf, San Francisco, CA',

 fromAddress: $('#from').val(),

 directionsPanel:"directions"

 });

 return false;

 });

}); // end ready()

460 JavaScript: The Missing Manual

Adding Google
Maps to Your Site

jQuery’s empty() function removes all of the content inside of the selection. So
in this case, the driving directions <div> tag is selected—$('#directions')—and
then anything inside it (such as previous driving directions) is removed.

Save the page and give it one final check in a Web browser. You’ll find a com-
pleted version of the tutorial file—complete_12.2.html—in the chapter12 folder.

Figure 12-5:
The jMaps plug-in not only lets you
add Google Maps to a Web page, but
also lets visitors get written driving
directions from their location to your
store or some other location you
specify. To change the appearance of
these directions, create descendent
selector CSS styles based on the ID of
the <div> used to hold the directions.
For example, #directions p is a
selector that formats all <p> tags
inside another tag with an ID of
directions.

4
IV.Part Four:
Troubleshooting, Tips,
and Tricks

Chapter 13: Troubleshooting and Debugging

Chapter 14: Going Further with JavaScript

463

Chapter 13chapter

13

Troubleshooting and
Debugging

Everybody makes mistakes, but in JavaScript mistakes can keep your programs
from running correctly—or at all. When you first start out with JavaScript, you’ll
probably make a lot of mistakes. Trying to figure out why a script isn’t behaving
the way it should can be frustrating, but it’s all a part of programming. Fortu-
nately, with experience and practice, you’ll be able to figure out why an error has
occurred and how to fix it.

This chapter describes some of the most common programming mistakes, and,
more importantly teaches you how to diagnose problems in your scripts—debug
them, as programmers say. In addition, the tutorial will take you step-by-step
through debugging a problematic script.

Top JavaScript Programming Mistakes
There are countless ways a program can go wrong, from simple typos to more subtle
errors that only pop up every now and again. However, there are a handful of mis-
takes that routinely plague beginning (and even advanced) JavaScript program-
mers. Go over the list in this section, and keep it in the back of your mind when
programming. You’ll probably find that knowing these common mistakes makes it
a lot easier to identify and fix problems in your own programs.

Non-Closed Pairs
As you’ve noticed, JavaScript is filled with endless parentheses, braces, semicolons,
quotation marks, and other punctuation. Due to the finicky nature of computers,
leaving out a single punctuation mark can stop a program dead in its tracks. One

464 JavaScript: The Missing Manual

Top JavaScript
Programming
Mistakes

of the most common mistakes is simply forgetting to include a closing punctua-
tion mark. For example, alert('hello' ; will produce an error because the closing
parenthesis is missing: alert('hello');.

Leaving off a closing parenthesis will cause a syntax error (see the box on page
469). This kind of “grammatical” error prevents scripts from running at all. When
you give your script a test run, the browser lets you know if you’ve made a syntax
error, but, confusingly, they all describe the problem differently. In the Firefox
error console (page 34), you get an error message like “missing) after argument
list”; Internet Explorer (page 35) reports this error as “Expected ')'”; and Safari’s
error console (page 36) gives you the less-helpful message “SyntaxError: ParseEr-
ror.” As mentioned on page 33, Firefox tends to provide the most understandable
error messages, so it’s a good browser to start with when trying to figure out why a
script isn’t working (see Figure 13-1).

The syntax error in alert('hello' ; is pretty easy to spot. When you’ve got a nest of
parentheses, though, it’s very easy to leave off a closing parenthesis and difficult to
spot that error at a glance. For example:

if ((x>0) && (y<10) {

 // do something

}

In this example, the final closing parentheses for the conditional statement is miss-
ing—the one that goes directly after (y<10). The first line should really be: if ((x>
0) and (y<10)) {. Again, Firefox provides the clearest description of the problem:
“missing) after condition.” Table 13-1 provides a list of Firefox’s Error Console
syntax error messages.

You’ll encounter a syntax error when you forget to include the second quote mark
as well. For example, alert('hello); produces an error because the final single quote
is missing: alert('hello');. In Firefox, if you forget to include both quote marks,
you’ll get an “unterminated string literal” error, while Internet Explorer reports an
“unterminated string constant”; Safari again provides the less-than-useful “Syntax-
Error: Parse Error” message.

Braces also come in pairs, and you’ll use them in conditional statements (page 77),
in loops (page 90), when creating JavaScript object literals (page 188), and with
JSON (page 432):

if (score==0) {

 alert('game over');

In this example, the closing } is missing, and the script will produce a syntax error.

One approach to overcome the problem of missing closing punctuation marks is
to always add them before adding other programming. For example, say you want
to end up with the following code:

if ((name=='bob') && (score==0)) {

 alert('You lose (but at least you have a great name');

}

Chapter 13: Troubleshooting and Debugging 465

Top JavaScript
Programming

Mistakes

Start by typing the outside elements first, creating a basic skeleton for the condi-
tion like this:

if () {

}

At this point, there’s not much code, so it’s easy to see if you’ve mistakenly left out
any punctuation. Next, add more code, bit by bit, until the program is in place.
The same is true when creating a complex JavaScript object literal like the one used
to set the options for the Validation plug-in described on page 331, or like a JSON
object described on page 432. Start with the basic structure:

var options = {

};

Then add more structure:

var options = {

 rules : {

 },

 messages : {

 }

};

Figure 13-1:
Firefox’s Error Console
lists all JavaScript errors
that the browser
encounters. You can
display the console by
choosing Tools ➝ Error
Console. Since the
console lists the errors it
has encountered on all
pages, you’ll want to
frequently erase the list
by clicking the Clear
button (circled).

466 JavaScript: The Missing Manual

Top JavaScript
Programming
Mistakes

Then finish the object:

var options = {

 rules : {

 name : 'required',

 email: 'email'

 },

 messages : {

 name : 'Please type your name',

 email: 'Please type your e-mail address.'

 }

};

This approach lets you check your work through various steps and makes it a lot
easier to identify any mistakes in punctuation.

Table 13-1. Firefox’s Error Console (discussed on page 34) provides the clearest description of syntax
error messages. When a script isn’t working, preview it in Firefox and review the Error Console. Here are
a few of the most common error messages and what they mean.

Firefox error message Explanation

Unterminated string literal Missing opening or closing quote mark:
var name = Jane' ;

Error also appears with mismatched quote marks:
var name = 'Jane";

Missing) after argument list Missing closing parenthesis when calling a function or
method:

alert('hello' ;

Missing) after condition Missing closing parenthesis within a conditional
statement:

if (x==0

Missing (before condition Missing opening parenthesis within a conditional
statement:

if x==0)

Missing } in compound statement Missing closing brace as part of conditional loop:
if (score == 0) {
 alert('game over');

// missing } on this line

Missing } after property list Missing closing brace for JavaScript object:
var x = {
 fName: 'bob',
 lName: 'smith'

// missing } on this line

Syntax Error General problem that prevents JavaScript interpreter
from reading the script.

Chapter 13: Troubleshooting and Debugging 467

Top JavaScript
Programming

Mistakes

Quotation Marks
Quote marks often trip up beginning programmers. Quote marks are used to create
strings of letters and other characters (see page 116) to use as messages on the
page, or as variables in a program. JavaScript, like other programming languages,
lets you use either double or single quote marks to create a string. So,

var name="Jane";

is the same as:

var name='Jane';

As you read in the previous section, you must include both the opening and clos-
ing quote marks, or you’ll end up with an “Unterminated string literal” error in
Firefox (and all other browsers will give up on your script as well). In addition, as
you read on page 41, you must use the same type of quote mark for each pair—in
other words, both single quotes or both double quotes. So var name='Jane" will
also generate an error.

Another common problem can arise with the use of quotations within a string. For
example, it’s very easy to make the following mistake:

var message='There's an error in here.';

Notice the single quote in There's. The JavaScript interpreter treats that quote
mark as a closing quote, so it actually sees this: var message='There', and the rest of
the line is seen as an error. In the Firefox Error Console, you’ll get the message
“Missing ; before statement,” because Firefox thinks that second quote is the end
of a simple JavaScript statement and what follows is a second statement.

You can get around this error in two ways. First, you can mix and match double
and single quotes. In other words, you can put double quotes around a string with

Missing ; before statement Lets you know when you’ve run two statements together
on a single line, without separating them with a semi-
colon. You’ll also see this when you incorrectly nest quo-
tation marks:

var message='There's an error here.';

Missing variable name Appears if you attempt to use a JavaScript reserved word
(see page 44) for a variable name:

var if="Syntax error.";

Redeclaration of const Appears when you try to assign a value to one of the
browser’s reserved words (see the list on page 45). For
example:

var document="This won't work.";

Table 13-1. Firefox’s Error Console (discussed on page 34) provides the clearest description of syntax
error messages. When a script isn’t working, preview it in Firefox and review the Error Console. Here are
a few of the most common error messages and what they mean. (continued)

Firefox error message Explanation

468 JavaScript: The Missing Manual

Top JavaScript
Programming
Mistakes

single quotes, or you can put single quotes around a string containing double
quotes. For example, you can fix the above error this way:

var message="There's no error in here.";

Or, if the string contains double quotes:

var message='He said, "There is no problem here."';

Another approach is to escape quote marks within a string. Escaping quote marks
is discussed in greater detail in the box on page 42, but here’s a recap: to escape a
character, precede it with a forward slash, like this:

var message='There\'s no error here.';

The JavaScript interpreter treats \' as a single quote character and not as the symbol
used to begin and end strings.

Using Reserved Words
As listed on page 45, the JavaScript language has many words that are reserved for
its private use. These words include words used in the language’s syntax, like if, do,
for, and while, as well as words used as part of the Browser object, like alert, loca-
tion, window, and document. These words are not available to use as variable
names.

For example, the following code generates a syntax error:

var if = "This won't work.";

Since if is used to create conditional statements—as in if (x==0)—you can’t use it
as a variable name. Some browsers, however, won’t generate an error if you use
words that are part of the Browser Object Model (see page 45) for your variable
names. For example, document refers to the HTML document. Firefox alone spits
out an error—“Redeclaration of const”—when it encounters code like the following:

var document='Something strange is happening here.';

alert(document);

You’ll get completely different results if you run this code in any other browsers.
Internet Explorer, for example, pops up an alert box with the string “Something
strange is happening here,” since that browser lets you assign a value to that vari-
able name. However, Safari and Opera both pop up alerts with the text “[object
HTMLDocument].” Again, Firefox is the best browser to test your scripts in, since
it produces real error messages that are easy to understand and fix.

Single Equals in Conditional Statements
Conditional statements (page 77) provide a way for a program to react in different
ways depending upon a value of a variable, the status of an element on a page, or
some other condition in the script. For example, a conditional statement can dis-
play a picture if it’s hidden or else hide it if it’s visible. Conditional statements only

Chapter 13: Troubleshooting and Debugging 469

Top JavaScript
Programming

Mistakes

make sense, however, if a particular condition can be true or false. Unfortunately,
it’s easy to create a conditional statement that’s always true:

if (score=0) {

 alert('game over');

}

UP TO SPEED

Types of Errors
There are three basic categories of errors that you’ll
encounter as you program JavaScript. Some of these errors
are immediately obvious, while others don’t always rear
their ugly heads until the script is up and running.

• Syntax Errors. A syntax error is essentially a gram-
matical mistake that makes a Web browser’s Java-
Script interpreter throw up its hands and say, “I give
up.” Any of the errors involving a missing closing
parenthesis, brace, or quote mark generates a syn-
tax error. The Web browser encounters syntax errors
immediately, as it reads the script, so the script
never has a chance to run. An error message for a
syntax error always appears in a Web browser’s
Error Console.

• Runtime errors. After a browser reads a script’s
code successfully and the JavaScript interpreter
interprets it, it can still encounter errors. Even if the
program’s syntax is fine, other problems might pop
up as the program runs—called runtime errors. For
example, say you define a variable named message
at the beginning of a script; later in the script, you
add a click function (page 203) to an image so an
alert box appears when the image is clicked. Say the
alert code for this example looks like this: alert(MES-
SAGE);. There’s nothing wrong with this statement’s
syntax, but it calls the variable MESSAGE instead of
lowercase message. As mentioned on page 44, Java-
Script is case-sensitive, so MESSAGE and message
refer to two different variables. When a visitor clicks
the image, the JavaScript interpreter looks for the
variable MESSAGE (which doesn’t exist) and gener-
ates a runtime error.

Another common runtime error occurs when you try
to access an element on a page that either doesn’t

exist or the browser hasn’t yet read into its memory.
See the discussion of jQuery’s $(document).ready()
function on page 218 for more detail on this problem.

• Logic errors. Sometimes even though a script
seems to run, it doesn’t produce the results you’re
after. For example, you may have an if/else state-
ment (page 77) that performs step A if a condition is
true or step B if it’s false. Unfortunately, the pro-
gram never seems to get to step B, even if you’re
sure the condition is false. This kind of error hap-
pens when you use the equality operator incorrectly
(see page 78). From the JavaScript interpreter’s per-
spective, everything is technically correct, but you’ve
made a mistake in the logic of your programming
that prevents the script from working as planned.

Another example of a logic error is an infinite loop, which is
a chunk of code that runs forever, usually causing your pro-
gramming to hang up and sometimes even crashing the
Web browser (see page 91). Here’s an example of an infi-
nite loop:

for (var i=1; i>0; i++) {
 // this will run forever
}

In a nutshell, this loop will run as long as the test condition
(i>0) is true. Since i starts out with a value of 1 (var i=1),
and each time it goes through the loop i is increased by 1
(i++), the value of i will always be greater than 1. In other
words, the loop never stops. (Turn to page 94 if you need
a refresher on for loops.)

Logic errors are amongst the most difficult to uncover.
However, with the debugging techniques described on
page 473, you should be able to uncover just about any
problem you encounter.

470 JavaScript: The Missing Manual

Top JavaScript
Programming
Mistakes

This code is supposed to check the value stored in the variable score—if the value is
0 then an alert box with the message “game over” should appear. However, in this
case, the alert message will always display, no matter what value is stored in score
prior to the conditional statement. That’s because a single equals sign is an assign-
ment operator, so score=0 stores the value 0 in score. The JavaScript interpreter
treats an assignment operation as true, so not only does the code above always pop
up the alert box, it also re-writes the value of score to 0.

To avoid this error, make sure to use double equal signs when testing whether two
values are the same:

if (score==0) {

 alert('game over');

}

Case-Sensitivity
Remember that JavaScript is case-sensitive, meaning that the JavaScript inter-
preter tracks not only the letters in the names of variables, functions, methods, and
keywords, but also whether the letters are uppercase or lowercase. So alert('hi') is
not the same as ALERT('hi') to the JavaScript interpreter. The first, alert('hi'), calls
the browser’s built-in alert() command, while the second ALERT('hi') attempts to
call a user-defined function named ALERT().

You can run into this problem if you use the long-winded DOM selection meth-
ods getElementsByTagName() or getElementById(), since they use both upper and
lowercase letters. Likewise, if you include both upper and lowercase letters in vari-
able and function names, you may run into this problem from time to time.

If you see an “x is not defined” error message (where x is the name of your variable,
function, or method), mismatched case may be the problem.

Incorrect Path to External JavaScript File
Another common mistake is incorrectly linking to an external JavaScript file. Page
24 discusses how to attach an external JavaScript file to a Web page. Basically, you
use the <script> tag’s src property to point to the file. So in the HTML page, you’d
add the <script> tag to the <head> of the document like this:

<script type="text/javascript" src="site_js.js"></script>

The src property works like a link’s href property—it defines the path to the Java-
Script file. As mentioned in the box on page 25, there are three ways you can point
to a file: absolute links (http://www.site.com/site_js.js), root-relative links (/site_js.
js), and document-relative links (site_js.js).

A document-relative path describes how a Web browser gets from the current page
(the Web page) to a particular file. Document-relative links are commonly used
because they let you test your Web page and JavaScript file right on your own

http://www.site.com/site_js.js

Chapter 13: Troubleshooting and Debugging 471

Top JavaScript
Programming

Mistakes

computer. If you use root-relative links, you’ll need to set up a Web server on your
own computer to test your pages (or move them up to your Web server to test
them).

You can read more about how link paths work on page 25. But, in a nutshell, if you
find that a script doesn’t work and you’re using external JavaScript files, double-
check to make sure you’ve specified the correct path to the JavaScript file.

Tip: If you’re using the jQuery library and you get the error “$ is not defined” in the Firefox Error Con-
sole, you probably haven’t correctly linked to the jquery.js file (see page 172 for more).

Incorrect Paths Within External JavaScript Files
Another problem related to file paths occurs when using document-relative paths
in an external JavaScript file. For example, you might create a script that displays
images on a page (like a slideshow or just a “random image of the day” script). If
the script uses document-relative links to point to the images, you can run into
trouble if you put that script into an external JavaScript file. Here’s why: When an
external JavaScript file is loaded into a Web page, its frame of reference for
document-relative paths is the location of the Web page itself. So, any document-
relative paths you include in the JavaScript file must be relative to the Web page
and not the JavaScript file.

Here’s a simple example to illustrate this problem. Figure 13-2 represents the
structure of a very simple Web site. There are two Web pages (page.html and
about.html), four folders (libs, images, pages, and about), an external JavaScript file
(site_js.js inside the libs folder) and an image (photo.jpg in the images folder.) Say
the site_js.js file references the photo.jpg file—perhaps to preload the image (page
235), or display it dynamically on a Web page.

From the site_js.js file’s perspective, a document-relative path to the photo.jpg file is
../images/photo.jpg (#1 in Figure 13-2). The path tells the browser to exit the libs
folder (../), enter the images folder (images/) and select the photo.jpg file. However,
from the perspective of the page.html file, the path to the photo.jpg file (#2 in
Figure 13-2) is just images/photo.jpg. In other words, the path to the same photo
differs between the two files.

If you want to use the site_js.js script within the page.html file, then, you have to
use path #2 in the site_js.js file to reference the location of photo.jpg (that is, specify
a path relative to page.html). By the same token, you can’t use the site_js.js file in a
Web page located in another directory in your site, since the relative path would be
different for that file (#3 in Figure 13-2).

There are a few ways around this problem. First, well, you may never encounter
it—you may not find yourself listing paths to other files in your JavaScript files.
But if you do, you can use root-relative paths (see page 25), which are the same
from any page in the site. Alternatively, you can define the path to the files within
each Web page. For example, you can link to the external JavaScript file (see page

472 JavaScript: The Missing Manual

Top JavaScript
Programming
Mistakes

24), and then, in each Web page, define variables to hold document-relative paths
from the current Web page to the correct file.

Finally, you could use an approach like the one used in the slideshow on page 263.
The paths come from the Web page and are embedded within links on the page—
the JavaScript simply pulls the paths out of the HTML. As long as those paths work
in the HTML, they’ll work in a script as well.

Disappearing Variables and Functions
You may occasionally encounter an “x is not defined” error, where x is either the
name of a variable or a function you’re trying to call. The problem may just be that
you mistyped the name of the variable or function or used the wrong case (see
page 470). However, if you look through your code and can clearly see that the
variable or function is defined in your script, then you may be running into a
“scope” problem.

Variable and function scope is discussed in greater detail on page 103, but in a nut-
shell, if a variable is defined inside of a function, it’s only available to that function
(or to other functions defined inside that function). Here’s a simple example:

1 function sayName(name) {

2 var message = 'Your name is ' + name;

3 }

4 sayName();

5 alert(message); // error: message is not defined

Figure 13-2:
Document-relative paths depend on both the location of
the file that path starts at as well as the location of the
destination file. For example, the document-relative path
from the site_js.js file to the photo.jpg file (#1) is ../
images/photo.jpg; the path to the same file from the page.
html file (#2) is images/photo.jpg; and the path from the
about.html file (#3) is ../../images/photo.jpg.

Chapter 13: Troubleshooting and Debugging 473

Debugging with
Firebug

The variable message is defined within the function sayName(), so it only exists for
that function. Outside the function, message doesn’t exist, so an error is generated
when the script tries to access the variable outside the function (line 5).

You may also encounter this error when using jQuery. On page 218, you read
about the importance of the $(document).ready() function for jQuery. Anything
inside that function only runs once the page’s HTML is loaded. You’ll run into
problems if you define variables or functions within the $(document).ready() func-
tion and try to access them outside of it, like this:

$(document).ready(function() {

 var msg = 'hello';

});

alert(msg); // error: msg is not defined

So, when using jQuery, be sure to put all of your programming inside the $(docu-
ment).ready() function:

$(document).ready(function() {

 var msg = 'hello';

 alert(msg); // msg is available

});

Debugging with Firebug
If you haven’t been using Firebug, you’ve been missing out on one of the best tools
a Web designer could have. It’s free, easy to install and use, and can help you
improve your HTML, CSS, and JavaScript. Firebug is an extension for Firefox that
adds a bunch of helpful diagnostic tools to let you pick apart your HTML, CSS,
and (most importantly for this book) JavaScript programs.

Installing and Turning On Firebug
You can find the extension at www.getfirebug.com. Here’s how to install it:

1. Visit www.getfirebug.com using Firefox, and click the Install Firebug button
(#1 in Figure 13-3).

To protect you from accidentally installing a malicious extension, Firefox stops
your first attempt at installing the extension. A yellow banner appears above the
page letting you know (#2 in Figure 13-3).

2. In the yellow warning bar, click the Edit Options button (#3 in Figure 13-3).

The Allowed Sites window appears. This window lists all of the sites that you’ve
approved for installing extensions.

3. Click Allow, and then close the window.

You’ve just added firebug.com to your list of approved sites.

http://www.getfirebug.com
http://www.getfirebug.com
firebug.com

474 JavaScript: The Missing Manual

Debugging with
Firebug

4. Click the Install Firebug button again (#1 in Figure 13-3).

Another dialog box appears asking you confirm that, yes, you really, really want
to install the extension.

5. Click Install Now, and Firefox installs the extension. Finally, click the Restart
Firefox button to make the Firebug available.

Even though the extension is installed, there’s still one more step to make it
available to your Web pages.

6. Choose Tools ➝ Firebug ➝ Enable Firebug.

Now you can begin using Firebug to help you debug your scripts.

Viewing Errors with Firebug
Firebug provides an easier and more useful way to view errors than Firefox’s built-
in Error Console. With Firebug, when you load a Web page with JavaScript errors,
you’ll see a red X in the lower-right corner of the browser, as well as the number of

UP TO SPEED

Programming Tips to Reduce Errors
The best way to deal with errors and bugs in your programs
is to try to stop them as early as possible. It can be really
difficult to track down the cause of errors in a program if
you wait until you’ve written a 300-line script before testing
it in a Web browser. The two most important tips to avoid-
ing errors are:

• Build a script in small chunks. As you’ve proba-
bly figured out by now, JavaScript programs can be
difficult to read, what with all of the },), ‘, ifs, elses,
functions, and so on. Don’t try to write an entire
script in one go (unless you’re really good, the script
is short, or you’re feeling lucky). There are so many
ways to make a mistake while programming, and
you’re better off writing a script in bits.

For example, say you want to display the number of
letters typed into a “Comments” box, right next to the
box. In other words, as a visitor types into the field, a
running total of the number of letters typed appears
next to the box. (Some sites do this when they limit
the amount a visitor can type into a field—say, 300
letters.) This task is pretty easy JavaScript, but it
involves several steps: responding to the keydown

event (when a visitor types a letter in the field),
reading the value of that field, counting the num-
bers of characters in the field, and then displaying
that number on the page. You can try to write this
script in one go, but you can also write the code for
step 1 (responding to a keydown event) and then
test it immediately in a Web browser (using the
alert() command or Firebug’s console.log() func-
tion described on the next page, can help you see
the results of a keydown event). If it works, you can
then move on to step 2, test it, and so on.

As you gain more experience, you won’t need to test
such small steps. You can write a few steps at once,
and then test that chunk.

• Test frequently. You should also test your script in
a Web browser frequently. At a minimum, test after
you complete each chunk of the program, as sug-
gested in the previous point. In addition, you should
test the script in different browsers—preferably Inter-
net Explorer 6, 7, and 8; Firefox 2 and 3; Safari 2 and
3; and whatever other browsers you think your site’s
visitors might be using.

Chapter 13: Troubleshooting and Debugging 475

Debugging with
Firebug

errors encountered (see Figure 13-4). Click the red error button to open the Fire-
bug console, which lists any JavaScript errors.

Note: If there are no errors on the page, the Firebug button in the lower-right corner of Firefox’s status
bar is a green checkmark.

The errors listed in the console are the same as Firefox’s Error Console
(Figure 13-1), but Firebug only lists errors for the page you’re currently viewing
(unlike the Error Console, which lists all errors on all pages Firefox has visited).
Because Firebug provides such easy access to error information, you’ll probably
find yourself skipping the Firefox Error Console entirely once you’ve experienced
Firebug.

Using console.log() to Track Script Progress
Once a script begins to run, it’s kind of like a black box. You don’t really know
what’s going on inside the script and only see the end result, like a message on the
page, a pop-up window, and so on. You can’t always tell exactly whether a loop is
working correctly or see the value of a particular variable at any point in time.

Figure 13-3:
You have to jump through a series of security
hoops to install the Firebug extension, but it’s
worth it.

476 JavaScript: The Missing Manual

Debugging with
Firebug

JavaScript programmers have long used the alert() method (page 457) to pop up a
window with the current value of a variable. For example, if you want to know
what value is being stored in the variable elementName as a loop is running, you
can insert an alert command inside the loop: alert(elementName);. That’s one way
to look into the “black box” of the script. However, the alert box is pretty intru-
sive: You have to click it to close it, and in a loop that might run 20 times, that’s a
lot of pop-up alerts to close.

Firebug provides a better way to look into your program. The Firebug console not
only lists errors (see previous section), but can also be used to output messages
from the program. The console.log() function works similar to the document.write()
function (page 29), but instead of printing a message to the Web page, console.log()
prints a message to the console.

For example, you could print the current value of the variable elementName to the
console using this code:

console.log(elementName);

Unlike the alert() method, this method won’t interrupt your program’s flow—
you’ll just see the message in the console.

Figure 13-4:
Firebug’s console lists any JavaScript
errors Firefox has encountered on the
current page. To see the exact line of
code on which the error was
encountered, click the code snippet
under the error (circled). Firebug then
switches from the console tab to the
script tab and highlights the line where
the error happened.

Chapter 13: Troubleshooting and Debugging 477

Debugging with
Firebug

Note: Although Firebug only works in Firefox, you can still get the benefit of the console.log() function
in other browsers by attaching the Firebug Lite JavaScript file to your page. It works like an external Java-
Script file (see page 24), and provides a way to use the console log within Internet Explorer, Safari, or
Opera. You can download Firebug Lite from www.getfirebug.com/lite.html.

To make the log message more understandable, you can include a string with addi-
tional text. For example, if you have a variable named name and you want to deter-
mine what value is stored in name at some point in your program, you can use the
console.log() function like this:

console.log(name);

But if you wanted to precede the name with a message, you can write this:

console.log('User name: %s', name);

In other words, you first pass a string to the log() function, followed by a comma
and the name of the variable whose value should be displayed. The special %s is
way of saying “substitute the variable value with me.” In other words, %s gets
replaced with the value of name, so you’ll end up with a message in the console like
“User name: Bob.”

You can add more than one variable to the message; just include one %s for each
variable. For example, if you have two variables, name and score, and want to print
both along with a custom log message, you can do the following:

console.log('%s has a score of %s', name, score);

You can use %s for numeric values, but Firebug provides two other tokens—%d
and %f—to represent integers (like 1, 2, and 10) and floating point numbers (like
1.22, and 2.4444). Using one of the two numeric tokens means the numbers are
printed in a different color—just an easy way to tell them apart from the rest of the
text.

For example, you can rewrite the line of code above to display the number stored
in the variable score:

console.log('%s has a score of %d', name, score);

The log() function is merely a way to give you some information about the func-
tioning of your script as you develop it. Once your program is finished and work-
ing, you should remove all of the console.log() code from your script. Web
browsers without Firebug installed (which also includes Internet Explorer, Safari,
and Opera) generate errors when they encounter the log() function.

Tutorial: Using the Firebug Console
In this tutorial, you’ll learn how to use the console.log() function to see what’s
going on inside your program. You’ll create a script that displays the number of
characters typed into a text box on a form.

http://www.getfirebug.com/lite.html

478 JavaScript: The Missing Manual

Debugging with
Firebug

Note: See the note on page 27 for information on how to download the tutorial files.

To get started, first install Firebug in Firefox using the instructions on page 473
(remember, Firebug only works with the Firefox Web browser).

1. Open the file 13.1.html in a text editor.

This script uses the jQuery library (page 169). The external jquery.js file is
already attached to the page, and the opening and closing <script> tags are in
place. You’ll start by adding jQuery’s $(document).ready() function.

2. Between the <script> tags at the top of the page, add the code in bold below:

<script type="text/javascript">

$(document).ready(function() {

});

</script>

You learned about the basic $(document).ready() function on page 218, which
makes the browser load all of the page’s code before starting to run any Java-
Script. You’ll first use the Firebug log() function to simply print out a message
that the script has executed the .ready() function.

3. Add the bolded code below to the script:

<script type="text/javascript">

$(document).ready(function() {

 console.log('READY');

});

</script>

The console.log() function runs wherever you place it in the script. In other
words, after this page’s HTML is loaded (that’s what the ready() function waits
for), Firebug writes “READY” to the Firebug console. Adding the ready() func-
tion is a pretty common and basic move, so you may not always add a console.
log() function here, but for this tutorial, you’ll add one to see how the log()
function works. In fact, you’ll be adding a lot of log messages to this page to get
the hang of the console.log() function.

4. Save the file, and open it in Firefox. Click the green checkmark button in the
lower-right corner of Firefox’s status bar.

You can also choose Tools ➝ Firebug ➝ Open Firebug to see the Firebug console.

The word READY should appear in the console (circled in Figure 13-5). The
script you’re creating will display the number of characters typed into a form’s
text field each time your visitor types a character. To accomplish this, you’ll add
a keyup event (page 207) to that text box. During each step of this script, you’ll
also add a console.log() function, to clue you in to what’s happening.

Chapter 13: Troubleshooting and Debugging 479

Debugging with
Firebug

5. After the line of code you added in step 3, add the following:

$('#comments').keyup(function() {

 console.log('Event: keyup');

});

The <textarea> tag on this page has an ID of comments, so we can select that
element using jQuery ($('#comments')) and add a function to the keyup event
(see page 207 for a refresher on adding events). In this case, the console.log()
function is just printing a status message to the Firebug console telling you each
time the keyup event is triggered. This function is an easy way to see whether an
event function is actually running or something’s preventing the event from
happening.

Save the page; reload it in Firefox and type a few characters into the text box.
Make sure Firebug’s console is open, and you should see several lines (one for
each character you typed) of “Event: keyup,” Now that the keyup event is work-
ing, you might want to retrieve the contents of the text box and store it in a
variable. To be sure you’re getting the information you’re after, you’ll print the
contents of the variable to the console.

Figure 13-5:
If the Firebug icon in the
right corner of the status
bar is red instead of
green, there’s a JavaScript
error (probably just a
typo). Click the red
button, and the console
tells you the error.

480 JavaScript: The Missing Manual

Debugging with
Firebug

6. Add lines 3 and 4 below to the code you typed in step 5:

1 $('#comments').keyup(function() {

2 console.log('Event: keyup');

3 var text = $(this).val();

4 console.log('Contents of comments: %s',text);

5 });

Line 3 retrieves the value from the text box and stores it inside a variable named
text (see page 313 for more information on extracting the value from a form
field). Line 4 writes a message to the console. In this case, it combines a string
'Contents of comments: ' and the value currently stored in the text box. When a
program isn’t working correctly, a very common diagnostic step is to print out
the values of variables in the script to make sure the variable contains the infor-
mation you’re expecting it to have.

7. Save the file, reload it in Firefox, and type some text into the comments box.

The console should now display the contents in the comments box each time
you type a letter into the field. By now you should be getting the hang of the
console, so you’ll add one more message, and then finish this script.

8. Edit the keyup event function by adding two more lines (5 and 6 below):

1 $('#comments').keyup(function() {

2 console.log('Event: keyup');

3 var text = $(this).val();

4 console.log('Contents of comments %s',text);

5 var chars = text.length;

6 console.log('Number of characters: %d',chars);

7 });

Line 5 counts the number of characters stored inside the text variable (see page
116 for more on the length property) and stores it inside the variable chars. Just
to make sure the script is correctly calculating the number of characters, use the
log() function (line 6) to print a message to the console. Since the variable chars
holds a number, you use the %d token to display an integer value (see page 147).

There’s just one last thing to do: finish the script so it prints the number of
characters typed so your visitor can see it.

9. Add one last line to the end of the keyup event function (line 10), so the com-
pleted script for the page looks like this:

1 <script type="text/javascript">

2 $(document).ready(function() {

3 console.log('READY');

4 $('#comments').keyup(function() {

5 console.log('Event: keyup');

6 var text = $(this).val();

7 console.log('Contents of comments: %s',text);

Chapter 13: Troubleshooting and Debugging 481

Debugging with
Firebug

8 var chars = text.length;

9 console.log('Number of characters: %d',chars);

10 $('#count').text(chars + " characters");

11 });

12 });

13 </script>

10. Save the file, and preview it in Firefox.

Make sure Firebug is open, and the page and console should now look some-
thing like Figure 13-6. You’ll find a finished version of this tutorial—complete_
13.1.html—in the chapter13 folder in the tutorials folder.

Note: As mentioned on page 477, once you have a functioning program, you should remove all console.
log() code from your script. The log() function will generate errors in other browsers and in any version
of Firefox missing the Firebug extension.

Figure 13-6:
The Firebug console is a
great way to print out
diagnostic information
as a program is running.
You can also group
together a series of log
entries (for example, to
group all the log
messages printed during
a loop) by adding
console.group() before
the first console.log()
message in the group,
and console.groupEnd()
after the last message.
You can learn more
about console functions
at www.getfirebug.com/
console.html.

482 JavaScript: The Missing Manual

Debugging with
Firebug

More Powerful Debugging
The Firebug console is a great way to print out messages so you can see what’s
going on when a program runs. But sometimes a program zips by so quickly it’s
hard to see what’s going on during each step. You need a way to slow things down.
Fortunately, Firebug includes a powerful JavaScript debugger. It lets you step
through a script line by line so you can see what’s happening at each step of the
program.

Debugging is the process of fixing an incorrectly functioning program—getting the
bugs out. To really understand how a program is functioning (or malfunctioning),
you need to see how the program works, step-by-step.

To use the debugger, you mark certain lines of code as breakpoints. A breakpoint is
a spot where the JavaScript interpreter stops running and waits. You can then use
controls inside Firebug that let you run a program one line at a time. In this way,
you can see exactly what’s happening at any particular line. Here’s the basic process.

1. Open a Web page in Firefox.

You need Firebug installed and enabled as described on page 473.

2. Open Firebug.

Click the Firebug icon (green button in the lower-right corner in the Firefox
status bar). Alternatively, press F12 or choose Tool ➝ Firebug ➝ Open Firebug.

Tip: If you don’t like the cramped appearance of the Web page stacked directly on top of Firebug,
choose Tools ➝ Firebug ➝ “Open Firebug in New Window”.

3. Click the Script tab (see Figure 13-7).

The Script tab lists the source code for the file you wish to debug. In the case of
a script that’s written into a Web page, you see the source code for the entire
Web page (including HTML). For an external JavaScript file, you see just the
JavaScript in that file.

4. Select the file with the script you wish to debug from the source menu (see
Figure 13-7).

It’s common to have scripts placed in different files: the Web page itself, or one
or more external JavaScript files. If your page uses scripts from multiple files,
you need to select the file containing the script you wish to debug.

5. Add breakpoints.

To add a breakpoint, click to the left of the line’s number. A red bullet appears
indicating a breakpoint.

Note: Adding a breakpoint to a line that only contains a comment has no effect—the debugger won’t
stop on that line. Only add breakpoints to lines containing actual JavaScript code.

Chapter 13: Troubleshooting and Debugging 483

Debugging with
Firebug

6. Reload the Web page.

Since you have to view your Web page in Firefox in order to open Firebug and
add breakpoints, the JavaScript you want to debug may have already run
(before you added any breakpoints). In this case, you need to reload the page so
you can start the JavaScript over again.

If you added a break point in a function that responds to an event (for exam-
ple, you want to debug the code that runs when you click a button or mouse
over a link) then you need to trigger that event—click the button, mouse over
the link, or whatever—to reach the breakpoint and start the debugging process.

After the script begins to run, as soon as a breakpoint is reached, the script
stops. The program is frozen in time, waiting to execute the line from the first
breakpoint.

7. Use Firebug’s controls to step through the execution of the program.

Firebug provides four controls (see Figure 13-7) that dictate how the program
runs after stopping at the breakpoint. You can read about these controls on
page 484.

8. Monitor program conditions in the Watch list (see Figure 13-7).

The point of stepping through a program is to see what’s going on inside the
script at any particular line. The Watch list provides basic information about
the program’s condition and lets you add additional variables you want to
watch. For example, if you wanted to track the value of the variable score as the
script runs, you can do that in the Watch list. You’ll find out how to use the
Watch list on page 485.

Figure 13-7:
The Firebug debugger lets you set
breakpoints (lines where the script
stops and waits), control the
execution of the script, and watch
variables in the Watch list. As the
debugger executes the script, the
current line (the one that’s about
to run) has a yellow arrow to its
left (circled).

484 JavaScript: The Missing Manual

Debugging with
Firebug

9. Fix your script in a text editor.

Hopefully, in stepping through your script you’ll find out what’s going wrong—
for example, why the value of a particular variable never changes, or why a con-
ditional statement never evaluates to false. With that information, you can then
jump to your text editor and modify your script (you’ll run through an exam-
ple of fixing a script in the tutorial on page 486).

10. Test the page in Firefox, and, if necessary, repeat the above steps to keep
debugging your script.

Controlling your script with the debugger

Once you’ve added breakpoints to the script and reloaded the page, you’re ready to
step through the script line by line. If you added a breakpoint to part of the script
that runs when the page loads, the script will stop at the breakpoint; if you added a
breakpoint to the a line that only runs after an event (like clicking a link), you need
to trigger that event before you can get to the breakpoint.

When the debugger stops the program at a breakpoint, it doesn’t run that line of
code; it stops just before running it. You can then click one of the four buttons on
the debugger to control what the debugger does next (see Figure 13-8):

• Play. The Play button simply starts the script running. The script won’t stop
again until the JavaScript interpreter encounters another breakpoint, or until
the script has finished running. If there’s another breakpoint, the script stops
again and waits for you to click one of the four debugger controls.

Use the Play button if you just want run the program through or skip to the
next breakpoint.

• Step Over. This useful option runs the current line of code, then stops at the
next line in the script. It’s named Step Over because if the current line of code
includes a call to a function, it won’t enter the function—it steps over the func-
tion and stops at the next line of code. This option is great if you know the
function that’s being called works flawlessly. For example, if your script calls a
jQuery function, you’ll want to step over the call to that function—otherwise,
you’ll be spending a lot of time viewing the scary jQuery programming line by
line. You’ll choose the Step Over option most of the time.

• Step Into. Step Into takes the debugger into a function call. That is, if you’re on
a line that includes a call to a function, the debugger enters the function and
stops at the first line of that function. This option is the way to go when you’re
not sure if the problem is in the main script or within a function you wrote.

Skip this option if you’re sure that the function being called works—for exam-
ple, if the function is one you’ve used dozens of times before. You also want to
use Step Over instead of Step Into when you’re debugging a line of code that
includes a jQuery selector or command. For example $('#button'), is a jQuery
way to select an element on the page. However, it’s also a function of the jQuery

Chapter 13: Troubleshooting and Debugging 485

Debugging with
Firebug

library, so if you click the Step Into button when you encounter a jQuery func-
tion, you’ll jump into the complex world of the jQuery library. (And if that
happens, you’ll know because the script tab will change to show all of the Java-
Script code for the jquery.js file.)

If, when using the debugger, you find yourself lost within a function, or in the
code of a JavaScript library like jQuery, you can use the control described next
to get out.

• Step Out. The Step Out button gets the debugger out of a function call. You’ll
usually use it after using Step Into. When you do, the function runs as normal,
but you won’t stop at each line of the function as you would in normal debug
mode. When you click this button, the debugger returns to the line where the
function was originally called and then stops.

Watching your script

While the buttons at the top of the debugger let you control how the script exe-
cutes, the whole point of a debugger is to see what’s going on inside the script.
That’s where the Watch list comes in (see Figure 13-8). The Watch list provides a
listing of variables and functions within the context of the current executing line of
code. All that means is if you put a breakpoint within a function, you’ll see a list of
all of the variables that are defined within that function; if you put a breakpoint in
the main body of your script, you’ll see a list of all variables that are defined there.
You’ll also see any functions that you’ve created listed in the Watch list.

You can add your own variables and expressions using the yellow bar with the
label “New watch expression…”. Just click the yellow bar, and a text field appears.
Type the name of a variable you’d like to track, or even a JavaScript statement

Figure 13-8:
Firebug’s Watch list shows the value of different variables as
the program runs. You can add your own expressions to the
list, which appear as grey stripes at the top of the window.

486 JavaScript: The Missing Manual

Debugging Tutorial

you’d like to execute. For example, since the debugger doesn’t keep track of a
counter variable in a for loop (page 94), you can add this variable, and as you go
step by step through the loop, you can see how the counter changes each time
through the loop.

You can think of this Watch list as a kind of a continual console.log() command. It
prints out the value of a particular variable or expression at the time a particular
line of code is run.

The Watch list offers valuable insight into your program, providing a kind of
freeze-frame effect so you can find exactly where in your script an error occurs. For
example, if you know that a particular variable holds a number value, you can go
step by step through the script and see what value gets stored in the variable when
it’s first created and see how its value gets modified as the program runs. If, after
you click the Step Through or Step Into buttons, you see the variable’s value
change to something you didn’t expect, then you’ve probably found the line where
the error is introduced.

Debugging Tutorial
In this tutorial, you’ll use Firebug to debug a file that’s filled with various types of
errors (syntax errors, runtime errors, and logic errors). The page is a simple quiz
program that poses three questions and prints quiz results. (Open the complete_13.
2.html file in the chapter13 folder in any Web browser to see how the page is sup-
posed to work.)

Note: See the note on page 27 for information on how to download the tutorial files.

To complete this tutorial you’ll need run the Firefox Web browser and have the
Firebug extension installed and turned on—see page 473 for instructions.

1. Start Firefox and open the file 13.2.html from the chapter13 tutorials folder.

Firebug’s red error button appears at the bottom of the window (circled in
Figure 13-9). You must open the Firebug console to find out what’s wrong.

2. Click the red button to open the console.

You should see the error message in Figure 13-9: “Missing] after element list.”
Square brackets are used for creating arrays (see page 56), so it appears that one
of an array’s closing brackets is missing. This omission is a syntax error (see the
box on page 469) because it represents a “grammatical error” in the code (like a
sentence missing a period). You’ll notice that to the right of the error message,
Firebug lets you know that this error occurred in line 16.

Chapter 13: Troubleshooting and Debugging 487

Debugging Tutorial

3. Launch your text editor and open the file 13.2.html. Locate line 16 (it’s a single
; on a line by itself). Type a closing square bracket before the ; so the line looks
like this:

];

This bracket ended a nested array (page 56) that contained all of the questions
and answers for the quiz.

4. Save the file; return to Firefox and reload the page.

Another error! This time the error console says “$ is not defined” and points to
line 10 containing jQuery’s $(document).ready() function. When Firefox
reports that something’s “not defined,” it means the code is referring to some-
thing that doesn’t exist, which could be the name of a variable or a function that
hasn’t yet been created. Or you might just have a typo in the code. In this case,
the code looks OK. The culprit is actually earlier on the page, in this code:

<script type="text/javascript" src="js/jquery.js"></script>

A common problem when working with external scripts is accidentally typing
the wrong path to the script (see page 470). In this case, the jquery.js file is
located inside a folder named js that’s outside this file’s folder. The code here
says that the js file should be inside the same folder as this Web page; because
Firefox can’t find the jquery.js file (where jQuery’s special $() function is
defined), it spits out an error.

5. Change the <script> tag to read:

<script type="text/javascript" src="../js/jquery.js"></script>

The ../ indicates that the js folder is outside this folder, and the path is now cor-
rectly pointing to the jQuery file. What else could be wrong with this program?

6. Save the file; return to Firefox and reload the page.

No errors! Looks like the page is fixed…or is it?

7. Click the Start Quiz button.

Bam! Another error. This time the console reports that “askQuestions is not
defined” and points to line 70 near the end of the the script. Since this error

Figure 13-9:
The Firebug console is the
first stop for tracking
down syntax and runtime
errors that bring a script
to its knees.

488 JavaScript: The Missing Manual

Debugging Tutorial

only appears while the program is running, it’s called a runtime error (see the
box on page 469). The problem appears toward the end of the script, within
this conditional statement:

if (quiz.length>0) {

 askQuestions();

 } else {

 giveResults();

 }

By now it’s probably dawning on you that when something’s not defined, it’s
often just because of a simple typo. In this case, askQuestions() is a call to a
function, so take a moment now to look through the code and try to find this
function.

Did you find it? While there isn’t an askQuestions() function, you should have
noticed an askQuestion() function (without an s).

8. Return to your text editor, and then remove the last s from askQuestions() in
line 70 (near the end of the script). Save the file, reload it in Firefox, and then
click the “Start Quiz” button again.

Now, a quiz question appears along with five multiple-choice options. Unfortu-
nately, the last option has a label of undefined. Smells like an error. However,
the Firebug console is empty, so technically there’s no JavaScript error. Some-
thing must be wrong with the program’s logic. To get to the bottom of the trouble,
you’ll need to use Firebug’s debugger.

9. In Firebug, click the Script tab and select 13.2.html from the source menu
directly above the Script tab (see Figure 13-10).

The Script tab gives you access to the page’s JavaScript. If the page includes
JavaScript and you’ve linked to other external JavaScript files, the Source menu
lets you choose which JavaScript code you wish to debug.

Because the “undefined” radio button seems to be out of place, the code that
creates the radio buttons is a good place to start looking for this bug. If you had
written this script, you’d probably know just where to look in your code; how-
ever, if you were just handed this buggy script, you’d have to hunt around until
you found that part of the script.

In this case, the radio buttons are created within a function named
buildAnswers(), whose purpose is to build a series of multiple choice options
represented by radio buttons. That function is passed an array that includes a
list of values for each radio button. When the function is done, it returns a
string containing the HTML for the radio buttons. So this function’s a good
place to start debugging.

Chapter 13: Troubleshooting and Debugging 489

Debugging Tutorial

10. In Firebug’s Script tab, scroll down until you see line 47. Click to the left of 47
to insert a breakpoint (circled in Figure 13-10).

A red dot appears to the left of line 47. The dot indicates a breakpoint, or a spot
in the code, where the JavaScript interpreter stops running the script. In other
words, when this script runs again, the moment the JavaScript interpreter hits
that line, it stops, and you’ll be able to step line by line through the code to see
what’s happening under the hood.

The debugger also lets you look at the values of variables as the program runs,
much as you used the console.log() function on page 475. You’ll tell Firebug
what variables you want to track next.

11. In the right side of the Firebug window, click the “New Watch Expression” bar,
type i, and then press the Return (or Enter) key.

This step adds the variable i to the Watch list. That variable is used in the for
loop as a counter to track how many times the loop runs (see page 90 for more
on for loops). As the script runs, you’ll be able to see how that value changes.
Next, you’ll add another variable to watch.

12. Click the “New Watch Expression” bar again, type answers.length, and then hit
Return.

Don’t worry about the value Firebug displays at this point (it probably says
“answers is not defined”). You can’t track the values of variables until you’re
actually running the debugger and are inside the function. Now it’s time to take
a look inside the script.

Figure 13-10:
In Firebug, you can debug any
scripts that the current page
uses. The Source menu lets
you select the JavaScript
embedded in the current Web
page or from any attached
external JavaScript file.

490 JavaScript: The Missing Manual

Debugging Tutorial

13. Click Firefox’s Reload button or press Ctrl+R (c-R). When the page reloads,
click the “Start Quiz” button on the Web page.

The script starts, and the first question is written to the Web page. But when it
comes time to create the radio buttons, the debugger stops at line 47 (see the
top image in Figure 13-11). Notice that in the Watch tab, the value for i is not
defined. That’s because the breakpoint stops the program just before the line is
executed. In other words, the loop hasn’t started, and the i variable hasn’t yet
been created.

However, the value of answers.length is set to 4. The array answers is an array of
answers that was passed to the function (you can see the array elements listed
lower down in the Watch list). An array’s length property indicates the number
of items in the array; in this case there are four, so you should get four radio
buttons when the function’s completed.

14. Click the Step Over button (see Figure 13-11).

This button takes you to the next line in the program. Now you can see that i is
set to 0. You’ll keep clicking through this loop.

Figure 13-11:
When you step through a
program using Firebug, red
circles to the right of a line
number indicate a break
point, while yellow arrows
indicate the line of code
that the JavaScript
interpreter is currently
stopped at. Click Step Over
(or Step Into) to run that
line of code and stop at the
next line.

Chapter 13: Troubleshooting and Debugging 491

Debugging Tutorial

15. Click the Step Over button until you see the value of i change to 5 in the Watch
list (bottom image in Figure 13-11).

Although there are only four items in the answers array, you can see that the for
loop is actually running five times (the value of i). So something’s funny about
how the loop is terminated. Remember that in a for loop, the middle statement
in the for statement is the condition that must be true for the loop to run (see
page 94). In this case, the condition is i<=answers.length;. In other words, the
loop starts out with i containing 0 and continues to run as long as i is less than
or equal to the number of items in the answers array. In other words, i will be 0,
1, 2, 3, and 4 before it terminates—that’s five times.

16. Return to your text editor, and change the for loop at line 47 to read:

for (i=0;i<answers.length;i++) {

Now the loop only runs for the number of items in the answers array, creating
one radio button for each possible answer.

17. Save the file, and preview it in Firefox.

You can turn off the breakpoint by clicking its red dot in the firebug script win-
dow to see the finished page run without interruption.

The page complete_13.2.html contains the completed version of this tutorial. As
you can see, finding bugs in a program can take a lot of work. But a debugging tool
like Firebug makes it a lot easier to see inside a program’s “guts” and find out
what’s going wrong.

493

Chapter 14chapter

14

Going Further with
JavaScript

This final chapter covers various concepts that can help make you a better Java-
Script programmer. You don’t need most of the ideas here to write functioning
JavaScript programs, so don’t worry if you don’t understand them all. In fact, aside
from the first section, “Putting It All Together” (which contains some good advice
for beginners), you can program happily for a long time without needing the
information in the other sections in this chapter. But if you want to expand your
skills, this chapter can point you in the right direction.

Putting It All Together
So far in this book, you’ve seen lots of tasks that JavaScript can accomplish: form
validation, image rollovers, photo galleries, user interface improvements like
tabbed and accordion panels, and more. But you might be wondering, how do you
put them together to work with your site? After all, once you start using Java-
Script, you’ll probably want to use it to improve every page of your site. Here are
some tips for how to use multiple scripts on your site.

Using External JavaScript Files
As mentioned on page 24, external JavaScript files are an efficient way to share the
same JavaScript code among Web pages. An external file makes updating your
JavaScript easier—there’s just one file to edit if you need to enhance (or fix) your
JavaScript code. In addition, when an external JavaScript file is downloaded, it’s
stored in the browser’s cache, so it doesn’t need to be downloaded a second time,
making Web pages feel more responsive and load more quickly.

494 JavaScript: The Missing Manual

Putting It All
Together

In the case of a JavaScript library like jQuery, external JavaScript files are a neces-
sity—after all, your Web pages would be unnecessarily large and difficult to main-
tain if you put the actual jQuery JavaScript code into each page. Furthermore,
jQuery plug-ins are supplied as external files, so you need to link them to a Web
page if you want to use them. As you read on page 24, linking to an external Java-
Script file is as easy as this:

<script type="text/javascript" src="js/ui.tabs.js"></script>

Putting your own JavaScript code into external JavaScript files can also help make
your code more reusable and your site feel faster—but only if you actually share
that code among Web pages. For example, with the form validation script you cre-
ated on page 343, it doesn’t make sense to put the code used to create the valida-
tion rules and error messages into an external file, since all of those rules and error
messages are specific to the form elements on that page, and wouldn’t work on a
form that has different form fields. In that case, it’s best to just use the JavaScript
to validate the form within the Web page itself.

However, the validation plug-in file you learned about on page 331 can be used for
any form, so it makes sense to have that in a separate file. The same is true for any
code that you’ll use in multiple pages. For example, on page 321 you learned how
to focus the first field of a form using JavaScript—that’s something you might
want to do for every form. Likewise, the box on page 323 presents the JavaScript
necessary to prevent a visitor from hitting the submit button multiple times (and
thus submitting the form data more than once), which is also useful for any form
page. So, you might want to combine these two scripts into a single external file
named something like forms.js. The JavaScript code would look something like
this:

1 $(document).ready(function() {

2 // focus first text field

3 $(":text")[0].focus();

4

5 // disable submit button on submit

6 $('form').submit(function() {

7 var subButton = $(this).find(':submit');

8 subButton.attr('disabled',true);

9 subButton.val('...sending information...');

10 });

11 }); //end ready

Note that since this code relies on jQuery, you must wrap it inside the $(docu-
ment).ready() function (lines 1 and 11). In fact, every external file that relies on
jQuery must start with the code on line 1 above and end with the code on line 10.

Chapter 14: Going Further with JavaScript 495

Putting It All
Together

Note: jQuery can handle multiple $(document).ready() functions without any problems. For example,
you can have several external JavaScript files that do various things to the page, and each file can have a
$(document).ready() function, and you can include a $(document).ready() function within <script> that
appears only on that page. That’s perfectly fine with jQuery.

Using the same script across multiple pages requires a little planning on your part.
For example, line 3 places the cursor into the first text field on a Web page. In most
cases, that makes sense—you want the focus to be on the first field so that a visitor
can start filling out the form. However, if the page has more than one form, this
code might not work as you want it to.

For example, if you have a search box at the top of the page and a separate form for
submitting a product order, the code in line 3 will put the focus on the “Search”
box and not the first text field in the order form. In this case, you need to think
through the problem a bit and come up with a way of making sure the proper text
field has the focus when the page loads. Here are two possible solutions:

• Add a class name to the field you want the focus on when the page loads. For
example, say you add the class name focus to the text field like this:

<input type="text" class="focus" name="firstName">

You could then you use this JavaScript to make sure that field is focused:

$('.focus').focus();

To use this code, you just need to make sure that you add the focus class to a
text field on each form page, and make sure you link the external JavaScript file
containing this code to each of those form pages.

• You can get the same effect by adding a class name to the <form> tag itself,
using this JavaScript:

$('.focus :text')[0].focus();

This code automatically focuses the first text field of a form with the class focus.
The benefit of this approach is that the first text field always gets the focus, so if
you reorganize your form (add a few more text fields to the beginning, for
example), you know that the first text field will get focus and not some other
field (with the focus class) further down the page.

Once you start using JavaScript, you might end up using several scripts on all (or
nearly all) of your Web pages. For example, you might have a drop-down navigation
menu (like the one discussed on page 300) and some rollover images (page 236),
and use JavaScript to make sure links outside your site open in a new window
(page 278). In this situation, it’s useful to create an external JavaScript file with all
of the scripts you share among your site—you could call the file something like
site_scripts.js or simply site.js.

496 JavaScript: The Missing Manual

Writing More
Efficient JavaScript

Note: jQuery has a built-in mechanism to protect you from producing unwanted JavaScript errors. Java-
Script usually spits out an error if you try to perform an action on something that doesn’t exist—for example,
trying to select a text field on a page that doesn’t have a text field. Fortunately, jQuery ignores these kinds
of errors.

Writing More Efficient JavaScript
Programming is a lot of work. Programmers are always looking for ways to do
things faster and with fewer lines of code. While there are lots of tips and tricks, the
following techniques are especially useful for working with JavaScript and jQuery.

Put Preferences in Variables
One important lesson that programmers learn is how to extract details from scripts
so that they are more flexible and easier to update. For example, say you want to
change the color of a paragraph of text to orange when a visitor clicks on it. You
could do that with jQuery using the css() function (page 186) like this:

$('p').click(function() {

 $(this).css('color','#F60');

});

In this case, the color orange (#F60) is hard-coded into this step. Say you apply this
same color in other steps (maybe to add a background color when the visitor
mouses over a table cell). You might be tempted to write #F60 into those steps as
well. A better approach is to place the color into a variable at the beginning of your
script and then use that variable throughout your script:

1 $(document).ready(function() {

2 var hColor='#F60';

3 $('p').click(function() {

4 $(this).css('color',hColor);

5 });

6 $('td').hover(

7 function() {

8 $(this).css('backgroundColor',hColor);

9 },

10 function() {

11 $(this).css('backgroundColor','transparent');

12 }

13);

14 }); //end ready()

In this example, the variable hColor now holds a hexadecimal color value—that
variable is used both in the click event for the <p> tags, and in a hover event for the
<td> tags. If you later decide orange isn’t your thing, you can change the value
stored in the variable—var hColor='#F33';—and now the script will use that color.

Chapter 14: Going Further with JavaScript 497

Writing More
Efficient JavaScript

You could make the above code even more flexible by uncoupling the connection
between the color used for the <p> tags and <td> tags. Currently, they’re both set
to the same color, but if you want to make it so that you could eventually assign
different colors to each, you could add an additional variable to your code:

1 $(document).ready(function() {

2 var pColor='#F60';

3 var tdColor=pColor;

4 $('p').click(function() {

5 $(this).css('color',pColor);

6 });

7 $('td').hover(

8 function() {

9 $(this).css('backgroundColor',tdColor);

10 },

11 function() {

12 $(this).css('backgroundColor','transparent');

13 }

14);

15 }); //end ready()

Now, the click and hover events the same color—#F60—will be used for both
(since the tdColor variable is set to the value of pColor in line 3 of the code). How-
ever, if you later decide that you want the table cells to have a different color, just
change line 3 like this:

var tdColor='#FF3';

When writing a JavaScript program, identify values that you explicitly name in
your code and turn them into variables. Likely candidates are colors, fonts, widths,
heights, times (such as 1,000 milliseconds), file names (such as image files), mes-
sage text (such as alert and confirmation messages), and paths to files (such as the
path for a link or an image). For example:

var highlightColor = '#33A';

var upArrow = 'ua.png';

var downArrow='da.png';

var imagePath='/images/';

var delay=1000;

Put these variable definitions at the beginning of your script (or if you’re using
jQuery right inside the .ready() function).

Tip: It’s particularly useful to put text that you plan on printing to a page into variables. For example,
error messages like “Please supply a valid email address,” or confirmation messages like “Thank you for
supplying your mailing information” can be variables. When these messages are grouped together as vari-
ables at the beginning of a script, it’s easier to edit them later (and to translate the text if you ever need to
reach an international audience).

498 JavaScript: The Missing Manual

Writing More
Efficient JavaScript

Ternary Operator
It’s a common programming task to set the value of a variable based on some kind
of condition. For example, say you want to set up a variable that contains text with
the login status of a user. In your script there’s a variable named login, which con-
tains a Boolean value—true if the user is logged in, or false if she isn’t. Here’s one
way to create a new variable for this situation:

var status;

if (login) {

 status='Logged in';

} else {

 status='Not logged in';

}

In this case, a basic conditional statement (page 77) sets the value of a variable
named status based on whether the user is logged in or not. JavaScript offers a
shortcut for this common procedure, called a ternary operator. A ternary operator
provides a one-line approach to creating a simple conditional statement. The basic
format of the ternary operator is:

(condition) ? A : B

Depending upon the result of the condition, either A (if the condition is true) or B
(if the condition is false) is returned. The ? precedes the true result, while the : pre-
cedes the false result. So, for example, the above code could be rewritten like this:

var status=(login)?'Logged in':'Not logged in';

What was once six lines of code is now a single line of code. Figure 14-1 diagrams
how this code works.

The ternary operator is simply a shortcut—you don’t have to use it, and some pro-
grammers find it too dense to easily understand and prefer the easier-to-read
if/else statement. In addition, the best use of the ternary operator is for setting the
value of a variable based on a condition. It doesn’t work for every type of condi-
tional statement; for example, you can’t use it for multiple-line statements where
many lines of code are executed based on a particular condition. But even if you
don’t use ternary operators, recognizing how they work will help you understand
other peoples’ programs, since you’ll probably encounter them frequently.

Figure 14-1:
The ternary operator lets you write one-
line conditional statements. In this
example, 1 is the condition. If it’s true,
the code immediately following the ?
mark is returned (2); if the condition is
false, then the code following the : is
returned (3).

Chapter 14: Going Further with JavaScript 499

Writing More
Efficient JavaScript

The Switch Statement
There’s more than one way to skin a conditional statement. While the ternary
operator is great for assigning a value to a variable based on the results of a condi-
tion, the switch statement is a more compact way of writing a series of if/else state-
ments that depend on the value of a single variable.

For example, say you ask visitors to your site to type their favorite color into a
form field, then print a different message based on the color they submit. Here’s
how you might write part of this code using the typical conditional statement.

if (favoriteColor == 'blue') {

 message = 'Blue is a cool color.';

} else if (favoriteColor == 'red') {

 message = 'Red is a warm color.';

} else if (favoriteColor == 'green') {

 message = 'Green is the color of the leaves.';

} else {

 message = 'What kind of favorite color is that?';

}

Notice that there’s an awful lot of favoriteColor == 'some value' in that code. In
fact, 'favoriteColor ==' appears three times in just nine lines of code. If all you’re
doing is testing the value of a variable repeatedly, then the switch statement pro-
vides a more elegant (and easy to read) solution. The basic structure of a switch
statement is diagrammed in Figure 14-2.

The first line of a switch statement begins with the keyword switch, followed by a
variable name inside parentheses, followed by an opening brace symbol. Essen-
tially, this code says “let’s get the value of this variable and see if it matches one of
several other values.” Each test is called a case, and a switch statement has one or
more cases. For example in Figure 14-2, there are three cases, numbered 1–3. The
basic structure of a case looks like this:

case value1:

 // do something

 break;

The case keyword indicates the beginning of a case; it’s followed by some value and
then a colon. This line is shorthand for the longer if (variable=='value1'). The
value can be a number, string, or Boolean (or a variable containing a number,
string, or Boolean), so if you want to test whether the variable is equal to 37, for
example, then the case would look like this:

case 37:

 //do something

 break;

500 JavaScript: The Missing Manual

Writing More
Efficient JavaScript

To test whether the variable is true or not, you’d write this:

case true:

 //do something

 break;

After the first line, you add the statements you want to execute if the variable
matches the test case value. Finally, you add a break; statement. This step is impor-
tant—the break; statement exits the switch statement. If you leave it out, the Java-
Script interpreter will skip to the next test case and see if it matches.

Leaving out the break; statement can cause problems especially if you use the final
default keyword with a switch statement (number 4 in Figure 14-2). The default
statement applies if none of the test cases is true—it’s the equivalent of the final
else clause in a conditional statement. If you leave out the break; statement in one
of the earlier test cases, then if one of the cases is true, the JavaScript interpreter
will also run whatever code is listed in the default statement

Here’s how the switch statement can help with the if/else if code on page 499:

switch (favoriteColor) {

 case 'blue':

 message = 'Blue is a cool color.';

 break;

 case 'red':

 message = 'Red is a warm color.';

 break;

Figure 14-2:
The switch statement is a compact way to perform different
actions based on the value of a variable. Don’t forget the
break; statement at the end of each case—the break
statement lets you exit the switch statement.

Chapter 14: Going Further with JavaScript 501

Writing More
Efficient JavaScript

 case 'green':

 message = 'Green is the color of the leaves.';

 break;

 default:

 message = 'What kind of favorite color is that?';

}

This code is the equivalent to the if/else if code, but is more compact and easier to
read.

In fact, you can also put more than one case statement right after one another (and
intentionally exclude the default keyword) if you want to run the same code for
several values. For example:

switch (favoriteColor) {

 case 'navy':

 case 'blue':

 case 'indigo':

 message = 'Blue is a cool color.';

 break;

 case 'red':

 message = 'Red is a warm color.';

 break;

 case 'green':

 message = 'Green is the color of the leaves.';

 break;

 default:

 message = 'What kind of favorite color is that?';

}

This is similar to using if (favoriteColor == 'navy' || favoriteColor == 'blue' || favor-
iteColor == 'indigo') in an if/else statement.

Using the jQuery Object Efficiently
Every time you call the jQuery object—for example, $('#example')—you’re asking
the jQuery library to find one or more elements on the page. Some jQuery selec-
tors require a lot of work on the part of the library. For example, $('a[href^=http://
]') tells jQuery to find every link on a page that has an href attribute that begins
with http://. That takes a fair amount of processing power, so don’t make jQuery
do work it doesn’t need to.

If you plan on using the same selector more than once in a script, you should first
store it in a variable. The variable will hold the results of jQuery’s search through-
out the DOM, so you can access that variable any number of times without mak-
ing jQuery search for those elements again. Storing a reference to an object in a
variable is particularly useful when adding an event handler (page 210) or using
the each() (page 193) function to perform a series of tasks on page elements.

502 JavaScript: The Missing Manual

Creating Fast-
Loading JavaScript

For example, say you want to locate every link that points outside your site, add a
class to those links (so that a CSS style can change their look), and make those
links open in a new window when clicked. In other words, you want to find all of
those links and then perform two different actions on them. One way to accom-
plish this task is like this:

$('a[href^=http://]').addClass('external');

$('a[href^=http://]').attr('target','_blank');

Notice that in the above code, $('a[href^=http://]') appears two times. Each time
$('a[href^=http://]') is encountered jQuery refinds the links—this is a waste of pro-
cessing time, so you could store $('a[href^=http://]') into a variable a single time,
then access it any number of times without making jQuery go find the elements
again:

var links = $('a[href^=http://]');

links.addClass('external');

links.attr('target','_blank');

Now the variable links holds a reference to all of the external links on the page.
jQuery has done its job finding those links, and now that they’re stored in a vari-
able, jQuery doesn’t need to find them a second time.

An even more efficient way to apply multiple commands to a jQuery selection is to
use jQuery’s chaining capabilities (page 180). Every time you run a jQuery com-
mand like addClass() or attr(), you can add another command following it to cre-
ate a chain of commands that are all run on the same object. For example, you can
rewrite the above code more succinctly as:

$('a[href^=http://]').addClass('external').attr('target','_blank');

In this example, both the addClass() and attr() functions are run on the original
jQuery object—$('a[href^=http://]'). You’ll often see a long chain of commands
run on a single object, and to make the code easier to read, the long chain is bro-
ken up over multiple lines. For example, you can rewrite the above code as follows
(and it’ll still work):

$('a[href^=http://]')

 .addClass('external')

 .attr('target','_blank');

Creating Fast-Loading JavaScript
Once you starting using external JavaScript files for your scripts, your visitors
should start to feel like your site is faster. Thanks to a browser’s cache, once your
external JavaScript files download for one page of your site, they don’t have to be
downloaded a second time for a different page (see page 24 for more detail on this
concept). However, there’s still another way to make your site download more
quickly: compressing your external JavaScript files.

Chapter 14: Going Further with JavaScript 503

Creating Fast-
Loading JavaScript

Note: Files sent securely via SSL (secure socket layer) are never cached. So if people access the pages of
your site using https:// as the protocol (for example https://www.sawmac.com), then any files they down-
load, including external JavaScript files, must be downloaded every time they’re needed.

To make a script more understandable, programmers usually insert empty spaces,
carriage returns, and comments to explain what the script does. These are all
important additions for the programmer, but not necessary for the Web browser,
which can happily understand JavaScript without carriage returns, tabs, extrane-
ous spaces, or comments. Using a compression program, you can minimize the
space your JavaScript takes up. The version of jQuery recommended in this book,
for example, is minified (see page 171), and is nearly half the file size of the uncom-
pressed version.

There are several programs aimed at making JavaScript more petite. Douglas
Crockford’s JSMin (http://crockford.com/javascript/jsmin.html) is one example, and
Dean Edward’s Packer (http://dean.edwards.name/packer) is another. However, this
chapter uses the same compressor Yahoo uses, because it achieves great file size
savings without changing your code (some compressors actually rewrite your code
and in some cases can break your scripts!).

Yahoo’s JavaScript compressor, YUI Compressor, lives at http://developer.yahoo.
com/yui/compressor. The only downside of YUI Compressor is that it’s not really
aimed at the average computer user—it’s written in Java and doesn’t have a simple
interface. The steps for using YUI Compressor vary a bit between Windows and
Macintosh, so the following tutorials provide separate instructions for each operat-
ing system. Here are the basic steps common to all systems.

1. Download YUI Compressor.

Download the latest version of the compressor from www.julienlecomte.net/
yuicompressor. It comes in a ZIP file, so you need to unzip it and store it some-
where on your computer. You’ll need to know the path to this folder, so put it
somewhere easily accessible, like your Desktop or Documents folder.

2. Move your JavaScript file to the build folder inside the yuicompressor folder.

The build folder has a file named something like yui-compressor-2.3.4.jar; it’s a
file that you can run using a Java virtual machine. You don’t have to move your
JavaScript file into this folder, but doing so makes it easier when running the
compressor to have both the compressor and the script files in the same folder.

3. Run the YUI compressor.

How you run the compressor depends on your operating system, but no matter
your operating system, you need to have Java installed on your computer. Most
Macs already have Java installed; and, if you’re using Windows, you may
already have it installed as well. You can download the latest version of Java
from www.java.com/en.

https://www.sawmac.com
http://crockford.com/javascript/jsmin.html
http://dean.edwards.name/packer
http://developer.yahoo.com/yui/compressor
http://developer.yahoo.com/yui/compressor
http://www.julienlecomte.net/yuicompressor
http://www.julienlecomte.net/yuicompressor
http://www.java.com/en

504 JavaScript: The Missing Manual

Creating Fast-
Loading JavaScript

The compressor works using the command line (don’t be scared; it’s not that
hard), so you need to start up either the Command Prompt (Windows) or Ter-
minal (Mac) program (detailed instructions for starting either of these pro-
grams are in the next two sections). With the command line available, you type
a command like that pictured in Figure 14-3.

The parts of the command that you’ll modify are numbered 1, 2, and 3. It’s a
little tricky, since it must be a complete path name—the exact location on your
hard drive—to each file. The following tutorials cover the steps for each operat-
ing system in detail.

4. Move your compressed file to your site.

The final, compressed file is the one you should use on your site. Link that file
to the Web pages that will be using the scripts. Don’t throw away the original,
uncompressed file, however. It’s the one that’s easy to read and edit, so when
you need to make a change to your scripts, you’ll need the original file to work on.

Using YUI Compressor for Windows
Since it’s generally easier to learn by doing, let’s go step by step through the pro-
cess of compressing an external JavaScript file for Windows. You’ll need to have
the tutorial files on hand—see page 27 for instructions on downloading the tutorials.

1. Move the files yuicompressor-2.3.5.jar and jquery.greybox2.js from the
chapter14 folder in the tutorials folder to your C:\ drive (or if you can’t put
them there, to your users folder).

This step isn’t absolutely necessary, but it will make it much easier for you to
specify the path to the various files on the command line in step 3.

2. Choose Start ➝ All Programs ➝ Accessories ➝ Command Prompt to launch
the Command Prompt program.

A small window with white text on a black background appears. Here you can
type command-line instructions (just like Linux and Unix users—the joy!).

Figure 14-3:
It’s a good idea to add .min
to the name of your final,
compressed file. For
example, if your original
JavaScript file is named site_
scripts.js, the compressed
name would be site_scripts.
min.js. This naming
convention will help you
identify which scripts you’ve
compressed.

Chapter 14: Going Further with JavaScript 505

Creating Fast-
Loading JavaScript

3. In the Command Prompt window, type:

java -jar "C:\yuicompressor-2.3.5.jar" ↵
"C:\jquery.greybox2.js" -o "C:\jquery.greybox2.min.js"

Depending on where you placed the YUI compressor and greybox files, you
may need to change the C:\ part. For example, if you put the files into your user
folder, you would replace C:\ with C:\Documents and Settings\Your UserName\.
Or, if you placed them in your My Documents folder, then replace C:\ with C:\
Documents and Settings\Your UserName\My Documents\.

Note: If you get an error that says that java is not a recognized command, then you probably don’t have
Java installed on your computer. You’ll need to download it from www.java.com/en.

4. Press the Return key to run the command.

The compressor does its thing, and you’ll find a file named jquery.greybox2.min.js
in the same folder as the original jquery.greybox2.js. This file is your newly com-
pressed JavaScript file.

To compress additional files, just move them into the folder with the yuicom-
pressor-2.3.5.jar file, and follow steps 2–4.

Using YUI Compressor for Mac
Since it’s generally easier to learn by doing, let’s go step by step through the pro-
cess of compressing an external JavaScript file for a Mac. You’ll need to have the
tutorial files on hand—see page 27 for instructions on downloading the tutorials.

1. Move the files yuicompressor-2.3.5.jar and jquery.greybox2.js from the
chapter14 folder in the tutorials folder to your user folder or Documents
folder.

This step isn’t absolutely necessary, but it will make it much easier for you to
specify the path to the various files on the command line in step 3.

2. Launch the Terminal application.

You’ll find this program in Applications ➝ Utilities ➝ Terminal.

3. In the Terminal window, type:

java -jar ~/yuicompressor-2.3.5.jar ↵
~/jquery.greybox2.js -o ~/jquery.greybox2.min.js

Depending on where you placed the YUI compressor and greybox files, you
may need to change the ~/ part. On a Mac (and Unix/Linux), ~/ is a shorthand
method of specifying the file path to your Home folder, so ~/myFile.js indicates
the path to the file named myFile.js located in the Home folder. If you put the
compressor and JavaScript files into your Documents folder, replace ~/ with
~/Documents/.

http://www.java.com/en

506 JavaScript: The Missing Manual

Creating Fast-
Loading JavaScript

4. Press Return to run the command.

The compressor does its thing, and you’ll find a file named jquery.greybox2.min.
js in the same folder as the original jquery.greybox2.js; that’s your newly com-
pressed JavaScript file.

To compress additional files, just move them into the folder with the yuicom-
pressor-2.3.5.jar file, and follow steps 2–4.

5
V.Part Five:
Appendix

Appendix A: JavaScript Resources

509

Appendix Aappendix

a

JavaScript Resources

This book provides enough information and real-world techniques to get your
JavaScript career off to a great start. But no one book can answer all of your Java-
Script questions. There’s plenty to learn when it comes to JavaScript program-
ming, and this appendix gives you taking-off points for further research and
learning.

References
Sometimes you need a dictionary to read a book. When programming in Java-
Script, it’s great to have a complete reference to the various keywords, terms,
methods, and other assorted bits of JavaScript syntax. You can find references both
in online and book form.

Web Sites
• Mozilla Developer Center Core JavaScript Reference (http://developer.mozilla.

org/en/docs/Core_JavaScript_1.5_Guide) provides a complete reference to Java-
Script 1.5 (the version that’s best supported by today’s browsers).

• JavaScript Quick Reference from DevGuru (www.devguru.com/technologies/
javascript) is a single Web page listing JavaScript keywords and methods. Click a
term, and a page explaining the keyword or method appears.

• Google Doctype (http://code.google.com/doctype) covers JavaScript, DOM and
CSS and tells you which features are supported by each browser. It’s a kind of
encylopedia for Web developers.

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Guide
http://www.devguru.com/technologies/javascript
http://www.devguru.com/technologies/javascript
http://code.google.com/doctype

510 JavaScript: The Missing Manual

Basic JavaScript

• MSDN Library (http://msdn.microsoft.com/en-us/library/d1et7k7c(VS.85).aspx)
from Microsoft is an excellent resource if you’re developing for Internet
Explorer only. It’s IE- and Microsoft-centric approach can help out intranet
developers who are developing internal applications for organizations that have
standardized on Internet Explorer. (In other words, if you’re developing Web
sites for the entire world to enjoy, then skip this resource.)

Books
• JavaScript: The Definitive Guide by David Flanagan (O’Reilly) is the most thor-

ough printed encyclopedia on JavaScript. It’s a dense, heavy tome, but it has all
the details you need to thoroughly understand JavaScript.

Basic JavaScript
JavaScript isn’t easy to learn, and it never hurts to use as many resources as possi-
ble to learn the ins and outs of programming for the Web. The following resources
provide help with the basics of the JavaScript language (which can sometimes be
quite difficult).

Articles and Presentations
• A (Re)-Introduction to JavaScript by Simon Willison. (http://simon.incutio.

com/slides/2006/etech/javascript/js-tutorial.001.html). This entertaining presen-
tation provides a slide-based overview of the JavaScript language.

Web Sites
• JavaScript Cake: Tutorials and Scripts (http://jennifermadden.com) from Jennifer

Madden is a Web site with tutorials that cover the basics of JavaScript program-
ming. Simple and to the point.

• The W3 Schools JavaScript tutorial (www.w3schools.com/js) is a thorough
(though not always thoroughly explained) tutorial that covers most aspects of
JavaScript programming.

Books
• Head First JavaScript by Michael Morrison (O’Reilly) is a lively, highly illus-

trated introduction to JavaScript programming. It provides lots of information
on how JavaScript works and how to program with it, but doesn’t provide
much in the way of immediately useful Web page examples.

• PPK on JavaScript (New Riders) covers all of the JavaScript basics. Written by
Peter Paul Koch, an influential JavaScript programmer whose site, www.
quirksmode.org, contains thoroughly researched information on cross-browser
differences. If you want to save a few bucks, you can find most of the content
from the book on the author’s Web site at www.quirksmode.org/js/contents.html.

http://msdn.microsoft.com/en-us/library/d1et7k7c(VS.85).aspx
http://simon.incutio.com/slides/2006/etech/javascript/js-tutorial.001.html
http://simon.incutio.com/slides/2006/etech/javascript/js-tutorial.001.html
http://jennifermadden.com
http://www.w3schools.com/js
http://www.quirksmode.org
http://www.quirksmode.org
http://www.quirksmode.org/js/contents.html

Appendix A: JavaScript Resources 511

The Document
Object Model

jQuery
Much of this book covered the jQuery JavaScript library, but there’s still lots to
learn about this powerful, timesaving, and fun programming library.

Articles
• jQuery Tutorials for Designers (www.webdesignerwall.com/tutorials/jquery-

tutorials-for-designers) is an article from the well-known Web design blog, Web-
Designer Wall, that includes 10 cool, simple things you can do with jQuery.

• jQuery Cheatsheet (www.gscottolson.com/weblog/2008/01/11/jquery-cheat-sheet) is
a downloadable PDF that puts all of jQuery’s functions on a single, printable page.

Web Sites
• jQuery.com, the home of the wonderful jQuery JavaScript library, provides

access to discussion groups, documentation, plugins, and downloads.

• jQuery’s documentation is provided via a user-generated Wiki (http://docs.
jquery.com/Main_Page). Anyone’s free to add or edit the descriptions of
jQuery’s many features on this site, but a core group of people handles most of
the documentation. It’s the number one place for complete information on
jQuery.

• jQuery for Designers (http://jqueryfordesigners.com) is a site that includes writ-
ten and video tutorials for creating interesting visual effects, useful interfaces,
and generally improving Web sites using jQuery.

• jQuery HowTo’s (http://jquery.open2space.com) includes jQuery tutorials for
beginning through advanced JavaScript programmers.

• Learning jQuery (http://www.learningjquery.com) provides information from
some of jQuery’s lead developers.

Books
• jQuery in Action by Bear Bibeault and Yehuda Katz (Manning) covers jQuery

thoroughly with lots of example programming. It assumes some JavaScript and
programming knowledge.

• Learning jQuery by Jonathan Chaffer and Karl Swedberg (PACKT) was the first
book on jQuery. It’s short and to the point, covering all of the jQuery basics. It’s
a little out-of-date, but most of the content still applies.

The Document Object Model
The Document Object Model (DOM) is one of the most important topics in Java-
Script programming. It provides the means for adding, deleting, modifying, and
accessing a Web page’s HTML of using JavaScript. It’s so important (and compli-
cated) that you’ll find endless resources on the topic. Here are a few of the best.

http://www.webdesignerwall.com/tutorials/jquery-tutorials-for-designers
http://www.webdesignerwall.com/tutorials/jquery-tutorials-for-designers
http://www.gscottolson.com/weblog/2008/01/11/jquery-cheat-sheet
http://docs.jquery.com/Main_Page
http://docs.jquery.com/Main_Page
http://jqueryfordesigners.com
http://jquery.open2space.com
http://www.learningjquery.com

512 JavaScript: The Missing Manual

Ajax

Note: If you’re using jQuery (or pretty much any other JavaScript library), you won’t necessarily need
this information to program JavaScript successfully. Most JavaScript libraries provide their own functions
for accessing and manipulating the DOM, and unless you want to learn the traditional methods of using
the DOM, you don’t necessarily need to read any of the following resources.

Articles and Presentations
• An Introduction to the W3C DOM by Steven Chipman (http://slayeroffice.com/

articles/DOM) is an online presentation that covers the basic concepts of the
Document Object Model and how to use it.

• DOM Cheat Sheet (www.wait-till-i.com/2007/06/27/dom-javascript-cheat-sheet)
is a PDF that concisely lists the standard DOM methods used for accessing and
manipulating the HTML on a Web page.

Web Sites
• The Document Object Model section of the W3C’s Web site (www.w3.org/DOM)

provides a detailed, but dense and technical, description of the DOM. But it’s
from the same people who oversee HTML, CSS, and other technologies the Web
depends on, so it gives you definitive information (and you can impress your
coworkers when you say you’ve been “analyzing the W3C’s DOM specs”).

• The HTML DOM Tutorial (www.w3schools.com/htmldom) from W3Schools.
com is a good overview and hands-on learning tool for gaining a better under-
standing of the Document Object Model.

Books
• DOM Scripting by Jeremy Keith (Friends of ED) is probably the most thorough

and easy-to-read bookson the subject of the Document Object Model.

• Advanced DOM Scripting by Jeffrey Sambells and Aaron Gustafson (Friends of
ED) covers DOM programming with an emphasis on professional program-
ming techniques. It’s not the easiest book to wade through, but it teaches valu-
able programming techniques.

Ajax
Ajax brings together your Web browser, JavaScript, and server-side programming,
for triple the fun (and three times the headache). Fortunately, there are plenty of
resources to turn to for learning how to use Ajax.

Web Sites
• Ajaxian (www.ajaxian.com) is a great source for the latest news concerning

Ajax, JavaScript frameworks, and useful Web services. The site is aimed at pro-
fessional JavaScript programmers but is also full of news, tidbits, and often
highlights sites that use Ajax in creative ways.

http://slayeroffice.com/articles/DOM
http://slayeroffice.com/articles/DOM
http://www.wait-till-i.com/2007/06/27/dom-javascript-cheat-sheet
http://www.w3.org/DOM
http://www.w3schools.com/htmldom
http://www.ajaxian.com

Appendix A: JavaScript Resources 513

Advanced JavaScript

Books
• Head Rush Ajax by Brett McLaughlin (O’Reilly) is probably the best introduc-

tion to Ajax for those new to both JavaScript and server-side programming. Its
playful approach and graphical layout make all of the basic concepts and tech-
niques of Ajax easily understandable.

• Bulletproof Ajax by Jeremy Keith (New Riders) is a short read that focuses on
how to use Ajax effectively and without alienating visitors who don’t have Java-
Script enabled.

Advanced JavaScript
Oh yes, JavaScript is even more complicated than this book leads you to believe.
Once you become proficient in JavaScript programming, you may want to expand
your understanding of this complex language.

Articles and Presentations
• Show Love to the Object Literal by Chris Heilman (www.wait-till-i.com/2006/

02/16/show-love-to-the-object-literal) is a short blog post that explains good uses
for JavaScript object literals.

• Object Oriented JavaScript by Tim Huegdon (http://nefariousdesigns.co.uk/
archive/2006/05/object-oriented-javascript) provides a short introduction to a
complex topic. It’s a good place to start learning object-oriented programming
with JavaScript.

• JavaScript Shorthand Tips and Tricks (http://blog.reindel.com/2007/11/01/
javascript-shorthand-tips-and-tricks) is a short blog post that offers a few
advanced tips on using JavaScript more efficiently.

• Sorting a JavaScript array using array.sort() (www.javascriptkit.com/javatutors/
arraysort.shtml) provides a useful information on how to sort the contents of
arrays, including a quick method of randomizing and array (think shuffling a
deck of cards).

Web Sites
• Eloquent JavaScript (http://eloquentjavascript.net) is a JavaScript tutorial site.

It’s organized well, with creative ways of teaching lessons. Although it’s sup-
posed to be a beginner JavaScript tutorial site, the author writes as though he’s
talking to a bunch of computer scientists, so it’s not the best place to start if
you’re new to JavaScript or programming.

• Unobtrusive JavaScript (www.onlinetools.org/articles/unobtrusivejavascript/
index.html) from Christian Heilmann is a mini-site dedicated to explaining the
concept of unobtrusive JavaScript—specifically, how to make a Web site accessi-
ble to everyone (even those whose browsers don’t have JavaScript enabled).

http://www.wait-till-i.com/2006/02/16/show-love-to-the-object-literal
http://www.wait-till-i.com/2006/02/16/show-love-to-the-object-literal
http://nefariousdesigns.co.uk/archive/2006/05/object-oriented-javascript
http://nefariousdesigns.co.uk/archive/2006/05/object-oriented-javascript
http://blog.reindel.com/2007/11/01/javascript-shorthand-tips-and-tricks
http://blog.reindel.com/2007/11/01/javascript-shorthand-tips-and-tricks
http://www.javascriptkit.com/javatutors/arraysort.shtml
http://www.javascriptkit.com/javatutors/arraysort.shtml
http://eloquentjavascript.net
http://www.onlinetools.org/articles/unobtrusivejavascript/index.html
http://www.onlinetools.org/articles/unobtrusivejavascript/index.html

514 JavaScript: The Missing Manual

CSS

• The JavaScript section of Douglas Crockfords’ World Wide Web (http://
javascript.crockford.com) provides a lot of (complex) information about Java-
Script. There’s a lot of information on the site, some of it requiring a computer
science degree just to understand.

• Yahoo’s JavaScript Developer Center (http://developer.yahoo.com/javascript)
has more information on JavaScript than nearly any other site on the Web.
Much of the information is geared toward Yahoo’s own JavaScript library, YUI,
as well as the many Web services Yahoo offers (like Yahoo Maps).

Books
• Pro JavaScript Techniques (Apress) is written by John Resig himself, the cre-

ator of jQuery. Definitely a book for experienced JavaScript programmers, it’s
filled with lots of helpful programming tidbits.

• Pro JavaScript Design Patterns by Ross Harmes and Dustin Diaz (Apress) pro-
vides JavaScript programming techniques that help solve common tasks. Note:
this is complicated stuff worthy of a computer science major.

• JavaScript: The Good Parts by Douglas Crockford (O’Reilly) uncovers the most
useful parts of JavaScript, sidestepping bad programming techniques. Douglas
should know what he’s talking about, since he’s a Senior JavaScript Architect at
Yahoo. The book is short and dense, but contains a lot of wisdom about how to
use JavaScript well.

CSS
If you’re tackling this book, you’re probably already pretty comfortable with CSS.
JavaScript can really take advantage of the formatting power of CSS to control not
only the look of elements, but even to animate them across the screen. If you need
a CSS refresher, here are a few helpful resources.

Web Sites
• The Complete CSS Guide from WestCiv (www.westciv.com/style_master/

academy/css_tutorial) covers pretty much every part of Cascading Style Sheets.
You won’t learn a lot of different techniques here, but the basics of what CSS is
and how to create styles and style sheets is thoroughly covered.

• The SitePoint CSS Reference (http://reference.sitepoint.com/css) is another
online CSS reference that’s easy to use and has a search engine.

• Selectutorial (http://css.maxdesign.com.au/selectutorial) is a great way to learn
CSS selector syntax. Since jQuery is pretty much founded on the idea of using
CSS selectors to manipulate the HTML of a page, it pays to have a very good
understanding of this concept.

http://javascript.crockford.com
http://javascript.crockford.com
http://developer.yahoo.com/javascript
http://www.westciv.com/style_master/academy/css_tutorial
http://www.westciv.com/style_master/academy/css_tutorial
http://reference.sitepoint.com/css
http://css.maxdesign.com.au/selectutorial

Appendix A: JavaScript Resources 515

JavaScript Software

Books
• CSS: The Missing Manual, by David Sawyer McFarland (O’Reilly) is a thor-

ough, tutorial-driven book on Cascading Style Sheets. It includes in-depth
coverage of CSS as well as real-world examples and troubleshooting tips for
making sure your CSS works in a cross-browser world.

• CSS: The Definitive Guide by Eric Meyer (O’Reilly). The name says it all; this
book covers CSS in such detail that your brain will definitely hurt if you try to
read it all in one sitting.

• CSS Mastery: Advanced Web Standards Solutions (Friends of ED) is a well-
designed book that covers sophisticated CSS-based designs, as well as many
techniques for working effectively with CSS.

JavaScript Software
There’s really nothing special you need for writing JavaScript programs. Any text
editor, the one you’re probably using to create HTML and CSS right now, for
example, is perfectly fine. There are, however, text editors that can make a Java-
Script programmer’s life easier. Here are a couple programs with features aimed at
making JavaScript programming go faster:

• Aptana Studio (www.aptana.com/studio). Available in both a free (“Commu-
nity”) and paid (“Pro”) version, this Web Development program was written
especially with JavaScript programmers in mind. It lets you write HTML, CSS,
and JavaScript, FTP files to your server and includes loads of JavaScript-specific
tools like JavaScript debuggers, support for popular JavaScript libraries, and (in
the paid version) a JSON editor.

• Dreamweaver CS4 (www.adobe.com) has long been a favorite Web design tool.
Dreamweaver CS4 has added lots of JavaScript-specific features, such as the
ability to view a page “live” within Dreamweaver—meaning you can view how
the JavaScript works, freeze the JavaScript as it runs to see how the page looks,
and even view the HTML that results when JavaScript manipulates the page’s
DOM.

http://www.aptana.com/studio
http://www.adobe.com

517

Index

Symbols
$(document).ready() function, 328, 473, 495
&& (ampersands) as AND operator, 82
() parentheses

failing to close, 463
in functions, 99

* (asterisk), as multiplication operator, 48
/ (forward slash) in HTML tags, 5
/* and */ for commenting code, 71
< > (angle brackets) in HTML tags, 5
= (equal sign)

as assignment operator, 46, 78
as equality operator, 78

[] (brackets) to indicate arrays, 58
{ } (curly braces)

failing to close, 464
in conditional statements, 77, 85

|| (pipe characters) as logical OR operator, 83
“ ” (quotation marks)

correct usage of, 467–468
in strings, 41–42

A
<a> tags, 6
absolute paths (URLs), 25
absolute positioning, 264
Accordion plug-in (jQuery)

creating a complex accordion, 355–358
creating collapsible accordion

(tutorial), 360–364

customizing, 358–360
addClass() function (jQuery), 185–186
addEventListener() method, 210
adjacent sibling selectors (CSS), 176
advanced form validation (tutorial), 346–349
after() function (jQuery), 183
Ajax (Asynchronous JavaScript and XML)

Ajax chat plug-in (jQuery), 446
components of, 406–408
defined, 21
formatting data to send to server, 419–422
get() and post() functions (jQuery), 418–

420
get() function, usage of (tutorial), 426–432
Google Maps and. See Google Maps
jQuery library and, 411
JSON. See JSON (JavaScript Object Notation)
load() function (jQuery), 411–413, 413–418
object literals for data storage, 421–422
overview, 403–405
processing data from server, 423–426
query strings, 419–421
receiving XML from server, 427
references online, 512–513
serialize() function (jQuery), 422
server-side programming and, 412, 446
Tabs plug-in. See Ajax Tabs plug-in
uses for, 405
Web server setup and, 408
XMLHttpRequest object, 408–411

518 JavaScript: The Missing Manual

Index

Ajax Tabs plug-in
changing loading text and icon, 441–443
overview, 439–441
tutorial, 443–445

alert() method, 476
Alsup, Mike, 263
AMP (Apache-MySQL-PHP), 408
ancestor tags, 158
AND operator (&&), 82
animate() function (jQuery), 246–247
animated navigation menus, 300–308
anonymous functions (jQuery), 193–194, 211
API key (Google Maps), 446
append() function (jQuery), 182
application server, defined, 407
Aptana Studio, 515
arrays

accessing items in, 59–62
adding items to, 61–64
adding items with splice() command, 65
array literal, 58
creating, 58–59
deleting items from, 63–66
loops and, 92–94
multidimensional, 108
nested, 108
notation, 434
overview, 56–57
replacing items with splice() command, 66
using arrays (tutorial), 67–70

assignment operator (=), 46, 78, 470
attachEvent() method, 210
attr() function (jQuery), 190, 235, 315
attribute selectors (CSS), 176–178
automated slideshow (tutorial), 268–272
automatic loops (jQuery), 180
automatic type conversion, 50

B
BBEdit (Mac), 10
before() function (jQuery), 183
bind() function (jQuery), 225–227
Birch, Joel, 304
blur events, 206, 318–319
blur() command, 284
Boolean data type

basics, 42
conditional statements and, 80

break statements, 500
breakpoints (debugging), 482
browsers

Ajax and, 407
DOM problems and, 168
event listeners and, 209

events and, 210
JavaScript and, 2–3
multiple resize events and, 205
unload events and, 205

bubbles, HTML, 451–453
bubbling, event, 225

C
calendar widget, 328
callback functions, 243, 246, 410
case, sensitivity in JavaScript, 470
chaining functions (jQuery), 180–181, 217
change events, 206, 319–320
charAt() command, 73
checkboxes and radio buttons (forms)

determining checking of, 314–315
validation of (tutorial), 349–351

checked attribute, 314
child nodes, 161
child selectors (CSS), 176
class functions (jQuery), 185–186
class selectors (CSS), 174–175
click events, 203, 319
click() function (jQuery), 253, 277
clicking basics, 14
client-side languages, 21
clone() function (jQuery), 184, 199
close() command, 284
Cluetip jQuery plug-in

function of, 377
hiding content with, 380
options, 383–386
tutorial, 388–394

Coda Slider plug-in (jQuery), 383
code, indenting, 86, 98
CoffeeCup HTML Editor, 9
columnizeList plug-in (jQuery), 383
commands, basics of, 40
comments, JavaScript, 71–73
comparison operators, 78–80
compiled languages, defined, 22
compressing external JavaScript files, 504–

506
computers

basics, 14
programming, 19–22

concatenation, defined, 49
conditional statements

at least one condition true, 83–84
basics, 77–80
more than one condition true, 82–83
negating conditions, 84
nesting, 85
overview, 75–76

Index

Index 519

single equals in, 468–470
testing multiple conditions, 81–82
tips for writing, 85–86
using (tutorial), 86–89

console.log() function (Firebug), 474, 475–
477, 477–481

contains() function (jQuery), 179
counter variables, naming, 95
Crockford, Douglas, 503
CSS (Cascading Style Sheets)

accordion styles and, 360
basics, 6–7
css() function (jQuery), 186–187, 327, 496
float property, 200
for animated navigation menu, 303
JavaScript, HTML and, 3
lightBox CSS, 260
properties, reading and changing, 186–189
references online, 514–515
resources for learning, 175
styles, basics of, 7–9

CSS Selectors (jQuery)
adjacent sibling selectors, 176
attribute selectors, 176–178
child selectors, 176
class selectors, 174–175
descendent selectors, 176
element selectors, 174
ID selectors, 173
overview, 172–173

CSS: The Missing Manual (O’Reilly), 3, 515
customizing

accordions, 358–360
Greybox window, 290
Tabs plug-in (jQuery), 370–372

Cycle plug-in (jQuery)
automated slideshow (tutorial), 268–272
basics, 263–265
cycle() function, 265–266
defined, 263
effects, 265
slide navigation, 267–268
speed options, 266
starting and stopping slideshow, 268

D
data tables, creating sortable (tutorial), 397–

399
data, types of, 40
database server, defined, 407
date selection (forms), 328
datepicker() function, 328
dblclick events, 204
debugger, JavaScript, 482–486

debugging with Firebug. See Firebug
declaration blocks (CSS), 7
defaultValue attribute (text fields), 315
deleting

array items with splice(), 64
items from arrays, 63–65

descendent selectors (CSS), 160, 176
descendent tags, 158
development servers, 408
dirlister plug-in (jQuery), 446
disabled attribute (submit() function), 323,

327
do/while loops, 96–97
doctypes, 4
Document Object Model (DOM). See DOM

(Document Object Model)
document.getElementById() method, 172
document.getElementsByTagName()

method, 172
document.write() command, 163
document/window events, 204–205
document-relative paths, 25, 471
Dojo Toolkit, 170
DOM (Document Object Model)

adding content to pages, 162–163
basics of, 157–158
Moon Quiz tutorial, 164–168
nodes, selecting nearby, 160–162
page elements, selecting. See page elements,

selecting (DOM)
references online, 511–512
shortcomings of, 168
vs. jQuery library, 179

Don’t Make Me Think (New Riders), 294
dot-syntax, 434
double quote marks, 467–468
downloading jQuery library, 170–172
drag and drop function, 76
Dreamweaver CS4, 10, 515
driving directions (Google Maps), 453–454

E
each() function (jQuery), 193, 194, 198
EditPlus, 10
Edwards, Dean, 503
effects, Cycle plug-in, 265
element selectors (CSS), 174
elements

defined, 156, 158
fading (images), 244–245
selecting form, 311–316
setting value of form, 313–314
sliding (images), 245

else clauses, 79–80

520 JavaScript: The Missing Manual

Index

else if statements, 81–82
em measurement, 8
empty strings, defined, 55
empty() function (jQuery), 460
equality operator (=), 78
error messages

adding, 335–336
advanced (fields), 340–342
formatting, 352–353
styling, 342–343

error tracking, 32–37
errors, JavaScript programming

case-sensitivity, 470
debugging with Firebug. See Firebug
disappearing variables and functions, 472–

473
logic errors, 469
non-closed character pairs, 463–466
paths to external JavaScript files, 470–471
paths within external JavaScript files, 471–

472
quotation marks, 467–468
reserved words usage, 468
runtime errors, 469
single equals in conditional

statements, 468–470
syntax errors, 469
tips for reducing, 474

escape character, 42
even filter (jQuery), 178
event handlers

adding to HTML tags, 207
defined, 166
traditional model for assigning, 208–209

events
assigning with jQuery, 210–212
bind() function, 225–227
browsers and, 210
document/window events, 204–205
event bubbling, 225
event helpers, 210
event listeners, 209
event objects, 222–225
form events, 205–206, 315–320
highlighting table rows (tutorial), 212–217
hover() event (jQuery), 220–221
inline event registration, 207–208
jQuery chaining and, 217
keyboard events, 206
mouse events, 203–204
one-page FAQ (tutorial), 227–231
overview, 201
preparing Web pages to respond to, 203
preventing behavior of, 223–224
ready() function (jQuery), 218–219

removing, 224
stopPropagation() function (jQuery), 225
to open new windows, 285
toggle() event (jQuery), 221–222

Expression Web Designer, 10
external JavaScript files

basics, 24–26
compressing, 504–506
incorrect path to, 470–472
using, 29–32, 493–496

external links, opening in new
windows, 278–281

F
fadeIn() function (jQuery), 244
fadeOut() function (jQuery), 193, 245
fadeTo() function (jQuery), 245
fading elements (images), 244–245
fields

disabling form fields (tutorial), 325–328
enabling/disabling (forms), 322–323
field focusing (tutorial), 325
hiding form fields (tutorial), 328–330
showing/hiding, 323–324

filters, jQuery, 178–179
find() function (jQuery), 427
Firebug

console.log() to track script progress, 475–
477

debugging tutorial, 486–491
Firebug Console tutorial, 477–??, 477–481
Firebug Lite, 477
installing and enabling, 473–474
JavaScript debugger, 482–486
viewing errors with, 474

Firefox
Error Console, 464, 466
HTML validator for, 6
JavaScript console, 34–35
View Source Chart, 184

flag variables, 80
Flash, defined, 21
Flickr, 432
float property, CSS, 200
floats, 375
focus events, 206, 317–318
focus() command, 284
focus() function, 321
focusing fields (tutorial), 325
for loops, 485, 491
form validation, 353

adding validation rules, 333–334
advanced, 336–342
advanced validation (tutorial), 346–349

Index

Index 521

basic validation (tutorial), 343–346
checkbox and radio button validation

(tutorial), 349–351
conditional statements and, 76
error messages, adding, 335–336
error messages, formatting, 352–353
error messages, styling, 342–343
jQuery Validation plug-in, 331–333
overview, 330–331
validate() method, 333
with servers, 341

formatting
data to send to server, 419–422
error messages, 352–353
tabs and panels, 368–370
tooltips, 386–388

forms, Web
checked buttons and boxes, 314–315
date selection, 328
disabling form fields (tutorial), 325–328
field focusing (tutorial), 325
fields, enabling/disabling, 322–323
focusing first field in, 321
form elements, selecting, 311–316
form elements, setting value of, 313–314
form events, 205–206, 315–320
Form plug-in (jQuery), 446
form validation” \t, 353
fundamentals of, 309–310
hiding form fields (tutorial), 328–330
multiple form submissions, stopping, 323
showing/hiding fields, 323–324

Freeman, Elisabeth and Eric, 3
functions

chaining (jQuery), 180–181
conflicting variables and, 103–106
creating and using (tutorial), 99–100
defined, 97
disappearing, 472–473
feeding information to, 100–102
fundamentals, 97–99
retrieving information from, 102–103

G
get() and post() functions (jQuery)

Ajax requests and, 432
callback functions and, 420
get() function tutorial, 426–432
get() vs. post(), 420
overview, 418–419

getElementById() method, 158–159
getElementsByTagName() method, 159–160,

276, 312

getJSON() function (jQuery), 433
global variables, defined, 105
Gmail, 404
Google Docs, 2
Google Maps, 2, 404

adding markers and HTML bubbles, 451–
453

adding to Web pages with jMaps plug-
in, 445–449

driving directions, 453–454
jMaps options, 450–451
jMaps tutorial, 455–460
setting map locations, 449

Google Suggest, 404
Grabanski, Marc, 328
Greybox window, customizing, 290
greybox() function, 289
Greybox2 plug-in (jQuery), 286–290

H
has() function (jQuery), 179
Head First HTML with CSS and XHTML

(O’Reilly), 3
<head> tags, 5
hidden filter (jQuery), 179
hide() function (jQuery), 243
hiding/showing images, 243–244
highlighting table rows (event tutorial), 212–

217
Horizontal Accordion plug-in, 360
hostname property, 280
hover style, 295
hover() event (jQuery), 220–221, 237, 241
hover() function, 297
href attributes (HTML), 6, 251, 276
HTML (Hypertext Markup Language)

attributes, reading/setting/removing, 189–
190

basics, 4–5
bubbles, adding to Google Maps, 451–453
CSS, JavaScript and, 3
for animated navigation menu, 301–303
form tags, 309
html() function (jQuery), 181
HTML-Kit, 9
lists, 303
tag fundamentals, 5–6
tooltips in HTML title attributes, 379–380
validation of Web pages, 6
validator, 6
waiting for loading of, 218–219

hyperlinks, 6

522 JavaScript: The Missing Manual

Index

I
ID selectors (CSS), 173
identifying elements, 156
if/then statements, 77
iframes, 286
IIS, Microsoft, 408
images

actions following effects, 246
adding rollover images (tutorial), 238–242
animate() function (jQuery), 246–247
animated slide shows. See slideshows

animated with Cycle
callback function, 246
fading elements in and out, 244–245
jQuery effects, 242–243
photo gallery with effects (tutorial), 248–

254
photo gallery with jQuery lightBox. See

jQuery lightBox plug-in
preloading, 235–236
rollover, 236–237
showing and hiding, 243–244
sliding elements, 245
src attribute, changing, 234–235
swapping, 233

indenting code, 86, 98
indexes, array, 59–62
inequality (!) operator, 78
infinite loops, 91, 469
information, asking for (tutorial), 54–56
inline event registration, 207–208
innerHTML property, 163
<input> tags, 309
input tags (forms), 309
installing

Firebug, 473–474
Java, 503

Internet Explorer error dialog box, 35–36
interpreters, defined, 22

J
Java, installing, 503
JavaScript

adding to web pages, 22–26
Ajax and, 407
browsers and, 2–3
compressing external files, 504–506
controlling menu displays with, 303–304
creating fast-loading, 502–506
debugger, 482–486
definition and overview, 1–2
external files, 24–26, 29–32
Firefox JavaScript console, 34–35

first program, creating, 26–28
history of, 2–3
HTML clutter and, 208
HTML, CSS and, 3
improving writing efficiency, 496–502
information on, 10
JavaScript interpreter, 22
keywords, 44
libraries, 169–172
Missing Manual overview, 11–13, 15
numbers in, 41
overview, 19–21
programming errors. See errors, JavaScript

programming
references online, 509–510, 513–514
selecting links with, 275–276
software used with, 9–10, 515
syntax, 20
tutorials and examples, 13
unobtrusive, 248
uses for, 3
vs. Java programming, 2
YUI Compressor. See YUI Compressor

jMaps plug-in
adding Google Maps with, 445–449
options, 450–451

Jobs, Steve, 203
jQuery library

Accordion plug-in. See Accordion plug-in
(jQuery)

adding content to pages, 181–184
advantages of, 169–170
Ajax and, 411
anonymous functions, 193–194
assigning events with, 210–212
automatic loops, 180
automatic pull quotes (tutorial), 196–200
chaining, 180–181, 217
class functions, 185–186
Cluetip jQuery plug-in, 377
creative headlines tutorial, 190–193
CSS properties, reading and changing, 186–

189
CSS Selectors. See CSS Selectors (jQuery)
downloading and setup, 170–172
each() function, 193, 194
fadeOut() function, 193
filters, 178–179
HTML attributes, reading/setting/

removing, 189–190
jQuery effects (images), 242–243
jQuery object, 216, 501–502
jQuery UI project, 361
jQuery Validation plug-in (forms), 331–333
minifield version, 503

Index

Index 523

plug-ins, 383
plug-ins for Ajax development, 446
references online, 511
replacing/removing selections, 183–184
selections, acting on each element in, 193
selectors for forms, 312
tag attributes, setting and reading, 185–189
this and $(this) keywords, 194–196
vs. DOM, 179

jQuery lightBox plug-in
basics, 255–257
lightBox CSS, 260
lightBox images, 259
lightBox photo gallery (tutorial), 261–262
options, 257–259
overview, 254

JSMin software, 503
JSON (JavaScript Object Notation)

accessing JSON data, 434–435
complex JSON objects, 435–437
overview, 432–434

K
keyboard events, 206
keyboard shortcut basics, 14
keywords, JavaScript, 44
Krug, Steve, 294

L
layout engine, 22
libraries, JavaScript, 29, 169–172
lightBox, jQuery

function, 256
photo gallery (tutorial), 261–262
plug-in. See jQuery lightBox plug-in

links
animated navigation menus, 301–308
controlling behavior of, 277–278
creating large links (tutorial), 294–300
creating new windows, 281–285
determining destination of, 276–277
events to open new windows, 285
opening external links in new

windows, 278–281
opening page within page (tutorial), 290–

293
selecting with JavaScript, 275–276
using references to control windows, 283–

285
window properties, 282–283
window-within-a-page effect, 286–290

load events, 204

load() function (jQuery)
tutorial, 413–418
using, 411–413

loading text, changing (Ajax Tabs), 441–443
local variables, defined, 105
location objects (browsers), 299
location property, 283
log() function, 478, 481
logic errors, 469
logical AND operator (&&), 82
logical OR operator (||), 83
loops

arrays and, 92–94
automatic (jQuery), 180
do/while loops, 96–97
for loops, 94–96
infinite, 91, 469
while loops, 90–92

M
Macintosh

MAMP, 408
skEdit, 10
textMate, 10
TextWrangler, 10
YUI compressor for, 505–506

markers (Google Maps), 451–453
mathematical operations, 48–50
McFarland, David Sawyer, 3, 515
menubars, 283
menus, animated navigation, 300–308
messages, using variables to create

(tutorial), 53–54
monospaced fonts, 68
Moon Quiz tutorial (DOM), 164–168
Mootools JavaScript library, 170
mouse events, 203–204
moveBy() command, 284
moveTo() command, 284
multidimensional arrays, 108

N
naming

counter variables, 95
variables, 43

nesting
conditional statements, 85
nested arrays, 108

next() function (jQuery), 230
nextSibling property, 162
nodes

defined, 158
selecting nearby (DOM), 160–162

524 JavaScript: The Missing Manual

Index

not() function (jQuery), 178, 280
Notepad++, 9
numbers

combining with strings, 50–51
in JavaScript, 41

O
object literals, 188–189, 338

for data storage, 421–422
objects

event, 222–225
jQuery, 216

odd filter (jQuery), 178
one-page FAQ (event tutorial), 227–231
onload event handlers, 209
onmouseover event handler, 207
open() method, 281, 285, 409
openExt() function, 281
operations, mathematical order of, 49
operators

assignment (=), 46, 78, 470
asterisk (*) for multiplication, 48
comparison, 78–80
defined, 47
equality (=), 78
inequality (!), 78
logical AND (&&), 82
logical OR (||), 83
mathematical, 48
shortcut operators for math on

variables, 52–54
ternary, 498

OR operator (||), 83

P
<p> tags, 5
Packer software, 503
page elements, selecting (DOM)

CSS Selectors (jQuery). See CSS Selectors
(jQuery)

methods for selecting/accessing
nodes, 158–162

pager option (Cycle plug-in), 270
paging, slide, 267
panels

automating display of, 371
opening with events, 371
styling, 370
tabbed. See tabbed panels

parameters, defined, 100
parent nodes, 161
parentNode property, 162
parseInt()

command, 89
method, 188

photo gallery with effects (tutorial), 248–254
photo gallery with jQuery lightBox. See

jQuery lightBox plug-in
PHP (PHP Hypertext Preprocessor)

overview, 412
PHP-based login script, 429

Pinho, Leandro Vieira, 254
plug-ins, jQuery and, 169
pop() command, 63
post() and get() functions. See get() and

post() functions (jQuery)
preferences, placing in variables, 496–497
preloading images, 235–236
prepend() function (jQuery), 183, 252, 430
preventDefault() function (jQuery), 223, 277,

278
previousSibling property, 162
processContacts() function, 434
programming

creating first JavaScript program, 26–28
overview, 19–21
Simple Quiz program (tutorial), 106–112

progressive enhancement, 415
prompt() command, 54–56
properties

CSS, 8
event objects, 223–225
windows, 282–283

protocol property, 280
Prototype JavaScript library, 170
pull quotes, automatic (tutorial), 196–200
push() command, adding array items

with, 61, 63

Q
query strings, 419–421
quotation marks

correct usage of, 467–468
in strings, 41, 42

R
radio buttons and checkboxes (forms)

determining checking of, 314–315
validation of (tutorial), 349–351

ready() function (jQuery), 218–219, 288
references online

Ajax, 512–513
CSS, 514–515
DOM, 511–512
JavaScript, 509–510
JavaScript, advanced, 513–514

Index

Index 525

jQuery library, 511
software used with JavaScript, 515

remove() function (jQuery), 183, 253
removeClass() (jQuery), 186
removing events, 224
rendering engine, 22
request header, 409
reserved words, 468
Reset buttons, 206
Resig, John, 286
resize events, 205
resizeBy() command, 284
resizeTo() command, 285
return false statement, 278
rollover images

adding (tutorial), 238–242
basics, 236–237

root-relative paths (URLs), 25
rules

adding validation, 333–334
advanced validation (forms), 337–340

runtime errors, 469

S
Safari

Error Console, accessing, 36–37
HTML validator for, 6
Safari Bookshelf, 15

Schommer, Ingo, 383
scopes (functions), 104
<script> tags, 23–24
scripting languages, defined, 22
scripts

controlling with debugger, 484–485
Watch lists and, 485–486

scrolling
scroll events, 205
scrollbars, 282
scrollBy() command, 285
ScrollTo plug-in (jQuery), 285
scrollTo() command, 285

selections (jQuery)
acting on each element in, 193
replacing/removing, 183–184

selectors
CSS, 173–178
jQuery for forms, 312
selector elements (CSS), 7

serialize() function (jQuery), 422
servers, validating forms with, 341
server-side languages, 21
server-side programming, 412, 446
shift() command, 63
show() function (jQuery), 243

showing/hiding images, 243–244
sibling nodes, 161
Simple Quiz tutorial, 106–112
single quote marks, 467–468
skEdit (Mac), 10
slide navigation, 267–268
slide paging, 267
slideDown() function, 245
slideshows animated with Cycle

automated slideshow (tutorial), 268–272
basics, 263–265
customizing Cycle plug-in. See Cycle plug-in

(jQuery)
effects, 265
overview, 263
slide navigation, 267–268
speed options, 266
starting and stopping, 268

slideToggle() function, 246
slideUp() function, 246
sliding elements (images), 245
smart Web forms, 19
software for programming JavaScript, 9–10
sortable tables. See Tablesorter plug-in

(jQuery)
sortList option, 396
space characters in JavaScript, 47, 77
splice() command

adding array items with, 65
deleting array items with, 64
replacing array items with, 66

src attribute, 24, 234–235
src property (<script> tag), 470
statements

basics, 39–40
switch, 499–501

status bar, 283
stopPropagation() function (jQuery), 225
strings

basics, 41–42
combining, 49–50
combining with numbers, 50–51
query, 419–421
quotation marks in, 42

striping tables, 397
 tags, 6
styling

basic CSS styles, 7–9
error messages, 342–343
tables, 396–397

submit events, 205, 316–317
submit() function, 323
Superfish jQuery plug-in, 304
superfish() function, 304
swapping images, 233

526 JavaScript: The Missing Manual

Index

Swedberg, Karl, 377
switch statements, 499–501
syntax

errors and messages, 466, 469
Javascript, 20

T
tabbed panels

adding to pages, 364–368
creating (tutorial), 372–376

tables
striping with Tablesorter plug-in, 397
styling, 396–397

Tablesorter plug-in (jQuery)
basic example, 394
creating sortable data table (tutorial), 397–

399
creating sortable tables, 394–395
forcing table sorts, 396
styling tables, 396
tablesorter() function, 395

tabs
in JavaScript, 47
selecting when page loads, 370–371
tabs() function, 368

Tabs plug-in (jQuery), 364
adding tabbed panels to pages, 364–368
creating tabbed panels (tutorial), 372–376
customizing, 370–372
formatting tabs and panels, 368–370

Taconite plug-in (jQuery), 446
tags

HTML fundamentals, 5–6
setting and reading attributes

(jQuery), 185–189
target attribute (links), 279
ternary operators, 498
testing, multiple conditions, 81–82
text

changing loading (Ajax Tabs), 441–443
text() function (jQuery), 182
textMate (Mac), 10
writing on web pages, 29

TextWrangler (Mac), 10
this and $(this) keywords (jQuery), 194–196
timeout option (slides), 270
title attributes, embedding tooltips in, 377–

379
toggle() (jQuery)

event, 221–222
function, 229, 244
toggleClass() function, 186

toolbars, setting visibility of, 283

tooltips
adding using HTML (tutorial), 391–394
adding with different Web page

(tutorial), 390–391
adding with title attribute (tutorial), 388–

390
Cluetip tutorial, 388–394
controlling display of, 382–386
embedding in HTML title attributes, 379–

380
embedding in title attributes, 377–379
formatting, 386–388
options, 383–386
overview, 376–377
using hidden content, 380–382

tracking, errors, 32–37
traditional model (event handlers), 208–209
Treeview plug-in (jQuery), 383
tutorials

adding rollover images, 238–242
advanced validation (forms), 346–349
Ajax Tabs plug-in, 443–445
animated navigation bar, 304–308
arrays, using, 67–70
attaching external JavaScript file to Web

page, 30–32
automated slideshow, 268–272
basic validation (forms), 343–346
checkbox and radio button validation, 349–

351
Cluetip, 388–394
collapsible accordion, creating, 360–364
console.log() function (Firebug), 477–481
creative headlines (jQuery), 190–193
debugging with Firebug, 486–491
field focusing, 325
Firebug Console, 477–481
first JavaScript program, 27–28
form fields, disabling, 325–328
form fields, hiding, 328–330
get() function, 426–432
highlighting table rows (events), 212–217
information, asking for, 54–56
jMaps, 455–460
large links, creating, 294–300
lightBox photo gallery, 261–262
load() function, 413–418
Moon Quiz (DOM), 164–168
one-page FAQ (events), 227–231
opening page within page, 290–293
photo gallery with effects, 248–254
pull quotes, automatic, 196–200
Simple Quiz program, 106–112
sortable data tables, creating, 397–399
tabbed panels, creating, 372–376

Index

Index 527

variables, using to create messages, 53–54
writing text on Web pages, 29

type attribute (forms), 309
type conversion, automatic, 50

U
UI Datepicker plug-in (jQuery), 328
UI Dialog plug-in (jQuery), 383
ui-tabs-hide class, 368
ui-tabs-nav a:hover style for rollover, 370
unbind() function (jQuery), 224
unload events, 205
unobtrusive JavaScript, 248
unshift() command, adding array items

with, 62, 63
URLs (Uniform Resource Locators), types

of, 25
user interface categories (jQuery), 383

V
validation of Web pages, 6
Validation plug-in (jQuery)

downloading, 331
methods, 334
remote method, 341
val() function, 314
validate() function, 332–333, 346
validate() method, 333

validator, HTML, 6
values

changing in variables, 51–54
returning (functions), 102–103
value property (forms), 331

variables
basics, 43
changing values in, 51–54
creating, 43–50
disappearing, 472–473
flag, 80
placing preferences in, 496–497
preventing conflicts between, 103–106
using, 46–47
using to create messages (tutorial), 53–54

View Source Chart (Firefox), 184
visible filter (jQuery), 179

W
Watch lists (debugging), 485–486
Web Developer Toolbar, 184
Web pages

adding content to, 162–163, 181–184
adding Google Maps to, 445–449

adding JavaScript to, 22–26
adding style to. See CSS (Cascading Style

Sheets)
adding tabbed panels to, 364–368
opening page within page, 290–293
preparing for events, 203
window-within-a-page effect, 286–290
writing text on, 29

Web pages, dynamically modifying
Document Object Model (DOM). See DOM

(Document Object Model)
JavaScript libraries, 169–172
overview, 155–157

Web servers
formatting data to send to, 419–422
overview, 407
processing data from, 423–426
receiving XML from, 427
setting up, 408

Web sites, for downloading
API key (Google Maps), 446
Aptana Studio, 515
BBEdit (Mac), 10
Cluetip, 377
Coda Slider plug-in (jQuery), 383
CoffeeCup HTML Editor, 9
columnizeList plug-in (jQuery), 383
Cycle plug-in (jQuery), 265
Dreamweaver (Mac and Windows), 10
Dreamweaver CS4, 515
EditPlus, 10
example files, 27
Expression Web Designer, 10
Firebug, 473
Firebug Lite, 477
Firefox View Source Chart extension, 184
Flickr, 432
HTML validator for Safari, 6
HTML-Kit, 9
IIS, Microsoft, 408
Java, 503
JavaScript libraries, 170
JavaScript tutorials and examples, 13
jMaps plug-in, 446
JSMin software, 503
LightBox, 254
MAMP (Mac), 408
Notepad++, 9
Packer software, 503
PHP-based login script, 429
skEdit (Mac), 10
software used with JavaScript,, 515
star rating system plug-in, 426
Tablesorter jQuery plug-in, 395
Tabs plug-in (jQuery), 364

528 JavaScript: The Missing Manual

Index

Web sites, for downloading (continued)
textMate (Mac), 10
TextWrangler (Mac), 10
Treeview plug-in (jQuery), 383
UI Datepicker plug-in (jQuery), 328
UI Dialog plug-in (jQuery), 383
Validation plug-in (jQuery), 331
Web Developer Toolbar extension, 184
XAMPP installer, 408
YUI Compressor, 503

Web sites, for further information
adding multiple class names to tags, 186
Ajax chat plug-in (jQuery), 446
Ajax references, 512–513
animate() function (jQuery), 246–247
Cluetip options, 383
creative headlines, 190
CSS overview, 175
CSS references, 514–515
CSS selectors, 174
customizing accordions, 359
cycle() function options and effects, 265
dirlister plug-in (jQuery), 446
DOM references, 511–512
events supported by Internet Explorer, 204
find() function (jQuery), 427
floats, 375
Form plug-in (jQuery), 446
formatting form fields, 343
future of Web design, 5
Google Docs, 2
Google Doctype, 509
Google Maps, 2
Greybox, 286
Horizontal Accordion plug-in, 360
HTML lists, 303
HTML template types, 4
HTML validator for Firefox, 6
iframes, 287
JavaScript, 10
JavaScript Quick Reference from

DevGuru, 509
JavaScript references, 509–510
JavaScript, advanced references, 513–514
jQuery functions, 230
jQuery library, 169
jQuery references, 511
jQuery UI project, 361
Missing Manuals, 13
Mozilla Developer Center Core JavaScript

Reference, 509
MSDN Library, 510

online HTML validator, 6
opening new windows, 279
origin of Ajax term, 404
PHP, 412, 433
remote method, 341
Safari Bookshelf, 15
ScrollTo plug-in (jQuery), 285
tab options, 370
Tablesorter jQuery plug-in tips, 396
Taconite plug-in (jQuery), 446
unbind() function (jQuery), 224
user interface categories (jQuery), 383
XML, 427
zoom:1 style declaration, 374

while loops, 90–92
widget, calendar, 328
window/document events, 204–205
windows

creating new, 281–285
customizing Greybox, 290
events to open new, 285
opening external links in new, 278–281
properties, 282–283
using references to control, 283–285
window-within-a-page effect, 286–290

Windows (Microsoft), YUI compressor
for, 504–505

Wood, Keith, 328
World Wide Web Consortium (W3C), 6

X
XAMPP Web server installer, 408
XHTML (Extensible HTML), 4, 6
XML (Extensible Markup Language)

receiving from Web servers, 427
XMLHttpRequest object, 408–411

Y
Yahoo

JavaScript compressor. See YUI Compressor
User Interface Library, 170

YUI Compressor
downloading and applying, 503–504
for Windows vs. Mac, 504–506

Z
Zaefferer, Jörn, 331, 383
zero-indexed arrays, 59
zoom:1 style declaration, 374

Colophon
Adam Witwer provided quality control for JavaScript: The Missing Manual. Ron
Strauss wrote the index.

The cover of this book is based on a series design by David Freedman. Karen
Montgomery produced the cover layout with Adobe InDesign CS using Adobe’s
Minion and Gill Sans fonts.

David Futato designed the interior layout, based on a series design by Phil Simp-
son. This book was converted by Keith Fahlgren to FrameMaker 5.5.6. The text
font is Adobe Minion; the heading font is Adobe Formata Condensed; and the
code font is LucasFont’s TheSansMonoCondensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macrome-
dia FreeHand MX and Adobe Photoshop CS.

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgements
	The Missing Manual Series

	Introduction
	What Is JavaScript?
	A Bit of History
	JavaScript Is Everywhere
	JavaScript Doesn’t Stand Alone

	HTML: The Barebones Structure
	How HTML Tags Work

	CSS: Adding Style to Web Pages
	Anatomy of a Style

	Software for JavaScript Programming
	Free Programs
	Commercial Software

	About This Book
	This Book’s Approach to JavaScript
	About the Outline
	Living Examples
	About MissingManuals.com

	The Very Basics
	About › These › Arrows
	Safari® Books Online

	Chapter 1. Writing Your First JavaScript Program
	Introducing Programming
	What’s a Computer Program?

	How to Add JavaScript to a Page
	External JavaScript Files

	Your First JavaScript Program
	Writing Text on a Web Page
	Attaching an External JavaScript File
	Tracking Down Errors
	The Firefox JavaScript Console
	Displaying the Internet Explorer Error Dialog Box
	Accessing the Safari Error Console

	Chapter 2. The Grammar of JavaScript
	Statements
	Commands
	Types of Data
	Numbers
	Strings
	Booleans

	Variables
	Creating a Variable
	Using Variables

	Working with Data Types and Variables
	Basic Math
	The Order of Operations
	Combining Strings
	Combining Numbers and Strings
	Changing the Values in Variables

	Tutorial: Using Variables to Create Messages
	Tutorial: Asking for Information
	Arrays
	Creating an Array
	Accessing Items in an Array
	Adding Items to an Array
	Adding an item to the end of an array
	Adding an item to the beginning of an array
	Choosing how to add items to an array

	Deleting Items from an Array
	Adding and Deleting with splice(��)
	Deleting items with splice(��)
	Adding items with splice(��)
	Replacing items with splice(��)

	Tutorial: Writing to a Web Page Using Arrays
	Comments
	When to Use Comments
	Comments in this Book

	Chapter 3. Adding Logic and Control to Your Programs
	Making Programs React Intelligently
	Conditional Statement Basics
	Adding a Backup Plan
	Testing More Than One Condition
	More Complex Conditions
	Making sure more than one condition is true
	Making sure at least one condition is true
	Negating a condition

	Nesting Conditional Statements
	Tips for Writing Conditional Statements

	Tutorial: Using Conditional Statements
	Handling Repetitive Tasks with Loops
	While Loops
	Loops and Arrays
	For Loops
	Do/While Loops

	Functions: Turn Useful Code Into Reusable Commands
	Mini-Tutorial
	Giving Information to Your Functions
	Retrieving Information from Functions
	Keeping Variables from Colliding

	Tutorial: A Simple Quiz

	Chapter 4. Working with Words, Numbers, and Dates
	A Quick Object Lesson
	Strings
	Determining the Length of a String
	Changing the Case of a String
	Searching a String: indexOf(��) Technique
	Extracting Part of a String with slice(��)

	Finding Patterns in Strings
	Creating and Using a Basic Regular Expression
	Building a Regular Expression
	Grouping Parts of a Pattern
	Useful Regular Expressions
	U.S. Zip code
	U.S. phone number
	Email address
	Date
	Web address

	Matching a Pattern
	Matching every instance of a pattern

	Replacing Text
	Trying Out Regular Expressions

	Numbers
	Changing a String to a Number
	Testing for Numbers
	Rounding Numbers
	Formatting Currency Values
	Creating a Random Number
	Randomly selecting an array element
	A function for selecting a random number

	Dates and Times
	Getting the Month
	Getting the Day of the Week
	Getting the Time
	Changing hours to a.m. and p.m.
	Padding single digits

	Creating a Date Other Than Today
	Creating a date that’s one week from today

	Tutorial
	Overview
	Writing the Function

	Chapter 5. Dynamically Modifying Web Pages
	Modifying Web Pages: An Overview
	Understanding the Document Object Model
	Selecting a Page Element
	getElementById(��)
	getElementsByTagName(��)
	Selecting nearby nodes

	Adding Content to a Page
	The Moon Quiz Revisited
	The Problem with the DOM

	Introducing JavaScript Libraries
	Getting Started with jQuery

	Selecting Page Elements (Revisited)
	Basic Selectors
	ID selectors
	Element selectors
	Class selectors

	Advanced Selectors
	jQuery Filters
	Understanding jQuery Selections
	Automatic loops
	Chaining functions

	Adding Content to a Page
	Replacing and Removing Selections

	Setting and Reading Tag Attributes
	Classes
	Reading and Changing CSS Properties
	Changing Multiple CSS Properties at Once

	Reading, Setting, and Removing HTML Attributes
	Creative Headlines
	Acting on Each Element in a Selection
	Anonymous Functions
	this and $(this)

	Automatic Pull Quotes
	Overview
	Programming

	Chapter 6. Action/Reaction: Making Pages Come Alive with Events
	What Are Events?
	Mouse Events
	Document/Window Events
	Form Events
	Keyboard Events

	Using Events with Functions
	Inline Events
	The Traditional Model
	The Modern Way
	The jQuery Way

	Tutorial: Highlighting Table Rows
	More jQuery Event Concepts
	Waiting for the HTML to Load
	jQuery Events
	The hover(��) event
	The toggle(��) Event

	The Event Object
	Stopping an Event’s Normal Behavior
	Removing Events

	Advanced Event Management
	Tutorial: A One-Page FAQ
	Overview of the Task
	The Programming

	Chapter 7. Improving Your Images
	Swapping Images
	Changing an Image’s src Attribute
	Preloading Images
	Rollover Images

	Tutorial: Adding Rollover Images
	Overview of the Task
	The Programming

	jQuery Effects
	Basic Showing and Hiding
	Fading Elements In and Out
	Sliding Elements
	Animation

	Tutorial: Photo Gallery with Effects
	Overview of Task
	The Programming

	Advanced Gallery with jQuery lightBox
	The Basics
	Customizing lightBox
	lightBox options
	lightBox images
	lightBox CSS

	Tutorial: lightBox Photo Gallery
	Animated Slideshows with Cycle
	The Basics
	Customizing the Cycle Plug-in
	Effects
	Speed
	Navigating slides
	Starting and stopping the slideshow

	Tutorial: An Automated Slideshow

	Chapter 8. Improving Navigation
	Some Link Basics
	Selecting Links with JavaScript
	Determining a Link’s Destination
	Don’t Follow That Link

	Opening External Links in a New Window
	Creating New Windows
	Window Properties
	Use the window reference
	Events that can open a new window

	Opening Pages in a Window on the Page
	Customizing the Look of a Greybox Window
	Tutorial: Opening a Page Within a Page

	Tutorial: Making Bigger Links
	Overview
	The Programming

	Animated Navigation Menus
	The HTML
	The CSS
	The JavaScript
	The Tutorial

	Chapter 9. Enhancing Web Forms
	Understanding Forms
	Selecting Form Elements
	Getting and Setting the Value of a Form Element
	Determine Whether Buttons and Boxes Are Checked
	Form Events
	Submit
	Focus
	Blur
	Click
	Change

	Adding Smarts to Your Forms
	Focus the First Field in a Form
	Disabling and Enabling Fields
	Hiding and Showing Form Options

	Tutorial: Basic Form Enhancements
	Focusing a Field
	Disabling Form Fields
	Hiding Form Fields

	Form Validation
	jQuery Validation Plug-in
	Basic Validation
	Adding validation rules
	Adding error messages

	Advanced Validation
	Advanced rules
	Advanced error messages

	Styling Error Messages

	Validation Tutorial
	Basic Validation
	Advanced Validation
	Validating Checkboxes and Radio Buttons
	Formatting the Error Messages

	Chapter 10. Expanding Your Interface
	Hiding Information with Accordion Panels
	Customizing an Accordion
	Accordion Tutorial

	Organizing Information in Tabbed Panels
	Formatting Tabs and Panels
	A required class style
	The tab group
	Tabs
	Panels

	Customizing the Tabs Plug-in
	Selecting a tab when the page loads
	Using a different event to open a panel
	Automating the display of panels

	Tabbed Panels Tutorial

	Tooltips
	Tooltips Using the Title Attribute
	Tooltips Using Another Web Page
	Tooltips Using Hidden Content
	Controlling the Display of Tooltips
	Formatting Tooltips
	Cluetip Tutorial
	Adding a tooltip using the title attribute
	Adding a tooltip using another Web page
	Adding a tooltip using HTML on the page

	Creating Sortable Tables
	Styling the Table
	Using the Tablesorter plug-in to stripe tables

	Tablesorter Tutorial

	Chapter 11. Introducing Ajax
	What Is Ajax?
	Ajax: The Basics
	Pieces of the Puzzle
	Talking to the Web Server

	Ajax the jQuery Way
	Using the load(��) Function
	Tutorial: The load(��) Function
	Overview
	The programming

	The get(��) and post(��) Functions
	Formatting Data to Send to the Server
	Query string
	Object literal
	jQuery’s serialize(��) function

	Processing Data from the Server
	Tutorial: Using the post(��) Function
	Overview
	The programming

	JSON
	Accessing JSON Data
	Complex JSON Objects

	Chapter 12. Basic Ajax Programming
	Tabs Plug-in
	Changing the Loading Text and Icon
	Turning off the “Loading” message

	Ajax Tabs Tutorial

	Adding Google Maps to Your Site
	Setting a Location for the Map
	Other jMap Options
	Adding Markers and HTML Bubbles
	Get Driving Directions
	jMaps Tutorial

	Chapter 13. Troubleshooting and Debugging
	Top JavaScript Programming Mistakes
	Non-Closed Pairs
	Quotation Marks
	Using Reserved Words
	Single Equals in Conditional Statements
	Case-Sensitivity
	Incorrect Path to External JavaScript File
	Incorrect Paths Within External JavaScript Files
	Disappearing Variables and Functions

	Debugging with Firebug
	Installing and Turning On Firebug
	Viewing Errors with Firebug
	Using console.log(��) to Track Script Progress
	Tutorial: Using the Firebug Console
	More Powerful Debugging
	Controlling your script with the debugger
	Watching your script

	Debugging Tutorial

	Chapter 14. Going Further with JavaScript
	Putting It All Together
	Using External JavaScript Files

	Writing More Efficient JavaScript
	Put Preferences in Variables
	Ternary Operator
	The Switch Statement
	Using the jQuery Object Efficiently

	Creating Fast-Loading JavaScript
	Using YUI Compressor for Windows
	Using YUI Compressor for Mac

	Appendix A. JavaScript Resources
	References
	Web Sites
	Books

	Basic JavaScript
	Articles and Presentations
	Web Sites
	Books

	jQuery
	Articles
	Web Sites
	Books

	The Document Object Model
	Articles and Presentations
	Web Sites
	Books

	Ajax
	Web Sites
	Books

	Advanced JavaScript
	Articles and Presentations
	Web Sites
	Books

	CSS
	Web Sites
	Books

	JavaScript Software

	Index

