

JavaScript
Pocket Reference

SECOND EDITION

David Flanagan

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.14964 Page 3 Thursday, July 13, 2006 8:50 AM

JavaScript Pocket Reference, Second Edition
by David Flanagan

Copyright © 2003, 1998 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational,
business, or sales promotional use. Online editions are also available
for most titles (safari.oreilly.com). For more information contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Editor: Paula Ferguson
Production Editor: Philip Dangler
Cover Designer: Edie Freedman
Interior Designer: David Futato

Printing History:
October 1998: First Edition
November 2002: Second Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly
logo are registered trademarks of O’Reilly Media, Inc. The Pocket
Reference series designation, JavaScript Pocket Reference, Second
Edition, the image of a rhinoceros, and related trade dress are
trademarks of O’Reilly Media, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly
Media, Inc. was aware of a trademark claim, the designations have been
printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or
omissions, or for damages resulting from the use of the information
contained herein.

0-596-00411-7
[C] [5/06]

,COPYRIGHT.15085 Page 1 Thursday, July 13, 2006 8:50 AM

v

Contents

The JavaScript Language 1
Syntax 1
Variables 3
Data Types 4
Expressions and Operators 9
Statements 12
Object-Oriented JavaScript 18
Regular Expressions 19
Versions of JavaScript 22

Client-side JavaScript 24
JavaScript in HTML 25
The Window Object 26
The Document Object 32
The Legacy DOM 33
The W3C DOM 38
IE 4 DOM 43
DHTML: Scripting CSS Styles 45
Events and Event Handling 47
JavaScript Security Restrictions 51

JavaScript API Reference 52
Anchor 54
Applet 54
Arguments 55

vi | Contents

Array 56
Attr 58
Boolean 58
Comment 59
DOMException 59
DOMImplementation 60
Date 61
Document 65
DocumentFragment 71
Element 72
Error 78
Event 78
Form 84
Function 86
Global 87
History 89
Image 89
Input 91
Layer 93
Link 97
Location 99
Math 99
Navigator 102
Node 104
Number 107
Object 109
Option 110
RegExp 111
Screen 113
Select 113
String 115
Style 118

Contents | vii

Text 119
Textarea 120
Window 122

1

JavaScript
Pocket Reference

The JavaScript Language
JavaScript is a lightweight, object-based scripting language
that can be embedded in HTML pages. This book starts with
coverage of the core JavaScript language, followed by mate-
rial on client-side JavaScript, as used in web browsers. The
final portion of this book is a quick-reference for the core
and client-side JavaScript APIs.

Syntax
JavaScript syntax is modeled on Java syntax, Java syntax, in
turn, is modeled on C and C++ syntax. Therefore, C, C++,
and Java programmers should find that JavaScript syntax is
comfortably familiar.

Case sensitivity

JavaScript is a case-sensitive language. All keywords are in
lowercase. All variables, function names, and other identifi-
ers must be typed with a consistent capitalization.

Whitespace

JavaScript ignores whitespace between tokens. You may use
spaces, tabs, and newlines to format and indent your code in
a readable fashion.

2 | JavaScript Pocket Reference

Semicolons

JavaScript statements are terminated by semicolons. When a
statement is followed by a newline, however, the terminat-
ing semicolon may be omitted. Note that this places a restric-
tion on where you may legally break lines in your JavaScript
programs: you may not break a statement across two lines if
the first line can be a complete legal statement on its own.

Comments

JavaScript supports both C and C++ comments. Any amount
of text, on one or more lines, between /* and */ is a com-
ment, and is ignored by JavaScript. Also, any text between //
and the end of the current line is a comment, and is ignored.
Examples:

// This is a single-line, C++-style comment.
/*
 * This is a multi-line, C-style comment.
 * Here is the second line.
 */
/* Another comment. */ // This too.

Identifiers

Variable, function, and label names are JavaScript identifiers.
Identifiers are composed of any number of letters and digits,
and _ and $ characters. The first character of an identifier must
not be a digit, however. The following are legal identifiers:

i
my_variable_name
v13
$str

Keywords

The following keywords are part of the JavaScript language,
and have special meaning to the JavaScript interpreter.
Therefore, they may not be used as identifiers:

The JavaScript Language | 3

break do if switch typeof
case else in this var
catch false instanceof throw void
continue finally new true while
default for null try with
delete function return

JavaScript also reserves the following words for possible
future extensions. You may not use any of these words as
identifiers either:

abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
const goto private transient
debugger implements protected volatile
double import public

In addition, you should avoid creating variables that have the
same name as global properties and methods: see the Glo-
bal, Object, and Window reference pages. Within functions,
do not use the identifier arguments as an argument name or
local variable name.

Variables
Variables are declared and initialized with the var statement:

var i = 1+2+3;
var x = 3, message = 'hello world';

Variable declarations in top-level JavaScript code may be
omitted, but they are required to declare local variables
within the body of a function.

JavaScript variables are untyped: they can contain values of
any data type.

Global variables in JavaScript are implemented as properties
of a special Global object. Local variables within functions
are implemented as properties of the Argument object for

4 | JavaScript Pocket Reference

that function. Global variables are visible throughout a Java-
Script program. Variables declared within a function are only
visible within that function. Unlike C, C++, and Java, Java-
Script does not have block-level scope: variables declared
within the curly braces of a compound statement are not
restricted to that block and are visible outside of it.

Data Types
JavaScript supports three primitive data types: numbers,
booleans, and strings; and two compound data types: objects
and arrays. In addition, it defines specialized types of objects
that represent functions, regular expressions, and dates.

Numbers

Numbers in JavaScript are represented in 64-bit floating-
point format. JavaScript makes no distinction between inte-
gers and floating-point numbers. Numeric literals appear in
JavaScript programs using the usual syntax: a sequence of
digits, with an optional decimal point and an optional expo-
nent. For example:

1
3.14
0001
6.02e23

Integers may also appear in hexadecimal notation. A hexa-
decimal literal begins with 0x:

0xFF // The number 255 in hexadecimal

When a numeric operation overflows, it returns a special
value that represents positive or negative infinity. When an
operation underflows, it returns zero. When an operation
such as taking the square root of a negative number yields an
error or meaningless result, it returns the special value NaN,
which represents a value that is not-a-number. Use the glo-
bal function isNaN() to test for this value.

The JavaScript Language | 5

The Number object defines useful numeric constants. The
Math object defines various mathematical functions such as
Math.sin(), Math.pow(), and Math.random().

Booleans

The boolean type has two possible values, represented by the
JavaScript keywords true and false. These values represent
truth or falsehood, on or off, yes or no, or anything else that
can be represented with one bit of information.

Strings

A JavaScript string is a sequence of arbitrary letters, digits,
and other characters from the 16-bit Unicode character set.

String literals appear in JavaScript programs between single
or double quotes. One style of quotes may be nested within
the other:

'testing'
"3.14"
'name="myform"'
"Wouldn't you prefer O'Reilly's book?"

When the backslash character (\) appears within a string lit-
eral, it changes, or escapes, the meaning of the character that
follows it. The following table lists these special escape
sequences:

Escape Represents

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\’ Apostrophe or single quote that does not terminate the string

\“ Double-quote that does not terminate the string

\\ Single backslash character

6 | JavaScript Pocket Reference

The String class defines many methods that you can use to
operate on strings. It also defines the length property, which
specifies the number of characters in a string.

The addition (+) operator concatenates strings. The equality
(==) operator compares two strings to see if they contain
exactly the same sequences of characters. (This is compare-
by-value, not compare-by-reference, as C, C++, or Java pro-
grammers might expect.) The inequality operator (!=) does
the reverse. The relational operators(<, <=, >, and >=) com-
pare strings using alphabetical order.

JavaScript strings are immutable, which means that there is
no way to change the contents of a string. Methods that
operate on strings typically return a modified copy of the
string.

Objects

An object is a compound data type that contains any number
of properties. Each property has a name and a value. The .
operator is used to access a named property of an object. For
example, you can read and write property values of an object
o as follows:

o.x = 1;
o.y = 2;
o.total = o.x + o.y;

Object properties are not defined in advance as they are in C,
C++, or Java; any object can be assigned any property. Java-
Script objects are associative arrays: they associate arbitrary
data values with arbitrary names. Because of this fact, object
properties can also be accessed using array notation:

o["x"] = 1;
o["y"] = 2;

\xdd Character with Latin-1 encoding specified by two hexadecimal digits dd

\udddd Character with Unicode encoding specified by four hexadecimal digits
dddd

Escape Represents

The JavaScript Language | 7

Objects are created with the new operator. You can create a
new object with no properties as follows:

var o = new Object();

Typically, however, you use predefined constructors to cre-
ate objects that are members of a class of objects and have
suitable properties and methods automatically defined. For
example, you can create a Date object that represents the
current time with:

var now = new Date();

You can also define your own object classes and correspond-
ing constructors; doing this is documented later in this sec-
tion.

In JavaScript 1.2 and later, you can use object literal syntax
to include objects literally in a program. An object literal is a
comma-separated list of name:value pairs, contained within
curly braces. For example:

var o = {x:1, y:2, total:3};

See Object (and Date) in the reference section.

Arrays

An array is a type of object that contains numbered values
rather than named values. The [] operator is used to access
the numbered values of an array:

a[0] = 1;
a[1] = a[0] + a[0];

The first element of a JavaScript array is element 0. Every
array has a length property that specifies the number of ele-
ments in the array. The last element of an array is element
length-1. Array elements can hold any type of value, includ-
ing objects and other arrays, and the elements of an array
need not all contain values of the same type.

8 | JavaScript Pocket Reference

You create an array with the Array() constructor:

var a = new Array(); // Empty array
var b = new Array(10); // 10 elements
var c = new Array(1,2,3); // Elements 1,2,3

As of JavaScript 1.2, you can use array literal syntax to
include arrays directly in a program. An array literal is a
comma-separated list of values enclosed within square brack-
ets. For example:

var a = [1,2,3];
var b = [1, true, [1,2], {x:1, y:2}, "Hello"];

See Array in the reference section for a number of useful
array manipulation methods.

Functions and methods

A function is a piece of JavaScript code that is defined once
and can be executed multiple times by a program. A func-
tion definition looks like this:

function sum(x, y) {
 return x + y;
}

Functions are invoked using the () operator and passing a
list of argument values:

var total = sum(1,2); // Total is now 3

In JavaScript 1.1, you can create functions using the
Function() constructor:

var sum = new Function("x", "y", "return x+y;");

In JavaScript 1.2 and later, you can define functions using
function literal syntax, which makes the Function() con-
structor obsolete:

var sum = function(x,y) { return x+y; }

When a function is assigned to a property of an object, it is
called a method of that object. Within the body of a method,

The JavaScript Language | 9

the keyword this refers to the object for which the function
is a property.

Within the body of a function, the arguments[] array con-
tains the complete set of arguments passed to the function.
See Function and Arguments in the reference section.

null and undefined

There are two JavaScript values that are not of any of the
types described above. The JavaScript keyword null is a spe-
cial value that indicates “no value”. If a variable contains
null, you know that it does not contain a valid value of any
other type. The other special value in JavaScript is the unde-
fined value. This is the value of uninitialized variables and
the value returned when you query object properties that do
not exist. In JavaScript 1.5, there is a pre-defined global vari-
able named undefined that holds this special undefined
value. null and undefined serve similar purposes and the ==
operator considers them equal; if you need to distinguish
between them, use the === operator.

Expressions and Operators
JavaScript expressions are formed by combining values
(which may be literals, variables, object properties, array ele-
ments, or function invocations) using JavaScript operators.
Parentheses can be used in an expression to group subex-
pressions and alter the default order of evaluation of the
expression. Some examples:

1+2
total/n
sum(o.x, a[3])++

JavaScript defines a complete set of operators, most of which
should be familiar to C, C++, and Java programmers. They
are listed in the table below, and a brief explanation of the
non-standard operators follows. The P column specifies
operator precedence and the A column specifies operator

10 | JavaScript Pocket Reference

associativity: L means left-to-right associativity, and R means
right-to-left associativity.

P A Operator Operation performed

15 L . Access an object property

L [] Access an array element

L () Invoke a function

R new Create new object

14 R ++ Pre-or-post increment (unary)

R -- Pre-or-post decrement (unary)

R - Unary minus (negation)

R + Unary plus (no-op)

R ~ Bitwise complement (unary)

R ! Logical complement (unary)

R delete Undefine a property (unary) (JS 1.2)

R typeof Return data type (unary) (JS 1.1)

R void Return undefined value (unary) (JS 1.1)

13 L *, /, % Multiplication, division, remainder

12 L +, - Add, subtract

L + Concatenate strings

11 L << Integer shift left

L >> Shift right, sign-extension

L >>> Shift right, zero extension

10 L <, <= Less than, less than or equal

L >, >= Greater than, greater than or equal

L instanceof Check object type (JS 1.5)

L in Check whether property exists (JS 1.5)

9 L == Test for equality

L != Test for inequality

L === Test for identity (JS 1.3)

L !== Test for non-identity (JS 1.3)

The JavaScript Language | 11

JavaScript operators that are not familiar from C, C++, and
Java are the following:

=== and !==
The JavaScript equality operator, ==, defines equality
loosely and allows type conversions. For example, it con-
siders the number 3 and the string ”3“ to be equal, it con-
siders false to be equal to 0, and it considers null and
undefined to be equal. The identity operator, ===, writ-
ten with three equals signs, is stricter: it only evaluates to
true if its operands are identical: i.e. if they have the
same type and are equal. Similarly, the JavaScript non-
identity operator !== is stricter than the non-equality !=
operator.

String operators
In JavaScript, the + operator concatenates string argu-
ments in addition to adding numeric arguments. The ==
and === operators compare strings by value by testing to
see whether they contain exactly the same characters.
The relational operators <, <=, >, and >= compare strings
based on alphabetical order.

8 L & Integer bitwise AND

7 L ^ Integer bitwise XOR

6 L | Integer bitwise OR

5 L && Logical AND

4 L || Logical OR

3 R ?: Conditional operator (3 operands)

2 R = Assignment

R *=, +=, -=, etc. Assignment with operation

1 L , Multiple evaluation

P A Operator Operation performed

12 | JavaScript Pocket Reference

typeof
Return the type of the operand as a string. Evaluates to
“number”, “string”, “boolean”, “object”, “function”, or
“undefined”. Evaluates to “object” if the operand is null.

instanceof
Evaluates to true if the object on the left was created
with the constructor function (such as Date or RegExp) on
the right.

in
Evaluates to true if the object on the right has (or inher-
its) a property with the name on the left.

delete
Deletes an object property. Note that this is not the same
as simply setting the property to null. Evaluates to false
if the property could not be deleted, or true otherwise.

void
Ignores the operand and evaluates to undefined.

Statements
A JavaScript program is a sequence of JavaScript statements.
Most JavaScript statements have the same syntax as the cor-
responding C, C++, and Java statements.

Expression statements

Every JavaScript expression can stand alone as a statement.
Assignments, method calls, increments, and decrements are
expression statements. For example:

s = "hello world";
x = Math.sqrt(4);
x++;

Compound statements

When a sequence of JavaScript statements is enclosed within
curly braces, it counts as a single compound statement. For

The JavaScript Language | 13

example, the body of a while loop consists of a single state-
ment. If you want the loop to execute more than one state-
ment, use a compound statement. This is a common
technique with if, for, and other statements described later.

Empty statements

The empty statement is simply a semicolon by itself. It does
nothing, and is occasionally useful for coding empty loop
bodies.

Labeled statements

As of JavaScript 1.2, any statement can be labeled with a
name. Labeled loops can then be used with the labeled ver-
sions of the break and continue statements:

label : statement

Alphabetical statement reference

The following paragraphs document all JavaScript state-
ments, in alphabetical order.

break
The break statement terminates execution of the inner-
most enclosing loop, or, in JavaScript 1.2 and later, the
named loop:

break ;
break label ;

case
case is not a true statement. Instead it is a keyword used
to label statements within a JavaScript 1.2 or later switch
statement:

case constant-expression :
statements

 [break ;]

Because of the nature of the switch statement, a group of
statements labeled by case should usually end with a
break statement.

14 | JavaScript Pocket Reference

continue
The continue statement restarts the innermost enclosing
loop, or, in JavaScript 1.2 and later, restarts the named
loop:

continue ;
continue label ;

default
Like case, default is not a true statement, but instead a
label that may appear within a JavaScript 1.2 or later
switch statement:

default:
statements

 [break ;]

do/while
The do/while loop repeatedly executes a statement while
an expression is true. It is like the while loop, except that
the loop condition appears (and is tested) at the bottom
of the loop. This means that the body of the loop is exe-
cuted at least once:

do
statement

while (expression) ;

This statement was introduced in JavaScript 1.2. In
Netscape 4, the continue statement does not work cor-
rectly within do/while loops.

for
The for statement is an easy-to-use loop that combines
the initialization and increment expressions with the
loop condition expression:

for (initialize ; test ; update)
statement

The for loop repeatedly executes statement as long as the
test expression is true. It evaluates the initialize
expression once before starting the loop and evaluates
the update expression at the end of each iteration.

The JavaScript Language | 15

for/in
The for/in statement loops through the properties of a
specified object:

for (variable in object)
 statement

The for/in loop executes a statement once for each prop-
erty of an object. Each time through the loop, it assigns
the name of the current property to the specified vari-
able. Some properties of pre-defined JavaScript objects
are not enumerated by the for/in loop. User-defined
properties are always enumerated.

function
The function statement defines a function in a Java-
Script program:

function funcname (args) {
statements

}

This statement defines a function named funcname, with a
body that consists of the specified statement, and argu-
ments as specified by args. args is a comma-separated list
of zero or more argument names. These arguments can
be used in the body of the function to refer to the param-
eter values passed to the function.

if/else
The if statement executes a statement if an expression is
true:

if (expression)
statement

When an else clause is added, the statement executes a
different statement if the expression is false:

if (expression)
statement

else
statement2

Any else clause may be combined with a nested if/else
statement to produce an else if statement:

16 | JavaScript Pocket Reference

if (expression)
statement

else if (expression2)
statement2

else
statement3

return
The return statement causes the currently executing
function to stop executing and return to its caller. If fol-
lowed by an expression, the value of that expression is
used as the function return value:

return ;
return expression ;

switch
The switch statement is a multi-way branch. It evaluates
an expression and then jumps to a statement that is
labeled with a case clause that matches the value of the
expression. If no matching case label is found, the switch
statement jumps to the statement, if any, labeled with
default:

switch (expression) {
 case constant-expression: statements
 [case constant-expression: statements]
 [. . .]
 default: statements
}

Each set of statements within a switch statement is usu-
ally terminated with a break or return so that execution
does not fall through from one case to the next one.

throw
The throw statement signals an error, or throws an excep-
tion. It causes program control to jump immediately to
the nearest enclosing exception handler (see the try/
catch/finally statement). The throw statement is defined
by ECMAv3 and implemented in JavaScript 1.5. Its syn-
tax is:

throw expression ;

The JavaScript Language | 17

The expression may evaluate to any type. (See Error in
the reference section.)

try/catch/finally
The try/catch/finally statement is JavaScript’s excep-
tion handling mechanism. It is defined by ECMAv3 and
implemented in JavaScript 1.5. Its syntax is:

try {
statements

}
catch (argument) {

statements
}
finally {

statements
}

The try clause of this statement defines a block of code
for which exceptions and errors are to be handled. If a
program error occurs, or an exception is thrown within
the try block, control jumps to the exception-handling
statements in the catch clause. This clause includes a sin-
gle argument or local variable; the value that was thrown
by the exception is assigned to this local variable so that
it can be referred to by the statements of the catch clause.
The finally clause contains statements that are exe-
cuted after the try or catch clauses, whether or not an
exception is thrown. The catch and finally clauses are
optional, but you cannot omit both of them.

var
The var statement declares and optionally initializes one
or more variables. Variable declaration is optional in top-
level code, but is required to declare local variables
within function bodies:

var name [= value] [, name2 [= value2] . . .]
;

18 | JavaScript Pocket Reference

while
The while statement is a basic loop. It repeatedly exe-
cutes a statement while an expression is true:

while (expression)
statement ;

with
The with statement adds an object to the scope chain, so
that a statement is interpreted in the context of the
object:

with (object)
statement ;

The with statement has some complex and non-intuitive
side effects; its use is strongly discouraged.

Object-Oriented JavaScript
JavaScript objects are associative arrays that associate values
with named properties. JavaScript provides a simple inherit-
ance mechanism, and it is possible to define new classes of
objects for use in your own programs. To define a new class,
start by writing a constructor function. A constructor is like
any other function, except it is invoked with the new opera-
tor and it uses the this keyword to refer to and initialize the
newly created object. For example, here is a constructor to
create objects of a new class named Point.

function Point(x,y) { // Constructor for Point
 this.x = x; // Initialize X coordinate
 this.y = y; // Initialize Y coordinate
}

Every JavaScript function used as a constructor has a property
named prototype. This property refers to a special prototype
object for the class of objects created by the constructor. Any
properties you define on this prototype object are inherited by
all objects created with the constructor function. The proto-
type object is commonly used to make methods available to
all instances of a class. Defining a method named toString

The JavaScript Language | 19

allows instances of your class to be converted to strings. For
example:

// Define function literals and assign them
// to properties of the prototype object.
Point.prototype.distanceTo = function(that) {
 var dx = this.x - that.x;
 var dy = this.y - that.y;
 return Math.sqrt(dx*dx + dy*dy);
}
Point.prototype.toString = function () {
 return '(' + this.x + ',' + this.y + ')';
}

If you want to define static (or class) methods or properties,
you can assign them directly to the constructor function,
rather than to the prototype object. For example:

// Define a commonly used Point constant
Point.ORIGIN = new Point(0,0);

The preceding code fragments define a simple Point class
that we can use with code like this:

// Call constructor to create a new Point object
var p = new Point(3,4);
// Invoke a method of the object, using a static
// property as the argument.
var d = p.distanceTo(Point.ORIGIN);
// Adding the object to a string implicitly
// invokes toString().
var msg = "Distance to " + p + " is " + d;

Regular Expressions
JavaScript supports regular expressions for pattern matching
with the same syntax as the Perl programming language.
JavaScript 1.2 supports Perl 4 regular expressions, and Java-
Script 1.5 adds supports for some of the additional features
of Perl 5 regular expressions. A regular expression is speci-
fied literally in a JavaScript program as a sequence of charac-
ters within slash (/) characters, optionally followed by one or
more of the modifier characters g (global search), i (case-
insensitive search), and m (multi-line mode; a JavaScript 1.5

20 | JavaScript Pocket Reference

feature). In addition to this literal syntax, RegExp objects can
be created with the RegExp() constructor, which accepts the
pattern and modifier characters as string arguments, without
the slash characters.

A full explanation of regular expression syntax is beyond the
scope of this book, but the tables in the following subsec-
tions offer brief syntax summaries.

Literal characters

Letters, numbers, and most other characters are literals in a
regular expression: they simply match themselves. As we’ll
see in the sections that follow, however, there are a number
of punctuation characters and escape sequences (beginning
with \) that have special meanings. The simplest of these
escape sequences provide alternative ways of representing lit-
eral characters:

Character classes

Regular expression syntax uses square brackets to represent
character sets or classes in a pattern. In addition, escape
sequences define certain commonly-used character classes, as
shown in the following table.

Character Meaning

\n, \r, \t Match literal newline, carriage return, tab

\\, \/, *,
\+, \?, etc.

Match a punctuation character literally, ignoring or escaping its
special meaning

\xnn The character with hexadecimal encoding nn.

\uxxxx The Unicode character with hexadecimal encoding xxxx.

Character Meaning

[...] Match any one character between brackets

[^...] Match any one character not between brackets

. Match any character other than newline

The JavaScript Language | 21

Repetition

The following table shows regular expression syntax that
controls the number of times that a match may be repeated.

In JavaScript 1.5, any of the repetition characters may be fol-
lowed by a question mark to make them non-greedy, which
means they match as few repetitions as possible while still
allowing the complete pattern to match.

Grouping and alternation

Regular expressions use parentheses to group subexpres-
sions, just as mathematical expressions do. Parentheses are
useful, for example, to allow a repetition character to be
applied to an entire subexpression. They are also useful with
the | character, which is used to separate alternatives. Paren-
thesized groups have a special behavior: when a pattern
match is found, the text that matches each group is saved
and can be referred to by group number. The following table
summarizes this syntax.

\w, \W Match any word/non-word character

\s, \S Match any whitespace/non-whitespace

\d, \D Match any digit/non-digit

Character Meaning

? Optional term; Match zero or one time

+ Match previous term one or more times

* Match previous term zero or more times

{n} Match previous term exactly n times

{n,} Match previous term n or more times

{n,m} Match at least n but no more than m times

Character Meaning

22 | JavaScript Pocket Reference

Anchoring match position

An anchor in a regular expression matches a position in a
string (such as the beginning or the end of the string) with-
out matching any of the characters of a string. It can be used
to restrict (or anchor) a match to a specific position within a
string.

Versions of JavaScript
Netscape has defined a number of versions of JavaScript.
Microsoft has released more-or-less compatible versions
under the name “JScript,” and the ECMA standards body
has released three versions of a JavaScript standard named
“ECMAScript”. The following paragraphs describe these var-
ious versions, and explain how they relate to each other.
Each entry in the reference section contains availability infor-

Character Meaning

a | b Match either a or b

(sub) Group subexpression sub into a single term, and remember the text
that it matched

(?:sub) Group subexpression sub but do not number the group or
remember the text it matches (JS 1.5)

\n Match exactly the same characters that were matched by group
number n

$n In replacement strings, substitute the text that matched the nth
subexpression

Character Meaning

^, $ Require match at beginning/end of a string, or in multiline mode,
beginning/end of a line

\b, \B Require match at a word boundary/non-boundary

(?=p) Look-ahead assertion: require that the following characters match
the pattern p, but do not include them in the match. (JS 1.5)

(?!p) Negative look-ahead assertion: require that the following characters
do not match the pattern p. (JS 1.5)

The JavaScript Language | 23

mation that documents the version of JavaScript in which a
feature was introduced.

JavaScript 1.0
The original version of the language. It was buggy and is
now essentially obsolete. Implemented by Netscape 2.

JavaScript 1.1
Introduced a true Array object; most serious bugs
resolved. Implemented by Netscape 3.

JavaScript 1.2
Introduced the switch statement, regular expressions,
and a number of other features. Almost compliant with
ECMA v1, but has some incompatibilities. Implemented
by Netscape 4.

JavaScript 1.3
Fixed incompatibilities of JavaScript 1.2. Compliant with
ECMA v1. Implemented by Netscape 4.5.

JavaScript 1.4
Only implemented in Netscape server products.

JavaScript 1.5
Introduced exception handling. Compliant with ECMA
v3. Implemented by Mozilla and Netscape 6.

JScript 1.0
Roughly equivalent to JavaScript 1.0. Implemented by
early releases of IE 3.

JScript 2.0
Roughly equivalent to JavaScript 1.1. Implemented by
later releases of IE 3.

JScript 3.0
Roughly equivalent to JavaScript 1.3. Compliant with
ECMA v1. Implemented by IE 4.

JScript 4.0
Not implemented by any web browser.

24 | JavaScript Pocket Reference

JScript 5.0
Supported exception handling; partial ECMA v3 compli-
ance. Implemented by IE 5.

JScript 5.5
Roughly equivalent to JavaScript 1.5. Fully compliant
with ECMA v3. Implemented by IE 5.5 and IE 6.

ECMA v1
The first standard version of the language. Standardized
the basic features of JavaScript 1.1 and added a few new
features. Did not standardize the switch statement or reg-
ular expression support. Conformant implementations
are JavaScript 1.3 and JScript 3.0.

ECMA v2
A maintenance release of the standard that included clar-
ifications but defined no new features.

ECMA v3
Standardized the switch statement, regular expressions,
and exception handling. Conformant implementations
are JavaScript 1.5 and JScript 5.5.

Client-side JavaScript
Client-side JavaScript is the name given to JavaScript code
that is embedded within an HTML file and executed by a
web browser. In addition to the core objects described in the
previous section, client-side JavaScript code has access to a
number of other objects that represent the web browser, the
document displayed in the browser, and the contents of that
document. Client-side JavaScript programs are usually event-
based, which means that JavaScript event handlers are exe-
cuted in response to user interactions with the browser and
the document. The client-side JavaScript scripting frame-
work is powerful enough to open substantial security holes
in web browsers. For this reason, web browsers typically
restrict the actions of client-side scripts. This section starts by

Client-side JavaScript | 25

explaining how JavaScript code is embedded in HTML files,
then goes on to introduce the client-side JavaScript objects,
JavaScript events and event handling, and JavaScript secu-
rity restrictions.

JavaScript in HTML
JavaScript code may be embedded in HTML files in the form
of scripts, event handlers and URLs, as detailed below.

The <script> tag

Most JavaScript code appears in HTML files between a
<script> tag and a </script> tag. For example:

<script>
document.write("The time is: " + new Date());
</script>

In JavaScript 1.1 and later you can use the src attribute of
the <script> tag to specify the URL of an external script to be
loaded and executed. Files of JavaScript code typically have a
.js extension. Note that the </script> tag is still required
when this attribute is used:

<script src="library.js"></script>

HTML allows scripts to be written in languages other than
JavaScript, and some browsers, such as Internet Explorer,
support languages such as VBScript. You can use the
language attribute to specify what language a script is writ-
ten in. This attribute defaults to “JavaScript” in all brows-
ers, so you do not usually have to set it. You can also use
attribute values such as “JavaScript1.3” and “JavaScript1.5”
to specify the version of JavaScript your code uses. Browsers
that do not support the specified version of the language sim-
ply ignore the script.

HTML 4 does not actually recognize the language attribute of
the <script> tag. Instead, the official way to specify the lan-

26 | JavaScript Pocket Reference

guage a script is written in is with the type attribute. For Java-
Script, set this attribute to the MIME type “text/javascript”:

<script src="functions.js"
 language="JavaScript1.5"
 type="text/javascript"></script>

Event handlers

JavaScript code may also appear as the value of an event han-
dler attribute of an HTML tag. Event handler attribute
names always begin with “on”. The code specified by one of
these attributes is executed when the named event occurs.
For example, the following HTML creates a button, and the
onclick attribute specifies an event handler that displays an
alert (a dialog box) when the user clicks the button:

<input type="button" value="Press Me"
 onclick="alert('Hello World!');">

A list of other available event handler attributes is included
later in this section.

JavaScript URLs

JavaScript code may appear in a URL that uses the special
javascript: pseudo-protocol. The content of such a URL is
determined by evaluating the JavaScript code and converting
the resulting value to a string. If you want to use a JavaScript
URL to execute JavaScript code without returning any docu-
ment content that would overwrite the current document,
use the void operator:

<form action="javascript:void validate()">

The Window Object
The Window object represents a web browser window. In
client-side JavaScript, the Window object is the global object
that defines all top-level properties and methods. The prop-
erties and methods of the Window object are therefore glo-
bal properties and global functions and you can refer to them

Client-side JavaScript | 27

by their property names without any object prefix. One of
the properties of the Window object is named window and
refers back to the Window object itself:

window // The global Window object
window.document // The document property of the window
document // Or omit the object prefix

See the Window object in the reference section for a full list
of its properties and methods. The following sections summa-
rize the most important of these properties and methods and
demonstrate key client-side programming techniques using
the Window object. Note that the most important property
of the Window object is document, which refers to the Docu-
ment object that describes the document displayed by the
browser window. The Document object is described in a sec-
tion of its own following these window-related subsections.

Simple dialog boxes

Three methods allow you to display simple dialog boxes to
the user. alert() lets you display a message to the user,
confirm() lets you ask the user a yes-or-no question, and
prompt() lets you ask the user to enter a single line of text.
For example:

alert("Welcome to my home page!");
if (confirm("Do you want to play?")) {
 var n = prompt("Enter your name");
}

The status line

Most web browsers include a status line at the bottom of the
window that is used to display the destination of links and
other information. You can specify text to appear in the sta-
tus line with the status property. The text you set on this
property appears in the status area until you or the browser
overwrites it with some new value. You can also set
defaultStatus to specify text to appear by default when the
browser is not displaying any other information in the status

28 | JavaScript Pocket Reference

line. Here is an HTML hyperlink that uses JavaScript in an
event handler to set the status text to something other than
the URL of the link:

<a href="help.html"
 onmouseover="window.status='Help'; return true;">
Help

Timers

Client-side JavaScript uses event handlers to specify code to
be run when a specific event occurs. You can also use timers
to specify code to be run when a specific number of milli-
seconds has elapsed. To run a string of JavaScript code after a
specified amount of time, call the setTimeout() method, pass-
ing the string of code and the number of milliseconds. If you
want to run a string of code repeatedly, use setInterval() to
specify the code to run and the number of milliseconds
between invocations. Both functions return a value that you
can pass to clearTimeout() or clearInterval(), respectively,
to cancel the pending execution of code. For example:

var count = 0;
// Update status line every second
var timer = setInterval("status=++count",1000);
// But stop updating after 5 seconds;
setTimeout("clearInterval(timer)", 5000);

System information

The navigator and screen properties of the Window object
refer to the Navigator and Screen objects, which themselves
define properties that contain system information, such as
the name and version of the web browser, the operating sys-
tem it is running on, and the resolution of the user’s screen.
See Navigator and Screen in the reference section for details.
The Navigator object is commonly used when writing code
specific to a particular web browser or web browser version:

if (navigator.appName == "Netscape" &&
 parseInt(navigator.appVersion) == 4) {
 // Code for Netscape 4 goes here.
}

Client-side JavaScript | 29

Browser navigation

The location property of the Window object refers to the
contents of the browser’s location bar (the field that you type
URLs into). Reading the value of this property gives you the
URL that is currently being displayed. More importantly, set-
ting the location property to a new URL tells the browser to
load and display the document referred to by that URL:

// In old browsers, load a different page
if (parseInt(navigator.appVersion) <= 4)
 location = "staticpage.html";

Note that any script or event handler that sets the location
property of its own window (we’ll discuss multiple windows
and multiple frames later in this section) is overwritten when
the new document is loaded and will not continue running!

Although the location property can be queried and set as if it
were a string, it actually refers to a Location object. The
Location object has properties that allow you to query and
set individual portions of the currently displayed URL:

// Get the substring of the URL following ?
var query = location.search.substring(1);
// Scroll to a named portion of the document
location.hash = "#top";

In addition, the reload() method makes the browser reload
the currently displayed URL.

The history property of the Window object refers to the His-
tory object for the browser window. This object defines
methods that allow you to move the browser backward and
forward through its browsing history, just as the user can
with the browser’s Back and Forward buttons:

history.back(); // Go back once
history.forward(); // Go forward
history.go(-3); // Go back three times

30 | JavaScript Pocket Reference

Window control

The Window object defines methods to move, resize, and
scroll windows, and methods to give keyboard focus to and
take focus away from windows. For example:

// Automatically scroll 10 pixels a second
setInterval("scrollBy(0,1)", 100);

See moveTo(), moveBy(), resizeTo(), resizeBy(), scrollTo()
scrollBy(), focus() and blur() in the Window object entry
of the reference section for more information.

More important than these methods that manipulate an
existing window are the open() method that creates a new
browser window and the close() method that closes a script-
created window. The open() method takes three arguments.
The first is the URL to be displayed in the new window. The
second is an optional name for the window. If a window by
that name already exists, it is reused and no new window is
created. The third argument is an optional string that speci-
fies the size of the new window and the features, or chrome,
that it should display. For example:

// Open a new window
w = open("new.html", "newwin", // URL and name
 "width=400,height=300," + // size
 "location,menubar," + // chrome
 "resizable,scrollbars,status,toolbar");
// And close that new window
w.close();

Note that most browsers only allow scripts to close windows
that they have opened themselves. Also, because of the
recent proliferation of nuisance pop-up advertisements on
the Web, some browsers do not allow scripts to open new
windows at all.

Multiple windows and frames

As discussed previously, the open() method of the Window
object allows you to create new browser windows that are
represented by new Window objects. The window that a

Client-side JavaScript | 31

script is running in is the global object for that script, and
you can use all the properties and methods of that Window
object as if they were globally defined. When a script running
in one window needs to control or interact with a different
window, however, you must explicitly specify the Window
object:

// Create a new window and manipulate it
var w = open("newdoc.html");
w.alert("Hello new window");
w.setInterval("scrollBy(0,1)",50);

HTML allows a single window to have multiple frames.
Many web designers choose to avoid frames, but they are still
in fairly common use. JavaScript treats each frame as a sepa-
rate Window object, and scripts in different frames run inde-
pendently of each other. The frames property of the Window
object is an array of Window objects, representing the sub-
frames of a window:

// Scripts in framesets refer to frames like this:
frames[0].location = "frame1.html";
frames[1].location = "frame2.html";
// With deeply nested frames, you can use:
frames[1].frames[2].location = "frame2.3.html";
// Code in a frame refers to the top-level window:
top.status = "Hello from the frame";

The parent property of a Window object refers to the contain-
ing frame or window. The top property refers to the top-level
browser window that is at the root of the frame hierarchy. (If
the Window object represents a top-level window rather than
a frame, the parent and top properties simply refer to the
Window object itself.)

Each browser window and frame has a separate JavaScript
execution context, and in each context, the Window object is
the global object. This means that any variables declared or
functions defined by scripts in the window or frame become
properties of the corresponding Window object. This allows
a script in one window or frame to use variables and func-
tions defined in another window or frame. It is common, for

32 | JavaScript Pocket Reference

example, to define functions in the <head> of a top-level win-
dow, and then have scripts and event handlers in nested
frames call those functions using the top property:

// Code in a frame calls code in the top-level window.
top.stop_scrolling();

The Document Object
Every Window object has a document property that refers to a
Document object. The Document object is arguably more
important than the Window object itself: while the Window
represents the browser window, the Document object repre-
sents the HTML document that is displayed in that window.
The Document object has various properties that refer to
other objects which allow access to and modification of doc-
ument content. The way that document content is accessed
and modified is called the document object model, or DOM,
and there are several DOMs in existence:

Legacy DOM
The original legacy document object model evolved
along with early versions of the JavaScript language. It is
well supported by all browsers, but allows access only to
certain key portions of documents, such as forms, form
elements, and images.

W3C DOM
This document object model allows access and modifica-
tion of all document content and is standardized by the
World Wide Web Consortium (W3C). It is at least par-
tially supported by Netscape 6 and later, Internet
Explorer 5 and later, and other modern browsers. The
W3C DOM is not closely compatible with the IE 4
DOM, but it does standardize many of the legacy fea-
tures of the original DOM. This book covers the core fea-
tures of the standard, and presents a simplified subset of
the DOM relevant for JavaScript programmers working
with HTML documents. You can find complete cover-
age in JavaScript: The Definitive Guide.

Client-side JavaScript | 33

IE 4 DOM
Microsoft’s Internet Explorer Version 4 extended the leg-
acy DOM with powerful new features for accessing and
modifying all content of a document. These features were
never standardized, but some of them are supported in
non-Microsoft browsers.

The following sections explain each of these DOMs in more
detail and describe how you can use them to access and
modify document content.

The Legacy DOM
The original client-side JavaScript DOM defines provides
access to document content through properties of the Docu-
ment object. Several read-only properties, such as title, URL,
and lastModified provide information about the document
as a whole. See the reference section for further details on
these and all Document properties and methods. Other
properties are arrays that refer to specific types of document
content:

forms[]
An array of Form objects representing the forms in a
document.

images[]
An array of Image objects representing the images that
appear in a document.

applets[]
An array of objects that represent the Java applets
embedded in a document. JavaScript can actually be
used to script Java and control these applets, but doing
so is beyond the scope of this pocket reference.

links[]
An array of Link objects representing the hyperlinks in
the document.

34 | JavaScript Pocket Reference

anchors[]
An array of Anchor objects representing the anchors
(named positions created with the name attribute of the
HTML <a> tag) in the document.

These arrays contain objects in the order they appear in the
document. So the first form in a document is document.
forms[0], and the third image is document.images[2]. Another
way to refer to document forms, images, and applets is to
give them names with the HTML name attribute:

<form name="address">...</form>

When an form, image, or applet is given a name in this way,
you can use that name to look it up in the array, or to look it
up directly as a property of the document itself:

document.forms["address"] // A named form
document.address // The same thing

The Form object is particularly interesting. It has an
elements[] array that contains objects representing the ele-
ments of the form, in the order they appear in the form. See
Input, Select, and Textarea in the reference section for details
on these form elements.

The elements[] array of a Form works much like the forms[]
array of a Document: it holds form elements in the order
they appear in the form, but it also allows them to be referred
to by name. Consider this HTML excerpt:

<form name='address'><input name='street'></form>

You can refer to the input element of the form in several
ways:

document.forms[0].elements[0]
document.address.elements['street']
document.address.street

The legacy DOM does not provide any way to refer to docu-
ment content other than forms, form elements, images,
applets, links, and anchors. There is no array that provides a
list of all <h1> tags, for example, nor is there any way for a

Client-side JavaScript | 35

script to obtain the actual text of a document. This is a short-
coming that is addressed by the W3C and IE 4 DOMs, as
we’ll see later. Although it is limited, the legacy DOM does
allow scripts to dynamically alter some document content, as
we’ll see in the following subsections.

Dynamically generated documents

In addition to the properties already described, the Docu-
ment object defines several important methods for dynami-
cally generating document content. Use the write() method
to output text into the document at the location of the
<script> that contains the method calls. For example:

document.write("<p>Today is: " + new Date());
document.write("<p>Document updated: " +
 document.lastModified);

Note that text output in this way may contain arbitrary
HTML tags; the browser parses and displays any such text
after executing the script that output it.

The write() method can be used from a <script> tag only
while a document is still loading. If you try to use it within
an event handler that is triggered after the document has
loaded, it erases the document and the event handler it con-
tains. It is legal, however, to use an event handler in one win-
dow or frame to trigger a document.write() call into another
window. When you do this, however, you must write the
complete contents of the new document, and remember to
call the document.close() method when you are done:

var clock = open("", "", "width=400,height=30");
var d = clock.document; // Save typing below
setInterval("d.write(new Date());d.close();",
 1000);

Dynamic forms

As we’ve seen, the elements[] array of a Form object con-
tains objects that represent the input elements of the form.
Many of these objects have properties that you can use to

36 | JavaScript Pocket Reference

query or set the value displayed in the form element. This
provides another way to dynamically change document con-
tent. For example, the following code sets the value property
of a Text object to display the current local time.

<form><input size=10></form> // An HTML form
<script> /* Display a clock in the form */
// The Text element we're working with.
var e = document.forms[0].elements[0];
// Code to display the time in that element
var s="e.value=(new Date()).toLocaleTimeString();"
setInterval(s, 1000); // Run it every second
</script>

Form validation

The <form> tag supports an onsubmit event handler, which is
triggered when the user tries to submit a form. You can use
this event handler to perform validation: checking that all
required fields have been filled in, for example. If the
onsubmit handler returns false, the form is not submitted.
For example:

<form name="address" onsubmit="checkAddress()">
<!-- form elements go here -->
</form>
<script>
// A simple form validation function
function checkAddress() {
 var f = document.address; // The form to check
 // Loop through all elements
 for(var i = 0; i < f.elements.length; i++) {
 // Ignore all but text input elements
 if (f.elements[i].type != "text") continue;
 // Get the user's entry
 var text = f.elements[i].value;
 // If it is not filled in, alert the user
 if (text == null || text.length == 0) {
 alert("Please fill in all form fields.");
 return false;
 }
 }
}
</script>

Client-side JavaScript | 37

Image rollovers

The legacy DOM allows you to accomplish one common
special effect: dynamically replacing one image on the page
with another. This is often done for image rollovers, in which
an image changes when the mouse moves over it. The
images[] array of the Document object contains Image
objects that represent the document’s images. Each Image
object has a src property that specifies the URL of the image
to be displayed. To change the image that is displayed, sim-
ply set this property to a new URL:

document.images[0].src = "newbanner.gif";

To use this technique for an image rollover, you must use it
in conjunction with the onmouseover and onmouseout event
handlers that are triggered when the mouse moves on to and
off of the image. Here is some basic HTML code with Java-
Script event handlers to accomplish a rollover:

<img name="button" src="b1.gif"
 onmouseover="document.button.src='b2.gif';"
 onmouseout="document.button.src='b1.gif';">

When an image is going to be dynamically displayed, it is
helpful to preload it into the browser cache so that there is
no network delay before it appears. You can do this with a
dynamically created off-screen Image object:

var i = new Image(); // Create Image object
i.src="b2.gif"; // Load, but don't display image

Working with cookies

The cookie property of the Document object is a peculiar one
that allows you to set and query the cookies associated with
your document. To associate a transient cookie with the doc-
ument, simply set the cookie property to a string of the form:

name=value

This creates a cookie with the specified name and value for
this document. If you want to create a cookie that is stored

38 | JavaScript Pocket Reference

even when the user quits the browser, add an expiration date
using a string of the form:

name=value; expires=date

The expiration date should be in the form returned by Date.
toGMTString(). If you want the cookie to be accessible to
other documents from your web site, you can specify a path
prefix:

name=value; expires=date; path=prefix

A single document may have more than one cookie associ-
ated with it. To query a document’s cookies, simply read the
value of the cookie property. This string contains name=value
strings separated from each other by a semicolon and a
space. When reading cookies, you’ll never see a “path=” or
“expires=” clause; you’ll just get the cookie name and value.
Here’s a function that retrieves the value of a single named
cookie from the cookie property. It assumes that cookie val-
ues never contain semicolons.

function getCookie(name) {
 // Split cookies into an array
 var cookies = document.cookie.split('; ');
 for(var i = 0; i < cookies.length; i++) {
 var c = cookies[i]; // One cookie
 var pos = c.indexOf('='); // Find = sign
 var n = c.substring(0,pos); // Get name
 if (n == name) // If it matches
 return c.substring(pos+1); // Return value
 }
 return null; // Can't find the named cookie
}

The W3C DOM
The W3C DOM standardizes most of the features of the leg-
acy DOM, but also adds important new ones. In addition to
supporting forms[], images[], and other array properties of
the Document object, it defines methods that allow scripts to

Client-side JavaScript | 39

access and manipulate any document element, not just spe-
cial-purpose elements like forms and images.

Finding elements by ID

When creating a document that contains special elements
that will be manipulated by a script, you can identify each
special element by giving it an id attribute with a unique
value. Then, you can use the getElementById() method of the
Document object to look up those elements by their ID:

<h1 id="title">Title</h1>
<script>
var t = document.getElementById("title");
</script>

Finding elements by tag name

Another way to access document elements is to look them up
by tag name. The getElementsByTagName() method of the
Document object returns an array of all elements of that
type. Each document element also supports the same
method, so you can also obtain an array of specific types of
tags that are all descendents of an element:

// Get an array of all tags
var lists = document.getElementsByTagName("ul");
// Find the 3rd tag in the second
var item = lists[1].getElementsByTagName("li")[2];

Traversing a document tree

The W3C DOM represents every document as a tree. The
nodes of this tree represent the HTML tags, the strings of
text, and the HTML comments that comprise the document.
Each node of the tree is represented by a JavaScript object,
and each has properties that allow you to traverse the tree, as
illustrated by the following code fragment:

// Look up a node in the document
var n = document.getElementById("mynode");
var p = n.parentNode; // The containing tag
var c0 = n.firstChild; // First child of n

40 | JavaScript Pocket Reference

var c1 = c0.nextSibling; // 2nd child of n
var c2 = n.childNodes[2]; // 3rd child of n
var last = n.lastChild; // last child of n

See Node in the reference section for further details.

The Document object itself is a kind of node, and supports
these same properties. The documentElement property of the
Document object refers to the single <html> tag element at
the root of all HTML documents, and the body property
refers to the <body> tag.

Node types

Every node in a document tree has a nodeType property that
specifies what type of node it is. Different types of nodes are
represented by different subclasses of the Node object. The
following nodeType values are relevant to JavaScript program-
mers working with HTML documents (other values exist for
XML documents):

Use the nodeName property of an Element node to determine
the name of the HTML tag it represents. Use the nodeValue
property of Text and Comment nodes to obtain the docu-
ment text or comment text represented by the node. See Ele-
ment, Text, Comment, and Document in the reference
section for details on each of these node types. Also see Node
for information on the common properties and methods they
all share.

nodeType Represents

1 Element: an HTML tag

2 Text: text in a document

8 Comment: an HTML comment

9 Document: the HTML document

Client-side JavaScript | 41

HTML attributes

As we’ve seen above, HTML tags in a document tree are rep-
resented by Element objects. In HTML documents, each Ele-
ment object has properties that correspond directly to the
attributes of the HTML tag. For example, you can query or
set the value of the caption attribute of a <table> tag by set-
ting the caption property of the corresponding Element
object. See Element in the reference section for details.

Manipulating document elements

One easy way to manipulate HTML documents with the
W3C DOM is simply to set the properties that correspond to
HTML attributes. As we saw in the legacy DOM, this allows
you to change images by setting the src property of the docu-
ment element that represents an tag, for example. It
also allows you to set colors, sizes, and alignments of docu-
ment elements. One particularly fruitful way to manipulate
document elements is through the style property which con-
trols CSS styles. We’ll cover this important topic in more
detail later.

Changing document text

You can change the textual content of a document simply by
setting the nodeValue property of a Text node:

// Find the first <h1> tag in the document
var h1 = document.getElementsByTagName("h1")[0];
// Set new text of its first child
h1.firstChild.nodeValue = "New heading";

In addition to manipulating the nodeValue property, the Text
object also allows you to modify the data property, or to use
methods to append, insert, delete or replace text.

Note that the problem with the previous code is that it
assumes that the content of the <h1> tag is plain text. The
code would fail for a document with the following heading

42 | JavaScript Pocket Reference

because the text of the heading is a grandchild of the <h1> tag
rather than a direct child:

<h1><i>Original Heading</i></h1>

One way around this problem is to set the innerHTML prop-
erty of the heading node. This property is part of the IE 4
DOM, not the W3C DOM, but it is supported by most mod-
ern browsers because it is so useful. We’ll see it again when
we consider the IE 4 DOM. Another way around the prob-
lem is to replace the heading node with a newly created <h1>
tag and text node containing the desired text, as shown in
the next section.

Changing document structure

In addition to changing document text and the attributes of
document elements, the W3C DOM allows you to alter the
tree structure of the document itself. This is done with Node
methods that allow you to insert, append, remove, and
replace children of a node and with Document methods that
allow you to create new Element and Text nodes. The fol-
lowing code illustrates:

// Find a element by name:
var list = document.getElementById("mylist");
// Create a new element
var item = document.createElement("li");
// Append it to the list
list.appendChild(item);
// Create a Text node
var text = document.createTextNode("new item");
// Append it to the new node
item.appendChild(text);
// Remove the new item from the list
list.removeChild(item);
// Place the new item at the start of the list
list.insertBefore(item,list.firstChild);

As a further example, here is a JavaScript function that uses
the W3C DOM to embolden an arbitrary document node by
reparenting it within a newly created tag:

Client-side JavaScript | 43

function embolden(node) { // Embolden node n
 var b = document.createElement("b");
 var p = n.parentNode; // Get parent of n
 p.replaceChild(b, n); // Replace n with
 b.appendChild(n); // Insert n into tag
}

IE 4 DOM
The IE 4 DOM was introduced in Version 4 of Microsoft’s
Internet Explorer browser. It is a powerful but non-standard
DOM with capabilities similar to those of the W3C DOM. IE
5 and later include support for most basic W3C DOM fea-
tures, but this documentation on the IE 4 DOM is included
because IE 4 is still commonly used. The following subsec-
tions document the IE 4 DOM in terms of its differences
from the W3C DOM, so you should be familiar with the
W3C DOM first.

Accessing document elements

The IE 4 DOM does not support the getElementById()
method. Instead, it allows you to look up arbitrary docu-
ment elements by id attribute within the all[] array of the
document object:

var list = document.all["mylist"];
list = document.all.mylist; // this also works

Instead of supporting the getElementsByTagName() method,
the IE 4 DOM takes the unusual step of defining a tags()
method on the all[] array, which exists on document ele-
ments as well as the Document object itself. Here’s how to
find all tags within the first tag:

var lists = document.all.tags("UL");
var items = lists[0].all.tags("LI");

Note that you must specify the desired HTML tag name in
uppercase with the all.tags() method.

44 | JavaScript Pocket Reference

Traversing the document tree

You can traverse an IE 4 document tree in much the same
way that you can traverse a W3C document tree. The differ-
ence is in the names of the relevant properties: instead of
childNodes[], IE 4 uses children[], and instead of
parentNode, IE 4 uses parentElement. IE 4 does not have any
analogs to firstChild, nextSibling, and related W3C proper-
ties. One important difference between the IE 4 and W3C
DOMs is that the IE 4 document tree only includes HTML
tags: comments are ignored and document text is not part of
the tree itself. Instead, the text contained by any element is
available through the innerHTML and innerText properties of
the element object. (We’ll see more about innerHTML in the
next section.)

Modifying document content and structure

The nodes of an IE 4 document tree are Element objects that
are similar to the Element node of the W3C DOM. Like the
Element nodes of a W3C document tree, these objects have
properties that correspond to the attributes of the HTML
tags, and you can query and set the properties as desired. To
change the textual content of a document element, set its
innerText property to the desired text. This deletes any exist-
ing tags or text within the element and replaces it with the
specified text.

The IE 4 DOM does not have any methods for explicitly cre-
ating, inserting, removing, or replacing nodes of the docu-
ment tree. However, it does support the very important
innerHTML property, which allows you to replace the content
of any document element with an arbitrary string of HTML.
Doing this requires an invocation of the HTML parser, mak-
ing it less efficient than manipulating the nodes directly. On
the other hand, it is tremendously convenient, so much so
that Mozilla, Netscape 6 and later, and other modern brows-
ers have implemented innerHTML despite the fact that it is
non-standard.

Client-side JavaScript | 45

The IE 4 DOM also includes the related outerHTML property,
which replaces the element and its content, and the
insertAdjacentHTML() and insertAdjacentText() methods.
These are not as commonly used, nor as commonly imple-
mented outside of IE as innerHTML; you can read about them
in the reference section under Element.

DOM compatibility

If you want to write a script that uses the W3C DOM when it is
available, and otherwise uses the IE 4 DOM if it is available, you
can use a capability-testing approach that first checks for the exist-
ence of a method or property to determine whether the browser has
the capability you desire. For example:

if (document.getElementById) {
 // If the W3C method exists, use it
}
else if (document.all) {
 // If the all[] array exists, use it
}
else {
 // Otherwise use the legacy DOM
}

DHTML: Scripting CSS Styles
DHTML, or Dynamic HTML, is the result of combining
HTML, CSS, and JavaScript: it uses scripts to dynamically
modify the style—which may include the position and visi-
bility—of document elements. In the W3C and the IE 4
DOMs, every document element has a style property that
corresponds to the HTML style attribute that specifies inline
styles. Instead of referring to a simple string, however, the
style property refers to a Style object that has properties cor-
responding to each of the CSS attributes of the style.

For example, if an element e has a style attribute that speci-
fies the CSS color attribute, you can query the value of that
attribute as e.style.color. When a CSS attribute name con-
tains hyphens, the corresponding JavaScript property name

46 | JavaScript Pocket Reference

removes the hyphens and uses mixed-case capitalization.
Thus, to set the background-color CSS attribute of an ele-
ment e, you set e.style.backgroundColor. There is one spe-
cial case: the CSS float attribute is a reserved word in
JavaScript, so the corresponding JavaScript property is
cssFloat.

The CSS standard defines many properties that you can use
to fine-tune the visual appearance of your documents. The
Style entry in the reference section includes a table that lists
them all. The positioning and visibility properties are partic-
ularly relevant for dynamic scripting. If the position prop-
erty is set to absolute, you can use the top and left
properties to specify the absolute position (in pixels, percent-
ages, or other units) of the document element. Similarly, the
width and height properties specify the size of the element.
The visibility property can initially be set to hidden to
make a document element invisible, and then dynamically
set to visible to make the element appear when appropriate.

Note that the values of all Style properties are always strings,
even for properties like left and width which represent num-
bers. When setting these length and dimension properties, be
sure to convert your numbers to strings and to add the
appropriate units specification (usually the string px for pix-
els.) The following table summarizes these positioning and
visibility properties:

Property Description/Values

position How the element is positioned. absolute, relative, fixed, or
static (the default).

left, top The X and Y coordinates of the left and top edges of the element.

width The width of the element.

height The height of the element.

zIndex The stacking order. Values are integers; higher values are drawn on
top of lower values.

display How to display the element. Common values are block, inline,
and none for elements that don’t get laid out at all.

Client-side JavaScript | 47

The following code shows a simple DHTML animation.
Each time it is called, the function nextFrame() moves an ele-
ment 10 pixels to the right and uses setTimeout() to tell Java-
Script to call it again in 50 milliseconds. After 20 invocations,
the function uses the visibility property to hide the ele-
ment and stops calling itself.

<h1 id='title'>DHTML Animation<h1>
<script>
// Look up the element to animate
var e = document.getElementById("title");
// Make it position-able.
e.style.position = "absolute";
var frame = 0; // Initialize frame counter.
// This function moves the element one frame
// at a time, then hides it when done.
function nextFrame() {
 if (frame++ < 20) { // Only do 20 frames
 e.style.left = (10 * frame) + "px";
 // Call ourselves again in 50ms.
 setTimeout("nextFrame()", 50);
 }
 else e.style.visibility="hidden"; // Hide it.
}
nextFrame(); // Start animating now!
</script>

Events and Event Handling
We saw at the beginning of this section that one way to
embed client-side JavaScript into HTML documents is to use
event handler attributes of HTML tags. The following table

visibility Whether the element is visible or hidden. Space is still allocated
for non-positioned hidden elements.

overflow What to do when element content exceeds element size. Values:
visible (content overflows); hidden (excess content hidden);
scroll (display permanent scrollbar); auto (scrollbars only when
needed).

clip What portion of element content to display. Syntax: rect(top
right bottom left).

Property Description/Values

48 | JavaScript Pocket Reference

lists the standard event handler attributes and the HTML
tags to which they may be applied. The first column of the
table gives the event handler attribute name: these names
always begin with “on”. The second column of the table lists
the HTML tags to which these attributes can be applied, and
explains, when necessary, what events trigger the handler
code to be executed.

Handler Supported by/Triggered when

onabort ; image load aborted

onblur <body> and form elements; window or element loses keyboard
focus

onchange Form elements; displayed value changes

onclick All elements; mouse press and release; return false to cancel

ondblclick All elements; mouse double-click

onerror ; image loading fails

onfocus <body> and form elements; window or element gets keyboard
focus

onkeydown <body> and form elements; key pressed; return false to cancel

onkeypress <body> and form elements; key pressed and released; return
false to cancel

onkeyup <body> and form elements; key released

onload <body>, <frameset>, , <iframe>, <object>;
document, image, or object completely loaded

onmousedown All elements; mouse button pressed

onmousemove All elements; mouse pointer moved

onmouseout All elements; mouse moves off element

onmouseover All elements; mouse moves over element; return true to prevent
link URL display in status bar

onmouseup All elements; mouse button released

onreset <form>; form reset requested; return false to prevent reset

onresize <body>, <frameset>; window size changes

onsubmit <form>; form submission requested; return false to prevent
submission

onunload <body>, <frameset>; document unloaded

Client-side JavaScript | 49

Note that when the browser triggers certain event handlers,
such as onclick, onmouseover and onsubmit, it examines the
return value of the handler (if there is one) to determine
whether it should perform the default action associated with
the event or not. Typically, if an event handler returns false,
the default action (such as following a hyperlink or submit-
ting a form) is not performed. The one exception is for the
onmouseover handler: when the mouse moves over a hyper-
link, the browser displays the link’s URL in the status line
unless the event handler returns true.

Event handlers as JavaScript functions

We’ve seen that the various document object models repre-
sent HTML tags as JavaScript objects, with the attributes of
those tags as properties of the objects. The same is true of
event handlers. If your HTML document includes a single
<form> tag with an onsubmit event handler attribute, that
event handler is available as:

document.forms[0].onsubmit

Although HTML event handler attributes are written as
strings of JavaScript code, the value of the corresponding
JavaScript properties are not strings of code, but actual Java-
Script functions. You can create a new event handler simply
by assigning a function to the appropriate property:

function validate() { // Form validation function
 // check validity here
 return valid; // return true or false
}
// Now check user input before submitting it
document.forms[0].onsubmit = validate;

Advanced event handling

The previous sections describe the basic event-handling
model for client-side JavaScript. Advanced event-handling
features are also available, but unfortunately, there are three
incompatible event models: the standard W3C DOM model,

50 | JavaScript Pocket Reference

the Internet Explorer model (Microsoft has not adopted the
W3C standard), and the Netscape 4 model. These event
models are complex, so the following list simply summarizes
the advanced features supported by these models. For details
consult JavaScript: The Definitive Guide.

Event details
In the advanced event handling models, event details
such as event type, mouse buttons and coordinates,
modifier key state, and so on, are provided through the
properties of an Event object. In the W3C and Netscape
event models, this Event object is passed as an argument
to the event handler. In the IE model, the Event object is
not an argument but is instead stored in the event
property of the Window on which the event occurs.
Unfortunately, each of the three advanced event models
use different property names to store event details, so
cross-browser compatibility is difficult. See Event in the
reference section for documentation of each of the three
types of Event objects.

Event propagation
In the basic event model, event handlers are triggered
only for the document element on which the event
occurred. In the advanced models, events can propagate
up and/or down the element hierarchy and be handled
by one or more event handlers. In the Netscape and
W3C models, events start at the document object and
propagate down through the document tree to the ele-
ment on which they occurred. If any of the containing
elements have special capturing event handlers regis-
tered, these event handlers capture the event and get first
crack at handling it. In the IE and W3C models, certain
types of events (such as mouse clicks) bubble up the doc-
ument tree after being handled at their source. Thus, you
might register an onclick event handler on a <div> object
in order to handle all mouse clicks that occur on
elements within that <div>. Capturing, bubbling, and

Client-side JavaScript | 51

normal event handlers have the option of preventing the
event from propagating any further, although the way
this is done is different in each model.

Event handler registration
In the W3C event model, event handlers are not simply
assigned to properties of document objects. Instead, each
document object has an addEventListener() method that
you call to register an event handler function for a named
type of event. This allows advanced applications to regis-
ter more than one handler for the same event type.

JavaScript Security Restrictions
For security reasons, client-side JavaScript implementations
typically impose restrictions on the tasks that scripts can per-
form. The most obvious restrictions are omissions of danger-
ous capabilities: there is no way for client-side JavaScript to
delete files on a user’s local hard disk, for example. Other
restrictions exist to prevent the disclosure of private informa-
tion or to keep scripts from annoying users. There is no stan-
dard set of security restrictions, but the following are
restrictions found in typical browser implementations. Don’t
attempt to write scripts that do these things: even if they
work for your browser, they probably won’t work in others.

Same origin policy
Scripts can only read properties of windows and docu-
ments that were loaded from the same web server. This is
a substantial and pervasive restriction on cross-window
scripting, and prevents scripts from reading information
from other unrelated documents that the user is viewing.
This restriction also prevents scripts from registering event
handlers or spoofing events on unrelated documents.

File uploads
Scripts cannot set the value property of the FileUpload
form element.

52 | JavaScript Pocket Reference

Sending email and posting news
Scripts cannot submit forms to mailto: or news: URLs
without user confirmation.

Closing windows
A script can only close browser windows that it created
itself, unless it gets user confirmation.

Snooping in the cache
A script cannot load any about: URLs, such as about:
cache.

Hidden windows and window decorations
A script cannot create small or offscreen windows or
windows without a titlebar.

Note that this list of security restrictions is not static. As the
use of JavaScript has grown, advertisers and unsavory char-
acters have started doing annoying things with it. As a result,
newer browsers, such as Mozilla 1.0, allow user-config-
urable security restrictions that can prevent scripts from
opening new windows (such as pop-up ads), or from moving
or resizing existing windows.

JavaScript API Reference
The rest of this book contains a quick-reference for the core
and client-side JavaScript APIs. It documents the complete
core JavaScript API, covers the legacy (Level 0) DOM API,
and presents a simplified view of the W3C Level 2 DOM
API. Portions of that API not relevant to JavaScript program-
mers working with HTML documents have been omitted.
The upper-right corner of the title block for each reference
entry contains information that states whether a feature is
part of the core or client-side API, and further indicates
which version of JavaScript, which browsers, or which ver-
sion of the DOM introduced the feature.

JavaScript API Reference | 53

Because JavaScript is a loosely-typed language, there is not
an official set of class names for the classes and objects of the
JavaScript API, and they sometimes appear under different
names in different references. (For brevity, this book actually
uses a slightly different set of names than its big brother,
JavaScript: The Definitive Guide.) The following table sum-
marizes the reference entries that follow, and allows you to
quickly scan for the class or object you are interested in.

Anchor A named position in a document
Applet A Java applet
Arguments The arguments of a function
Array Array creation and manipulation
Attr An attribute of a document element
Boolean A wrapper object for boolean values
Comment An HTML comment
DOMException Signals DOM errors
DOMImplementation Creates documents, checks DOM features
Date Manipulates dates and times
Document An HTML document
DocumentFragment Nodes to be manipulated together
Element An HTML tag in a document
Error Predefined exception types
Event Event details
Form An HTML input form
Function A JavaScript function
Global Global properties and functions
History Browsing history
Image An HTML image
Input A form input element
Layer An independent document layer
Link An <a> or <area> link
Location Current browser location
Math Mathematical functions and constants
Navigator Information about the browser
Node A node in a document tree
Number Support for numbers
Object The superclass of all JavaScript objects
Option A selectable option

Anchor

54 | JavaScript Pocket Reference

Anchor
a named position in a document

Client-side JavaScript 1.2

Inherits From: Element

Synopsis

document.anchors[index]
document.anchors[name]

Description

An Anchor object represents an <a> tag with a name attribute,
which serves to create a named position in a document.

Properties

name
The value of the name attribute of the <a> tag.

See Also

Document.anchors[], Link, Location.hash

Applet
a Java applet

Client-side JavaScript 1.1

Synopsis

document.applets[i]
document.applets[appletName]
document.appletName

RegExp Regular expressions for pattern matching
Screen Information about the display
Select A graphical selection list
String String manipulation
Style Inline CSS properties of an element
Text A run of text in a document
Textarea Multiline text input
Window Browser window or frame

Arguments

JavaScript Pocket Reference | 55

Properties & Methods

The properties and methods of an Applet object are the same as
the public fields and methods of the Java applet it represents.
JavaScript code can query and set the Java fields and invoke the
Java methods of the applet.

Arguments
the arguments of a function

Core JavaScript 1.1; JScript 2.0; ECMA v1

Synopsis

arguments[n]
arguments.length

Description

The Arguments object is defined only within a function body, and
within every function body, the local variable arguments refers to
the Arguments object for that function. The Arguments object is
an array whose elements are the values that were passed as argu-
ments to the function. Element 0 is the first argument, element 1
is the second argument, and so on. All values passed as argu-
ments become array elements of the Arguments object, whether or
not those arguments are given names in the function declaration.

Properties

callee
A reference to the function that is currently executing. Useful
for recursion in unnamed functions. JS 1.2; JScript 5.5;
ECMA v1; only defined within a function body.

length
The number of arguments passed to the function. JS 1.1;
JScript 2; ECMA v1; only defined within a function body.

See Also

Function

Array

56 | JavaScript Pocket Reference

Array
array creation and manipulation

Core JavaScript 1.1; JScript 2.0; ECMA v1

Constructor

new Array() // empty
new Array(n) // n undefined elements
new Array(e0, e1,...) // specified elements

Literal Syntax

In JavaScript 1.2, JScript 3.0, and ECMA v3, you can create and
initialize an array by placing a comma-separated list of expres-
sions within square brackets. The values of these expressions
become the elements of the array. For example:

var a = [1, true, 'abc'];
var b = [a[0], a[0]*2, f(x)];

Properties

length
A read/write integer specifying the number of elements in the
array, or, when the array does not have contiguous elements,
a number one larger than the index of the last element in the
array. Changing the value of this property truncates or
extends the array.

Methods

concat(value, ...)
Returns a new array, which is formed by concatenating each
of the specified arguments to this one. If any arguments to
concat() are themselves arrays, their elements are concate-
nated, rather than the arrays themselves. JS 1.2; JScript 3.0;
ECMA v3.

join(separator)
Returns the string that results from converting each element
of an array to a string and then concatenating the strings
together, with the separator string between elements.

pop()
Removes and returns the last element of the array, decre-
menting the array length. JS 1.2; JScript 5.5; ECMA v3.

Array

JavaScript Pocket Reference | 57

push(value, ...)
Appends the specified value or values to the end of the array,
and returns the new length of the array. JS 1.2; JScript 5.5;
ECMA v3.

reverse()
Reverses the order of the elements of an array. Returns
nothing.

shift()
Removes and returns the first element of the array, shifting
subsequent elements down one and decrementing the array
length. JS 1.2; JScript 5.5; ECMA v3.

slice(start, end)
Returns a new array that contains the elements of the array
from the element numbered start, up to, but not including,
the element numbered end. JS 1.2; JScript 3.0; ECMA v3.

sort(orderfunc)
Sorts the elements of an array, and returns a reference to the
array. Note that the array is sorted in place and no copy is
made. The optional orderfunc argument may specify a func-
tion that defines the sorting order. The function should
expect two arguments and should return a value that is less
than 0 if the first argument is less than the second, 0 if they
are equal, and a value greater than 0 if the first is greater than
the second.

splice(start, deleteCount, value,...)
Deletes the specified number of elements from the array
starting at the specified index, then inserts any remaining
arguments into the array at that location. Returns an array
containing the deleted elements. JS 1.2; JScript 5.5; ECMA
v3.

toLocaleString()
Returns a localized string representation of the array. JS 1.5;
JScript 5.5; ECMA v1.

toString()
Returns a string representation of array.

Attr

58 | JavaScript Pocket Reference

unshift(value, ...)
Inserts the argument or arguments as new elements at the
beginning of an array, shifting existing array elements up to
make room. Returns the new length of the array. JS 1.2;
JScript 5.5; ECMA v3.

Attr
an attribute of a document element

DOM Level 1

Inherits From: Node

Properties

name
The name of the attribute. Read-only.

ownerElement
The Element object that contains this attribute. Read-only.
DOM Level 2.

specified
true if the attribute was explicitly specified in the document
source or set by a script. false otherwise. Read-only.

value
The value of the attribute as a string. Read/write.

See Also

Document.createAttribute(), Element.getAttributeNode(),
Element.setAttributeNode()

Boolean
a wrapper object for boolean values

Core JavaScript 1.1; JScript 2.0; ECMA v1

Constructor

new Boolean(value)
Boolean(value)

Invoked as a function, without the new operator, Boolean()
converts value to a boolean value (not a Boolean object) and
returns it. All values convert to true except for 0, NaN, null,
undefined, and the empty string, “”. When invoked with the new

DOMException

JavaScript Pocket Reference | 59

operator, the Boolean() constructor performs the same conver-
sion and wraps the result in a Boolean object.

Methods

toString()
Returns “true” or “false”, depending on the value of the
Boolean object.

valueOf()
Returns the primitive boolean value wrapped by the Boolean
object.

Comment
an HTML comment

DOM Level 1

Inherits From: Node

Properties

Comment nodes have exactly the same properties as Text nodes.

Methods

Comment nodes support all of the methods of Text nodes except
for splitText().

See Also

Text

DOMException
signals DOM errors

DOM Level 1

Properties

code
An error code that provides some detail about what caused
the exception. Some possible values (and their meanings) for
this property are defined by the constants listed below.

Constants

The following constants define the code values that may be
encountered by when working with HTML documents. Note that

DOMImplementation

60 | JavaScript Pocket Reference

these constants are static properties of DOMException, not prop-
erties of individual exception objects.

DOMException.INDEX_SIZE_ERR = 1
Out-of-bounds error for an array or string index.

DOMException.HIERARCHY_REQUEST_ERR = 3
An attempt was made to place a node somewhere illegal in
the document tree hierarchy.

DOMException.WRONG_DOCUMENT_ERR = 4
An attempt was made to use a node with a document other
than the document that created the node.

DOMException.INVALID_CHARACTER_ERR = 5
An illegal character was used (in an element name, for
example).

DOMException.NOT_FOUND_ERR = 8
A node was not found where it was expected.

DOMException.NOT_SUPPORTED_ERR = 9
A method or property is not supported in the current DOM
implementation.

DOMException.INUSE_ATTRIBUTE_ERR = 10
An attempt was made to associate an Attr with an Element
when that Attr node was already associated with a different
Element node.

DOMException.SYNTAX_ERR = 12
A syntax error occurred, such as in a CSS property
specification.

DOMImplementation
creates documents, checks DOM features

DOM Level 1

Synopsis

document.implementation

Date

JavaScript Pocket Reference | 61

Methods

createHTMLDocument(title)
Creates and returns a new HTML Document object and
populates it with <html>, <head>, <title>, and <body>
elements. title is the text to appear in the <title> element.
DOM Level 2.

hasFeature(feature, version)
Returns true if the implementation supports the specified
version of the specified feature, or false otherwise. If no
version number is specified, the method returns true if the
implementation completely supports any version of the speci-
fied feature. Both feature and version are strings; for
example, “core”, “1.0” or “html”, “2.0”.

Date
manipulates dates and times

Core JavaScript 1.0; JScript 1.0; ECMA v1

Constructor

new Date(); // current time
new Date(milliseconds) // from timestamp
new Date(datestring); // parse string
new Date(year, month, day,

hours, minutes, seconds, ms)

With no arguments, the Date() constructor creates a Date object
set to the current date and time. When one numeric argument is
passed, it is taken as the internal numeric representation of the
date in milliseconds, as returned by the getTime() method. When
one string argument is passed, it is taken as a string representa-
tion of a date. Otherwise, the constructor is passed between two
and seven numeric arguments that specify the individual fields of
the local date and time. All but the first two arguments—the year
and month fields—are optional. See the static Date.UTC() method
for an alternative that uses universal time instead of local time.

When called as a function without the new operator, Date()
ignores any arguments passed to it and returns a string representa-
tion of the current date and time.

Date

62 | JavaScript Pocket Reference

Methods

The Date object has no properties; instead, all access to date and
time values is done through methods. Most methods come in two
forms: one that operates using local time, and one that has “UTC”
in its name and operates using universal (UTC or GMT) time.
These pairs of methods are listed here. Note that the return values
and optional arguments described below for most set() methods
are not supported prior to ECMA standardization. See the various
get() methods for the legal ranges for most of the various date
fields.

get[UTC]Date()
Returns the day of the month, in local or universal time.
Return values are between 1 and 31.

get[UTC]Day()
Returns the day of the week, in local or universal time. Return
values are between 0 (Sunday) and 6 (Saturday).

get[UTC]FullYear()
Returns the year in full four-digit form, in local or universal
time. JS 1.2; JScript 3.0; ECMA v1.

get[UTC]Hours()
Returns the hours field, in local or universal time. Return
values are between 0 (midnight) and 23 (11 p.m.).

get[UTC]Milliseconds()
Returns the milliseconds field, in local or universal time.
Return values are between 0 and 999. JS 1.2; JScript 3.0;
ECMA v1.

get[UTC]Minutes()
Returns the minutes field, in local or universal time. Return
values are between 0 and 59.

get[UTC]Month()
Returns the month field, in local or universal time. Return
values are between 0 (January) and 11 (December).

get[UTC]Seconds()
Returns the seconds field, in local or universal time. Return
values are between 0 and 59.

Date

JavaScript Pocket Reference | 63

getTime()
Returns the internal millisecond representation of the date;
that is, returns the number of milliseconds between midnight
(UTC) of January 1st, 1970 and the date and time repre-
sented by the Date object. Note that this value is independent
of timezone.

getTimezoneOffset()
Returns the difference, in minutes, between the local and
UTC representations of this date. Note that the value
returned depends on whether daylight savings time is or
would be in effect at the specified date.

getYear()
Returns the year field minus 1900. Deprecated in favor of
getFullYear().

set[UTC]Date(day_of_month)
Sets the day of the month field, using local or universal time.
Returns the millisecond representation of the adjusted date.

set[UTC]FullYear(year, month, day)
Sets the year (and optionally the month and day), using local
or universal time. Returns the millisecond representation of
the adjusted date. JS 1.2; JScript 3.0; ECMA v1

set[UTC]Hours(hours, mins, secs, ms)
Sets the hour (and optionally the minutes, seconds, and milli-
seconds fields), using local or universal time. Returns the
millisecond representation of the adjusted date.

set[UTC]Milliseconds(millis)
Sets the milliseconds field of a date, using local or universal
time. Returns the millisecond representation of the adjusted
date. JS 1.2; JScript 3.0; ECMA v1.

set[UTC]Minutes(minutes, seconds, millis)
Sets the minutes field (and optionally the seconds and milli-
seconds fields) of a date, using local or universal time.
Returns the millisecond representation of the adjusted date.

set[UTC]Month(month, day)
Sets the month field (and optionally the day of the month) of
a date using local or universal time. Returns the millisecond
representation of the adjusted date.

Date

64 | JavaScript Pocket Reference

set[UTC]Seconds(seconds, millis)
Sets the seconds field (and optionally the milliseconds field)
of a date, using local or universal time. Returns the milli-
second representation of the adjusted date.

setTime(milliseconds)
Sets the internal millisecond date representation. Returns the
milliseconds argument.

setYear(year)
Sets the 2-digit year field. Deprecated in favor of
set[UTC]FullYear().

toDateString()
Returns a string that represents the date portion of the date,
expressed in the local timezone. JS 1.5; JScript 5.5; ECMA v3.

toGMTString()
Converts a Date to a string, using the GMT timezone, and
returns the string. Deprecated in favor of toUTCString().

toLocaleDateString()
Returns a string that represents the date portion of the date,
expressed in the local time zone, using the local date format-
ting conventions. JS 1.5; JScript 5.5; ECMA v3.

toLocaleString()
Converts a Date to a string, using the local timezone and the
local date formatting conventions.

toLocaleTimeString()
Returns a string that represents the time portion of the date,
expressed in the local time zone, using the local time format-
ting conventions. JS 1.5; JScript 5.5; ECMA v3.

toString()
Returns a string representation of the date using the local
timezone.

toTimeString()
Returns a string that represents the time portion of the date,
expressed in the local timezone. JS 1.5; JScript 5.5; ECMA v3.

toUTCString()
Converts a Date to a string, using universal time, and returns
the string. JS 1.2; JScript 3.0; ECMA v1.

Document

JavaScript Pocket Reference | 65

valueOf()
Returns the millisecond representation of the date, exactly as
getTime() does. JS 1.1; ECMA v1.

Static Functions

In addition to the previously listed instance methods, the Date
object defines two static methods. These methods are invoked
through the Date() constructor itself, not through individual Date
objects:

Date.parse(date)
Parses a string representation of a date and time and returns
the internal millisecond representation of that date.

Date.UTC(yr, mon, day, hr, min, sec, ms)
Returns the millisecond representation of the specified UTC
date and time.

Document
an HTML document

Client-side JavaScript 1.0; DOM Level 1

Inherits From: Node (in DOM Level 1)

Synopsis

window.document
document

Description

The Document object represents an HTML document and is one
of the most important objects in client-side JavaScript. It was
introduced in JavaScript 1.0, and a number of methods and prop-
erties were added in JavaScript 1.1. Netscape and Internet
Explorer each add non-standard methods and properties to the
Document object, and the W3C DOM standardizes additional
properties and methods.

Common Properties

All implementations of the Document object support the
following properties. This list is followed by separate lists of prop-
erties defined by the W3C DOM Document object and by the IE 4
and Netscape 4 Document objects.

Document

66 | JavaScript Pocket Reference

alinkColor
A string that specifies the color of activated links. Deprecated.

anchors[]
An array of Anchor objects, one for each anchor that appears
in the document. JS 1.2.

applets[]
An array of Applet objects, one for each applet that appears in
the document. JS 1.1.

bgColor
A string that specifies the background color of the document.
Deprecated.

cookie
A string-valued property with special behavior that allows the
cookies associated with this document to be queried and set.

domain
A string that specifies the Internet domain the document is
from. Used for security purposes. JS 1.1.

embeds[]
An array of objects that represent data embedded in the docu-
ment with the <embed> tag. A synonym for plugins[]. Some
plugins and ActiveX controls can be controlled with JavaS-
cript code. The API depends on the specific control. JS 1.2 .

fgColor
A string that specifies the default text color for the document.
Deprecated.

forms[]
An array of Form objects, one for each HTML form that
appears in the document.

images[]
An array of Image objects, one for each image that is
embedded in the document with the HTML tag. JS 1.1.

lastModified
A read-only string that specifies the date of the most recent
change to the document (as reported by the web server). JS 1.0.

linkColor
A string that specifies the color of unvisited links. Deprecated.

Document

JavaScript Pocket Reference | 67

links[]
An array of Link objects, one for each hypertext link that
appears in the document.

location
The URL of the document. Deprecated in favor of the URL
property.

plugins[]
A synonym for the embeds[] array. JS 1.1.

referrer
A read-only string that contains the URL of the document, if
any, from which the current document was linked.

title
The text contents of the <title> tag. Read-only prior to DOM
Level 1.

URL
A read-only string that specifies the URL of the document. JS
1.1.

vlinkColor
A string that specifies the color of visited links. Deprecated.

W3C DOM Properties

In DOM-compliant browsers, the Document object inherits the
properties of Node, and defines the following additional
properties.

body
A reference to the Element object that represents the <body>
tag of this document.

defaultView
The Window in which the document is displayed. Read-only.
DOM Level 2.

documentElement
A read-only reference to the <html> tag of the document.

implementation
The DOMImplementation object that represents the imple-
mentation that created this document. Read-only.

Document

68 | JavaScript Pocket Reference

IE 4 Properties

The following non-standard (and non-portable) properties are
defined by Internet Explorer 4 and later versions.

activeElement
A read-only property that refers to the input element that is
currently active (i.e., has the input focus).

all[]
An array of all Element objects within the document. This
array may be indexed numerically to access elements in
source order, or it may be indexed by element id or name.

charset
The character set of the document.

children[]
An array that contains the HTML elements that are direct
children of the document. Note that this is different than the
all[] array that contains all elements in the document,
regardless of their position in the containment hierarchy.

defaultCharset
The default character set of the document.

expando
This property, if set to false, prevents client-side objects from
being expanded. That is, it causes a runtime error if a
program attempts to set the value of a nonexistent property of
a client-side object. Setting expando to false can sometimes
help to catch bugs caused by property misspellings, which can
otherwise be difficult to detect. This property can be particu-
larly helpful for programmers who are switching to JavaScript
after becoming accustomed to case-insensitive languages.
Although expando only works in IE, it can be safely (but inef-
fectively) set in Netscape.

parentWindow
The window that contains the document.

readyState
Specifies the loading status of a document. It has one of the
following four string values:

Document

JavaScript Pocket Reference | 69

uninitialized
The document has not started loading.

loading
The document is loading.

interactive
The document has loaded sufficiently for the user to interact
with it.

complete
The document is completely loaded.

Netscape 4 Properties

The following non-standard (and non-portable) properties are
defined by Netscape 4.

height
The height, in pixels, of the document.

layers[]
An array of Layer objects that represents the layers contained
within a document. This property is only available in
Netscape 4; it has been discontinued as of Netscape 6.

width
The width, in pixels, of the document.

Common Methods

All implementations of the Document object support the
following methods. This list is followed by separate lists of
methods defined by the W3C DOM standard and by the IE 4 and
Netscape 4 Document objects.

clear()
Erases the contents of the document and returns nothing.
This method is deprecated in JavaScript 1.1. JS 1.0;
deprecated.

close()
Closes a document stream opened with the open() method
and returns nothing. JS 1.0.

Document

70 | JavaScript Pocket Reference

open()
Deletes existing document content and opens a stream to
which new document contents may be written. Returns
nothing. JS 1.0.

write(value, ...)
Inserts the specified string or strings into the document
currently being parsed or appends to document opened with
open(). Returns nothing. JS 1.0.

writeln(value, ...)
Identical to write(), except that it appends a newline char-
acter to the output. Returns nothing. JS 1.0

W3C DOM Methods

In DOM-compliant browsers, the Document object inherits the
methods of Node, and defines the following additional methods.

createAttribute(name)
Returns a newly-created Attr node with the specified name.

createComment(text)
Creates and returns a new Comment node containing the
specified text.

createDocumentFragment()
Creates and returns an empty DocumentFragment node.

createElement(tagName)
Creates and returns a new Element node with the specified
tag name.

createTextNode(text)
Creates and returns a new Text node that contains the speci-
fied text.

getElementById(id)
Returns the Element of this document that has the specified
value for its id attribute, or null if no such Element exists in
the document.

getElementsByName(name)
Returns an array of nodes of all elements in the document
that have a specified value for their name attribute. If no such
elements are found, returns a zero-length array.

DocumentFragment

JavaScript Pocket Reference | 71

getElementsByTagName(tagname)
Returns an array of all Element nodes in this document that
have the specified tag name. The Element nodes appear in the
returned array in the same order they appear in the document
source.

importNode(importedNode, deep)
Creates and returns a copy of a node from some other docu-
ment that is suitable for insertion into this document. If the
deep argument is true, it recursively copies the children of the
node too. DOM Level 2.

Netscape 4 Methods

getSelection()
Returns the currently selected document text with HTML
tags removed.

IE 4 Methods

elementFromPoint(x,y)
Returns the Element located at a specified point.

Event Handlers

In DOM-compliant browsers and IE 4, the Document object
supports the same list of generic event handlers that the Element
object does. Although the onload and onunload handlers logically
belong to the Document object, they are implemented as proper-
ties of the Window object.

See Also

Anchor, Applet, Element, Form, Image, Layer, Link, Window

DocumentFragment
nodes to be manipulated together

DOM Level 1

Inherits From: Node

Description

DocumentFragment inherits the methods and properties of Node,
and defines no new method or properties of its own. It has one
important behavior, however: when a DocumentFragment is

Element

72 | JavaScript Pocket Reference

inserted into a document tree, it is not the DocumentFragment
node itself that is inserted, but the children of the DocumentFrag-
ment. This makes DocumentFragment useful as a temporary
placeholder for nodes you want to insert, all at once, into a
document.

See Also

Document.createDocumentFragment()

Element
an HTML tag in a document

DOM Level 1, IE 4

Inherits From: Node (in DOM Level 1)

Description

The Element object represents an HTML element or tag. IE 4 and
later, DOM-compliant browsers such as IE 5 and later, and
Netscape 6 and later allow access to every element of a docu-
ment. They also define the properties and methods listed here on
each of those elements. Unfortunately, the methods and proper-
ties defined by the IE 4 DOM are not the same as the methods
and properties defined by the W3C DOM standard. Because of
this incompatibility, they are grouped separately in the following
lists.

W3C DOM Properties

In web browsers that support the W3C DOM, all elements in an
HTML document have properties that correspond to their HTML
attributes, including such universal attributes such as dir, id, lang,
and title. When an HTML attribute name consists of multiple
words, the corresponding JavaScript property name uses mixed
case. Otherwise the JavaScript property is in lowercase (e.g., id
and href, but tagIndex and accessKey). Two HTML attributes
have names that are reserved words in JavaScript or Java, and
special property names are required. JavaScript uses the property
className to refer to the class attribute of all HTML tags and uses
htmlFor to refer to the for attribute of <label> and <script> tags.
In addition to their HTML attributes, all elements define the
following properties. Remember also that in DOM-compliant
browsers, all HTML elements inherit the properties of the Node
object.

Element

JavaScript Pocket Reference | 73

className
The string value of the class attribute of the element, which
specifies one or more CSS classes. Note that this property is
not named “class” because that name is a reserved word in
JavaScript.

style
A Style object that represents the style attribute of the HTML
element.

tagName
The read-only tag name of the element. For HTML docu-
ments, the tag name is returned in uppercase, regardless of its
capitalization in the document source. In XHTML docu-
ments, the value is in lowercase.

IE DOM Properties

Internet Explorer 4 and later versions define a proprietary DOM.
In the IE 4 DOM, as in the W3C DOM, each HTML element has
JavaScript properties that correspond to its HTML attributes. In
addition, the IE 4 DOM defines the following properties for each
element:

all[]
An array of all Element objects that are descendants of this
element. This array may be indexed numerically to access
elements in source order. Or it may be indexed by element id
or name. See also Document.all[].

children[]
An array of Element objects that are direct children of this
element. Note that the IE 4 DOM has no equivalent of the
Text or Comment nodes, so the children of an element can
only be other Element objects.

className
A read/write string that specifies the value of the class
attribute of an element.

document
A reference to the containing Document object.

innerHTML
The HTML text contained within the element, not including
the opening and closing tags of the element itself. Setting this

Element

74 | JavaScript Pocket Reference

property replaces the content of the element. Because this
non-standard property is powerful and widely used, it has
been implemented by other browsers including Netscape 6
and later and Mozilla.

innerText
The plain text contained within the element, not including
the opening and closing tags of the element itself. Setting this
property replaces the content of the element with unparsed
plain text.

offsetHeight
The height, in pixels, of the element and all its content.

offsetLeft
The X-coordinate of the element relative to the offsetParent
container element.

offsetParent
Specifies the container element that defines the coordinate
system in which offsetLeft and offsetTop are measured. For
most elements, offsetParent is the Document object that
contains them. However, if an element has a dynamically
positioned ancestor, that ancestor is the offsetParent. Table
cells are positioned relative to the row in which they are
contained.

offsetTop
The Y-coordinate of the element, relative to the offsetParent
container element.

offsetWidth
The width, in pixels, of the element and all its content.

outerHTML
The HTML text of an element, including its start tags, end
tags, and content. Setting this property completely replaces
the element and its content.

outerText
The plain text of an element, including its start and end tags.
Setting this property replaces the element and its contents
with unparsed plain text.

Element

JavaScript Pocket Reference | 75

parentElement
The element that is the direct parent of this one. This prop-
erty is read-only.

sourceIndex
The index of the element in the Document.all[] array of the
document that contains it.

style
A Style object that represents the inline CSS style attributes
for this element. Setting properties of this object changes the
display style of the element.

tagName
A read-only string that specifies the name of the HTML tag
that this element represents.

W3C DOM Methods

In web browsers that support the W3C DOM, all elements in an
HTML document support the following methods, and also inherit
the methods of Node. Many of these methods are used to get and
set attribute values, and are rarely used because Element objects
have properties that mirror all their HTML attributes.

getAttribute(name)
Returns the value of a named attribute as a string.

getAttributeNode(name)
Returns the value of a named attribute as an Attr node.

getElementsByTagName(name)
Returns an array of all descendants of this element that have
the specified tag name, in the order in which they appear in
the document.

hasAttribute(name)
Returns true if this element has an attribute with the speci-
fied name, or false if it does not. DOM Level 2.

removeAttribute(name)
Deletes the named attribute from this element and returns
nothing.

Element

76 | JavaScript Pocket Reference

removeAttributeNode(oldAttr)
Removes the specified Attr node from the list of attributes for
this element. Returns the Attr node that was removed.

setAttribute(name, value)
Sets the named attribute to the specified string value and
returns nothing.

setAttributeNode(newAttr)
Adds the specified Attr node to the list of attributes for this
element. If an attribute with the same name already exists, its
value is replaced. Returns the Attr node that was replaced by
newAttr, or null if no attribute was replaced.

IE DOM Methods

Internet Explorer 4 and later versions support the following non-
standard methods for all document elements.

contains(target)
Returns true if this element contains the Element target, or
false if it does not.

getAttribute(name)
Returns the value of the named attribute of this element as a
string, or null if there is no such attribute.

insertAdjacentHTML(where, text)
Inserts the HTML text into the document near this element
at a position specified by where. where must be one of the
strings “BeforeBegin”, “AfterBegin”, “BeforeEnd” or
“AfterEnd”. Returns nothing.

insertAdjacentText(where, text)
Inserts plain text text into the document near this element, at
the position specified by where. Returns nothing.

removeAttribute(name)
Deletes the named attribute and its value from the element.
Returns true on success; false on failure.

scrollIntoView(top)
Scrolls the document so this element is visible at the top or
bottom of the window. If top is true or is omitted, the
element appears at the top of the window. If false, the
element appears at the bottom.

Element

JavaScript Pocket Reference | 77

setAttribute(name, value)
Sets the named attribute to the specified string value and
returns nothing.

Event Handlers

Elements of an HTML document define the following event
handlers to respond to raw mouse and keyboard events. Partic-
ular types of elements (such as the Form and Input objects) may
define more specialized event handlers (such as onsubmit and
onchange) that impose an interpretation upon the raw input
events.

onclick
Invoked when the user clicks on the element.

ondblclick
Invoked when the user double-clicks on the element.

onhelp
Invoked when the user requests help. IE only.

onkeydown
Invoked when the user presses a key.

onkeypress
Invoked when the user presses and releases a key.

onkeyup
Invoked when the user releases a key.

onmousedown
Invoked when the user presses a mouse button.

onmousemove
Invoked when the user moves the mouse.

onmouseout
Invoked when the user moves the mouse off the element.

onmouseover
Invoked when the user moves the mouse over an element.

onmouseup
Invoked when the user releases a mouse button.

See Also

Form, Input, Node, Select, Textarea

Error

78 | JavaScript Pocket Reference

Error
predefined exception types

Core JavaScript 1.5; JScript 5.5; ECMA v3

Inherits From: Object

Constructor

new Error(message)
new EvalError(message)
new RangeError(message)
new ReferenceError(message)
new SyntaxError(message)
new TypeError(message)
new URIError(message)

These constructors create an instance of the Error class or of one
of its subclasses. The message argument is optional.

Properties

Error and all of its subclasses define the same two properties:

message
An error message that provides details about the exception.
This property holds the string passed to the constructor, or an
implementation-defined default string.

name
A string that specifies the type of the exception. This prop-
erty is always the name of the constructor used to create the
exception object.

Methods

toString()
Returns a string representation of the Error (or subclass)
object.

Event
event details

DOM Level 2, IE 4, Netscape 4

Description

The Event object serves to provide both details about an event
and control over the propagation of an event. DOM Level 2
defines a standard Event object, but Internet Explorer 4, 5, and 6

Event

JavaScript Pocket Reference | 79

use a proprietary object instead. Netscape 4 has its own propri-
etary object that is different from the other two. DOM Level 2
does not standardize keyboard events, so the Netscape 4 Event
object may be still useful to programmers interested in key events
in Netscape 6 and later. The properties of the DOM, IE, and
Netscape 4 Event objects are listed in separate sections below.

In the DOM and Netscape event models, an Event object is
passed as an argument to the event handler. In the IE event
model, the Event object that describes the most recent event is
instead stored in the event property of the Window object.

DOM Constants

These constants are the legal values of the eventPhase property;
they represent the current phase of event propagation for this
event.

Event.CAPTURING_PHASE = 1
The event is in its capturing phase.

Event.AT_TARGET = 2
The event is being handled by its target node.

Event.BUBBLING_PHASE = 3
The event is bubbling.

DOM Properties

All properties of this object are read-only.

altKey
true if the Alt key was held down when an event occurred.
Defined for mouse events.

bubbles
true if the event is of a type that bubbles; false otherwise.
Defined for all events.

button
Specifies which mouse button changed state during a mouse-
down, mouseup, or click event. 0 indicates the left button, 1
indicates the middle button, and 2 indicates the right button.
Note that this property is only defined when a button changes
state: it is not used to report whether a button is held down
during a mousemove event, for example. Also, this property is

Event

80 | JavaScript Pocket Reference

not a bitmap: it cannot tell you if more than one button is
held down. Netscape 6.0 uses the values 1, 2, and 3 instead of
0, 1, and 2. This is fixed in Netscape 6.1.

cancelable
true if the default action associated with the event can be
canceled with preventDefault(), false otherwise. Defined for
all events.

clientX, clientY
These properties specify the X and Y coordinates of the
mouse pointer, relative to the client area of the browser
window. Note that these coordinates do not take document
scrolling into account. Defined for mouse events.

ctrlKey
true if the Ctrl key was held down when the event occurred.
Defined for mouse events.

currentTarget
The document node that is currently handling this event.
During capturing and bubbling, this is different than target.
Defined for all events.

detail
The click count: 1 for a single click, 2 for a double-click, 3 for
a triple click, and so on. Defined for click, mousedown and
mouseup events.

eventPhase
The current phase of event propagation. The constants above
define the three legal values for this property. Defined for all
events.

metaKey
true if theMeta key was held down when the event occurred.
Defined for mouse events.

relatedTarget
For mouseover events, this is the document node that the
mouse left when it moved over the target. For mouseout
events, it is the node that the mouse entered when leaving the
target. It is undefined for other types of events.

Event

JavaScript Pocket Reference | 81

screenX, screenY
These properties specify the X and Y coordinates of the
mouse pointer relative to the upper-left corner of the user’s
screen. Defined for mouse events.

shiftKey
true if the Shift key was held down when the event occurred.
Defined for mouse events.

target
The target for this event; the document node that generated
the event. Note that this may be any node, including Text
nodes; it is not restricted to Element nodes. Defined for all
events.

timeStamp
A Date object that specifies the date and time at which the
event occurred. Defined for all events, but implementations
are not required to provide a valid timestamp.

type
The type of event that occurred. This is the name of the event
handler property with the leading “on” removed. For
example, “click”, “load”, or “mousedown”. Defined for all
events.

view
The Window object in which the event was generated.

DOM Methods

preventDefault()
Tells the web browser not to perform the default action (if
there is one) associated with this event. If the event is not of a
type that is cancelable, this method has no effect. Returns
nothing.

stopPropagation()
Stops the event from propagating any further through the
capturing, target, or bubbling phases of event propagation.
Returns nothing.

Event

82 | JavaScript Pocket Reference

IE 4 Properties

altKey
A boolean value that specifies whether the Alt key was held
down when the event occurred.

button
For mouse events, button specifies which mouse button or
buttons were pressed. This read-only integer is a bitmask: the
1 bit is set if the left button was pressed. The 2 bit is set if the
right button was pressed. The 4 bit is set if the middle button
(of a three button mouse) was pressed.

cancelBubble
If an event handler wants to stop an event from being propa-
gated up to containing objects, it must set this property to
true.

clientX, clientY
The X and Y coordinates, relative to the web browser page, at
which the event occurred.

ctrlKey
A boolean value that specifies whether the Ctrl key was held
down when the event occurred.

fromElement
For mouseover and mouseout events, fromElement refers to
the object from which the mouse pointer is moving.

keyCode
For keyboard events, keyCode specifies the Unicode character
code generated by the key that was struck.

offsetX, offsetY
The X and Y coordinates at which the event occurred, within
the coordinate system of the event’s source element (see
srcElement).

returnValue
If this property is set, its value takes precedence over the value
actually returned by an event handler. Set this property to
false to cancel the default action of the source element on
which the event occurred.

Event

JavaScript Pocket Reference | 83

screenX, screenY
The X and Y coordinates, relative to the screen, at which the
event occurred.

shiftKey
A boolean value that specifies whether the Shift key was held
down when the event occurred.

srcElement
The Window, Document, or Element object that generated
the event.

toElement
For mouseover and mouseout events, toElement refers to the
object into which the mouse pointer is moving.

type
A string property that specifies the type of the event. Its value
is the name of the event handler, minus the “on” prefix. So,
when the onclick() event handler is invoked, the type prop-
erty of the Event object is “click”.

x, y
The X and Y coordinates at which the event occurred. These
properties specify coordinates relative to the innermost
containing element that is dynamically positioned using CSS.

Netscape 4 Properties

height
Set only in resize events. Specifies the new height of the
window or frame that was resized.

layerX, layerY
Specify the X and Y coordinates, relative to the enclosing
layer, at which an event occurred.

modifiers
Specifies which keyboard modifier keys were held down when
the event occurred. This numeric value is a bitmask consisting
of any of the constants Event.ALT_MASK, Event.CONTROL_MASK,
Event.META_MASK, or Event.SHIFT_MASK. Due to a bug, this
property is not defined in Netscape 6 or 6.1.

Form

84 | JavaScript Pocket Reference

pageX, pageY
The X and Y coordinates, relative to the web browser page, at
which the event occurred. Note that these coordinates are
relative to the top-level page, not to any enclosing layers.

screenX, screenY
The X and Y coordinates, relative to the screen, at which the
event occurred.

target
The Window, Document, Layer, or Element object on which
the event occurred.

type
A string property that specifies the type of the event. Its value
is the name of the event handler, minus the “on” prefix. So,
when the onclick() event handler is invoked, the type prop-
erty of the Event object is “click”.

which
For keyboard and mouse events, which specifies which key or
mouse button was pressed or released. For keyboard events,
this property contains the character encoding of the key that
was pressed. For mouse events, it contains 1, 2, or 3, indi-
cating the left, middle, or right buttons.

width
Set only in resize events. Specifies the new width of the
window or frame that was resized.

x, y
The X and Y coordinates at which the event occurred. These
properties are synonyms for layerX and layerY and specify the
position relative to the containing layer (if any).

Form
an HTML input form

Client-side JavaScript 1.0

Inherits From: Element

Synopsis

document.forms[form_number]
document.forms[form_name]
document.form_name

Form

JavaScript Pocket Reference | 85

Properties

The Form object defines properties for each of the attributes of
the HTML <form> element, such as action, encoding, method, name,
and target. In addition, it defines the following properties:

elements[]
A read-only array of Input objects representing the elements
that appear in the form. The array can be indexed numeri-
cally, or by element name for elements that have HTML name
attributes defined.

length
The number of elements in the form. Equivalent to elements.
length.

Methods

reset()
Resets each of the input elements of the form to their default
values. Returns nothing. JS 1.1.

submit()
Submits the form, but does not trigger the onsubmit event
handler. Returns nothing.

Event Handlers

onreset
Invoked just before the elements of the form are reset. Return
false to prevent reset.

onsubmit
Invoked just before the form is submitted. This event handler
allows form entries to be validated before being submitted.
Return false to prevent submission.

See Also

Element, Input, Select, Textarea

Function

86 | JavaScript Pocket Reference

Function
a JavaScript function

Core JavaScript 1.0; JScript 1.0; ECMA v1

Constructor

new Function(argument_names..., body)

This constructor was introduced in JavaScript 1.1, and has been
obsoleted by the function literal syntax of JavaScript 1.2.

Properties

length
The number of named arguments specified when the func-
tion was declared. See Arguments.length for the number of
argument actually passed. JS 1.1; JScript 2.0; ECMA v1.

prototype
An object which, for a constructor function, defines proper-
ties and methods shared by all objects created with that
constructor function. JS 1.1; JScript 2.0; ECMA v1.

Methods

apply(thisobj, args)
Invokes the function as a method of thisobj, passing the
elements of the array args as arguments to the function.
Returns whatever value is returned by the invocation of the
function. JS 1.2; JScript 5.5; ECMA v3.

call(thisobj, args...)
Invokes the function as a method of thisobj, using any subse-
quent arguments as arguments to the function. Returns the
value that is returned by the invocation of the function. JS 1.5;
JScript 5.5; ECMA v3.

toString()
Returns a string representation of the function. In some
implementations, this is the actual source code of the func-
tion. JS 1.0; JScript 2.0; ECMA v1.

See Also

Arguments

Global

JavaScript Pocket Reference | 87

Global
global properties and functions

Core JavaScript 1.0; JScript 1.0; ECMA v1

Synopsis

this

Description

The Global object holds the global properties and methods listed.
These properties and methods do not need to be referenced or
invoked through any other object. Any variables and functions
you define in your own top-level code become properties of the
Global object. The Global object has no name, but you can refer
to it in top-level code (i.e. outside of methods) with the this
keyword. In client-side JavaScript, the Window object serves as
the Global object. It has quite a few additional properties and
methods, and can be referred to as window.

Global Properties

Infinity
A numeric value that represents positive infinity. JS 1.3;
JScript 3.0; ECMA v1.

NaN
The not-a-number value. JS 1.3; JScript 3.0; ECMA v1.

undefined
The undefined value. JS 1.5; JScript 5.5; ECMA v3.

Global Functions

decodeURI(uri)
Returns a decoded copy of uri, with any hexadecimal escape
sequences replaced with the characters they represent. JS 1.5;
JScript 5.5; ECMA v3.

decodeURIComponent(s)
Returns a decoded copy of s, with any hexadecimal escape
sequences replaced with the characters they represent. JS 1.5;
JScript 5.5; ECMA v3.

Global

88 | JavaScript Pocket Reference

encodeURI(uri)
Returns an encoded copy of uri, with certain characters
replaced by hexadecimal escape sequences. Does not encode
characters such as #, ? and @ that are used to separate the
components of a URI. JS 1.5; JScript 5.5; ECMA v3.

encodeURIComponent(s)
Returns an encoded copy of s, with certain characters
replaced by hexadecimal escape sequences. Encodes any
punctuation characters that could be used to separate compo-
nents of a URI. JS 1.5; JScript 5.5; ECMA v3.

escape(s)
Returns an encoded copy of s in which certain characters
have been replaced by hexadecimal escape sequences. JS 1.0;
JScript 1.0; ECMA v1; deprecated in ECMA v3; use
encodeURI() and encodeURIComponent() instead.

eval(code)
Evaluates a string of JavaScript code and returns the result.

isFinite(n)
Returns true if n is (or can be converted to) a finite number.
Returns false if n is (or converts to) NaN (not a number) or
positive or negative infinity. JS 1.2; JScript 3.0; ECMA v1.

isNaN(x)
Returns true if x is (or can be converted to) the not-a-number
value. Returns false if x is (or can be converted to) any
numeric value. JS 1.1; JScript 1.0; ECMA v1.

parseFloat(s)
Converts the string s (or a prefix of s) to a number and
returns that number. Returns NaN (0 in JS 1.0) if s does not
begin with a valid number. JS 1.0; JScript 1.1; ECMA v1.

parseInt(s, radix)
Converts the string s (or a prefix of s) to an integer and
returns that integer. Returns NaN (0 in JS 1.0) if s does not
begin with a valid number. The optional radix argument
specifies the radix (between 2 and 36) to use. If omitted, base
10 is the default or base 16 if s begins with the hexadecimal
prefix “0x” or “0X”. JS 1.0; JScript 1.1; ECMA v1.

Image

JavaScript Pocket Reference | 89

unescape(s)
Decodes a string encoded with escape(). Returns a decoded
copy of s. JS 1.0; JScript 1.0; ECMA v1; deprecated in ECMA
v3; use decodeURI() and decodeURIComponent() instead.

See Also

Window

History
go back or forward in browsing history

Client-side JavaScript 1.0

Synopsis

window.history
history

Methods

back()
Goes back to a previously visited URL in the browsing
history. Returns nothing.

forward()
Goes forward in the browsing history. Returns nothing.

go(n)
Goes to the nth URL relative to the currently displayed URL.
Calling this method with -1 is the same as calling the back()
method. Returns nothing.

Image
an HTML image

Client-side JavaScript 1.1

Inherits From: Element

Synopsis

document.images[i]
document.images[image-name]
document.image-name

Constructor

new Image(width, height);

Image

90 | JavaScript Pocket Reference

This constructor creates an off-screen Image object that cannot be
displayed. The width and height arguments are optional. Setting
the src attribute of the resulting object causes the browser to
preload an image into its cache.

Properties

The Image object defines properties for each of the attributes of
the HTML element, such as src, border, width, height,
vspace, and hspace. In addition, it defines or provides special
behavior for the following properties:

complete
false if the image is still loading. true if it has finished
loading or if there was an error while loading. Read-only.

src
A read/write string that specifies the URL of the image to be
displayed by the browser. This property simply mirrors the
src attribute of the tag, but is detailed here because
many important DHTML effects are created by dynamically
setting the src property of an Image object, to replace one
image with another.

Event Handlers

Image inherits event handlers from Element and also defines the
following:

onabort
Invoked if the user aborts the download of an image.

onerror
Invoked if an error occurs while downloading the image.

onload
Invoked when the image successfully finishes loading.

Input

JavaScript Pocket Reference | 91

Input
a form input element

Client-side JavaScript 1.0

Inherits From: Element

Synopsis

form.elements[i]
form.elements[name]
form.name

Properties

The Input object defines properties for each of the attributes of
the HTML <input> tag, such as maxLength, readOnly, size, and
tabIndex. In addition, it defines the following properties:

checked
A read/write boolean that specifies whether an input element
of type “checkbox” or “radio” is checked (true) or not
(false).

defaultChecked
A boolean that specifies whether an input element of type
“checkbox” or “radio” is checked when first created or when
it is reset to its initial state.

defaultValue
A string that specifies the text that appears in an input
element of type “text” or “password” when it is first created
or when it is reset to its initial state. For security reasons, this
property does not affect input elements of type file.

form
A read-only reference to the Form object that contains the
element. This property is defined for input elements of all
types.

name
The name of this input element, as specified by the HTML
name attribute. This property is defined for input elements of
all types.

type
A string that specifies the type of the form element. This
property mirrors the HTML type attribute. Legal values are
listed in the following table; the default is text. Submit and

Input

92 | JavaScript Pocket Reference

Textarea objects also have a type property, with possible
values select-one, select-multiple, and textarea. JS 1.1.

value
The string value that is sent when the form is submitted. For
input elements of type “text”, “password”, and “file”, this is
the editable text displayed in the element. You can set this
property to change that displayed text. For input elements of
type “button”, “submit”, and “reset”, value is the label that
appears in the button. For other types, the value string is not
displayed. Note that for security reasons, the value property
of elements of type “file” is usually read-only.

Methods

blur()
Yields the keyboard focus and returns nothing. Defined for all
element types except “hidden”.

click()
Simulates a mouse click on the form element and returns
nothing. Defined for button element types: “button”,
“checkbox”, “radio”, “reset”, and “submit”.

Type Description

“button” Push button

“checkbox” Checkbox element

“file” File upload element

“hidden” Hidden element

“image” Graphical form submit button

“password” Masked text entry field

“radio” Mutually-exclusive radio button

“reset” Form reset button

“text” Single-line text entry field

“submit” Form submission button

Layer

JavaScript Pocket Reference | 93

focus()
Takes the keyboard focus and returns nothing. Defined for all
element types except “hidden”.

select()
Selects the text that appears in the element and returns
nothing. Works for elements of type “text”, “password”, and
“file”. Also defined by the Textarea object.

Event Handlers

onblur
Invoked when the element loses keyboard focus. Defined for
all element types except “hidden”.

onchange
For text-entry elements of type “text”, “password”, and “file”,
this event handler is invoked when the user changes the
displayed text and then transfers keyboard focus away from
the element, signaling that text entry is complete. It is not
invoked for each keystroke.

onclick
For button elements of type “button”, “checkbox”, “radio”,
“reset”, and “submit”, this event handler is invoked when the
user clicks the button. Return false to prevent form submis-
sion or reset for elements of type “submit” and “reset”,
respectively.

onfocus
Invoked the element gains keyboard focus. Defined for all
element types except “hidden”.

See Also

Form, Option, Select, Textarea

Layer
An independent document layer

Client-side Netscape 4 only

Synopsis

document.layers[i]
document.layers[layer-name]
document.layer-name

Layer

94 | JavaScript Pocket Reference

Constructor

new Layer(width, parent_layer)

Description

The Layer object is supported only in Netscape 4 and was discon-
tinued in Netscape 6. It is entirely non-standard, but is
documented here because it provides the only way to work with
dynamically positioned objects in Netscape 4. Any HTML
element with a CSS position attribute of absolute is represented
by a Layer object in JavaScript. You can also create layers with the
non-standard <layer> tag, or with the Layer() constructor.

Properties

above
The layer above this one, if any. Read-only.

background
The background image of the layer.

below
The layer below this one, if any. Read-only.

bgColor
The background color of the layer.

clip.bottom
The Y-coordinate of the bottom edge of the layer’s clipping
area, relative to top.

clip.height
The height of the layer’s clipping area. Setting this property
also sets the value of clip.bottom.

clip.left
The X-coordinate of the left edge of the layer’s clipping area,
relative to left.

clip.right
The X-coordinate of the right edge of the layer’s clipping area,
relative to left.

clip.top
The Y-coordinate of the top edge of the layer’s clipping area,
relative to top.

Layer

JavaScript Pocket Reference | 95

clip.width
The width of the layer’s clipping area. Setting this property
also sets the value of clip.right.

document
A read-only reference to the Document object contained
within the layer.

hidden
Specifies whether a layer is hidden or visible. Setting this
property to true hides the layer, and setting it to false makes
the layer visible.

layers[]
An array that contains any child Layer objects of this layer. It
is the same as the document.layers[] array of a layer.

left
The X-coordinate of this layer, relative to the containing layer
or document. Setting this property moves the layer to the left
or right. left is a synonym for x.

name
The name attribute of the HTML tag represented by this layer.

pageX, pageY
The X and Y-coordinates of this layer relative to the top-level
document. Note that these coordinates are relative to the top-
level page, not relative to any containing layer.

parentLayer
A read-only reference to the Layer or Window object that
contains (is the parent of) this layer.

siblingAbove, siblingBelow
These properties refer to the sibling Layer object (i.e., a child
of the same parent Layer) immediately above or below this
layer in the stacking order. If there is no such layer, these
properties are null.

src
A read/write string that specifies the URL, if any, of the
contents of a layer. Setting this property to a new URL causes
the browser to read the contents of that URL and display
them in the layer.

Layer

96 | JavaScript Pocket Reference

top
The Y-coordinate of this layer relative to the containing layer
or document. Setting this property moves the layer up or
down. top is a synonym for y.

visibility
A read/write string that specifies the visibility of the layer. The
three legal values are: “show”, “hide”, and “inherit”.

window
The Window object that contains the layer, regardless of how
deeply nested the layer is within other layers.

x, y
The X and Y-coordinates of the layer. x is a synonym for the
left property and y is a synonym for the top property.

zIndex
The position of the layer in the z-order, or stacking order, of
layers. When two layers overlap, the one with the higher
zIndex appears on top and obscures the one with the lower
zIndex. If two sibling layers have the same zIndex, the one
that appears later in the layers[] array of the containing
document is displayed later and overlaps the one that appears
earlier.

Methods

load(src, width)
Loads a new URL into the layer, sets the layer width, and
returns nothing.

moveAbove(other_layer)
Moves this layer above another and returns nothing.

moveBelow(other_layer)
Moves this layer below another and returns nothing.

moveBy(dx, dy)
Moves the layer relative to its current position and returns
nothing.

moveTo(x, y)
Moves the layer to the point (x,y) relative to its containing
layer or window and returns nothing.

Link

JavaScript Pocket Reference | 97

moveToAbsolute(x, y)
Moves the layer to a position relative to the page and returns
nothing.

resizeBy(dw, dh)
Resizes the layer by the specified amounts and returns
nothing.

resizeTo(width, height)
Resizes the layer to the specified size returns nothing.

Link
an <a> or <area> link

Client-side JavaScript 1.0

Inherits From: Element

Synopsis

document.links[i]

Properties

Many of the properties of a Link object represent portions of its
URL. For each such property below, the example given is a
portion of the following (fictitious) URL:

http://www.oreilly.com:1234/catalog/search.html
?q=JavaScript&m=10#results

hash
A read/write string property that specifies the anchor portion
of the Link’s URL, including the leading hash (#) mark. For
example: “#result”.

host
A read/write string property that specifies the hostname and
port portions of a Link’s URL. For example: “www.oreilly.
com:1234”.

hostname
A read/write string property that specifies the hostname
portion of a Link’s URL. For example: “www.oreilly.com”.

href
A read/write string property that specifies the complete text of
the Link’s URL.

Link

98 | JavaScript Pocket Reference

pathname
A read/write string property that specifies the pathname
portion of a Link’s URL. For example: “/catalog/search.
html”.

port
A read/write string (not a number) property that specifies the
port portion of a Link’s URL. For example: “1234”.

protocol
A read/write string property that specifies the protocol
portion of a Link’s URL, including the trailing colon. For
example: “http:”.

search
A read/write string property that specifies the query portion
of a Link’s URL, including the leading question mark. For
example: “?q=JavaScript&m=10”.

target
A read/write string property that specifies the name of a
Window object (i.e., a frame or a top-level browser window)
in which the linked document should be displayed. This
property is the standard target HTML attribute. The special
names “_blank”, “_top”, “_parent”, and “_self” are allowed.

Event Handlers

onclick
Invoked when the user clicks on the link. In JavaScript 1.1,
this event handler may prevent the link from being followed
by returning false.

onmouseout
Invoked when the user moves the mouse off the link. JS 1.1.

onmouseover
Invoked when the user moves the mouse over the link. The
status property of the current window may be set here.
Return true to tell the browser not to display the URL of the
link in the status line.

See Also

Anchor, Location

Math

JavaScript Pocket Reference | 99

Location
current browser location

Client-side JavaScript 1.0

Synopsis

location
window.location

Properties

The Location object defines the same URL-related properties that
the Link object does, with the exception of the target. See the
Link object for a description of the hash, host, hostname, href,
pathname, port, protocol, and search properties. Setting any of
these properties causes the browser to load and display the docu-
ment from the new URL. As a shortcut, you can also load a new
document by assigning a URL string to the location property of
the Window.

Methods

reload(force)
Reloads the current document from the cache or the server.
The force argument is optional. If true, it forces a complete
reload, even if the document has not been modified. Returns
nothing. JS 1.1.

replace(url)
Replaces the current document with a new one, without
generating a new entry in the browsing history. Returns
nothing. JS 1.1.

See Also

Link, Window.location

Math
mathematical functions and constants

Core JavaScript 1.0; JScript 1.0; ECMA v1

Synopsis

Math.constant
Math.function()

Math

100 | JavaScript Pocket Reference

Description

The Math object is a placeholder for grouping mathematical
constants and functions. It does not define a class of objects as
Date and String do. There is no Math() constructor, and functions
like Math.sin() are simply functions, not methods that operate on
an object.

Constants

Math.E
The constant e, the base of the natural logarithm.

Math.LN10
The natural logarithm of 10.

Math.LN2
The natural logarithm of 2.

Math.LOG10E
The base-10 logarithm of e.

Math.LOG2E
The base-2 logarithm of e.

Math.PI
The constant π.

Math.SQRT1_2
1 divided by the square root of 2.

Math.SQRT2
The square root of 2.

Functions

Math.abs(x)
Returns the absolute value of x.

Math.acos(x)
Returns the arc cosine of x; the return value is between 0 and
π radians.

Math.asin(x)
Returns the arc sine of x; the return value is between -π/2 and
π/2 radians.

Math

JavaScript Pocket Reference | 101

Math.atan(x)
Returns the arc tangent of x; the return value is between -π/2
and π/2 radians.

Math.atan2(y, x)
Returns a value between -π and π radians that specifies the
counterclockwise angle between the positive X-axis and the
point (x, y). Note the order of the arguments to this function.

Math.ceil(x)
Returns the nearest integer greater than or equal to x.

Math.cos(x)
Returns the cosine of the specified value x.

Math.exp(x)
Returns the constant e raised to the power of x.

Math.floor(x)
Returns the nearest integer less than or equal to x.

Math.log(x)
Returns the natural logarithm of x.

Math.max(args...)
Returns the largest of the arguments. Returns -Infinity if
there are no arguments. Returns NaN if any of the arguments is
NaN or is a non-numeric value that cannot be converted to a
number. Prior to ECMA v3, this function requires exactly 2
arguments.

Math.min(args...)
Returns the smallest of the arguments. Returns Infinity if
there are no arguments. Returns NaN if any argument is NaN or
is a non-numeric value that cannot be converted to a number.
Prior to ECMA v3, this function requires exactly 2 arguments.

Math.pow(x, y)
Returns x to the power of y.

Math.random()
Returns a pseudo-random number between 0.0 and 1.0. JS 1.1;
JScript 1.0; ECMA v1.

Math.round(x)
Returns the integer closest to x.

Navigator

102 | JavaScript Pocket Reference

Math.sin(x)
Returns the sine of x.

Math.sqrt(x)
Returns the square root of x. Returns NaN if x is less than zero.

Math.tan(x)
Returns the tangent of x.

See Also

Number

Navigator
information about the browser

Client-side JavaScript 1.0

Synopsis

navigator

Properties

appCodeName
A read-only string that specifies a nickname for the browser.
In all Netscape browsers, this is “Mozilla”. For compatibility,
this property is “Mozilla” in Microsoft browsers as well.

appName
A read-only string property that specifies the name of the
browser. For Netscape, the value of this property is
“Netscape”. In IE, the value of this property is “Microsoft
Internet Explorer”.

appVersion
A read-only string that specifies version and platform infor-
mation for the browser. The first part of this string is a
version number. Pass the string to parseInt() to obtain the
major version number only or to parseFloat() to obtain the
major and minor version numbers as a floating-point value.
The remainder of the string value of this property provides
other details about the browser version, including the oper-
ating system it is running on. Unfortunately, however, the
format of this information varies widely from browser to
browser.

Navigator

JavaScript Pocket Reference | 103

cookieEnabled
A read-only boolean that is true if the browser has cookies
enabled, and false if they are disabled. IE 4, Netscape 6.

language
A read-only string that specifies the default language of the
browser version. The value of this property is a standard two-
letter language code such as “en” for English or “fr” for
French. It can also be a five-letter string indicating a language
and a regional variant, such as “fr_CA” for French, as spoken
in Canada. Netscape 4; note that IE 4 provides two different
language-related properties.

platform
A read-only string that specifies the operating system and/or
hardware platform the browser is running under. Although
there is not standard set of values for this property, some
typical values are “Win32”, “MacPPC”, and “Linux i586”. JS
1.2.

systemLanguage
A read-only string that specifies the default language of the
operating system using the same standard codes used by the
Netscape-specific language property. IE 4.

userAgent
A read-only string that specifies the value the browser uses for
the user-agent header in HTTP requests. Typically, this is the
value of navigator.appCodeName followed by a slash and the
value of navigator.appVersion.

userLanguage
A read-only string that specifies the preferred language of the
user using the same standard codes used by the Netscape-
specific language property. IE 4.

Methods

javaEnabled()
Returns true if Java is supported and enabled in the current
browser, or false if it is not. JS 1.1.

See Also

Screen

Node

104 | JavaScript Pocket Reference

Node
a node in a document tree

DOM Level 1

Subclasses

Attr, Comment, Document, DocumentFragment, Element, Text

Constants

All nodes in an HTML document are instances of one of the Node
subclasses listed above. Every Node object has a nodeType prop-
erty that specifies which of the subclasses it is an instance of. The
following constants are the legal values for nodeType. Note that
these are static properties of Node, not properties of individual
Node objects. They are not defined in Internet Explorer 4, 5, or 6;
in those browsers you must use the corresponding integer literals.

Node.ELEMENT_NODE = 1; // Element
Node.ATTRIBUTE_NODE = 2; // Attr
Node.TEXT_NODE = 3; // Text
Node.COMMENT_NODE = 8; // Comment
Node.DOCUMENT_NODE = 9; // Document
Node.DOCUMENT_FRAGMENT_NODE=11; // DocumentFragment

Properties

attributes[]
If this Node is an Element, the attributes property is a read-
only array of Attr objects that represent the attributes of the
element. The array can be indexed by number or by attribute
name. All HTML attributes have corresponding Element
properties, however, so it is uncommon to use the
attributes[] array.

childNodes[]
This read-only array of Node objects contains the children of
this node. If the node has no children, this property is a zero-
length array.

firstChild
This read-only property refers to the first child Node of this
node, or null if the node has no children.

Node

JavaScript Pocket Reference | 105

lastChild
This read-only property refers to the last child Node of this
node, or null if the node has no children.

nextSibling
The sibling Node that immediately follows this one in the
childNodes[] array of the parentNode, or null if there is no
such node. Read-only.

nodeName
The name of the node. For Element nodes, this property spec-
ifies the tag name of the element, which can also be retrieved
with the tagName property of Element. For Attr nodes, this
property specifies the attribute name. For other types of
nodes, the value is a constant string that specifies the node
type. Read-only.

nodeType
The type of the node. The legal values for this property are
defined by the constants listed above.

nodeValue
The string value of a node. For Text and Comment nodes,
this property holds the text content. For Attr nodes, it holds
the attribute value. This property is read/write.

ownerDocument
The Document object of which this Node is a part. For Docu-
ment nodes, this property is null. Read-only.

parentNode
The parent or container Node of this node, or null if there is
no parent. Note that Document and Attr nodes never have
parent nodes. Nodes that have been removed from the docu-
ment or are newly created and have not yet been inserted into
the document tree have a parentNode of null. Read-only.

previousSibling
The sibling Node that immediately precedes this one in the
childNodes[] array of the parentNode, or null, if there is no
such node.

Node

106 | JavaScript Pocket Reference

Methods

addEventListener(type, listener, useCapture)
Registers an event listener for this node. type is a string that
specifies the event type minus the “on” prefix (e.g., “click” or
“submit”). listener is the event handler function. When trig-
gered, it is invoked with an Event object as its argument. If
useCapture is true, this is a capturing event handler. If false
or omitted, it is a regular event handler. Returns nothing.
DOM Level 2; not supported in IE 4, 5, or 6.

appendChild(newChild)
Adds the newChild Node to the document tree by appending it
to the childNodes[] array of this node. If the node is already
in the document tree, it is first removed before being rein-
serted at its new position. Returns the newChild argument.

cloneNode(deep)
Returns a copy of this node. If deep is true, the descendents of
the node are recursively copied as well.

hasAttributes()
Returns true if this node is an Element and has any attributes.
DOM Level 2.

hasChildNodes()
Returns true if this node has any children.

insertBefore(newChild, refChild)
Inserts the newChild Node into the document tree immedi-
ately before the refChild Node, which must be a child of this
node. If the node being inserted is already in the tree, it is first
removed. Returns newChild.

isSupported(feature, version)
Returns true if the specified version number of a named
feature is supported by this node. See also DOMImplementation.
hasFeature(). DOM Level 2.

normalize()
Normalizes all Text node descendants of this node by deleting
empty Text nodes and merging adjacent Text nodes. Returns
nothing.

Number

JavaScript Pocket Reference | 107

removeChild(oldChild)
Removes the oldChild Node from the document tree.
oldChild must be a child of this node. Returns oldChild.

removeEventListener(type, listener, useCapture)
Removes the specified event listener. Returns nothing. DOM
Level 2; not supported in IE 4, 5, or 6.

replaceChild(newChild, oldChild)
Replaces the oldChild Node (which must be a child of this
node) with the newChild Node. If newChild is already in the
document tree, it is first removed from its current location.
Returns oldChild.

See Also

Attr, Comment, Document, DocumentFragment, Element, Text

Number
support for numbers

Core JavaScript 1.1; JScript 2.0; ECMA v1

Constructor

new Number(value)
Number(value)

With the new operator, the Number() constructor converts its argu-
ment to a numeric value and returns a new Number object
wrapped around that value. Without new, Number() is a conver-
sion function that converts its argument to a number and returns
that value.

Constants

These constants are properties of Number itself, not of individual
Number objects.

Number.MAX_VALUE
The largest representable number. Approximately 1.79E+308.

Number.MIN_VALUE
The smallest representable positive number. Approximately
5E-324.

Number.NaN
Not-a-number value. Same as the global NaN.

Number

108 | JavaScript Pocket Reference

Number.NEGATIVE_INFINITY
Negative infinite value.

Number.POSITIVE_INFINITY
Infinite value. Same as global Infinity.

Methods

toExponential(digits)
Returns a string representation of the number, in exponential
notation, with one digit before the decimal place and digits
digits after the decimal place. The fractional part of the
number is rounded, or padded with zeros so that it has the
specified length. digits must be between 0 and 20, and if
omitted, as many digits as necessary are used. JS 1.5; JScript
5.5; ECMA v3.

toFixed(digits)
Returns a string representation of the number that does not
use exponential notation, and has exactly digits digits after
the decimal place. digits must be between 0 and 20. The
number is rounded or padded with zeros if necessary. JS 1.5;
JScript 5.5; ECMA v3.

toLocaleString()
Returns an implementation-dependent string representation of
the number, formatted according to local conventions. This
may affect things such as the punctuation characters used for
the decimal point and the thousands separator. JS 1.5; JScript
5.5; ECMA v3.

toPrecision(precision)
Returns a string representation of number that contains
precision significant digits. precision must be between 1 and
21. The returned string uses fixed-point notation where
possible, or exponential notation otherwise. The number is
rounded or padded with zeros if necessary. JS 1.5; JScript 5.5;
ECMA v3.

toString(radix)
Converts a number to a string, using a specified radix (base),
and returns the string. radix must be between 2 and 36. If
omitted, base 10 is used.

Object

JavaScript Pocket Reference | 109

See Also

Math

Object
the superclass of all JavaScript objects

Core JavaScript 1.0; JScript 1.0; ECMA v1

Constructor

new Object();

This constructor creates an empty object to which you can add
arbitrary properties.

Properties

All JavaScript objects, how ever they are created, have the
following properties.

constructor
A reference to the JavaScript function that was the
constructor for the object. JS 1.1; JScript 2.0; ECMA v1.

Methods

All JavaScript objects, how ever they are created, have the
following methods.

hasOwnProperty(propname)
Returns true if the object has a non-inherited property with
the specified name. Returns false if the object does not have
a property with the specified name, or if it inherits that prop-
erty from its prototype object. JS 1.5; JScript 5.5; ECMA v3.

isPrototypeOf(o)
Returns true if this object is the prototype of o. Returns false
if o is not an object or if this object is not its prototype. JS 1.5;
JScript 5.5; ECMA v3.

propertyIsEnumerable(propname)
Returns true if this object has a non-inherited enumerable
property with the specified name, and returns false other-
wise. Enumerable properties are those that are enumerated by
for/in loops. JS 1.5; JScript 5.5; ECMA v3.

Option

110 | JavaScript Pocket Reference

toLocaleString()
Returns a localized string representation of the object. The
default implementation of this method simply calls toString(
), but subclasses may override it to provide localization. JS 1.5;
JScript 5.5; ECMA v3.

toString()
Returns a string representation of the object. The implemen-
tation of this method provided by the Object class is quite
generic and does not provide much useful information.
Subclasses of Object typically override this method by
defining their own toString() method that produces more
useful output. JS 1.0; JScript 2.0; ECMA v1.

valueOf()
Returns the primitive value of the object, if any. For objects of
type Object, this method simply returns the object itself.
Subclasses of Object, such as Number and Boolean, override
this method to return the primitive value associated with the
object. JS 1.1; JScript 2.0; ECMA v1.

See Also

Array, Boolean, Function, Number, String

Option
a selectable option

Client-side JavaScript 1.0

Inherits From: Element

Synopsis

select.options[i]

Constructor

In JavaScript 1.1 and later, Option objects can be created dynami-
cally with the Option() constructor:

new Option(text, value, defaultSelected, selected)

RegExp

JavaScript Pocket Reference | 111

Properties

defaultSelected
A read/write boolean that specifies whether the option is
initially selected when the Select object that contains it is
created or reset.

index
A read-only integer that specifies the index of the option
within the options[] array of the Select object that contains it.

selected
A read/write boolean value that specifies whether an option is
currently selected. You can use this property to test whether a
given option is selected. You can also set it to select or dese-
lect an option. Note that when you select or deselect an
option in this way, the Select.onchange() event handler is not
invoked.

text
A read/write string that specifies the text that appears to the
user for the option.

value
A read/write string that specifies the text that is passed to the
web server if the option is selected when the form is
submitted.

See Also

Select

RegExp
regular expressions for pattern matching

Core JavaScript 1.2; JScript 3.0; ECMA v3

Literal Syntax

/pattern/attributes

Constructor

new RegExp(pattern, attributes)

Regular expression patterns are expressed using a complex
grammar that is summarized earlier in this book.

RegExp

112 | JavaScript Pocket Reference

Instance Properties

global
A read-only boolean that specifies whether the RegExp has
the g attribute and therefore performs global matching.

ignoreCase
A read-only boolean that specifies whether the RegExp has
the i attribute and therefore performs case-insensitive
matching.

lastIndex
For global RegExp objects, this read/write property specifies
the character position immediately following the last match;
this is the first character examined for the next match.

multiline
A read-only boolean that specifies whether the RegExp has
the m attribute and therefore performs multi-line matching.

source
A read-only string that holds the source text of the regular
expression pattern, excluding slashes and attributes.

Methods

exec(string)
Matches string against this RegExp and returns an array
containing the results of the match, or null if no match was
found. Element 0 of the array is the matching text. Subse-
quent elements of the array contain the substrings that
matched the subexpressions within the RegExp. The returned
array also has an index property that specifies the start posi-
tion of the match.

test(string)
Returns true if string contains text matching this RegExp, or
false otherwise.

See Also

String.match(), String.replace(), String.search()

Select

JavaScript Pocket Reference | 113

Screen
information about the display

Client-side JavaScript 1.2

Inherits From:

Synopsis

screen

Properties

availHeight
The available height, in pixels, of the screen.

availWidth
Specifies the available width, in pixels, of the screen.

colorDepth
The depth of the browser’s color palette, or the number of
bits-per-pixel for the screen.

height
Specifies the total height, in pixels, of the screen.

width
Specifies the total width, in pixels, of the screen.

See Also

Navigator

Select
a graphical selection list

Client-side JavaScript 1.0

Inherits From: Element

Synopsis

form.elements[i]
form.elements[element_name]
form.element_name

Properties

The Select object defines properties for each of the attributes of
the HTML <select> tag, such as disabled, multiple, name, and
size. In addition, it defines the following properties:

Select

114 | JavaScript Pocket Reference

form
The Form object that contains this Select object. Read-only.

length
A read-only integer that specifies the number of elements in
the options[] array. The value of this property is the same as
options.length.

options[]
An array of Option objects, each describing one of the
options displayed within the Select element. You can shorten
the set of options by setting the options.length property to a
smaller value (or remove all options by setting it to zero). You
can remove individual options by setting an element of the
array to null—this shifts the elements above it down, short-
ening the array. You can append options to the Select object
by using the Option() constructor to create a new Option and
assigning it to options[options.length].

selectedIndex
A read/write integer that specifies the index of the selected
option within the Select object. If no option is selected,
selectedIndex is -1. If more than one option is selected,
selectedIndex specifies the index of the first one only. Setting
this property causes all other options to become deselected.
Setting it to -1 causes all options to be deselected.

type
A read-only string property that specifies the type of the
element. If the Select object allows only a single selection (i.e.,
if the multiple attribute does not appear in the object’s
HTML definition), this property is “select-one”. Otherwise,
the value is “select-multiple”. See also Input.type. JS 1.1.

Methods

add(new, old)
Inserts the Option object new into the options[] array at the
position immediately before the Option object old. If old is
null, the new Option is appended to the array. Returns
nothing. DOM Level 1.

blur()
Yields the keyboard focus and returns nothing.

String

JavaScript Pocket Reference | 115

focus()
Grabs the keyboard focus and returns nothing.

remove(n)
Removes the nth element from the options[] array. Returns
nothing. DOM Level 1.

Event Handlers

onblur
Invoked when input focus is lost.

onchange
Invoked when the user selects or deselects an item.

onfocus
Invoked when input focus is gained.

See Also

Form, Input, Option

String
string manipulation

Core JavaScript 1.0; JScript 1.0; ECMA v1

Inherits From: Object

Constructor

String(s)
new String(s)

Without the new operator, the String() function converts its argu-
ment to a string. With the new operator, it is a constructor that
wraps the converted value in a String object.

Properties

length
The number of characters in the string. Read-only.

Methods

charAt(n)
Returns the character at position n in the string.

String

116 | JavaScript Pocket Reference

charCodeAt(n)
Returns the Unicode encoding of the character at position n in
the string. JS 1.2; JScript 5.5; ECMA v1.

concat(value, ...)
Returns a new string that results from converting each of the
arguments to a string and concatenating the resulting strings.
JS 1.2; JScript 3.0; ECMA v3.

indexOf(substring, start)
Returns the position of the first occurrence of substring
within this string that appears at or after the start position or
-1 if no such occurrence is found. If start is omitted, 0 is
used.

lastIndexOf(substring, start)
Returns the position of the last occurrence of substring
within string that appears before the start position, or -1 if
no such occurrence is found. If start is omitted, the string
length is used.

match(regexp)
Matches this string against the specified regular expression
and returns an array containing the match results or null if no
match is found. If regexp is not a global regular expression,
the returned array is the same as for the RegExp.exec()
method. If regexp is global (has the “g” attribute), the
elements of the returned array contain the text of each match
found. JS 1.2; JScript 3.0; ECMA v3.

replace(regexp, replacement)
Returns a new string, with text matching regexp replaced with
replacement. regexp may be a regular expression or a plain
string. replacement may be a string, containing optional
regular expression escape sequences (such as $1) that are
replaced with portions of the matched text. It may also be a
function that computes the replacement string based on
match details passed as arguments. JS 1.2; JScript 3.0; ECMA
v3.

search(regexp)
Returns the position of the start of the first substring of this
string that matches regexp, or -1 if no match was found. JS 1.2;
JScript 3.0; ECMA v3.

String

JavaScript Pocket Reference | 117

slice(start, end)
Returns a new string that contains all the characters of string
from and including the position start and up to but not
including end. If end is omitted, the slice extends to the end of
the string. Negative arguments specify character positions
measured from the end of the string. JS 1.2; JScript 3.0;
ECMA v3.

split(delimiter, limit)
Returns an array of strings, created by splitting string into
substrings at the boundaries specified by delimiter. delimiter
may be a string or a RegExp. If delimiter is a RegExp with a
parenthesized subexpression, the delimiter text that matches
the subexpression is included in the returned array. See also
Array.join(). JS 1.1; JScript 3.0; ECMA v1.

substring(from, to)
Returns a new string that contains characters copied from
positions from to to-1 of string. If to is omitted, the substring
extends to the end of the string. Negative arguments are not
allowed.

substr(start, length)
Returns a copy of the portion of this string starting at start
and continuing for length characters, or to the end of the
string, if length is not specified. JS 1.2; JScript 3.0; Non-stan-
dard: use slice() or substring() instead.

toLowerCase()
Returns a copy of the string, with all uppercase letters
converted to their lowercase equivalent, if they have one.

toUpperCase()
Returns a copy of the string, with all lowercase letters
converted to their uppercase equivalent, if they have one.

Static Functions

String.fromCharCode(c1, c2, ...)
Returns a new string containing characters with the encod-
ings specified by the numeric arguments. JS 1.2; JScript 3.0;
ECMA v1.

Style

118 | JavaScript Pocket Reference

Style
inline CSS properties of an element

DOM Level 2; IE 4

Inherits From:

Synopsis

element.style

Properties

The Style object defines a large number of properties: one prop-
erty for each CSS attribute defined by the CSS2 specification. The
property names correspond closely to the CSS attribute names,
with minor changes required to avoid syntax errors in JavaScript.
Multiword attributes that contain hyphens, such as font-family
are written without hyphens in JavaScript, and each word after
the first is capitalized: fontFamily. Also, the float attribute
conflicts with the reserved word float, so it translates to the prop-
erty cssFloat.

The visual CSS properties are listed in the following table. Since
the properties correspond directly to CSS attributes, no individual
documentation is given for each property. See a CSS reference
(such as Cascading Style Sheets: The Definitive Guide (O’Reilly),
by Eric A. Meyer) for the meaning and legal values of each. Note
that current browsers do not implement all of these properties.

All of the properties are strings, and care is required when
working with properties that have numeric values. When querying
such a property, you must use parseFloat() to convert the string
to a number. When setting such a property you must convert your
number to a string, which you can usually do by adding the
required units specification, such as “px”.

background counterIncrement orphans
backgroundAttachment counterReset outline
backgroundColor cssFloat outlineColor
backgroundImage cursor outlineStyle
backgroundPosition direction outlineWidth
backgroundRepeat display overflow
border emptyCells padding
borderBottom font paddingBottom
borderBottomColor fontFamily paddingLeft
borderBottomStyle fontSize paddingRight
borderBottomWidth fontSizeAdjust paddingTop

Text

JavaScript Pocket Reference | 119

Text
a run of text in a document

DOM Level 1

Inherits From: Node

Description

A Text object represents a run of plain text without markup in a
DOM document tree. Do not confuse it with the single-line text
input element of HTML, which is represented by the Input object.

Properties

data
The string of text contained by this node.

length
The number of characters contained by this node. Read-only.

borderCollapse fontStretch page
borderColor fontStyle pageBreakAfter
borderLeft fontVariant pageBreakBefore
borderLeftColor fontWeight pageBreakInside
borderLeftStyle height position
borderLeftWidth left quotes
borderRight letterSpacing right
borderRightColor lineHeight size
borderRightStyle listStyle tableLayout
borderRightWidth listStyleImage textAlign
borderSpacing listStylePosition textDecoration
borderStyle listStyleType textIndent
borderTop margin textShadow
borderTopColor marginBottom textTransform
borderTopStyle marginLeft top
borderTopWidth marginRight unicodeBidi
borderWidth marginTop verticalAlign
bottom markerOffset visibility
captionSide marks whiteSpace
clear maxHeight widows
clip maxWidth width
color minHeight wordSpacing
content minWidth zIndex

Textarea

120 | JavaScript Pocket Reference

Methods

appendData(text)
Appends the specified text to this node and returns nothing.

deleteData(offset, count)
Deletes text from this node, starting with the character at the
specified offset, and continuing for count characters. Returns
nothing.

insertData(offset, text)
Inserts the specified text into this node at the specified char-
acter offset. Returns nothing.

replaceData(offset, count, text)
Replaces the characters starting at the specified offset and
continuing for count characters with the specified text.
Returns nothing.

splitText(offset)
Splits this Text node into two at the specified character posi-
tion, inserts the new Text node into the document after the
original, and returns the new node.

substringData(offset, count)
Returns a string that consists of the count characters starting
with the character at position offset.

See Also

Node.normalize()

Textarea
multiline text input

Client-side JavaScript 1.0

Inherits From: Element

Synopsis

form.elements[i]
form.elements[name]
form.name

Description

The Textarea object is very similar to the Input object.

Textarea

JavaScript Pocket Reference | 121

Properties

The Textarea object defines properties for each of the attributes of
the HTML <textarea> tag, such as cols, defaultValue, disabled,
name, readOnly, and rows. It also defines the following properties:

form
The Form object that contains this Textarea object. Read-
only.

type
A read-only string property that specifies the type of the
element. For Textarea objects, this is always “textarea”.

value
A read/write string that specifies the text contained in the
Textarea. The initial value of this property is the same as the
defaultValue property.

Methods

blur()
Yields the keyboard focus and returns nothing.

focus()
Grabs the keyboard focus and returns nothing.

select()
Selects the entire contents of the text area. Returns nothing.

Event Handlers

onblur
Invoked when input focus is lost.

onchange
Invoked when the user changes the value in the Textarea
element and moves the keyboard focus elsewhere. This event
handler is invoked only when the user completes an edit in
the Textarea element.

onfocus
Invoked when input focus is gained.

See Also

Element, Form, Input

Window

122 | JavaScript Pocket Reference

Window
browser window or frame

Client-side JavaScript 1.0

Synopsis

self
window
window.frames[i]

Properties

The Window object defines the following properties. Non-
portable, browser-specific properties are listed separately after this
list. Note that the Window object is the Global object for client-
side JavaScript; therefore the Window object also has the proper-
ties listed on the Global reference page.

closed
A read-only boolean value that specifies whether the window
has been closed.

defaultStatus
A read/write string that specifies a persistent message to
appear in the status line whenever the browser is not
displaying another message.

document
A read-only reference to the Document object contained in
this window or frame. See Document.

frames[]
An array of Window objects, one for each frame contained
within the this window. Note that frames referenced by the
frames[] array may themselves contain frames and may have
a frames[] array of their own.

history
A read-only reference to the History object of this window or
frame. See History.

length
Specifies the number of frames contained in this window or
frame. Same as frames.length.

Window

JavaScript Pocket Reference | 123

location
The Location object for this window or frame. See Location.
This property has special behavior: if you assign a URL string
to it, the browser loads and displays that URL.

name
A string that contains the name of the window or frame. The
name is specified with the Window.open() method, or with the
name attribute of a <frame> tag. Read-only in JS 1.0; read/write
in JS 1.1.

navigator
A read-only reference to the Navigator object, which provides
version and configuration information about the web
browser. See Navigator.

opener
A read/write reference to the Window that opened this
window. JS 1.1.

parent
A read-only reference to the Window object that contains this
window or frame. If this window is a top-level window,
parent refers to the window itself.

screen
A read-only reference to the Screen object that specifies infor-
mation about the screen the browser is running on. See
Screen. JS 1.2.

self
A read-only reference to this window itself. This is a synonym
for the window property.

status
A read/write string that can be set to display a transient
message in the browser’s status line.

top
A read-only reference to the the top-level window that
contains this window. If this window is a top-level window,
top refers to the window itself.

window
The window property is identical to the self property; it
contains a reference to this window.

Window

124 | JavaScript Pocket Reference

Netscape 4 Properties

innerHeight, innerWidth
Read/write properties that specify the height and width, in
pixels, of the document display area of this window. These
dimensions do not include the height of the menubar, tool-
bars, scrollbars, and so on.

outerHeight, outerWidth
Read/write integers that specify the total height and width, in
pixels, of the window. These dimensions include the height
and width of the menubar, toolbars, scrollbars, window
borders, and so on.

pageXOffset, pageYOffset
Read-only integers that specify the number of pixels that the
current document has been scrolled to the right (pageXOffset)
and down (pageYOffset).

screenX, screenY
Read-only integers that specify the X and Y-coordinates of the
upper-left corner of the window on the screen. If this window
is a frame, these properties specify the X and Y-coordinates of
the top-level window that contains the frame.

IE 4 Properties

clientInformation
An IE-specific synonym for the navigator property. Refers to
the Navigator object.

event
The event property refers to an Event object that contains the
details of the most recent event to occur within this window.
In the IE event model, the Event object is not passed as an
argument to the event handler, and is instead assigned to this
property.

Methods

The Window object has the following portable methods. Since the
Window object is the Global object in client-side JavaScript, it
also defines the methods listed on the Global reference page.

Window

JavaScript Pocket Reference | 125

alert(message)
Displays message in a dialog box. Returns nothing. JS 1.0.

blur()
Yields the keyboard focus and returns nothing. JS 1.1.

clearInterval(intervalId)
Cancels the periodic execution of code specified by
intervalId. See setInterval(). Returns nothing. JS 1.2.

clearTimeout(timeoutId)
Cancels the pending timeout specified by timeoutId. See
setTimeout(). Returns nothing. JS 1.0.

close()
Closes a window and returns nothing. JS 1.0.

confirm(question)
Displays question in a dialog box and waits for a yes-or-no
response. Returns true if the user clicks the OK button, or
false if the user clicks the Cancel button. JS 1.0.

focus()
Requests keyboard focus; this also brings the window to the
front on most platforms. Returns nothing. JS 1.1.

getComputedStyle(elt)
Returns a read-only Style object that contains all CSS styles
(not just inline styles) that apply to the specified document
element elt. Positioning attributes such as left, top, and
width queried from this computed style object are always
returned as pixel values. DOM Level 2.

moveBy(dx, dy)
Moves the window the specified distances from its current
position and returns nothing. JS 1.2.

moveTo(x, y)
Moves the window to the specified position and returns
nothing. JS 1.2

open(url, name, features)
Displays the specified url in the named window. If the name
argument is omitted or if there is no window by that name, a
new window is created. The optional features argument is a
string that specifies the size and decorations of the new

Window

126 | JavaScript Pocket Reference

window as a comma-separated list of features. Feature names
commonly supported on all platforms are: width=pixels,
height=pixels, location, menubar, resizable, status, and
toolbar. In IE, set the position of the window with left=x and
top=y. In Netscape, use screenX=x and screenY=y. Returns the
existing or new Window object. JS 1.0.

print()
Simulates a click on the browser’s Print button and returns
nothing. Netscape 4; IE 5.

prompt(message, default)
Displays message in a dialog box and waits for the user to
enter a text response. Displays the optional default as the
default response. Returns the string entered by the user, or
the empty string if the user did not enter a string, or null if
the user clicked Cancel. JS 1.0.

resizeBy(dw, dh)
Resizes the window by the specified amount and returns
nothing. JS 1.2.

resizeTo(width, height)
Resizes the window to the specified size and returns nothing.
JS 1.2.

scroll(x, y)
Scrolls the window to the specified coordinates and returns
nothing. JS 1.1; deprecated in JS 1.2 in favor of scrollTo().

scrollBy(dx, dy)
Scrolls the window by a specified amount and returns
nothing. JS 1.2.

scrollTo(x, y)
Scrolls the window to a specified position and returns
nothing. JS 1.2.

setInterval(code, interval, args...)
Evaluates the string of JavaScript code every interval millisec-
onds. In Netscape 4 and IE 5, code may be a reference to a
function instead of a string. In that case, the function is
invoked every interval milliseconds. In Netscape, any argu-
ments after interval are passed to the function when it is
invoked, but this feature is not supported by IE. Returns an

Window

JavaScript Pocket Reference | 127

interval ID value that can be passed to clearInterval() to
cancel the periodic executions. JS 1.2.

setTimeout(code, delay)
Evaluates the JavaScript code in the string code after delay
milliseconds have elapsed. In Netscape 4 and IE5, code may
be a function rather than a string; see the discussion under
setInterval(). Returns a timeout ID value that can be passed
to clearTimeout() to cancel the pending execution of code.
Note that this method returns immediately; it does not wait
for delay milliseconds before returning. JS 1.0.

Event Handlers

Event handlers for a Window object are defined by attributes of
the <body> tag of the document.

onblur
Invoked when the window loses focus.

onerror
Invoked when a JavaScript error occurs. This is a special event
handler that is invoked with three arguments that specify the
error message, the URL of the document that contained the
error, and the line number of the error, if available.

onfocus
Invoked when the window gains focus.

onload
Invoked when the document (or frameset) is fully loaded.

onresize
Invoked when the window is resized.

onunload
Invoked when the browser leaves the current document.

See Also

Document

	Contents
	JavaScript Pocket Reference
	The JavaScript Language
	Syntax
	Case sensitivity
	Whitespace
	Semicolons
	Comments
	Identifiers
	Keywords

	Variables
	Data Types
	Numbers
	Booleans
	Strings
	Objects
	Arrays
	Functions and methods
	null and undefined

	Expressions and Operators
	Statements
	Expression statements
	Compound statements
	Empty statements
	Labeled statements
	Alphabetical statement reference

	Object-Oriented JavaScript
	Regular Expressions
	Literal characters
	Character classes
	Repetition
	Grouping and alternation
	Anchoring match position

	Versions of JavaScript

	Client-side JavaScript
	JavaScript in HTML
	The <script> tag
	Event handlers
	JavaScript URLs

	The Window Object
	Simple dialog boxes
	The status line
	Timers
	System information
	Browser navigation
	Window control
	Multiple windows and frames

	The Document Object
	The Legacy DOM
	Dynamically generated documents
	Dynamic forms
	Form validation
	Image rollovers
	Working with cookies

	The W3C DOM
	Finding elements by ID
	Finding elements by tag name
	Traversing a document tree
	Node types
	HTML attributes
	Manipulating document elements
	Changing document text
	Changing document structure

	IE 4 DOM
	Accessing document elements
	Traversing the document tree
	Modifying document content and structure
	DOM compatibility

	DHTML: Scripting CSS Styles
	Events and Event Handling
	Event handlers as JavaScript functions
	Advanced event handling

	JavaScript Security Restrictions

	JavaScript API Reference
	Anchor
	Applet
	Arguments
	Array
	Attr
	Boolean
	Comment
	DOMException
	DOMImplementation
	Date
	Document
	DocumentFragment
	Element
	Error
	Event
	Form
	Function
	Global
	History
	Image
	Input
	Layer
	Link
	Location
	Math
	Navigator
	Node
	Number
	Object
	Option
	RegExp
	Screen
	Select
	String
	Style
	Text
	Textarea
	Window

