

HTML & XHTML
The Definitive Guide

Other resources from O’Reilly

Related titles Ajax Hacks™

CSS Cookbook™

CSS: The Definitive Guide

Designing Interfaces

Dynamic HTML:
The Definitive Guide

Head First HTML with CSS
& XHTML

Head Rush Ajax

JavaScript: The Definitive
Guide

Learning JavaScript

Web Design in a Nutshell

Web Site Cookbook™

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

HTML & XHTML
The Definitive Guide

SIXTH EDITION

Chuck Musciano and Bill Kennedy

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

HTML & XHTML: The Definitive Guide, Sixth Edition
by Chuck Musciano and Bill Kennedy

Copyright © 2007, 2002, 2000, 1998, 1997, 1996 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tatiana Apandi
Production Editor: Colleen Gorman
Copyeditor: Audrey Doyle
Proofreader: Colleen Gorman

Indexer: Johnna VanHoose Dinse
Cover Designer: Edie Freedman
Interior Designer: Melanie Wang
Illustrators: Robert Romano and Jessamyn Read

Printing History:

April 1996: First Edition.

May 1997: Second Edition.

August 1998: Third Edition.

August 2000: Fourth Edition.

August 2002: Fifth Edition.

October 2006: Sixth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. HTML & XHTML: The Definitive Guide, the image of a koala, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52732-2

ISBN-13: 978-0-596-52732-7

[M]

This book is dedicated to our wives and children,

Cindy, Courtney, and Cole, and Jeanne, Eva, and Ethan.

Without their love and patience, we never would have

had the time or strength to write.

vii

Table of Contents

Preface . xiii

1. HTML, XHTML, and the World Wide Web . 1
1.1 The Internet 1

1.2 Talking the Internet Talk 4

1.3 HTML and XHTML: What They Are 8

1.4 HTML and XHTML: What They Aren’t 9

1.5 Standards and Extensions 10

1.6 Tools for the Web Designer 12

2. Quick Start . 15
2.1 Writing Tools 15

2.2 A First HTML Document 16

2.3 Embedded Tags 17

2.4 HTML Skeleton 18

2.5 The Flesh on an HTML or XHTML Document 19

2.6 Text 20

2.7 Hyperlinks 24

2.8 Images Are Special 27

2.9 Lists, Searchable Documents, and Forms 30

2.10 Tables 31

2.11 Frames 32

2.12 Stylesheets and JavaScript 33

2.13 Forging Ahead 34

3. Anatomy of an HTML Document . 35
3.1 Appearances Can Deceive 35

3.2 Structure of an HTML Document 36

viii | Table of Contents

3.3 Tags and Attributes 37

3.4 Well-Formed Documents and XHTML 41

3.5 Document Content 42

3.6 HTML/XHTML Document Elements 44

3.7 The Document Header 47

3.8 The Document Body 51

3.9 Editorial Markup 52

3.10 The <bdo> Tag 55

4. Text Basics . 57
4.1 Divisions and Paragraphs 57

4.2 Headings 65

4.3 Changing Text Appearance and Meaning 70

4.4 Content-Based Style Tags 71

4.5 Physical Style Tags 78

4.6 Precise Spacing and Layout 83

4.7 Block Quotes 96

4.8 Addresses 99

4.9 Special Character Encoding 101

4.10 HTML’s Obsolete Expanded Font Handling 102

5. Rules, Images, and Multimedia . 109
5.1 Horizontal Rules 109

5.2 Inserting Images in Your Documents 116

5.3 Document Colors and Background Images 143

5.4 Background Audio 150

5.5 Animated Text 153

5.6 Other Multimedia Content 156

6. Links and Webs . 159
6.1 Hypertext Basics 159

6.2 Referencing Documents: The URL 160

6.3 Creating Hyperlinks 176

6.4 Creating Effective Links 185

6.5 Mouse-Sensitive Images 189

6.6 Creating Searchable Documents 200

6.7 Relationships 203

6.8 Supporting Document Automation 208

Table of Contents | ix

7. Formatted Lists . 211
7.1 Unordered Lists 211

7.2 Ordered Lists 214

7.3 The Tag 217

7.4 Nesting Lists 220

7.5 Definition Lists 222

7.6 Appropriate List Usage 226

7.7 Directory Lists 227

7.8 Menu Lists 228

8. Cascading Style Sheets . 230
8.1 The Elements of Styles 231

8.2 Style Syntax 239

8.3 Style Classes 245

8.4 Style Properties 251

8.5 Tagless Styles: The Tag 306

8.6 Applying Styles to Documents 307

9. Forms . 311
9.1 Form Fundamentals 311

9.2 The <form> Tag 313

9.3 A Simple Form Example 320

9.4 Using Email to Collect Form Data 321

9.5 The <input> Tag 323

9.6 The <button> Tag 334

9.7 Multiline Text Areas 336

9.8 Multiple-Choice Elements 338

9.9 General Form-Control Attributes 342

9.10 Labeling and Grouping Form Elements 346

9.11 Creating Effective Forms 349

9.12 Forms Programming 353

10. Tables . 359
10.1 The Standard Table Model 359

10.2 Basic Table Tags 361

10.3 Advanced Table Tags 379

10.4 Beyond Ordinary Tables 389

x | Table of Contents

11. Frames . 391
11.1 An Overview of Frames 391

11.2 Frame Tags 392

11.3 Frame Layout 394

11.4 Frame Contents 398

11.5 The <noframes> Tag 402

11.6 Inline Frames 403

11.7 Named Frame or Window Targets 405

11.8 XFrames 410

12. Executable Content . 413
12.1 Applets and Objects 413

12.2 Embedded Content 417

12.3 JavaScript 432

12.4 JavaScript Stylesheets (Antiquated) 440

13. Dynamic Documents . 447
13.1 An Overview of Dynamic Documents 447

13.2 Client-Pull Documents 448

13.3 Server-Push Documents 453

14. Mobile Devices . 457
14.1 The Mobile Web 457

14.2 Device Considerations 459

14.3 XHTML Basic 462

14.4 Effective Mobile Web Design 465

15. XML . 472
15.1 Languages and Metalanguages 473

15.2 Documents and DTDs 475

15.3 Understanding XML DTDs 476

15.4 Element Grammar 481

15.5 Element Attributes 485

15.6 Conditional Sections 487

15.7 Building an XML DTD 488

15.8 Using XML 490

Table of Contents | xi

16. XHTML . 493
16.1 Why XHTML? 494

16.2 Creating XHTML Documents 495

16.3 HTML Versus XHTML 499

16.4 XHTML 1.1 504

16.5 Should You Use XHTML? 505

17. Tips, Tricks, and Hacks . 509
17.1 Top of the Tips 509

17.2 Cleaning Up After Your HTML Editor 510

17.3 Tricks with Tables 515

17.4 Tricks with Windows and Frames 521

A. HTML Grammar . 525

B. HTML/XHTML Tag Quick Reference . 535

C. Cascading Style Sheet Properties Quick Reference . 557

D. The HTML 4.01 DTD . 565

E. The XHTML 1.0 DTD . 583

F. Character Entities . 602

G. Color Names and Values . 607

H. Netscape Layout Extensions . 611

Index . 633

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xiii

Preface

Learning Hypertext Markup Language (HTML) and Extensible Hypertext Markup
Language (XHTML) is like learning any new language, computer or human. Most
students first immerse themselves in examples. Studying others is a natural way to
learn, making learning easy and fun. Our advice to anyone wanting to learn HTML
and XHTML is to get out there on the Web with a suitable browser and see for your-
self what looks good, what’s effective, and what works for you. Examine others’ doc-
uments and ponder the possibilities. Mimicry is how many of the current
webmasters have learned the language.

Imitation can take you only so far, though. Examples can be both good and bad.
Learning by example helps you talk the talk, but not walk the walk. To become truly
conversant, you must learn how to use the language appropriately in many different
situations. You could learn all that by example, if you live long enough.

Computer-based languages are more explicit than human languages, though the
markup languages are much more forgiving than the programming ones. Nonethe-
less, you typically have to get the computer language syntax correct or it won’t work.
There are “standards,” too. Committees of academics and industry experts define the
proper syntax and usage of a computer language like HTML. The problem is that the
browser technologies that you and your audience use to display your documents
don’t always keep up with the standards. Some can’t, like the limited viewers used in
the burgeoning mobile-device market. And then there are those that make up their
own parts to the language; standards be damned.

Standards change, besides. HTML is undergoing a conversion into XHTML, making
it an application of the Extensible Markup Language (XML). HTML and XHTML
are so similar that we often refer to them as a single language, but there are key dif-
ferences, which we discuss later in this Preface.

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

To be safe, the way to become fluent in HTML and XHTML is through a compre-
hensive, up-to-date language reference that covers the language syntax, semantics,
and variations in detail to help you distinguish between good and bad usage.

There’s one more step leading to fluency in a language. To become a true master of the
language, you need to develop your own style. That means knowing not only what is
appropriate, but also what is effective. Layout matters. So does the order of presenta-
tion within a document, between documents, and between document collections.

Our goal in writing this book is to help you become fluent in HTML and XHTML, fully
versed in their syntax, semantics, and elements of style. We take the natural-learning
approach, using examples (good ones, of course). We cover in detail every element of
the currently accepted standard versions of the languages (HTML 4.01 and XHTML
1.0) as well as all of the current extensions supported by the popular browsers, explain-
ing how each element works and how it interacts with all of the other elements.

And, with all due respect to Strunk and White, throughout the book we give you
suggestions for style and composition to help you decide how best to use HTML and
XHTML to accomplish a variety of tasks, from simple online documentation to com-
plex marketing and sales presentations. We show you what works and what doesn’t,
what makes sense to those who view your pages, and what might be confusing.

In short, this book is a definitive guide to creating documents using HTML and
XHTML, starting with basic syntax and semantics and finishing with broad style
guidelines to help you create beautiful, informative, accessible documents that you’ll
be proud to deliver to your readers.

Our Audience
We wrote this book for anyone interested in learning and using the language of the
Web, from the most casual user to the full-time design professional. We don’t expect
you to have any experience in HTML or XHTML before picking up this book. In
fact, we don’t even expect that you’ve ever browsed the Web, although we’d be very,
very surprised if you haven’t. Being connected to the Internet is not strictly neces-
sary to use this book, but if you’re not connected, this book becomes like a travel
guide for the homebound.

The only things we ask you to have are a computer, an editor that can create simple
text files, and copies of the latest web browsers. We used the latest Internet Explorer,
Mozilla Firefox, Netscape Navigator, and Opera Software ASA’s Opera for the exam-
ples in this book. Because HTML and XHTML documents are stored in a univer-
sally accepted format—plain text—and because the languages are completely
independent of any specific computer, we won’t even make an assumption about the
kind of computer you’re using. However, browsers do vary by platform and operat-
ing system, which means that your HTML or XHTML documents can look quite dif-
ferent depending on the computer and browser version. So we explain where we can

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

how the various browsers use certain language features, paying particular attention
to how they are different.

If you are new to HTML, the Web, or hypertext documentation in general, you
should start by reading Chapter 1. In it, we describe how all these technologies come
together to create web sites of interrelated documents.

If you are already familiar with the Web, but not with HTML or XHTML specifi-
cally, start by reading Chapter 2. This chapter is a brief overview of the most impor-
tant features of the language and serves as a roadmap to how we approach the
language in the remainder of the book.

Subsequent chapters deal with specific language features in a roughly top-down
approach to HTML and XHTML. Read them in order for a complete tour through
the language, or jump around to find the exact feature you’re interested in.

Text Conventions
Throughout the book, we use a constant-width typeface to highlight any literal ele-
ment of the HTML/XHTML standards, tags, and attributes. We always use lowercase
letters for tags.*We use italic for filenames and to indicate new concepts when they are
defined. Elements you need to supply when creating your own documents, such as tag
attributes and user-defined strings, appear in constant-width italic in the code.

We discuss elements of the language throughout the book, but you’ll find each one
covered in depth (some might say in nauseating detail) in a shorthand, quick-
reference definition box that looks like the one that follows (for the <title> ele-
ment). The first line of the box contains the element name, followed by a brief
description of its function. Next, we list the various attributes, if any, of the element:
those things that you may or must specify as part of the element.

* HTML is case-insensitive with regard to tag and attribute names, but XHTML is case-sensitive. And some
HTML items, such as source filenames, are case-sensitive, so be careful.

<title>

Function Defines the document title

Attribute dirlang

End tag </title>; never omitted

Contains plain_text

Used in head_content

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

The icon identifies tags and attributes that aren’t in the HTML 4.01 or XHTML 1.0
standards, and those that are handled very differently between the various popular
browsers.

The description also includes the HTML ending tag, if any, for the element, along
with a general indication of whether the end tag may be safely omitted in general use
in HTML. For the few tags that require end tags in XHTML, but do not have them in
HTML, the language lets you indicate that by placing a forward slash (/) before the
tag’s closing bracket, as in
. In these cases, the tag may also contain attributes,
indicated with an intervening ellipsis, such as <br ... />.

The “Contains” header names the rule in the HTML grammar that defines the ele-
ments to be placed within this tag. Similarly, the “Used in” header lists those rules
that allow this tag as part of their content. We define these rules in Appendix A.

Finally, HTML and XHTML are fairly intertwined languages. You will occasionally
use elements in different ways depending on context, and many elements share iden-
tical attributes. Wherever possible, we place a cross-reference in the text that leads
you to a related discussion elsewhere in the book. These cross-references, like the
one at the end of this paragraph, serve as a crude paper model of hypertext docu-
mentation, one that would be replaced with a true hypertext link should this book be
delivered in an electronic format. [The Syntax of a Tag, 3.3.1]

We encourage you to follow these cross-references whenever possible. Often, we
cover an attribute briefly and expect you to jump to the cross-reference for a more
detailed discussion. In other cases, following the link takes you to alternative uses of
the element under discussion or to style and usage suggestions that relate to the cur-
rent element.

Versions and Semantics
The latest HTML standard is version 4.01, but most updates and changes to the lan-
guage standard were made in version 4.0. Therefore, throughout the book, we often
refer to the HTML standard as HTML 4, encompassing versions 4.0 and later. We
explicitly state the “dot” version number only when it is relevant.

The XHTML standard is currently in its first iteration, 1.0. The World Wide Web
Consortium (W3C) has released a Working Draft of a second version (XHTML 2.0),
but the standard is yet established. For the most part, XHTML 1.0 is identical to
HTML 4.01; we detail their differences in Chapter 16. Throughout the book, we spe-
cifically note cases where XHTML handles a feature or element differently than the
original language, HTML.

The HTML and XHTML standards make very clear the distinction between “ele-
ment types” of a document and the markup “tags” that delimit those elements. For
example, the standard refers to the paragraph element type, which is not the same as

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Preface | xvii

the <p> tag. The paragraph element consists of the accepted element-type name
within the starting tag (<p>), intervening content, and the ending paragraph tag (</p>).
The <p> tag is the starting tag for the paragraph element, and its contents, known as
attributes, ultimately affect the paragraph element type’s contents.

Although these are important distinctions, we’re pragmatists. It is the markup tag
that authors apply in their documents and that affects any intervening content.
Accordingly, throughout the book, we relax the distinction between element types
and tags, often talking about tags and all related contents and not necessarily using
the term element-type when it would be technically appropriate to make the distinc-
tion. Forgive us the transgression, but we do so for the sake of clarity.

HTML Versus XHTML
It’s not Latin, but HTML has reached old age in standard version 4.01. The W3C
has no plans to develop another version and has officially said so. Rather, HTML is
being subsumed and modularized as an Extensible Markup Language (XML). Its
new name is XHTML, Extensible Hyptertext Markup Language.

The emergence of XHTML is just another chapter in the often tumultuous history of
HTML and the Web, where confusion for authors is the norm, not the exception. At
its nadir, the elders of the W3C responsible for accepted and acceptable uses of the
language—standards—lost control of the language in the browser “wars” between
Netscape and Microsoft. The abortive HTML+ standard never got off the ground,
and HTML 3.0 became so bogged down in debate that the W3C simply shelved the
entire draft. HTML 3.0 never happened, despite what some opportunistic marketers
claimed in their literature. Instead, by late 1996, the browser manufacturers con-
vinced the W3C to release HTML standard version 3.2, which for all intents and
purposes simply standardized most of Netscape’s HTML extensions.

Netscape’s dominance as the leading browser, and as a leader in web technologies,
faded dramatically toward the end of the millennium. By then, Microsoft had effec-
tively bundled Internet Explorer into the Windows operating system, not only as an
installed application, but also as a dominant feature of the GUI desktop. In addition,
Internet Explorer introduced several features (albeit nonstandard at the time) that
appealed principally to the growing Internet business and marketing community.

Fortunately for those of us who appreciate and strongly support standards, the W3C
took back its primacy role with HTML 4.0, which stands today as HTML version 4.01,
released in December 1999. Absorbing many of the Netscape and Internet Explorer
innovations, the standard is clearer and cleaner than any previous ones, establishes
solid implementation models for consistency across browsers and platforms, pro-
vides strong support and incentives for the companion Cascading Style Sheets (CSS)
standard for HTML-based displays, and makes provisions for alternative (nonvisual)
user agents, as well as for more universal language supports.

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

Cleaner and clearer aside, the W3C realized that HTML could never keep up with
the demands of the web community for more ways to distribute, process, and dis-
play documents. HTML offers only a limited set of document-creation primitives and
is hopelessly incapable of handling nontraditional content like chemical formulae,
musical notation, and mathematical expressions. Nor can it well support alternative
display media, such as handheld computers and intelligent cellular phones.

To address these demands, the W3C developed the XML standard. XML provides a
way to create new, standards-based markup languages that don’t take an act of the
W3C to implement. XML-compliant languages deliver information that can be
parsed, processed, displayed, sliced, and diced by the many different communica-
tion technologies that have emerged since the Web sparked the digital communica-
tion revolution a decade ago. XHTML is HTML reformulated to adhere to the XML
standard. It is the foundation language for the future of the Web.

Why not just drop HTML for XHTML? For many reasons. First and foremost,
XHTML has not exactly taken the Web by storm. There’s just too much current
investment in HTML-based documentation and expertise for that to happen any-
time soon. Besides, XHTML is HTML 4.01 reformulated as an application of XML.
Know HTML 4 and you’re all ready for the future.*

Deprecated Features
One of the unpopular things standards bearers have to do is make choices between
popular and proper. The authors of the HTML and XHTML standards exercise that
responsibility by “deprecating” those features of the language that interfere in the
grand scheme of things.

For instance, the <center> tag tells the browser to display the enclosed text centered
in the display window. But the CSS standard provides ways to center text, too. The
W3C chooses to support the CSS way and discourages the use of <center> by depre-
cating the tag. The plan is, in some later standard version, to stop using <center> and
other deprecated elements and attributes of the language.

Throughout the book, we specially note and continuously remind you when an
HTML tag or other component is deprecated in the current standards. Should you
stop using them now? Yes and no.

Yes, because there is a preferred and perhaps better way to accomplish the same
thing. By exercising that alternative, you ensure that your documents will survive for
many years to come on the Web. And, yes, because the tools you may use to prepare
HTML/XHTML documents probably adhere to the preferred standard. You may not
have a choice, unless you disable your tools. In any event, unless you hand-compose

* We plumb the depths of XML and XHTML in Chapters 15 and 16.

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

all your documents, you’ll need to know how the preferred way works so that you
can identify the code and modify it.

However compelling the reasons for not using deprecated elements and attributes
are, they still are part of the standards. They remain well supported by most brows-
ers and aren’t expected to disappear anytime soon. In fact, since there is no plan to
change the HTML standard, the “deprecated” stamp is very misleading.

So, no, you don’t have to worry about deprecated HTML features. There is no rea-
son to panic, certainly. We do, however, encourage you to make a move toward the
standards soon.

A Definitive Guide
The paradox in all this is that even the HTML 4.01 standard is not the definitive
resource. There are many more features of HTML in popular use and supported by
the popular browsers than are included in the latest language standard. And there are
many parts of the standards that are ignored. We promise you, things can get down-
right confusing.

We’ve managed to sort things out for you, though, so you don’t have to sweat over
what works and doesn’t work with what browser. This book, therefore, is the defini-
tive guide to HTML and XHTML. We give details for all the elements of the HTML
4.01 and XHTML 1.0 standards, plus the variety of interesting and useful extensions
to the language. We also include detailed discussions of the CSS standard, since it is
so intricately related to web page development.

In addition, there are a few things that are closely related but not directly part of
HTML. For example, we touch, but do not handle, JavaScript, Common Gateway
Interface (CGI), and Java programming. They all work closely with HTML docu-
ments and run with or alongside browsers, but they are not part of the language
itself, so we don’t delve into them. Besides, they are comprehensive topics that
deserve their own books, such as JavaScript: The Definitive Guide, by David Flana-
gan; CGI Programming with Perl, by Scott Guelich, Shishir Gundavaram, and
Gunther Birzneiks; Cascading Style Sheets: The Definitive Guide, by Eric Meyer; and
Learning Java, by Pat Niemeyer and Jonathan Knudsen (all published by O’Reilly).

This is your definitive guide to HTML and XHTML as they are and should be used,
including every extension we could find. Some extensions aren’t documented any-
where, even in the plethora of online guides. But, if we’ve missed anything, certainly
let us know and we’ll put it in the next edition.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “HTML & XHTML: The Definitive
Guide, Sixth Edition, by Chuck Musciano and Bill Kennedy. Copyright 2007
O’Reilly Media, Inc., 978-0-596-52732-7.”

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

There is a web page for this book, which lists any errata, examples, or additional
information. You can access this page at:

http://www.oreilly.com/catalog/html6

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

This is the Title of the Book, eMatter Edition

Copyright © 2006 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Acknowledgments
We did not compose, and certainly could not have composed, this or any other edi-
tion of the book without generous contributions from many people. Our wives,
Jeanne and Cindy, and our children, Eva, Ethan, Courtney, and Cole (they hap-
pened before we started writing), formed the front lines of support. And there are
numerous neighbors, friends, and colleagues who helped by sharing ideas, testing
browsers, and letting us use their equipment to explore HTML. You know who you
are, and we thank you all.

In addition, we thank our technical reviewers, Chat Clussman, Patrick Krekelberg,
Sam Marshall, and Shlomi Fish, for carefully scrutinizing our work. We took most of
your keen suggestions. We especially thank our O’Reilly editors, especially Mike
Loukides and Tatiana Apandi, for their patience in keeping us two mavericks cor-
ralled. And special thanks to Tatiana for bringing this sixth edition to fruition.

1

Chapter 1
In this chapter:

• The Internet
• Talking the Internet Talk
• HTML and XHTML: What They Are
• HTML and XHTML: What They Aren’t
• Standards and Extensions
• Tools for the Web Designer

CHAPTER 1

HTML, XHTML, and the
World Wide Web1

Though it began as a military experiment and spent its adolescence as a sandbox for
academics and eccentrics, in less than a decade just before the new millennium, the
worldwide network of computer networks (a.k.a. the Internet) matured into a highly
diversified, financially important community of computer users and information ven-
dors. From the boardroom to your living room, you can bump into Internet users of
nearly any and all nationalities, of any and all persuasions, from serious to frivolous
individuals, from businesses to nonprofit organizations, and from born-again Chris-
tian evangelists to pornographers.

In many ways, the Web—the open community of hypertext-enabled document serv-
ers and readers on the Internet—is responsible for the meteoric rise in the network’s
popularity. You, too, can become a valued member by contributing: writing HTML
and XHTML documents and then making them available to web surfers worldwide.

Let’s climb up the Internet family tree to gain some deeper insight into its magnifi-
cence, not only as an exercise of curiosity, but also to help us better understand just
who and what we are dealing with when we go online.

1.1 The Internet
Although popular media accounts are often confused and confusing, the concept of
the Internet really is rather simple: it’s a worldwide collection of computer net-
works—a network of networks—sharing digital information via a common set of
networking and software protocols.

2 | Chapter 1: HTML, XHTML, and the World Wide Web

Networks are not new to computers. What makes the Internet unique is its world-
wide collection of digital telecommunication links that share a common set of com-
puter-network technologies, protocols, and applications. Whether you run Microsoft
Windows XP, Linux, Mac OS, or even the now ancient Windows 3.1, when con-
nected to the Internet, all computers speak the same networking language and use
functionally identical programs, so you can exchange information—even multime-
dia pictures and sound—with someone next door or across the planet.

The common and now quite familiar programs people use to communicate and dis-
tribute their work over the Internet have also found their way into private and semi-
private networks. These so-called intranets and extranets use the same software,
applications, and networking protocols as the Internet. But unlike the Internet, intra-
nets are private networks, with access restricted to members of the institution. Like-
wise, extranets restrict access but use the Internet to provide services to members.

The Internet, on the other hand, seemingly has no restrictions. Anyone with a com-
puter and the right networking software and connection can “get on the Net” and begin
exchanging words, sounds, and pictures with others around the world, day or night: no
membership required. And that’s precisely what is confusing about the Internet.

Like an oriental bazaar, the Internet is not well organized, there are few content
guides, and it can take a lot of time and technical expertise to tap its full potential.
That’s because….

1.1.1 In the Beginning
The Internet began in the late 1960s as an experiment in the design of robust com-
puter networks. The goal was to construct a network of computers that could with-
stand the loss of several machines without compromising the ability of the remaining
ones to communicate. Funding came from the U.S. Department of Defense, which had
a vested interest in building information networks that could withstand nuclear attack.

The resulting network was a marvelous technical success, but it was limited in size
and scope. For the most part, only defense contractors and academic institutions
could gain access to what was then known as the ARPAnet (Advanced Research
Projects Agency Network of the Department of Defense).

With the advent of high-speed modems for digital communication over common
phone lines, some individuals and organizations not directly tied to the main digital
pipelines began connecting to and taking advantage of the network’s advanced and
global communications. Nonetheless, it wasn’t until around 1993 that the Internet
really took off.

Several crucial events led to the meteoric rise in popularity of the Internet. First, in
the early 1990s, businesses and individuals eager to take advantage of the ease and

1.1 The Internet | 3

power of global digital communications finally pressured the largest computer net-
works on the mostly U.S. government-funded Internet to open their systems for
nearly unrestricted traffic. (The network wasn’t designed to route information based
on content, meaning that commercial messages went through university computers
that at the time forbade such activity.)

True to their academic traditions of free exchange and sharing, many of the original
Internet members continued to make substantial portions of their electronic collec-
tions of documents and software available to the newcomers—free for the taking! Glo-
bal communications, a wealth of free software and information: who could resist?

Well, frankly, the Internet was a tough row to hoe back then. Getting connected and
using the various software tools, if they were even available for their computers, pre-
sented an insurmountable technology barrier for most people. And most available
information was plain-vanilla text about academic subjects, not the neatly packaged
fare that attracts users to services such as America Online. The Internet was just too
disorganized, and, outside of the government and academia, few people had the
knowledge or interest to learn how to use the arcane software or the time to spend
rummaging through documents looking for ones of interest.

1.1.2 HTML and the Web

It took another spark to light the Internet rocket. At about the same time the Inter-
net opened up for business, some physicists at CERN, the European Particle Physics
Laboratory, released an authoring language and distribution system they developed
for creating and sharing multimedia-enabled, integrated electronic documents over
the Internet. And so was born Hypertext Markup Language (HTML), browser soft-
ware, and the Web. No longer did authors have to distribute their work as frag-
mented collections of pictures, sounds, and text. HTML unified those elements.
Moreover, the Web’s systems enabled hypertext linking, whereby documents auto-
matically reference other documents located anywhere around the world: less rum-
maging, more productive time online.

Lift-off happened when some bright students and faculty at the National Center for
Supercomputing Applications (NCSA) at the University of Illinois, Urbana-
Champaign wrote a web browser called Mosaic. Although designed primarily for
viewing HTML documents, the software also had built-in tools to access the much
more prolific resources on the Internet, such as FTP archives of software and
Gopher-organized collections of documents.

With versions based on easy-to-use GUIs familiar to most computer owners, Mosaic
became an instant success. It, like most Internet software, was available on the Net
for free. Millions of users snatched up copies and began surfing the Internet for “cool
web pages.”

4 | Chapter 1: HTML, XHTML, and the World Wide Web

1.1.3 Golden Threads
Since those early days, the Web has spawned an entirely new medium for worldwide
information exchange and commerce. For instance, when the marketeers caught on to
the fact that they could cheaply produce and deliver eye-catching, wow-and-whiz-bang
commercials and product catalogs to those millions of web surfers around the world,
there was no stopping the stampede of blue suede shoes. Even the key developers of
Mosaic and related web server technologies sensed potential riches. They left NCSA
and made their fortunes with Netscape Communications by producing commercial
web browsers and server software. That was until the sleeping giant, Microsoft, awoke.
But that’s another story….

Business users and marketing opportunities have helped invigorate the Internet and
fuel its phenomenal growth. Internet-based commerce has become Very Big Busi-
ness, exceeding $150 billion annually by 2005. Traditional bricks-and-mortar busi-
nesses have either opened web-based commercial sites or face extinction.

For some, particularly we Internet old-timers, business and marketing have also
trashed the medium. In many ways, the Web has become a vast strip mall and an
annoying advertising medium. Believe it or not, once upon a time, Internet users
actually followed commonly held (but not formally codified) rules of netiquette that
prohibited such things as spam email.

Nonetheless, the power of HTML and network distribution of information goes well
beyond marketing and monetary rewards: serious informational pursuits also bene-
fit. Publications complete with images and other media such as executable software
can get to their intended audiences in the blink of an eye, instead of the months tra-
ditionally required for printing and mail delivery. Education takes a great leap for-
ward when students gain access to the great libraries of the world. And at times of
leisure, the interactive capabilities of HTML links can reinvigorate our otherwise
television-numbed minds.

1.2 Talking the Internet Talk
Every computer connected to the Internet (even a beat-up old Apple II) has a unique
address: a number whose format is defined by the Internet Protocol (IP), the stan-
dard that defines how messages are passed from one machine to another on the Net.
An IP address is made up of four numbers, each less than 256, joined together by
periods, such as 192.12.248.73 and 131.58.97.254.

While computers deal only with numbers, people prefer names. For this reason,
most computers also have names bestowed upon them. By current estimates, there
are hundreds of millions, if not billions, of devices on the Net, so it would be very
difficult to come up with that many unique names, let alone keep track of them all.
Instead, the Internet is a network of networks, and is divided into groups known as

1.2 Talking the Internet Talk | 5

domains, which are further divided into one or more subdomains. So, while you
might choose a very common name for your computer, it becomes unique when you
append, like surnames, all of the machine’s domain names as a period-separated suf-
fix, creating a fully qualified domain name.

This naming stuff is easier than it sounds. For example, the fully qualified domain
name www.oreilly.com translates to a machine named “www” that’s part of the
domain known as “oreilly,” which, in turn, is part of the commercial (com) branch
of the Internet. Other branches of the Internet include educational institutions (edu),
nonprofit organizations (org), the U.S. government (gov), and Internet service pro-
viders (net). Computers and networks outside the United States may have two-letter
abbreviations at the end of their names: for example, “ca” for Canada, “jp” for
Japan, and “uk” for the United Kingdom.

Special computers, known as nameservers, keep tables of machine names and associ-
ated IP addresses and translate one into the other for us and for our machines.
Domain names must be registered and paid for through any one of the now many
for-profit registrars.* Once a unique domain name is registered, its owner makes it
and its address available to other domain nameservers around the world.

1.2.1 Clients, Servers, and Browsers
The Internet connects two kinds of computers: servers, which serve up documents,
and clients, which retrieve and display documents for us humans. Things that hap-
pen on the server machine are said to be on the server side, and activities on the cli-
ent machine occur on the client side.

To access and display HTML documents, we run programs called browsers on our
client computers. These browser clients talk to special web servers over the Internet
to access, retrieve, and display electronic documents.

A variety of browsers are available today. Internet Explorer comes with Microsoft’s
operating system software, for example, while most other browsers are free for
download on the Web. And most browsers run on client devices that have high-reso-
lution, high-color graphical viewing screens. In fact, today’s browsers share com-
mon HTML-rendering software under the hood, so to speak, and differ only by
extraneous, albeit some very useful features. For instance, when you install Netscape
Navigator version 8, you decide whether to use the NCSA Mosaic rendering soft-
ware, portions of which also are under Microsoft’s Internet Explorer, or Mozilla’s
software, which comes under the hood of another popular browser, Firefox.

* At one time, a single nonprofit organization known as InterNIC handled that function. Now ICANN.org
coordinates U.S. government-related nameservers, but other organizations or individuals must work
through a for-profit company to register their unique domain names.

6 | Chapter 1: HTML, XHTML, and the World Wide Web

This is very different from around the turn of the century, when Internet Explorer
savagely competed with Netscape Navigator through unique extensions to the
HTML language. Internet Explorer won. Many of its extensions even became HTML
standards, and others such as Netscape’s layout extensions disappeared and so got
relegated to appendices in this book.

1.2.2 The Flow of Information
All web activity begins on the client side, when a user starts his browser. The
browser begins by loading a home page document, either from local storage or from a
server over some network, such as the Internet, a corporate intranet, or a town extra-
net. When starting up on the network, the client browser first consults a domain
name system (DNS) server to translate the home page server’s name, such as www.
oreilly.com, into an IP address, before sending a request to that server over the Inter-
net. This request (and the server’s reply) is formatted according to the dictates of the
Hypertext Transfer Protocol (HTTP) standard.

A server spends most of its time listening to the network, waiting for document
requests with the server’s unique address stamped on them. Upon receipt of a
request, the server verifies that the requesting browser is allowed to retrieve docu-
ments from the server and, if so, checks for the requested document. If it finds the
document, the server sends it to the browser. The server usually logs the request,
typically including the client computer’s IP address, the document requested, and
the time. The server might also issue special attachments known as cookies that con-
tain additional information about the requesting browser and its owner.

Back on the browser, the document arrives. If it’s a plain-vanilla text file, most
browsers display it in a common, plain-vanilla way. Document directories, too, are
treated like plain documents, which most graphical browsers display as folder icons
that the user may select, thereby requesting to view the contents of the subdirectory.

Browsers can retrieve many different types of files from a server. Unless assisted by a
helper program or specially enabled by plug-in software or applets, which display an
image or video file or play an audio file, the browser usually stores the file directly on
a local disk for later use.

For the most part, however, the browser retrieves a special document that appears to
be a plain text file but that contains both text and special markup codes called tags.
The browser processes these HTML or XHTML documents, formatting the text
based on the tags and downloading special accessory files, such as images.

The user reads the document, selects a hyperlink to another document, and the
entire process starts over.

1.2 Talking the Internet Talk | 7

1.2.3 Beneath the Web
We should point out again that browsers and HTTP servers need not be part of the
Web to function. In fact, you never need to be connected to the Internet or to any
network, for that matter, to write HTML/XHTML documents and operate a
browser. You can load and display locally stored documents and accessory files
directly on your browser. Many organizations take advantage of this capability by
distributing catalogs and product manuals, for instance, on a much less expensive,
but much more interactively useful, CD-ROM, rather than via traditional print on
paper. Many graphical-user applications even document their features through
HTML/XHTML-based Help menus.

Isolating web documents is good for the author, too, since it gives you the opportu-
nity to finish, in the editorial sense of the word, a document collection for later distri-
bution. Diligent authors work locally to write and proof their documents before
releasing them for general distribution, thereby sparing readers the agonies of bro-
ken image files and bogus hyperlinks.*

Organizations, too, can be connected to the Internet but also maintain private web
sites and document collections for distribution to clients on their local networks, or
intranets. In fact, private web sites are fast becoming the technology of choice for the
paperless offices we’ve heard so much about during these last few years. With
HTML and XHTML document collections, businesses can maintain personnel data-
bases complete with employee photographs and online handbooks, collections of
blueprints, parts, assembly manuals, and so on—all readily and easily accessed elec-
tronically by authorized users and displayed on a local computer.

1.2.4 Standards Organizations
Like many popular technologies, HTML started out as an informal specification used
by only a few people. As more and more authors began to use the language, it
became obvious that more formal means were needed to define and manage—i.e., to
standardize—the language’s features, making it easier for everyone to create and
share documents.

1.2.4.1 The World Wide Web Consortium

The World Wide Web Consortium (W3C) was formed with the charter to define the
standards for HTML and, later, XHTML. Members are responsible for drafting, cir-
culating for review, and modifying the standard based on cross-Internet feedback to
best meet the needs of many.

* Vigorous testing of HTML documents once they are made available on the Web is, of course, also highly
recommended and necessary to rid them of various linking bugs.

8 | Chapter 1: HTML, XHTML, and the World Wide Web

Beyond HTML and XHTML, the W3C has the broader responsibility of standardiz-
ing any technology related to the Web; they manage the HTTP, Cascading Style
Sheet (CSS), and Extensible Markup Language (XML) standards, as well as related
standards for document addressing on the Web. They also solicit draft standards for
extensions to existing web technologies.

If you want to track HTML, XML, XHTML, CSS, and other exciting web develop-
ment and related technologies, contact the W3C at http://www.w3.org.

Also, several Internet newsgroups are devoted to the Web, each a part of the comp.
infosystems.www hierarchy. These include comp.infosystems.www.authoring.html and
comp.infosystems.www.authoring.images.

1.2.4.2 The Internet Engineering Task Force

Even broader in reach than W3C, the Internet Engineering Task Force (IETF) is
responsible for defining and managing every aspect of Internet technology. The Web
is just one small area under the purview of the IETF.

The IETF defines all of the technology of the Internet via official documents known
as Requests for Comments, or RFCs. Individually numbered for easy reference, each
RFC addresses a specific Internet technology—everything from the syntax of domain
names and the allocation of IP addresses to the format of electronic mail messages.

To learn more about the IETF and follow the progress of various RFCs as they are
circulated for review and revision, visit the IETF home page, http://www.ietf.org.

1.3 HTML and XHTML: What They Are
HTML and XHTML define the syntax and placement of special, embedded direc-
tions that aren’t displayed by the browser but advise it how to display the contents of
the document, including text, images, and other support media. The languages also
make a document interactive through special hypertext links, which connect your
document with other documents—on either your computer or someone else’s—as
well as with other Internet resources.

You’ve certainly heard of HTML and, perhaps, XHTML, but did you know that they
are just two of many other markup languages? Indeed, HTML is the black sheep in the
family of document markup languages. HTML was based on SGML, the Standard
Generalized Markup Language. The powers that be created SGML with the intent that
it would be the one and only markup metalanguage from which all other document
markup elements would be created. Everything from hieroglyphics to HTML can be
defined using SGML, negating any need for any other markup language.

The problem with SGML is that it is so broad and all-encompassing that mere mor-
tals cannot use it. Using SGML effectively requires very expensive and complex tools
that are completely beyond the scope of regular people who just want to bang out an

1.4 HTML and XHTML: What They Aren’t | 9

HTML document in their spare time. As a result, HTML adheres to some, but not
all, SGML standards,* eliminating many of the more esoteric features so that it is
readily useable and used.

Besides the fact that SGML is unwieldy and not well suited to describing the very
popular HTML in a useful way, there was also a growing need to define other
HTML-like markup languages to handle different network documents. Accordingly,
the W3C defined XML. Like SGML, XML is a separate formal markup metalan-
guage that uses select features of SGML to define markup languages. It eliminates
many features of SGML that aren’t applicable to languages like HTML and simpli-
fies other SGML elements in order to make them easier to use and understand.

However, HTML version 4.01 is not XML compliant. Hence, the W3C offers
XHTML, a reformulation of HTML that is compliant with XML. XHTML attempts
to support every last nit and feature of HTML 4.01 using the more rigid rules of
XML. It generally succeeds, but it has enough differences to make life difficult for the
standards-conscious HTML author.

1.4 HTML and XHTML: What They Aren’t
Despite all their new, multimedia-enabling page-layout features, and the hot technol-
ogies that give life to HTML/XHTML documents over the Internet, it is also impor-
tant to understand the languages’ limitations. They are not word processing tools,
desktop publishing solutions, or even programming languages. Their fundamental
purpose is to define the structure of documents and document families so that they
may be delivered quickly and easily to a user over a network for rendering on a vari-
ety of display devices; jacks-of-all-trades but masters of none, so to speak.

1.4.1 Content Versus Appearance
HTML and its progeny, XHTML, provide many different ways to let you define the
appearance of your documents, but their focus is on structure, not appearance. Of
course, appearance is important, since it can have either detrimental or beneficial
effects on how users access and use the information in your documents. And that is
why the companion CSS standard is important.

Nonetheless, we believe that content is paramount; appearance is secondary, particu-
larly since it is less predictable, given the variety of browser graphics and text-format-
ting capabilities. In fact, HTML and XHTML contain many ways for structuring
your document content without regard to the final appearance: section headers,
structured lists, paragraphs, rules, titles, and embedded images are defined by the

* The HTML Document Type Definition (DTD) in Appendix D uses a subset of SGML to define the HTML
4.01 standard.

10 | Chapter 1: HTML, XHTML, and the World Wide Web

standard languages without regard for how these elements might be rendered by a
browser. Consider, for example, a browser for the blind, wherein graphics on the
page come with audio descriptions and alternative rules for navigation. The HTML/
XHTML standards define such a thing: content over visual presentation.

If you treat HTML or XHTML as a document-formatting tool, you will be sorely dis-
appointed. There is simply not enough capability built into the languages to allow
you to create the kinds of documents you might whip up with tools such as
FrameMaker and Word. Attempts to subvert the supplied structuring elements to
achieve specific formatting tricks seldom work across all browsers. In short, don’t
waste your time trying to force HTML and XHTML to do things they were never
designed to do.

Instead, use HTML and XHTML in the manner for which they were designed: indi-
cating the structure of a document so that the browser can then render its content
appropriately. HTML and XHTML are rife with tags that let you indicate the seman-
tics of your document content, something that is missing from or often badly imple-
mented in word processors and page-layout programs. Create your documents using
these tags and you’ll be happier, your documents will look and work better, and your
readers will benefit immensely.

1.5 Standards and Extensions
The basic syntax and semantics of HTML are defined in the HTML standard, now in
its final version, 4.01. HTML matured quickly, in barely a decade. At one time, a
new version would appear before you had a chance to finish reading an earlier edi-
tion of this book. Today, HTML has stopped evolving. As far as the W3C is con-
cerned, XHTML has taken over. Now the wait is for browser manufacturers to
implement the standards.

The XHTML standard currently is version 1.0. Fortunately, XHTML version 1.0 is,
for the most part, a reconstitution of HTML version 4.01. There are some differ-
ences, which we explore in Chapter 16. The popular browsers continue to support
HTML documents, so there is no cause to stampede to XHTML. Do, however, start
walking in that direction: a newer XHTML version, 2.0, is under consideration at the
W3C, and browser developers are slowly but surely dropping nonstandard HTML
features from their products.

Obviously, browser developers rely upon standards and accepted conventions to
have their software properly format and display common HTML and XHTML docu-
ments. Authors use the standards to make sure they are writing effective, correct
documents that get displayed properly by the browsers.

However, standards are not always explicit; manufacturers have some leeway in how
their browsers might display an element. And to complicate matters, commercial

1.5 Standards and Extensions | 11

forces have pushed developers to add into their browsers nonstandard extensions
meant to improve the language.

Confused? Don’t be: in this book, we explore in detail the syntax, semantics, and idi-
oms of the HTML version 4.01 and XHTML version 1.0 languages, along with the
many important extensions that are supported in the latest versions of the most pop-
ular browsers.

1.5.1 Nonstandard Extensions
It doesn’t take an advanced degree in The Obvious to know that distinction draws
attention; so, too, with browsers. Extra whiz-bang features can give the edge in the oth-
erwise standardized browser market. That can be a nightmare for authors. A lot of peo-
ple want you to use the latest and greatest gimmick or even useful HTML/XHTML
extension. But it’s not part of the standard, and not all browsers support it. In fact, on
occasion, the popular browsers support different ways of doing the same thing.

1.5.2 Extensions: Pro and Con
Every software vendor adheres largely to the technological standards. It’s embarrass-
ing to be incompatible, and your competitors will take every opportunity to remind
buyers of your product’s failure to comply, no matter how arcane or useless that
standard might be. At the same time, vendors seek to make their products different
from and better than the competition’s offerings. Netscape’s and Internet Explorer’s
extensions to standard HTML are perfect examples of these market pressures.

Many document authors feel safe using these extended browsers’ nonstandard exten-
sions because of their combined and commanding share of users. For better or
worse, extensions to HTML in prominent browsers become part of the street version
of the language, much like English slang creeping into the vocabulary of most
Frenchmen, despite the best efforts of the Académie Française.

Fortunately, with HTML version 4.0, the W3C standards caught up with the browser
manufacturers. In fact, the tables turned somewhat. The many extensions to HTML
that originally appeared as extensions in Netscape Navigator and Microsoft Internet
Explorer are now part of the HTML 4 and XHTML 1 standards, and there are other
parts of the new standard which are not yet features of the popular browsers.

1.5.3 Avoiding Extensions
In general, we urge you to resist using extensions unless you have a compelling and
overriding reason to do so. By using them, particularly in key portions of your docu-
ments, you run the risk of losing a substantial portion of your potential readership.
To be fair, most browsers eschew extensions, so the point is moot now.

12 | Chapter 1: HTML, XHTML, and the World Wide Web

We admit that it is disingenuous of us to decry the use of extensions while present-
ing complete descriptions of their use. In keeping with the general philosophy of the
Internet, we’ll err on the side of handing out rope and guns to all interested parties
while hoping you have enough smarts to keep from hanging yourself or shooting
yourself in the foot.

Our advice still holds, though: use an extension only where it is necessary or very
advantageous, and do so with the understanding that you are disenfranchising a por-
tion of your audience. To that end, you might even consider providing separate,
standards-based versions of your documents to accommodate users of other browsers.

1.5.4 Extensions Through Modules
XHTML version 1.1 provides a mechanism for extending the language in a standard
way: XML modules. In fact, XHTML 1.1 is composed of modules itself.

XHTML modules divide the HTML language into discrete document types, each
defining features and functions that are parts of the language. There are separate
modules for XHTML forms, text, scripting, tables, and so on—all the nondepre-
cated elements of XHTML 1.0.

The advantage of modules is extensibility. In addition to using the markup features
from the XHTML modules normally included in the standard, the new language lets
you easily blend other XML modules into your documents, extending their features
and capabilities in a standard way. For instance, the W3C has defined a MathML
module that provides explicit markup elements for mathematical equations that you
could use in your next XHTML-based math thesis.

Modules, let alone the XHTML version 1.1 language, are experimental and are not
well supported by the popular browsers. Accordingly, we don’t recommend that you
use XHTML modules just yet. For now, the subject is beyond the scope of this book.
Consult the W3C web site for more details.

1.6 Tools for the Web Designer
While you can use the barest of barebones text editors to create HTML and XHTML
documents, most authors have a toolbox of software utilities that is a bit more elabo-
rate than a simple text editor. At the barest minimum, you also need a browser, so you
can test and refine your work. Beyond the essentials are some specialized software tools
for developing and preparing HTML documents and accessory multimedia files.

1.6.1 Essentials
At the very least, you’ll need a text editor, a browser to check your work, and, ide-
ally, a connection to the Internet.

1.6 Tools for the Web Designer | 13

1.6.1.1 Text processor or WYSIWYG editor?

Some authors use the word processing capabilities of their specialized HTML/
XHTML editing software. Some use a WYSIWYG-like (what-you-see-is-what-you-
get, kind of) composition tool such as those that come with the latest versions of the
popular word processors. Others, such as ourselves, prefer to compose their work on
a common text editor and later insert the markup tags and their attributes. Still oth-
ers include markup as they compose.

We think the stepwise approach—compose, then mark up—is the better way. We
find that once we’ve defined and written the document’s content, it’s much easier to
make a second pass to judiciously and effectively add the HTML/XHTML tags to
format the text. Otherwise, the markup can obscure the content. Note, too, that
unless specially trained (if they can be), spellcheckers and thesauruses typically
choke on markup tags and their various parameters. You can spend what seems to be
a lifetime clicking the Ignore button on all those otherwise valid markup tags when
syntax- or spellchecking a document.

When and how you embed markup tags into your document dictates the tools you
need. We recommend that you use a good word processor, which comes with more
and better writing tools than simple text editors or the browser-based markup-lan-
guage editors. You’ll find, for instance, that an outliner, spellchecker, and thesaurus
will best help you craft the document’s flow and content, disregarding for the
moment its look. The latest word processors encode your documents with HTML,
too, but don’t expect miracles. Except for boilerplate documents, you will probably
need to nurse those automated HTML documents to full health. (Not to mention put
them on a diet when you see how long the generated HTML is.) And it’ll be a while
before you’ll see XHTML-specific markup tools in the popular word processors.

Another word of caution about automated composition tools: they typically change
or insert content (e.g., replacing relative hyperlinks with full ones) and arrange your
document in ways that will annoy you. Annoying, in particular, because they rarely
give you the opportunity to do things your own way.

Become fluent in native HTML/XHTML. Be prepared to reverse some of the things a
composition tool will do to your documents. And make sure you can wrest your doc-
ument away from the tool so that you can make it do your bidding.

1.6.1.2 Browser software

Obviously, you should view your newly composed documents and test their func-
tionality before you release them for use by others. For serious authors, particularly
those looking to push their documents beyond the HTML/XHTML standards, we
recommend that you have several browsers, perhaps with versions running on differ-
ent computers, just to be sure one’s delightful display isn’t another’s nightmare.

14 | Chapter 1: HTML, XHTML, and the World Wide Web

The currently popular—and therefore, most important—browsers are Microsoft
Internet Explorer, Mozilla Firefox, Safari (for Apple), Opera, and Netscape Naviga-
tor, though the last is rapidly disappearing from the Web landscape. Most versions
run on the variety of popular computing platforms, such as the various Microsoft
OSes, Linux, Mac OS, and so forth. Different browser versions often vary in the ele-
ments of HTML and XHTML that they support. We make every effort to point out
those differences throughout this book. Nevertheless, it helps to download not only
the latest versions from their web sites, but also previous browser versions in order to
better test your work for compatibility. This is particularly important given that sev-
eral millions of the estimated more than one billion Web users worldwide still oper-
ate the ancient Internet Explorer version 5!

1.6.2 An Extended Toolkit
If you’re serious about creating documents, you’ll soon find that all sorts of nifty
tools are available to make life easier. The list of freeware, shareware, and commer-
cial products grows daily, so it’s not very useful to provide a list here. This is, in fact,
another good reason to frequent the various newsgroups and web sites that keep
updated lists of HTML and XHTML resources on the Web. If you are really dedi-
cated to writing in HTML and XHTML, you will visit those sites, and you will visit
them regularly to keep abreast of the language, tools, and trends.

15

Chapter 2
In this chapter:

• Writing Tools
• A First HTML Document
• Embedded Tags
• HTML Skeleton
• The Flesh on an HTML or XHTML

Document
• Text
• Hyperlinks
• Images Are Special
• Lists, Searchable Documents, and

Forms
• Tables
• Frames
• Stylesheets and JavaScript
• Forging Ahead

CHAPTER 2

Quick Start2

We didn’t spend hours studiously poring over some reference book before we wrote
our first HTML document. You probably shouldn’t, either. HTML is simple to read
and understand, and it’s simple to write. And once you’ve written an HTML docu-
ment, you’ve nearly completed your first XHTML one, too. So let’s get started with-
out first learning a lot of arcane rules.

To help you get that quick, satisfying start, we’ve included this chapter as a brief
summary of the many elements of HTML and its progeny, XHTML. Of course,
we’ve left out a lot of details and some tricks that you should know. Read the
upcoming chapters to get the essentials for becoming fluent in HTML and XHTML.

Even if you are familiar with the languages, we recommend that you work your way
through this chapter before tackling the rest of the book. It not only gives you a
working grasp of basic HTML/XHTML and their jargon, but you’ll also be more
productive later, flush with the confidence that comes from creating attractive docu-
ments in such a short time.

2.1 Writing Tools
Use any text editor to create an HTML or XHTML document, as long as it can save
your work on a disk in text file format. That’s because even though web documents
include elaborate text layout and pictures, they’re all just plain old text documents
themselves. A fancier WYSIWYG editor or a translator for your favorite word processor
is fine, too—although it may not support all the language features we discuss in this
book. You’ll probably end up touching up the source text they produce, in any case,
and don’t expect layout results like what you’d get with a page-layout application.

16 | Chapter 2: Quick Start

While it’s not needed to compose documents, you should have at least one version of
a popular browser installed on your computer to view your work. That’s because,
unless you use a special editor, the source document you compose won’t look any-
thing like what gets displayed by a browser, even though it’s the same document.
Make sure what your readers actually see is what you intended by viewing the docu-
ment yourself with a browser. Besides, the popular ones are free over the Internet.
We currently recommend Microsoft Internet Explorer, Mozilla Firefox, Apple Safari,
Netscape Navigator, and Opera Software ASA.

Also note that you don’t need a connection to the Internet or the Web to write and
view your HTML or XHTML documents. You can compose and view your docu-
ments stored on a hard drive or floppy disk that’s attached to your computer. You
can even navigate among your local documents with the HTML/XHTML’s hyper-
linking capabilities without ever being connected to the Internet, or any other net-
work, for that matter. In fact, we recommend that you work locally to develop and
thoroughly test your documents before you share them with others.

We strongly recommend, however, that you do get a connection to the Internet if
you are serious about composing your own documents. You can download and view
others’ interesting web pages and see how they accomplished some interesting fea-
ture—good or bad. Learning by example is fun, too. (Reusing others’ work, on the
other hand, is often questionable, if not downright illegal.) An Internet connection is
essential if you include in your work hyperlinks to other documents on the Internet.

2.2 A First HTML Document
It seems every programming language book ever written starts off with a simple
example on how to display the message, “Hello, World!” Well, you won’t see a
“Hello, World!” example in this book. After all, this is a style guide for the new mil-
lennium. Instead, ours sends greetings to the World Wide Web:

<html>
<head>
<title>My first HTML document</title>
</head>
<body>
<h2>My first HTML document</h2>
Hello, <i>World Wide Web!</i>
 <!-- No "Hello, World" for us -->
<p>
 Greetings from

O'Reilly
<p>
Composed with care by:
<cite>(insert your name here)</cite>

©2000 and beyond
</body>
</html>

2.3 Embedded Tags | 17

Go ahead: type in the example HTML source on a fresh word processing page and save
it on your local disk as myfirst.html. Make sure you select to save it in plain text format;
word processor-specific file formats like Microsoft Word’s .doc files save hidden charac-
ters that can confuse the browser software and disrupt your HTML document’s display.

After saving myfirst.html (or myfirst.htm, if you are using archaic DOS- or Windows
3.11-based file-naming conventions) onto disk, start up your browser and locate and
open the file from the program’s File menu. Your screen should look like Figure 2-1.
Though look-and-feel elements such as menus and toolbars differ between brows-
ers, the window’s contents should be quite similar.

2.3 Embedded Tags
You probably noticed right away, perhaps in surprise, that the browser displays less
than half of the example source text. Closer inspection of the source reveals that
what’s missing is everything that’s bracketed inside a pair of less-than (<) and
greater-than (>) characters. [The Syntax of a Tag, 3.3.1]

HTML and XHTML are embedded languages: you insert their directions, or tags,
into the same document that you and your readers load into a browser to view. The
browser uses the information inside those tags to decide how to display or otherwise
treat the subsequent contents of your document.

For instance, the <i> tag that follows the word Hello in the simple example tells the
browser to display the following text in italics.* [Physical Style Tags, 4.5]

Figure 2-1. A very simple HTML document

* Italicized text is a very simple example and one that most browsers, except the text-only variety (e.g., Lynx),
can handle. In general, the browser tries to do as it is told, but as we demonstrate in upcoming chapters,
browsers vary from computer to computer and from user to user, as do the fonts that are available and
selected by the user for viewing HTML documents. Assume that not all are capable of or willing to display
your HTML document exactly as it appears on your screen.

18 | Chapter 2: Quick Start

The first word in a tag is its formal name, which usually is fairly descriptive of its func-
tion, too. Any additional words in a tag are special attributes, sometimes with an asso-
ciated value after an equals sign (=), which further define or modify the tag’s actions.

2.3.1 Start and End Tags
Most tags define and affect a discrete region of your document. The region begins
where the tag and its attributes first appear in the source document (a.k.a. the start
tag) and continues until a corresponding end tag. An end tag is the tag’s name pre-
ceded by a forward slash (/). For example, the end tag that matches the “start itali-
cizing” <i> tag is </i>.

End tags never include attributes. In HTML, most tags, but not all, have an end tag.
And, to make life a bit easier for HTML authors, the browser software often infers an
end tag from surrounding and obvious context, so you needn’t explicitly include
some end tags in your source HTML document. (We tell you which are optional and
which are never omitted when we describe each tag in later chapters.) Our simple
example is missing an end tag that is so commonly inferred and hence not included
in the source that some veteran HTML authors don’t even know that it exists.
Which one?

The XHTML standard is much more rigid, insisting that all tags have corresponding
end tags. [End Tags, 16.3.2] [Handling Empty Elements, 16.3.3]

2.4 HTML Skeleton
Notice, too, that our simple example HTML document starts and ends with <html>

and </html> tags. These tags tell the browser that the entire document is composed in
HTML.* The HTML and XHTML standards require an <html> tag for compliant docu-
ments, but most browsers can detect and properly display HTML encoding in a text
document that’s missing this outermost structural tag. [<html>, 3.6.1]

Like our example, except for special frameset documents, all HTML and XHTML doc-
uments have two main structures: a head and a body, each bounded in the source by
respectively named start and end tags. You put information about the document in the
head and the contents you want displayed in the browser’s window inside the body.
Except in rare cases, you’ll spend most of your time working on your document’s body
content. [<head>, 3.7.1] [<body>, 3.8.1]

There are several different document header tags that you can use to define how a
particular document fits into a document collection and into the larger scheme of the
Web. Some nonstandard header tags even animate your document.

* XHTML documents also begin with the <html> tag, but they contain additional information to differentiate
them from common HTML documents. See Chapter 16 for details.

2.5 The Flesh on an HTML or XHTML Document | 19

For most documents, however, the important header element is the title. Standards
require that every HTML and XHTML document have a title, even though the cur-
rently popular browsers don’t enforce that rule. Choose a meaningful title, one that
instantly tells the reader what the document is about. Enclose yours, as we do for the
title of our example, between the <title> and </title> tags in your document’s
header. The popular browsers typically display the title at the top of the document’s
window. [<title>, 3.7.2]

2.5 The Flesh on an HTML or XHTML Document
Except for the <html>, <head>, <body>, and <title> tags, the HTML and XHTML
standards have few other required structural elements. You’re free to include pretty
much anything else in the contents of your document. (The web surfers among you
know that authors have taken full advantage of that freedom, too.) Perhaps surpris-
ingly, though, there are only three main types of HTML/XHTML content: tags
(which we described previously), comments, and text.

2.5.1 Comments
A raw document with all its embedded tags can quickly become nearly unreadable,
like computer-programming source code. We strongly recommend that you use
comments to guide your composing eye.

Although it’s part of your document, nothing in a comment, which goes between the
special starting tag <!-- and ending tag --> comment delimiters, gets included in the
browser display of your document. You see a comment in the source, as in our sim-
ple HTML example, but you don’t see it on the display, as evidenced by our com-
ment’s absence in Figure 2-1. Anyone can download the source text of your
documents and read the comments, though, so be careful what you write.

2.5.2 Text
If it isn’t a tag or a comment, it’s text. The bulk of content in most of your HTML/
XHTML documents—the part readers see on their browser displays—is text. Spe-
cial tags give the text structure, such as headings, lists, and tables. Others advise the
browser how the content should be formatted and displayed.

2.5.3 Multimedia
What about images and other multimedia elements we see and hear as part of our
web browser displays? Aren’t they part of the HTML document? No. The data that
comprises digital images, movies, sounds, and other multimedia elements that may
be included in the browser display is in files separate from the main HTML/XHTML
document. You include references to those multimedia elements via special tags. The

20 | Chapter 2: Quick Start

browser uses those references to load and integrate other types of documents with
your text.

We didn’t include any special multimedia references in the previous example simply
because they are separate, nontext documents that you can’t just type into a text pro-
cessor. We do, however, talk about and give examples of how to integrate images
and other multimedia in your documents later in this chapter, as well as in extensive
detail in subsequent chapters.

2.6 Text
Text-related HTML/XHTML markup tags comprise the richest set of all in the stan-
dard languages. That’s because the original language—HTML—emerged as a way to
enrich the structure and organization of text.

HTML came out of academia. What was and still is important to those early devel-
opers was the capability of their mostly academic, text-oriented documents to be
scanned and read without sacrificing their capability to distribute documents over
the Internet to a wide diversity of computer display platforms. (Unicode text is the
only universal format on the global Internet.) Multimedia integration is something of
an appendage to HTML and XHTML, albeit an important one.

Also, page layout is secondary to structure. We humans visually scan and decide tex-
tual relationships and structure based on how it looks; machines can only read
encoded markings. Because documents have encoded tags that relate meaning, they
lend themselves very well to computer-automated searches and to the recompilation
of content—features very important to researchers. It’s not so much how something
is said as what is being said.

Accordingly, neither HTML nor XHTML is a page-layout language. In fact, given the
diversity of user-customizable browsers, as well as the diversity of computer plat-
forms for retrieval and display of electronic documents, all these markup languages
strive to accomplish is to advise, not dictate, how the document might look when
rendered by the browser. You cannot force the browser to display your document in
any certain way. You’ll hurt your brain if you insist otherwise.

2.6.1 Appearance of Text
For instance, you cannot predict what font and what absolute size—8- or 40-point
Helvetica, Geneva, Subway, or whatever—will be used for a particular user’s text dis-
play. OK, so the latest browsers now support standard Cascading Style Sheets (CSS)
and other desktop publishing-like features that let you control the layout and appear-
ance of your documents. But users may change their browser’s display characteristics
and override your carefully laid plans at will, quite a few of the older browsers out
there don’t support these new layout features, and some browsers are text-only with

2.6 Text | 21

no nice fonts at all. What to do? Concentrate on content. Cool pages are a flash in
the pan. Deep content will bring people back for more and more.

Nonetheless, style does matter for readability, and it is good to include it where you
can, as long as it doesn’t interfere with content presentation. You can attach com-
mon style attributes to your text with physical style tags, like the italic <i> tag in our
simple example. More important and truer to the language’s original purpose,
HTML and XHTML have content-based style tags that attach meaning to various text
passages. And you can alter text display characteristics, such as font style, size, color,
and so on, with CSS.

Today’s graphical browsers recognize the physical and content-related text style tags
and change the appearance of their related text passages to visually convey meaning
or structure. You can’t predict exactly what that change will look like.

The HTML 4 standard (and even more so, the XHTML 1.0 standard) stresses that
future browsers will not be so visually bound. Text contents may be heard or even
felt, for example, not read by viewers. Context clues surely are better in those cases
than physical styles.

2.6.1.1 Content-based text styles

Content-based style tags indicate to the browser that a portion of your HTML/
XHTML text has a specific usage or meaning. The <cite> tag in our simple example,
for instance, means the enclosed text is some sort of citation—the document’s
author, in this case. Browsers commonly, although not universally, display the cita-
tion text in italic, not as regular text. [Content-Based Style Tags, 4.4]

While it may or may not be obvious to the current reader that the text is a citation,
someday someone might create a computer program that searches a vast collection
of documents for embedded <cite> tags and compiles a special list of citations from
the enclosed text. Similar software agents already scour the Internet for embedded
information to compile listings, such as the infamous Google database of web sites.

The most common content-based style used today is that of emphasis, indicated with
the tag. And if you’re feeling really emphatic, you might use the con-
tent style. Other content-based styles include <code>, for snippets of programming
code; <kbd>, to denote text entered by the user via a keyboard; <samp>, to mark sam-
ple text; <dfn>, for definitions; and <var>, to delimit variable names within program-
ming code samples. All of these tags have corresponding end tags.

2.6.1.2 Physical styles

Even the barest of barebones text processors conform to a few traditional text styles,
such as italic and bold characters. While not word processing tools in the traditional
sense, HTML and XHTML provide tags that explicitly tell the browser to display (if
it can) a character, word, or phrase in a particular physical style.

22 | Chapter 2: Quick Start

Although you should use related content-based tags, for the reasons we argued ear-
lier, sometimes form is more important than function. Use the <i> tag to italicize text
without imposing any specific meaning, the tag to display text in boldface, or the
<tt> tag so that the browser, if it can, displays the text in a teletype-style mono-
spaced typeface. [Physical Style Tags, 4.5]

It’s easy to fall into the trap of using physical styles when you should really be using
a content-based style instead. Discipline yourself now to use the content-based styles
because, as we argued earlier, they convey meaning as well as style, thereby making
your documents easier to automate and manage.

2.6.1.3 Special text characters

Not all text characters available to you for display by a browser can be typed from
the keyboard. And some characters have special meanings, such as the brackets
around tags, which if not somehow differentiated when used for plain text—the less-
than sign (<) in a math equation, for example—will confuse the browser and trash
your document. HTML and XHTML give you a way to include any of the many dif-
ferent characters that comprise the Unicode character set anywhere in your text
through a special encoding of its character entity.

Like the copyright symbol in our simple example, a character entity starts with an
ampersand (&), followed by its name, and terminated with a semicolon (;). Alterna-
tively, you may also use the character’s position number in the Unicode table of
characters, preceded by the pound or sharp sign (#), in lieu of its name in the charac-
ter-entity sequence. When rendering the document, the browser displays the proper
character, if it exists in the user’s font. [Character Entities, 3.5.2]

For obvious reasons, the most commonly used character entities are the greater-than
(>), less-than (<), and ampersand (&) characters. Check Appendix F to find
out what symbol the character entity ¦ represents. You’ll be pleasantly sur-
prised!

2.6.2 Text Structures
It’s not obvious in our simple example, but the common carriage returns we use to
separate paragraphs in our source document have no meaning in HTML or XHTML,
except in special circumstances. You could have typed the document onto a single
line in your text editor, and it would still appear the same in Figure 2-1.*

* We use a computer programming-like style of indentation so that our source HTML/XHTML documents
are more readable. It’s not obligatory, nor are there any formal style guidelines for source HTML/XHTML
document text formats. We do, however, highly recommend that you adopt a consistent style so that you
and others can easily follow your source documents.

2.6 Text | 23

You’d soon discover, too, if you hadn’t read it here first, that except in special cases,
browsers typically ignore leading and trailing spaces, and sometimes more than a few
in between. (If you look closely at the source example, the line “Greetings from”
looks like it should be indented by leading spaces, but it isn’t in Figure 2-1.)

2.6.2.1 Divisions, paragraphs, and line breaks

A browser takes the text in the body of your document and “flows” it onto the com-
puter screen, disregarding any common carriage-return or line-feed characters in the
source. The browser fills as much of each line of the display window as possible,
beginning flush against the left margin, before stopping after the rightmost word and
moving on to the next line. Resize the browser window, and the text reflows to fill
the new space, indicating HTML’s inherent flexibility.

Of course, readers would rebel if your text just ran on and on, so HTML and
XHTML provide both explicit and implicit ways to control the basic structure of
your document. The most rudimentary and common ways are with the division
(<div>), paragraph (<p>), and line-break (
) tags. All break the text flow, which
consequently restarts on a new line. The differences are that the <div> and <p> tags
define an elemental region of the document and text, respectively, the contents of
which you may specially align within the browser window, apply text styles to, and
alter with other block-related features.

Without special alignment attributes, the <div> and
 tags simply break a line of
text and place subsequent characters on the next line. The <p> tag adds more vertical
space after the line break than either the <div> or
 tag. [<div>, 4.1.1] [<p>, 4.1.2]
[
, 4.6.1]

By the way, the HTML standard includes end tags for the paragraph and division
tags, but not for the line-break tag.* Few authors ever include the paragraph end tag
in their documents; the browser usually can figure out where one paragraph ends
and another begins.† Give yourself a star if you knew that </p> even exists.

2.6.2.2 Headings

Besides breaking your text into divisions and paragraphs, you can also organize your
documents into sections with headings. Just as they do on this and other pages in
this printed book, headings not only divide and entitle discrete passages of text, but
they also convey meaning visually. And headings readily lend themselves to machine-
automated processing of your documents.

* With XHTML,
’s start and end are between the same brackets:
. Browsers tend to be very forgiving
and often ignore extraneous things, such as the forward slash in this case, so it’s perfectly OK to get into the
habit of adding that end mark.

† The paragraph end tag is being used more commonly now that the popular browsers support the paragraph-
alignment attribute.

24 | Chapter 2: Quick Start

There are six heading tags, <h1> through <h6>, with corresponding end tags. Typi-
cally, the browser displays their contents in, respectively, very large to very small font
sizes, and usually in boldface. The text inside the <h4> tag typically is the same size as
the regular text. [Heading Tags, 4.2.1]

The heading tags also break the current text flow, standing alone on lines and sepa-
rated from surrounding text, even though there aren’t any explicit paragraph or line-
break tags before or after a heading.

2.6.2.3 Horizontal rules

Besides headings, HTML and XHTML provide horizontal rule lines that help delin-
eate and separate the sections of your document.

When the browser encounters an <hr> tag in your document, it breaks the flow of
text and draws a line across the display window on a new line. The flow of text
resumes immediately below the rule.* [<hr>, 5.1.1]

2.6.2.4 Preformatted text

Occasionally, you’ll want the browser to display a block of text as is: for example,
with indented lines and vertically aligned letters or numbers that don’t change even
though the browser window might get resized. The <pre> tag rises to those occa-
sions. All text up to the closing </pre> end tag appears in the browser window
exactly as you type it, including carriage returns, line feeds, and leading, trailing, and
intervening spaces. Although very useful for tables and forms, <pre> text looks pretty
dull; the popular browsers render the block in a monospace typeface. [<pre>, 4.6.5]

2.7 Hyperlinks
While text may be the meat and bones of an HTML or XHTML document, the heart
is hypertext. Hypertext gives users the ability to retrieve and display a different docu-
ment in their own or someone else’s collection simply by a click of the keyboard or
mouse on an associated word or phrase (hyperlink) in the document. Use these inter-
active hyperlinks to help readers easily navigate and find information in your own or
others’ collections of otherwise separate documents in a variety of formats, includ-
ing multimedia, HTML, XHTML, other XML, and plain text. Hyperlinks literally
bring the wealth of knowledge on the whole Internet to the tip of the mouse pointer.

To include a hyperlink to some other document in your own collection or on a server
in Timbuktu, all you need to know is the document’s unique address and how to
drop an anchor into your document.

* Similar to
, with XHTML, the formal horizontal rule end tag is <hr />.

2.7 Hyperlinks | 25

2.7.1 URLs
While it is hard to believe, given the billions of them out there, every document and
resource on the Internet has a unique address, known as its uniform resource locator
(URL; commonly pronounced “you-are-ell”). A URL consists of the document’s
name preceded by the hierarchy of directory names in which the file is stored
(pathname), the Internet domain name of the server that hosts the file, and the soft-
ware and manner by which the browser and the document’s host server communi-
cate to exchange the document (protocol):

protocol://server_domain_name/pathname

Here are some sample URLs:

• http://www.kumquat.com/docs/catalog/price_list.html

• price_list.html

• ../figs/my_photo.png

• ftp://ftp.netcom.com/pub

The first example is an absolute or complete URL. It includes every part of the URL
format: protocol, server, and pathname of the document. While absolute URLs leave
nothing to the imagination, they can lead to big headaches when you move docu-
ments to another directory or server. Fortunately, browsers also let you use relative
URLs and automatically fill in any missing portions with respective parts from the
current document’s base URL. The second example is the simplest relative URL of
all; with it, the browser assumes that the price_list.html document is located on the
same server, in the same directory as the current document, and uses the same net-
work protocol (http). Similarly, example three is a relative URL which looks up and
into the /figs directory for a picture file.

Although appearances may deceive, the last FTP example URL actually is absolute; it
points directly at the contents of the /pub directory. Moreover, the ftp protocol speci-
fication in the example accesses different software on the server than the http proto-
col in the other examples.

2.7.2 Anchors
The anchor (<a>) tag is the HTML/XHTML feature for defining both the source and
the destination of a hyperlink.* You’ll most often see and use the <a> tag with its href
attribute to define a source hyperlink. The value of the href attribute is the URL of
the destination.

* The nomenclature here is a bit unfortunate: the “anchor” tag should mark just a destination, not the jump-
ing-off point of a hyperlink, too. You “drop anchor”; you don’t jump off one. We won’t even mention the
atrociously confusing terminology theW3C uses for the various parts of a hyperlink, except to say that some-
one got things all “bass-ackward.”

26 | Chapter 2: Quick Start

The contents of the source <a> tag—the words and/or images between it and its
end tag—is the portion of the document that is specially activated in the browser dis-
play and that users select to take a hyperlink. These anchor contents usually look dif-
ferent from the surrounding content (text in a different color or underlined, images
with specially colored borders, or other effects), and the mouse-pointer icon changes
when passed over them. The <a> tag contents, therefore, should be text or an image
(icons are great) that explicitly or intuitively tells users where the hyperlink will take
them. [<a>, 6.3.1]

For instance, the browser will specially display and change the mouse pointer when
it passes over the “Kumquat Archive” text in the following example:

For more information on kumquats, visit our

Kumquat Archive

If the user clicks the mouse button on that text, the browser automatically retrieves
from the server www.kumquat.com a web (http:) page named archive.html, then dis-
plays it for the user.

2.7.3 Hyperlink Names and Navigation
Pointing to another document in some collection somewhere on the other side of the
world is not only cool, but it also supports your own web documents. Yet the hyper-
link’s chief duty is to help users navigate your collection in their search for valuable infor-
mation. Hence, the concept of the home page and supporting documents has arisen.

None of your documents should run on and on. First, there’s a serious performance
issue: the value of your work suffers, no matter how rich it is, if the document takes
forever to download and if, once it is retrieved, users must endlessly scroll up and
down through the display to find a particular section.

Rather, design your work as a collection of several compact and succinct pages, like
chapters in a book, each focused on a particular topic for quick selection and brows-
ing by the user. Then use hyperlinks to organize that collection.

For instance, use your home page—the leading document of the collection—as a master
index full of brief descriptions and respective hyperlinks to the rest of your collection.

You can also use either the name variant of the <a> tag or the id attribute of nearly all
tags to specially identify sections of your document. Tag ids and name anchors serve
as internal hyperlink targets in your documents to help users easily navigate within
the same document or jump to a particular section within another document. Refer
to that id’d section in a hyperlink by appending a pound sign (#) and the section
name as the suffix to the URL.

For instance, to reference a specific topic in an archive, such as “Kumquat Stew Reci-
pes” in our example Kumquat Archive, first mark the section title with an id:

...preceding content...

<h3 id="Stews">Kumquat Stew Recipes</h3>

2.8 Images Are Special | 27

in the same or another document, then prepare a source hyperlink that points
directly to those recipes by including the section’s id value as a suffix to the docu-
ment’s URL, separated by a pound sign:

For more information on kumquats, visit our

 Kumquat Archive,
and perhaps try one or two of our

 Kumquat Stew Recipes.

If selected by the user, the latter hyperlink causes the browser to download the
archive.html document and start the display at our “Stews” section.

2.7.4 Anchors Beyond
Hyperlinks are not limited to other HTML and XHTML documents. Anchors let you
point to nearly any type of document available over the Internet, including other
Internet services.

However, “let” and “enable” are two different things. Browsers can manage the vari-
ous Internet services, such as FTP and Gopher, so that users can download non-
HTML documents. They don’t yet fully or gracefully handle multimedia.

Today, there are few standards for the many types and formats of multimedia. Com-
puter systems connected to the Web vary wildly in their capabilities to display those
sound and video formats. Except for some graphics images, standard HTML/
XHTML gives you no specific provision for display of multimedia documents except
the ability to reference one in an anchor. The browser, which retrieves the multime-
dia document, must activate a special helper application, download and execute an
associated applet, or have a plug-in accessory installed to decode and display it for
the user right within the document’s display.

Although HTML and most web browsers currently avoid the confusion by sidestep-
ping it, that doesn’t mean you can’t or shouldn’t exploit multimedia in your docu-
ments: just be aware of the limitations.

2.8 Images Are Special
Image files are multimedia elements that you can reference with anchors in your doc-
ument for separate download and display by the browser. But, unlike other multime-
dia, standard HTML and XHTML have an explicit provision for image display
“inline” with the text, and images can serve as intricate maps of hyperlinks. That’s
because there is some consensus in the industry concerning image file formats—spe-
cifically, GIF, PNG, and JPEG—and the graphical browsers have built-in decoders
that integrate those image types into your document.*

* Some browsers support other multimedia besides GIF and JPEG graphics for inline display. Internet Explorer,
for instance, supports a tag that plays background audio. In addition, theHTML 4 and XHTML standards pro-
vide a way to display other types of multimedia inline with document text through a general tag.

28 | Chapter 2: Quick Start

2.8.1 Inline Images
The HTML/XHTML tag for inline images is ; its required src attribute is the
image file that you want to display in the document. [, 5.2.6]

The browser separately loads images and places them into the text flow as though
the image were some special, albeit sometimes very large, character. Normally, that
means the browser aligns the bottom of the image to the bottom of the current line
of text. You can change that with the special CSS align property, whose value you
set to put the image at the top, middle, or bottom of adjacent text. Examine Figures
2-2 through 2-4 for the image alignment you prefer. Of course, wide images may take
up the whole line and hence break the text flow. You can also place an image by
itself, by including preceding and following division, paragraph, or line-break tags.

Experienced HTML authors use images not only as supporting illustrations, but also
as quite small inline characters or glyphs, added to aid browsing readers’ eyes and to
highlight sections of the documents. Veteran HTML authors* commonly add cus-
tom list bullets or more distinctive section dividers than the conventional horizontal

Figure 2-2. An inline image aligned with the bottom of the text (default)

Figure 2-3. An inline image specially aligned with the middle of the text

* XHTML is too new to call anyone a veteran or experienced XHTML author.

2.8 Images Are Special | 29

rules. Images, too, may be included in a hyperlink so that users may select an inline
thumbnail sketch to download a full-screen image. The possibilities with inline
images are endless.

We also should mention the alt attribute. Give it some text value that explains the
image display for those who have disabled image display, or for browsers that may
be able to read to the disabled user.

2.8.2 Image Maps
Image maps are images within an anchor with a special attribute: they may contain
more than one hyperlink.

One way to enable an image map is by adding the ismap attribute to an tag
placed inside an anchor tag (<a>). When the user clicks somewhere in the image, the
graphical browser sends the relative X,Y coordinates of the mouse position to the
server that is also designated in the anchor. A special server program then translates
the image coordinates into some special action, such as downloading another docu-
ment. [Server-side considerations, 6.5.1.1]

A good example of the use of an image map might be to locate a hotel while travel-
ing. For example, when the user clicks on a map of the region he intends to visit,
your image map’s server program might return the names, addresses, and phone
numbers of local accommodations.

While they are very powerful and visually appealing, these so-called server-side image
maps mean that authors must have some access to the map’s coordinate-processing
program on the server. Many authors don’t even have access to the server, let alone a
program on the server. A better solution is to take advantage of client-side image maps.

Instead of depending on a web server, the usemap attribute for the tag, with the
<map> and <area> tags, allows authors to embed the information the browser needs to
process an image map in the same document as the image. Because of their reduced net-
work bandwidth and server independence, the client-side image maps are popular
among document authors and system administrators. [Client-Side Image Maps, 6.5.2]

Figure 2-4. An inline image specially aligned with the top of the text

30 | Chapter 2: Quick Start

2.9 Lists, Searchable Documents, and Forms
Thought we’d exhausted text elements? Headers, paragraphs, and line breaks are
just the rudimentary text-organizational elements of a document. The languages also
provide several advanced text-based structures, including three types of lists,
“searchable” documents, and forms. Searchable documents and forms go beyond
text formatting, too; they are a way to interact with your readers. Forms let users
enter text and click checkboxes and radio buttons to select particular items and then
send that information back to the server. A special server application then processes
the form’s information and responds accordingly; for example, filling a product
order or collecting data for a user survey.*

The syntax for these special features and their various attributes can get rather com-
plicated; they’re not quick-start grist. We’ll mention them here, but we urge you to
read on for details in later chapters.

2.9.1 Unordered, Ordered, and Definition Lists
The three types of lists match those we are most familiar with: unordered, ordered, and
definition lists. An unordered list—one in which the order of items is not important,
such as a laundry or grocery list—gets bounded by and tags. Each item in the
list, usually a word or short phrase, is marked by the (list-item) tag and, particu-
larly with XHTML, the end tag. When rendered, the list item typically appears
indented from the left margin, preceded by a bullet symbol. [, 7.1.1] [, 7.3]

Ordered lists, bounded by the and tags, are identical in format to unor-
dered ones, including the tag (and end tag with XHTML) for marking list
items. However, the order of items is important—as in equipment assembly steps,
for instance. The browser accordingly displays each item in the list preceded by an
ascending number. [, 7.2.1]

Definition lists are slightly more complicated than unordered and ordered lists.
Within a definition list’s enclosing <dl> and </dl> tags, each list item has two parts,
each with a special tag: a short name or title, contained within a <dt> tag, followed
by its corresponding value or definition, denoted by the <dd> tag (XHTML includes
respective end tags). When the tags are rendered, the browser usually puts the item
name on a separate line (although not indented), and the definition, which may
include several paragraphs, indented below it. [<dl>, 7.5.1]

The various types of lists may contain nearly any type of content normally allowed in
the body of the document. So you can organize your collection of digitized family

* The server-side programming required for processing forms is beyond the scope of this book. We give some
basic guidelines in the appropriate chapters, but please consult the server documentation and your server
administrator for details.

2.10 Tables | 31

photographs into an ordered list, for example, or put them into a definition list com-
plete with text annotations. The markup language standards even let you put lists
inside of lists (nesting), opening up a wealth of interesting combinations.

2.9.2 Searchable Documents and Forms
The original type of user interaction provided by early versions of HTML still avail-
able today, though deprecated in the standards, is an <isindex>-based searchable doc-
ument. The browser provides some way for the user to type one or more words into a
text input box and to pass those keywords to a related processing application on the
server.* Obviously, searchable documents are very, very limited—one per document
and only one user-input element. Fortunately, HTML and XHTML provide better,
more extensive support for collecting user input through forms. [<isindex>, 6.6.1]
[<form>, 9.2]

You can create one or more special form sections in your document, bounded with
the <form> and </form> tags. Inside the form, you may put predefined as well as cus-
tomized text-input boxes allowing for both single and multiline input. You may also
insert checkboxes and radio buttons for single- and multiple-choice selections and
special buttons that work to reset the form or send its contents to the server. Users
fill out the form at their leisure, perhaps after reading the rest of the document, and
click a special send button that makes the browser send the form’s data to the server.
A special server-side program you provide then processes the form and responds
accordingly, perhaps by requesting more information from the user, modifying sub-
sequent documents the server sends to the user, and so on. [<form>, 9.2]

Forms provide everything you might expect of an automated form, including input
area labels, integrated contents for instructions, default input values, and so on—
except automatic input verification, such as to check for the correct number of digits
in a zip code or phone number, for instance; your server-side program or client-side
JavaScripts need to perform that function.

2.10 Tables
For a language that emerged from academia—a world steeped in data—it’s not sur-
prising to find that HTML (and now its progeny, XHTML) supports a set of tags for
data tables that not only align your numbers, but can specially format your text, too.

Eight tags enable tables; including the <table> tag itself and a <caption> tag for
including a description of the table. Special tag attributes let you change the look and
dimensions of the table. You create a table row by row, putting between the table

* Few authors have used the tag, apparently. The <isindex> tag has been “deprecated” in HTML version 4.0—
sent out to pasture, so to speak, but not yet laid to rest.

32 | Chapter 2: Quick Start

row (<tr>) tag and its end tag (</tr>) either table header (<th>) or table data (<td>)
tags and their respective contents for each cell in the table (end tags, too, with
XHTML). Headers and data may contain nearly any regular content, including text,
images, forms, and even another table. As a result, you can also use tables for
advanced text formatting, such as for multicolumn text and sidebar headers (see
Figure 2-5). For more information, see Chapter 10.

2.11 Frames
Anyone who has had more than one application window open on her graphical desk-
top at a time can immediately appreciate the benefits of frames. Frames let you
divide the browser window into multiple display areas, each containing a different
document.

Figure 2-6 is an example of a frame display. It shows how the document window
may be divided into independent windows separated by rule lines and scroll bars.
What is not immediately apparent in the example, though, is that each frame dis-
plays an independent document, and not necessarily HTML or XHTML ones, either.
A frame may contain any valid content that the browser is capable of displaying,
including multimedia. If the frame’s contents include a hypertext link that the user
selects, the new document’s contents, even another frame document, may replace
that same frame, another frame’s content, or the entire browser window.

Figure 2-5. Tables let you perform page layout tricks, too

2.12 Stylesheets and JavaScript | 33

Frames are defined in a special document, in which you replace the <body> tag with
one or more <frameset> tags that tell the browser how to divide its main window into
discrete frames. Special <frame> tags go inside the <frameset> tag and point to the
documents that go inside the frames. [<frameset>, 11.3.1]

The individual documents referenced and displayed in the frame document window
act independently, to a degree; the frame document controls the entire window. You
can, however, direct one frame’s document to load new content into another frame.
In Figure 2-6, for example, selecting a Chapter hyperlink in the Table of Contents
frame has the browser load and display that chapter’s contents in the frame on the
right. That way, the table of contents is always available to the user as he browses the
collection. For more information on frames, see Chapter 11.

2.12 Stylesheets and JavaScript
Browsers also have support for two powerful innovations to HTML: stylesheets and
JavaScript. Like their desktop publishing cousins, stylesheets let you control how
your web pages look—text font styles and sizes, colors, backgrounds, alignments,
and so on. More important, stylesheets give you a way to impose display characteris-
tics uniformly over the entire document and over an entire collection of documents.

JavaScript is a programming language with functions and commands that let you
control how the browser behaves for the user. Now, this is not a JavaScript program-
ming book, but we do cover the language in fair detail in later chapters to show you

Figure 2-6. Frames divide the browser’s window into two or more independent document displays

34 | Chapter 2: Quick Start

how to embed JavaScript programs into your documents and achieve some very
powerful and fun effects.

The W3C—the putative standards organization—prefers that you use the CSS model
for HTML/XHTML document design. All modern GUI browsers support CSS and
JavaScript. The ancient Netscape 4 alone also supports a JavaScript Style Sheet (JSS)
model, which we describe in Chapter 12, but we do not recommend that you use it.
Let’s rephrase that—don’t waste your time on JSS. CSS is the universally approved,
universally supported way to control how your documents might (not will) usually be
displayed on users’ browsers.

To illustrate CSS, here’s a way to make all the top-level (h1) header text in your
HTML document appear in the color red:

<html>
<head>
<title>CSS Example</title>
<!-- Hide CSS properties within comments so old browsers
don't choke on or display the unfamiliar contents. -->
 <style type="text/css">
 <!--
 h1 {color: red}
 -->
 </style>
</head>
<body>
<h1>I'll be red if your browser supports CSS</h1>
Something in between.
<h1>I should be red, too!</h1>
</body>
</html>

Of course, you can’t see red in this black-and-white book, so we won’t show the
result in a figure. Believe us, or prove it to yourself by typing in and loading the
example in your browser: the <h1>-enclosed text appears red on a color screen.

JavaScript is an object-based language. It views your document and the browser that
displays your documents as a collection of parts (“objects”) that have certain proper-
ties that you may change or compute. This is some very powerful stuff, but not some-
thing that most authors will want to handle. Rather, most of us probably will snatch
the quick and easy, yet powerful JavaScript programs that proliferate across the Web
and embed them in our own documents. We will tell you how in Chapter 12.

2.13 Forging Ahead
Clearly, this chapter represents the tip of the iceberg. If you’ve read this far, hope-
fully your appetite has been whetted for more. By now you’ve got a basic under-
standing of the scope and features of HTML and XHTML; proceed through
subsequent chapters to expand your knowledge and learn more about each feature.

35

Chapter 3!ti
In this chapter:

• Appearances Can Deceive
• Structure of an HTML Document
• Tags and Attributes
• Well-Formed Documents and

XHTML
• Document Content
• HTML/XHTML Document Elements
• The Document Header
• The Document Body
• Editorial Markup
• The <bdo> Tag

CHAPTER 3

Anatomy of an HTML
Document3

Most HTML and XHTML documents are very simple, and writing one shouldn’t
intimidate even the most timid of computer users. First, although you might use a
fancy WYSIWYG editor to help you compose it, a document is ultimately stored,
distributed, and read by a browser as a simple text file.* That’s why even the poorest
user with a barebones text editor can compose the most elaborate of web pages.
(Accomplished webmasters often elicit the admiration of “newbies” by composing
astonishingly cool pages using the crudest text editor on a cheap laptop computer
and performing in odd places, such as on a bus or in the bathroom.) Authors should,
however, keep several of the popular browsers on hand, including recent versions of
each, and alternate among them to view new documents under construction.
Remember, browsers differ in how they display a page, not all browsers implement
all of the language standards, and some have their own special extensions.

3.1 Appearances Can Deceive
Documents never look alike when displayed by a text editor and when displayed by a
browser. Take a look at any source document on the Web. At the very least, return
characters, tabs, and leading spaces, although important for readability of the source
text document, are ignored for the most part when displayed by an HTML/XHTML

* Informally, both the text and the markup tags are ASCII characters. Technically, unless you specify other-
wise, text and tags are made up of 8-bit characters as defined in the standard ISO-8859-1 Latin character set.
The HTML/XHTML standards support alternative character encodings, including Arabic and Cyrillic. See
Appendix F for details.

36 | Chapter 3: Anatomy of an HTML Document

browser. There also is a lot of extra text in a source document, mostly from the dis-
play tags and interactivity markers and their parameters that affect portions of the
document but don’t appear in the display.

Accordingly, new authors are confronted with having to develop not only a presenta-
tion style for their web pages, but also a different style for their source text. The
source document’s layout should highlight the programming-like markup aspects of
HTML and XHTML, not their display aspects. And it should be readable not only by
you, the author, but by others as well.

Experienced document writers typically adopt a programming-like style, albeit very
relaxed, for their source text. We do the same throughout this book, and that style
will become apparent as you compare our source examples with the actual display of
the document by a browser.

Our formatting style is simple, but it serves to create readable, easily maintained
documents:

• Except for the structural tags such as <html>, <head>, <frameset>, and <body>, we
place elements that structure the content of a document on a separate line and
indented to show its nesting level within the document. Structural elements
include lists, forms, tables, and similar tags.

• Elements that control the appearance or style of text get inserted in the current
line of text. These include basic font style tags such as (bold text) and docu-
ment linkages such as <a> (hypertext anchor).

• Avoid, where possible, breaking a URL onto two lines.

• Add extra newline characters to set apart special sections of the source docu-
ment—for instance, around paragraphs or tables.

The task of maintaining the indentation of your source file ranges from trivial to
onerous. Some text editors, such as Emacs, manage the indentation automatically;
others, such as common word processors, couldn’t care less about indentation and
leave the task completely up to you. If your editor makes your life difficult, you
might consider striking a compromise, perhaps by indenting the tags to show struc-
ture, but leaving the actual text without indentation to make modifications easier.

No matter what compromises or stands you make on source-code style, it’s impor-
tant that you adopt one. You’ll be very glad you did when you go back to that docu-
ment you wrote three months ago searching for that really cool trick you did with...
now, where was that?

3.2 Structure of an HTML Document
HTML and XHTML documents consist of text, which defines the content of the
document, and tags, which define the structure and appearance of the document.

3.3 Tags and Attributes | 37

The structure of an HTML document is simple, consisting of an outer <html> tag
enclosing the document:*

<html>
<head>
<title>Barebones HTML Document</title>
</head>
<body>
This illustrates, in a very <i>simp</i>le way,
the basic structure of an HTML document.
</body>
</html>

Most documents have a head and a body, delimited by the <head> and <body> tags.
The head is where you give your document a title and where you indicate other
parameters the browser may use when displaying the document. The body is where
you put the actual contents of the document. This includes the text for display and
document-control markers (tags) that advise the browser how to display the text.
Tags also reference special-effects files, including graphics and sound, and indicate
the hotspots (hyperlinks and anchors) that link your document to other documents.

3.3 Tags and Attributes
For the most part, tags—the markup elements of HTML and XHTML—are simple
to understand and use, since they are made up of common words, abbreviations, and
notations. For instance, the <i> and </i> tags respectively tell the browser to start
and stop italicizing the text characters that come between them. Accordingly, the syl-
lable “simp” in our barebones example in Figure 3-1 should appear italicized when
displayed by the browser.

The HTML and XHTML standards and their various extensions define how and
where you place tags within a document. Let’s take a closer look at that syntactic
sugar that holds together all documents.

* The structure of an XHTML document is slightly more complicated, as we detail in Chapter 16.

Figure 3-1. Compare this browser display with its Barebones source HTML shown earlier

38 | Chapter 3: Anatomy of an HTML Document

3.3.1 The Syntax of a Tag
Every tag consists of a tag name, sometimes followed by an optional list of tag
attributes, all placed between opening and closing brackets (< and >). The simplest
tag is nothing more than a name appropriately enclosed in brackets, such as <head>
and <i>. More complicated tags contain one or more attributes, which specify or
modify the behavior of the tag.

According to the HTML standard, tag and attribute names are not case-sensitive.
There’s no difference in effect between <head>, <Head>, <HEAD>, and even <HeaD>; all of
them are equivalent. With XHTML, case is important: all current standard tag and
attribute names are in lowercase; always <head>, never <HEAD>.

For both HTML and XHTML, the values that you assign to a particular attribute
may be case-sensitive, depending on your browser and server. In particular, file loca-
tion and name references—or URLs—are case-sensitive. [Referencing Documents:
The URL, 6.2]

Tag attributes, if any, belong after the tag name, each separated by one or more tab,
space, or return characters. Their order of appearance is not important.

A tag attribute’s value, if any, follows an equals sign (=) after the attribute name. You
may include spaces around the equals sign so that width=6, width = 6, width =6, and
width= 6 all mean the same. For readability, however, we prefer not to include
spaces. That way, it’s easier to pick out an attribute/value pair from a crowd of pairs
in a lengthy tag.

With HTML, if an attribute’s value is a single word or number (no spaces), you may
simply add it after the equals sign. You should enclose all other values in single or
double quotation marks, especially those values that contain several words sepa-
rated by spaces. With XHTML, all attribute values must be enclosed in quotes. The
length of the value is limited to 1,024 characters.

Most browsers are tolerant of how tags are punctuated and broken across lines.
Nonetheless, avoid breaking tags across lines in your source document whenever
possible. This rule promotes readability and reduces potential errors in your HTML
documents.

3.3.2 Sample Tags
Here are some tags with attributes:

<ul compact>
<ul compact="compact">
<input type=text name=filename size=24 maxlength=80>
<link title="Table of Contents">

3.3 Tags and Attributes | 39

The first example is the <a> tag for a hyperlink to our publisher’s web-based catalog
of products. It has a single attribute, href, followed by the catalog’s address in cyber-
space—its URL.

The second example shows an HTML tag that formats text into an unordered list of
items. Its single attribute—compact, which limits the space between list items—does
not require a value.

The third example demonstrates how the second example must be written in
XHTML. Notice the compact attribute now has a value, albeit a redundant one, and
that its value is enclosed in double quotes.

The fourth example shows an HTML tag with multiple attributes, each with a value
that does not require enclosing quotation marks. Of course, with XHTML, each
attribute value must be enclosed in double quotes.

The last example shows proper use of enclosing quotation marks when the attribute
value is more than one word long.

What is not immediately evident in these examples is that while HTML attribute
names are not case-sensitive (href works the same as HREF and HreF in HTML), most
attribute values are case-sensitive. The value filename for the name attribute in the
<input> tag example is not the same as the value Filename, for instance.

3.3.3 Starting and Ending Tags
We alluded earlier to the fact that most tags have a beginning and an end and affect
the portion of content between them. That enclosed segment may be large or small,
from a single text character, syllable, or word—such as the italicized “simp” syllable
in our barebones example—to the <html> tag that bounds the entire document. The
starting component of any tag is the tag name and its attributes, if any. The corre-
sponding ending tag is the tag name alone, preceded by a slash (/). Ending tags have
no attributes.

3.3.4 Proper and Improper Nesting
You can put tags inside the affected segment of another tag (nested) for multiple tag
effects on a single segment of the document. For example, a portion of the following
text is both bold and included as part of an anchor defined by the <a> tag:

<body>
This is some text in the body, with a
link, a portion of which
is set in bold.
</body>

According to the HTML and XHTML standards, you must end nested tags by start-
ing with the most recent one and working your way back out—first in, last out. For

40 | Chapter 3: Anatomy of an HTML Document

instance, in this example, we end the bold tag () before ending the link tag ()
because we started in the reverse order: <a> tag first, then tag. It’s a good idea to
follow that standard, even though most browsers don’t absolutely insist you do so.
You may get away with violating this nesting rule for one browser, and sometimes
even with all current browsers. But eventually a new browser version won’t allow the
violation, and you’ll be hard-pressed to straighten out your source HTML docu-
ment. Also, be aware that the XHTML standard explicitly forbids improper nesting.

3.3.5 Tags Without Ends
According to the HTML standard, a few tags do not have ending tags. In fact, the
standard forbids use of an end tag for these special ones, although most browsers are
lenient and ignore the errant end tag. For example, the
 tag causes a line break; it
has no effect otherwise on the subsequent portion of the document and, hence, does
not need an ending tag.

The HTML tags that do not have corresponding end tags are:

XHTML always requires end tags. [Handling Empty Elements, 16.3.3]

3.3.6 Omitting Tags
You often see documents in which the author seemingly has forgotten to include an
ending tag, in apparent violation of the HTML and certainly the XHTML standards.
Sometimes even the <body> tag is missing. But your browser doesn’t complain, and
the document displays just fine. What gives? The HTML standard lets you omit cer-
tain tags or their endings for clarity and ease of preparation. The HTML standard
writers didn’t intend the language to be tedious.

For example, the <p> tag that defines the start of a paragraph has a corresponding
end tag, </p>, but the end tag rarely is used. In fact, many HTML authors don’t even
know it exists. [<p>, 4.1.2]

The HTML standard lets you omit a starting tag or ending tag whenever it can be
unambiguously inferred by the surrounding context. Many browsers make good
guesses when confronted with missing tags, leading the document author to assume
that a valid omission was made.

<area> <base> <basefont>

 <col> <frame>

<hr> <input>

<isindex> <link> <meta>

<param>

3.4 Well-Formed Documents and XHTML | 41

We recommend that you almost always add the ending tag. It’ll make life easier for
yourself as you transition to XHTML as well as for the browser and anyone who
might need to modify your document in the future.

3.3.7 Ignored or Redundant Tags
HTML browsers sometimes ignore tags. This usually happens with redundant tags
whose effects merely cancel or substitute for themselves. The best example is a series
of <p> tags, one after the other, with no intervening content. Unlike a text-processing
tool, most browsers start to a new line only once. The extra <p> tags are redundant
and the browser usually ignores them.

In addition, most HTML browsers ignore any tag that they don’t understand or that
the document author specified incorrectly. Browsers habitually forge ahead and
make some sense of a document, no matter how badly formed and error ridden it
may be. This isn’t just a tactic to overcome errors; it’s also an important strategy for
extensibility. Imagine how much harder it would be to add new features to the lan-
guage if the existing base of browsers choked on them.

The thing to watch out for with nonstandard tags that aren’t supported by most
browsers is their enclosed contents, if any. Browsers that recognize the new tag may
process those contents differently than those that don’t support the new tag. For
example, older browsers, some of which are still in use by many people today, don’t
support styles. Dutifully, they ignore the <style> tag, but then go on to render its
contents on the user’s screen, effectively defeating the tag’s purpose in addition to
ruining the document’s appearance. [Document-Level Stylesheets, 8.1.2]

3.4 Well-Formed Documents and XHTML
XHTML is HTML’s prissy cousin. What would pass most beauty contests as a very
proper and complete HTML document, done according to the book and including
end-paragraph tags, might well be rejected by the XML judges as a malformed file.

To conform with XML, XHTML insists that documents be “well formed.” Among
other things, that means that every tag must have an ending tag—even the ones like

 and <hr> for which the HTML standard forbids the use of an end tag. With
XHTML, the ending is placed inside the start tag:
, for example. [Handling
Empty Elements, 16.3.3]

It also means that tag and attribute names are case-sensitive and, according to the
current XHTML standard, must be in lowercase. Hence, only <head> is acceptable,
and it is not the same as <HEAD> or <HeAd>, as it is with the HTML standard. [Case
Sensitivity, 16.3.4]

Well-formed XHTML documents, like HTML standard ones, must also conform to
proper nesting. No argument there. [Correctly Nested Elements, 16.3.1]

42 | Chapter 3: Anatomy of an HTML Document

In their defense, the XML standard and its offspring, XHTML, emphasize extensibil-
ity. That way, <p> can mean the beginning of a paragraph in HTML, whereas another
variant of the language may define the contents of the <P> tag to be election-poll
results that display quite differently—perhaps in tabular form, with red, white, and
blue stripes and accompanying patriotic music.

We will discuss this further in Chapters 15 and 16, in which we detail the XML and
XHTML standards (and the Forces of Conformity).

3.5 Document Content
Nearly everything else you put into your HTML or XHTML document that isn’t a
tag is, by definition, content, and the majority of that is text. Like tags, document
content is encoded using a specific character set—by default, the ISO-8859-1 Latin
character set. This character set is a superset of conventional ASCII, adding the nec-
essary characters to support the Western European languages. If your keyboard does
not allow you to directly enter the characters you need, you can use character enti-
ties to insert the desired characters.

3.5.1 Advice Versus Control
Perhaps the hardest rule to remember when marking up an HTML or XHTML docu-
ment is that all the tags you insert regarding text display and formatting are only
advice for the browser: they do not explicitly control how the browser will display
the document. In fact, the browser can choose to ignore all of your tags and do what
it pleases with the document content. What’s worse, the user (of all people!) has
control over the text-display characteristics of her own browser.

Get used to this lack of control. The best way to use markup to control the appear-
ance of your documents is to concentrate on the content of the document, not on its
final appearance. If you find yourself worrying excessively about spacing, alignment,
text breaks, and character positioning, you’ll surely end up with ulcers. You will
have gone beyond the intent of HTML. If you focus on delivering information to
users in an attractive manner, using the tags to advise the browser as to how best to
display that information, you are using HTML or XHTML effectively, and your doc-
uments will render well on a wide range of browsers.

3.5.2 Character Entities
Besides common text, HTML and XHTML give you a way to display special text
characters that you normally might not be able to include in your source document
or that have other purposes. A good example is the less-than or opening bracket
symbol (<). In HTML, it normally signifies the start of a tag, so if you insert it simply

3.5 Document Content | 43

as part of your text, the browser will get confused and probably misinterpret your
document.

For both HTML and XHTML, the ampersand character (&) instructs the browser to
use a special character, formally known as a character entity. For example, the com-
mand < inserts that pesky less-than symbol into the rendered text and the browser
does not confuse it to mean the start of a tag. Similarly, > inserts the greater-than
symbol, and & inserts an ampersand. There can be no spaces between the amper-
sand, the entity name, and the required, trailing semicolon. (Semicolons aren’t spe-
cial characters; you don’t need to use an ampersand sequence to display a semicolon
normally.) [Handling Special Characters, 16.3.7]

You also may replace the entity name after the ampersand with a pound symbol (#)
and a decimal value corresponding to the entity’s position in the character set.
Hence, the sequence < does the same thing as < and represents the less-than
symbol. In fact, you could substitute all the normal content characters within an
HTML document with ampersand special characters, such as A for the capital
letter A or a for its lowercase version, but that would be silly. You can find a
complete listing of all characters and their names and numerical equivalents in
Appendix F.

Keep in mind that not all special characters can be rendered by all browsers. Some
browsers just ignore many of the special characters; with others, the characters aren’t
available in the character sets on a specific platform. Be sure to test your documents
on a range of browsers before electing to use some of the more obscure character
entities.

3.5.3 Comments
Comments are another type of textual content that appears in the source HTML doc-
ument but is not rendered by the user’s browser. Comments fall between the special
<!-- and --> markup elements. Browsers ignore the text between the comment char-
acter sequences. Here are some sample comments:

<!-- This is a comment -->
<!-- This is a
multiple-line comment
that ends on this line -->

There must be a space after the initial <!-- and preceding the final -->, but other-
wise you can put nearly anything inside the comment. The biggest exception to this
rule is that the HTML standard doesn’t let you nest comments.*

Internet Explorer also lets you place comments within a special, nonstandard
<comment> tag. Everything between the <comment> and </comment> tags is ignored by

* Early versions of Netscape did let you nest comments, but no longer. The practice is tricky, so just say no.

44 | Chapter 3: Anatomy of an HTML Document

Internet Explorer. All other browsers display the comment to the user. Obviously,
because of this undesirable behavior, we do not recommend using the <comment> tag.
Instead, always use the <!-- and --> sequences to delimit comments.

Besides the obvious use of comments for source documentation, many web servers
use comments to take advantage of features specific to the document server soft-
ware. These servers scan the document for specific character sequences within con-
ventional HTML/XHTML comments and then perform some action based upon the
commands embedded in the comments. The action might be as simple as including
text from another file (known as a server-side include) or as complex as executing
other commands on the server to generate the document contents dynamically.

3.6 HTML/XHTML Document Elements
Every HTML document should conform to the HTML SGML DTD, the formal Doc-
ument Type Definition that defines the HTML standard. The DTD defines the tags
and syntax that are used to create an HTML document. You can inform the browser
which DTD your document complies with by placing a special Standard Generalized
Markup Language (SGML) command in the first line of the document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

This cryptic message indicates that your document is intended to be compliant with
the HTML 4.01 final DTD defined by the World Wide Web Consortium (W3C).
Other versions of the DTD define more restricted versions of the HTML standard,
and not all browsers support all versions of the HTML DTD. In fact, specifying any
other <!DOCTYPE> may cause the browser to misinterpret your document when dis-
playing it for the user. It’s also unclear what <!DOCTYPE> to use if you include non-
standard, albeit popular extensions in the HTML document—even for the
deprecated HTML 3.0 standard, for which a DTD was never released.

HTML developers are increasingly including an appropriate SGML DOCTYPE com-
mand as a prefix in their HTML documents. Because of the confusion of versions
and standards, if you do choose to include a DOCTYPE in your HTML document,
choose the appropriate one to ensure that your document is rendered correctly.

For XHTML authors, we do strongly recommend that you include the proper DOC-
TYPE statement in your XHTML documents, in conformance with XML standards.
Read Chapters 15 and 16 for more about DTDs and the XML and XHTML standards.

3.6.1 The <html> Tag
As we saw earlier, the <html> and </html> tags serve to delimit the beginning and end
of a document. Since the typical browser can easily infer from the enclosed source
that it is an HTML or XHTML document, you don’t really need to include the tag in
your source HTML document.

3.6 HTML/XHTML Document Elements | 45

That said, it’s considered good form to include this tag so that other tools, particu-
larly more mundane text-processing ones, can recognize your document as an
HTML document. At the very least, the presence of the beginning and end <html>

tags ensures that the beginning or the end of the document has not inadvertently
been deleted. Besides, XHTML requires the <html> and </html> tags.

Between <html> and </html> are the document’s head and body. Within the head,
you’ll find tags that identify the document and define its place within a document
collection. Within the body is the actual document content, defined by tags that
determine the layout and appearance of the document text. As you might expect, the
document head is contained within <head> and </head> tags and the body is within
<body> and </body> tags, all of which we define in more detail later in this chapter.*

By far, the most common form of the <html> tag is simply:

<html>
document head and body content

</html>

3.6.1.1 The dir attribute

The dir attribute specifies in which direction the browser should render text within
the containing element. When used within the <html> tag, it determines how text will
be presented within the entire document. When used within another tag, it controls
the text’s direction for just the content of that tag.

By default, the value of this tag is ltr, indicating that text is presented to the user left to
right. Use the other value, rtl, to display text right to left, for languages like Arabic and
Hebrew. Of course, the results depend on your content and the browser’s support of
HTML 4 or XHTML. Netscape and Internet Explorer versions 4 and earlier ignore the
dir attribute. The HTML 4-compliant Internet Explorer versions 5 and 6 simply right-
justify (dir=rtl) the text, although if you look closely at Figure 3-2, you’ll notice that
the browser moves the punctuation (the period) to the other side of the sentence.

<html>

Function Delimits a complete HTML or XHTML document

Attributes dir , lang, version

End tag </html>; may be omitted in HTML

Contains head_tag, body_tag, frames

* For the special HTML/XHTML frame document, a <frameset> tag replaces the <body> tag; more about this
in Chapter 11.

46 | Chapter 3: Anatomy of an HTML Document

Netscape 6 right-justified everything, including the ending period, but versions 7 and 8
did not (yet another sign that the browser wars are over):

<html dir=rtl>
<head>
<title>Display Directions</title>
</head>
<body>
This is how IE 6 renders right-to-left directed text.
</body>
</html>

3.6.1.2 The lang attribute

When included within the <html> tag, the lang attribute specifies the language you’ve
generally used within the document. When used within other tags, the lang attribute
specifies the language you used within that tag’s content. Ideally, browsers eventu-
ally will use lang to better render the text for the user.

Set the value of the lang attribute to an ISO-639 standard two-character language code.
You may also indicate a dialect by following the International Organization for Stan-
dardization (ISO) language code with a dash and a subcode name. For example, “en” is
the ISO language code for English; “en-US” is the complete code for U.S. English.
Other common language codes include “fr” (French), “de” (German), “it” (Italian),
“nl” (Dutch), “el” (Greek), “es” (Spanish), “pt” (Portuguese), “ar” (Arabic), “he”
(Hebrew), “ru” (Russian), “zh” (Chinese), “ja” (Japanese), and “hi” (Hindi).

3.6.1.3 The version attribute

Use the version attribute to define the HTML standard version that you followed
when composing the document. Its value, for HTML version 4.01, should read
exactly:

version="-//W3C//DTD HTML 4.01//EN"

Figure 3-2. All current browsers just right-justify text with the dir attribute, and get the
punctuation wrong, to boot

3.7 The Document Header | 47

In general, version information within the <html> tag is more trouble than it is worth,
and this attribute has been deprecated in HTML 4. Serious authors should instead
use an SGML <!DOCTYPE> tag at the beginning of their documents, like this:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.01//EN"
 "http://www.w3c.org/TR/html4/strict.dtd">

3.7 The Document Header
The document header describes the various properties of the document, including its
title, position within the Web, and relationship with other documents. Most of the
data contained within the document header is never actually rendered as content vis-
ible to the user.

3.7.1 The <head> Tag
The <head> tag serves to encapsulate other header tags. Place it at the beginning of
your document, just after the <html> tag and before the <body> or <frameset> tag.
Both the <head> tag and its corresponding end </head> tag can be unambiguously
inferred by the browser and so can be safely omitted from an HTML, but not from
an XHTML, document. We encourage you to include them in all your documents,
since they promote readability and support document automation.

The <head> tag may contain a number of other tags that help define and manage the
document’s content. These include, in any order of appearance: <base>, <isindex>,
<link>, <meta>, <nextid>, <object>, <script>, <style>, and <title>.

3.7.1.1 The dir and lang attributes

As we discussed in the sections about the <html> tag attributes, dir and lang help
extend HTML and XHTML to an international audience. [The dir attribute, 3.6.1.1]
[The lang attribute, 3.6.1.2]

<head>

Function Defines the document header

Attributes dir, lang, profile

End tag </head>; rarely omitted in HTML

Contains head_content

Used in html_tag

48 | Chapter 3: Anatomy of an HTML Document

3.7.1.2 The profile attribute

Often, the header of a document contains a number of <meta> tags used to convey
additional information about the document to the browser. In the future, authors
may use predefined profiles of standard document metadata to better describe their
documents. The profile attribute supplies the URL of the profile associated with the
current document.

The format of a profile and how a browser might use it are not yet defined; this
attribute is primarily a placeholder for future development.

3.7.2 The <title> Tag
The <title> tag does exactly what you might expect: the words you place inside its
beginning and end tags define the title for your document. (This stuff is pretty much
self-explanatory and easier than you might think at first glance.) The browser uses
the title in some special manner, and it is most often placed in the browser window’s
title bar or on a status line. Usually, too, the title becomes the default name for a link
to the document if the document is added to a link collection or to a user’s favorites
or bookmarks list.

The <title> tag is the only thing required within a document’s head. Because the
<head> tag itself and even the <html> tag can safely be omitted, the <title> tag could
be the first line within a valid HTML document. Beyond that, most browsers will
even supply a generic title for documents lacking a <title> tag, such as the docu-
ment’s filename, so you don’t even have to supply a title. That goes a bit too far even
for our down-and-dirty tastes, though. No respectable author should serve up a doc-
ument missing the <title> tag and a title.

When you do include a <title>, don’t forget to close it with the </title> end tag.
Otherwise, your title’s text ends up displayed in the body of your document, even
though it may precede the <body> tag.

<title>

Function Defines the document title

Attributes dir, lang

End tag </title>; never omitted

Contains plain_text

Used in head_content

3.7 The Document Header | 49

Browsers do not specially format title text, and they ignore anything other than text
inside the title beginning and end tags. For instance, they will ignore any images or
links to other documents.

Here’s an even barer barebones example of a valid HTML document, to highlight the
header and title tags; watch what happens when Netscape displays it in Figure 3-3:

<html>
<head>
<title>HTML and XHTML: The Definitive Guide</title>
</head>
</html>

3.7.2.1 What’s in a title?

Selecting the right title is crucial to defining a document and ensuring that it can be
effectively used on the Web.

Keep in mind that users can access each document in your collection in nearly any
order and independently of one another. Each document’s title should therefore
define the document both within the context of your other documents and on its
own merits.

Titles that include references to document sequencing are usually inappropriate.
Simple titles, like “Chapter 2” and “Part VI,” do little to help a user understand what
the document might contain. More descriptive titles, such as “Chapter 2: Advanced
Square Dancing” and “Part VI: Churchill’s Youth and Adulthood,” convey both a
sense of place within a larger set of documents and specific content that invites the
reader to read on.

Self-referential titles also aren’t very useful. A title such as “Home Page” is com-
pletely content-free, as are titles like “Feedback Page” and “Popular Links.” You
want a title to convey a sense of content and purpose so that users can decide, based
upon the title alone, whether to visit that page. “The Kumquat Lover’s Home Page”
is descriptive and likely to draw in lovers of the bitter fruit, as are “Kumquat Lover’s
Feedback Page” and “Popular Links Frequented by Kumquat Lovers.”

People spend a great deal of time creating documents for the Web, often only to
squander that effort with an uninviting, ineffective title. As special software that

Figure 3-3. What’s in a <title>?

50 | Chapter 3: Anatomy of an HTML Document

automatically collects links for users becomes more prevalent on the Web, the only
descriptive phrases associated with your pages when they are inserted into some vast
link database will be the titles you choose for them. We can’t emphasize this enough:
take care to select descriptive, useful, context-independent titles for each of your
documents.

3.7.2.2 The dir and lang attributes

The dir and lang attributes help extend HTML and XHTML to an international
audience. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

3.7.3 Related Header Tags
Other tags you may include within the <head> tag deal with specific aspects of docu-
ment creation, management, linking, automation, or layout. That’s why we only
mention them here and describe them in greater detail in other, more appropriate
sections and chapters of this book. Briefly, the special header tags are:

<base> and <link>

Define the current document’s base location and relationship to other docu-
ments. [<base>, 6.7.1] [<link>, 6.7.2]

<isindex>

Deprecated in HTML 4, the <isindex> tag at one time could be used to create
automatic document indexing forms, allowing users to search databases of infor-
mation using the current document as a querying tool. [<isindex>, 6.6.1]

<nextid>

Not supported in HTML 4 or XHTML, the <nextid> tag tried to make creation of
unique labels easier when using document automation tools. [<nextid>, 6.8.2]

<meta>

Provides additional document data not supplied by any of the other <head> tags.
[<meta>, 6.8.1]

<object>

Defines methods by which the browser can render nonstandard objects.
[<object>, 12.2.1]

<script>

Defines one or more scripts that elements within the document can invoke.
[<script>, 12.3.1]

<style>

Lets you create Cascading Style Sheet (CSS) properties to control body-content
display characteristics for the entire document. [<style>, 8.1.2]

3.8 The Document Body | 51

3.8 The Document Body
The document body is the meat of the matter. It’s where you put the contents of your
document. The beginning <body> and end </body> tags delimit the document body.

3.8.1 The <body> Tag
Within HTML 4 and XHTML, the <body> tag has a number of attributes that con-
trol the color and background of your document. Various browsers have extended
the tag to give even greater control over your document’s appearance.

Anything between the beginning <body> and end </body> tags is called body content.
The simplest document might have only a sequence of text paragraphs within the
<body> tag. More complex documents might include heavily formatted text, graphi-
cal figures, tables, and a variety of special effects.

Because the browser can infer the position of the <body> and </body> tags, they can
safely be omitted from an HTML, but not an XHTML, document. Like the <html>
and <head> tags, we recommend that you include both the <body> and </body> tags in
your HTML documents, too, to make them more easily readable and maintainable.

The various attributes for the <body> tag can be loosely grouped into three sets: those
that give you some control over the document’s appearance, those that associate pro-
grammable functions with the document itself, and those that label and identify the
body for later reference. We address the appearance attributes (alink, background,
bgcolor, bgproperties, leftmargin, link, text, topmargin, and vlink) in Chapter 5;
the class and style attributes for CSS in Chapter 8; JavaScript stylesheets and the

<body>

Function Defines the document body

Attributes alink, background, bgcolor, bgproperties, class, dir, id, lang,
leftmargin, link, onBlur, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onUnload, style, text, title, topmargin,
vlink

End tag </body>; may be omitted in HTML

Contains body_content

Used in html_tag

52 | Chapter 3: Anatomy of an HTML Document

programmatic attributes (the “on-event” ones) in Chapter 12; the language attributes
(dir and lang) earlier in this chapter; and the identification attributes (id and title)
in Chapter 4. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2] [The id
attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

3.8.2 Frames
The HTML and XHTML standards define a special type of document in which you
replace the <body> tag with one or more <frameset> tags. This so-called frame docu-
ment divides the display window into one or more independent windows, each dis-
playing a different document. We thoroughly describe this innovation in Chapter 11.

3.9 Editorial Markup
HTML 4.0 introduced two tags that can help groups of authors collaborate in the
development of documents and maintain some semblance of editorial and version
control. The insert (<ins>) and delete () tags respectively let you either desig-
nate portions of your document’s body as new or added content or designate old
stuff that should be replaced. And with special attributes, you can indicate when you
made the change (datetime) and a reference to a document that may explain the
change (cite).

3.9.1 The <ins> and Tags
The <ins> and tags let authors set off portions of body content that they intend
to add to or delete from the current versions of their documents. HTML 4/XHTML-
compliant browsers display the contents of the <ins> and tags in some special
way so that readers can quickly scan the document for the changes.

<ins> and

Function Define inserted and deleted document content (see Figure 3-4)

Attributes cite, class, datetime, dir, id, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, style, title

End tag </ins> and ; never omitted

Contains body_content

Used in body_content

3.9 Editorial Markup | 53

Netscape 4 and earlier versions ignore the tags, as did Internet Explorer 4 and its ear-
lier versions. All current popular browsers now support the tags.

3.9.1.1 The cite attribute

The cite attribute lets you document the reasons for the insertion or deletion. Its
value must be a URL that points to some other document that explains the inserted/
deleted text. How a browser treats cite is a question for the future.

3.9.1.2 The datetime attribute

Although the reason for the change is important, knowing when a change was made
is often more important. The datetime attribute for the <ins> and tags takes a
single value: a specially encoded date and timestamp. The rigorous format for the
datetime value is YYYY-MM-DDThh:mm:ssTZD. The components are:

• YYYY is the year, such as 1998 or 2010.

• MM is the month; 01 for January through 12 for December.

• DD is the day; 01 through 31.

• T is a required character designating the beginning of the time segment of the
stamp.

• hh is the hour in 24-hour format; 00 (midnight) through 23 (11 p.m.). (Add a fol-
lowing colon if you include the minutes.)

• mm are the minutes on the hour; 00 through 59. (Add a following colon if you
include the seconds.)

• ss are the seconds; 00 through 59.

• TZD is the time-zone designator. It can be one of three values: Z, indicating
Greenwich Mean Time,* or the hours, minutes, and seconds before (-) or after
(+) Coordinated Universal Time (UTC), where time is relative to the time in
Greenwich, England.

Figure 3-4. The <ins> and tags in action

* Greenwich Mean Time is also know as “Zulu,” thus the value of “Z.”

54 | Chapter 3: Anatomy of an HTML Document

For example:

2007-02-22T14:26Z

decodes to February 22, 2007 at 2:26 p.m. Greenwich Mean Time. To specify East-
ern Standard Time, the code for the same time and date is:

2003-02-22T09:26-05:00

Notice that the local time zone may change depending on where the document gets
edited, whereas the universal time will stay the same.

3.9.1.3 The class, dir, event, id, lang, style, title, and events attributes

There are several nearly universal attributes for the many HTML and XHTML tags.
These attributes give you a common way to identify (title) and label (id) a tag’s
contents for later reference or automated treatment, to change the contents’ display
characteristics (class, style), and to reference the language used (lang) and related
direction the text should flow (dir). There are also input events that may happen in
and around the tagged contents that you may react to via an on-event attribute and
some programming. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2] [The id
attribute, 4.1.1.4] [The id attribute, 4.1.1.4] [Inline Styles: The style Attribute, 8.1.1]
[Style Classes, 8.3] [JavaScript Event Handlers, 12.3.3]

3.9.2 Using Editorial Markup
The uses of <ins> and are obvious to anyone who has used a “boilerplate” doc-
ument or form or has collaborated with others in the preparation of a document.

For example, law firms typically have a collection of online legal documents that are
specially completed for each client. Law clerks usually do the “fill in,” and the final
document gets reviewed by a lawyer. To highlight those changes in the document so
that they are readily evident to the reviewer, you might use the <ins> tag to indicate
added text and the tag to mark the text that was replaced. Optionally, use the
cite and datetime attributes to indicate why and when the changes were made.

For example, the clerk might fill in a boilerplate document with the law firm’s and
representative’s names, indicating the time and source for the change:

The party of the first part, as represented by
<ins datetime=2002-06-22T08:30Z
 cite="http://www.mull+dull.com/tom_muller.html">
Thomas Muller of Muller and Duller
</ins>
[insert representation here]

3.10 The <bdo> Tag | 55

The editorial markup tags could also be used by editing tools to denote how docu-
ments were modified as authors make changes over a period of time. With the cor-
rect use of the cite and datetime attributes, it would be possible to recreate a version
of a document from a specific point in time.

3.10 The <bdo> Tag
As we mentioned earlier, the authors of the HTML 4 standard made a concerted
effort to include standard ways that web agents (browsers) are supposed to treat and
display the many different human languages and dialects. Accordingly, the HTML 4
standard and its progeny, XHTML, contain the universal dir and lang attributes that
let you explicitly advise the browser that the whole document or specific tagged seg-
ments within it are in a particular language. These language-related attributes, then,
may affect some display characteristics; for example, the dir attribute tells the
browser to write the words across the display from either left to right (dir=ltr), as
for most Western languages, or right to left (dir=rtl), as for many Asian languages.
[The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

The various Unicode and ISO standards for language encoding and display may con-
flict with your best intentions. In particular, the contents of some other documents,
such as a Multipurpose Internet Mail Extension (MIME)-encoded file, may already
be properly formatted, and your document may misadvise the browser to undo that
encoding. Hence, the HTML 4 and XHTML standards have the <bdo> tag. With it,
you override any current and inherited dir specifications. And with the tag’s required
dir attribute, you definitively specify the direction in which the tag’s contents should
be displayed.

For example, Figure 3-5 shows how Internet Explorer handles the following HTML
fragment containing a <bdo> redirection:

<bdo dir=rtl>This would be readable if in Chinese, perhaps.</bdo>
Back to the Western way of reading and writing.

Admittedly, the effects of the <bdo> tag are a bit esoteric, and the opportunities to use
it currently are rare.

Figure 3-5. Tricks with <bdo> redirected text flow

56 | Chapter 3: Anatomy of an HTML Document

<bdo>

Function Overrides bidirectional algorithms for content display

Attributes class, dir, id, lang, style, title

End tag </bdo>; never omitted

Contains text

Used in body_content

57

Chapter 4
In this chapter:

• Divisions and Paragraphs
• Headings
• Changing Text Appearance and

Meaning
• Content-Based Style Tags
• Physical Style Tags
• Precise Spacing and Layout
• Block Quotes
• Addresses
• Special Character Encoding
• HTML’s Obsolete Expanded Font

Handling

CHAPTER 4

Text Basics4

Any successful presentation, even a thoughtful tome, should have its text organized
into an attractive, effective document. Organizing text into attractive and effective
documents is HTML and XHTML’s forte. The languages give you a number of tools
that help you mold your text and get your message across. They also help structure
your document so that your target audience has easy access to your words.

Always keep in mind while designing your documents (here we go again!) that the
markup tags, particularly with regard to text, only advise—they do not dictate—how
a browser will ultimately render the document. Rendering varies from browser to
browser. Don’t get too entangled with trying to get just the right look and layout.
Your attempts may and probably will be thwarted by the browser.

4.1 Divisions and Paragraphs
Like most text processors, a browser wraps the words it finds to fit the horizontal
width of its viewing window. Widen the browser’s window, and words automati-
cally flow upward to fill the wider lines. Squeeze the window, and words wrap
downward.

Unlike most text processors, however, HTML and XHTML use explicit division
(<div>), paragraph (<p>), and line-break (
) tags to control the alignment and flow
of text. Return characters, although quite useful for readability of the source docu-
ment, typically are ignored by the browser—authors must use the
 tag to explic-
itly force a common text line break. The <p> tag, while also causing a line break,
carries with it meaning and effects beyond a simple return.

58 | Chapter 4: Text Basics

The <div> tag is a little different. When originally codified in the HTML 3.2 stan-
dard, <div> was meant to be a simple organizational tool—to divide the document
into discrete sections. That somewhat obtuse meaning meant few authors used it.
But recent innovations (alignment, styles, and the id attribute for document referenc-
ing and automation) now let you more distinctly label and thereby define individual
sections of your documents, as well as control the alignment and appearance of those
sections. These features breathe real life and meaning into the <div> tag.

By associating an id and a class name with the various sections of your document,
each delimited by a <div id=name class=name> tag and attributes (you can do the same
with other tags, like <p>, too), you not only label those divisions for later reference by
a hyperlink and for automated processing and management (collecting all the bibli-
ography divisions, for instance), but you may also define different, distinct display
styles for those portions of your document. For instance, you might define one divi-
sional class for your document’s abstract (<div class=abstract>, for example),
another for the body, a third for the conclusion, and a fourth divisional class for the
bibliography (<div class=biblio>, for example).

Each class, then, might be given a different display definition in a document-level or
externally related stylesheet: for example, the abstract indented and in an italic type-
face (such as div.abstract {left-margin: +0.5in; font-style: italic}); the body in a
left-justified roman typeface; the conclusion similar to the abstract; and the bibliog-
raphy automatically numbered and formatted appropriately.

We provide a detailed description of stylesheets, classes, and their applications in
Chapter 8.

4.1.1 The <div> Tag
As defined in the HTML 4.01 and XHTML 1.0 and 1.1 standards, a <div> tag divides
your document into separate, distinct sections. It may be used strictly as an organiza-
tional tool, without any sort of formatting associated with it, but it becomes more
effective if you add the id and class attributes to label the divisions. The <div> tag
also may be combined with the align attribute to control the alignment of whole sec-
tions of your document’s content in the display and with the many programmatic
“on event” attributes for user interaction.

4.1.1.1 The align attribute
The align attribute for <div> positions the enclosed content to the left (default),
center, or right of the display. In addition, you can specify justify to align both the
left and the right margins of the text. The <div> tag may be nested, and the align-
ment of the nested <div> tag takes precedence over the containing <div> tag. Fur-
ther, other nested alignment tags, such as <center>, aligned paragraphs (see <p> in
section 4.1.2), or specially aligned table rows and cells override the effects of <div>.
Like the align attribute for other tags, it is deprecated in the HTML and XHTML
standards in deference to stylesheet-based layout controls.

4.1 Divisions and Paragraphs | 59

4.1.1.2 The nowrap attribute

Supported by Internet Explorer and Opera, but not Firefox or Netscape Navigator,
the nowrap attribute suppresses automatic word wrapping of the text within the divi-
sion. Line breaks will occur only where you have placed carriage returns in your
source document.

While the nowrap attribute probably doesn’t make much sense for large sections of
text that would otherwise be flowed together on the page, it can make things a bit
easier when creating blocks of text with many explicit line breaks: poetry, for exam-
ple, or addresses. You don’t have to insert all those explicit
 tags in a text flow
within a <div nowrap> tag. On the other hand, a large number of users with browsers
that ignore the nowrap attribute will see your text flow merrily along. If you are tar-
geting only Internet Explorer or Opera with your documents, consider using nowrap
where needed, but otherwise, we can’t recommend this attribute for general use.

4.1.1.3 The dir and lang attributes

The dir attribute lets you advise the browser in which direction the text should be
displayed, and the lang attribute lets you specify the language used within the divi-
sion. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.1.1.4 The id attribute

Use the id attribute to label the document division for later reference by a hyperlink,
stylesheet, applet, or other automated process. In general, an acceptable id value is
any quote-enclosed string that uniquely identifies the division and that later can be
used to reference that document section unambiguously. Specifically, the value must
begin with a letter, and can contain letters, numbers, hyphens, colons, underscores,
and periods, but not spaces. Although we’re introducing it within the context of the
<div> tag, this attribute can be used with almost any tag.

<div>

Function Defines a block of text

Attributes align, class, dir, id, lang, nowrap , onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title

End tag </div>; usually omitted in HTML

Contains body_content

Used in block

60 | Chapter 4: Text Basics

When used as an element label, the value of the id attribute can be added to a URL
to address the labeled element uniquely within the document. You can label both
large portions of content (via a tag like <div>) and small snippets of text (using a tag
like <i> or). For example, you might label the abstract of a technical report
using <div id="abstract">. A URL could jump right to that abstract by referencing
report.html#abstract. When used in this manner, the value of the id attribute must be
unique with respect to all other id attributes within the document and all the names
defined by any <a> tags with the name attribute. [Linking Within a Document, 6.3.3]

When used as a stylesheet selector, the value of the id attribute is the name of a style
rule that can be associated with the current tag. This provides a second set of defin-
able style rules, similar to the various style classes you may create. A tag can use both
the class and the id attributes to apply two different rules to a single tag. In this
case, the name associated with the id attribute must be unique with respect to all
other style IDs within the current document. You can find a more complete descrip-
tion of style classes and IDs in Chapter 8.

4.1.1.5 The title attribute
Use the optional title attribute and quote-enclosed string value to associate a
descriptive phrase with the division. Like the id attribute, the title attribute can be
used with almost any tag and behaves similarly for all tags.

There is no standards-defined usage for the value of the title attribute, but current
browsers display the title when the mouse pauses over that element—in this case,
anywhere in the <div>-defined text area. For example, use the title attribute to pro-
vide helpful tips within your document.

4.1.1.6 The class and style attributes
Use the style attribute with the <div> tag to create an inline style for the content
enclosed by the tag. The class attribute lets you apply the style of a predefined class
of the <div> tag to the contents of this division. The value of the class attribute is the
name of a style defined in some document-level or externally defined stylesheet. In
addition, class-identified divisions lend themselves well to computer processing of
your documents; for example, extracting all divisions with the class name “biblio,”
for the automated assembly of a master bibliography. [Inline Styles: The style
Attribute, 8.1.1] [Style Classes, 8.3]

4.1.1.7 Event attributes

Many user-related events may happen in and around a division, such as when a user
clicks or double-clicks the mouse within its display space. The browser recognizes
these events if it conforms to the current HTML or XHTML standard (all the popular
ones do). With the respective on attribute and value, you may react to those events by
displaying a user dialog box or activating some multimedia event. [JavaScript Event
Handlers, 12.3.3]

4.1 Divisions and Paragraphs | 61

4.1.2 The <p> Tag
The <p> tag signals the start of a paragraph. That’s not well known even by some vet-
eran webmasters, because it runs counterintuitive to what we’ve come to expect from
experience. Most word processors we’re familiar with use just one special character,
typically the return character, to signal the end of a paragraph, not the beginning. By
contrast, in HTML and XHTML, each paragraph should start with the paragraph tag
<p> and end with the corresponding </p> end tag. Moreover, while a series of newline
or return characters in a text processor-displayed document, created when the author
hits the Enter key repeatedly, creates an empty paragraph for each one, browsers typi-
cally ignore all but the first paragraph tag, as well as newline characters.

In practice, with HTML you can ignore the starting <p> tag at the beginning of the
first paragraph and the </p> tags at the end of each paragraph: they can be implied
from other tags that occur in the document and hence safely omitted.* For example:

<body>
This is the first paragraph, at the very beginning of the body of
this document.
<p>
The tag above signals the start of this second paragraph. When rendered
by a browser, it will begin slightly below the end of the first paragraph,
with a bit of extra whitespace between the two paragraphs.
<p>
This is the last paragraph in the example.
</body>

Notice that we haven’t included the paragraph start tag (<p>) for the first paragraph
or any end paragraph tags; they can be unambiguously inferred by the HTML
browser and are therefore unnecessary.

* XHTML, on the other hand, requires explicit starting and ending tags.

<p>

Function Defines a paragraph of text

Attributes align, class, dir, id, lang, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </p>; often omitted in HTML

Contains text

Used in block

62 | Chapter 4: Text Basics

In general, you’ll find that human document authors tend to omit postulated tags
whenever possible, and automatic document generators tend to insert them. That may
be because the software designers didn’t want to run the risk of having their products
chided by competitors as not adhering to the HTML standard, even though we’re split-
ting letter-of-the-law hairs here. Go ahead and be defiant: omit that first paragraph’s
<p> tag and don’t give a second thought to paragraph-ending </p> tags—provided, of
course, that your document’s structure and clarity are not compromised (that is, as
long as you are aware that XHTML frowns severely on such laxity, too).

4.1.2.1 Paragraph rendering

When encountering a new paragraph (<p>) tag, the browser typically inserts one
blank line plus some extra vertical space into the display before starting the new
paragraph. The browser then collects all the words and, if present, inline images into
the new paragraph, ignoring leading and trailing spaces (not spaces between words,
of course) and return characters in the source text. The browser software then flows
the resulting sequence of words and images into a paragraph that fits within the mar-
gins of its display window, automatically generating line breaks as needed to wrap
the text within the window. For example, compare how a browser arranges the text
into lines and paragraphs (Figure 4-1) to how the preceding example is printed on
the page. The browser may also automatically hyphenate long words, and the para-
graph may be full-justified to stretch the line of words out toward both margins.

The net result is that you do not have to worry about line length, word wrap, and
line breaks when composing your documents. The browser will take any arbitrary
sequence of words and images and display a nicely formatted paragraph.

If you want to control line length and breaks explicitly, consider using a preformat-
ted text block with the <pre> tag. If you need to force a line break, use the
 tag.
[<pre>, 4.6.5] [
, 4.6.1]

Figure 4-1. Browsers ignore common return characters in the source HTML/XHTML document

4.1 Divisions and Paragraphs | 63

4.1.2.2 The align attribute
Most browsers automatically left-justify a new paragraph. To change this behavior,
HTML 4 and XHTML give you the align attribute for the <p> tag and provide four
kinds of content justification: left, right, center, and justify.

Figure 4-2 shows the effect of various alignments as rendered from the following source:

<p align=right>
Right over here!

This is too.
<p align=left>
Slide back left.
<p align=center>
Smack in the middle.
</p>
Left is the default.

Notice in the HTML example that the paragraph alignment remains in effect until
the browser encounters another <p> tag or an ending </p> tag. We deliberately left
out a final <p> tag in the example to illustrate the effects of the </p> end tag on para-
graph justification. Other body elements—including forms, headers, tables, and
most other body content-related tags—may also disrupt the current paragraph align-
ment and cause subsequent paragraphs to revert to the default left alignment.

Note that the align attribute is deprecated in HTML 4 and XHTML, in deference to
stylesheet-based alignments.

4.1.2.3 The dir and lang attributes
The dir attribute lets you advise the browser in which direction the text within the
paragraph should be displayed, and the lang attribute lets you specify the language
used within that paragraph. The dir and lang attributes are supported by the popu-
lar browsers, even though there are no behaviors defined for any specific language.
[The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

Figure 4-2. Effect of the align attribute on paragraph justification

64 | Chapter 4: Text Basics

4.1.2.4 The class, id, style, and title attributes

Use the id attribute to create a label for the paragraph that can later be used to
unambiguously reference that paragraph in a hyperlink target, for automated
searches, as a stylesheet selector, and with a host of other applications. [The id
attribute, 4.1.1.4]

Use the optional title attribute and quote-enclosed string value to provide a descrip-
tive phrase for the paragraph. [The title attribute, 4.1.1.5]

Use the style attribute with the <p> tag to create an inline style for the paragraph’s
contents. The class attribute lets you label the paragraph with a name that refers to a
predefined class of the <p> tag previously declared in some document-level or exter-
nally defined stylesheet. Class-identified paragraphs lend themselves well to com-
puter processing of your documents—for example, extracting all paragraphs whose
class name is “citation,” for automated assembly of a master list of citations. [Inline
Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

4.1.2.5 Event attributes

As with divisions, a browser recognizes many user-initiated events, such as when a
user clicks or double-clicks within a tag’s display space, if the browser conforms to
the current HTML or XHTML standard. With the respective on attribute and value,
you may react to those events by displaying a user dialog box or activating some mul-
timedia event. [JavaScript Event Handlers, 12.3.3]

4.1.2.6 Allowed paragraph content

A paragraph may contain any element allowed in a text flow, including conventional
words and punctuation, links (<a>), images (), line breaks (
), font changes
(, <i>, <tt>, <u>, <strike>, <big>, <small>, <sup>, <sub>, and), and content-
based style changes (<acronym>, <cite>, <code>, <dfn>, , <kbd>, <samp>, ,
and <var>). If any other element occurs within the paragraph, it implies that the
paragraph has ended, and the browser assumes that the closing </p> tag was not
specified.

4.1.2.7 Allowed paragraph usage

You may specify a paragraph only within a block, along with other paragraphs, lists,
forms, and preformatted text. In general, this means that paragraphs can appear
where a flow of text is appropriate, such as in the body of a document, in an element
in a list, and so on. Technically, paragraphs cannot appear within a header, anchor,
or other element whose content is strictly text-only. In practice, most browsers
ignore this restriction and format the paragraph as a part of the containing element.

4.2 Headings | 65

4.2 Headings
Users have a hard enough time reading what’s displayed on a screen. A long flow of
text, unbroken by title, subtitles, and other headers, crosses the eyes and numbs the
mind, not to mention the fact that it makes it nearly impossible to scan the text for a
specific topic.

You should always break a flow of text into several smaller sections within one or
more headings (like this book). There are six levels of HTML/XHTML headings that
you can use to structure a text flow into a more readable, more manageable docu-
ment. And, as we discuss in Chapters 5 and 8, there are a variety of graphical and
text-style tricks that help divide your document and make its contents more accessi-
ble as well as more readable.

4.2.1 Heading Tags
The six heading tags—written as <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>—indicate the
highest (<h1>) to lowest (<h6>) precedence a heading may have in the document.

The text enclosed within a heading typically is rendered by the browser uniquely,
depending upon the display technology available to it. The browser may choose to cen-
ter, format in boldface, enlarge, italicize, underline, or change the color of headings to
make each stand out within the document. And in order to thwart the most tedious
writers, often users themselves can alter how a browser renders the different headings.

Fortunately, in practice most browsers use a diminishing character point size for the
sequence of headers so that <h1> text is quite large and <h6> text is quite minuscule
(see Figure 4-3, for example).

By tradition, authors have come to use <h1> headers for document titles, <h2> head-
ers for section titles, and so on, often matching the way many of us were taught to
outline our work with heads, subheads, and sub-subheads.

<h1>, <h2>, <h3>, <h4>, <h5>, <h6>

Function Define one of six levels of headers

Attributes align, class, dir, id, lang, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title

End tag </h1>, </h2>, </h3>, </h4>, </h5>, </h6>; never omitted

Contains text

Used in body_content

66 | Chapter 4: Text Basics

Finally, don’t forget to include the appropriate heading end tags in your document.
The browser won’t insert them automatically for you, and omitting the ending tag
for a heading can have disastrous consequences for your document.

4.2.1.1 The align attribute
The default heading alignment for most browsers is left. As with the <div> and <p>

tags, the align attribute can change the alignment to left, center, right, or justify.
Figure 4-4 shows these alternative alignments as rendered from the following source:

<h1 align=right>Right over here!</h1>
<h2 align=left>Slide back left.</h2>
<h3 align=center>Smack in the middle.</h3>

Figure 4-3. Browsers typically use diminishing text sizes for rendering headings

Figure 4-4. The heading’s align attribute in action

4.2 Headings | 67

The justify value for align is not yet supported by any browser, and don’t hold your
breath. The align attribute is deprecated in HTML 4 and XHTML, in deference to
stylesheet-based controls.

4.2.1.2 The dir and lang attributes

The dir attribute lets you advise the browser in which direction the text within that
paragraph should be displayed, and lang lets you specify the language used within
the heading. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.2.1.3 The class, id, style, and title attributes

Use the id attribute to create a label for the heading that can later be used to unam-
biguously reference that heading in a hyperlink target, for automated searches, as a
stylesheet selector, and with a host of other applications. [The id attribute, 4.1.1.4]

Use the optional title attribute and quote-enclosed string value to provide a descrip-
tive phrase for the heading. [The title attribute, 4.1.1.5]

Use the style attribute with the heading tags to create an inline style for the head-
ings’ contents. The class attribute lets you label the heading with a name that refers
to a predefined class declared in some document-level or externally defined
stylesheet. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

4.2.1.4 Event attributes
Each user-initiated event that may happen in and around a heading is recognized by
the browser if it conforms to the HTML or XHTML standard. With the respective on
attribute and value, you may react to that event by displaying a user dialog box or
activating some multimedia event. [JavaScript Event Handlers, 12.3.3]

4.2.2 Appropriate Use of Headings
It’s often good form to repeat your document’s title in the first heading tag because
the title you specify in the <head> of your document doesn’t appear in the user’s main
display window. The following HTML segment is a good example of repeating the
document’s title in the header and in the body of the document:

<html>
<head>
<title>Kumquat Farming in North America</title>
</head>
<body>
<h3>Kumquat Farming in North America</h3>
<p>
Perhaps one of the most enticing of all fruits is the...

Typically, the browser places the <title> text along the top of the main display. It may
also place the title elsewhere in the document window and use it to create bookmarks

68 | Chapter 4: Text Basics

or favorites entries, all of which vaguely are somewhere on the user’s desktop. The
level-three title heading in this example, on the other hand, will always appear at the
very beginning of the document display. It serves as a visible title to the document,
regardless of how the browser handles the <title> tag’s contents. And, unlike the
<title> text, the heading title gets printed at the beginning of the first page should the
user elect to print the document, because it is part of the main text.[<title>, 3.7.2]

In our example, we chose to use a level-three heading (<h3>) whose rendered font
typically is just a bit larger than the regular document text. Levels one and two are
larger still and often are a bit overbearing. Choose a level of heading that you find
useful and attractive and use that level consistently throughout your documents. Too
big and it overwhelms the display window; too small and it’s easily missed visually.

Once you have established the top-level heading for your document, use additional
headings at the same or lower levels throughout to add structure and “scanability” to
the document. If you use a level-three heading for the document title, for example,
break your document into subsections using level-four headings. If you have the urge
to subdivide your text further, consider using a level-two heading for the title, level
three for the section dividers, and level four for the subsections.

4.2.3 Using Headings for Smaller Text
For most graphical browsers, the fonts used to display <h1>, <h2>, and <h3> headers
are larger, <h4> is the same, and <h5> and <h6> are smaller than the regular text size.
Authors typically use the latter two sizes for boilerplate text, such as a disclaimer or a
copyright notice. Though style rules ought to be used instead, some authors use
headers for their smaller text to format tables of contents or home pages that display
a site’s contents. Experiment with <h5> and <h6> to get the effect you want.
Figure 4-5 shows how a typical browser renders the copyright reference in the fol-
lowing sample XHTML segment:

resulting in years of successful kumquat production
throughout North America.
</p>
<h6>This document copyright 2007 by the Kumquat Growers of
America. All rights reserved.</h6>
</body>
</html>

Figure 4-5. HTML/XHTML authors typically use heading level six for boilerplate text

4.2 Headings | 69

4.2.4 Allowed Heading Content
A heading may contain any element allowed in text, including conventional text,
hyperlinks (<a>), images (), line breaks (
), font embellishments (, <i>,
<tt>, <u>, <strike>, <big>, <small>, <sup>, <sub>, and), and content-based
styles (<acronym>, <cite>, <code>, <dfn>, , <kbd>, <samp>, , and <var>). In
practice, however, font or style changes may not take effect within a heading because
the heading itself prescribes a font change within the browser.

At one time early on, there was widespread abuse of the heading tags as a way to
change the font of entire sections of a document. Technically, paragraphs, lists, and
other block elements are not allowed within a heading and may be mistaken by the
browser to indicate the implied end of the heading. In practice, most browsers apply
the style of the heading to all contained paragraphs. We discourage this practice
because it is not only a violation of HTML and XHTML standards, but also is usu-
ally ugly to look at. Imagine if your local paper printed all the copy in headline type!

Large sections of heading text defeat the purpose of the tag. If you really want to
change the font or type sizes in your document, use the standard cascading style defi-
nitions. See Chapter 8 for details.

We strongly recommend that you carefully test your pages with more than one
browser and at several different resolutions. As you might expect, your <h6> text may
be readable at 640 × 480 resolution, but may disappear on a 1280 × 1024 display.

4.2.5 Allowed Heading Usage
Formally, the HTML and XHTML standards allow headings only within body con-
tent. In practice, most browsers recognize headings almost anywhere, formatting the
rendered text to fit within the current element. In all cases, the occurrence of a heading
signifies the end of any preceding paragraph or other text element, so you can’t use the
heading tags to change font sizes in the same line. Rather, use cascading style defini-
tions to achieve those acute display effects. [Inline Styles: The style Attribute, 8.1.1]

4.2.6 Adding Images to Headings
It is possible to insert one or more images within your headings, from small bullets
or icons to full-size logos. Combining a consistent set of headings with correspond-
ing icons across a family of documents is not only visually attractive but also an
effective way of aiding users’ perusal of your document collection. [, 5.2.6]

Adding an image to a heading is easy. For example, the following text puts an “infor-
mation” icon inside the “For More Information” heading, as you can see in
Figure 4-6:

<h2>

For More Information</h2>

70 | Chapter 4: Text Basics

In general, images within headings look best at the beginning of the heading, aligned
with the bottom or middle of the heading text.

4.3 Changing Text Appearance and Meaning
A number of tags change the appearance of and associate hidden meaning with text.
In general, these tags can be grouped into two flavors: content-based styles and phys-
ical styles.

In addition, the World Wide Web Consortium (W3C) standard for Cascading Style
Sheets (CSS) is now well supported by the popular browsers, providing another,
more comprehensive way for authors to control the look and layout of their docu-
ment text. We describe the tag-based text styles in this chapter. See Chapter 8 for
details about CSS.

4.3.1 Content-Based Styles
Content-based style tags inform the browser that the enclosed text has a specific mean-
ing, context, or usage. The browser then formats the text in a manner consistent with
that meaning, context, or usage. Note the distinction here. Content-based style tags
confer meaning, not formatting. Accordingly, they are important for automated pro-
cesses; machines don’t care what the document looks like—at least for now.

Because font style is specified via semantic clues, the browser can choose a display
style that is appropriate for the user. Because such styles vary by locale, using con-
tent-based styles helps ensure that your documents will have meaning to a broader
range of readers. This is particularly important when a browser is targeted at blind or
handicapped readers whose display options are radically different from conventional
text or are extremely limited in some way.

The current HTML and XHTML standards do not define a format for each content-
based style; they only specify that they must be rendered in a manner different from

Figure 4-6. An image within a heading

4.4 Content-Based Style Tags | 71

the regular text in a document. The standards don’t even insist that the content-
based styles be rendered differently from one another. In practice, you’ll find that
many of these tags have fairly obvious relationships with conventional print, having
similar meanings and rendered styles, and are rendered in the same style and fonts by
most browsers.

4.3.2 Physical Styles
We use the word intent a lot when we talk about content-based style tags. That’s
because the meaning conveyed by the tag is more important than the way a browser
displays the text. In some cases, however, you might want the text to appear explic-
itly in some special way—italic or bold, for example—perhaps for legal or copyright
reasons. In those cases, use a physical style for the text.

While the tendency with other text-processing systems is to control style and appear-
ance explicitly, with HTML or XHTML you should avoid physical tags except on
rare occasions. Provide the browser with as much contextual information as possi-
ble. Use the content-based styles. Even though current browsers may do nothing
more than display their text in italic or bold, future browsers and various document-
generation tools may use the content-based styles in any number of creative ways.

4.4 Content-Based Style Tags
It takes discipline to use HTML/XHTML content-based style tags because it is easier
to simply think of how your text should look, not necessarily what it may also mean.
Once you get started using content-based styles, your documents will be more con-
sistent and better lend themselves to automated searching and content compilation.

Content-Based Style Tags

Function Alter the appearance of text based upon the meaning, context, or
usage of the text

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tags Never omitted

Contains text

Used in text

72 | Chapter 4: Text Basics

4.4.1 The <abbr> Tag
First introduced in HTML 4.0, the <abbr> tag indicates that the enclosed text is an
abbreviated form of a longer word or phrase. The browser might use this informa-
tion to change the way it renders the enclosed text or substitute alternative text.
Notice that we said might—not all of the popular browsers currently do anything to
the text enclosed by the <abbr> tag, and we can’t predict how other browsers will
implement the tag in the future.

4.4.2 The <acronym> Tag
The <acronym> tag indicates that the enclosed text is an acronym, an abbreviation
usually formed from the first letter of each word in a name or phrase, such as HTML
and IBM. Like <abbr>, not all browsers change the display of the <acronym> content-
based style tag’s enclosed text.

4.4.3 The <cite> Tag
The <cite> tag usually indicates that the enclosed text is a bibliographic citation,
such as a book or magazine title. By convention, the citation text is rendered in ital-
ics. See Figure 4-7 for how Internet Explorer renders this source text:

While kumquats are not mentioned in Melville's
<cite>Moby Dick</cite>, it is nonetheless apparent
that the mighty cetacean represents the bitter
"kumquat-ness" within every man. Indeed, when Ahab
spears the beast, its flesh is tough, much like the noble fruit.

Use the <cite> tag to set apart any reference to another document, especially those in
traditional media, such as books, magazines, journal articles, and the like. If an
online version of the referenced work exists, you also should enclose the citation
within the <a> tag in order to make it a hyperlink to that online version.

The <cite> tag also has a hidden feature: it enables you or someone else to automati-
cally extract a bibliography from your documents. It is easy to envision a browser
that compiles tables of citations automatically, displaying them as footnotes or as a

Figure 4-7. Internet Explorer renders <cite> in italics

4.4 Content-Based Style Tags | 73

separate document entirely. The semantics of the <cite> tag go far beyond changing
the appearance of the enclosed text; they enable the browser to present the content
to the user in a variety of useful ways.

4.4.4 The <code> Tag
Software code warriors have become accustomed to a special style of text presenta-
tion for their source programs. The <code> tag is for them. It renders the enclosed
text in a monospaced, teletype-style font such as Courier, familiar to most program-
mers and readers of O’Reilly books such as this one.

This following bit of en<code>ed text is rendered in a monospaced font style by Fire-
fox, as shown in Figure 4-8 (though the effect is not dramatic, admittedly):

The array reference <code>a[i]</code> is identical to
the pointer reference <code>*(a+i)</code>.

You should use the <code> tag for text that represents computer source code or other
machine-readable content. While the <code> tag usually just makes text appear in a
monospaced font, the implication is that it is source code, and future browsers may
add other display effects.*

For example, a programmer’s browser might look for <code> segments and perform
some additional text formatting, such as special indentation of loops and condi-
tional clauses. If the only effect you desire is a monospaced font, use the <tt> tag. If
you want to display the programming code in rigidly formatted monospaced text,
use the <pre> tag. [The <tt> Tag, 4.5.10] [<pre>, 4.6.5]

4.4.5 The <dfn> Tag
Use <dfn> to tag defining instances of special terms or phrases. The popular brows-
ers typically display <dfn> text in italics. In the future, <dfn> might assist in creating a
document index or glossary.

Figure 4-8. Use <code> to present computer-speak

* None of the popular browsers format <code> segments as a text processor might. Rather, use the <pre> tag
in conjunction with <code> to achieve programming code-like display effects.

74 | Chapter 4: Text Basics

For example, use the <dfn> tag to introduce a new phrase to the reader:

When analyzing annual crop yields, <dfn>rind spectroscopy</dfn> may prove useful. By
comparing the relative levels of saturated hydrocarbons in fruit from adjacent trees,
rind spectroscopy has been shown to be 87% effective in predicting an outbreak of
trunk dropsy in trees under four years old.

Notice that we delimit only the first occurrence of “rind spectroscopy” with a <dfn>
tag in the example. Good style tells us not to clutter the text with highlighted text. As
with the many other, content-related and physical style tags, the fewer the better.* As
a general style, especially in technical documentation, set off new terms when they
are first introduced to help your readers better understand the topic at hand, but
resist tagging the terms thereafter.

4.4.6 The Tag
The tag tells the client browser to present the enclosed text with emphasis. For
nearly all browsers, this means the text is rendered in italic. For example, the popu-
lar browsers will emphasize by italicizing the words always and never in the follow-
ing HTML/XHTML source:

Kumquat growers must always refer to kumquats
as "the noble fruit," never as just a "fruit."

Adding emphasis to your text is tricky business. Too little, and the emphatic phrases
may be lost. Too much, and you lose the urgency. Like any seasoning, emphasis is
best used sparingly.

Although invariably displayed in italic, the tag has broader implications as well,
and someday browsers may render emphasized text with a different special effect. The
<i> tag explicitly italicizes text; use it if all you want is italic. Alternatively, you can
include text display-altering cascading style definitions in your document. [The <i>
Tag, 4.5.4]

Besides for emphasis, also consider using when presenting new terms or as a
fixed style when referring to a specific type of term or concept. For instance, one of
O’Reilly’s book styles is to specially format file and device names. You might use the
 tag to differentiate those terms from simple italics used for emphasis.

4.4.7 The <kbd> Tag
Speaking of special styles for technical concepts, there is the <kbd> tag. As you proba-
bly already suspect, it is used to indicate text that is typed on a keyboard. Its
enclosed text typically is rendered by the browser in a monospaced font.

* If you need convincing that less is better when applying the content-based and physical style tags, try reading
a college textbook in which someone has highlighted what he considered important words and phrases with
a yellow marker.

4.4 Content-Based Style Tags | 75

The <kbd> tag is most often used in computer-related documentation and manuals,
such as in this example:

Type <kbd>quit</kbd> to exit the utility, or type
<kbd>menu</kbd> to return to the main menu.

4.4.8 The <samp> Tag
The <samp> tag indicates a sequence of literal characters that should have no other
interpretation by the user. This tag is most often used when a sequence of characters
is taken out of its normal context. For example, the following source:

The <samp>ae</samp> character sequence may be converted
to the æ ligature if desired.

is rendered by Netscape, for instance, as shown in Figure 4-9.

The special HTML reference for the ae ligature entity is æ and is converted to
its appropriate æ ligature character by most browsers. For more information, see
Appendix F.

The <samp> tag is not used very often. You should use it in those few cases where spe-
cial emphasis needs to be placed on small character sequences taken out of their nor-
mal context.

4.4.9 The Tag
Like the tag, the tag is for emphasizing text, except with more gusto.
Browsers typically display the tag differently than the tag, usually by
making the text bold (versus italic) so that users can distinguish between the two.
For example, in the following text, the emphasized “never” appears in italic by
Opera, and the “forbidden” is rendered in bold characters (see Figure 4-10):

One should never make a disparaging remark about the
noble fruit. In particular, mentioning kumquats in conjunction
with vulgar phrases is expressly forbidden by
the Association bylaws.

If common sense tells us that the tag should be used sparingly, the tag
should appear in documents even more infrequently. text is like shouting.

Figure 4-9. Setting off sample text using the <samp> tag

76 | Chapter 4: Text Basics

 text is nothing short of a scream. Like a well-chosen epithet voiced by an
otherwise taciturn person, restraint in the use of makes its use that much
more noticeable and effective.

4.4.10 The <var> Tag
The <var> tag, another computer-documentation trick, indicates a variable name or a
user-supplied value. The tag is often used in conjunction with the <code> and <pre>

tags for displaying particular elements of computer-programming code samples and
the like. Browsers typically render <var>-tagged text in italics, as shown in
Figure 4-11, which displays the following example:

The user should type
<pre>
 cp <var>source-file</var> <var>dest-file</var>
</pre>
replacing the <var>source-file</var> with the name of
the source file, and <var>dest-file</var> with the name
of the destination file.

Like the other computer-programming and documentation-related tags, the <var> tag
not only makes it easy for users to understand and browse your documentation, but
automated systems might someday use the appropriately tagged text to extract infor-
mation and useful parameters mentioned in your documents. Once again, the more
semantic information you provide to your browser, the better it can present that
information to the user.

Figure 4-10. Strong and emphasized text are rendered differently

Figure 4-11. The <var> tag typically appears in preformatted (<pre>) computer code

4.4 Content-Based Style Tags | 77

4.4.11 The class, style, id, and title Attributes
Although each content-based tag has a default display style, you can override that
style by defining a new look for each tag. You can apply this new look to the content-
based tags using either the style or the class attribute. [Inline Styles: The style
Attribute, 8.1.1] [Style Classes, 8.3]

You also may assign a unique identifier (id) to the content-based style tag, as well as
a less rigorous title, using the respective attributes and their accompanying quote-
enclosed string values. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.4.12 The dir and lang Attributes
The dir attribute advises the browser in which direction the text within the content-
based style tag should be displayed, and lang lets you specify the language used
within the tag. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.4.13 Event Attributes
Things happen in and around a content-based tag’s content, and, with the respective
on attribute and value you may react to that event by displaying a user dialog or acti-
vating some multimedia event. [JavaScript Event Handlers, 12.3.3]

4.4.14 Summary of Content-Based Tags
The various graphical browsers render text inside content-based tags in similar fash-
ion; text-only browsers such as Lynx have consistent styles for the tags. Table 4-1
summarizes these browsers’ display styles for the native tags. However, stylesheet
definitions may override these native display styles.

Table 4-1. Content-based tags

Tag
Netscape
Navigator

Internet
Explorer Mozilla Firefox Opera Lynx

<abbr> N/A N/A N/A N/A N/A

<acronym> N/A N/A N/A N/A N/A

<cite> italic italic italic italic monospace

<code> monospace monospace monospace monospace monospace

<dfn> italic italic italic italic N/A

 italic italic italic italic monospace

<kbd> monospace monospace monospace monospace monospace

<samp> monospace monospace monospace monospace monospace

 bold bold bold bold monospace

<var> italic italic italic italic monospace

78 | Chapter 4: Text Basics

4.4.15 Allowed Content
Any content-based style tag may contain any item allowed in text, including conven-
tional text, anchors, images, and line breaks. In addition, other content-based and
physical style tags can be embedded within the content.

4.4.16 Allowed Usage
Any content-based style tag may be used anywhere an item allowed in text is used. In
practice, this means you can use the , <code>, and other similar tags anywhere in
your document except inside <title>, <listing>, and <xmp> tagged segments. You
can use text style tags in headings, too, but their effects may be overridden by the
effects of the heading tags themselves.

4.4.17 Combining Content-Based Styles
It may have occurred to you to combine two or more of the various content-based
styles to create interesting and perhaps even useful hybrids. Thus, an emphatic cita-
tion might be achieved with:

<cite>Moby Dick</cite>

In practice, Dr. Frankenstein, the browser usually ignores the monster—as you can
test by typing and viewing the example yourself, “Moby Dick” gets the citation with-
out emphasis.

The HTML and XHTML standards do not require the browser to support every pos-
sible combination of content-based styles and do not define how the browser should
handle such combinations. Someday maybe; for now, it’s best to choose one tag.

4.5 Physical Style Tags
The current HTML and XHTML standards currently provide nine physical styles:
bold, italic, monospaced, underlined, strikethrough, larger, smaller, superscripted,
and subscripted text. Much to our relief, Internet Explorer has stopped supporting a
tenth physical style, “blinking” text. We wish the others would “get it.” All physical
style tags require ending tags.

As we discuss physical tags in detail, keep in mind that they convey an acute styling
for the immediate text. For more comprehensive, document-wide control of text dis-
play, use stylesheets (see Chapter 8).

4.5.1 The Tag
The tag is the physical equivalent of the content-based style tag, but
without the latter’s extended meaning. The tag explicitly boldfaces a character or
segment of text that is enclosed between it and its corresponding end tag (). If a
boldface font is not available, the browser may use some other representation, such
as reverse video or underlining.

4.5 Physical Style Tags | 79

4.5.2 The <big> Tag
The <big> tag makes it easy to increase the size of text. It couldn’t be simpler: the
browser renders the text between the <big> tag and its matching </big> ending tag
one font size larger than the surrounding text. If that text is already at the largest
size, <big> has no effect. [, 4.10.3]

Even better, you can nest <big> tags to enlarge the text. Each <big> tag makes the
text one size larger, up to a limit of size seven, as defined by the font model.

4.5.3 The <blink> Tag (Obsolete Extension)
Text contained between the <blink> tag and its end tag, </blink>, does just that: it
blinks on and off. Firefox, for example, simply and reiteratively reverses the back-
ground and foreground colors for the <blink>-enclosed text. Neither the HTML nor
the XHTML standard includes <blink>. Originally, it was supported as an extension
only by Netscape Navigator versions before version 6; then it was dropped in ver-
sion 6, and was reinstated in versions 7 and later. Opera and Firefox support it,
too—only Internet Explorer eschews it. You should, too.

We cannot effectively reproduce the animated effect in these static pages, but it is
easy to imagine and best left to the imagination, too. Blinking text has two primary
effects: it gets your readers’ attention and then promptly annoys them to no end.
Forget about blinking text.

4.5.4 The <i> Tag
The <i> tag is like the content-based style tag. It and its necessary end tag (</i>)
tell the browser to render the enclosed text in an italic or oblique typeface. If the
typeface is not available to the browser, highlighting, reverse video, or underlining
might be used.

Physical Style Tags

Function Specify physical styles for text

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tags Never omitted

Contains text

Used in text

80 | Chapter 4: Text Basics

4.5.5 The <s> Tag (Deprecated)
The <s> tag is an abbreviated form of the <strike> tag supported by all current
browsers even though it is deprecated in HTML 4 and XHTML. In other words, the
“s” stands for shy: don’t use it; <s> will go away, eventually.

4.5.6 The <small> Tag
The <small> tag works just like its <big> counterpart (see [The <big> Tag, 4.5.2]),
except it decreases the size of text instead of increasing it. If the enclosed text is
already at the smallest size supported by the font model, <small> has no effect.

As you can with <big>, you can nest <small> tags to sequentially shrink text. Each <small>
tag makes the text one size smaller than the containing <small> tag, to a limit of size 1.

4.5.7 The <strike> Tag (Deprecated)
The popular browsers put a line through (“strike through”) text that appears inside the
<strike> tag and its </strike> end tag. Presumably, it is an editing markup that tells
the reader to ignore the text passage, reminiscent of the days before typewriter correc-
tion tape. You’ll rarely, if ever, see the tag in use today: it is deprecated in HTML 4 and
XHTML, just one step away from complete elimination from the standard.

4.5.8 The <sub> Tag
The text contained between the _{tag and its} end tag gets displayed half a
character’s height lower, but in the same font and size as the current text flow. Both
<sub> and its <sup> counterpart are useful for math equations and in scientific nota-
tion, as well as with chemical formulæ.

4.5.9 The <sup> Tag
The ^{tag and its} end tag superscript the enclosed text; it gets displayed
half a character’s height higher, but in the same font and size as the current text flow.
This tag is useful for adding footnotes to your documents, along with exponential
values in equations. When you use it in combination with the <a> tag, you can cre-
ate nice, hyperlinked footnotes:

The larval quat
weevil^{<small>74</small>} is a

This example assumes that footnotes.html contains all your footnotes, appropriately
delimited as named document fragments.

4.5.10 The <tt> Tag
Like the <code> and <kbd> tags, the <tt> tag and its necessary </tt> end tag direct the
browser to display the enclosed text in a monospaced typeface. For those browsers

4.5 Physical Style Tags | 81

that already use a monospaced typeface, this tag may make no discernible change in
the presentation of the text.

4.5.11 The <u> Tag (Deprecated)
This tag tells the browser to underline the text contained between the <u> and the
corresponding </u> tag. The underlining technique is simplistic, drawing the line
under spaces and punctuation as well as the text. This tag is deprecated in HTML 4
and XHTML, but the popular browsers support it.

The same display effects for the <u> tag are better achieved by using stylesheets, cov-
ered in Chapter 8.

4.5.12 The dir and lang Attributes
The dir attribute lets you advise the browser in which direction the text within the
physical tag should be displayed, and lang lets you specify the language used within
the tag. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.5.13 The class, style, id, and title Attributes
Although each physical tag has a defined style, you can override that style by defin-
ing your own look for each tag. You can apply this new look to the physical tags
using either the style or the class attribute. [Inline Styles: The style Attribute, 8.1.1]
[Style Classes, 8.3]

You also may assign a unique ID to the physical style tag, as well as a less rigorous
title, using the respective attribute and accompanying quote-enclosed string value.
[The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.5.14 Event Attributes
As with content-based style tags, user-initiated mouse and keyboard events can hap-
pen in and around a physical style tag’s contents. The browser recognizes many of
these events if it conforms to current standards, and with the respective on attribute
and value, you may react to the event by displaying a user dialog box or activating
some multimedia event. [JavaScript Event Handlers, 12.3.3]

4.5.15 Summary of Physical Style Tags
The various graphical browsers render text inside the physical style tags in a similar
fashion. Table 4-2 summarizes these browsers’ display styles for these tags.
Stylesheet definitions may override these native display styles.

82 | Chapter 4: Text Basics

The following HTML source example illustrates some of the various physical tags as
rendered by Firefox (see Figure 4-12):

Explicitly boldfaced, <i>italicized</i>, or
<tt>teletype-style</tt> text should be used
<big><big>sparingly</big></big>.
Otherwise, drink <strike>lots</strike> 1x10⁶
drops of H_{<small><small>2</small></small>}O.

4.5.16 Allowed Content
Any physical style tag may contain any item allowed in text, including conventional
text, anchors, images, and line breaks. You can also combine physical style tags with
other content-based tags.

4.5.17 Allowed Usage
You can use any physical style tag anywhere you can use an item allowed in text. In
general, this means anywhere within a document, except in the <title>, <listing>,
and <xmp> tags. You can use a physical style tag in a heading, but the browser will
probably override and ignore its effect in lieu of the heading tag.

Table 4-2. Physical style tags

Tag Meaning Display style

 Bold contents Bold

<big> Increased font size Bigger text

<blink> (obsolete) Alternating fore- and background colors Blinking text

<i> Italic contents Italic

<small> Decreased font size Smaller text

<s>, <strike> (deprecated) Strikethrough text Strike

<sub> Subscripted text subscript

<sup> Superscripted text superscript

<tt> Teletypewriter style monospaced

<u> (deprecated) Underlined contents Underlined

Figure 4-12. Use physical text tags with caution

4.6 Precise Spacing and Layout | 83

4.5.18 Combining Physical Styles
You will probably have better luck combining physical tags than you might have
combining content-based tags to achieve multiple effects. For instance, all the popu-
lar browsers render the following in bold and italic typeface:

<i>Thar she blows!</i>

Other browsers may elect to ignore such nesting. The standards require the browser
to “do its best” to support every possible combination of styles, but do not define
how the browser should handle such combinations. Although most browsers make a
good attempt at doing so, do not assume all combinations will be available to you.

4.6 Precise Spacing and Layout
CSS notwithstanding, the original concept of HTML is for specifying document con-
tent without indicating format; to delineate the structure and semantics of a docu-
ment, not how that document is to be presented to the user. Normally, you should
leave word wrapping, character and line spacing, and other presentation details up to
the browser. That way, the document’s content—its rich information, not its good
looks—is what matters. When looks matter more, such as for commercial presenta-
tions, look to stylesheets for layout control (see Chapter 8).

4.6.1 The
 Tag
The
 tag interrupts the normal line filling and word wrapping of paragraphs
within an HTML or XHTML document. It has no ending tag with HTML;* it simply
marks the point in the flow where a new line should begin. Most browsers simply
stop adding words and images to the current line, move down and over to the left
margin, and resume filling and wrapping.

* With XHTML, put the end inside the start tag:
. See Chapter 16 for details.

Function Inserts a line break into a text flow

Attributes class, clear, id, style, title

End tag None in HTML; </br> or <br ... /> in XHTML

Contains Nothing

Used in text

84 | Chapter 4: Text Basics

This effect is handy when formatting conventional text with fixed line breaks, such
as addresses, song lyrics, and poetry. Notice, for example, the lyrical breaks when
the following source is rendered by a GUI browser:

<h3>
Heartbreak Hotel</h3>
<p>
Ever since my baby left me

I've found a new place to dwell.

It's down at the end of lonely street

Called <cite>Heartbreak Hotel</cite>.
</p>

The results are shown in Figure 4-13.

Also notice how the
 tag simply causes text to start a new line, and the browser,
when encountering the <p> tag, typically inserts some vertical space between adja-
cent paragraphs. [<p>, 4.1.2]

4.6.1.1 The clear attribute

Normally, the
 tag tells the browser to stop the current flow of text immediately
and resume at the left margin of the next line or against the right border of a left-jus-
tified inline graphic or table. Sometimes you’d rather the current text flow resume
below any tables or images currently blocking the left or right margin.

HTML 4 and XHTML provide that capability with the clear attribute for the

tag. It can have one of three values—left, right, or all—each related to one or both
of the margins. When the specified margin or margins are clear of images, the
browser resumes the text flow.

Figure 4-14 illustrates the effects of the clear attribute when the browser renders the
following HTML fragment:

This text should wrap around the image, flowing between the

Figure 4-13. Give lyrics their breaks (
)

4.6 Precise Spacing and Layout | 85

image and the right margin of the document.
<br clear=left>
This text will flow as well, but will be below the image,
extending across the full width of the page. There will be
whitespace above this text and to the right of the image.

Inline images are just that—normally in line with text, but usually only a single line of
text. Additional lines of text flow below the image, unless that image is specially aligned
by right or left attribute values for the tag (similarly for <table>). Hence, the
clear attribute for the
 tag works only in combination with left- or right-aligned
images or tables. [, 5.2.6] [The align attribute (deprecated), 10.2.1.1]

The following XHTML code fragment illustrates how to use the
 tag and its
clear attribute as well as the tag’s alignment attributes to place captions
directly above, centered on the right, and below an image that is aligned against the
left margin of the browser window:

Paragraph tags separate leading and following
text flow from the captions.
<p>
I'm the caption on top of the image.

This one's centered on the right.
<br clear="left" />
This caption should be directly below the image.
</p>
<p />

Figure 4-15 illustrates the results of this example code.

You might also include a <br clear=all> tag just after an tag or table that is at
the very end of a section of your document. That way, you ensure that the subse-
quent section’s text doesn’t flow up and against that image and confuse the reader.
[, 5.2.6]

Figure 4-14. Clearing images before resuming text flow after the
 tag

86 | Chapter 4: Text Basics

4.6.1.2 The class, id, style, and title attributes

You can associate additional display rules for the
 tag using stylesheets. You can
apply the rules to the
 tag using either the style or the class attribute. [Inline
Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

You also may assign a unique ID to the
 tag, as well as a less rigorous title, using
the respective attribute and accompanying quote-enclosed string value. [The id
attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.6.2 The <nobr> Tag (Extension)
Occasionally, you may want a phrase to appear unbroken on a single line in the
user’s browser window, even if that means the text extends beyond the visible region
of the window. Computer commands are good examples. Typically, you type in a
computer command—even a multiword one—on a single line. Because you cannot
predict exactly how many words will fit inside an individual’s browser window, the
sequence of computer-command words may end up broken into two or more lines of
text. Command syntax is confusing enough; it doesn’t need the extra cross-eyed
effect of being wrapped onto two lines.

With standard HTML and XHTML, the way to make sure text phrases stay intact
across the browser display is to enclose those segments in a <pre> tag and format it
by hand. That’s acceptable and nearly universal for all browsers. However, <pre>
alters the display font from the regular text, and manual line breaks inside the <pre>
tag are not always rendered correctly. [<pre>, 4.6.5]

Figure 4-15. Captions placed on top, center-right, and below an image

4.6 Precise Spacing and Layout | 87

The current browsers offer the <nobr> tag alternative to <pre>, which keeps enclosed
text intact on a single line while retaining normal text style.* <nobr> makes the browser
treat the tag’s contents as though they are a single, unbroken word. The tag contents
retain the current font style, and you can change to another style within the tag.

Here’s the <nobr> tag in action with our computer-command example:

When prompted by the computer, enter
<nobr>
<tt>find . -name *.html -exec rm \{\}\;</tt>.
</nobr>

<nobr>After a few moments, the load on your server will begin
to diminish and will eventually drop to zero.</nobr>

Notice in the example source and its display (Figure 4-16) that we’ve included the spe-
cial <tt> tag inside the first <nobr> tag, thereby rendering the contents in monospaced
font. If the <nobr>-tagged text cannot fit on a partially filled line of text, the extended
browser precedes it with a line break, as shown in the figure. The second <nobr> seg-
ment in the example demonstrates that the text may extend beyond the right window
boundary if the segment is too long to fit on a single line. For some reason, Netscape,
but not the other popular browsers, fails to provide a horizontal scroll bar so that users
can read the extended text, though. [The <tt> Tag, 4.5.10]

The <nobr> tag does not suspend the browser’s normal line-filling process; it still col-
lects and inserts images and—believe it or not—asserts forced line breaks caused by
the
 and <p> tags, for example. The <nobr> tag’s only action is to suppress an
automatic line break when the current line reaches the right margin.

In addition, you might think this tag is needed only to suppress line breaks for phrases,
not for a sequence of characters without spaces that can exceed the browser window’s
display boundaries. Today’s browsers do not hyphenate words automatically, but

<nobr>

Function Creates a region of nonbreaking text

Attributes None

End tag </nobr>; always used

Contains text

Used in block

* Be aware that <nobr> and its colleague <wbr> are extensions to the language and not part of the HTML stan-
dard.

88 | Chapter 4: Text Basics

someday soon they probably will. It makes sense to protect any break-sensitive
sequences of characters with the <nobr> tag.

4.6.3 The <wbr> Tag (Extension)
The <wbr> tag is the height of text-layout finesse, offered as an extension by Internet
Explorer, but not any others. Used with the <nobr> tag, <wbr> advises Internet
Explorer when it may insert a line break in an otherwise nonbreakable sequence of
text. Unlike the
 tag, which always causes a line break, even within an <nobr>-
tagged segment, the <wbr> tag works only when placed inside an <nobr>-tagged con-
tent segment and causes a line break only if the current line has already extended
beyond the browser’s display window margins.

Now, <wbr> may seem incredibly esoteric to you, but scowl not. There may come a
time when you want to make sure portions of your document appear on a single line,
but you don’t want to overrun the browser window margins so far that readers will
have to camp on the horizontal scroll bar just to read your fine prose. By inserting
the <wbr> tag at appropriate points in the nonbreaking sequence, you let the browser
gently break the text into more manageable lines:

Figure 4-16. The <nobr> extension suppresses text wrapping; for reasons unknown, Netscape
doesn’t enable a scroll bar so that you can read the extended text

<wbr>

Function Defines a potential line-break point if needed

Attributes None

End tag None in HTML; </wbr> or <wbr ... /> in XHTML

Contains Nothing

Used in text

4.6 Precise Spacing and Layout | 89

<nobr>
This is a very long sequence of text that is
forced to be on a single line, even if doing so causes
<wbr>
the browser to extend the document window beyond the
size of the viewing pane and the poor user must scroll right
<wbr>
to read the entire line.
</nobr>

You’ll notice in our Internet Explorer-rendered version (Figure 4-17) that both <wbr>

tags take effect. By increasing the horizontal window size or reducing the font size,
you may fit the entire segment before the first <wbr> tag within the browser window.
In that case, only the second <wbr> would have an effect; all the text leading up to it
would extend beyond the window’s margins.

4.6.4 Better Line-Breaking Rules
Unlike some browsers, and to their credit, the popular browsers do not consider tags
to be line-break opportunities. Consider the unfortunate consequences to your docu-
ment’s display if, while rendering the following example segment, the browser puts
the comma adjacent to the “du” or the period adjacent to the “df” on a separate line.

Make sure you type <tt>du</tt>, not <tt>df</tt>.

4.6.5 The <pre> Tag
The HTML/XHTML standards’ <pre> tag and its required end tag (</pre>) define a
segment inside which the browser renders text in exactly the character and line spac-
ing written in the source document. Normal word wrapping and paragraph filling are
disabled, and extraneous leading and trailing spaces are honored. Browsers display
all text between the <pre> and </pre> tags in a monospaced font.

Authors most often use the <pre> formatting tag when the integrity of columns and
rows of characters must be retained; for instance, in tables of numbers that must line
up correctly. Another application for <pre> is to set aside a blank segment—a series

Figure 4-17. Gentle line breaks with Internet Explorer’s <wbr>extension tag

90 | Chapter 4: Text Basics

of blank lines—in the document display, perhaps to clearly separate one content sec-
tion from another or to temporarily hide a portion of the document when it first
loads and is rendered by the user’s browser.

Tab characters have their desired effect within the <pre> block, with tab stops
defined at every eighth character position. We discourage their use, however,
because tabs aren’t consistently implemented among the various browsers. Use
spaces to ensure correct horizontal positioning of text within <pre>-formatted text
segments.

A common use of the <pre> tag is to present computer source code, as in the follow-
ing example:

<p>
The processing program is:
<pre>
main(int argc, char **argv)

{
 FILE *f;
 int i;

 if (argc != 2)
 fprintf(stderr, "usage: %s <file>\n",
 argv[0]);
 process(argv[1]);
 exit(0);
}
</pre>

Figure 4-18 shows the result.

<pre>

Function Renders a block of text without any formatting

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title, width

End tag </pre>; never omitted

Contains pre_content

Used in block

4.6 Precise Spacing and Layout | 91

4.6.5.1 Allowable content

The text within a <pre> segment may contain physical and content-based style
changes, along with anchors, images, and horizontal rules. When possible, the
browser should honor style changes, within the constraint of using a monospaced
font for the entire <pre> block. Tags that cause a paragraph break (heading, <p>, and
<address> tags, for example) must not be used within the <pre> block. Some brows-
ers will interpret paragraph-ending tags as simple line breaks, but this behavior is not
consistent across all browsers.

Style markup and other tags are allowed in a <pre> block, so you must use entity
equivalents for the literal characters: < for <, > for >, and & for &.

You place tags into the <pre> block as you would in any other portion of the HTML/
XHTML document. For instance, study the reference to the “process” function in the
previous example. It contains a hyperlink (using the <a> tag) to its source file,
process.c.

4.6.5.2 The width attribute

The <pre> tag has an optional attribute, width, which determines the number of char-
acters to fit on a single line within the <pre> block. The browser may use this value to
select a font or font size that fits the specified number of characters on each line in
the <pre> block. It does not mean that the browser will wrap and fill text to the speci-
fied width. Rather, lines longer than the specified width simply extend beyond the
visible region of the browser’s window.

The width attribute is only advice for the user’s browser; it may or may not be able to
adjust the view font to the specified width.

Figure 4-18. Use the <pre> tag to preserve the integrity of columns and rows

92 | Chapter 4: Text Basics

4.6.5.3 The dir and lang attributes

The dir attribute lets you advise the browser in which direction the text within the
<pre> segment should be displayed, and lang lets you specify the language used
within that tag. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.6.5.4 The class, id, style, and title attributes

Although the browsers usually display <pre> content in a defined style, you can override
that style and add special effects, such as a background picture, by defining your own
style for the tag. You can apply this new look to the <pre> tags using either the style or
the class attribute. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

You also may assign a unique ID to the <pre> tag, as well as a less rigorous title,
using the respective attribute and accompanying quote-enclosed string value. [The
id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.6.5.5 Event attributes

As with most other tagged segments of content, user-related events can happen in
and around <pre> content, such as when a user clicks or double-clicks within its dis-
play space. Current browsers recognize many of these events. With the respective on
attribute and value, you may react to those events by displaying a user dialog box or
activating some multimedia event. [JavaScript Event Handlers, 12.3.3]

4.6.6 The <center> Tag (Deprecated)
The <center> tag is another one with obvious effects: its contents, including text,
graphics, tables, and so on, are centered horizontally inside the browser’s window. For
text, this means that each line gets centered after the text flow is filled and wrapped.
The <center> alignment remains in effect until it is canceled with its </center> end tag.

<center>

Function Centers a section of text

Attributes align, class, dir, id, lang, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title

End tag </center>; never omitted

Contains body_content

Used in block

4.6 Precise Spacing and Layout | 93

Line by line is a common, albeit primitive, way to center text, and it should be used
judiciously; browsers do not attempt to balance a centered paragraph or other block-
related elements, such as elements in a list, so keep your centered text short and
sweet. Titles make good centering candidates; a centered list usually is difficult to
follow. HTML authors commonly use <center> to center a table or image in the dis-
play window, too. There is no explicit center alignment option for inline images or
tables, but there are ways to achieve the effect using stylesheets.

Because users will have varying window widths, display resolutions, and so on, you
may also want to employ the <nobr> and <wbr> extension tags (see sections 4.6.2 and
4.6.3) to keep your centered text intact and looking good. For example:

<center>
<nobr>
Copyright 2000 by QuatCo Enterprises.<wbr>
All rights reserved.
</nobr>
</center>

The <nobr> tags in the sample source help ensure that the text remains on a single
line, and the <wbr> tag controls where the line may be broken if it exceeds the
browser’s display-window width.

Centering is useful for creating distinctive section headers, although you may achieve
the same effect with an explicit align=center attribute in the respective heading tag.
You might also center text using align=center in conjunction with the <div> or <p>
tag. In general, the <center> tag can be replaced by an equivalent <div align=center>

or similar tag, and its use is discouraged.

Indeed, like and other HTML 3.2 standard tags that have fallen into disfavor
in the wake of stylesheets, the <center> tag is deprecated in the HTML 4 and
XHTML standards, to be replaced by its CSS equivalent. Nonetheless, its use in
HTML documents is fairly common, and the popular browsers are sure to support it
for many revisions to come. Still, be aware of its eventual demise.

4.6.6.1 The dir and lang attributes

The dir attribute lets you advise the browser in which direction the text within the
<center> segment should be displayed, and lang lets you specify the language used
within the tag. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.6.6.2 The class, id, style, and title attributes

Use the style attribute to specify an inline style for the <center> tag, or use the class
attribute to apply a predefined style class to the tag. [Inline Styles: The style
Attribute, 8.1.1] [Style Classes, 8.3]

94 | Chapter 4: Text Basics

You may assign a unique ID to the <center> tag, as well as a title, using the respective
attribute and accompanying quote-enclosed string value. [The id attribute, 4.1.1.4]
[The title attribute, 4.1.1.5]

4.6.6.3 Event attributes

As with most other tagged segments of content, user-related events can happen in
and around the <center> tag, such as when a user clicks or double-clicks within its
display space. The current browsers recognize many of these events. With the respec-
tive on attribute and value, you may react to those events by displaying a user dialog
box or activating some multimedia event. [JavaScript Event Handlers, 12.3.3]

4.6.7 The <listing> Tag (Obsolete)
The <listing> tag is an obsolete tag, explicitly removed from the HTML 4 standard,
meaning that you shouldn’t use it. We include it here for historical reasons because
some browsers support it, and it has the same effect on text formatting as the <pre>
tag with a specified width of 132 characters.

The only difference between <pre> and <listing> is that no other markup is allowed
within the <listing> tag, so you don’t have to replace the literal <, >, and & characters
with their entity equivalents in a <listing> block, as you must inside a <pre> block.

Because the <listing> tag is the same as a <pre width=132> tag, and because it might
not be supported in later versions of the popular browsers, we recommend that you
stay away from using <listing>.

4.6.8 The <xmp> Tag (Obsolete)
Like the <listing> tag, the <xmp> tag is obsolete and you should not use it, even though
the popular browsers support it. We include it here mostly for historical reasons.

<listing>

Function Renders a block of text without any formatting

Attributes class, style

End tag </listing>; never omitted

Contains literal_text

Used in block

4.6 Precise Spacing and Layout | 95

The <xmp> tag formats text just like the <pre> tag with a specified width of 80 charac-
ters. However, unlike the <pre> tag, you don’t have to replace the literal <, >, and &

characters with their entity equivalents within an <xmp> block. The name <xmp> is
short for “example”; the language’s designers intended that the tag be used to for-
mat examples of text originally displayed on 80-column-wide displays. Because the
80-column display has mostly gone the way of green screens and teletypes and the
effect of an <xmp> tag is basically the same as <pre width=80>, don’t use <xmp>; it may
disappear in subsequent versions of HTML.

4.6.9 The <plaintext> Tag (Obsolete)
Throw the <plaintext> tag out of your bag of HTML tricks; it’s obsolete, like
<listing> and <xmp>, and is included here for historical reasons. Authors once used
<plaintext> to tell the browser to treat the rest of the document’s text as written,
with no markup. There was no ending tag for <plaintext> (of course, no markup!),
but there was an end to <plaintext>. Forget about it.

<xmp>

Function Renders a block of text without any formatting

Attributes class, style

End tag </xmp>; never omitted

Contains literal_text

Used in block

<plaintext>

Function Renders a block of text without any formatting

Attributes None

End tag None

Contains literal_text

Used in block

96 | Chapter 4: Text Basics

4.7 Block Quotes
A common element in conventional documents is the block quote, a lengthy copy of
text from another document. Traditionally, short quotes are set off with quotation
marks, and block quotes are made entirely of separate paragraphs within the main
document, typically with special indentation and sometimes italicized—features that
you may change through style or class definitions (see Chapter 8).

4.7.1 The <blockquote> Tag
All of the text within the <blockquote> and </blockquote> tags is set off from the reg-
ular document text, usually with indented left and right margins and sometimes in
italicized typeface. Actual rendering varies from browser to browser, of course.

The HTML and XHTML standards allow any and all markup within the
<blockquote>, although some physical and content-based styles may conflict with the
font the browser uses for the block quote. Experimentation will reveal those warts.

The <blockquote> tag is often used to set off long quotations from other sources. For
example, popular browsers display the following as an indented block of text:

We acted incorrectly in arbitrarily changing the Kumquat
Festival date. Quoting from the Kumquat Growers' Bylaws:
<blockquote>
 The date of the Kumquat Festival may only be changed by
 a two-thirds vote of the General Membership, provided
 that a 60 percent quorum of the Membership
 is present.
</blockquote>
(Emphasis mine) Since such a quorum was not present, the
vote is invalid.

Figure 4-19 displays the results.

<blockquote>

Function Defines a block quotation

Attributes cite, class, dir, id, lang, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title

End tag </blockquote>; never omitted

Contains body_content

Used in block

4.7 Block Quotes | 97

4.7.1.1 The cite attribute

The cite attribute lets you indicate the source of a quote. The attribute’s value
should be a quote-enclosed URL that points to the online document and, if possible,
the exact location in the document where the quote came from.

For instance, you could cite the specific section in the Kumquat Growers’ Bylaws in
our example. Presumably, someday the browser may actually let you click and view
that specific citation via its embedded URL. Today, you must embed an explicit
hyperlink to the document; see Chapter 6:

<blockquote cite="http://www.kumquat.com/growers/bylaws#s23.4">

4.7.1.2 The dir and lang attributes

The dir attribute lets you advise the browser in which direction the text within the
<blockquote> segment should be displayed, and lang lets you specify the language used
within that tag. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.7.1.3 The class, id, style, and title attributes

Use the style attribute to specify an inline style for the <blockquote> tag, or use the
class attribute to apply a predefined style class to the tag. [Inline Styles: The style
Attribute, 8.1.1] [Style Classes, 8.3]

You may assign a unique ID to the <blockquote> tag, as well as a title, using the
respective attribute and accompanying quote-enclosed string value. [The id attribute,
4.1.1.4] [The title attribute, 4.1.1.5]

4.7.1.4 Event attributes

As with most other tagged segments of content, user-related events can happen in and
around the <blockquote> tag, such as when a user clicks or double-clicks within its dis-
play space. The current browsers recognize many of these events. With the respective

Figure 4-19. Block quotes get their own space

98 | Chapter 4: Text Basics

on attribute and value, you may react to those events by displaying a user dialog box or
activating some multimedia event. [JavaScript Event Handlers, 12.3.3]

4.7.2 The <q> Tag
Introduced in HTML 4.0, the <q> tag is virtually identical to its <blockquote> coun-
terpart. The difference is in their display and application. You use <q> for short
quotes that may be inline with surrounding plain text. The HTML and XHTML
standards dictate that the <q>-enclosed text begin and end with double quotes. All
the popular browsers except Internet Explorer support <q> and place double quotes
at each end of the enclosed text. The result is that you’ll get two sets of quotation
marks if you include your own quotes to satisfy Internet Explorer. Nonetheless, we
recommend that you use the <q> tag, not only because we like standards, but because
we see beyond their display effects to applications in document handling, informa-
tion extraction, and so forth.

Use the <blockquote> tag, on the other hand, for longer segments that the browser
will set off—usually as an indented block—from the surrounding content, such as
that shown in Figure 4-20.

4.7.2.1 The cite attribute

The cite attribute works with the <q> tag just like it does for the <blockquote> tag: it
lets you indicate the source of a quote. The attribute’s value should be a quote-
enclosed URL that points to the online document and, if possible, the exact location
in the document where the quote came from.

4.7.2.2 The dir and lang attributes

The dir attribute lets you advise the browser in which direction the text within the
<q> segment should be displayed, and lang lets you specify the language used within
that tag. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

<q>

Function Defines a short quotation

Attributes cite, class, dir, id, lang, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title

End tag </q>; never omitted

Contains body_content

Used in text

4.8 Addresses | 99

4.7.2.3 The class, id, style, and title attributes

Use the style attribute to specify an inline style for the <q> tag, or use the class

attribute to apply a predefined style class to the tag. [Inline Styles: The style
Attribute, 8.1.1] [Style Classes, 8.3]

You may assign a unique ID to the <q> tag, as well as a title, using the respective
attribute and accompanying quote-enclosed string value. [The id attribute, 4.1.1.4]
[The title attribute, 4.1.1.5]

4.7.2.4 Event attributes

As with most other tagged segments of content, user-related events can happen in
and around the <q> tag, such as when a user clicks or double-clicks within its display
space. The current browsers recognize many of these events. With the respective on
attribute and value, you may react to those events by displaying a user dialog box or
activating some multimedia event. [JavaScript Event Handlers, 12.3.3]

4.8 Addresses
Addresses are common elements in text documents, so there is a special tag that sets
addresses apart from the rest of a document’s text. While this may seem a bit extrav-
agant—addresses have few formatting peculiarities that would require a special
tag—it is yet another example of content, not format, being the primary focus of
HTML and XHTML markup.

By defining text that constitutes an address, the author lets the browser format that
text in a different manner and process that text in ways helpful to users. It also
makes the content readily accessible to automated readers and extractors. For
instance, an online directory might include addresses the browser collects into a sep-
arate document or table, or automated tools might extract addresses from a collec-
tion of documents to build a separate database of addresses.

4.8.1 The <address> Tag
The <address> tag and its required end tag (</address>) tell a browser that the
enclosed text is a contact address, typically snail mail or email. The address may
include other contact information, too. The browser may format the text in a differ-
ent manner from the rest of the document text or use the address in some special
way. You also have control over the display properties through the style and class

attributes for the tag (see Chapter 8).

The text within the <address> tag may contain any element normally found in the
body of a document, excluding another <address> tag. Style changes are allowed, but
they may conflict with the style the browser chose to render the <address> element.

100 | Chapter 4: Text Basics

We think that most, if not all, documents should have their authors’ addresses
included somewhere convenient to the user, usually at the end. At the very least, the
address should be the author or webmaster’s email address, along with a link to their
home page. Street addresses and phone numbers are optional; personal ones usually
are not included, for privacy reasons.

For example, the address for the webmaster responsible for a collection of commer-
cial web documents often appears in source documents as follows, including the spe-
cial mailto: URL protocol that lets users activate the browser’s email tool:

<address>
 Webmaster

 O'Reilly

 Cambridge, Massachusetts

</address>

Figure 4-20 displays the results, which are identical for all the popular browsers in
that, by default, the body of the address gets displayed in italics.

Whether it is short and sweet or long and complete, make sure every document you
create has an address attached to it. If something is worth creating and putting on

<address>

Function Defines an address

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </address>; never omitted

Contains body_content

Used in address_content

Figure 4-20. The <address> tag in action

4.9 Special Character Encoding | 101

the Web, it is worth comment and query by your readership. Anonymous docu-
ments carry little credibility on the Web.

4.8.1.1 The dir and lang attributes
The dir attribute lets you advise the browser in which direction the text within the
<address> segment should be displayed, and lang lets you specify the language used
within that tag. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.8.1.2 The class, id, style, and title attributes
Use the style attribute to specify an inline style for the <address> tag, or use the
class attribute to apply a predefined style class to the tag. [Inline Styles: The style
Attribute, 8.1.1] [Style Classes, 8.3]

You may assign a unique ID to the <address> tag, as well as a title, using the respective
attribute and accompanying quote-enclosed string value. [The id attribute, 4.1.1.4]
[The title attribute, 4.1.1.5]

4.8.1.3 Event attributes

As with most other tagged segments of content, user-related events can happen in
and around the <address> tag, such as when a user clicks or double-clicks within its
display space. The current browsers recognize many of these events. With the respec-
tive on attribute and value, you may react to those events by displaying a user dialog
box or activating some multimedia event. [JavaScript Event Handlers, 12.3.3]

4.9 Special Character Encoding
For the most part, characters within documents that are not part of a tag are ren-
dered as is by the browser. However, some characters have special meaning and are
not directly rendered, and other characters can’t be typed into the source document
from a conventional keyboard. Special characters need either a special name or a
numeric character encoding for inclusion in a document.

4.9.1 Special Characters
As has become obvious in the discussion and examples leading up to this section,
three characters in source documents have very special meaning: the less-than sign
(<), the greater-than sign (>), and the ampersand (&). These characters delimit tags
and special character references. They’ll confuse a browser if left dangling alone or
with improper tag syntax, so you have to go out of your way to include their actual,
literal characters in your documents.*

* The only exception is that these characters may appear literally within the <listing> and <xmp> tags, but this
is a moot point because the tags are obsolete.

102 | Chapter 4: Text Basics

Similarly, you have to use special encoding to include double quotation mark charac-
ters within a quoted string, or when you want to include a special character that
doesn’t appear on your keyboard but is part of the ISO Latin-1 character set that
most browsers implement and support.

4.9.2 Inserting Special Characters
To include a special character in your document, enclose either its standard entity
name or a pound sign (#) and its numeric position in the Latin-1 standard character
set* inside a leading ampersand and an ending semicolon, without any spaces in
between. Whew. That’s a long explanation for what is really a simple thing to do, as
the following examples illustrate. The first example shows how to include a greater-
than sign in a snippet of code by using the character’s entity name. The second dem-
onstrates how to include a greater-than sign in your text by referencing its Latin-1
numeric value:

if a > b, then t = 0
if a > b, then t = 0

Both examples cause the text to be rendered as follows:

if a > b, then t = 0

The complete set of character entity values and names appears in Appendix F. You
could write an entire document using character encodings, but that would be silly.

4.10 HTML’s Obsolete Expanded Font Handling
In earlier versions of this book, we rejoiced that HTML version 3.2 had introduced a
font-handling model for richer, more versatile text displays. When HTML 4 deprecated
these special font-handling tags, we nonetheless included them in the same prominent
position within this chapter because they were still part of the HTML 3.2 standard and
were still very popular with HTML authors, besides being well supported by all the pop-
ular browsers. We could not do the same for this edition of the book.

Like many deprecated HTML tags and attributes, the expanded font-handling tags of
HTML 3.2 were here yesterday and are gone today. Internet Explorer, the world’s most
popular browser, displays all of them; other browsers display some, but not other font-
related tags. Accordingly, we include the Extended Font Model tags in this chapter, but
at the end of this chapter and with all the implicit red flags waving hard.

* The popular ASCII character set is a subset of the more comprehensive Latin-1 character set. Composed by
the well-respected International Organization for Standardization (ISO), the Latin-1 set is a list of all letters,
numbers, punctuation marks, and so on, commonly used by Western-language writers, organized by num-
ber and encoded with special names. Appendix F contains the complete Latin-1 character set and encoding.

4.10 HTML’s Obsolete Expanded Font Handling | 103

The W3C wants authors to use CSS, not acute tags and attributes, for explicit con-
trol of the font styles, colors, and sizes of the text characters. That’s why these
extended font tags and related attributes have fallen into disfavor. It’s now time for
you to eschew the extended font tags, too.

4.10.1 The Extended Font Size Model
Instead of absolute point values, the Extended Font Model of HTML 3.2 uses a rela-
tive means for sizing fonts. Sizes range from 1, the smallest, to 7, the largest; the
default (base) font size is 3.

It is almost impossible to state reliably the actual font sizes used for the various vir-
tual sizes. Most browsers let the user change the physical font size, and the default
sizes vary from browser to browser. It may be helpful to know, however, that each
virtual size is successively 20 percent larger or smaller than the default font size, 3.
Thus, font size 4 is 20 percent larger, font size 5 is 40 percent larger, and so on, and
font size 2 is 20 percent smaller and font size 1 is 40 percent smaller than font size 3.

4.10.2 The <basefont> Tag (Deprecated)
The <basefont> tag lets you define the basic size for the font that the browser will use
to render normal document text. We don’t recommend that you use it, as it has been
deprecated in the HTML 4 and XHTML standards and is no longer supported by
most browsers, except Internet Explorer.

The <basefont> tag recognizes the size attribute, whose value determines the docu-
ment’s base font size. You may specify it as an absolute value, from 1 to 7, or as a rela-
tive value (by placing a plus or minus sign before the value). In the latter case, the base
font size is increased or decreased by that relative amount. The default base font size is 3.

Internet Explorer supports two additional attributes for the <basefont> tag: color
and name. HTML 4 also defines the face attribute as a synonym for the name attribute.

<basefont>

Function Defines the base font size for relative font-size changes

Attributes color, face, id, name, size

End tag </basefont>; often omitted in HTML

Contains Nothing

Used in block, head_content

104 | Chapter 4: Text Basics

These attributes control the color and typeface used for the text in a document and
are used just like the analogous color and face attributes for the tag,
described in the next section.

HTML 4 also defines the id attribute for the <basefont> tag, allowing you to label the
tag uniquely for later access to its contents. [The id attribute, 4.1.1.4]

Authors typically include the <basefont> tag in the head of an HTML document, if at
all, to set the base font size for the entire document. Nonetheless, the tag may appear
nearly anywhere in the document, and it may appear several times throughout the
document, each with a new size attribute. With each occurrence, the <basefont>

tag’s effects are immediate and hold for all subsequent text.

In an egregious deviation from the HTML and Standard Generalized Markup Language
(SGML) standards, Internet Explorer does not interpret the ending </basefont> tag as
terminating the effects of the most recent <basefont> tag. Instead, the </basefont> end
tag resets the base font size to the default value of 3, which is the same as writing
<basefont size=3>.

The following example source and Figure 4-21 illustrate how Internet Explorer
responds to the <basefont> tag and </basefont> end tag:

Unless the base font size was reset above,
Inernet Explorer renders this part in font size 3.
<basefont size=7>
This text should be rather large (size 7).
<basefont size=6> Oh,
<basefont size=4> no!
<basefont size=2> I'm
<basefont size=1> shrinking!
</basefont>

Ahhhh, back to normal.

We recommend against using </basefont>; use <basefont size=3> instead.

Figure 4-21. Playing with <basefont>

4.10 HTML’s Obsolete Expanded Font Handling | 105

4.10.3 The Tag (Deprecated)
The tag lets you change the size, style, and color of text. We don’t recom-
mend that you use it, because it has been deprecated in the HTML 4 and XHTML
standards, even though all the popular browsers still support it. But should you
decide to ignore our advice, use it like any other physical or content-based style tag
for changing the appearance of a short segment of text.

To control the color of text for the entire document, see the attributes for the <body>
tag, described. [Additions and Extensions to the <body> Tag, 5.3.1]

4.10.3.1 The size attribute

The value of the size attribute must be one of the virtual font sizes (1–7) described
earlier, defined as an absolute size for the enclosed text or preceded by a plus or
minus sign (+ or –) to define a relative font size that the browser adds to or subtracts
from the base font size (see section 4.10.2). The browsers automatically round the
size to 1 or 7 if the calculated value exceeds either boundary.

In general, use absolute size values when you want the rendered text to be an
extreme size, either very large or very small, or when you want an entire paragraph of
text to be a specific size.

For example, using the largest font for the first character of a paragraph makes for a
crude form of illuminated manuscript (see Figure 4-22):

<p>
Call me Ishmael.

Also, use an absolute font when inserting a delightfully unreadable bit of “fine”
print—boilerplate or legalese—at the bottom of your document (see Figure 4-23):

<p>

All rights reserved. Unauthorized redistribution of this document is
prohibited. Opinions expressed herein are those of the authors, not the
Internet Service Provider.

Function Sets the font size for text

Attributes class, color, dir, face, id, lang, size, style, title

End tag ; never omitted

Contains text

Used in text

106 | Chapter 4: Text Basics

Except for the extremes, use relative font sizes to render text in a size different from
the surrounding text, to emphasize a word or phrase. For an exaggerated example,
see Figure 4-24:

<p>
Make sure you always sign and date the form!

If your relative size change results in a size greater than 7, the browser uses font size
7. Similarly, font sizes less than 1 are rendered with font size 1.

Note that specifying size=+1 or size=-1 is identical in effect to using the <big> and
<small> tags, respectively. However, nested relative changes to the font size are not
cumulative, as they are for the alternative tags. Each tag is relative to the base
font size, not the current font size. For example (see Figure 4-25):

<p>
The ghost moaned, "oooooooooooooo."

Contrast this with the <big> and <small> tags, which increase or decrease the font
size one level for each nesting of the tags. [The <big> Tag, 4.5.2]

Figure 4-22. Exaggerating the first character of a sentence with the size attribute for

Figure 4-23. Use the tiniest font for boilerplate text

Figure 4-24. Use relative sizes for most text embellishments

4.10 HTML’s Obsolete Expanded Font Handling | 107

4.10.3.2 The color attribute

Still supported by the popular browsers, the color attribute for the tag sets the
color of the enclosed text. The value of the attribute may be expressed in either of
two ways: as the red, green, and blue (RGB) components of the desired color, or as a
standard color name. Enclosing quotes are recommended but not required.

The RGB color value, denoted by a preceding pound sign, is a six-digit hexadecimal
number. The first two digits are the red component, from 00 (no red) to FF (bright
red). Similarly, the next two digits are the green component and the last two digits
are the blue component. Black is the absence of color, #000000; white is all colors,
#FFFFFF.

For example, to create basic yellow text, you might use:

Here comes the sun!

Alternatively, you can set the enclosed font color using any one of the many stan-
dard color names. See Appendix G for a list of common ones. For instance, you
could have made the previous sample text yellow with the following source:

Here comes the sun!

4.10.3.3 The face attribute

In earlier versions, Internet Explorer and Netscape Navigator let you change the font
style in a text passage with the face attribute for the tag.* While this is still
supported in most browsers, we strongly recommend that you manage your font
faces using appropriate styles. Interpretation of the face attribute varies among
browsers and missing glyphs within a font can cause unexpected behavior with the
displayed text.

The quote-enclosed value of face is one or more display font names separated with
commas. The font face displayed by the browser depends on which fonts are avail-
able on the individual user’s system. The browser parses the list of font names, one

Figure 4-25. Relative font sizes accumulate

* For the HTML purist, the once-powerful user who had ultimate control over the browser, this is egregious
indeed. Form over function; look over content—what’s next? Embedded video commercials you can’t stop?

108 | Chapter 4: Text Basics

after the other, until it matches one with a font name supported by the user’s sys-
tem. If none matches, the text display defaults to the font style the user set in the
browser’s preferences. For example:

This text is in the default font. But,

heaven only knows
what font face is this one?

If the browser user has the Braggadocio, Machine, or none of the listed font type-
faces installed in her system, she will be able to read the “heaven only knows” mes-
sage in the respective or default font style. Otherwise, the message may be garbled,
because the Zapf Dingbats font contains symbols, not letters. Of course, the alterna-
tive is true, too; you may intend that the message be a symbol-encoded secret.

4.10.3.4 The dir and lang attributes

The dir attribute lets you advise the browser in which direction the text within the
tag should be displayed, and lang lets you specify the language used for the tag’s con-
tents. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

4.10.3.5 The class, id, style, and title attributes

You can associate additional display rules for the tag using stylesheets. You can
apply the rules to the tag using either the style or class attribute. [Inline Styles:
The style Attribute, 8.1.1] [Style Classes, 8.3]

You also can assign a unique ID to the tag, as well as a less rigorous title,
using the respective attribute and accompanying quote-enclosed string value. [The
id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

109

Chapter 5!ti
In this chapter:

• Horizontal Rules
• Inserting Images in Your Documents
• Document Colors and Background

Images
• Background Audio
• Animated Text
• Other Multimedia Content

CHAPTER 5

Rules, Images, and
Multimedia5

While the body of most documents is text, an appropriate seasoning of horizontal
rules, images, and other multimedia elements makes for a much more inviting and
attractive document. These features are not simply gratuitous geegaws that make
your documents look pretty, mind you. Multimedia elements bring HTML and
XHTML documents alive, providing a dimension of valuable information often
unavailable in other media, such as print. In this chapter, we describe in detail how
you can insert special multimedia elements into your documents, when their use is
appropriate, and how to avoid overdoing it.

You also might want to jump ahead and skim Chapter 12, where we describe some
catchall tags (the HTML 4 and XHTML standard <object> and the popular brows-
ers’ <embed>) that let you insert all kinds of content and datafile types, including mul-
timedia, into your documents.

5.1 Horizontal Rules
Horizontal rules give you a way to separate sections of your document visually. That
way, you give readers a clean, consistent, visual indication that one portion of your
document has ended and another portion has begun. Horizontal rules effectively set
off small sections of text, delimit document headers and footers, and provide extra
visual punch to headings within your document.

110 | Chapter 5: Rules, Images, and Multimedia

5.1.1 The <hr> Tag
The <hr> tag tells the browser to insert a horizontal rule across the display window.
With HTML, it has no end tag. For XHTML, include the end-tag slash (/) symbol as
the last character in the tag itself after any attributes (<hr .../>), or include an end
tag immediately following (<hr></hr>).

Like the
 tag, <hr> forces a simple line break. Unlike
, <hr> causes the para-
graph alignment to revert to the default (left justified). The browser places the rule
immediately below the current line, and content flow resumes below the rule.
[
, 4.6.1]

The browser decides how to render a horizontal rule. Typically, the rule extends
across the entire document. Graphical browsers also may render it with a chiseled or
embossed effect; character-based browsers most likely use dashes or underscores to
create the rule.

There is no additional space above or below a horizontal rule. If you want to set it off
from the surrounding text, you must explicitly place the rule in a new paragraph, fol-
lowed by another paragraph containing the subsequent text. For example, note the
spacing around the horizontal rules in the following HTML source and in Figure 5-1:

This text is directly above the rule.
<hr>
And this text is immediately below.
<p>
Whereas this text will have space before the rule.
<p>
<hr>
<p>
And this text has space after the rule.

<hr>

Function Breaks text flow and inserts a horizontal rule

Attributes align, class, color , dir, id, lang, noshade, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, size, style, title, width

End tag None in HTML; </hr> or <hr ... /> in XHTML

Contains Nothing

Used in body_content

5.1 Horizontal Rules | 111

A paragraph tag following the rule tag is necessary if you want the content beneath
the rule line aligned in any style other than the default left.

5.1.1.1 The size attribute

Normally, browsers render horizontal rules 2 to 3 pixels* thick with a chiseled, 3D
appearance, making the rule look incised into the page. You may thicken the rules
with the size attribute. The required value is the thickness, in pixels. You can see the
effects of this attribute in Figure 5-2, as constructed from the following source:

<p>
This is conventional document text,
followed by the standard 2-pixel tall rule line.
<hr>
The next three rule lines are 12, 36, and 72 pixels
tall, respectively.
<hr size=12>
<hr size=36>
<hr size=72>

The size attribute is deprecated in HTML 4 and XHTML because you can achieve
its effects with appropriate use of stylesheets.

5.1.1.2 The noshade attribute

You may not want a 3D rule line, preferring a flat, 2D rule. Just add the noshade

attribute to the <hr> tag to eliminate the 3D effect. No value is required with HTML.
Use noshade="noshade" with XHTML.

Figure 5-1. Paragraph tags give your text extra elbowroom

* A pixel is one of the many tiny dots that make up the display on your computer. While display sizes vary, a
good rule of thumb is that one pixel equals one point on a 75-dot-per-inch display monitor. A point is a unit of
measure used in printing and is roughly equal to 1/72 of an inch (there are 72.27 points in an inch, to be exact).
Typical typefaces used by various browsers are usually 12 points tall, yielding up to six lines of text per inch.

112 | Chapter 5: Rules, Images, and Multimedia

Note the difference in appearance of a “normal” 3D rule versus the noshade 2D one
in Figure 5-3. (We’ve also exaggerated the rule’s thickness for obvious effect, as evi-
dent in the source HTML fragment.)

<hr size=32>
<p>
<hr size=32 noshade>

Interestingly, Internet Explorer’s noshade rule has blunt ends instead of the rounded
ones the other browsers render, like that in Figure 5-3. Nevertheless, the noshade

attribute is deprecated in HTML 4 and XHTML because you can achieve its effects
with appropriate use of stylesheets.

Figure 5-2. The popular browsers let you vary the horizontal rule size

Figure 5-3. Normal 3D rule versus the noshade 2D option

5.1 Horizontal Rules | 113

5.1.1.3 The width attribute

The default rule is drawn across the full width of the view window. You can shorten
or lengthen rules with the width attribute, creating rule lines that either are an abso-
lute number of pixels wide or extend across a certain percentage of the current text
flow. Most browsers automatically center partial-width rules; see the align attribute
(see section 4.1.1.1) to left- or right-justify horizontal rules.

Here are some examples of width-specified horizontal rules (see Figure 5-4):

The following rules are 40 and 320 pixels wide no matter
the actual width of the browser window:
<hr width=40>
<hr width=320>
Whereas these next two rules will always extend across
10 and 75 percent of the window, regardless of its width:
<hr width="10%">
<hr width="75%">

Notice, too, that the relative (percentage) value for the width attribute is enclosed in
quotation marks; the absolute (integer) pixel value is not. In fact, the quotation marks
aren’t absolutely necessary with standard HTML (though they are required for
XHTML). Further, because the percent symbol normally means that an encoded char-
acter follows it, failure to enclose the percentage for the width value in quotation marks
may confuse some browsers and trash a portion of your rendered document.

In general, it isn’t a good idea to specify the width of a rule as an exact number of
pixels. Browser windows vary greatly in their width, and what might be a small rule
on one browser might be annoyingly large on another. For this reason, we recom-
mend specifying rule width as a percentage of the window width. That way, when
the width of the browser window changes the rules retain their same relative size.

The width attribute is deprecated in HTML 4 and XHTML because you can achieve
its effects with appropriate use of stylesheets.

Figure 5-4. The long and short of absolute and relative rule widths

114 | Chapter 5: Rules, Images, and Multimedia

5.1.1.4 The align attribute

The align attribute for a horizontal rule can have one of three values: left, center, or
right. For those rules whose width is less than that of the current text flow, the rule
will be positioned accordingly, relative to the window margins. The default align-
ment is center.

A varied rule alignment makes for nice section dividers. For example, the following
source alternates a 35-percent-wide rule from right to center to the left margin (see
Figure 5-5):

<hr width="35%" align=right>
<h3>Fruit Packing Advice</h3>
...
<hr width="35%" align=center>
<h3>Shipping Kumquats</h3>
...
<hr width="35%" align=left>
<h3>Juice Processing</h3>
...

The align attribute is deprecated in HTML 4 and XHTML because you can achieve
its effects with appropriate use of stylesheets.

5.1.1.5 The color attribute

Supported by Internet Explorer and Netscape Navigator versions 7 and 8, but not
other popular browsers such as Opera, the color attribute lets you set the color of
the rule line. The value of this attribute is either the name of a color or a hexadeci-
mal triplet that defines a specific color. For a complete list of color names and val-
ues, see Appendix G.

Figure 5-5. Varying horizontal rule alignment makes for subtle section dividers

5.1 Horizontal Rules | 115

By default, a rule is set to the same color as the document background, with the chis-
eled edges slightly darker and lighter than the background color. You lose the 3D
effect when you specify another color, either in a stylesheet or with the color

attribute.

5.1.1.6 Combining rule attributes

You may combine the various rule attributes; their order isn’t important. To create
big rectangles, for example, combine the size and width attributes (see Figure 5-6):

<hr size=32 width="50%" align=center>

In fact, some combinations of rule attributes are necessary—align and width, for
example. Align alone appears to do nothing because the default rule width stretches
all the way across the display window.

5.1.1.7 The class, dir, event, id, lang, style, and title attributes

There are several nearly universal attributes for the many content tags. These
attributes give you a common way to identify (title) and label (id) a tag’s contents
for later reference or automated treatment, to change the contents’ display character-
istics (class, style), to reference the language (lang) used, and to specify the direc-
tion in which the text should flow (dir). Of course, how language and the direction
of text affect a horizontal rule is unclear. Nonetheless, they are standard attributes
for the tag. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2] [The id attribute,
4.1.1.4] [The title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 8.1.1] [Style
Classes, 8.3]

In addition, there are all the user events that may happen in and around the horizon-
tal rule that the browser senses and that you may react to via an on-event attribute
and some programming. [JavaScript Event Handlers, 12.3.3]

5.1.2 Using Rules to Divide Your Document
Horizontal rules provide a handy visual navigation device for your readers. To use
<hr> effectively as a section divider, first determine how many levels of headings your

Figure 5-6. Combining rule attributes for special effects

116 | Chapter 5: Rules, Images, and Multimedia

document has and how long you expect each section of the document to be. Then
decide which of your headings warrants being set apart by a rule.

A horizontal rule can also delimit the front matter of a document, separating the
table of contents from the document body, for example. Also use a horizontal rule to
separate the document body from a trailing index, bibliography, or list of figures.

Experienced authors also use horizontal rules to mark the beginning and end of a
form. This is especially handy for long forms that make users scroll up and down the
page to view all the fields. By consistently marking the beginning and end of a form
with a rule, you help users stay within the form, better ensuring that they won’t inad-
vertently miss a portion when filling out its contents.

5.1.3 Using Rules in Headers and Footers
A fundamental style approach to creating document families is to have a consistent
look and feel, including a standard header and footer for each document. Typically,
the header contains navigational tools that help users easily jump to internal sec-
tions as well as related documents in the family, and the footer contains author and
document information as well as feedback mechanisms, such as an email link to the
webmaster.

To ensure that these headers and footers don’t infringe on the main document con-
tents, consider using rules directly below the header and above the footer. For exam-
ple (see also Figure 5-7):

<body>
Kumquat Growers Handbook - Growing Season Guidelines
<hr>
<h1 align=center>Growing Season Guidelines</h1>
Growing season for the noble fruit varies throughout
North America, as shown in the following map:
<p>

<p>
<hr>
<i>Provided as a public service by the
Kumquat Lovers of America</i>

By consistently setting apart your headers and footers using rules, you help users
locate and focus upon the main body of your document.

5.2 Inserting Images in Your Documents
One of the most compelling features of HTML and XHTML is their ability to include
images with your document text, either as intrinsic components of the document
(inline images), as separate documents specially selected for download via hyper-
links, or as background to your document or elements within the document. When

5.2 Inserting Images in Your Documents | 117

judiciously added to the body content, images—static and animated icons, pictures,
illustrations, drawings, and so on—can make your documents more attractive, invit-
ing, and professional looking, as well as informative and easy to browse. You may
also specially enable an image so that it becomes a visual map of hyperlinks. When
used to excess, however, images make your document cluttered, confusing, and inac-
cessible, and they unnecessarily lengthen the time it takes for users to download and
view your pages.

5.2.1 Understanding Image Formats
Neither HTML nor XHTML prescribes an official format for images. However, the
popular browsers specifically accommodate certain image formats: GIF, PNG, and
JPEG, in particular (see the following sections for explanations). Most other multi-
media formats require special accessory applications that each browser owner must
obtain, install, and successfully operate to view the special files. So it’s not too sur-
prising that GIF, PNG, and JPEG are the de facto image standards on the Web.

Both image formats were already in widespread use before the Web came into being,
so there’s lots of supporting software out there to help you prepare your graphics for

Figure 5-7. Clearly delineate headers and footers with horizontal rules

118 | Chapter 5: Rules, Images, and Multimedia

either format. However, each has its own advantages and drawbacks, including fea-
tures that some browsers exploit for special display effects.

5.2.1.1 GIF

The Graphics Interchange Format (GIF) was first developed for image transfer
among users of the CompuServe online service. The format has several features that
make it popular for use in HTML and XHTML documents. Its encoding is cross-
platform so that with appropriate GIF-decoding software (included with most
browsers), the graphics you create and make into a GIF file on a Macintosh, for
example, can be loaded into a Windows-based PC, decoded, and viewed without a
lot of fuss. The second main feature is that GIF uses special compression technology
that can significantly reduce the size of the image file for faster transfer over a net-
work. GIF compression is “lossless,” too; none of an image’s original data is altered
or deleted, so the uncompressed and decoded image exactly matches its original.
Also, GIF images can be easily animated.

Even though GIF image files invariably have the .gif (or .GIF) filename suffix, there
actually are two GIF versions: the original GIF87 and an expanded GIF89a, which
supports several new features—including transparent backgrounds, interlaced stor-
age, and animation—that are popular with web authors (see section 5.2.1.2). The
currently popular browsers support both GIF versions, which use the same encoding
scheme that maps 8-bit pixel values to a color table, for a maximum of 256 colors
per image. Most GIF images have even fewer colors; there are special tools to sim-
plify the colors in more elaborate graphics. By simplifying the GIF images, you cre-
ate a smaller color map and enhance pixel redundancy for better file compression
and, consequently, faster downloading.

However, because of the limited number of colors, a GIF-encoded image is not
always appropriate, particularly for photorealistic pictures (see the discussion in sec-
tion 5.2.1.3). GIFs make excellent icons, reduced-color images, and drawings.

Because most graphical browsers explicitly support the GIF format, it is currently the
most widely accepted image-encoding format on the Web. It is acceptable for both
inline images and externally linked ones. When in doubt as to which image format to
use, choose GIF.* It will work in almost any situation.

5.2.1.2 Interlacing, transparency, and animation

You can make GIF images perform three special tricks: interlacing, transparency, and
animation. With interlacing, a GIF image seemingly materializes on the display,
instead of progressively flowing onto it from top to bottom. Normally, a GIF-
encoded image is a sequence of pixel data in order, row by row, from the top to the

* We cannot resist the temptation to point out that choosy authors choose GIF.

5.2 Inserting Images in Your Documents | 119

bottom of the image. While the common GIF image renders onscreen like pulling
down a window shade, interlaced GIFs open like a Venetian blind. That’s because
interlacing sequences every fourth row of the image. Users get to see a full image—
top to bottom, albeit fuzzy—in a quarter of the time it takes to download and dis-
play the remainder of the image. The resulting quarter-done image usually is clear
enough so that users with slow network connections can evaluate whether to take
the time to download the remainder of the image file.

Not all graphical browsers, although able to display an interlaced GIF, are actually
able to display the materializing effects of interlacing. With those that do, users still
can defeat the effect by choosing to delay image display until after download and
decoding. Older browsers, on the other hand, always download and decode images
before display and don’t support the effect at all.

Another popular effect available with GIF images—GIF89a-formatted images, that
is—is the ability to make a portion of them transparent so that what’s underneath
(usually, the browser window’s background) shows through. The transparent GIF
image has one color in its color map designated as the background color. The
browser simply ignores any pixel in the image that uses that background color,
thereby letting the display window’s background show through. By carefully crop-
ping its dimensions and by using a solid, contiguous background color, you can
make a transparent image seamlessly meld into or float above a page’s surrounding
content.

Transparent GIF images are great for any graphic that you want to meld into the
document and not stand out as a rectangular block. Transparent GIF logos are very
popular, as are transparent icons and dingbats—any graphic that should appear to
have an arbitrary, natural shape. You may also insert a transparent image inline with
conventional text to act as a special character glyph within conventional text.

The downside to transparency is that the GIF image will look lousy if you don’t
remove its border when it is included in a hyperlink anchor (<a>) tag or is otherwise
specially framed. And content flow happens around the image’s rectangular dimen-
sions, not adjacent to its apparent shape. That can lead to unnecessarily isolated
images or odd-looking sections in your web pages.

The third unique trick available with GIF89a-formatted images is the ability to do
simple frame-by-frame animation. Using special GIF-animation software utilities,
you may prepare a single GIF89a file that contains a series of GIF images. The
browser displays each image in the file, one after the other, something like the page-
flipping animation booklets we had and perhaps drew as kids. Special control seg-
ments between each image in the GIF file let you set the number of times the browser
runs through the complete sequence (looping), how long to pause between each
image, whether the image space gets wiped to background before the browser dis-
plays the next image, and so on. By combining these control features with those

120 | Chapter 5: Rules, Images, and Multimedia

normally available for GIF images, including individual color tables, transparency,
and interlacing, you can create some very appealing and elaborate animations.*

Simple GIF animation is powerful for one other important reason: you don’t need to
specially program your HTML documents to achieve animation. But there is one
major downside that limits their use for anything other than small, icon-size, or thin
bands of space in the browser window: GIF animation files get large fast, even if you
are careful not to repeat static portions of the image in successive animation cells.
And if you have several animations in one document, download delays may—and
usually will—annoy the user. If any feature deserves close scrutiny for excess, it’s
GIF animation.

Any and all GIF tricks—interlacing, transparency, and animation—don’t just hap-
pen; you need special software to prepare the GIF file. Many image tools now save
your creations or acquired images in GIF format, and most now let you enable trans-
parency and make interlaced GIF files. There also are a slew of shareware and free-
ware programs specialized for these tasks, as well as for creating GIF animations.
Look into your favorite Internet software archives for GIF graphics and conversion
tools, and see Chapter 17 for details on creating transparent images.

5.2.1.3 JPEG

The Joint Photographic Experts Group (JPEG) is a standards body that developed
what is now known as the JPEG image-encoding format. Like GIFs, JPEG images are
platform independent and specially compressed for high-speed transfer via digital
communication technologies. Unlike GIF, JPEG supports tens of thousands of col-
ors for more detailed, photorealistic digital images. And JPEG uses special algo-
rithms that yield much higher data-compression ratios. It is not uncommon, for
example, for a 200 KB GIF image to be reduced to a 30 KB JPEG image. To achieve
that amazing compression, JPEG does lose some image data. However, you can
adjust the degree of “lossiness” with special JPEG tools so that although the uncom-
pressed image may not exactly match the original, it will be close enough that most
people cannot tell the difference.

Although JPEG is an excellent choice for photographs, it’s not a particularly good
choice for illustrations. The algorithms used for compressing and uncompressing the
image leave noticeable artifacts when dealing with large areas of one color. There-
fore, if you’re trying to display a drawing, the GIF format may be preferable.

The JPEG format, usually designated by the .jpg (or .JPG) filename suffix, is nearly
universally understood by today’s graphical browsers. On rare occasions, you’ll
come across an older browser that cannot directly display JPEG images.

* Songline Studios has published an entire book dedicated to GIF animation: GIF Animation Studio, by
Richard Koman.

5.2 Inserting Images in Your Documents | 121

5.2.1.4 PNG

The Portable Network Graphics (PNG) technology originated to replace GIF, but not
because GIF wasn’t up to the job. Indeed, GIF was and probably still is the most
widely implemented graphics format on the Internet. Instead, many Internet users
got enraged when in 1993, after GIF had attained its popularity and widespread use,
Unisys decided to enforce its patent and collect royalties on GIF’s essential compres-
sion technology. That action ran against the widespread philosophy of free exchange
and use enjoyed by the mostly academic community of Internet users, and prompted
an informal Internet working group led by Thomas Boutell to develop the PNG
alternative.

PNG’s advantages over GIF and JPEG, besides providing a litigation-free alternative
format, include a broader selection of color formats (24-bit true-color RGB, a gray-
scale and GIF-like 8-bit palette) and better lossless compression. PNG’s unique and
attractive features include alpha channels which let you specify many more than
GIF’s one layer of transparency (more than 65,000, actually) and can simulate 3D
imagery, gamma correction which controls cross-platform image brightness for more
vivid graphics, and two-dimensional interlacing which provides for a finer progres-
sively developing image.

PNG does not support animation. Though you may hesitate to use PNG on that
basis alone, we encourage you to try it out anyway, especially for high-color and
high-quality images.

5.2.2 When to Use Images
Most pictures are worth a thousand words. But don’t forget that no one pays atten-
tion to a blabbermouth. First and foremost, think of your document images as visual
tools, not as gratuitous trappings. They should support your text content and help
readers navigate your documents. Use images to clarify, illustrate, or exemplify the
contents. Content-supporting photographs, charts, graphs, maps, and drawings are
all natural and appropriate candidates. Product photographs are essential compo-
nents in online catalogs and shopping guides, for example. And link-enabled icons
and dingbats, including animated images, can be effective visual guides to internal
and external resources. If an image doesn’t do any of these valuable services for your
document, throw it out already!

One of the most important considerations when adding images to a document is the
additional delay they add to the retrieval time for a document over the network, par-
ticularly for modem connections. While a common text document might run, at
most, 10,000 or 15,000 bytes, images can easily extend to hundreds of thousands of
bytes each. And the total retrieval time for a document is not only equal to the sum
of all its component parts, but also to compounded networking overhead delays.

122 | Chapter 5: Rules, Images, and Multimedia

Depending on the speed of the connection (bandwidth, usually expressed as bits or
bytes per second) as well as network congestion that can delay connections, a single
document containing one 100 KB image may take less than a second through a cable
modem connection in the wee hours of the morning, when most everyone else is
asleep, to well over 10 minutes with a cell phone at noon. You get the picture?

With that said, of course, pictures and other multimedia are driving Internet providers
to come up with faster, better, more robust ways to deliver web content. Modem con-
nections are quickly going the way of the horse and carriage, replaced by technologies
like high-speed cable modems and the Asymmetric Digital Subscriber Line (ADSL).

Still, as the price lowers, use goes up, so there is the issue of congestion. And don’t
forget cell phone browsers and our Third World neighbors, where connections are
spotty and slow. Besides, if you are competing for access to an overburdened server,
it doesn’t matter how fast your connection may be.

5.2.3 When to Use Text
Text hasn’t gone out of style. For some users, it is the only accessible portion of your
document. We argue that, in most circumstances, your documents should be usable
by readers who cannot view images, or have disabled automatic download in their
browsers to improve their connections. While the urge to add images to all of your
documents may be strong, sometimes pure text documents make more sense.

Documents being converted to the Web from other formats rarely have embedded
images. Reference materials and other serious content often are completely usable in
a text-only form.

You should create text-only documents when access speed is critical. If you know that
many users will be vying for your pages, you should accommodate them by avoiding
the use of images within your documents. In some extreme cases, you might provide a
home (leading) page that lets readers decide between duplicate collections of your
work: one containing the images and another stripped of them. (The popular browsers
include special picture icons as placeholders for yet-to-be-downloaded images, which
can trash and muddle your document’s layout into an unreadable mess.)

Text is most appropriate—supporting images only, without frills and nonessential
graphics—if your documents are to be readily searchable by any of the many web
indexing services. These search engines almost always ignore images. If you provide
the major content of your pages with images, very little information about your doc-
uments will find its way into the online web directories.

5.2.4 Speeding Image Downloads
There are several ways to reduce the overhead and delays inherent with images,
besides being very choosy about which to include in your documents:

5.2 Inserting Images in Your Documents | 123

Keep it simple
A full-screen, 24-bit color graphic, even when reduced in size by digital compres-
sion with one of the standard formats, such as GIF, PNG, or JPEG, is still going
to be a network-bandwidth hog. First decide between image integrity and size.
Then acquire and use the proper image-management tool that optimizes your
image for the application, particularly for special effects like GIF animation or
PNG’s 3D effects. Simplify your drawings. Stay away from panoramic photo-
graphs. Avoid large, empty backgrounds in your images, as well as gratuitous
borders and other space-consuming elements. Also avoid dithering (blending two
colors among adjacent pixels to achieve a third color); this technique can signifi-
cantly reduce the compressibility of your images. Strive for large areas of uni-
form colors, which compress readily.

Reuse images
This is particularly true for icons and GIF animations. Most browsers cache
incoming document components in local storage for the very purpose of quick,
network-connectionless retrieval of data. For smaller GIF animation files, try to
prepare each successive image to update only portions that change in the anima-
tion, instead of redrawing the entire image (this speeds up the animation, too).

Divide large documents into smaller segments
This is a general rule that includes images. Many small document segments,
organized through hyperlinks and effective tables of contents, tend to be better
accepted by users than a few large documents. In general, people would rather
“flip” several pages than dawdle, waiting for a large one to download. (It’s
related to the TV channel-surfing syndrome.) One accepted rule of thumb is to
keep your documents smaller than 50 KB each, so even the slowest connections
won’t overly frustrate your readers.

Isolate necessarily large graphics
Provide a special link to large images, perhaps one that includes a thumbnail of
the graphic, thereby letting readers decide whether and when they want to spend
the time downloading the full image. Because the downloaded image isn’t mixed
with other document components like inline images, it’s also much easier for the
reader to identify and save the image on her system’s local storage for later
study. (For details on noninline image downloads, see section 5.6.2.)

Specify image dimensions
Finally, another way to improve performance is by including the image’s rectan-
gular height and width information in its tag. By supplying those dimensions,
you eliminate the extra steps the extended browsers must take to download,
examine, and calculate an image’s space in the document, allowing them to ren-
der the page more quickly. There is a downside to this approach, however, that
we explore in section 5.2.6.12.

124 | Chapter 5: Rules, Images, and Multimedia

5.2.5 JPEG, PNG, or GIF?
You may choose to use only one type of image format in your HTML documents if
your sources for images or your software tool set prefer one over the other format.
All are nearly universally supported by today’s browsers, so there shouldn’t be any
user-viewing problems.

Nevertheless, we recommend that you acquire the facilities to create and convert to
at least the three formats we describe in this chapter to take advantage of their
unique capabilities. For instance, use GIF’s animation and PNG’s transparency fea-
ture for icons and dingbats. Alternatively, use JPEG’s deep compression, albeit at a
loss of some integrity, for large and colorful images for faster downloading.

5.2.6 The Tag
The tag lets you reference and insert a graphic image into the current text flow
of your document. There is no implied line or paragraph break before or after the
 tag, so images can be truly “in line” with text and other content.

The format of the image itself is not defined by the HTML or XHTML standard,
although the popular graphical browsers support most common formats like GIF,
PNG, and JPEG images. The standards don’t specify or restrict the size or dimen-
sions of the image, either. Images may have any number of colors as allowed by their
format, but how those colors are rendered is highly browser dependent.

Function Inserts an image into a document

Attributes align, alt, border, class, controls , dir, dynsrc , height,
hspace, id, ismap, lang, longdesc , loop , lowsrc , name ,
onAbort, onClick, onDblClick, onError, onKeyDown, onKeyPress,
onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, src, start , style, title, usemap, vspace,
width

End tag None in HTML; or in XHTML

Contains Nothing

Used in text

5.2 Inserting Images in Your Documents | 125

Image presentation in general is very browser specific. Images may be ignored by
nongraphical browsers. Browsers operating in a constrained environment may
modify the image size or complexity. And users, particularly those with slow net-
work connections, may choose to defer image loading altogether. Accordingly, you
should make sure your documents make sense and are useful even if the images are
completely removed.

The HTML version of the tag has no end tag. With XHTML, either use
immediately following the tag and its attributes, or make the last character in
the tag the end-tag slash mark: , for example.

5.2.6.1 The src attribute
The src attribute for the tag is required (unless you use dynsrc with Internet
Explorer-based movies; see section 5.2.7.1). Its value is the image file’s URL, either
absolute or relative to the document referencing the image. To unclutter their docu-
ment storage, authors typically collect image files into a separate folder, which they
often name something like “pics” or “images.” [Referencing Documents: The URL, 6.2]

For example, this HTML fragment places an image of a famous kumquat packing
plant into the narrative text (see Figure 5-8):

Here we are, on day 17 of the tour, in the kumquat packing plant:
<p>

<p>
What an exciting moment, to see the boxes of fruit piled high to

In the example, the paragraph (<p>) tags surrounding the tag cause the browser
to render the image by itself, with some vertical space after the preceding text and
before the trailing text. Text may also abut the image, as we describe in section 4.1.1.1.

Figure 5-8. Image integrated with text

126 | Chapter 5: Rules, Images, and Multimedia

5.2.6.2 The lowsrc attribute

To the benefit of users, particularly those with slow network connections, early ver-
sions of Netscape provided the lowsrc companion to the src attribute in the

tag as a way to speed up document rendering. The lowsrc attribute’s value, like src,
is the URL of an image file. Netscape before version 6 would load and display the
lowsrc image when it first encountered the tag. Then, when the document had
been completely loaded and the user could read it, Netscape would retrieve the
image specified by the src attribute.

No other browser besides Netscape versions 4 and earlier supports lowsrc. Netscape
version 6 simply uses the dimensions of the lowsrc image to temporarily allocate dis-
play space for the image as it renders the document. The earlier versions of Netscape
also used the lowsrc dimensions to resize the final image, which you could exploit for
some special effects. This no longer works. Instead, we recommend that you eschew
the Netscape extension and explicitly allocate image space with the height and width

attributes described later in this chapter.

5.2.6.3 The alt and longdesc attributes

The alt attribute specifies alternative text the browser may show if image display is
not possible or is disabled by the user. Especially favored by visually impaired users,
the popular browsers also let us choose to display alt text along with the image. So
although it’s an option, it’s one we highly recommend you exercise for most images
in your document. This way, if the image is not available, the user still has some indi-
cation of what’s missing. And for users with certain disabilities, alt often is the only
way they can appreciate your images.

In addition, Internet Explorer displays the alternative description in a text box when
users pass the mouse over the image. Accordingly, you might embed short, paren-
thetical information that pops up when users pass over a small, inline icon, such as
that shown in Figure 5-9.

Figure 5-9. Internet Explorer displays alt text in a temporary pop-up window

5.2 Inserting Images in Your Documents | 127

The value for the alt attribute is a text string of up to 1,024 characters, including
spaces and punctuation. The string must be enclosed in quotation marks. The alt

text may contain entity references to special characters, but it may not contain any
other sort of markup; in particular, style tags aren’t allowed.

Graphical browsers don’t normally display the alt attribute if the image is available
and the user has enabled picture downloading. Otherwise, they insert the alt

attribute’s text as a label next to an image-placeholder icon. Well-chosen alt labels
thereby additionally support those users with graphical browsers who have disabled
automatic image download because of a slow connection to the Web.

Nongraphical, text-only browsers such as the ancient Lynx put the alt text directly
into the content flow, just like any other text element. So, when used effectively, the
alt tag sometimes can transparently substitute for missing images. (Your text-only
browser users will appreciate not being constantly reminded of their second-class
web citizenship.) For example, consider using an asterisk as the alt attribute alterna-
tive to a special bullet icon:

<h3>Introduction</h3>

A graphical browser displays the bullet image; in a nongraphical browser, the alt

asterisk takes the place of the missing bullet. Similarly, use alt text to replace special
image bullets for list items. For example, the following code:

 Kumquat recipes
 Annual harvest dates

displays the new.gif image with graphical browsers and the text “(New!)” with text-
only browsers. The alt attribute uses even more complex text (see Figure 5-10):

Here we are, on day 17 of the tour, in the kumquat
packing plant:
<p>
<img src="pics/packing_plant.gif"
 alt="[Image of our tour group outside the main packing plant]">
<p>
What an exciting moment, to see the boxes of fruit moving

According to the HTML 4.01 specification, the alt attribute is required for all
tags. To be truly compliant, include empty alt attributes (alt="") with all your
images.

The longdesc attribute is similar to the alt attribute but allows for longer descrip-
tions. The value of longdesc is the URL of a document containing a description of
the image. If you have a description longer than 1,024 characters, use the longdesc
attribute to link to it. Neither HTML 4 nor XHTML specifies what the content of the
description must be, and no browsers currently implement longdesc; all bets are off
when deciding how to create those long descriptions.

128 | Chapter 5: Rules, Images, and Multimedia

5.2.6.4 The align attribute

The standards don’t define a default alignment for images with respect to other text
and images in the same line of text: you can’t always predict how the text and images
will look.* HTML images normally appear in line with a single line of text. Common
print media such as magazines wrap text around images, with several lines next to
and abutting the image, not just a single line.

Fortunately, document designers also can exert some control over the alignment of
images with the surrounding text through the align attribute for the tag. The
HTML and XHTML standards specify five image-alignment attribute values: left,
right, top, middle, and bottom. The left and right values flow any subsequent text
to the left or right of the image, which is moved to the corresponding margin
(Figure 5-11). The remaining three align the image vertically with respect to the sur-
rounding text.

All of the popular browsers, including Opera, Firefox, Netscape, and Internet
Explorer, agree that align=bottom is the default vertical alignment, and similarly posi-
tion images at the top of the uppermost character in the line of text, also shown in
Figure 5-11.

The browsers disagree, however, on where to place an align=middle image with
regard to text. As shown in Figure 5-11, Netscape and Opera place it in the apparent
middle of the text. Internet Explorer and Firefox, on the other hand, place the image
at the middle of the tallest element, not necessarily the tallest text (Figure 5-12).

Figure 5-10. Text-only browsers such as Lynx display an image’s alt attribute text

* Most of the popular graphical browsers insert an image so that its base aligns with the baseline of the text—
the same alignment specified by the attribute value of bottom. But document designers should assume that
alignment varies among browsers and should always include the desired type of image alignment.

5.2 Inserting Images in Your Documents | 129

Figure 5-11. Standard inline image alignments

Figure 5-12. Internet Explorer and Firefox align the middle of images to the middle of the tallest
element, not to the middle of the text

130 | Chapter 5: Rules, Images, and Multimedia

The browsers also support, to varying degrees, five vertical image alignment exten-
sions—texttop, center, absmiddle, baseline, and absbottom (if you are confused as to
exactly what each alignment value means, please raise your hand):

texttop

The align=texttop attribute and value tell the browser to align the top of the
image with the top of the tallest text item in the current line, as opposed to the
top option, which aligns the top of the image with the top of the tallest item,
image or text, in the current line. If the line contains no other images that extend
above the top of the text, texttop and top have the same effect. Opera does not
support texttop, whereas the other popular browsers treat it identically as
described.

center

Originally introduced by Internet Explorer, the center image alignment value
gets treated by Internet Explorer, Netscape, and Firefox exactly the same as they
individually treat middle, which, as you may recall, differs among the browsers.
Opera, on the other hand, ignores align=center altogether.

absmiddle

If you set the align attribute of the tag to absmiddle, the browser will fit
the absolute middle of the image to the absolute middle of the current line. This
is different from the common middle and center options, which align the middle
of the image with the baseline of the current line of text (the bottom of the char-
acters). Though Netscape and Opera do not distinguish absmiddle from middle

alignments, Firefox and Internet Explorer use it to differentially align images
from their middle values—in other words, Firefox and Internet Explorer’s
absmiddle alignment is the same as Netscape’s middle.

bottom and baseline (default)
The bottom and baseline image-alignment values have the same effect as if you
didn’t include any alignment attribute at all: the browsers align the bottom of
the image in the same horizontal plane as the baseline of the text. This is not to
be confused with absbottom, which takes into account letter descenders. (Did we
see a hand up in the audience?)

absbottom

The align=absbottom attribute-value pair tells the browser to align the bottom of
the image with the true bottom of the current line of text. The true bottom is the
lowest point in the text, taking into account descenders, even if there are no
characters with descenders in the line. A descender is the tail on a “y,” for exam-
ple; the baseline of the text is the bottom of the “v” in the “y” character. Opera,
the standard bearer, ignores absbottom, whereas the other popular browsers treat
it as advertised (Figure 5-13).

5.2 Inserting Images in Your Documents | 131

Use the top or middle alignment value for best integration of icons, dingbats, or other
special inline effects with the text content. Otherwise, align=bottom (the default)
usually gives the best appearance. When aligning one or more images on a single
line, select the alignment that gives the best overall appearance to your document.

5.2.6.5 Wrapping text around images

The left and right image-alignment values tell the browser to place an image against
the left or right margin, respectively, of the current text flow. The browser then ren-
ders subsequent document content in the remaining portion of the flow adjacent to
the image. The net result is that the document content following the image gets
wrapped around the image:

The kumquat is the smallest of the citrus fruits, similar in appearance to a
tiny orange. The similarity ends with its appearance, however. While oranges
are generally
sweet, kumquats are extremely bitter. Theirs is an acquired taste, to be sure.

Figure 5-14 shows text flow around a left-aligned image.

Figure 5-13. Browsers take into account text descenders when aligning images with the
align=absbottom attribute

132 | Chapter 5: Rules, Images, and Multimedia

You can place images against both margins simultaneously (Figure 5-15), and the
text will run down the middle of the page between them:

The kumquat is the smallest of the citrus fruits, similar in appearance to a
tiny orange. The similarity ends with its appearance, however. While oranges
are generally sweet, kumquats are extremely bitter. Theirs is an acquired taste,
to be sure.

While text is flowing around an image, the left (or right) margin of the page is tem-
porarily redefined to be adjacent to the image as opposed to the edge of the page.
Subsequent images with the same alignment will stack up against each other. The
following source fragment achieves that staggered image effect:

Figure 5-14. Text flow around a left-aligned image

Figure 5-15. Running text between left- and right-aligned images

5.2 Inserting Images in Your Documents | 133

Marcia!

Jan!

Cindy!

The results of this example are shown in Figure 5-16.

When the text flows beyond the bottom of the image, the margin returns to its
former position, typically at the edge of the browser window.

5.2.6.6 Centering an image

Have you noticed that you can’t horizontally center an image in the browser win-
dow with the align attribute? The middle and absmiddle values center the image ver-
tically with the current line, but the image is horizontally justified depending on
what content comes before it in the current flow and the dimensions of the browser
window.

You can horizontally center an inline image in the browser window, but only if it’s
isolated from surrounding content, such as by paragraph, division, or line-break tags.
Then, either use the <center> tag or use the align=center attribute or center-justified
style in the paragraph or division tag to center the image. For example:

Kumquats are tasty treats

<center>

</center>
that everyone should strive to eat!

Figure 5-16. Three very lovely girls from a very old sitcom

134 | Chapter 5: Rules, Images, and Multimedia

Use the paragraph tag with its align=center attribute if you want some extra space
above and below the centered image:

Kumquats are tasty treats
<p align=center>

</p>
that everyone should strive to eat!

5.2.6.7 Align and <center> are deprecated

The HTML 4 and XHTML standards have deprecated the align attribute for all tags,
including , in deference to stylesheets. They’ve deprecated <center>, too. None-
theless, the attribute and tag are very popular among HTML authors and remain well
supported by the popular browsers. So, while we do expect that someday both align

and <center> will disappear, it won’t be anytime soon. Just don’t say we didn’t warn
you.

What if you don’t want to use align or <center>? Some authors and many of the
WYSIWYG editors use HTML/XHTML tables to align content. That’s one way,
albeit involved (see Chapter 10). The World Wide Web Consortium (W3C) wants
you to use styles. For example, use the margin-left style to indent the image from
the left side of the display. You can read lots more about Cascading Style Sheets
(CSS) in Chapter 8.

5.2.6.8 The border attribute

Browsers normally render images that also are hyperlinks (i.e., images included in an
<a> tag) with a 2-pixel-wide colored border, indicating to the reader that he can
select the image to visit the associated document. Use the border attribute and a
pixel-width thickness value to remove (border=0) or widen that image border. Be
aware that this attribute, too, is deprecated in HTML 4 and XHTML, in deference to
stylesheets, but continues to be well supported by the popular browsers.

Figure 5-17 shows you the thick and thin of image borders, as rendered by Internet
Explorer from the following XHTML source:

5.2 Inserting Images in Your Documents | 135

5.2.6.9 Removing the image border

You can eliminate the border around an image hyperlink altogether with the
border=0 attribute within the tag. For some images, particularly image maps,
the absence of a border can improve the appearance of your pages. Images that are
clearly link buttons to other pages may also look best without borders.

Be careful, though, that by removing the border, you don’t diminish your page’s
usability. No border means you’ve removed a common visual indicator of a link,
making it more difficult for your readers to find the links on the page. Browsers will
change the mouse cursor as the reader passes it over an image that is a hyperlink, but
you should not assume they will, nor should you make readers test your borderless
images to find hidden links.

We strongly recommend that with borderless images you use some additional way to
let your readers know to click the images. Even including simple text instructions
will go a long way toward making your pages more accessible to readers.

5.2.6.10 The height and width attributes

Ever watch the display of a page’s contents shift around erratically while the docu-
ment is loading? That happens because the browser readjusts the page layout to
accommodate each loaded image. The browser determines the size of an image—
and, hence, the rectangular space to reserve for it in the display window—by retriev-
ing the image file and extracting its embedded height and width specifications. The

Figure 5-17. The thick and thin of image borders

136 | Chapter 5: Rules, Images, and Multimedia

browser then adjusts the page’s display layout to insert that picture in the display.*

This is not the most efficient way to render a document because the browser must
sequentially examine each image file and calculate its screen space before rendering
adjacent and subsequent document content. That can significantly increase the
amount of time it takes to render the document and can disrupt reading by the user.

A more efficient way for authors to specify an image’s dimensions is with the height
and width attributes. That way, the browser can reserve space before actually
downloading an image, speeding document rendering and eliminating the content
shifting. Both attributes require an integer value that indicates the image size in pix-
els; the order in which they appear in the tag is not important.

5.2.6.11 Resizing and flood-filling images

A hidden feature of the height and width attributes is that you don’t need to specify the
actual image dimensions; the attribute values can be larger or smaller than the actual
size of the image. The browser automatically scales the image to fit the predefined
space. This gives you a down-and-dirty way of creating thumbnail versions of large
images and a way to enlarge very small pictures. Be careful, though: the browser still
must download the entire file, no matter what its final rendered size is, and you will
distort an image if you don’t retain its original height versus width proportions.

Another trick with height and width provides an easy way to flood-fill areas of your
page and can also improve document performance. Suppose you want to insert a col-
ored bar across your document.† Instead of creating an image to fill the full dimen-
sions, create one that is just 1 pixel high and wide and set it to the desired color.
Then use the height and width attributes to scale it to the larger size:

The smaller image downloads much faster than a full-scale one, and the width and
height attributes have Firefox, for example, create the desired bright-red colored bar
after the tiny image arrives at the browser (Figure 5-18).

* Another reminder that images are separate files, which are loaded individually and in addition to the source
document.

† This is one way to create colored horizontal rules, since Netscape doesn’t support the color attribute for the
<hr> tag.

Figure 5-18. This colored horizontal bar was made from a 1-pixel image

5.2 Inserting Images in Your Documents | 137

One last trick with the width attribute is to use a percentage value rather than an
absolute pixel value. This causes the browser to scale the image to a percentage of
the document window width. Thus, to create a colored bar 20 pixels high and the
width of the window, you could use:

As the document window changes size, the image will change size as well.

If you provide a percentage width and omit the height, the browser will retain the
image’s aspect ratio as it grows and shrinks. This means that the height will always be
in the correct proportion to the width, and the image will display without distortion.

5.2.6.12 Problems with height and width

Although the height and width attributes for the tag can improve performance
and let you perform neat tricks, there is a knotty downside to using them. The
browser sets aside the specified rectangle of space to the prescribed dimensions in
the display window, even if the user has turned off automatic download of images.
What the user often is left with is a page full of semi-empty frames with meaningless
picture-placeholder icons inside. The page looks terribly unfinished and is mostly
useless. Without accompanying dimensions, on the other hand, the browser simply
inserts a placeholder icon inline with the surrounding text, so at least there’s some-
thing there to read in the display.

We don’t have a solution for this dilemma, other than to insist that you use the alt
attribute with some descriptive text so that users at least know what they are miss-
ing. We do recommend that you include these size attributes because we encourage
any practice that improves display performance.

5.2.6.13 The hspace and vspace attributes

Graphical browsers usually don’t give you much space between an image and the
text around it. And unless you create a transparent image border that expands the
space between them, the typical 2-pixel buffer between an image and adjacent text is
just too close for most designers’ comfort. Add the image into a hyperlink, and the
special colored border will negate any transparent buffer space you labored to cre-
ate, as well as drawing even more attention to how close the adjacent text butts up
against the image.

The hspace and vspace attributes can give your images breathing room. With hspace,
you specify the number of pixels of extra space to leave between the image and text
on the left and right sides of the image; the vspace value is the number of pixels on
the top and bottom:

The kumquat is the smallest of the citrus fruits, similar
in appearance to a tiny orange. The similarity ends with its
appearance, however. While oranges are generally sweet,

138 | Chapter 5: Rules, Images, and Multimedia

kumquats are extremely bitter. Theirs is an acquired taste,
to be sure. Most folks, at first taste, wonder how you could
ever eat another, let alone enjoy it!
<p>

The kumquat is the smallest of the citrus fruits, similar
in appearance to a tiny orange. The similarity ends with its
appearance, however. While oranges are generally sweet,
kumquats are extremely bitter. Theirs is an acquired taste,
to be sure. Most folks, at first taste, wonder how you could
ever eat another, let alone enjoy it!

Figure 5-19 shows the difference between two wrapped images.

We’re sure you’ll agree that the additional space around the image makes the text
easier to read and the overall page more attractive.

5.2.6.14 The ismap and usemap attributes

The ismap and usemap attributes for the tag tell the browser that the image is a
special mouse-selectable visual map of one or more hyperlinks, commonly known as
an image map. You can specify the ismap style of image maps only within an <a> tag
hyperlink. [<a>, 6.3.1]

For example (notice the redundant attribute and value, as well as the trailing end-tag
slash mark in the tag, which are telltale signs of XHTML):

Figure 5-19. Improve image/text interfaces with vspace and hspace

5.2 Inserting Images in Your Documents | 139

The browser automatically sends the coordinates of the mouse relative to the upper-
left corner of the image to the server when the user clicks somewhere on the ismap
image. Special server software (the /cgi-bin/images/map2 program, in the example)
may then use those coordinates to determine a response.

The ismap attribute is a server-side mechanism because it relies on the server for pro-
cessing user input. The usemap attribute provides a client-side image-map mechanism
that effectively eliminates server-side processing of the mouse coordinates and its
incumbent network delays and problems. Using special <map> and <area> tags,
HTML authors provide a map of coordinates for the hyperlink-sensitive regions in
the usemap image, along with related hyperlink URLs. The value of the usemap

attribute is a URL that points to that special <map> section. The browser on the user’s
client computer translates the coordinates of a click of the mouse on the image into
some action, including loading and displaying another document. [<map>, 6.5.3]
[<area>, 6.5.4]

For example, the following source specially encodes the 100 × 100-pixel map2.gif
image into four segments, each of which, if clicked by the user, links to a different
document. Notice that we’ve included, validly, the ismap image-map processing
capability in the example tag so that users of other, usemap-incapable browsers
have access to the alternative, server-side mechanism to process the image map:

...
<map name="map2">
 <area coords=0,0,49,49" href="link1.html">
 <area coords="50,0,99,49" href="link2.html">
 <area coords="0,50,49,99" href="link3.html">
 <area coords="50,50,99,99" href="link4.html">
</map>

Geographical maps make excellent ismap and usemap examples: browsing a nation-
wide company’s pages, for instance, the users might click on their hometowns on a
map to get the addresses and phone numbers for nearby retail outlets. The advan-
tage of usemap client-side image-map processing is that it does not require a server or
special server software and so, unlike the ismap mechanism, can be used in nonweb
(networkless) environments, such as local files and CD-ROMs.

Please read our more complete discussion of anchors and links, including image
maps within links, in section 6.5.

5.2.6.15 The class, dir, event, id, lang, style, and title attributes

Several nearly universal attributes give you a common way to identify (title) and
label (id) the image tag’s contents for later reference or automated treatment, to
change the contents’ display characteristics (class, style), to reference the language

140 | Chapter 5: Rules, Images, and Multimedia

(lang) used, and to specify the direction in which the text should flow (dir). And, of
course, there are all the user events that may happen in and around the tagged con-
tents that the browser senses and that you may react to via an on-event attribute and
some programming. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

Of these many HTML 4 and XHTML attributes, id is the most important. It lets you
label the image for later access by a program or browser operation (see Chapter 12).
[The id attribute, 4.1.1.4]

The remaining attributes have questionable meaning in context with . Granted,
a few stylesheet options are available that may influence an image’s display, and it’s
good to include a title (although alt is better). However, it’s hard to imagine the
influence that language (lang) or its presentation direction (dir) might have on an
image. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

5.2.6.16 The name, onAbort, onError, onLoad, and other event attributes

There are four attributes originally supported by Netscape and now by all the
popular browsers that enable you to use JavaScript to manipulate images. The first is
the name attribute.* Now redundant with the id attribute, name lets you label the
image so that a JavaScript applet can reference it. For example:

lets you later refer to that picture of a kumquat as simply “kumquat” in a JavaScript
applet, perhaps to erase or otherwise modify it. You cannot individually manipulate
an image with JavaScript if it is not named or doesn’t have an associated id.

The other three attributes let you provide some special JavaScript event handlers. The
value of each attribute is a chunk of JavaScript code, enclosed in quotation marks; it
may consist of one or more JavaScript expressions, separated by semicolons.

The popular browsers invoke the onAbort event handler if the user stops loading an
image, usually by clicking the browser’s Stop button. You might, for instance, use an
onAbort message to warn users if they stop loading some essential image, such as an
image map (see section 6.5):

<img src="pics/kumquat.gif" usemap="#map1"
onAbort="window.alert('Caution: This image contains important hyperlinks.
Please load the entire image.')">

The onError attribute is invoked if some error occurs during the loading of the image,
but not for a missing image or one that the user chose to stop loading. Presumably, the
applet could attempt to recover from the error or load a different image in its place.

* HTML version 4.01 and XHTML have adopted the name attribute, too.

5.2 Inserting Images in Your Documents | 141

The currently popular browsers execute the JavaScript code associated with the
 tag’s onLoad attribute right after the browser successfully loads and displays the
image.

See section 12.3.3 for more information about JavaScript and event handlers.

5.2.6.17 Combining attributes

You may combine any of the various standard and extension attributes for images
where and when they make sense. The order for inclusion of multiple attributes in
the tag is not important, either. Just be careful not to use redundant attributes,
or you won’t be able to predict the outcome.

5.2.7 Video Extensions
Internet Explorer supports special video-related attribute extensions that let
you embed movies into your HTML documents: controls, dynsrc, loop, and start.
These are not HTML 4 and are unlikely to become XHTML standard attributes. In
fact, users have to specifically enable them with Internet Explorer’s “Play video in
web pages” Advanced Internet Options.

Equivalent behavior is available with all the popular browsers via an extension pro-
gram known as a plug-in. Plug-ins place an additional burden on the user in that
each user must find and install the appropriate plug-in software before being able to
view the inline video. The Internet Explorer tag extensions, on the other hand,
made video display an intrinsic part of the browser. [Embedded Content, 12.2]

5.2.7.1 The dynsrc attribute

Use the dynsrc attribute extension in the tag to reference an AVI, MPG or
MPEG, MOV, WMV, or any popular movie format for inline display by Internet
Explorer. Its required value is the URL of the movie file, enclosed in quotation
marks. For example, this text displays the tag and attribute for an AVI movie file
titled intro.avi:

Internet Explorer sets aside a video viewport in the HTML display window and plays
the movie, with audio if it’s included in the clip and if your computer is able to play
audio. Internet Explorer treats dynsrc movies similar to inline images: in line with
current body content and according to the dimension of the video frame. And, like
common images, the dynsrc-referenced movie file gets displayed immediately after
download from the server. You may change those defaults and add some user con-
trols with other attributes, as described later.

Because all other browsers currently ignore the special Internet Explorer attributes
for movies, they may become confused by an tag that does not contain the

142 | Chapter 5: Rules, Images, and Multimedia

otherwise required src attribute and an image URL. We recommend that you
include the src attribute and a valid image file URL in all tags, including those
that reference a movie for Internet Explorer users. The other browsers display the
still image in place of the movie; Internet Explorer does the reverse and plays the
movie, but does not display the image. Note that the order of attributes does not
matter. For example:

Internet Explorer loads and plays the AVI movie intro.avi; other graphical browsers
will load and display the mvstill.gif image instead.

5.2.7.2 The controls attribute

Normally, Internet Explorer plays a movie inside a framed viewport once, without
any visible user controls. Although no longer supported in Internet Explorer version
5 or later, with older versions of the browser the controls attribute (no value)
enabled users to restart, stop, and continue the movie by clicking inside that view-
port with the mouse. If the movie clip includes a soundtrack, the earlier Internet
Explorer provided an audio volume control as well. For example:

5.2.7.3 The loop attribute

Internet Explorer normally plays a movie clip from beginning to end once, after
download. The loop attribute for the movie tag lets you have the clip play
repeatedly for an integer number of times set by the attribute’s value, or forever if the
value is infinite. The user may still cut the loop short by clicking the browser’s Stop
button or by moving on to another document.

The following intro.avi movie clip will play from beginning to end, then restart at the
beginning and play through to the end nine more times:

Whereas the following movie will play over and over again, incessantly:

Looping movies aren’t necessarily meant to annoy. Some special-effects animations,
for instance, are a sequence of repeated frames or segments. Instead of stringing the
redundant segments into one long movie, which extends its download time, simply
loop the single, compact segment.

5.2.7.4 The start attribute

Normally, an Internet Explorer movie clip starts playing as soon as it’s downloaded.
You can modify that behavior with the start attribute in the movie’s tag. By

5.3 Document Colors and Background Images | 143

setting its value to mouseover, you delay playback until the user passes the mouse
pointer over the movie viewport. The other valid start attribute value, fileopen, is
the default: start playback just after download. It is included because both values
may be combined in the start attribute, to cause the movie to play back automati-
cally once, after download, and then whenever the user passes the mouse over its
viewport. When combining the start attribute values, add a value-separating
comma, with no intervening spaces, or else enclose them in quotes.

For example, our by-now-infamous intro.avi movie will play once when its host
HTML document is loaded by the Internet Explorer user and again whenever he
passes the mouse over the movie’s viewport:

5.2.7.5 Combining movie attributes

Treat Internet Explorer inline movies as you would any image, mixing and matching
the various movie-specific as well as the standard and extended tag attributes
and values supported by the browser. For example, you might align the movie (or its
image alternative, if displayed by another browser) to the right of the browser window:

Combining attributes to achieve a special effect is good. We also recommend that
you combine attributes to give control to the user, when appropriate.

As we stated earlier in section 5.2.7.4, by combining attributes, you can also delay
playback until the user passes the mouse over its viewport. Magically, the movie
comes alive and plays continuously:

5.3 Document Colors and Background Images
The HTML 4 and XHTML standards provide a number of attributes for the <body>
tag that let you define text, link, and document background colors, in addition to
defining an image to be used as the document background. All the popular browsers
additionally extend these attributes to include document margins and better back-
ground image control. And, of course, the latest stylesheet technologies integrated
into the current browsers let you manipulate all of these various display parameters.

5.3.1 Additions and Extensions to the <body> Tag
The attributes that control the document background, text color, and document
margins are used with the <body> tag. [<body>, 3.8.1]

144 | Chapter 5: Rules, Images, and Multimedia

5.3.1.1 The bgcolor attribute

One standard, although deprecated, way you can change the default background
color in the browser window to another hue is with the bgcolor attribute for the
<body> tag. Like the color attribute for the tag, the required value of the
bgcolor attribute may be expressed in either of two ways: as the red, green, and blue
(RGB) components of the desired color, or as a standard color name. Appendix G
provides a complete discussion of RGB color encoding along with a table of accept-
able color names you can use with the bgcolor attribute.

Setting the background color is easy. To get a pure red background using RGB
encoding, try:

<body bgcolor="#FF0000">

For a subtler background, try:

<body bgcolor="peach">

5.3.1.2 The background attribute

If a splash of color isn’t enough, you may also place an image into the background of
a document with the background attribute in the <body> tag.

The required value of the background attribute is the URL of an image. The browser
automatically repeats (tiles) the image both horizontally and vertically to fill the
entire window.

You normally should choose a small, somewhat dim image to create an interesting
but unobtrusive background pattern. Besides, a small, simple image traverses the
network much faster than an intricate, full-screen image.

Figures 5-20 and 5-21 show you how the extended browsers render a single wood
panel as an individual picture and then tile it to create a paneled wall when included
as a document’s background:

 <body>

versus:

<body background="pics/wood_panel.gif">

Figure 5-20. A single wood panel…

5.3 Document Colors and Background Images | 145

Background images of various dimensions and sizes create interesting vertical and
horizontal effects on the page. For instance, a tall, skinny image might set off your
document heading:

<body background="pics/vertical_fountain.gif">
<h3>Kumquat Lore</h3>
For centuries, many myths and legends have arisen around the kumquat.
...

If vertical_fountain.gif is a narrow, tall image whose color grows lighter toward its
base and whose length exceeds the length of the document body, the resulting docu-
ment might look like the one shown in Figure 5-22.

You can achieve a similar effect horizontally with an image that is much wider than it
is long (see Figure 5-23).

The background attribute is deprecated in HTML 4 and XHTML because you can
achieve similar effects using stylesheets.

5.3.1.3 The bgproperties attribute

The popular browsers no longer support the bgproperties attribute extension for the
<body> tag. It worked only in conjunction with the background attribute extension and

Figure 5-21. …becomes many as the <body> background

Figure 5-22. A tall and skinny background

146 | Chapter 5: Rules, Images, and Multimedia

had a single value, fixed. Its effect was to freeze the background image to the browser
window, so it did not scroll with the other window contents. Hence, the example
H2Omark.gif background image might serve as a watermark for the document:

<body background="pics/H2Omark.gif" bgproperties="fixed">

5.3.1.4 The text attribute

Once you alter a document’s background color or add a background image, you also
might need to adjust the text color to ensure that users can read the text. The HTML
4/XHTML text standard attribute for the <body> tag does just that: it sets the color
of all nonanchor text in the entire document.

Give the text attribute a color value in the same format as you use to specify a back-
ground color (see bgcolor in the earlier section, 5.3.1.1)—an RGB triplet or color
name, as described in Appendix G. For example, to produce a document with blue
text on a pale yellow background, use:

<body bgcolor="#777700" text="blue">

Of course, it’s best to select a text color that contrasts well with your background
color or image.

The text attribute is deprecated in HTML 4 and XHTML because you can achieve
similar effects using stylesheets.

5.3.1.5 The link, vlink, and alink attributes

The link, vlink, and alink attributes of the <body> tag control the color of hypertext
(text inside the <a> tag) in your documents. All three accept values that specify a
color as an RGB triplet or color name, just like the text and bgcolor attributes.

The link attribute determines the color of all hyperlinks the user has not yet fol-
lowed. The vlink attribute sets the color of all links the user has followed at one
time or another. The alink attribute defines a color for active link text—i.e., a link

Figure 5-23. A long and skinny background

5.3 Document Colors and Background Images | 147

that is currently selected by the user and is under the mouse cursor with the mouse
button depressed.

Like text color, you should be careful to select link colors that can be read against the
document background. Moreover, the link colors should be different from the regu-
lar text as well as from each other.

These attributes are deprecated in HTML 4 and XHTML because you can achieve
similar effects using stylesheets.

5.3.1.6 The leftmargin attribute

Once peculiar to Internet Explorer but now supported by all the popular browsers,
the leftmargin attribute extension for the <body> tag lets you indent the left margin
relative to the left edge of the browser’s window, much like a margin on a sheet of
paper. Antiquated browsers ignore this attribute, and just left-justify the body con-
tent to the left edge of the document window.

The value of the leftmargin attribute is the integer number of pixels for that left-mar-
gin indent; a value of 10 is the default. The margin is filled with the background
color or image.

For example, Internet Explorer renders the following text justified against a margin
50 pixels away from the left edge of the browser window (see Figure 5-24):

<body leftmargin=50>
Modern browsers lets you indent the

<--left margin

away from the left edge of the window.
</body>

5.3.1.7 The topmargin attribute

Like leftmargin, the topmargin attribute extension used to be exclusive to Internet
Explorer, but now all the popular browsers support it well. You may include it in the
<body> tag to set a margin of space at the top of the document. The margin space is
filled with the document’s background color or image.

Figure 5-24. The leftmargin attribute for indenting body content

148 | Chapter 5: Rules, Images, and Multimedia

Body content begins flowing below the integer number of pixels you specify as the
value for topmargin; a value of 0 is the default.

For example, Opera renders the following text at least 50 pixels down from the top
edge of the browser window (see Figure 5-25):

<body topmargin=50>
^^^
Modern browsers give your documents
a little extra headroom with topmargin.
</body>

5.3.1.8 The style and class attributes

You also can set all the various style-related <body> features, and then some, with
CSS. But although you may include the style attribute with the <body> tag to create
an inline style for the entire document body, we recommend that you set those styles
at the document level (using the <style> tag inside the document head) or via a col-
lection-level (imported) stylesheet.

Use the class attribute and name value to apply the appropriate style of a predefined
class of the <body> tag to the contents. (Because there can be only one body per docu-
ment, what is the point of setting a class name otherwise?) We cover the use of style
and class definitions in Chapter 8.

5.3.1.9 Mixing and matching body attributes

Although background and bgcolor attributes can appear in the same <body> tag, a
background image will effectively hide the selected background color unless the
image contains substantial portions of transparent areas, as we described earlier in
this chapter. But even if the image does hide the background color, go ahead and
include the bgcolor attribute and some appropriate color value. Users can turn off
image downloading, which includes background images, so otherwise they may find
your page left naked and unappealing. Moreover, without a bgcolor attribute or a

Figure 5-25. The topmargin attribute for lowering body content

5.3 Document Colors and Background Images | 149

downloaded (for whatever reason) background image, the browsers merrily ignore
your text and link color attributes, too, reverting instead to their own default values
or the ones the user has chosen.

5.3.2 Extending a Warning
Much like early users of the Macintosh felt compelled to create documents using ran-
som-note typography (“I’ve got 40 fonts on this thing, and I’m going to use them
all!”), many authors cannot avoid adding some sort of textured background to every
document they create (“I’ve got 13 wood grains and 22 kinds of marbling, and I’m
going to use them all!”).

In reality, texture-mapped backgrounds, except for the very clever ones, add no infor-
mation to your documents. The value of your document ultimately lies in its text and
imagery, not the cheesy blue swirly pattern in the background. No matter how cool it
looks, your readers are not benefiting and you could be losing readability.

We advise you not to use the color extensions except for comparatively frivolous
endeavors or unless the extension really adds to the document’s value, such as for
business advertising and marketing pages.

5.3.2.1 Problems with background images

Here are some of the things that can go wrong with background images:

• The time to load the document is increased by the amount of time needed to
load the image. Until the background image is completely downloaded, no fur-
ther document rendering is possible.

• The background image takes up room in the browser’s local cache, displacing
other images that might actually contain useful information. This makes other
documents, which might not even have backgrounds, take longer to load.

• The colors in the image may not be available on the user’s display, forcing the
browser to dither the image. This replaces large areas of a single color with
repeating patterns of several other closer, but not cleaner, colors and can make
the text more difficult to read.

• Because the browser must actually display an image in the background, as
opposed to filling an area with a single color, scrolling through the document
can take much longer.

• Even if it’s clear onscreen, text printed on top of an image invariably is more dif-
ficult, if not impossible, to read.

• Fonts vary widely among machines; the ones you use with your browser that
work fine with a background pattern often end up jagged and difficult to read on
another machine.

150 | Chapter 5: Rules, Images, and Multimedia

5.3.2.2 Problems with background, text, and link colors

You also will encounter a slew of problems if you play with background colors,
including the following:

• The color you choose, while just lovely in your eyes, may look terrible to the
user. Why annoy them by changing what users most likely have already set as
their own default background colors?

• While you may be a member of the “light text on a dark background” school of
document design, many people also favor the “dark text on a light background”
style that has been consistently popular for more than 3,000 years. Instead of
bucking the trend, assume that users have already set their browsers to a com-
fortable color scheme.

• Some users are colorblind. What may be a nifty-looking combination of colors
to you may be completely unreadable to others. One combination in particular
to avoid is green for unvisited links and red for visited links. Millions of men are
afflicted with red/green colorblindness.

• Your brilliant hue may not be available on the user’s display, and the browser
may be forced to choose one that’s close instead. Some colors for the text and
the background might be the same color on limited-color displays!

• For the same reason just listed, active, unvisited, and visited links may wind up
as the same color on limited-color displays.

• By changing text colors, particularly those for visited and unvisited links, you
may completely confuse users. By changing those colors, you effectively force
them to experiment with your page, clicking a few links here and there to learn
your color scheme.

• Most page designers have no formal training in cognitive psychology, fine arts,
graphic arts, or industrial design, yet feel fully capable of selecting appropriate
colors for their documents. If you must fiddle with the colors, ask a professional
to pick them for you.

5.3.2.3 And then again

There is no denying the fact that these extensions result in some very stunning
HTML and XHTML documents. And they are fun to explore and play with. So,
instead of leaving this section on a sour note of caution, we encourage you to go
ahead and play—just play carefully.

5.4 Background Audio
One other form of inline multimedia is generally available to web surfers—audio.
Most browsers treat audio multimedia as separate documents, downloaded and dis-
played by special helper applications, applets, or plug-ins. Internet Explorer and

5.4 Background Audio | 151

Opera, on the other hand, contain built-in sound decoders and support a special tag
(<bgsound>) that lets you integrate with your document an audio file that plays in the
background as a soundtrack for your page. [Applets and Objects, 12.1] [Embedded
Content, 12.2]

We applaud the developers of Internet Explorer and Opera for providing a mecha-
nism that more cleanly integrates audio into HTML and XHTML documents. The
possibilities with audio are very enticing, but at the same time, we caution authors
that special tags and attributes for audio don’t work with other browsers, and
whether this is the method that the majority of browsers will eventually support is
not at all assured.

5.4.1 The <bgsound> Tag
Use the <bgsound> tag to play a soundtrack in the background. This tag is for Inter-
net Explorer and Opera documents only. Other browsers ignore the tag. It down-
loads and plays an audio file when the user first downloads and displays the host
document. The background sound file also will replay whenever the user refreshes
the browser display.

5.4.1.1 The src attribute

The src attribute is required for the <bgsound> tag. Its value references the URL for
the related sound file. For example, when Internet Explorer or Opera users first
download a document containing the tag:

<bgsound src="audio/welcome.wav">

they will hear the welcome.wav audio file—perhaps an inviting message—play once
through their computers’ sound systems.

Currently, <bgsound> can handle several different sound format files, including .wav,
the native format for PCs; .au, the native format for most Unix workstations; and
MIDI, a universal music-encoding scheme (see also Table 5-1).

<bgsound>

Function Plays a soundtrack in the document’s background

Attributes loop, src

End tag None in HTML

Contains Nothing

Used in body_content

152 | Chapter 5: Rules, Images, and Multimedia

5.4.1.2 The loop attribute

As with inline movies, the loop attribute for the browser’s <bgsound> tag lets you
replay a background soundtrack a certain number of times (or indefinitely), at least
until the user moves on to another page or quits the browser.

The value of the loop attribute is the integer number of times to replay the audio file,
or infinite, which makes the soundtrack repeat endlessly.

For example:

<bgsound src="audio/tadum.wav" loop=10>

repeats the ta-dum soundtrack 10 times, whereas:

<bgsound src="audio/noise.wav" loop=infinite>

continuously plays the noise soundtrack.

Table 5-1. Common multimedia formats and respective filename extensions

Format Type Extension Platform of origin

Graphics Interchange Format Image gif Any

Joint Photographic Experts Group Image jpg, jpeg, jpe Any

X Bit Map Image xbm Unix

Tagged Image File Format Image tif, tiff Any

PICT Image pic, pict Apple

Rasterfile Image ras Sun

Portable Network Graphics Image png Any

Moving Pictures Expert Group Movie mpg, mpeg Any

Audio Video Interleave Movie avi Microsoft

QuickTime Movie qt, mov Apple

Windows Media Video Movie wmv Microsoft

Shockwave Movie dvr Macromedia

Real Video Movie ra, rm, ram Real Networks

DivX Movie div, divx, tix, mp4 DivX

AU Audio au, snd Sun

Waveform Audio Audio wav Microsoft

Audio Interchange File Format Audio aif, aiff Apple

Musical Instrument Digital Interface Audio midi, mid Any

PostScript Document ps, eps, ai Any

Acrobat Document pdf Any

5.5 Animated Text | 153

5.4.2 Alternative Audio Support
There are other ways to include audio in your documents, using more general mech-
anisms that support other embedded media as well. The most common alternative to
the <bgsound> tag is the <embed> tag, originally implemented by Netscape and sup-
planted by the <object> tag in the HTML 4 and XHTML standards. Take a look in
Chapter 12 for details.

Ultimately, you should handle all background audio, including spoken (aural) docu-
ment content, using the various audio extensions defined in a CSS standard. While
we cover the speech synthesis-related extensions in Chapter 8, they are not yet sup-
ported by any browser. When such support becomes widely available, all of these
early audio extensions will go the way of the <blink> and <isindex> tags, early spe-
cialized tags deprecated in favor of more generalized and powerful features.

5.5 Animated Text
In what appears to be an effort to woo advertisers, Internet Explorer added a form of
animated text to HTML that all the popular browsers now support. The animation is
simple—text scrolling horizontally across the display—but effective for moving ban-
ners and other elements that readily and easily animate an otherwise static docu-
ment. On the other hand, like the <blink> tag, animated text can easily become
intrusive and abusive for the reader. Use with caution, please, if at all.

5.5.1 The <marquee> Tag
The <marquee> tag defines the text that scrolls across the user’s display. The
<marquee> tag is not a standard tag. For this reason alone, we do not recommend that
you use this extension.

<marquee>

Function Creates a scrolling text marquee

Attributes align, behavior, bgcolor, class, controls, direction, height,
hspace, loop, scrollamount, scrolldelay, style, vspace, width

End tag </marquee>; never omitted

Contains plain_text

Used in body_content

154 | Chapter 5: Rules, Images, and Multimedia

The text between the <marquee> tag and its required </marquee> end tag scrolls hori-
zontally across the display. The various tag attributes control the size of the display
area, its appearance, its alignment with the surrounding text, and the scrolling speed.

The <marquee> tag and attributes are ignored by some browsers, but its contents are
not. They are displayed as static text, sans any alignment or special treatment
afforded by the <marquee> tag attributes.

5.5.1.1 The align attribute

The popular browsers place <marquee> text into the surrounding body content just as
if it were an embedded image. As a result, you can align the marquee within the sur-
rounding text.

The align attribute accepts a value of top, middle, or bottom, meaning that the speci-
fied point of the marquee will be aligned with the corresponding point in the sur-
rounding text. Thus:

<marquee align=top>

aligns the top of the marquee area with the top of the surrounding text. Also see the
height, width, hspace, and vspace attributes (later in this chapter), which control the
dimensions of the marquee.

5.5.1.2 The behavior, direction, and loop attributes

Together, these three attributes control the style, direction, and duration of the
scrolling in your marquee.

The behavior attribute accepts three values:

scroll (default)
This value causes the marquee to act like the grand marquee in Times Square:
the marquee area is initially empty; the text then scrolls in from one side (con-
trolled by the direction attribute), continues across until it reaches the other
side of the marquee, and then scrolls off until the marquee is once again empty.

slide

This value causes the marquee to start empty. Text then scrolls in from one side
(controlled by the direction attribute), stops when it reaches the other side, and
remains onscreen.

alternate

This value causes the marquee to start with the text fully visible at one end of the
marquee area. The text then scrolls until it reaches the other end, whereupon it
reverses direction and scrolls back to its starting point.

If you do not specify a marquee behavior, the default behavior is scroll.

The direction attribute sets the direction for marquee text scrolling. Acceptable val-
ues are either left (the default) or right. Note that the starting end for the scrolling

5.5 Animated Text | 155

is opposite to the direction: left means that the text starts at the right of the mar-
quee and scrolls to the left. Remember also that rightward-scrolling text is counter-
intuitive to anyone who reads left to right.

The loop attribute determines how many times the marquee text scrolls. If an integer
value is provided, the scrolling action is repeated that many times. If the value is
infinite, the scrolling repeats until the user moves on to another document within
the browser.

Putting some of these attributes together:

<marquee align=center loop=infinite>
 Kumquats aren't filling
 Taste great, too!
</marquee>

The example message starts at the right side of the display window (default), scrolls
leftward all the way across and off the display, and then starts over again until the
user moves on to another page. Notice the intervening periods and spaces for the
“trailer”; you can’t append one marquee to another.

Also, the slide style of scrolling looks jerky when repeated and should be scrolled
only once. Other scrolling behaviors work well with repeated scrolling.

5.5.1.3 The bgcolor attribute

The bgcolor attribute lets you change the background color of the marquee area. It
accepts either an RGB color value or one of the standard color names. See
Appendix G for a full discussion of both color-specification methods.

To create a marquee area whose color is yellow, you would write:

<marquee bgcolor=yellow>

5.5.1.4 The height and width attributes

The height and width attributes determine the size of the marquee area. If not speci-
fied, the marquee area extends all the way across the display and will be just high
enough to enclose the marquee text.

Both attributes accept either a numeric value, indicating an absolute size in pixels, or
a percentage, indicating the size as a percentage of the browser window height and
width.

For example, to create a marquee that is 50 pixels tall and occupies one-third of the
display window width, use:

<marquee height=50 width="33%">

While it is generally a good idea to ensure that the height attribute is large enough to
contain the enclosed text, it is not uncommon to specify a width that is smaller than

156 | Chapter 5: Rules, Images, and Multimedia

the enclosed text. In this case, the text scrolls the smaller marquee area, resulting in a
kind of “viewport” marquee familiar to most people.

5.5.1.5 The hspace and vspace attributes

The hspace and vspace attributes let you create some space between the marquee and
the surrounding text. This usually makes the marquee stand out from the text
around it.

Both attributes require an integer value specifying the space needed in pixels. The
hspace attribute creates space to the left and right of the marquee; the vspace

attribute creates space above and below the marquee. To create 10 pixels of space all
the way around your marquee, for example, use:

<marquee vspace=10 hspace=10>

5.5.1.6 The scrollamount and scrolldelay attributes

These attributes control the speed and smoothness of the scrolling marquee.

The scrollamount attribute value is the number of pixels needed to move text each
successive movement during the scrolling process. Lower values mean smoother but
slower scrolling; higher numbers create faster, jerkier text motion.

The scrolldelay attribute lets you set the number of milliseconds to wait between
successive movements during the scrolling process. The smaller this value, the faster
the scrolling.

You can use a low scrolldelay to mitigate the slowness of a small, smooth
scrollamount. For example:

<marquee scrollamount=1 scrolldelay=1>

scrolls the text one pixel for each movement but does so as fast as possible. In this
case, the scrolling speed is limited by the capabilities of the user’s computer.

5.6 Other Multimedia Content
The Web is completely open-minded about the types of content that can be
exchanged by servers and browsers. In this section, we look at a different way to ref-
erence images, along with audio, video, and other document formats.

5.6.1 Embedded Versus Referenced Content
Images currently enjoy a special status among the various media that can be included
within an HTML or XHTML document and displayed inline with other content by all
but a few browsers. Sometimes, however, as we discussed earlier in this chapter, you
may also reference images externally—particularly large ones in which details are

5.6 Other Multimedia Content | 157

important but not immediately necessary to the document content. Other multimedia
elements, including digital audio and video, can be referenced as separate documents
external to the current one.

You normally use the anchor tag (<a>) to link external multimedia elements to the
current document. Just like other link elements selected by the user, the browser
downloads the multimedia object and presents it to the user, possibly with the assis-
tance of an external application or plug-in. Referenced content is always a two-step
process: present the document that links to the desired multimedia object, then
present the object if the user selects the link. [<a>, 6.3.1]

In the case of images, you can choose how to present images to the user: inline and
immediately available via the tag, or referenced and subsequently available via
the <a> tag. If your images are small and critical to the current document, you should
provide them inline. If they are large or are only a secondary element of the current
document, make them available as referenced content via the <a> tag.

If you choose to provide images via the <a> tag, it is sometimes a courtesy to your
readers to indicate the size of the referenced image in the referencing document and
perhaps provide a thumbnail sketch. Users can then determine whether it is worth
their time and expense to retrieve it.

5.6.2 Referencing Audio, Video, and Images
You reference any external document, regardless of type or format, via a conven-
tional anchor (<a>) link:

The Kumquat Grower's Anthem is a rousing tribute to
the thousands of 'quat growers around the world.

Just like any referenced document, the server delivers the desired multimedia object
to the browser when the user selects the link. If the browser finds that the document
is not HTML or XHTML, but rather some other format, it automatically invokes an
appropriate rendering tool to display or otherwise convey the contents of the object
to the user.

You can configure your browser with special helper applications that handle differ-
ent document formats in different ways. Audio files, for example, might be passed to
an audio-processing tool, and video files are given to a video-playing tool. If a
browser has not been configured to handle a particular document format, the
browser will inform you and offer to simply save the document to disk. You can later
use an appropriate viewing tool to examine the document.

Browsers identify and specially handle multimedia files from one of two different
hints: either from the file’s Multipurpose Internet Mail Extension (MIME) type, pro-
vided by the server, or from a special suffix in the file’s name. The browser prefers
MIME because of its richer description of the file and its contents, but it will infer the

158 | Chapter 5: Rules, Images, and Multimedia

file’s contents (type and format) from the file suffix: .gif or .jpg, for GIF or JPEG
encoded images, for example, or .au for a special sound file.

Because not all browsers look for a MIME type or are necessarily correctly config-
ured with helper applications by their users, you should always use the correct file
suffix in the names of multimedia objects. Refer to Table 5-1 for more information.

5.6.3 Appropriate Linking Styles
Creating effective links to external multimedia documents is critical. The user needs
some indication of what the object is and perhaps the kind of application the linked
object needs to execute. Moreover, most multimedia objects are quite large, so com-
mon courtesy tells us to provide users with some indication of the time and expense
involved in downloading them.

In lieu of, or in addition to, the anchor and surrounding text, a small thumbnail of a
large image, or a familiar icon that indicates the referenced object’s format, is useful.

5.6.4 Embedding Other Document Types
The Web can deliver nearly any type of electronic document, not just graphics,
sound, and video files. To display them, however, the client browser needs a helper
application installed and referenced. Recent browsers also support plug-in accessory
software and, as described in Chapter 12, may extend the browser for some special
function, including inline display of multimedia objects.

For example, consider a company whose extensive product documentation was pre-
pared and stored in some popular layout application such as Adobe Acrobat,
FrameMaker, QuarkXPress, or PageMaker. The Web offers an excellent way for dis-
tributing that documentation over a worldwide network, but converting to HTML or
XHTML would be too costly at this time.

The solution is to prepare a few HTML or XHTML documents that catalog and link
the alternative files and invoke the appropriate display applet. Or, make sure that the
users’ browsers have the plug-in software or are configured to invoke the appropri-
ate helper application. Adobe’s Acrobat Reader is a very popular plug-in, for exam-
ple. If the document is in Acrobat (.pdf) format and if a link to an Acrobat document
is chosen, the tool is started and accordingly displays the document, often right in
the browser’s window.

159

Chapter 6!ti
In this chapter:

• Hypertext Basics
• Referencing Documents: The URL
• Creating Hyperlinks
• Creating Effective Links
• Mouse-Sensitive Images
• Creating Searchable Documents
• Relationships
• Supporting Document Automation

CHAPTER 6

Links and Webs6

Up to this point, we’ve dealt with HTML and XHTML documents as standalone
entities, concentrating on the language elements you use for structure and to format
your work. The true power of these markup languages, however, lies in their ability
to join collections of documents together into a full library of information and to link
your library of documents with other collections around the world. Just as readers
have considerable control over how the document looks onscreen, with hyperlinks
they also have control over the order of presentation as they navigate through your
information. It’s the “HT” in HTML and XHTML—hypertext—and it’s the twist
that spins the Web.

6.1 Hypertext Basics
A fundamental feature of hypertext is that you can hyperlink documents; you can
point to another place inside the current document, inside another document in the
local collection, or inside a document anywhere on the Internet. The documents
become an intricately woven web of information. (Get the name analogy now?) The
target document usually is somehow related to and enriches the source; the linking
element in the source should convey that relationship to the reader.

You can use hyperlinks for all kinds of effects. You can use them inside tables of con-
tents and lists of topics. With a click of the mouse on their browser screen or a press
of a key on their keyboard, readers select and automatically jump to a topic of inter-
est in the same document or to another document located in an entirely different col-
lection somewhere around the world.

160 | Chapter 6: Links and Webs

Hyperlinks also point readers to more information about a mentioned topic. “For
more information, see Kumquats on Parade,” for example. Authors use hyperlinks to
reduce repetitive information. For instance, we recommend you sign your name to
each document. Instead of including full contact information in each document, you
can use a hyperlink to connect your name to a single document that contains your
address, phone number, and so forth.

A hyperlink, or anchor in standard parlance, is marked by the <a> tag and comes in
two flavors. As we describe in detail later, one type of anchor creates a hotspot in the
document that, when activated and selected (usually with a mouse) by the user,
causes the browser to link. It automatically loads and displays another portion of the
same or another document or triggers some Internet service-related action, such as
sending email or downloading a special file. The other type of anchor creates a label,
a place in a document that can be referenced as a hyperlink.*

Also, some mouse-related events are associated with hyperlinks, which, through
JavaScript, let you incorporate some exciting effects.

6.2 Referencing Documents: The URL
Every document on the Web has a unique address. (Imagine the chaos if they didn’t.)
The document’s address is known as its uniform resource locator (URL).†

Several HTML/XHTML tags include a URL attribute value, including hyperlinks,
inline images, and forms. All use the same URL syntax to specify the location of a
web resource, regardless of the type or content of that resource. That’s why it’s
known as a uniform resource locator.

Because they can be used to represent almost any resource on the Internet, URLs
come in a variety of flavors. All URLs, however, have the same top-level syntax:

scheme:scheme_specific_part

The scheme describes the kind of object the URL references; the scheme_specific_part
is, well, the part that is peculiar to the specific scheme. The important thing to note
is that the scheme is always separated from the scheme_specific_part by a colon, with
no intervening spaces.

* Both types of anchors use the same tag; perhaps that’s why they have the same name. We find it’s easier if
you differentiate them and think of the type that provides the hotspot and address of a hyperlink as the “link”
and the type that marks the target portion of a document as the “anchor.”

† “URL” usually is pronounced “you are ell,” not “earl.”

6.2 Referencing Documents: The URL | 161

6.2.1 Writing a URL
Write URLs using the displayable characters in the US-ASCII character set. For
example, surely you have heard what has become annoyingly common on the radio
for an announced business web site: “h, t, t, p, colon, slash, slash, w, w, w, dot, blah-
blah, dot, com.” That’s a simple URL, written:

http://www.blah-blah.com

If you need to use a character in a URL that is not part of this character set, you must
encode the character using a special notation. The encoding notation replaces the
desired character with three characters: a percent sign and two hexadecimal digits
whose values correspond to the position of the character in the ASCII character set.

This is easier than it sounds. One of the most common special characters is the space
(owners of older Macintoshes, take special notice), whose position in the character
set is 20 hexadecimal.* You can’t type a space in a URL (well, you can, but it won’t
work). Rather, replace spaces in the URL with %20:

http://www.kumquat.com/new%20pricing.html

This URL actually retrieves a document named new pricing.html from the www.
kumquat.com server.

6.2.1.1 Handling reserved and unsafe characters

In addition to the nonprinting characters, you’ll need to encode reserved and unsafe
characters in your URLs as well.

Reserved characters are those that have a specific meaning within the URL itself. For
example, the slash character separates elements of a pathname within a URL. If you
need to include in a URL a slash that is not intended to be an element separator,
you’ll need to encode it as %2F:

http://www.calculator.com/compute?3%2f4

This URL actually references the resource named compute on the www.calculator.com
server and passes the string 3/4 to it, as delineated by the question mark (?). Presum-
ably, the resource is a server-side program that performs some arithmetic function on
the passed value and returns a result.

Unsafe characters are those that have no special meaning within the URL but may have
a special meaning in the context in which the URL is written. For example, double
quotes ("") delimit URL attribute values in tags. If you were to include a double quota-
tion mark directly in a URL, you would probably confuse the browser. Instead, you
should encode the double quotation mark as %22 to avoid any possible conflict.

* Hexadecimal numbering is based on 16 characters: 0 through 9 followed by A through F, which in decimal
are equivalent to values 0 through 15. Also, letter case for these extended values is not significant; “a” (10
decimal) is the same as “A,” for example.

162 | Chapter 6: Links and Webs

Table 6-1 shows other reserved and unsafe characters that should always be
encoded.

In general, you should always encode a character if there is some doubt as to whether
it can be placed as is in a URL. As a rule of thumb, any character other than a letter,
number, or any of the symbolic characters like $-_.+!*'() should be encoded.

It is never an error to encode a character, unless that character has a specific mean-
ing in the URL. For example, encoding the slashes in an HTTP URL causes them to
be used as regular characters, not as pathname delimiters, breaking the URL. Simi-
larly, encoding an ampersand when it is used as a parameter separator in a URL will
defeat the intended purpose. Instead, write these ampersands using & to keep
their intended function intact.

Table 6-1. Reserved and unsafe characters and their URL encodings

Character Description Usage Encoding

; Semicolon Reserved %3B

/ Slash Reserved %2F

? Question mark Reserved %3F

: Colon Reserved %3A

@ At sign Reserved %40

= Equals sign Reserved %3D

& Ampersand Reserved %26

< Less-than sign Unsafe %3C

> Greater-than sign Unsafe %3E

" Double quotation mark Unsafe %22

Hash symbol Unsafe %23

% Percent Unsafe %25

{ Left curly brace Unsafe %7B

} Right curly brace Unsafe %7D

| Vertical bar Unsafe %7C

\ Backslash Unsafe %5C

^ Caret Unsafe %5E

~ Tilde Unsafe %7E

[Left square bracket Unsafe %5B

] Right square bracket Unsafe %5D

` Back single quotation mark Unsafe %60

6.2 Referencing Documents: The URL | 163

6.2.2 Absolute and Relative URLs
You may address a URL in one of two ways: absolute or relative. An absolute URL is
the complete address of a resource and has everything your system needs to find a
document and its server on the Web. At the very least, an absolute URL contains the
scheme and all required elements of the scheme_specific_part of the URL. It may
also contain any of the optional portions of the scheme_specific_part.

With a relative URL, you provide an abbreviated document address that, when auto-
matically combined with a base address by the system, becomes a complete address
for the document. Within the relative URL, any component of the URL may be omit-
ted. The browser automatically fills in the missing pieces of the relative URL using
corresponding elements of a base URL. This base URL is usually the URL of the docu-
ment containing the relative URL, but it may be another document specified with the
<base> tag, as we will discuss later in this chapter. [<base>, 6.7.1]

6.2.2.1 Relative schemes and servers

A common form of a relative URL is missing the scheme and server name. Because
many related documents are on the same server, it makes sense to omit the scheme
and server name from the relative URL. For instance, assume the base document was
last retrieved from the server www.kumquat.com. This relative URL:

another-doc.html

is equivalent to the absolute URL:

http://www.kumquat.com/another-doc.html

Table 6-2 shows how the base and relative URLs in this example are combined to
form an absolute URL.

6.2.2.2 Relative document directories

Another common form of a relative URL omits the leading slash and one or more
directory names from the beginning of the document pathname. The directory of the
base URL is automatically assumed to replace these missing components. It’s the
most common abbreviation, because most authors place their collections of docu-
ments and subdirectories of support resources in the same directory path as the

Table 6-2. Forming an absolute URL

Protocol Server Directory File

Base URL http www.kumquat.com /

Relative URL ↓ ↓ ↓ another-doc.html

↓ ↓ ↓ ↓ ↓

Absolute URL http www.kumquat.com / another-doc.html

164 | Chapter 6: Links and Webs

home page. For example, you might have a special subdirectory containing FTP files
referenced in your document. Let’s say that the absolute URL for that document is:

http://www.kumquat.com/planting/guide.html

A relative URL for the file README.txt in the special subdirectory looks like this:

ftp:special/README.txt

You’ll actually be retrieving:

ftp://www.kumquat.com/planting/special/README.txt

Visually, the operation looks like that in Table 6-3.

6.2.2.3 Using relative URLs

Relative URLs are more than just a typing convenience. Because they are relative to
the current server and directory, you can move an entire set of documents to another
directory or even another server and never have to change a single relative link. Imag-
ine the difficulties if you had to go into every source document and change the URL
for every link every time you moved it. You’d loathe using hyperlinks! Use relative
URLs wherever possible.

6.2.3 The http URL
The http URL is by far the most common. It is used to access documents from a web
server, and it has two formats:

http://server:port/path#fragment
http://server:port/path?search

Some of the parts are optional. In fact, the most common form of the http URL is
simply:

http://server/path

which designates the unique server and the directory path and name of a document.

6.2.3.1 The http server

The server is the unique Internet name or IP numerical address of the computer system
that stores the web resource. We suspect you’ll mostly use more easily remembered

Table 6-3. Forming an absolute FTP URL

Protocol Server Directory File

Base URL http www.kumquat.com /planting guide.html

Relative URL ftp ↓ special README.txt

↓ ↓ ↓ ↓ ↓

Absolute URL ftp www.kumquat.com /planting/special README.txt

6.2 Referencing Documents: The URL | 165

Internet names for the servers in your URLs.* The name consists of several parts,
including the server’s actual name and the successive names of its network domain,
each part separated by a period. Typical Internet names look like www.oreilly.com or
hoohoo.ncsa.uiuc.edu.†

It has become something of a convention that webmasters name their servers www
for quick and easy identification on the Web. For instance, O’Reilly Media’s web
server’s name is www, which, along with the publisher’s domain name, becomes the
very easily remembered web site, www.oreilly.com. Similarly, MobileRobots’ web
server is named www.mobilerobots.com. Being a nonprofit organization, the World
Wide Web Consortium’s main server has a different domain suffix: www.w3c.org.
The naming convention has very obvious benefits, which you, too, should take
advantage of if you are called upon to create a web server for your organization.

You may also specify the address of a server using its numerical IP address. The
address is a sequence of four numbers, 0 to 255, separated by periods. Valid IP
addresses look like 137.237.1.87 or 192.249.1.33.

It’d be a dull diversion to tell you now what the numbers mean or how to derive an
IP address from a domain name, particularly because you’ll rarely, if ever, use one in
a URL. Rather, this is a good place to hyperlink: pick up any good Internet network-
ing treatise for rigorous detail on IP addressing, such as Ed Krol’s The Whole Inter-
net User’s Guide and Catalog (O’Reilly).

6.2.3.2 The http port

The port is the number of the communication port by which the client browser con-
nects to the server. It’s a networking thing—servers perform many functions besides
serving up web documents and resources to client browsers: electronic mail, FTP
document fetches, filesystem sharing, and so on. Although all that network activity
may come into the server on a single wire, it’s typically divided into software-
managed “ports” for service-specific communications—something analogous to
boxes at your local post office.

The default URL port for web servers is 80. Special secure web servers—Secure HTTP
(SHTTP) or Secure Sockets Layer (SSL)—run on port 443. Most web servers today use

* Each Internet-connected computer has a unique address—a numeric (Internet Protocol, or IP) address, of
course, because computers deal only in numbers. Humans prefer names, so the Internet folks provide us
with a collection of special servers and software (the domain name system, or DNS) that automatically
resolve Internet names into IP addresses.

† The three-letter suffix of the domain name identifies the type of organization or business that operates that
portion of the Internet. For instance, “com” is a commercial enterprise, “edu” is an academic institution, and
“gov” identifies a government-based domain. Outside the United States, a less-descriptive suffix is often
assigned—typically a two-letter abbreviation of the country name, such as “jp” for Japan and “de” for Deut-
schland. Many organizations around the world now use the generic three-letter suffixes in place of the more
conventional two-letter national suffixes.

166 | Chapter 6: Links and Webs

port 80; you need to include a port number along with an immediately preceding colon
in your URL if the target server does not use port 80 for web communication.

When the Web was in its infancy, pioneer webmasters ran their Wild Wild Web
connections on all sorts of port numbers. For technical and security reasons, system-
administrator privileges are required to install a server on port 80. Lacking such priv-
ileges, these webmasters chose other, more easily accessible, port numbers.

Now that web servers have become acceptable and are under the care and feeding of
responsible administrators, documents being served on some port other than 80 or
443 should make you wonder whether that server is really on the up and up. Most
likely, the maverick server is being run by a clever user unbeknownst to the server’s
bona fide system administrators.

6.2.3.3 The http path

The document path is the Unix-style hierarchical location of the file in the server’s
storage system. The pathname consists of one or more names separated by slashes.
All but the last name represent directories leading down to the document. The last
name is usually that of the document itself, though the web server will typically
default to a file called index.html.

It has become a convention that for easy identification, HTML document names end
with the suffix .html (otherwise, they’re plain ASCII text files, remember?). Although
recent versions of Windows allow longer suffixes, old-time developers often stick to
the three-letter .htm name suffix for HTML documents.

Although the server name in a URL is not case-sensitive, the document pathname
may be. Because most web servers are run on Linux-based systems, and Linux filena-
mes are case-sensitive, those document pathnames will be case-sensitive, too. Web
servers running on Windows machines are not case-sensitive, so those document
pathnames are not. Because it is impossible to know the operating system of the
server you are accessing, always assume that the server has case-sensitive pathnames
and take care to get the case correct when typing your URLs.

Certain conventions regarding the document pathname have arisen. If the last ele-
ment of the document path is a directory, not a single document, the server usually
will send back either a listing of the directory contents or the HTML index docu-
ment in that directory. You should end the document name for a directory with a
trailing slash character, but in practice, most servers will honor the request even if
this character is omitted.

If the directory name is just a slash alone, or nothing at all, the server decides what to
serve to your browser—typically, a so-called home page in the root directory stored
as a file named index.html. Every well-designed web server should have an attractive,
well-designed home page; it’s a shorthand way for users to access your web collec-
tion because they don’t need to remember the document’s actual filename, just your

6.2 Referencing Documents: The URL | 167

server’s name. That’s why, for example, you can type http://www.oreilly.com into
Netscape’s Open dialog box and get O’Reilly’s home page.

Another twist: if the first component of the document path starts with the tilde char-
acter (~), it means that the rest of the pathname begins from the personal directory
in the home directory of the specified user on the server machine. For instance, the
URL http://www.kumquat.com/~chuck would retrieve the top-level page from
Chuck’s document collection.

Different servers have different ways of locating documents within a user’s home
directory. Many search for the documents in a directory named public_html. Unix-
based servers are fond of the name index.html for home pages. When all else fails,
servers tend to cough up a directory listing or the default HTML document in the
home page directory.

6.2.3.4 The http document fragment

The fragment is an identifier that points to a specific section of a document. In URL
specifications, it follows the server and pathname and is separated by the pound sign
(#). A fragment identifier indicates to the browser that it should begin displaying the
target document at the indicated fragment name. As we describe in more detail later in
this chapter, you insert fragment names into a document either with the universal id
tag attribute or with the name attribute for the <a> tag. In the following example, the
browser loads the file named kumquat_locations.html from the www.kumquat.com
server, and then displays the document starting at the section of the page named
Northeast:

http://www.kumquat.com/kumquat_locations.html#Northeast

Like a pathname, a fragment name may be any sequence of characters, as long as you
are careful with spaces and other symbolic characters.

The fragment name and the preceding hash symbol are optional; omit them when
referencing a document without defined fragments.

Formally, the fragment element applies only to HTML and XHTML documents. If
the target of the URL is some other document type, the browser may misinterpret the
fragment name.

Fragments are useful for long documents. By identifying key sections of your docu-
ment with a fragment name, you make it easy for readers to link directly to that por-
tion of the document, avoiding the tedium of scrolling or searching through the
document to get to the section that interests them.

As a rule of thumb, we recommend that every section header in your documents be
accompanied by an equivalent fragment name. By consistently following this rule,
you’ll make it possible for readers to jump to any section in any of your documents.
Fragments also make it easier to build tables of contents for your document families.

168 | Chapter 6: Links and Webs

6.2.3.5 The http search parameter

The search component of the http URL, along with its preceding question mark, is
optional. It indicates that the path is a searchable or executable resource on the
server. The content of the search component is passed to the server as parameters
that control the search or execution function.

The actual encoding of parameters in the search component depends upon the server
and the resource being referenced. We cover the parameters for searchable resources
later in this chapter, when we discuss searchable documents. We discuss parameters
for executable resources in Chapter 9.

Although our initial presentation of http URLs indicated that a URL may have either
a fragment identifier or a search component, some browsers let you use both in a sin-
gle URL. If you so desire, you can follow the search parameter with a fragment iden-
tifier, telling the browser to begin displaying the results of the search at the indicated
fragment. Netscape, for example, supports this usage.

We don’t recommend this kind of URL, though. First and foremost, it doesn’t work
on all browsers. Just as important, using a fragment implies that you are sure that the
results of the search will have a fragment of that name defined within the document.
For large document collections, this is hardly likely. You are better off omitting the
fragment, showing the search results from the beginning of the document, and avoid-
ing potential confusion among your readers.

6.2.3.6 Sample http URLs

Here are some sample http URLs:

http://www.oreilly.com/catalog.html
http://www.oreilly.com
http://www.kumquat.com:8080
http://www.kumquat.com/planting/guide.html#soil_prep
http://www.kumquat.com/find_a_quat?state=Florida

The first example is an explicit reference to a bona fide HTML document named
catalog.html that is stored in the root directory of the www.oreilly.com server. The
second references the top-level home page on that same server. That home page may
or may not be catalog.html. Sample three also assumes that there is a home page in
the root directory of the www.kumquat.com server and that the web connection is to
the nonstandard port 8080.

The fourth example is the URL for retrieving the web document named guide.html
from the planting directory on the www.kumquat.com server. Once retrieved, the
browser should display the document beginning at the fragment named soil_ prep.

The last example invokes an executable resource named find_a_quat with the param-
eter named state set to the value Florida. Presumably, this resource generates an
HTML or XHTML response, presumably a new document about kumquats in Flor-
ida that is subsequently displayed by the browser.

6.2 Referencing Documents: The URL | 169

6.2.4 The file URL
The file URL is perhaps the second most common one used, but it is not readily rec-
ognized by web users and particularly web authors. It points to a file stored on a
computer without indicating the protocol used to retrieve the file. As such, it has
limited use in a networked environment. That’s a good thing. The file URL lets you
load and display a locally stored document and is particularly useful for referencing
personal HTML/XHTML document collections, such as those “under construction”
and not yet ready for general distribution, or document collections on CD-ROM.
The file URL has the following format:

file://server/path

6.2.4.1 The file server

The file server can be, like the http one, an Internet domain name or IP address of
the computer containing the file to be retrieved. Unlike http, however, which
requires Transmission Control Protocol/Internet Protocol (TCP/IP) networking, the
file server may also be the unqualified but unique name of a computer on a personal
network, or a storage device on the same computer, such as a CD-ROM, or mapped
from another networked computer. No assumptions are made as to how the browser
might contact the machine to obtain the file; presumably the browser can make some
connection, perhaps via a Network File System or FTP, to obtain the file.

If you omit the server name by including an extra slash (/) in the URL, or if you use
the special name localhost, the browser retrieves the file from the machine on which
the browser is running. In this case, the browser simply accesses the file using the
normal facilities of the local operating system. In fact, this is the most common usage
of the file URL. By creating document families on a diskette or CD-ROM and refer-
encing your hyperlinks using the file:/// URL, you create a distributable, standalone
document collection that does not require a network connection to use.

6.2.4.2 The file path

This is the path of the file to be retrieved on the desired server. The syntax of the
path may differ based on the operating system of the server; be sure to encode any
potentially dangerous characters in the path.

6.2.4.3 Sample file URLs

The file URL is easy:

file://localhost/home/chuck/document.html
file:///home/chuck/document.html
file://marketing.kumquat.com/monthly_sales.html
file://D:/monthly_sales.html

170 | Chapter 6: Links and Webs

The first URL retrieves /home/chuck/document.html from the user’s local machine off
the current storage device, typically C:\ on a Windows PC. The second is identical to
the first, except we’ve omitted the localhost reference to the server; the server name
defaults to the local drive.

The third example uses some protocol to retrieve monthly_sales.html from the
marketing.kumquat.com server, and the fourth example uses the local PC’s operating
system to retrieve the same file from the D:\ drive or device.

6.2.5 The mailto URL
The mailto URL is very common in HTML/XHTML documents. It has the browser
send an electronic mail message to a named recipient. It has the format:

mailto:address

The address is any valid email address, usually of the form:

user@server

Thus, a typical mailto URL might look like:

mailto:chuckandbill@kumquats.com

You may include multiple recipients in the mailto URL, separated by commas. For
example, this URL addresses the message to all three recipients:

mailto:chuck@kumquats.com,bill@kumquats.com,booktech@ora.com

There should be no spaces before or after the commas in the URL.

6.2.5.1 Defining mail header fields

The popular browsers open an email helper or plug-in application when the user
selects a mailto URL. It may be the default email program for their system, or a com-
mon application such as Outlook Express with Internet Explorer or Netscape’s built-
in Communicator. With some browsers, users can designate their own email pro-
grams for handling mailto URLs by altering a specification in their browsers’ Options
or Preferences.

Like http search parameters that you attach at the end of the URL, separated by
question marks (?), you include email-related parameters with the mailto URL in the
HTML document. Typically, additional parameters may include the message’s
header fields, such as the subject, cc (carbon copy), and bcc (blind carbon copy)
recipients. How these additional fields are handled depends on the email program.

A few examples are in order:

mailto:chuckandbill@kumquats.com?subject=Loved your book!
mailto:chuck@kumquats.com?cc=booktech@oreilly.com
mailto:bill@kumquats.com?bcc=archive@myserver.com

6.2 Referencing Documents: The URL | 171

As you can probably guess, the first URL sets the subject of the message. Note that
some email programs allow spaces in the parameter value and others do not. Annoy-
ingly, you can’t replace spaces with their hexadecimal equivalent, %20, because many
email programs won’t make the proper substitution. It’s best to use spaces because
the email programs that don’t honor the spaces simply truncate the parameter to the
first word.

The second URL places the address booktech@oreilly.com in the cc field of the mes-
sage. Similarly, the last example sets the bcc field. You may also set several fields in
one URL by separating the field definitions with ampersands. For example, this URL
sets the subject and cc addresses:

mailto:chuckandbill@kumquats.com?subject=Loved your book!&cc=booktech@oreilly.
com&bcc=archive@myserver.com

Not all email programs accept or recognize the bcc and cc extensions in the mailto
URL—some either ignore them or append them to a preceding subject. Thus, when
forming a mailto URL, it’s best to order the extra fields as subject first, followed by
cc and bcc. And don’t depend on the cc and bcc recipients being included in the
email.

6.2.6 The ftp URL
The ftp URL is used to retrieve documents from a File Transfer Protocol (FTP)
server.* It has the format:

ftp://user:password@server:port/path;type=typecode

6.2.6.1 The ftp user and password

FTP is an authenticated service, meaning that you usually must have a valid username
and password in order to retrieve documents from a server. However, most FTP serv-
ers also support restricted, nonauthenticated access known as anonymous FTP. In this
mode, anyone can supply the username “anonymous” or “guest” and be granted
access to a limited portion of the server’s documents. Most FTP servers also assume
(but may not grant) anonymous access if the username and password are omitted.

If you are using an authenticated ftp URL to access a site that requires a username and
password, include the user and password components in the URL, along with the
colon (:) and at sign (@). If you keep the user component and at sign but omit the pass-
word and the preceding colon, most browsers prompt you for a password after con-
necting to the FTP server. This is the recommended way of accessing authenticated
resources on an FTP server because it prevents others from seeing your password.

* FTP is an ancient Internet protocol that dates back to the Dark Ages, around 1975. It was designed as a sim-
ple way to move files among machines and is popular and useful to this day. Many HTML/XHTML authors
use FTP to place files on their web servers.

172 | Chapter 6: Links and Webs

We recommend you never place an ftp URL with a username and password in any
HTML/XHTML document. The reasoning is simple: anyone can retrieve the simple
text document, extract the username and password from the URL, log into the FTP
server, and tamper with its documents.

6.2.6.2 The ftp server and port

The ftp server and port operate by the same rules as the server and port in an http
URL. The server must be a valid Internet domain name or IP address, and the
optional port specifies the port on which the server is listening for requests. If omit-
ted, the default port number is 21.

6.2.6.3 The ftp path and typecode

The path component of an ftp URL represents a series of directories, separated by
slashes, leading to the file to be retrieved. By default, the file is retrieved as a binary file;
you can change this by adding the typecode (and the preceding ;type=) to the URL.

If the typecode is set to d, the path is assumed to be a directory. The browser
requests a listing of the directory contents from the server and displays this listing to
the user. If the typecode is any other letter, it is used as a parameter to the FTP type

command before retrieving the file referenced by the path. While some FTP servers
may implement other codes, most servers accept i to initiate a binary transfer and a
to treat the file as a stream of ASCII text.

6.2.6.4 Sample ftp URLs

Here are some sample ftp URLs:

ftp://www.kumquat.com/sales/pricing
ftp://bob@bobs-box.com/results;type=d
ftp://bob:secret@bobs-box.com/listing;type=a

The first example retrieves the file named pricing from the sales directory on the
anonymous FTP server at www.kumquat.com. The second logs into the FTP server
on bobs-box.com as user bob, prompting for a password before retrieving the con-
tents of the directory named results and displaying them to the user. The last exam-
ple logs into bobs-box.com as bob with the password secret and retrieves the file
named listing, treating its contents as ASCII characters.

6.2.7 The javascript URL
The javascript URL actually is a pseudoprotocol, not usually included in discussions
of URLs. With advanced browsers such as Netscape, Opera, Firefox, and Internet
Explorer, the javascript URL can be associated with a hyperlink and used to execute
JavaScript commands when the user selects the link. While these URLs will work, we

6.2 Referencing Documents: The URL | 173

don’t recommend using them. Instead, authors should use the onclick attribute to
associate JavaScript commands with elements in their documents.

6.2.7.1 The javascript URL arguments

Following the javascript pseudoprotocol is one or more semicolon-separated Java-
Script expressions and methods, including references to multi-expression JavaScript
functions that you embed within the <script> tag in your documents (see Chapter 12
for details). For example:

javascript:window.alert('Hello, world!')
javascript:doFlash('red', 'blue'); window.alert('Do not press me!')

are valid URLs you may include as the value for a link reference (see section 6.3.1.2).
The first example contains a single JavaScript method that activates an alert dialog
with the simple message “Hello, world!”, if the user allows JavaScript to run with
their browser.

The second javascript URL example contains two arguments: the first calls a Java-
Script function, doFlash, which presumably you have located elsewhere in the docu-
ment within the <script> tag and which perhaps flashes the background color of the
document window between red and blue. The second expression is the same alert
method as in the first example, with a slightly different message.

The javascript URL may appear in a hyperlink sans arguments, too. In that case, the
browser may open, if enabled, a special JavaScript editor wherein the user types in
and tests various expressions and methods.

6.2.8 The news URL
Although rarely used anymore, the news URL accesses either a single message or an
entire newsgroup within the Usenet news system. It has two forms:

news:newsgroup
news:message_id

An unfortunate limitation in news URLs is that they don’t allow you to specify a
news server. Rather, users specify news servers in their browser preferences. At one
time, not long ago, Internet newsgroups were nearly universally distributed; all news
servers carried all the same newsgroups and their respective articles, so one news
server was as good as any. Today, the sheer bulk of disk space needed to store the
daily volume of newsgroup activity is often prohibitive for any single news server,
and there’s also local censorship of newsgroups. Hence, you cannot expect that all
newsgroups, and certainly not all articles for a particular newsgroup, will be avail-
able on the user’s news server.

Many users’ browsers may not be correctly configured to read news. We recom-
mend that you avoid placing news URLs in your documents except in rare cases.

174 | Chapter 6: Links and Webs

6.2.8.1 Accessing entire newsgroups

Several thousand newsgroups are devoted to nearly every conceivable topic under the
sun, and beyond. Each group has a unique name, composed of hierarchical elements sep-
arated by periods. For example, the World Wide Web announcements newsgroup is:

comp.infosys.www.announce

To access this group, use the URL:

news:comp.infosys.www.announce

6.2.8.2 Accessing single messages

Every message on a news server has a unique message identifier (ID) associated with
it. This ID has the form:

unique_string@server

The unique_string is a sequence of ASCII characters; the server is usually the name
of the machine from which the message originated. The unique_string must be
unique among all the messages that originated from the server. A sample URL to
access a single message might be:

news:12A7789B@news.kumquat.com

In general, message IDs are cryptic sequences of characters not readily understood by
humans. Moreover, the life span of a message on a server is usually measured in
days, after which the message is deleted and the message ID is no longer valid. The
bottom line: single-message news URLs are difficult to create, become invalid
quickly, and generally are not used.

6.2.9 The nntp URL
The nntp URL goes beyond the news URL to provide a complete mechanism for
accessing articles in the Usenet news system. It has the form:

nntp://server:port/newsgroup/article

6.2.9.1 The nntp server and port

The nntp server and port are defined similarly to the http server and port, described
earlier. The server must be the Internet domain name or IP address of an nntp server;
the port is the port on which that server is listening for requests.

If the port and its preceding colon are omitted, the default port of 119 is used.

6.2.9.2 The nntp newsgroup and article

The newsgroup is the name of the group from which an article is to be retrieved, as just
defined in section 6.2.8 The article is the numeric ID of the desired article within that
newsgroup. Although the article number is easier to determine than a message ID, it

6.2 Referencing Documents: The URL | 175

falls prey to the same limitations of single-message references using the news URL, just
described in section 6.2.8. Specifically, articles do not last long on most nntp servers,
and nntp URLs quickly become invalid as a result.

6.2.9.3 Sample nntp URLs

A sample nntp URL might be:

nntp://news.kumquat.com/alt.fan.kumquats/417

This URL retrieves article 417 from the alt.fan.kumquats newsgroup on news.
kumquat.com. Keep in mind that the article will be served only to machines that are
allowed to retrieve articles from this server. In general, most nntp servers restrict
access to those machines on the same local area network.

6.2.10 The telnet URL
The telnet URL opens an interactive session with a desired server, allowing the user
to log in and use the machine. Often, the connection to the machine automatically
starts a specific service for the user; in other cases, the user must know the com-
mands to type to use the system. The telnet URL has the form:

telnet://user:password@server:port/

6.2.10.1 The Telnet user and password

Specify the Telnet user and password are defined exactly like the user and password
components of the ftp URL, described previously. In particular, the same caveats
apply regarding protecting your password and never placing it within a URL.

Just like the ftp URL, if you omit the password from the URL, the browser should
prompt you for a password just before contacting the Telnet server.

If you omit both the user and the password, the Telnet occurs without supplying a
username. For some servers, Telnet automatically connects to a default service when
no username is supplied. For others, the browser may prompt for a username and
password when making the connection to the Telnet server.

6.2.10.2 The Telnet server and port

The Telnet server and port are defined similarly to the http server and port,
described earlier. The server must be the Internet domain name or IP address of a
Telnet server; the port is the port on which that server is listening for requests. If the
port and its preceding colon are omitted, the default port of 23 is used.

6.2.11 The gopher URL
Gopher is a web-like document-retrieval system that achieved some popularity on
the Internet just before the Web took off, making gopher obsolete. Some gopher
servers still exist, though, and the gopher URL lets you access gopher documents.

176 | Chapter 6: Links and Webs

The gopher URL has the form:

gopher://server:port/path

6.2.11.1 The gopher server and port
The gopher server and port are defined similarly to the http server and port,
described previously. The server must be the Internet domain name or IP address of
a gopher server; the port is the port on which that server is listening for requests.

If the port and its preceding colon are omitted, the default port of 70 is used.

6.2.11.2 The gopher path
The gopher path can take one of three forms:

type/selectortype/selector%09searchtype/selector%09search%09gopherplus

The type is a single character value denoting the type of the gopher resource. If the
entire path is omitted from the gopher URL, the type defaults to 1.

The selector corresponds to the path of a resource on the gopher server. It may be
omitted, in which case the top-level index of the gopher server is retrieved.

If the gopher resource is actually a gopher search engine, the search component pro-
vides the string for which to search. The search string must be preceded by an
encoded horizontal tab (%09).

If the gopher server supports gopher+ resources, the gopherplus component supplies
the necessary information to locate that resource. The exact content of this compo-
nent varies based upon the resources on the gopher server. This component is pre-
ceded by an encoded horizontal tab (%09). If you want to include the gopherplus

component but omit the search component, you must still supply both encoded tabs
within the URL.

6.3 Creating Hyperlinks
Use the HTML/XHTML <a> tag to create links to other documents and to name
anchors for fragment indentifiers within documents.

6.3.1 The <a> Tag
You will use the <a> tag most commonly with its href attribute to create a hypertext
link, or hyperlink, to another place in the same document or to another document. In
these cases, the current document is the source of the link; the value of the href

attribute, a URL, is the target.*

* You may run across the terms head and tail, which reference the target and source of a hyperlink. This nam-
ing scheme assumes that the referenced document (the head) has many tails that are embedded in many ref-
erencing documents throughout the Web. We find this naming convention confusing and stick to the
concept of source and target documents throughout this book.

6.3 Creating Hyperlinks | 177

The other way you can use the <a> tag is with the name attribute, to mark a hyperlink
target, or fragment identifier, in a document. This method, although part of the
HTML 4 and XHTML standards, is slowly succumbing to the id attribute, which lets
you mark nearly any element, including paragraphs, divisions, forms, and so on, as a
hyperlink target.

The standards let you use both the name and href attributes within a single <a> tag,
defining a link to another document and a fragment identifier within the current doc-
ument. We recommend against this because it overloads a single tag with multiple
functions and some browsers may not be able to handle it. Instead, use two <a> tags
when such a need arises. Your source will be easier to understand and modify and
will work better across a wider range of browsers.

6.3.1.1 Allowed content
Between the <a> tag and its required end tag, you may put only regular text, inline
elements, line breaks, and images. The browser renders all of these elements
normally, but with the addition of some special effects to indicate that they are
hyperlinks to other documents. For instance, the popular graphical browsers typi-
cally underline and color the text and draw a colored border around images that are
enclosed by <a> tags.

6.3.1.2 The href attribute

Use the href attribute to specify the URL of the target of a hyperlink. Its value is any
valid document URL, absolute or relative, including a fragment identifier or a Java-
Script code fragment. If the user selects the contents of the <a> tag, the browser will
attempt to retrieve and display the document indicated by the URL specified by the
href attribute or execute the list of JavaScript expressions, methods, and functions.
[Referencing Documents: The URL, 6.2]

<a>

Function Defines anchors within a text flow

Attributes accesskey, charset, class, coords, dir, href, hreflang, id, lang,
name, onBlur, onClick, onDblClick, onFocus, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, rel, rev, shape, style, tabindex, target, title, type

End tag ; never omitted

Contains a_content

Used in text

178 | Chapter 6: Links and Webs

A simple <a> tag that references another document might be:

The growing
season for kumquats in the Northeast.

which appears in the browser display shown in Figure 6-1.

Notice that the browser specially renders the phrase “growing season”, letting the
user know that it is a link to another document. Users usually have the option to set
their own text color for the link and have the color change when a link is taken; blue
initially and then red after it has been selected at least once, for instance. More com-
plex anchors might include images:

 New pruning tips!
 <p>

 Kumquats throughout history

Most graphical browsers such as Internet Explorer, but not Opera for some reason,
place a special border around images that are part of an anchor, as shown in
Figure 6-2. Remove that hyperlink border with the border=0 attribute and value
within the tag for the image. [The border attribute, 5.2.6.8]

Figure 6-1. Hyperlink to another HTML document

Figure 6-2. Internet Explorer puts a special border around an image that is inside an anchor

6.3 Creating Hyperlinks | 179

6.3.1.3 The name and id attributes

Use the name and id attributes with the <a> tag to create a fragment identifier within a
document. Once created, the fragment identifier becomes a potential target of a link.

Prior to HTML 4.0, the only way to create a fragment identifier was to use the name
attribute with the <a> tag. With the advent of the id attribute in HTML 4.0, and its
ability to be used with almost any tag, any HTML or XHTML element can be a frag-
ment identifier. The <a> tag retains the name attribute for historic purposes and hon-
ors the id attribute as well. These attributes can be used interchangeably, with id

being the more “modern” version of the name attribute. Both name and id can be spec-
ified in conjunction with the href attribute, allowing a single <a> to be both a hyper-
link and a fragment identifier.

An easy way to think of a fragment identifier is as the HTML analog of the goto state-
ment label common in many programming languages. The name attribute within the
<a> tag or the id attribute within the <a> or other tags places a label within a docu-
ment. When that label is used in a link to that document, it is the equivalent of tell-
ing the browser to goto that label.

The value of the id or name attribute is a character string, enclosed in quotation
marks. The string must begin with a letter, followed by letters, numbers, hyphens,
underscores, colons, and periods. The value must be a unique label, not reused in
any other name or id attribute in the same document, although it can be reused in dif-
ferent documents.

Here are some name and id examples:

<h2>Pruning Your Kumquat Tree</h2>
<h2 id="Pruning">Pruning Your Kumquat Tree</h2>

Notice that we set the anchor in a section header of a presumably large document.
It’s a practice we encourage you to follow for all major sections of your work for eas-
ier reference and future smart processing, such as automated extraction of topics.

The following link, when taken by the user:

jumps directly to the section of the document we named in the previous examples.

Browsers don’t display the contents of the anchor <a> tag with the name or id

attribute in any special way. Technically, you do not have to put any document con-
tent within the <a> tag with the name attribute because it simply marks a location in
the document. In practice, though, some browsers ignore the tag unless some docu-
ment content—a word or phrase, even an image—is between the <a> and tags.
For this reason, it’s probably a good idea to have at least one displayable element in
the body of any <a> tag.

180 | Chapter 6: Links and Webs

6.3.1.4 The event attributes

A number of event handlers are built into modern browsers. These handlers watch
for certain conditions and user actions, such as a click of the mouse or when an
image finishes loading into the browser window. With client-side JavaScript, you
may include selected event handlers as attributes of certain tags and execute one or
more JavaScript commands and functions when the event occurs.

With the anchor (<a>) tag, you may associate JavaScript code with a number of
mouse- and keyboard-related events. The value of the event handler is—enclosed in
quotation marks—one or a sequence of semicolon-separated JavaScript expressions,
methods, and function references that the browser executes when the event occurs.
[JavaScript Event Handlers, 12.3.3]

A popular, albeit simple, use of the onMouseOver event with a hyperlink is to print an
expanded description of the tag’s destination in the JavaScript-aware browser’s status
box (Figure 6-3). Normally, the browser displays the frequently cryptic destination
URL there whenever the user passes the mouse pointer over an <a> tag’s contents:

<a href="http://www.ora.com/kumquats/homecooking/recipes.html#quat5"
onMouseOver="status='A yummy recipe for kumquat soup.'; return true;">

We argue that the contents of the tag itself should explain the link, but sometimes
window space is tight and an expanded explanation is helpful, such as when the link
is in a table of contents.

See Chapter 12 for more about JavaScript.

6.3.1.5 The rel and rev attributes

The optional rel and rev attributes for the <a> tag express a formal relationship and
direction between source and target documents. The rel attribute specifies the

Figure 6-3. Use JavaScript to display a message in the browser’s status box

6.3 Creating Hyperlinks | 181

relationship from the source document to the target, and the rev attribute specifies
the relationship from the target to the source. Both attributes can be placed in a sin-
gle <a> tag, and the browser may use them to specially alter the appearance of the
anchor content or to automatically construct document navigation menus. Other
tools also may use these attributes to build special link collections, tables of con-
tents, and indexes.

The value of either the rel or rev attribute is a space-separated list of relationships.
The actual relationship names and their meanings are up to you: they are not for-
mally addressed by the HTML or XHTML standards. For example, a document that
is part of a sequence of documents might include its relationship in a link:

The relationship from the source to the target is that of moving to the next docu-
ment; the reverse relationship is that of moving to the previous document.

These document relationships are also used in the <link> tag in the document <head>.
The <link> tag establishes the relationship without actually creating a link to the tar-
get document; the <a> tag creates the link and imbues it with the relationship
attributes. [<link>, 6.7.2]

Commonly used document relationships include:

next

Links to the next document in a collection

prev

Links to the previous document in a collection

head

Links to the top-level document in a collection

toc

Links to a collection’s table of contents

parent

Links to the document above the source

child

Links to the document below the source

index

Links to the index for this document

glossary

Links to the glossary for this document

Few browsers take advantage of these attributes to modify the link appearance.
However, these attributes are a great way to document links you create, and we rec-
ommend that you take the time to insert them whenever possible.

182 | Chapter 6: Links and Webs

6.3.1.6 The style and class attributes

Use the style and class attributes for the <a> tag to control the display style for the
content enclosed by the tag and to format the content according to a predefined class
of the <a> tag. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

6.3.1.7 The lang and dir attributes

Like almost all other tags, the <a> tag accepts the lang and dir attributes, denoting
the language used for the content within the <a> tag and the direction in which that
language is rendered. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

6.3.1.8 The target attribute

The target attribute lets you specify where to display the contents of a selected
hyperlink. Commonly used in conjunction with frames or multiple browser win-
dows, the value of this attribute is the name of the frame or window in which the ref-
erenced document should be loaded. If the named frame or window exists, the
document is loaded in that frame or window. If not, a new window is created and
given the specified name, and the document is loaded in that new window. For more
information, including a list of special target names, see section 11.7.

6.3.1.9 The title attribute

The title attribute lets you specify a title for the document to which you are link-
ing. The value of the attribute is any string, enclosed in quotation marks. The
browser might use it when displaying the link, perhaps flashing the title when the
mouse passes over the link. The browser might also use the title attribute when
adding this link to a user’s bookmarks or favorites.

The title attribute is especially useful for referencing an otherwise unlabeled
resource, such as an image or a non-HTML document. For example, the browser
might include the following title on this otherwise wordless image display page:

<a href="pics/kumquat.gif"
 title="A photograph of the Noble Fruit">

Ideally, the value specified should match the title of the referenced document, but it’s
not required.

6.3.1.10 The charset, hreflang, and type attributes

According to the HTML 4 and XHTML standards, the charset attribute specifies the
character encoding used in the document that is the destination of the link. The
value of this attribute must be the name of a standard character set: “euc-jp,” for
example. The default value is “ISO-8859-1.”

6.3 Creating Hyperlinks | 183

The hreflang attribute may be specified only when the href attribute is used. Like
the lang attribute, its value is an International Organization for Standardization
(ISO) standard two-character language code. Unlike the lang attribute, the hreflang
attribute does not address the language used by the contents of the tag. Instead, it
specifies the language used in the document referenced by the href attribute. [The
lang attribute, 3.6.1.2]

The type attribute specifies the content type of the resource referenced by the <a>

tag. Its value is any Multipurpose Internet Mail Extension (MIME) encoding type.
For example, you might inform the browser that you are linking to a plain ASCII
document with:

The browser might use this information when displaying the referenced document,
or might even present the link differently based upon the content type.

6.3.1.11 The coords and shape attributes

Two more attributes are defined in the HTML and XHTML standards for the <a> tag
but are not supported by the currently popular browsers. Like the attributes of the
same names for the <area> tag, the coords and shape attributes define a region of
influence for the <a> tag. You should use these attributes with the <a> tag only when
that tag is part of the content of a <map> tag, as described later in this chapter.
[<map>, 6.5.3] [The coords attribute, 6.5.4.2] [The shape attribute, 6.5.4.7]

6.3.1.12 The accesskey and tabindex attributes

Traditionally, users of graphical browsers select and execute a hyperlink by pointing
and clicking the mouse device on the region of the browser display defined by the
anchor. What is less well known is that you may choose a hyperlink, among other
objects in the browser window, by pressing the Tab key and then activate that link
by pressing the Enter key. With the tabindex attribute, you may reorder the sequence
in which the browser steps through to each object when the user presses the Tab
key. The value of this attribute is an integer greater than 0. The browser starts with
the object whose tabindex=1 and moves through the other objects in increasing
tabindex order.

With the accesskey attribute, you may select an alternative “hot key” that, when
pressed, activates the specific link. The value of this attribute is a single character
that is pressed in conjunction with an Alt or “meta” key, depending on the browser
and computing platform. Ideally, this character should appear in the content of the
<a> tag; if so, the browser may choose to display the character differently to indicate
that it is a hot key.

See an expanded description for both of these attributes in Chapter 9.

184 | Chapter 6: Links and Webs

6.3.2 Linking to Other Documents
Say you make a hyperlink to another document with the <a> tag and its href

attribute, which defines the URL of the target document. The contents of the <a> tag
are presented to the user in some distinctive manner to indicate the link is available.

When creating a link to another document, you should consider adding the title,
rel, and rev attributes to the <a> tag. They help document the link you are creating
and allow the browser to embellish the display anchor contents.

6.3.3 Linking Within a Document
Creating a link within the same document or to a specific fragment of another docu-
ment is a two-step process. The first step is to make the target fragment; the second
is to create the link to the fragment.

Use the <a> tag with its name attribute to identify a fragment. Here’s a sample frag-
ment identifier:

<h3>Section 7</h3>

Alternatively, use the id attribute and embed the hyperlink target directly in a defin-
ing tag, such as a header:*

<h3 id="Section_7">Section 7</h3>

A hyperlink to the fragment is an <a> tag with the href attribute, in which the
attribute’s value—the target URL—ends with the fragment’s name, preceded by the
pound sign (#). A reference to the previous example’s fragment identifier, then,
might look like this:

See Section 7
for further details.

By far, the most common use of fragment identifiers is in creating a table of contents
for a lengthy document. Begin by dividing your document into several logical sections,
using appropriate headers and consistent formatting. At the start of each section, add a
fragment identifier for that section, typically as part of the section title. Finally, make a
list of links to those fragment identifiers at the beginning of your document.

Our sample document extolling the life and wonders of the mighty kumquat, for
example, is quite long and involved, including many sections and subsections of
interest. It is a document to be read and read again. In order to make it easy for kum-
quat lovers everywhere to find their section of interest quickly, we’ve included frag-
ment identifiers for each major section and placed an ordered list of links—a hot-
linked table of contents, as it were—at the beginning of each Kumquat Lover’s docu-
ment, a sample of which follows, along with sample fragment identifiers that appear

* We prefer the id way, although not all browsers support it, yet.

6.4 Creating Effective Links | 185

in the same document. The ellipses symbol (...) means that there are intervening seg-
ments of content, of course:

...
<h3>Table of Contents</h3>

 Soil Preparation
 Digging the Hole
 Planting the Tree

...
<h3 id=soil_prep>Soil Preparation</h3>
...
<h3 id=dig_hole>Digging the Hole</h3>
...
<h3 id=planting>Planting the Tree</h3>
...

The kumquat lover can thereby click the desired link in the table of contents and
jump directly to the section of interest, without lots of tedious scrolling.

Notice also that this example uses relative URLs—a good idea if you ever intend to
move or rename the document without breaking all the hyperlinks.

6.4 Creating Effective Links
A document becomes hypertext when you toss in a few links in the same way that
water becomes soup when you throw in a few vegetables. Technically, you’ve met
the goal, but the outcome may not be very tasty.

Inserting anchors into your documents is something of an art, requiring good writ-
ing skills, HTML/XHTML prowess, and an architectural sense of your documents
and their relationships to others on the Web. Effective links flow seamlessly into a
document, quietly supplying additional browsing opportunities to the reader with-
out disturbing the current document. Poorly designed links scream out, interrupt the
flow of the source document, and generally annoy the reader.

While there are as many linking styles as there are authors, here are a few of the
more popular ways to link your documents. All do two things: they give the reader
quick access to related information, and they tell the reader how the link is related to
the current contents.

6.4.1 Lists of Links
Perhaps the most common way to present hyperlinks is in ordered or unordered lists
in the style of a table of contents or list of resources.

Two schools of style exist. One puts the entire list item into the source anchor; the
other abbreviates the item and puts a shorthand phrase in the source anchor. In the

186 | Chapter 6: Links and Webs

former, make sure you keep the anchor content short and sweet; in the latter, use a
direct writing style that makes it easy to embed the link.

If your list of links becomes overly long, consider organizing it into several sublists
grouped by topic. Readers can then scan the topics (set off, perhaps, as <h3> head-
ers) for the appropriate list and then scan that list for the desired document.

The alternative list style is much more descriptive, but also wordier, so you have to
be careful that it doesn’t end up cluttered:

<p>
Kumquat-related documents include:

 A concise guide to
 profitable kumquat farming,
 including a variety of business plans, lists of fruit
 packing companies, and farming supply companies.
 101 different ways to
 use a kumquat, including stewed kumquats and kumquat pie!
 The kumquat is a hardy tree, but even the greenest of
 thumbs can use a few
 growing tips to increase
 their yield.
 The business of kumquats is an expanding one, as
 shown by this 10 year overview of the

 kumquat industry.

It sometimes gets hard to read a source HTML document, and it will become even more
tedious with XHTML. Imagine the clutter if we’d used anchors with fragment identifi-
ers for each subtopic in the list-item explanations. Nonetheless, it looks pristine and eas-
ily navigable when displayed by a browser such as Opera, as shown in Figure 6-4.

Figure 6-4. Wordy but effectively descriptive link list

6.4 Creating Effective Links | 187

This more descriptive style of presenting a link list tries hard to draw readers into the
linked document by giving a fuller taste of what they can expect to find. Because
each list element is longer and requires more scanning by the reader, you should use
this style sparingly and dramatically limit the number of links.

Use the brief list style when presenting large numbers of links to a well-informed
audience. The second, more descriptive style is better suited to a smaller number of
links for which your readership is less well-versed in the topic at hand.

6.4.2 Inline References
If you aren’t collecting links into lists, you’re probably sprinkling them throughout
your document. So-called inline links are more in keeping with the true spirit of hyper-
text because they enable readers to mark their current place in the document, visit the
related topic in more depth or find a better explanation, and then come back to the
original and continue reading. That’s very personalized information processing.

The biggest mistake novice authors make, however, is to overload their documents
with links and treat them as though they are panic buttons demanding to be pressed.
You may have seen this style of linking; HTML pages with the word here all over the
place, like the panic-ridden example in Figure 6-5 (we can’t bring ourselves to show
you the source for this travesty).

As links, phrases such as “click here” and “also available” are content-free and
annoying. They make the person who is scanning the page for an important link read
all the surrounding text to actually find the reference.

The better, more refined style for an inline link is to make every one contain a noun
or noun/verb phrase relating to the topic at hand. Compare how kumquat farming
and industry news references are treated in Figure 6-6 to the “Here! Me! Me!” exam-
ple in Figure 6-5.

Figure 6-5. Links should not wave and yell, like first-graders, “Here! Me! Me!”

188 | Chapter 6: Links and Webs

A quick scan of Figure 6-6 immediately yields useful links to “kumquat farming
methods” and “kumquat industry’s past ten years.” There is no need to read the sur-
rounding text to understand where the link will take you. Indeed, the immediately
surrounding content in our example, as for most inline links, serves only as syntactic
sugar in support of the embedded links.

Embedding links into the general discourse of a document takes more effort than cre-
ating link lists. You have to actually understand the content of the current document
as well as the target documents, be able to express that relationship in just a few
words, and then intelligently incorporate that link at some key place in the source
document. Hopefully this key place is where you might expect the user to be ready to
interrupt her reading and ask a question or request more information. To make mat-
ters even more difficult, particularly for the traditional tech writer, this form of
author-reader conversation is most effective when presented in active voice (he, she,
or it does something to an object versus the object having something done to it). The
effort expended is worthwhile, resulting in more informative, easily read documents.
Remember, you’ll write the document once, but it will be read thousands, if not mil-
lions, of times. Please your readers, please.

6.4.3 Linking Dos and Don’ts
Here are some hints for creating links:

Keep the link content as concise as possible
Long links or huge inline graphic icons for links are visually disruptive and
potentially confusing.

Never place two links immediately adjacent to one another
Most browsers make it difficult to tell where one link stops and the next link
starts. Separate them with regular text or line breaks.

Be consistent
If you are using inline references, make all of your links inline references. If you
choose to use lists of links, stick to either the short or the long form; try not to
mix styles in a single document.

Figure 6-6. Kinder, gentler inline links work best

6.5 Mouse-Sensitive Images | 189

Try reading your document with all the nonanchor text removed
If some links suddenly make no sense, rewrite them so that they stand on their
own. (Many people scan documents looking only for links; the surrounding text
becomes little more than a gray background to the more visually compelling links.)

6.4.4 Using Images and Links
It has become fashionable to use images and icons instead of words for link con-
tents. For instance, instead of the word next, you might use an icon of a little point-
ing hand. A link to the home page is not complete without a picture of a little house.
Links to searching tools must now contain a picture of a magnifying glass, a ques-
tion mark, or binoculars. And all those flashing, GIF-animated little advertisements!

Resist falling prey to the “Mount Everest syndrome” of inserting images simply
because you can. Again, it’s a matter of context. If you or your document’s readers
can’t tell at a glance what relationship a link has with the current document, you’ve
failed. Use cute images for links sparingly, consistently, and only in ways that help
readers scan your document for important information and leads. Also, be ever
mindful that your pages may be read by someone from nearly anywhere on Earth
(perhaps beyond, even) and that images do not translate consistently across cultural
boundaries. (Ever hear what the “OK” hand sign common in the United States
means to a Japanese person?)

Creating consistent iconography for a collection of pages is a daunting task that you
really should perform with the assistance of someone formally schooled in visual
design. Trust us, the kind of mind that produces nifty code and writes XHTML well
is rarely suited to creating beautiful, compelling imagery. Find a good visual
designer; your pages and readers will benefit immeasurably.

6.5 Mouse-Sensitive Images
Normally, an image placed within an anchor simply becomes part of the anchor con-
tent. The browser may alter the image in some special way (usually with a special
border) to alert the reader that it is a hyperlink, but users click the image in the same
way they click a textual hyperlink.

The HTML and XHTML standards provide a feature that lets you embed many dif-
ferent links inside the same image. Clicking different areas of the image causes the
browser to link to different target documents. Such mouse-sensitive images, known
as image maps, open up a variety of creative linking styles.

There are two ways to create image maps, known as server-side and client-side image
maps. The former, enabled by the ismap attribute for the tag, requires access to
a server and related image-map processing applications. The latter is created with the
usemap attribute for the tag, along with corresponding <map> and <area> tags.

190 | Chapter 6: Links and Webs

Translation of the mouse position in the image to a link to another document happens
on the user’s machine, so client-side image maps don’t require a special server connec-
tion and can even be implemented in non-Web environments, such as on a local hard
drive or in a CD-ROM-based document collection. Any HTML/XHTML can imple-
ment a client-side (usemap) image map. [<map>, 6.5.3] [<area>, 6.5.4] [, 5.2.6]

6.5.1 Server-Side Image Maps
You add an image to an anchor simply by placing an tag within the body of the
<a> tag. Make that embedded image into a mouse-sensitive one by adding the ismap
attribute to the tag. This special attribute tells the browser that the image
is a special map containing more than one link. (The ismap attribute is ignored by the
browser if the tag is not within an <a> tag.)

When the user clicks someplace within the image, the browser passes the coordi-
nates of the mouse pointer along with the URL specified in the <a> tag to the docu-
ment server. The server uses the mouse-pointer coordinates to determine which
document to deliver back to the browser.

When ismap is used, the href attribute of the containing <a> tag must contain the URL
of a server application or, for some HTTP servers, a related map file that contains the
coordinate and linking information. If the URL is simply that of a conventional docu-
ment, errors may result, and the desired document probably will not be retrieved.

The coordinates of the mouse position are screen pixels counted from the upper-left
corner of the image, beginning with (0,0). The browser adds the mouse coordinates,
preceded by a question mark, to the end of the URL.

For example, if a user clicks 43 pixels over and 15 pixels down from the upper-left
corner of the image displayed from the following link:

the browser sends the following search parameters to the HTTP server:

/cgi-bin/imagemap/toolbar.map?43,15

In the example, toolbar.map is a special image-map file located inside the cgi-bin/
imagemap directory and containing coordinates and links. A special image-map pro-
cess uses that file to match the passed coordinates (43,15 in our example) and return
the selected hyperlink document.

6.5.1.1 Server-side considerations

With mouse-sensitive, ismap-enabled image maps, the browser is required to pass
along only the URL and mouse coordinates to the server. The server converts the
coordinates into a specific document. The conversion process differs among servers
and is not defined by the HTML or XHTML standard.

6.5 Mouse-Sensitive Images | 191

You need to consult with your web server administrators and perhaps even read your
server’s documentation to determine how to create and program a server-side image
map. Most servers come with some software utility, typically located in a cgi-bin/
imagemap directory, to handle image maps. And most of these use a text file contain-
ing the image-map regions and related hyperlinks that is referenced by your image-
map URL to process the image-map query.

Here’s an example image-map file describing the sensitive regions in our example image:

Imagemap file=toolbar.map

default dflt.html
circ 100,30,50 link1.html
rect 180,120,290,500 link2.html
poly 80,80,90,72,160,90 link3.html

Each sensitive region of the image map is described by a geometric shape and defining
coordinates in pixels, such as the circle with its center point and radius, the rectangle’s
upper-left and lower-right edge coordinates, and the loci of a polygon. All coordinates
are relative to the upper-left corner of the image (0,0). Each shape has a related URL.

An image-map processing application typically tests each shape in the order in which
it appears in the image file and returns the document specified by the corresponding
URL to the browser if the user’s mouse X,Y coordinates fall within the boundaries of
that shape. That means it’s OK to overlap shapes; just be aware which takes prece-
dence. Also, the entire image need not be covered with sensitive regions: if the
passed coordinates don’t fall within a specified shape, the default document gets sent
back to the browser.

This is just one example of how an image map may be processed and the accessory files
required for that process. Please huddle with your webmaster and server manuals to dis-
cover how to implement a server-side image map for your own documents and system.

6.5.2 Client-Side Image Maps
The obvious downside to server-side image maps is that they require a server. That
means you need access to the required HTTP server or its /cgi-bin directory, either of
which is rarely available to anyone other than owners or system administrators. And
server-side image maps limit portability because not all image-map processing appli-
cations are the same.

Server-side image maps also mean delays for the user while browsing because the
browser must get the server’s attention to process the image coordinates. This is true
even if there’s no action to take, such as when the user clicks on a section of the
image that isn’t hyperlinked and doesn’t lead anywhere.

Client-side image maps suffer from none of these difficulties. Enabled by the usemap
attribute for the tag and defined by special <map> and <area> extension tags, cli-
ent-side image maps let authors include in their documents coordinates and links

192 | Chapter 6: Links and Webs

that describe the sensitive regions of an image. The browser on the client computer
translates the coordinates of the mouse position within the image into an action,
such as loading and displaying another document. And special JavaScript-enabled
attributes provide a wealth of special effects for client-side image maps. [JavaScript
Event Handlers, 12.3.3]

To create a client-side image map, include the usemap attribute as part of the tag.*

Its value is the URL of a <map> segment in an HTML document that contains the map
coordinates and related link URLs. The document in the URL identifies the HTML or
XHTML document containing the map; the fragment identifier in the URL identifies
the map itself. Most often, the map is in the same document as the image, and the URL
can be reduced to the fragment identifier: a pound sign (#) followed by the map name.

For example, the following source fragment tells the browser that the map.gif image
is a client-side image map and that its mouse-sensitive coordinates and related link
URLs are found in the map fragment of the current document:

6.5.3 The <map> Tag
For client-side image maps to work, you must provide a set of coordinates and URLs
that define the mouse-sensitive regions of a client-side image map and the hyperlink
to take for each region that the user may click or otherwise select.† Include those
coordinates and links as values of attributes in conventional <a> tags or special
<area> tags; the collection of <area> specifications or <a> tags is enclosed within the
<map> tag and its end tag, </map>. The <map> segment may appear anywhere in the
body of the document.

* Alternatively, according to the HTML 4 standard, you may reference a client-side image map by including
the usemap attribute with the <object> and form <input> tags. See Chapter 12 for details.

† The Tab key also steps through the hyperlinks in a document, including client-side imagemaps. Select a cho-
sen hyperlink with the Enter key.

<map>

Function Encloses client-side image-map (usemap) specifications

Attributes class, dir, id, lang, name, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title

End tag </map>; never omitted

Contains map_content

Used in body_content

6.5 Mouse-Sensitive Images | 193

More specifically, the <map> tag may contain either a sequence of <area> tags or con-
ventional HTML/XHTML content including <a> tags. You cannot mix and match
<area> tags with conventional content. Browsers may display conventional content
within the <map> tag; <area> tag contents will not. If you are concerned about com-
patibility with older browsers, use only <map> tags containing <area> tags.

If you do place <a> tags within a <map> tag, they must include the shape and coords

attributes that define a region within the objects that reference the <map> tag.

6.5.3.1 The name attribute

The value of the name attribute in the <map> tag is the name used by the usemap

attribute in an or <object> tag to locate the image-map specification. The name
must be unique and not used by another <map> in the document, but more than one
image map may reference the same <map> specifications. [The ismap and usemap
attributes, 5.2.6.14]

6.5.3.2 The class, id, style, and title attributes

The stylesheet display-related style and class attributes for the <map> tag are useful
only when the <map> tag contains conventional content, in which case they apply to
the content of the tag. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

The id and title attributes, on the other hand, are straightforward. They are standard
ways to respectively label the tag for later reference by a hyperlink or program or to
title the section for later review. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

6.5.3.3 The event attributes

The various event attributes allow you to assign JavaScript handlers to events that
may occur within the confines of the map. [JavaScript Event Handlers, 12.3.3]

6.5.4 The <area> Tag
The guts of a client-side image map are the <area> tags within the map segment.
These <area> tags define each mouse-sensitive region and the action the browser
should take if the user selects it in an associated client-side image map.

The region defined by an <area> tag acts just like any other hyperlink: when the user
moves the mouse pointer over the region of the image, the pointer icon changes, typ-
ically into a hand, and the browser may display the URL of the related hyperlink in
the status box at the bottom of the browser window.* Regions of the client-side
image map not defined in at least one <area> tag are not mouse sensitive.

* That is, unless you activate a JavaScript event handler that writes the contents of the status box. See the
onMouse event handlers in section 6.3.1.4.

194 | Chapter 6: Links and Webs

6.5.4.1 The alt attribute

Like its cousin for the tag, the alt attribute for the <area> tag attaches a text
label to the image, except in this case the label is associated with a particular area of
the image. The popular browsers display this label to the user when the mouse
passes over the area, and nongraphical browsers may use it to present the client-side
image map as a list of links identified by the alt labels.

6.5.4.2 The coords attribute

The required coords attribute of the <area> tag defines coordinates of a mouse-sensi-
tive region in a client-side image map. The number of coordinates and their mean-
ings depend upon the region’s shape as determined by the shape attribute, discussed
later in this chapter. You may define hyperlink regions as rectangles, circles, and
polygons within a client-side image map.

The appropriate values for each shape include:

circle or circ
coords="x,y,r ", where x and y define the position of the center of the circle (0,0
is the upper-left corner of the image) and r is its radius in pixels.

polygon or poly
coords="x1,y1,x2,y2,x3,y3,...", where each pair of X,Y coordinates defines a
vertex of the polygon, with 0,0 being the upper-left corner of the image. At
least three pairs of coordinates are required to define a triangle; higher-order
polygons require a larger number of vertices. The polygon is automatically
closed, so it is not necessary to repeat the first coordinate at the end of the list
to close the region.

<area>

Function Defines coordinates and links for a region on a client-side image
map

Attributes accesskey, alt, class, coords, dir, href, id, lang, nohref, notab,
onBlur, onClick, onDblClick, onFocus, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseUp, shape,
style, tabindex, taborder , target , title, type

End tag None in HTML; </area> or <area ... /> in XHTML

Contains Nothing

Used in map_content

6.5 Mouse-Sensitive Images | 195

rectangle or rect
coords="x1,y1,x2,y2", where the first coordinate pair is one corner of the rectan-
gle and the other pair is the corner diagonally opposite, with 0,0 being the
upper-left corner of the image. Note that a rectangle is just a shortened way of
specifying a polygon with four vertices.

For example, the following XHTML fragment defines a single mouse-sensitive region
in the lower-right quarter of a 100 × 100-pixel image and another circular region
smack in the middle:

<map name="map1">
 <area shape="rect" coords="75,75,99,99" nohref="nohref" />
 <area shape="circ" coords="50,50,25" nohref="nohref" />
</map>

If the coordinates in one <area> tag overlap with another region, the first <area> tag
takes precedence. The browsers ignore coordinates that extend beyond the bound-
aries of the image.

6.5.4.3 The href attribute

Like the href attribute for the anchor (<a>) tag, the href attribute for the <area> tag
defines the URL of the desired link if its region in the associated image map is
clicked. The value of the href attribute is any valid URL, relative or absolute, includ-
ing JavaScript code.

For example, the browser will load and display the link4.html document if the user
clicks in the lower-right quarter of a 100 × 100-pixel image, as defined by the first
image-map <area> tag in the following HTML example:

<map name="map">
 <area coords="75,75,99,99" href="link4.html">
 <area coords="0,0,25,25" href="javascript:window.alert('Oooh, tickles!');" >
</map>

The second <area> tag in the example uses a javascript URL, which, when the user
clicks in the upper-left quadrant of the image map, executes a JavaScript alert
method that displays the silly message in a dialog box.

6.5.4.4 The nohref attribute

The nohref attribute for the <area> tag defines a mouse-sensitive region in a client-
side image map for which no action is taken, even though the user may select it. You
must include either an href or a nohref attribute for each <area> tag.

6.5.4.5 The notab, taborder, and tabindex attributes

As an alternative to the mouse, a user may choose a document “hotspot,” such as a
hyperlink embedded in an image map, by pressing the Tab key. Once the user
chooses the hotspot, he activates the hyperlink by pressing the Enter key. By default,

196 | Chapter 6: Links and Webs

the browser steps to each hotspot in the order in which they appear in the docu-
ment. You can now change that default order with what was originally introduced by
Internet Explorer with the taborder attribute and is now standardized as the tabindex
attribute. The value of the attribute is an integer indicating the position of this area
in the overall tab sequence for the document.

Supported by Internet Explorer only and not part of the HTML 4 and XHTML stan-
dards, notab areas get passed over as the user presses the Tab key to move the cursor
around the document. Otherwise, this area will be part of the tabbing sequence. The
attribute is useful, of course, in combination with the nohref attribute.

Internet Explorer version 4 supported the notab and taborder attributes. Versions 5
and later support tabindex, too, so use the standard rather than the extension
attributes.

6.5.4.6 The event attributes

The same mouse-related JavaScript event handlers that work for the anchor (<a>) tag
also work with client-side image-map hyperlinks. The value of the event handler is—
enclosed in quotation marks—one or a sequence of semicolon-separated JavaScript
expressions, methods, and function references that the browser executes when the
event occurs. [JavaScript Event Handlers, 12.3.3]

For example, a popular, albeit simple, use of the onMouseOver event is to print a more
descriptive explanation in the browser’s status box whenever the user passes the
mouse pointer over a region of the image map:

<area href="http://www.oreilly.com/kumquats/homecooking/recipes.html#quat5"
 onMouseOver="self.status='A recipe for kumquat soup.';return true">

We should point out that the current versions of the popular browsers automatically
display the alt attribute’s string value, ostensibly accomplishing the same task. So
we recommend that you include the alt attribute and value in lieu of hacking Java-
Script. And, in context with a text-based hyperlink, we argue that the contents of the
tag itself should explain the link. But images can be deceptive, so we urge you to take
advantage of both the alt attribute and event handlers to provide text descriptions
with your image maps.

6.5.4.7 The shape attribute

Use the shape attribute to define the shape of an image map’s mouse-sensitive region:
a circle (circ or circle), polygon (poly or polygon), or rectangle (rect or rectangle).

The value of the shape attribute affects how the browser interprets the value of the
coords attribute. If you don’t include a shape attribute, the value default is assumed.
According to the standard, default means that the area covers the entire image. In
practice, the browsers default to a rectangular area and expect to find four coords

6.5 Mouse-Sensitive Images | 197

values. If you don’t specify a shape and don’t include four coordinates with the tag,
the browsers ignore the area altogether.

In fact, only the most recent versions of the popular browsers recognize the shape

value default to provide a catchall area for clicks that fall outside all the other
defined hotspots. Because areas are in a “first-come, first-served” order in the <map>
tag, you should place the default area last. Otherwise, it covers up any and all areas
that follow in your image map.

The browsers are lax in their implementation of the shape names. Netscape 4, for
example, doesn’t recognize “rectangle” but does recognize “rect” for a rectangular
shape. For this reason, we recommend that you use the abbreviated names.

6.5.4.8 The target attribute

The target attribute gives you a way to control where the contents of the selected
hyperlink in the image map get displayed. The attribute is commonly used in con-
junction with frames or multiple browser windows, and its the value is the name of
the frame or window in which the referenced document should be loaded. If the
named frame or window exists, the document is loaded in that frame or window. If
not, a new window is created and given the specified name, and the document is
loaded in that new window. For more information, including a list of special target
names, see section 11.7.

6.5.4.9 The title attribute

The title attribute lets you specify a title for the document to which the image
map’s area links. The value of the attribute is any string, enclosed in quotes. The
browser might use the title when displaying the link, perhaps flashing the title when
the mouse passes over the area. The browser might also use the title attribute when
adding this link to a user’s bookmarks or favorites.

The title attribute is especially useful for referencing an otherwise unlabeled
resource, such as an image or a non-HTML document. Ideally, the value specified
should match the title of the referenced document, but this isn’t required.

6.5.4.10 The class, dir, id, lang, and style attributes

The class and style attributes allow you to supply display properties and class names
to control the appearance of the area, although their value seems limited for this tag.
The id attribute allows you to create a name for the area that might be referenced by a
hyperlink. [The id attribute, 4.1.1.4] [Inline Styles: The style Attribute, 8.1.1] [Style
Classes, 8.3]

The lang and dir attributes define the language used for this area and the direction in
which text is rendered. Again, their use is not apparent with this tag. [The dir
attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

198 | Chapter 6: Links and Webs

6.5.5 A Client-Side Image-Map Example

The following example HTML fragment draws together the various components of a
client-side image map discussed earlier in this section. It includes the tag with
the image reference and a usemap attribute with a name that points to a <map> that
defines four mouse-sensitive regions (three plus a default) and related links:

<body>
...

...
<map name="map1">
 <area shape=rect coords="0,20,40,100"
 href="k_juice.html"
 onMouseOver="self.status='How to prepare kumquat juice.'
 ;return true">
 <area shape=rect coords="50,50,80,100"
 href="k_soup.html"
 onMouseOver="self.status='A recipe for hearty kumquat soup.'
 ;return true">
 <area shape=rect coords="90,50,140,100"
 href="k_fruit.html"
 onMouseOver="self.status='Care and handling of the native kumquat.'
 ;return true">
 <area shape=default
 href="javascript:window.alert('Choose the cup or one of the bowls.')"
 onMouseOver="self.status='Select the cup or a bowl for more information.'
 ;return true">
</map>

See Figure 6-7 for the results.

Figure 6-7. A simple client-side image map with JavaScript-enabled mouse events

6.5 Mouse-Sensitive Images | 199

6.5.6 Handling Other Browsers
Unlike its server-side ismap counterpart, the client-side image-map tag with attributes
() doesn’t need to be included in an <a> tag. But it may be so that you
can gracefully handle browsers that are unable to process client-side image maps.

For example, the ancient Mosaic and early versions of Netscape simply load a docu-
ment named main.html if the user clicks the map.gif image referenced in the following
source fragment. More recent browsers, on the other hand, divide the image into
mouse-sensitive regions, as defined in the associated <map>, and link to a particular name
anchor within the samemain.html document if the user selects the image-map region:

...
<map name="map1">
 <area coords="0,0,49,49" href="main.html#link1">
 <area coords="50,0,99,49" href="main.html#link2">
 <area coords="0,50,49,99" href="main.html#link3">
 <area coords="50,50,99,99" href="main.html#link4">
</map>

To make an image map backward compatible with all image-map-capable browsers,
you may also include client-side and server-side processing for the same image map.
Capable browsers will honor the faster client-side processing; all other browsers will
ignore the usemap attribute in the tag and rely upon the referenced server pro-
cess to handle user selections in the traditional way. For example:

...
<map name="map2">
 <area coords="0,0,49,49" href="link1.html">
 <area coords="50,0,99,49" href="link2.html">
 <area coords="0,50,49,99" href="link3.html">
 <area coords="50,50,99,99" href="link4.html">
</map>

6.5.7 Effective Use of Mouse-Sensitive Images
Some of the most visually compelling pages on the Web have mouse- and hot-key-sen-
sitive images: maps with regions that (when clicked or selected with the Tab and Enter
keys) lead, for example, to more information about a country or town or result in more
detail about the location and who to contact at a regional branch of a business. We’ve
seen an image of a fashion model whose various clothing parts lead to their respective
catalog entries, complete with detailed descriptions and prices for ordering.

The visual nature of these “hyperactive” pictures, coupled with the need for an effective
interface, means that you should strongly consider having an artist, a user-interface

200 | Chapter 6: Links and Webs

designer, and even a human-factors expert evaluate your imagery. At the very least,
engage in a bit of user testing to make sure people know what region of the image to
select to move to the desired document. Make sure the sensitive areas of the image indi-
cate this to the user using a consistent visual mechanism. Consider using borders, drop
shadows, or color changes to indicate those areas that the user can select.

Finally, always remember that the decision to use mouse-sensitive images is an
explicit decision to exclude text-based and image-restricted browsers from your
pages. This includes browsers connecting to the Internet via slow modem connec-
tions. For these people, downloading your beautiful images is simply too expensive.
To keep from disenfranchising a growing population, make sure any page that has a
mouse-sensitive image has a text-only equivalent easily accessible from a link on the
image-enabled version. Some thoughtful webmasters even provide separate pages for
users preferring full graphics versus mostly text.

6.6 Creating Searchable Documents
Another extensible form of an HTML link that does not use the <a> tag is one that
causes the server to search a database for a document that contains a user-specified
keyword or words. An HTML document that contains such a link is known as a
searchable document.

6.6.1 The <isindex> Tag (Deprecated)
Before it was deprecated in both the HTML 4 and XHTML standards, authors used
to use the <isindex> tag to pass keywords along with a search engine’s URL to the
server. The server then matched the keywords against a database of terms to select
the next document for display. Today’s authors mostly use forms to pass informa-
tion to the server and supporting programs. See Chapter 9 for details.

<isindex>

Function Indicates that a document can be searched

Attributes action , class, dir, id, lang, prompt, style, title

End tag None in HTML; </isindex> or <isindex ... /> in XHTML

Contains Nothing

Used in head_content

6.6 Creating Searchable Documents | 201

When a browser encounters the <isindex> tag, it adds a standard search interface to
the document (rendered by Internet Explorer in Figure 6-8):

<html>
<head>
<title>Kumquat Advice Database</title>
<base href="cgi-bin/quat-query">
<isindex>
</head>
<body>
<h3>Kumquat Advice Database</h3>
<p>
Search this database to learn more about kumquats!
</body>
</html>

The user types a list of space-separated keywords into the field provided. When the
user presses the Enter key, the browser automatically appends the query list to the
end of a URL and passes the information to the server for further processing.

While the HTML and XHTML standards allow the deprecated <isindex> tag to be
placed only in the document header, most browsers let the tag appear anywhere in
the document and insert the search field in the content flow where the <isindex> tag
appears. This convenient extension lets you add instructions and other useful ele-
ments before presenting the user with the actual search field.

6.6.1.1 The prompt attribute

The browser provides a leading prompt just above or to the left of the user-entry
field. Internet Explorer’s default prompt has even changed over the years. Version 5,
for example, used “This is a searchable index. Enter search keywords:”. Figure 6-8
shows the new one with version 6’s prompt. That default prompt is not the best for
all occasions, so it is possible to change it with the prompt attribute.

Figure 6-8. A searchable document

202 | Chapter 6: Links and Webs

When added to the <isindex> tag, the value of the prompt attribute is the string of
text that precedes the keyword entry field the browser places in the document.

For example, compare Figure 6-8 with Figure 6-9, in which we added the following
prompt to the previous source example:

<isindex prompt="To learn more about kumquats, enter a keyword:">

Older browsers ignore the prompt attribute, but there is little reason not to include a
better prompt string for your more up-to-date readership.

6.6.1.2 The query URL

Besides the <isindex> tag in the header of a searchable document, the other impor-
tant element of this special tag is the query URL. By default, it is the URL of the
source document itself—not good if your document can’t handle the query. Rather,
most authors use the <base> attribute to point to a different URL for the search.
[<base>, 6.7.1]

The browser appends a question mark to the query URL, followed by the specified
search parameters. Nonprintable characters are appropriately encoded; multiple
parameters are separated by plus signs (+).

In the previous example, if a user typed “insect control” in the search field, the
browser would retrieve the URL:

cgi-bin/quat-query?insect+control

6.6.1.3 The action attribute

For Internet Explorer only, you can specify the query URL for the index with the
action attribute. The effect is exactly as though you had used the href attribute with
the <base> tag: the browser links to the specified URL with the search parameters
appended to the URL.

Figure 6-9. The prompt attribute creates custom prompts in searchable documents

6.7 Relationships | 203

While the action attribute provides the desirable feature of divorcing the docu-
ment’s base URL from the search index URL, it will cause your searches to fail if the
user is not using Internet Explorer. For this reason, we do not recommend that you
use the action attribute to specify the query URL for the search.

6.6.1.4 The class, dir, id, lang, style, and title attributes

The class and style attributes allow you to supply display properties and class names
to control the appearance of the tag, although their value seems limited for <isindex>.
The id and title attributes allow you to create a name and title for the tag; the name
might be referenced by a hyperlink. [The id attribute, 4.1.1.4] [Inline Styles: The style
Attribute, 8.1.1] [Style Classes, 8.3]

The dir and lang attributes define the language used for this tag and the direction in
which text is rendered. Again, their use is not apparent with <isindex>. [The dir
attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

6.6.1.5 Server dependencies
Like image maps, searchable documents require support from the server to make
things work. How the server interprets the query URL and its parameters is not
defined by the HTML or XHTML standards.

You should consult your server’s documentation to determine how you can receive
and use the search parameters to locate the desired document. Typically, the server
breaks the parameters out of the query URL and passes them to a program desig-
nated by the URL.

6.7 Relationships
Very few documents stand alone. Instead, a document is usually part of a collection
of documents, each connected by one or several of the hypertext strands we describe
in this chapter. One document may be a part of several collections, linking to some
documents and being linked to by others. Readers move among the document fami-
lies as they follow the links that interest them.

When you link two documents, you establish an explicit relationship between them.
Conscientious authors use the rel attribute of the <a> tag to indicate the nature of
the link. In addition, two other tags may be used within a document to further clar-
ify the location of a document within a document family and its relationship to the
other documents in that family. These tags, <base> and <link>, are placed within the
body of the <head> tag. [<head>, 3.7.1]

6.7.1 The <base> Header Element
As we previously explained, URLs within a document can be either absolute (with
every element of the URL explicitly provided by the author) or relative (with certain

204 | Chapter 6: Links and Webs

elements of the URL omitted and supplied by the browser). Normally, the browser
fills in the blanks of a relative URL by drawing the missing pieces from the URL of
the current document. You can change that with the <base> tag.

The <base> tag should appear only in the document header, not in its body contents.
The browser thereafter uses the specified base URL, not the current document’s
URL, to resolve all relative URLs, including those found in <a>, , <link>, and
<form> tags. It also defines the URL that will be used to resolve queries in searchable
documents containing the <isindex> tag. [Referencing Documents: The URL, 6.2]

6.7.1.1 The href attribute

The href attribute must have a valid URL as its value, which the browser then uses to
define the absolute URL against which relative URLs are based within the document.

For example, the <base> tag in this XHTML document head:

<head>
<base href="http://www.kumquat.com/" />
</head>
...

tells the browser that any relative URLs within this document are relative to the top-
level document directory on www.kumquat.com, regardless of the address and direc-
tory of the machine from which the user retrieved the current document.

Contrary to what you may expect, you can make the base URL relative, not absolute.
The browser should (but doesn’t always) form an absolute base URL out of this rela-
tive URL by filling in the missing pieces with the URL of the document itself. This
property can be used to good advantage. For instance, in this next HTML example:

<head>
<base href="/info/">
</head>
...

<base>

Function Defines the base URL for other anchors in the document

Attributes href, target

End tag None in HTML; </base> or <base ... /> in XHTML

Contains Nothing

Used in head_content

6.7 Relationships | 205

the browser makes the <base> URL into one relative to the server’s /info directory,
which probably is not the same directory of the current document. Imagine if you
had to readdress every link in your document with that common directory. Not only
does the <base> tag help you shorten those URLs in your document that have a com-
mon root, but it also lets you constrain the directory from which relative references
are retrieved without binding the document to a specific server.

6.7.1.2 The target attribute

When working with documents inside frames, the target attribute with the <a> tag
ensures that a referenced URL gets loaded into the correct frame. Similarly, the
target attribute for the <base> tag lets you establish the default name of one of the
frames or windows in which the browser is to display redirected hyperlinked docu-
ments. [An Overview of Frames, 11.1]

If you have no other default target for your hyperlinks within your frames, you may
want to consider using <base target=_top>. This ensures that links that are not spe-
cifically targeted to a frame or window will load in the top-level browser window.
This eliminates the embarrassing and common error of having references to pages on
other sites appear within a frame on your pages, instead of within their own pages. A
minor bit of HTML, to be sure, but it makes life much easier for your readers.

6.7.1.3 Using <base>

The most important reason for using <base> is to ensure that any relative URLs
within the document will resolve into correct document addresses, even if the docu-
ments themselves are moved or renamed. This is particularly important when creat-
ing a document collection. By placing the correct <base> tag in each document, you
can move the entire collection between directories and even servers without break-
ing all of the links within the documents. You also need to use the <base> tag for a
searchable document (<isindex>) if you want user queries posed to a URL different
from that of the host document.

A document that contains both the <isindex> tag and other relative URLs may have
problems if the relative URLs are not relative to the desired index-processing URL.
Because this is usually the case, don’t use relative URLs in searchable documents that
use the <base> tag to specify the query URL for the document.

6.7.2 The <link> Header Element
Use the <link> tag to define the relationship between the current document and
another in a web collection.

The <link> tag belongs in the <head> content and nowhere else. Use the attributes of
the <link> tag like those of the <a> tag, but their effects serve only to document the
relationship between documents. The <link> tag has no content, and only XHTML
supports the closing </link> tag.

206 | Chapter 6: Links and Webs

6.7.2.1 The href attribute
As with its other tag applications, the href attribute specifies the URL of the target
<link> tag. It is a required attribute, and its value is any valid document URL. The
specified document is assumed to have a relationship to the current document.

6.7.2.2 The rel and rev attributes
The rel and rev attributes express the relationship between the source and target
documents. The rel attribute specifies the relationship from the source document to
the target; the rev attribute specifies the relationship from the target document to the
source document. Both attributes can be included in a single <link> tag.

The value of either attribute is a space-separated list of relationships. The actual rela-
tionship names are not specified by the HTML standard, although some have come
into common usage. For example, a document that is part of a sequence of docu-
ments might use:

<link href="part-14.html" rel=next rev=prev>

when referencing the next document in the series. The relationship from the source
to the target is that of moving to the next document; the reverse relationship is that
of moving to the previous document.

6.7.2.3 The title attribute
The title attribute lets you specify the title of the document to which you are link-
ing. This attribute is useful when referencing a resource that does not have a title,
such as an image or a non-HTML document. In this case, the browser might use the
<link> title when displaying the referenced document. For example:

<link href="pics/kumquat.gif"
 title="A photograph of the Noble Fruit">

tells the browser to use the indicated title when displaying the referenced image.

<link>

Function Defines a relationship between this document and another document

Attributes charset, class, dir, href, hreflang, id, lang, media, onClick,
onDblClick, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp, rel, rev, style,
target, title, type

End tag None in HTML; </link> or <link ... /> in XHTML

Contains Nothing

Used in head_content

6.7 Relationships | 207

The value of the attribute is an arbitrary character string, enclosed in quotation marks.

6.7.2.4 The type attribute

The type attribute provides the MIME content type of the linked document. Supported
by all the popular browsers, the HTML 4 and XHTML standard type attribute can be
used with any linked document. It is often used to define the type of a linked stylesheet.
In this context, the value of the type attribute is usually text/css. For example:

<link href="styles/classic.css" rel=stylesheet type="text/css">

creates a link to an external stylesheet within the <head> of a document. See
Chapter 8 for details.

6.7.2.5 How browsers might use <link>

Although the standards do not require browsers to do anything with the information
provided by the <link> tag, it’s not hard to envision how this information might be
used to enhance the presentation of a document.

As a simple example, suppose you consistently provide <link> tags for each of your
documents that define next, prev, and parent links. A browser could use this infor-
mation to place at the top or bottom of each document a standard toolbar contain-
ing buttons that would jump to the appropriate related document. By relegating the
task of providing simple navigational links to the browser, you are free to concen-
trate on the more important content of your document.

As a more complex example, suppose that a browser expects to find a <link> tag
defining a glossary for the current document and that this glossary document is itself
a searchable document. Whenever a reader clicked on a word or phrase in the docu-
ment, the browser could automatically search the glossary for the definition of the
selected phrase, presenting the result in a small pop-up window.

As the Web evolves, expect to see more and more uses of the <link> tag to define
document relationships explicitly.

6.7.2.6 Other <link> attributes

The HTML 4 and XHTML standards also include the ubiquitous collection of
attributes related to stylesheets and user events, and language for the <link> tag. You
can refer to the corresponding section describing these attributes for the <a> tag for a
complete description of their usage. [<a>, 6.3.1]

Because you put the <link> tag in the <head> section, whose contents are not dis-
played, it may seem that these attributes are useless. It is entirely possible that some
future browser may find some way to display the <link> information to the user, pos-
sibly as a navigation bar or a set of hot-list selections. In those cases, the display and

208 | Chapter 6: Links and Webs

rendering information would prove useful. Currently, no browser provides these
capabilities.

6.8 Supporting Document Automation
Two additional header tags have the primary functions of supporting document auto-
mation and interacting with the web server itself and with document-generation tools.

6.8.1 The <meta> Header Element
Given the rich set of header tags for defining a document and its relationship with
others that go unused by most authors, you’d think we’d all be satisfied. But no,
there’s always someone with special needs. These authors want to be able to give
even more information about their precious documents—information that brows-
ers, readers of the source, or document-indexing tools might use. The <meta> tag is
for those of you who need to go beyond the beyond.

The <meta> tag belongs in the document header and has no content. Instead,
attributes of the tag define name/value pairs that associate the document. In certain
cases, the web server serving the document uses these values to further define the
document content type to the browser.

6.8.1.1 The name attribute

The name attribute supplies the name of the name/value pair defined by the <meta>

tag. Neither the HTML nor the XHTML standard specifies any predefined <meta>

names. In general, you are free to use any name that makes sense to you and other
readers of your source document.

One commonly used name is keywords, which defines a set of keywords for the docu-
ment. When encountered by any of the popular search engines on the Web, these

<meta>

Function Supplies additional information about a document

Attributes charset , content, dir, http_equiv, lang, name, scheme

End tag None in HTML; </meta> or <meta ... /> in XHTML

Contains Nothing

Used in head_content

6.8 Supporting Document Automation | 209

keywords may be used to categorize the document. If you want your documents to
be indexed by a search engine, consider putting this kind of tag in the <head> of each
document:

<meta name="keywords" content="kumquats, cooking, peeling, eating">

If the name attribute is not provided, the name of the name/value pair is taken from
the http-equiv attribute.

6.8.1.2 The content attribute

The content attribute provides the value of the name/value pair. It can be any valid
string (enclosed in quotes if it contains spaces). It should always be specified in con-
junction with either a name or an http-equiv attribute.

As an example, you might place the author’s name in a document with:

<meta name="Authors" content="Chuck Musciano & Bill Kennedy">

6.8.1.3 The http-equiv attribute

The http-equiv attribute supplies a name for the name/value pair and instructs the
server to include the name/value pair in the MIME document header that is passed
to the browser before sending the actual document.

When a server sends a document to a browser, it first sends a number of name/value
pairs. While some servers might send a number of these pairs, all servers send at least
one:

content-type: text/html

This tells the browser to expect to receive an HTML document.

When you use the <meta> tag with the http-equiv attribute, the server will add your
name/value pairs to the content header it sends to the browser. For example, adding:

<meta http-equiv="charset" content="iso-8859-1">
<meta http-equiv="expires" content="31 Dec 99">

causes the header sent to the browser to contain:

content-type: text/html
charset: iso-8859-1
expires: 31 Dec 99

Of course, adding these additional header fields makes sense only if your browser
accepts the fields and uses them in some appropriate manner.

6.8.1.4 The charset attribute

Internet Explorer versions 5 and earlier provided explicit support for a charset

attribute in the <meta> tag. Set the value of the attribute to the name of the charac-
ter set to be used for the document. This is not the recommended way to define a

210 | Chapter 6: Links and Webs

document’s character set. Rather, we recommend always using the http-equiv and
content attributes to define the character set.

6.8.1.5 The scheme attribute

This attribute specifies the scheme to be used to interpret the property’s value. This
scheme should be defined within the profile specified by the profile attribute of the
<head> tag. [<head>, 3.7.1]

6.8.2 The <nextid> Header Element (Archaic)
This tag is not defined in the HTML 4 and XHTML standards and should not be
used. We describe it here for historical reasons.

The idea behind the <nextid> tag is to provide some way of automatically indexing
fragment identifiers.

6.8.2.1 The n attribute

The n attribute specifies the name of the next generated fragment identifier. It is typi-
cally an alphabetic string followed by a two-digit number. A typical <nextid> tag
might look like this:

<html>
<head>
<nextid n=DOC54>
</head>
...

An automatic document generator might use the nextid information to successively
name fragment identifiers DOC54, DOC55, and so forth, within this document.

<nextid>

Function Defines the next valid document entity identifier

Attributes n

End tag None

Contains Nothing

Used in head_content

211

Chapter 7!ti
In this chapter:

• Unordered Lists
• Ordered Lists
• The Tag
• Nesting Lists
• Definition Lists
• Appropriate List Usage
• Directory Lists
• Menu Lists

CHAPTER 7

Formatted Lists7

Making information more accessible is the single most important quality of HTML
and its progeny, XHTML. The languages’ excellent collection of text style and for-
matting tools help you organize your information into documents readers can
quickly understand, scan, and extract, possibly with automated browser agents.

Beyond embellishing your text with specialized text tags, HTML and XHTML provide
a rich set of tools that help you organize content into formatted lists. There’s nothing
magical or mysterious about lists. In fact, the beauty of lists is their simplicity. They’re
based on common list paradigms we encounter every day, such as unordered grocery
lists, ordered instruction lists, and dictionary-like definition lists. All are familiar, com-
fortable ways of organizing content. All provide powerful means for quickly under-
standing, scanning, and extracting pertinent information from your web documents.

7.1 Unordered Lists
Like a laundry or shopping list, an unordered list is a collection of related items that
have no special order or sequence. The most common unordered list you’ll find on
the Web is a collection of hyperlinks to other documents. Some common topic, such
as “Related Kumquat Lovers’ Sites,” allies the items in an unordered list, but they
have no order among themselves.

7.1.1 The Tag
The tag signals to the browser that the following content, between it and the
end tag, is an unordered list of items. Inside, a leading tag identifies each item in

212 | Chapter 7: Formatted Lists

the unordered list. Otherwise, nearly anything HTML/XHTML-wise goes, including
other lists, text, and multimedia elements.

Typically, the browser adds a leading bullet character and formats each unordered
list item on a new line, indented somewhat from the left margin of the document.
The actual rendering of unordered lists, although similar for the popular browsers
(see Figure 7-1), is not dictated by the standards, so you shouldn’t get bent out of
shape trying to attain exact positioning of the elements.

Here is an example XHTML unordered list, as shown in Figure 7-1:

Popular Kumquat recipes:

 Pickled Kumquats
 'Quats and 'Kraut (a holiday favorite!)
 'Quatshakes

There are so many more to please every palate!

Function Defines an unordered list

Attributes class, compact , dir, id, lang, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title, type

End tag ; never omitted

Contains list_content

Used in block

Figure 7-1. A simple unordered list

7.1 Unordered Lists | 213

Tricky HTML authors sometimes use nested unordered lists, with and without -
tagged items, to take advantage of the automatic, successive indenting. You can pro-
duce some fairly slick text segments that way. Just don’t depend on it for all brows-
ers, including future ones. Rather, it’s best to use the border property with a style
definition in the paragraph (<p>) or division (<div>) tag to indent nonlist sections of
your document (see Chapter 8).

7.1.1.1 The type attribute

The graphical browsers automatically bullet each -tagged item in an unordered
list. Netscape and Firefox use a diamond like that shown in Figure 7-1, whereas
Internet Explorer and Opera use a solid circle, for example. Browsers that support
HTML 3.2 and later versions, including 4.0 and 4.01, as well as XHTML 1.0, let you
use the type attribute to specify which bullet symbol you’d rather have precede items
in an unordered list. This attribute may have the value of disc, circle, or square. All
the items within that list thereafter use the specified bullet symbol, unless an individ-
ual item overrides the list bullet type, as described later in this chapter.

With the advent of standard Cascading Style Sheets (CSS), the World Wide Web
Consortium (W3C) has deprecated the type attribute in HTML 4 and in XHTML.
Expect it to disappear.

7.1.1.2 Compact unordered lists

If you like wide-open spaces, you’ll hate the optional compact attribute for the
tag. It tells the browser to squeeze the unordered list into an even smaller, more com-
pact text block. Typically, the browser reduces the line spacing between list items; it
also may reduce the indentation between list items, if it does anything at all with
indentation (usually it doesn’t).

Some browsers ignore the compact attribute, so you shouldn’t depend on its format-
ting attributes. Also, the attribute is deprecated in the HTML 4 and XHTML stan-
dards, so it hasn’t long to live.

7.1.1.3 The style and class attributes

The style and class attributes bring CSS-based display control to lists, providing far
more comprehensive control than you would get through individual attributes like
type. Combine the style attribute with the tag, for instance, to assign your own
bullet icon image, instead of using the common circle, disc, or square. The class
attribute lets you apply the style of a predefined class of the tag to the contents
of the unordered list. The value of the class attribute is the name of a style defined in
some document-level or externally defined stylesheet. For more information, see
Chapter 8. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

214 | Chapter 7: Formatted Lists

7.1.1.4 The lang and dir attributes

The lang attribute lets you specify the language used within a list, and dir lets you
advise the browser in which direction the text should be displayed. The value of the
lang attribute is any of the International Organization for Standardization (ISO) stan-
dard two-character language abbreviations, including an optional language modifier.
For example, adding lang=en-UK tells the browser that the list is in English (“en”) as
spoken and written in the United Kingdom (“UK”). Presumably, the browser may
make layout or typographic decisions based upon your language choice. [The lang
attribute, 3.6.1.2]

The dir attribute tells the browser in which direction to display the list contents—
from left to right (dir=ltr), like English and French, or from right to left (dir=rtl), as
with Hebrew and Chinese. [The dir attribute, 3.6.1.1]

7.1.1.5 The id and title attributes
Use the id attribute to specially label the unordered list. An acceptable value is any
quote-enclosed string that uniquely identifies the list and can later be used to unam-
biguously reference the list in a hyperlink target, for automated searches, as a
stylesheet selector, and for a host of other applications. [The id attribute, 4.1.1.4]

You also can use the optional title attribute and quote-enclosed string value to iden-
tify the list. Unlike an id attribute, a title does not have to be unique. [The title
attribute, 4.1.1.5]

7.1.1.6 The event attributes
The many user-related events that may happen in and around a list, such as when a
user clicks or double-clicks within its display space, are recognized by current brows-
ers. With the respective on attribute and value, you may react to those events by dis-
playing a user dialog box or activating some multimedia event. [JavaScript Event
Handlers, 12.3.3]

7.2 Ordered Lists
Use an ordered list when the sequence of the list items is important. A list of instruc-
tions is a good example, as are tables of contents and lists of document footnotes or
endnotes.

7.2.1 The Tag
The typical browser formats the contents of an ordered list just like an unordered
list, except that the items are numbered rather than bulleted. The numbering starts
at one and is incremented by one for each successive ordered list element tagged with
. [, 7.3]

7.2 Ordered Lists | 215

HTML 3.2 introduced a number of features that provide a wide variety of ordered lists.
You can change the start value of the list and select from five different numbering styles.

Here is a sample XHTML ordered list:

<h3>Pickled Kumquats</h3>
Here's an easy way to make a delicious batch of pickled 'quats:

 Rinse 50 pounds of fresh kumquats
 Bring eight gallons white vinegar to rolling boil
 Add kumquats gradually, keeping vinegar boiling
 Boil for one hour, or until kumquats are tender
 Place in sealed jars and enjoy!

Opera renders the example as shown in Figure 7-2.

Function Defines an ordered list

Attributes class, compact, dir, id, lang, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, start, style, title, type

End tag ; never omitted

Contains list_content

Used in block

Figure 7-2. An ordered list

216 | Chapter 7: Formatted Lists

7.2.1.1 The start attribute

Normally, browsers automatically number ordered list items beginning with the Ara-
bic numeral 1. The start attribute for the tag lets you change that beginning
value. To start numbering a list at 5, for example:

<ol start=5>
 This is item number 5.
 This is number 6!
 And so forth...

7.2.1.2 The type attribute

By default, browsers number ordered list items with a sequence of Arabic numerals.
Besides being able to start the sequence at some number other than 1, you can use
the type attribute with the tag to change the numbering style itself. The
attribute may have a value of A for numbering with capital letters, a for numbering
with lowercase letters, I for capital Roman numerals, i for lowercase Roman numer-
als, or 1 for common Arabic numerals. See Table 7-1.

The start and type attributes work in tandem. The start attribute sets the starting
value of the item counter (an integer) at the beginning of an ordered list. The type
attribute sets the actual numbering style. For example, the following ordered list
starts numbering items at 8, but because the style of numbering is set to i, the first
number is the lowercase Roman numeral “viii.” Subsequent items are numbered
with the same style, and each value is incremented by 1, as shown in this HTML
example, and rendered as shown in Figure 7-3:*

<ol start=8 type="i">
 This is the Roman number 8.
 The numerals increment by 1.
 And so forth...

Table 7-1. HTML type values for numbering ordered lists

Type value Generated style Sample sequence

A Capital letters A, B, C, D

a Lowercase letters a, b, c, d

I Capital Roman numerals I, II, III, IV

i Lowercase Roman numerals i, ii, iii, iv

1 Arabic numerals 1, 2, 3, 4

* Notice that we don’t include the end tag in the HTML example but do in all the XHTML ones. Some
end tags are optional with HTML but must be included in all XHTML documents.

7.3 The Tag | 217

The type and value of individual items in a list can be different from those of the list
as a whole, described in section 7.3.1 later in this chapter. As mentioned earlier, the
start and type attributes are deprecated in HTML 4 and XHTML. Consider using
stylesheets instead.

7.2.1.3 Compact ordered lists

Like the tag, the tag has an optional compact attribute that is deprecated in
the HTML 4 and XHTML standards. Unless you absolutely need to use it, don’t.

7.2.1.4 The class, dir, id, lang, event, style, and title attributes

These attributes are applicable with ordered lists, too; their effects are identical to
those for unordered lists. [The class and style attributes, 4.1.1.6] [The lang and dir
attributes, 6.3.1.7] [The id and title attributes, 7.1.1.5] [The event attributes, 6.3.1.4]

7.3 The Tag
It should be quite obvious to you by now that the tag defines an item in a list.
It’s the universal tag for list items in ordered () and unordered () lists, as we
discussed earlier, and for directories (<dir>) and menus (<menu>), which we discuss in
detail later in this chapter.

Because the end of a list element can always be inferred by the surrounding docu-
ment structure, most authors omit the ending tags for their HTML list ele-
ments. That makes sense because it becomes easier to add, delete, and move
elements around within a list. However, XHTML requires the end tag, so it’s best to
get used to including it in your documents.

Although universal in meaning, there are some differences and restrictions to the use
of the tag for each list type. In unordered and ordered lists, nearly anything can
follow the tag, including other lists and multiple paragraphs. Typically, if it han-
dles indentation at all, the browser successively indents nested list items, and the
content in those items is justified to the innermost indented margin.

Figure 7-3. The start and type attributes work in tandem

218 | Chapter 7: Formatted Lists

Directory and menu lists are another matter. They are lists of short items, like a sin-
gle word or simple text blurb and nothing else. Consequently, items within
<dir> and <menu> tags may not contain other lists or other block elements, including
paragraphs, preformatted blocks, or forms.

Clean documents, fully compliant with the HTML and XHTML standards, should
not contain any text or other document item inside the unordered, ordered, direc-
tory, or menu lists that is not contained within an tag. Most browsers tolerate
violations to this rule, but you can’t hold the browser responsible for compliant ren-
dering of exceptional cases, either.

7.3.1 Changing the Style and Sequence of Individual List Items
Just as you can change the bullet or numbering style for all of the items in an unor-
dered or ordered list, you can change the style for individual items within those lists.
With ordered lists, you also can change the value of the item number. As you’ll see,
the combinations of changing style and numbering can lead to a variety of useful list
structures, particularly when included with nested lists. Do note, however, that the
standards have deprecated these attributes in deference to their CSS counterparts.

7.3.1.1 The type attribute

Acceptable values for the type attribute in the tag are the same as the values for
the appropriate list type: items within unordered lists may have their type set to
circle, square, or disc, and items in an ordered list may have their type set to any of
the values shown previously in Table 7-1.

Be careful. With earlier browsers, such as Netscape Navigator and Internet Explorer
versions 4 and earlier, a change in the bullet or numbering type in one list item simi-
larly affected subsequent items in the list. Not so for HTML 4–compliant browsers,

Function Defines an item within an ordered, unordered, directory, or menu
list

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title, type, value

End tag ; often omitted in HTML

Contains flow

Used in list_content

7.3 The Tag | 219

including Netscape version 6, Internet Explorer versions 5 and later, Firefox, and
Opera! The type attribute’s effects are acute and limited to only the current tag.
Subsequent items revert to the default type; each must contain the specified type.

The type attribute changes the display style of the individual list item’s leading num-
ber, and only that item, but not the value of the number, which persistently incre-
ments by one. Figure 7-4 shows the effect that changing the type for an individual
item in an ordered list has on subsequent items, as rendered from the following
XHTML source:

 <li type=A>Changing the numbering type
 <li type=I>Uppercase Roman numerals
 <li type=i>Lowercase Roman numerals
 <li type=1>Plain ol' numbers
 <li type=a>Doesn't alter the order.
 <-- But, although numbering continues sequentially,
 types don't persist. See? I should've been a "g"!

You can use the stylesheet-related style and class attributes to affect individual type
changes in ordered and unordered lists that may or may not affect subsequent list
items. See Chapter 8 for details (particularly section 8.4.8.5).

7.3.1.2 The value attribute

The value attribute changes the numbers of a specific list item and all of the list items
that follow it. Because the ordered list is the only type with sequentially numbered
items, the value attribute is valid only when used within an tag inside an
ordered list.

To change the current and subsequent numbers attached to each item in an ordered
list, simply set the value attribute to an integer. The following source uses the value

Figure 7-4. Changing the numbering style for each item in an ordered list

220 | Chapter 7: Formatted Lists

attribute to jump the numbering on items in an XHTML ordered list, and gets ren-
dered by modern browsers as shown in Figure 7-5:

 Item number 1
 And the second
 <li value=9> Jump to number 9
 And continue with 10...

7.3.1.3 The style and class attributes

The style attribute for the tag creates an inline style for the elements enclosed
by the tag, overriding any other style rule in effect. The class attribute lets you for-
mat the content according to a predefined class of the tag; its value is the name
of that class. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

7.3.1.4 The class, dir, id, lang, event, style, and title attributes
You can apply these attributes to individual list items; they have similar effects for
ordered and unordered lists. [The class and style attributes, 4.1.1.6] [The lang and dir
attributes, 6.3.1.7] [The id and title attributes, 7.1.1.5] [The event attributes, 6.3.1.4]

7.4 Nesting Lists
Except when placed inside directories or menus, lists nested inside other lists are
fine. You can embed menu and directory lists within other lists. Indents for each
nested list are cumulative, so do not nest lists too deeply; the list contents could
quickly turn into a thin ribbon of text flush against the right edge of the browser doc-
ument window.

7.4.1 Nested Unordered Lists
The items in each nested unordered list may be preceded by a different bullet charac-
ter at the discretion of the browser. For example, Internet Explorer displays an alter-
nating series of hollow, solid circular, and square bullets for the various nests in the
following source fragment, as shown in Figure 7-6:

Figure 7-5. The value attribute lets you change individual item numbers in an ordered list

7.4 Nesting Lists | 221

 Morning Kumquat Delicacies

 Hot Dishes

 Kumquat omelet
 Kumquat waffles

 Country style
 Belgian

 Cold Dishes

 Kumquats and cornflakes
 Pickled Kumquats
 Diced Kumquats

You can change the bullet style for each unordered list and even for individual list
items, but the repertoire of bullets is limited, typically a simple solid disc for level-
one items, an open circle for level two, and a solid square for subsequent levels.

Figure 7-6. Bullets change for nested unordered list items

222 | Chapter 7: Formatted Lists

7.4.2 Nested Ordered Lists
By default, browsers number the items in ordered lists beginning with the Arabic
numeral 1, nested or not. It would be great if the standards numbered nested ordered
lists in some rational, consecutive manner; e.g., the items in the second nest of the third
main ordered list might be successively numbered “3.2.1,” “3.2.2,” “3.2.3,” and so on.

With the type and value attributes, however, you do have a lot more latitude in how
you create nested ordered lists. An excellent example is the traditional style for out-
lining, which uses the many different ways of numbering items offered by the type
attribute (see Figure 7-7):

<ol type="A">
 A History of Kumquats
 <ol type="1">
 Early History
 <ol type="a">
 The Fossil Record
 Kumquats: The Missing Link?

 Mayan Use of Kumquats
 Kumquats in the New World

 Future Use of Kumquats

7.5 Definition Lists
HTML and XHTML also support a list style entirely different from the ordered and
unordered lists we’ve discussed so far: definition lists. Like the entries you find in a

Figure 7-7. The type attribute lets you do traditional outlining with ordered lists

7.5 Definition Lists | 223

dictionary or encyclopedia, complete with text, pictures, and other multimedia ele-
ments, the definition list is the ideal way to present a glossary, list of terms, or other
name/value list.

7.5.1 The <dl> Tag
The definition list is enclosed by the <dl> and </dl> tags. Within the tags, each item
in a definition list is composed of two parts: a term, followed by its definition or
explanation. Instead of , each item name in a <dl> list is marked with the <dt>
tag, followed by the item’s definition or explanation marked by the <dd> tag.

Unless you change the display attributes with stylesheet rules, browsers typically ren-
der the item or term name at the left margin and render the definition or explanation
below it and indented. If the definition terms are very short (typically less than three
characters), the browser may choose to place the first portion of the definition on the
same line as the term. See how the following source XHTML definition list gets dis-
played in Figure 7-8:

<h3>Common Kumquat Parasites</h3>
<dl>
 <dt>Leaf mites</dt>
 <dd>The leaf mite will ravage the Kumquat tree, stripping it
 of any and all vegetation.</dd>
 <dt>Trunk dropsy</dt>
 <dd>This microscopic larvae of the common opossum
 chigger will consume the structural elements of the
 tree trunk, causing it to collapse inward.</dd>
</dl>

As with other list types, you can add more space between the definition list items by
inserting paragraph <p> tags at the end of their content or by defining a spacious style
for the respective tags.

<dl>

Function Defines a definition list

Attributes class, compact, dir, id, lang, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title, type

End tag </dl>; never omitted

Contains dl_content

Used in block

224 | Chapter 7: Formatted Lists

7.5.1.1 More compact definition lists

The <dl> tag supports the compact attribute, advising the browser to make the list
presentation as small as possible. Few browsers, if any, honor this attribute, and it
has been deprecated in HTML 4 and XHTML.

7.5.1.2 The class, dir, id, lang, style, title, and event attributes

The many other attributes for the <dl> tag should be quite familiar by now. The style
and class attributes let you control the display style, the id and title tag attributes let
you uniquely label its contents, the lang and dir attributes let you specify its native lan-
guage and the direction in which the text will be rendered, and the many on-event
attributes let you react to user-initiated mouse and keyboard actions on the contents.
Not all are implemented by the currently popular browsers for this tag or for many oth-
ers. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2] [The id attribute, 4.1.1.4]
[The title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]
[JavaScript Event Handlers, 12.3.3]

7.5.2 The <dt> Tag
The <dt> tag defines the term component of a definition list. It is valid only when
used within a definition (<dl>) list preceding the term or item, before the <dd> tag
and the term’s definition or explanation.

Traditionally, the definition term that follows the <dt> tag is short and sweet—one
or a few words. Technically, it can be any length. If the definition term is long, the
browser may exercise the option of extending the item beyond the display window or
wrapping it onto the next line, where the definition begins.

Because the end of the <dt> tag immediately precedes the start of the matching <dd>
tag, it is unambiguous, so the </dt> end tag is not required in HTML documents.

Figure 7-8. A definition list example

7.5 Definition Lists | 225

However, the XHTML standard insists that it be present, so get used to including it
in your documents.

7.5.2.1 Formatting text with <dt>

In practice, browsers are either too lenient or too dumb to enforce the rules, so some
tricky HTML authors misuse the <dt> tag to shift the left margin right and left,
respectively, for fancy text displays. (Remember, tab characters and leading spaces
usually don’t work with regular text.) We don’t condone violating the HTML, and
certainly not the XHTML standard, and we caution you once again about tricked-up
documents. Use stylesheets instead.

7.5.2.2 The class, dir, id, lang, style, title, and event attributes

The <dt> tag supports the standard HTML 4/XHTML tag attributes. The style and
class attributes let you control the display style, the id and title tag attributes let
you uniquely label its contents, the lang and dir attributes let you specify its native
language and the direction in which the text will be rendered, and the many on-event
attributes let you react to user-initiated mouse and keyboard actions on the con-
tents. Not all are implemented by the currently popular browsers for this tag or for
many others. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2] [The id
attribute, 4.1.1.4] [The title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 8.1.
1] [Style Classes, 8.3] [JavaScript Event Handlers, 12.3.3]

7.5.3 The <dd> Tag
The <dd> tag marks the start of the definition portion of an item in a definition list.
According to the HTML and XHTML standards, <dd> belongs only inside a defini-
tion (<dl>) list, immediately following the <dt> tag and term and preceding the defi-
nition or explanation.

<dt>

Function Defines a definition list term

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </dt>; may be omitted in HTML

Contains text

Used in dl_content

226 | Chapter 7: Formatted Lists

The content that follows the <dd> tag may be any HTML or XHTML construct,
including other lists, block text, and multimedia elements. Although treating it oth-
erwise identically as conventional content, browsers typically indent definition list
(<dd>) definitions. Because the start of another term and definition (<dt>) or the
required end tag of the definition (</dl>) unambiguously terminates the preceding
definition, the </dd> end tag is not needed, and its absence makes your source text
more readable. However, once again, XHTML insists that the end tag appear in your
documents, so you may as well get used to adding </dd> to your documents.

7.5.3.1 The class, dir, id, lang, style, title, and event attributes

The <dt> tag supports the standard tag attributes. The style and class attributes let
you control the display style, the id and title tag attributes let you uniquely label its
contents, the lang and dir attributes let you specify its native language and the direc-
tion in which the text will be rendered, and the many on-event attributes let you
react to user-initiated mouse and keyboard actions on the contents. Not all are
implemented by the currently popular browsers for this tag or for many others. [The
dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2] [The id attribute, 4.1.1.4] [The
title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]
[JavaScript Event Handlers, 12.3.3]

7.6 Appropriate List Usage
In general, use unordered lists for:

• Link collections

• Short, nonsequenced groups of text

• Emphasizing the high points of a presentation

<dd>

Function Defines a definition list term

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </dd>; may be omitted in HTML

Contains flow

Used in dl_content

7.7 Directory Lists | 227

In general, use ordered lists for:

• Tables of contents

• Instruction sequences

• Sets of sequential sections of text

• Assigning numbers to short phrases that can be referenced elsewhere

In general, use definition lists for:

• Glossaries

• Custom bullets (make the item after the <dt> tag an icon-size bullet image)

• Any list of name/value pairs

7.7 Directory Lists
The directory list is a specialized form of unordered list. It has been deprecated in the
HTML 4 and XHTML standards. We don’t recommend that you use it at all. [,
7.1.1]

7.7.1 The <dir> Tag (Deprecated)
The designers of HTML originally dedicated the <dir> tag for displaying lists of files.
As such, the browser, if it treats <dir> and differently at all (most don’t), expects
the various list elements to be quite short, possibly no longer than 20 or so charac-
ters. Some browsers display the elements in a multicolumn format and may not use a
leading bullet.

As with an unordered list, you define directory list items with the tag. When
used within a directory list, however, the tag may not contain any block ele-
ment, including paragraphs, other lists, preformatted text, or forms.

<dir>

Function Defines a directory list

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </dir>; never omitted

Contains list_content

Used in block

228 | Chapter 7: Formatted Lists

The following example puts the directory tag to its traditional task of presenting a
list of filenames:

The distribution tape has the following files on it:
<dir>
 <code>README</code>
 <code>Makefile</code>
 <code>main.c</code>
 <code>config.h</code>
 <code>util.c</code>
</dir>

Notice that we used the <code> tag to ensure that the filenames would be rendered in
an appropriate manner (see Figure 7-9).

7.7.1.1 The <dir> attributes

The attributes for the <dir> tag are identical to those for , with the same effects.

7.8 Menu Lists
The menu list is yet another specialized form of the unordered list. Like <dir>, it is
deprecated in the HTML 4 and XHTML standards, so we don’t recommend using it.
[, 7.1.1]

7.8.1 The <menu> Tag (Deprecated)
The <menu> tag displays a list of short choices to the reader, such as a menu of links
to other documents. The browser may use a special (typically more compact) repre-
sentation of items in a menu list compared with the general unordered list, or even
use some sort of graphical pull-down menu to implement the menu list. If the list
items are short enough, the browser may even display them in a multicolumn format
and may not precede each list item with a bullet.

Figure 7-9. An example <dir> list

7.8 Menu Lists | 229

Like an unordered list, define the menu list items with the tag. When used
within a menu list, however, the tag may not contain any block elements,
including paragraphs, other lists, preformatted text, or forms.

Compare the following source text and display (Figure 7-10) with the directory
(Figure 7-9) and unordered (Figure 7-1) list displays presented earlier in the chapter:

Some popular kumquat recipes include:
<menu>
 Pickled Kumquats
 'Quats and 'Kraut (a holiday favorite!)
 'Quatshakes
</menu>
There are many more to please every palate!

Figure 7-10. Sample <menu> list

<menu>

Function Defines a menu list

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </menu>; never omitted

Contains list_content

Used in block

230

Chapter 8!ti
In this chapter:

• The Elements of Styles
• Style Syntax
• Style Classes
• Style Properties
• Tagless Styles: The Tag
• Applying Styles to Documents

CHAPTER 8

Cascading Style Sheets 8

Stylesheets are the way publishing professionals manage the overall “look” of their
publications—backgrounds, fonts, colors, and so on—from a single page to huge
collections of documents. Most desktop publishing software supports stylesheets, as
do popular word processors, so using stylesheets for HTML documents is obvious.

For the most part, HTML focuses on content over style. Authors are encouraged to
worry about providing high-quality information and leave it to the browser to worry
about presentation. We strongly urge you to adopt this philosophy in your docu-
ments—don’t mistake style for substance.

However, presentation is for the benefit of the reader, and even the original designers
of HTML understand the interplay between style and readability—for example,
through the physical style and header tags. Stylesheets extend that presentation with
several additional effects, including colors, a wider selection of fonts, and even sounds
so that users can better distinguish elements of your document. But most importantly,
stylesheets let you control the presentation attributes for all the tags in a document—
for a single document or a collection of many documents—from a single master.

In early 1996, the World Wide Web Consortium (W3C) put together a draft proposal
defining Cascading Style Sheets (CSS) for HTML. This draft proposal quickly matured
into a recommended standard. In mid-1998, the W3C extended the original specifica-
tion to create CSS2, which includes presentation standards for a variety of media
besides the familiar onscreen browser, along with several other enhancements.

The W3C continues to work on a minor version upgrade (version 2.1) and a draft of
CSS3, but these are not imminent. Indeed, no current browser or web agent fully
complies with the CSS2 standard. However, because we realize that eventual compli-
ance with the W3C standard is likely, we’ll cover all the components of the CSS2
standard in this chapter. As always, we’ll denote clearly what is real, what is pro-
posed, and what is actually supported.*

* In the fall of 2000, work began on CSS3. As CSS3 is still under construction and browsers have not yet even
become fully compliant with CSS2, we focus on CSS2 throughout this chapter.

8.1 The Elements of Styles | 231

8.1 The Elements of Styles
At the simplest level, a style is nothing more than a rule the browser follows to ren-
der a particular HTML or XHTML tag’s contents.* Each tag has a number of style
properties associated with it, whose values define how that tag is rendered by the
browser. A rule defines a specific value for one or more properties of a tag. For exam-
ple, most tags can have a color property, the value of which defines the color in
which the modern GUI browser should display the contents of the tag. Other proper-
ties include fonts, line spacing, margins, borders, sound volume, and voice, which
we describe in detail later in this chapter.

There are three ways to attach a style to a tag: inline, on the document level, or
through the use of an external stylesheet. You may use one or more stylesheets for
your documents. The browser either merges the style definitions from each style or
redefines the style characteristic for a tag’s contents. Styles from these various
sources are applied to your document, combining and defining style properties that
cascade from external stylesheets through local document styles, and ending with
inline styles. This cascade of properties and style rules gives rise to the standard’s
name: Cascading Style Sheets.

We cover the syntactic basics of the three stylesheet techniques here. We delve more
deeply into the appropriate use of inline, document-level, and external stylesheets at
the end of this chapter.

8.1.1 Inline Styles: The style Attribute
The inline style is the simplest way to attach a style to a tag—just include a style

attribute with the tag along with a list of properties and their values. The browser
uses those style properties and values to render the contents of that tag.

For instance, the following style tells the browser to display the level-1 header text, “I’m
so bluuuuoooo!”, not only in the <h1> tag style, but also colored blue and italicized:

<h1 style="color: blue; font-style: italic">I'm so bluuuuoooo!</h1>

Inline styles can be difficult to maintain, because they add more contents to their
tags’ definitions, making them harder to read. Also, because they have only a local
effect, they must be sprinkled throughout your document. Use the inline style

attribute sparingly and only in those rare circumstances when you cannot achieve the
same effects otherwise.

* We explicitly avoided the term display here because it connotes visual presentation, whereas the CSS2 stan-
dard works hard to suggest many different ways of presenting the tagged contents of a document.

232 | Chapter 8: Cascading Style Sheets

8.1.2 Document-Level Stylesheets
The real power of stylesheets becomes more evident when you place a list of presen-
tation rules at the beginning of your HTML or XHTML document. Placed within the
<head> and enclosed within their own <style> and </style> tags, document-level
stylesheets affect all the same tags within that document, except for tags that contain
overriding inline style attributes.*

Everything between the <style> and </style> tags is considered part of the style rules
that the browser is to apply when rendering the document. Actually, the contents of
the <style> tag are not HTML or XHTML and are not bound by the normal rules for
markup content. The <style> tag, in effect, lets you insert foreign content into your
document that the browser uses to format your tags.

For example, a styles-conscious browser displays the contents of all <h1> tags as blue,
italic text in an HTML document that has the following document-level stylesheet
definition in its head:

<head>
<title>All True Blue</title>
<style type="text/css">
 <!--
 /* make all level-1 headers blue in italics */
 h1 {color: blue; font-style: italic}
 -->
</style>
</head>
<body>
<h1>I'm so bluuuuoooo!</h1>
...
<h1>I am ba-loooooo, tooooo!</h1>

<style>

Function Defines a document-level stylesheet

Attributes dir, lang, media, title, type

End tag </style>; rarely omitted in HTML

Contains styles

Used in head_content

* XHTML-based document-level stylesheets are specially enclosed in CDATA sections of your documents. See
section 16.3.7 in Chapter 16 for details.

8.1 The Elements of Styles | 233

8.1.2.1 The type attribute

Other types of stylesheets are available for HTML/XHTML besides CSS. Like the
JavaScript stylesheets we describe in Chapter 12, they are not well supported, if at
all, by the popular browsers, so we don’t spend a lot of time on them in this book.
Nonetheless, the browser needs a way to distinguish which stylesheet you use in
your document. Use the type attribute within the <style> tag for that. All cascading
stylesheets are of the type text/css; JavaScript stylesheets use the type text/

javascript. You may omit the type attribute and hope the browser figures out the
kinds of styles you are using, but we suggest you always include the type attribute, so
there is no opportunity for confusion. [JavaScript Stylesheets (Antiquated), 12.4]

8.1.2.2 The media attribute

HTML and XHTML documents can wind up in the strangest places these days, such
as on cellular phones. To help the browser figure out the best way to render your docu-
ments, include the media attribute within the <style> tag. The value of this attribute is
the document’s intended medium, although it doesn’t preclude rendering by other
media. The default value is screen (computer display). Other values include tty (text
only), tv (television), projection (theaters), handheld (PDAs and cell phones), print
(ink on paper), braille (tactile devices), embossed (Braille printers), aural (audio;
speech synthesis, for instance), and all (many different types of media).

If you want to explicitly list several types of media, instead of specifying all, use a
quote-enclosed, comma-separated list of media types as the value of the media

attribute. For example:

<style type="text/css" media="screen,print">

tells the browser that your document contains CSS both for printing and for com-
puter displays.

Be careful specifying media, because the browser cannot apply the styles you define
unless the document is being rendered on one of your specified media. Thus, the
browser would not apply our example set of styles designed for media="screen,print"
if the user is, for instance, connected to the Web with a handheld computer.

How do you create different style definitions for different media without creating
multiple copies of your document? The CSS2 standard lets you define media-specific
stylesheets through its extension to the @import at-rule and through the @media at-
rule, which we describe in section 8.1.5 later in this chapter.

8.1.2.3 The dir, lang, and title attributes

As with any HTML/XHTML element, you can associate a descriptive title with the <!--
<DEFANGED_STYLE> tag and specify the language and text-rendering direction with the
title, lang, and dir attributes. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]
[The id attribute, 4.1.1.4]

234 | Chapter 8: Cascading Style Sheets

8.1.3 Style-Free Browsers
Certainly you noticed that, in the preceding document-level stylesheet example, we
enclosed the contents of the <style> tag inside an HTML comment (<!--) tag. Older,
style-free browsers ignore the <style> tag, but then blithely go on to display its con-
tents. Current browsers expect style rules to appear within an HTML comment and
process them accordingly, whereas older browsers appropriately ignore the unrecog-
nized <style> tag and go on to treat the comment tag and its intervening text nor-
mally. That works.

The order of the tags is very important. Here’s the approach, which you may have
noticed in our document-level style example:

<style>
<!--
 h1 {color: blue; font-style: italic}
-->
</style>

Use a <style> tag, followed by an HTML comment, then followed by the document-
level style rule(s). Finally, in order, close the comment and the </style> tag.

XHTML documents require a slightly different approach. In those documents, we
enclose document-level styles in a CDATA section rather than an HTML comment
tag. See section 16.3.7 for details.

Also, as they do for other attributes they don’t recognize, the style-free browsers
ignore inline style attributes and their values, so there are no detrimental effects in
that regard for your document displays.

8.1.4 External Stylesheets
You can also place style definitions into a separate document (a text file with the Multi-
purpose Internet Mail Extension, or MIME, type of text/css) and import this external
stylesheet into your document. Use the same stylesheet for other documents in your
collection, too, even entire collections of documents, to achieve a consistent look and
feel. Because an external stylesheet is a separate file and the browser loads it over the
network, you can store it anywhere, reuse it often, and even use others’ stylesheets.

For example, suppose we create a file named gen_styles.css containing the following
style rule:

h1 {color: blue; font-style: italic}

For each and every one of the documents in our collections, we can tell the browser
to read the contents of the gen_styles.css file, which in turn colors all the <h1> tag
contents blue and renders the text in italic. Of course, that is true only if the user’s
machine is capable of these style tricks, she’s using a styles-conscious browser, and
the style isn’t overridden by a document-level or inline style definition.

8.1 The Elements of Styles | 235

You can load external stylesheets into your document in two different ways: by link-
ing them or by importing them.

8.1.4.1 Linked external stylesheets

One way to load an external stylesheet is to use the <link> tag within the <head> of
your document:

<head>
<title>Style linked</title>
<link rel=stylesheet type="text/css"
 href="http://www.kumquats.com/styles/gen_styles.css"
 title="The blues">
</head>
<body>
<h1>I'm so bluuuuoooo!</h1>
...
<h1> I am ba-loooooo, tooooo!</h1>

Recall that the <link> tag creates a relationship between the current document and
some other document on the Web. In this example, we tell the browser that the doc-
ument named in the href attribute is a cascading stylesheet (css), as indicated by the
type attribute. Referencing an external stylesheet in <link> requires that you include
the href and type attributes. We also tell the browser explicitly, albeit optionally,
that the file’s relationship to our document is that it is a stylesheet, and we provide
a title making it available for later reference by the browser. [The <link> Header
Element, 6.7.2]

The stylesheet-specifying <link> tag and its required href and type attributes must
appear in the <head> of a document. The URL of the stylesheet may be absolute or
relative to the document’s base URL.

8.1.4.2 Imported external stylesheets

The second technique for loading an external stylesheet imports the file with a spe-
cial command (a.k.a. at-rule) within the <style> tag:

<head>
<title>Imported stylesheet</title>
<style type="text/css">
 <!--
 @import url(http://www.kumquats.com/styles/gen_styles.css);
 @import "http://www.kumquats.com/styles/spec_styles.css";
 body {background: url(backgrounds/marble.gif)}
 -->
</style>
</head>

The @import at-rule expects a single URL for the network path to the external
stylesheet. As shown in this example, the URL may be either a string enclosed in
double quotes and ending with a semicolon or the contents of the url keyword,

236 | Chapter 8: Cascading Style Sheets

enclosed in parentheses, with a trailing semicolon. The URL may be absolute or rela-
tive to the document’s base URL.

The @import at-rule must appear before any conventional style rules, either in the
<style> tag or in an external stylesheet. Otherwise, the standard insists that the
browser ignore the errant @import. By first importing all the various stylesheets, then
processing document-level style rules, the CSS2 standard cascades: the last one
standing wins. [URL property values, 8.4.1.4]

The @import at-rule can appear in a document-level style definition or even in
another external stylesheet, letting you create nested stylesheets.

8.1.5 Media-Specific Styles
Besides the media attribute for the <style> tag, the CSS2 standard has two other fea-
tures that let you apply different stylesheets, depending on the agent or device that
renders your document. This way, for instance, you can have one style or whole
stylesheet take effect when your document gets rendered on a computer screen and
another set of styles for when the contents get punched out on a Braille printer. And
what about those cell phones that access the Web?

Like the media attribute for the <style> tag that affects the entire stylesheet, you can
specify whether the user’s document processor loads and uses an imported stylesheet.
Do that by adding a media-type keyword or a series of comma-separated keywords to
the end of the @import at-rule. For instance, the following example lets the user agent
decide whether to import and use the speech-synthesis stylesheet or a common PC dis-
play and print stylesheet, if it is able to render the specified media types:

@import url(http://www.kumquats.com/styles/visual_styles.css) screen,print;
@import "http://www.kumquats.com/styles/speech_styles.css" aural;

The @import CSS2 media types are the same as those for the <style> tag’s media

attribute, including all, aural, braille, embossed, handheld, print, projection,
screen, tty, and tv.

Another CSS2 way to select media is through the explicit @media at-rule, which lets you
include media-specific rules within the same stylesheet, either at the document level or
in an external stylesheet. At the document level, as with @import, the @media at-rule
must appear within the contents of the <style> tag. The at-rules may not appear within
another rule. Unlike @import, @media may appear subsequent to other style rules, and
its style-rule contents override previous rules according to the cascading standard.

The contents of @media include one or more comma-separated media-type keywords
followed by a curly brace ({})-enclosed set of style rules. For example:

body {background: white}
@media tv, projection {
 body {background: yellow}
 }

8.1 The Elements of Styles | 237

The yellow attribute to the @media at-rule causes the body’s background color to dis-
play yellow, rather than the default white set in the general style rule, when the docu-
ment is rendered on a television or projection screen (as specified by the tv and
projection attributes).

8.1.6 Linked Versus Imported Stylesheets
At first glance, it may appear that linked and imported stylesheets are equivalent,
using different syntax for the same functionality. This is true if you use just one
<link> tag in your document. However, special CSS2-standard rules come into play if
you include two or more <link> tags within a single document.

With one <link> tag, the browser should load the styles in the referenced stylesheet
and format the document accordingly, with any document-level and inline styles
overriding the external definitions. With two or more <link> tags, the browser
should present the user with a list of all the linked stylesheets. The user then selects
one of the linked sheets, which the browser loads and uses to format the document;
the other linked stylesheets get ignored.

On the other hand, the styles-conscious browser merges, as opposed to separating,
multiple @imported stylesheets to form a single set of style rules for your document.
The last imported stylesheet takes precedence if there are duplicate definitions among
the stylesheets. Hence, if the external gen_styles.css stylesheet specification first tells the
browser to make <h1> contents blue and italic, and then a later spec_styles.css tells the
browser to make <h1> text red, the <h1> tag contents appear red and italic. And if we
later define another color—say, yellow—for <h1> tags in a document-level style defini-
tion, the <h1> tags are all yellow and italic. Cascading effects. See?

In practice, the popular browsers treat linked stylesheets just like imported ones by
cascading their effects. The browsers do not currently let you choose from among
linked choices. Imported styles override linked external styles, just as the document-
level and inline styles override external style definitions. To bring this all together,
consider this example:

<html>
<head>
<link rel=stylesheet href=sheet1.css type=text/css>
<link rel=stylesheet href=sheet2.css type=text/css>
<style>
<!--
 @import url(sheet3.css);
 @import url(sheet4.css);
-->
</style>
</head>

Using the CSS2 model, the browser should prompt the user to choose sheet1.css or
sheet2.css. It should then load the selected sheet, followed by sheet3.css and sheet4.css.
Duplicate styles defined in sheet3.css or sheet4.css, and in any inline styles, override

238 | Chapter 8: Cascading Style Sheets

styles defined in the selected sheet. In practice, the popular browsers cascade the
stylesheet rules as defined in the example order sheet1 through sheet4.

8.1.7 Limitations of Current Browsers
All the popular browsers support the <link> tag to apply an external stylesheet to a
document. None supports multiple, user-selectable <link> stylesheets, as proposed
by the CSS2 standard. Instead, they treat the <link> stylesheets as they do @import or
document-level styles, by cascading the rules.

Netscape version 6, but not earlier versions, Internet Explorer versions 5 and later, as
well as all versions of Opera and Firefox, honor the @import and the @media at-rules,
for both document-level and external sheets, allowing sheets to be nested.

Achieving media-specific styles through external stylesheets with earlier Netscape
browsers is hopeless. Assume, therefore, that most people who have Netscape ver-
sion 4 will render your documents on a common PC screen, so make screen the
default. Then embed all other media-specific styles, such as those for print or Braille,
within @media at-rules so that CSS-compliant agents properly select styles based on
the rendering medium.

Another alternative is to create media-specific <style> tags within each document.
Run, do not walk, away from that idea.

8.1.8 Style Comments
Comments are welcome inside the <style> tag and in external stylesheets, but treat
them differently than HTML comments: stylesheets aren’t HTML. Rather, enclose
style comments between /* and */ markers, as we did in the example in section 8.1.2,
earlier in this chapter. (Those of you who are familiar with the C programming lan-
guage will recognize these comment markings.) Use this comment syntax for both doc-
ument-level and external stylesheets. Comments cannot be nested.

We recommend documenting your styles whenever possible, especially in external
stylesheets. Whenever the possibility exists that other authors may use your styles,
comments make it much easier to understand your styles.

8.1.9 Style Precedence
You may import multiple external stylesheets and combine them with document-level
and inline style effects in many different ways. Their effects cascade (hence the name,
of course). You may specify the font type for our example <h1> tag, for instance, in an
external style definition, whereas its color may come from a document-level stylesheet.

Stylesheet effects are not cumulative, however: of the many styles that may define
different values for the same property—colors for the contents of our example tag,

8.2 Style Syntax | 239

for instance—the one that takes precedence can be found by following these rules,
listed here in order:

Sort by origin
A style-defined “closer” to a tag takes precedence over a more “distant” style; an
inline style takes precedence over a document-level style, which takes prece-
dence over the effects of an external style.

If more than one applicable style exists, sort by class
A property defined as a class of a tag (see section 8.3, later in this chapter) takes
precedence over a property defined for the tag in general.

If multiple styles still exist, sort by specificity
The properties for a more specific contextual style (see section 8.2.3, later in this
chapter) take precedence over properties defined for a less specific context.

If multiple styles still exist, sort by order
The property specified latest takes precedence.

The relationship between style properties and conventional tag attributes is almost
impossible to predict. For instance, stylesheet-dictated background and foreground
colors—whether defined externally, at the document level, or inline—override the
various color attributes that may appear within a tag. But the align attribute of an
inline image usually takes precedence over a style-dictated alignment.

Myriad style and tag presentation-attribute combinations exist. You need a crystal
ball to predict which combination wins and which loses the precedence battle. The
rules of redundancy and style-versus-attribute precedence are elucidated in the W3C
CSS2 standard, but no clear pattern of precedence is implemented in the styles-con-
scious browsers. This is particularly unfortunate because there will be an extended
period, perhaps several more years, in which users may or may not use styles-con-
scious browsers. Authors must implement both styles and nonstyle presentation con-
trols to achieve the same effects.

Nonetheless, our recommendation is to run—as fast as you can—from one-shot,
inline, localized kinds of presentation effects such as those afforded by the tag
and color attribute. They have served their temporary purpose; it’s now time to bring
consistency (without the pain!) back into your document presentation. Use styles.

8.2 Style Syntax
The syntax of a style—its “rule,” as you may have gleaned from our previous exam-
ples—is very straightforward.

8.2.1 The Basics
A style rule is made up of at least two basic parts: a selector, which is the name of the
HTML or XHTML markup element (tag name) that the style rule affects, followed

240 | Chapter 8: Cascading Style Sheets

by a curly brace ({})-enclosed, semicolon-separated list of one or more style
property:value pairs:

selector {property1:value1; property2:value1; ...}

For instance, we might define the color property for the contents of all the level-1
header elements of our document to be the value green:

h1 {color: green}

In this example, h1 is the selector, which is also the name of the level-1 header ele-
ment, color is the style property, and green is the value.

Most properties require at least one value, but may have two or more values.
Comma-separated values typically indicate a series of options as accepted by the
property, of which the first valid value applies to the property, whereas space-sepa-
rated values each apply separately to the property. The last valid value may override
a previous value:

selector {property3:value1 value2 value3}
selector {property4:value1, value2, value3}

For instance, the following display background will be black, not white or gray, even
though you specify both white and black values in the rule:

body {background: white black}

Current styles-conscious browsers ignore letter case in any element of a style rule.
Hence, H1 and h1 are the same selector, and COLOR, color, ColOR, and cOLor are equiv-
alent properties. At one time, convention dictated that HTML authors write selector
names in uppercase characters, such as H1, P, and STRONG. This convention is still
common and is used in the W3C’s own CSS2 document.

However, current standards dictate, particularly for XML-compliant documents, that
element names be identical to their respective Document Type Definitions (DTDs).
With XHTML, for instance, all element names are lowercase (e.g., h1, p, and strong), so
their respective CSS2 selectors must be in lowercase. We abide by the latter convention.

Any valid element name (a tag name minus its enclosing < and > characters and
attributes) can be a selector. You may include more than one tag name in the list of
selectors, as we explain in the following sections.

8.2.2 Multiple Selectors
When separated by commas, all the elements named in the selector list are affected
by the property values in the style rule. This makes life easy for authors. For instance:

h1, h2, h3, h4, h5, h6 {text-align: center}

does exactly the same thing as:

h1 {text-align: center}
h2 {text-align: center}
h3 {text-align: center}

8.2 Style Syntax | 241

h4 {text-align: center}
h5 {text-align: center}
h6 {text-align: center}

Both styles tell the browser to center the contents of header levels 1 through 6. For
most authors, the first version is easier to type, understand, and modify. And it takes
less time and fewer resources to transmit across a network, though the effect is triv-
ial. Define styles in the manner that is most comfortable for you. You don’t have to
use multiple selectors.

8.2.3 Contextual Selectors
Normally, the styles-conscious browser applies document-level or imported styles to a
tag’s contents wherever they appear in your document, without regard to context. How-
ever, the CSS2 standard defines a way to have a style applied only when a tag occurs
within a certain context within a document, such as when it is nested within other tags.

To create a contextual selector, list the tags in the order in which they should be
nested in your document, outermost tag first. Then, when the browser encounters
that nesting order, the style properties are applied to the last tag in the list.

For example, here’s how you might use contextual styles to create a classic outline,
complete with uppercase Roman numerals for the outer level, capital letters for the
next level, Arabic numerals for the next, and lowercase letters for the innermost level:

ol li {list-style: upper-roman}
ol ol li {list-style: upper-alpha}
ol ol ol li {list-style: decimal}
ol ol ol ol li {list-style: lower-alpha}

According to the example stylesheet, when the styles-conscious browser encounters
the tag nested within one tag, it uses the upper-roman value for the list-
style property of the tag. When it sees an tag nested within two tags,
the browser uses the upper-alpha list style. Nest an tag within three and four
 tags, and you’ll see the decimal and lower-alpha list styles, respectively. Com-
pare Figure 8-1, displayed from the preceding example, with using the tag’s type
attribute to achieve similar effects, as shown in Figure 7-7 in Chapter 7.

Similarly, you may impose a specific style on tags related only by context. For instance,
this contextual style definition colors the emphasis () tag’s contents red only when
it appears inside a level-1 header tag (<h1>), not elsewhere in the document:

h1 em {color: red}

If there is potential ambiguity between two contextual styles, the more specific con-
text prevails.

Like individual tags, you may have several contextual selectors mixed with individual
selectors, separated by commas, sharing the same list of style declarations. For example:

h1 em, p strong, address {color: red}

242 | Chapter 8: Cascading Style Sheets

means you’ll see red whenever the tag appears within an <h1> tag, when the
 tag appears within a <p> tag, and for the contents of the <address> tag.

The nesting need not be exact to match the rule. For example, if you nest the
 tag within a tag within a <p> tag, you’ll still match the rule for p strong

that we defined earlier. If a particular nesting matches several style rules, the most
specific rule is used. For example, if you defined two contextual selectors:

p strong {color: red}
p ul strong {color: blue}

and you use the sequence <p> in your document, the second, more spe-
cific rule applies, coloring the contents of the tag blue.

8.2.4 Universal, Child, and Adjacent Selectors
The CSS2 standard defines additional patterns for selectors besides commas and
spaces, as illustrated in the following examples:

* {color: purple; font: ZapfDingBats}
ol > li {font-size: 200%; font-style: italic}
h1 + h2 {margin-top: +4mm}

In the first example, the universal asterisk selector applies the style to all elements of
your document so that any text gets displayed in Zapf Dingbat characters.* The sec-
ond example selects a particular child/parent relationship; in this case, items in an

Figure 8-1. Nested ordered list styles

* Assuming, of course, that the style is not overridden by a subsequent rule.

8.2 Style Syntax | 243

ordered list. The third example illustrates the adjacent selector type, which selects for
one tag immediately following another in your document. In this case, the special
selector adds vertical space to instances in which your document has a level-2 header
immediately following a level-1 header.

8.2.5 Attribute Selectors
It is possible to attach a style to only those HTML/XHTML elements that have spe-
cific attributes. You do this by listing the desired attributes in square brackets ([])
next to the element name, before the style definition:

div[align] { font-style: italic }
div[align=left] {font-style: italic }
div[title~="bibliography"] { font-size: smaller }
div[lang|="en"] {color: green }

The first example is the simplest: it italicizes the subsequent text contents of only
those <div> tags that contain the align attribute, regardless of the value assigned to
the attribute. The second example is a bit pickier; it matches only <div> tags whose
align attributes are set to left.

The third example matches any <div> tag whose title attribute contains the word
bibliography, specifically delimited by one or more spaces. Partial word matches do
not count; if you used div[title~="a"], you would match only <div> tags whose
title attributes contained a single “a” delimited by spaces (or at the beginning or
end of the title).

The final example matches any <div> tag whose lang attribute is set to a hyphen-
separated list of words, beginning with “en.” This example matches attributes such
as lang=en, lang=en-us, and lang=en-uk.

You may combine the universal selector with attribute selectors to match any ele-
ment with a specific attribute. For example:

*[class=comment] { display: none }

would hide all the elements in your document whose class attributes are set to
comment.

Netscape, Firefox, Opera, and other modern browsers support attribute selectors; for
unknown reasons, Internet Explorer does not.

8.2.6 Pseudoelements
Some elemental relationships in your documents you cannot explicitly tag. The drop-
cap is a common print style, but how do you select the first letter in a paragraph?
There are ways, but you have to identify each instance separately. There is no tag for
the first line in a paragraph. And sometimes you might want the browser to automat-
ically generate content, such as to add the prefix “Item #” and automatically num-
ber each item in an ordered list.

244 | Chapter 8: Cascading Style Sheets

CSS2 introduces four new pseudoelements that let you define special relationships
and styles for their display (:first-line, :first-letter, :before, and :after).
Declare each as a colon-separated suffix of a standard markup element. For example:

p:first-line {font-size: 200%; font-style: italic}

means that the browser should display the first line of each paragraph italicized and
twice as large as the rest of the text. Similarly:

p:first-letter {font-size: 200%; float: left}

tells the browser to make the first letter of a paragraph twice as large as the remain-
ing text and to float the letter to the left, allowing the first two lines of the paragraph
to float around the larger initial letter (see Figure 8-2).*

The :before and :after pseudoelements let you identify where in your document
you insert generated content such as list numbers and special lead-in headers. Hence,
these pseudoelements go hand in hand with the CSS2 content and counter proper-
ties. To whet your appetite, consider this example:

ul {counter-reset: item; list-style: none}
ul li:before {content: "Item #" counters(item, ".") " ";
 counter-increment: item}
...

 This is item number 1.

 This is sub-item number 1.1.

 This is item number 2.

 This is sub-item 2.1.
 This is sub-item 2.2.
... and so on

Figure 8-2. Use the first-letter pseudoelement to select the first letter of text within a tag’s content

* The properties you can specify for the :first-letter and :first-line pseudoelements are font, color,
background, text-decoration, vertical-align, text-transform, line-height, and clear. And in addition,
the :first-letter pseudoelement accepts the margin properties, padding properties, border properties,
and float. The :first-line pseudoelement also accepts the word-spacing and letter-spacing properties.

8.3 Style Classes | 245

All the popular browsers support the pseudoelements, generating effects such as that
shown in Figure 8-2. However, Internet Explorer does not support the content prop-
erty and Netscape doesn’t support counters. So only the newcomers, Firefox and
Opera, properly display the progressively numbered unordered list items, defined by
the foregoing example and shown in Figure 8-3.

8.3 Style Classes
CSS2 allows you to define several different styles for the same element by naming a
class for each style at the document level or in an external stylesheet. Later in a docu-
ment, you explicitly select which style to apply by including the styles-related class

attribute with the related name value in the respective tag.

8.3.1 Regular Classes
For example, in a technical paper, you might want to define one paragraph style for
the abstract, another for equations, and a third for centered quotations. Differentiate
these paragraphs by defining each as a different style class:

<style type="text/css">
<!--
p.abstract {font-style: italic;
 margin-left: 0.5cm;
 margin-right: 0.5cm}
p.equation {font-family: Symbol;
 text-align: center}
h1, p.centered {text-align: center;
 margin-left: 0.5cm;
 margin-right: 0.5cm}
-->
</style>

Notice first in the example that defining a class is simply a matter of appending a
period-separated class name as a suffix to the tag name as the selector in a style rule.
Unlike the XHTML-compliant selector, which is the name of the standard tag and

Figure 8-3. Style counters combine with pseudoelements to create outline-line numbering

246 | Chapter 8: Cascading Style Sheets

must be in lowercase, the class name can be any sequence of letters, numbers, and
hyphens, but it must begin with a letter.* Careful, though: case does matter, so
abstract is not the same as AbsTRact. Classes, like selectors, may be included with
other selectors, separated by commas, as in the third example. The only restriction on
classes is that they cannot be nested; for example, p.equation.centered is not valid.

Accordingly, the first rule in the example creates a class of paragraph styles named
abstract whose text is italic and indented from the left and right margins by 0.5 centi-
meters. Similarly, the second paragraph style class, equation, instructs the browser to
center the text and to use the Symbol typeface to display the text. The last style rule
creates a style with centered text and 0.5-centimeter margins, applying this style to all
level-1 headers as well as creating a class of the <p> tag named centered with that style.

To use a particular class of a tag, you add the class attribute to the tag, as in this
example (Figure 8-4):

<p class=abstract>
This is the abstract paragraph. See how the margins are indented?
</p>
<h3>The equation paragraph follows</h3>
<p class=equation>
a = b + 1
</p>
<p class=centered>
This paragraph's text should be centered.
</p>

For each paragraph, the value of the class attribute is the name of the class to be
used for that tag.

* Due to its support of JavaScript stylesheets, Netscape 4 cannot handle class names that happen to match
JavaScript keywords. The class abstract, for instance, generates an error in Netscape 4.

Figure 8-4. Use classes to distinguish different styles for the same tag

8.3 Style Classes | 247

8.3.2 Generic Classes
You also may define a class without associating it with a particular tag and apply that
class selectively through your documents for a variety of tags. For example:

.italic {font-style: italic}

creates a generic class named italic. To use it, simply include its name with the
class attribute. For instance, <p class=italic> and <h1 class=italic> create an italic
paragraph and level-1 header, respectively.

Generic classes are quite handy and make it easy to apply a particular style to a
broad range of tags. All the popular browsers support CSS2 generic classes.

8.3.3 ID Classes
Almost all HTML tags accept the id attribute, which assigns a unique identifier to an
element within the document. Besides being the target of a URL or identified in an
automated document-processing tool, the id attribute can also specify a style rule for
the element.

To create a style class that the styles-conscious browser applies to only those por-
tions of your document explicitly tagged with the id attribute, follow the same syn-
tax as for style classes, except with a # character before the class name instead of a
period. For example:

<style>
<!--
#yellow {color : yellow}
h1#blue {color : blue}
-->
</style>

Within your document, use that same id name to apply the style, such as <h1

id=blue> to create a blue heading. Or, as in the example, use id=yellow elsewhere in
the document to turn a tag’s contents yellow. You can mix and match both class

and id attributes, giving you a limited ability to apply two independent style rules to
a single element.

There is a dramatic drawback to using style classes this way: the HTML and XHTML
standards dictate that the value of the id attribute be unique for each instance in
which it’s used within the document. Yet here, we have to use the same value to
apply the style class more than once.

Even though current browsers let you get away with it, we strongly discourage creat-
ing and using the id kinds of style classes. Stick to the standard style class conven-
tion to create correct, robust documents.

248 | Chapter 8: Cascading Style Sheets

8.3.4 Pseudoclasses
In addition to conventional style classes, the CSS2 standard defines pseudoclasses,
which allow you to define the display style for certain tag states, such as changing the
display style when a user selects a hyperlink. You create pseudoclasses as you do reg-
ular classes, but with two notable differences: they are attached to the tag name with
a colon rather than a period, and they have predefined names, not arbitrary ones you
may give them. There are seven pseudoclasses, three of which are explicitly associ-
ated with the <a> tag.

8.3.4.1 Hyperlink pseudoclasses

CSS2-compliant browsers distinguish three special states for the hyperlinks created
by the <a> tag: not yet visited, currently being visited, and already visited. The
browser may change the appearance of the tag’s contents to indicate its state, such as
with underlining or color. Through pseudoclasses, you may control how these states
get displayed by defining styles for a:link (not visited), a:active (being visited), and
a:visited.

The :link pseudoclass controls the appearance of links that are not selected by the
user and have not yet been visited. The :active pseudoclass defines the appearance of
links that are currently selected by the user and are being processed by the browser.
The :visited pseudoclass defines those links that the user has already visited.

To completely define all three states of the <a> tag, you might write:

a:link {color: blue}
a:active {color: red; font-weight: bold}
a:visited {color: green}

In this example, the styles-conscious browser renders unvisited links in blue. When
the user selects a link, the browser changes its color to red and makes it bold. Once
visited, the link reverts to green.

8.3.4.2 Interaction pseudoclasses

The CSS2 standard defines two new pseudoclasses that, along with :active, relate to
user actions and advise the interactive agent, such as a browser, how to display the
affected element as the user interacts with the element. In other words, these two
pseudoclasses—hover and focus—are dynamic.

For instance, when you drag the mouse over a hyperlink in your document, the browser
may change the mouse-pointer icon. Hovering can be associated with a style that
appears only while the mouse is over the element. For example, if you add the :hover
pseudoclass to our example list of hyperlink style rules:

a:hover {color: yellow}

8.3 Style Classes | 249

the text associated with unvisited links normally appears blue, but turns yellow when
you point to it with the mouse, red after you click the link and while you are visiting
it, and green after you’re done visiting the hyperlink.

Similarly, the :focus pseudoclass lets you change the style for an element when it
becomes the object of attention. An element may be under focus when you tab to it,
click on it, or, depending on the browser, advance the cursor to it. Regardless of how
the focus got to the element, the style rules associated with the focus pseudoclass are
applied only while the element has the focus.

8.3.4.3 Nesting and language pseudoclasses

The CSS2 :first-child pseudoclass lets you specify how an element may be ren-
dered when it is the first instance, or child, of the containing element. For instance,
the following rule gets applied to a paragraph when it is the first element of a divi-
sion; there can be no intervening elements (notice the special greater-than bracket
syntax relating the first child with its parent element):

div > p:first-child {font-style: italic}

Accordingly, the first paragraph in the following HTML fragment would be ren-
dered in italics by a CSS2-compliant browser because it is the first child element of
its division. Conversely, the second paragraph comes after a level-2 header, which is
the first child of the second division. So, that second paragraph in the example gets
rendered in plain text, because it is not the first child of its division (Figure 8-5):

<div>
 <p>
 I get to be in italics because my paragraph is the first child of the division.
 </p>
</div>
<div>
 <h2> New Division</h2>
 <p>
 I'm in plain text because my paragraph is a second child of the division.

Figure 8-5. The first-child pseudoclass in action

250 | Chapter 8: Cascading Style Sheets

Finally, the CSS2 standard defines a new pseudoclass that lets you select an element
based on its language. For instance, you might include the lang=fr attribute in a
<div> tag to instruct the browser that the division contains French language text. The
browser may specially treat the text. Or, you may impose a specific style with the
pseudoclass :lang. For example:

div:lang(it) {font-family: Roman}

says that text in divisions of a document that contain the Italian language should use
the Roman font family. Appropriate, don’t you think? Notice that you specify the
language in parentheses immediately after the lang keyword. Use the same two-let-
ter International Organization for Standardization (ISO) standard code for the
pseudoclass :lang as you do for the lang attribute. [The lang attribute, 3.6.1.2]

8.3.4.4 Browser support of pseudoclasses

None of the popular browsers supports the :lang or :focus pseudoclass yet. All the
current popular browsers support the :link, :active, :hover, and :visited

pseudoclasses for the hyperlink tag (<a>), as well as :first-child. Even though you
may use :active for other elements, none of the browsers yet supports applications
beyond the <a> tag.

8.3.5 Mixing Classes
Mix pseudoclasses with regular classes by appending the pseudoclass name to the
selector’s class name. For example, here are some rules that define plain, normal,
and fancy anchors:

a.plain:link, a.plain:active, a.plain:visited {color: blue}
a:link {color: blue}
a:visited {color: green}
a:active {color: red}
a.fancy:link {font-style: italic}
a.fancy:visited {font-style: normal}
a.fancy:active {font-weight: bold; font-size: 150%}

The plain version of <a> is always blue, no matter what the state of the link is.
Accordingly, normal links start out blue, turn red when active, and convert to green
when visited. The fancy link inherits the color scheme of the normal <a> tag, but ital-
icizes the text for unvisited links, converts back to normal text after being visited,
and actually grows 50 percent in size and becomes bold when active.

A word of warning about that last property of the fancy class: specifying a font-size
change for a transient display property results in lots of browser redisplay activity
when the user clicks the link. Given that some browsers run on slow machines, this
may not be visually refreshing for your readers. Given also that implementing that
sort of display change is something of a pain, it is unlikely that most browsers will
support radical appearance changes in <a> tag pseudoclasses.

8.4 Style Properties | 251

8.3.6 Class Inheritance
Classes inherit the style properties of their generic base tags. For instance, all the
properties of the plain <p> tag apply to a specially defined paragraph class, except
where the class overrides a particular property.

Classes cannot inherit from other classes, only from the unclassed versions of the
tags they represent. In general, therefore, you should put as many common styles as
possible into the rule for the basic version of a tag and create classes only for those
properties that are unique to that class. This makes maintenance and sharing of your
style classes easier, especially for large document collections.

8.4 Style Properties
At the heart of the CSS2 standard are the many properties that let you control how
the styles-conscious browser presents your documents to the user. The standard col-
lects these properties into six groups: fonts, colors and backgrounds, text, boxes and
layout, lists, and tag classification. We’ll stick with that taxonomy and preface the
whole shebang with a discussion of property values and inheritance before diving
into the properties themselves.

You’ll find a summary of the style properties in Appendix C.

8.4.1 Property Values
Most properties set a value to some characteristic of your document for rendering by
the browser—the size of the characters in a font or the color of level-2 headers, for
example. As we discussed earlier, when describing the syntax of styles, you give value
to a CSS2 property by following the property’s keyword with a colon (:) and one or
more space- or comma-separated numbers or value-related keywords. For example:

color:blue
font-family: Helvetica, Univers, sans-serif

color and font-family are the properties in these two style examples; blue and the
various comma-separated font names are their values, respectively.

There are eight kinds of property values: keywords, length values, percentage values,
URLs, colors, angles, time, and frequencies.

8.4.1.1 Keyword property values

A property may have a keyword value that expresses action or dimension. For
instance, the effects of underline and line-through are obvious property values. And
you express property dimensions with such keywords as small and xx-large. Some
keywords are even relational: bolder, for instance, is an acceptable value for the
font-weight property. Keyword values are not case sensitive: Underline, UNDERLINE,
and underline are all acceptable keyword values.

252 | Chapter 8: Cascading Style Sheets

8.4.1.2 Length property values

So-called length values (a term taken from the CSS2 standard) explicitly set the size
of a property. They are numbers, some with decimals, too. Length values may have a
leading + or – sign to indicate that the value is to be added to or subtracted from the
current value of the property. Length values must be followed immediately by a two-
letter unit abbreviation, with no intervening spaces.

There are three kinds of length-value units: relative, pixels, and absolute. Relative
units specify a size that is relative to the size of some other property of the content.
Currently, there are only two relative units: em, which is the width of the lowercase
letter “m” in the current font; and x-height, abbreviated ex, which is the height of the
letter “x” in the current font.

Pixels are the tiny dots of colored light that make up the onscreen text and images on
a computer monitor or TV image. The pixels unit, abbreviated px, is equal to the
minute size of 1 pixel, so you may express the size of some properties by how many
pixels across or down they run.

Absolute property value units are more familiar to us all. They include inches (in), cen-
timeters (cm), millimeters (mm), points (pt; 1/72 of an inch), and picas (pc; 12 points).

All of the following are valid length values, although the current styles-conscious
browsers do not recognize all units:

1in
1.5cm
+0.25mm
-3pt
-2.5pc
+100em
-2.75ex
250px

8.4.1.3 Percentage property values

Similar to the relative length property value type, a percentage value describes a pro-
portion relative to some other aspect of the content. It has an optional sign, meaning
it may be added to or subtracted from the current value for that property, and
optional decimal portion to its numeric value. Percentage values have the percent
sign (%) suffix. For example:

line-height: 120%

computes the separation between lines to be 120 percent of the current line height
(usually relative to the text font height). Note that this value is not dynamic: changes
made to the font height after the rule has been processed by the browser do not
affect the computed line height.

8.4 Style Properties | 253

8.4.1.4 URL property values

Some properties also accept, if not expect, a URL value. The syntax for a CSS2 URL
property value is different from that in HTML/XHTML:

url(service://server.com/pathname)

With CSS2 properties, the keyword url is required, as are the opening and closing
parentheses. Do not leave any spaces between url and the opening parenthesis. The
url value may contain either an absolute or a relative URL. However, the URL is rel-
ative to the stylesheet’s URL, not necessarily the document’s base URL. This means
that if you use a url value in a document-level or inline style, the URL is relative to
the HTML document containing the style document. Otherwise, the URL is relative
to the @imported or <link>ed external stylesheet’s URL.

8.4.1.5 Color property values

Color values specify colors in a property (surprised?). You can specify a color as a
color name or a hexadecimal RGB triple, as for common HTML/XHTML attributes,
or as a decimal RGB triple unique to style properties. Both color names and hexadec-
imal RGB triple notation are described in Appendix G.

With CSS2, too, you may assign just one hexadecimal digit instead of two to the red,
green, and blue (RGB) components of a color. That digit is simply doubled to create
a conventional six-digit triple. Thus, the color #78C is equivalent to #7788CC. In gen-
eral, three-digit color values are handy only for simple colors.

The decimal RGB triple notation is unique:

rgb(red, green, blue)

The red, green, and blue intensity values are decimal integers in the range 0 to 255,
or integer percentages. As with a url value, do not leave any spaces between rgb and
the opening parenthesis.

For example, in decimal RGB convention, the color white is rgb(255, 255, 255) or
rgb(100%, 100%, 100%), and a medium yellow is rgb(127, 127, 0) or rgb(50%, 50%, 0%).

8.4.1.6 Angle, time, and frequency property values

A few properties require a value that expresses an angle, such as the heading of a
compass. These properties take a numeric value followed by the units deg (degrees),
grad (gradations), or rad (radians). Similarly, express time values as numbers fol-
lowed by either ms (milliseconds) or s (seconds) units.

Finally, frequency values are numbers followed by Hz (hertz) or kHz (1 kilohertz =
1000 Hz). Interestingly, there is no corresponding MHz or GHz units, because frequen-
cies in CSS2 refer to audio, not TV, FM radio, Bluetooth wireless networking, or
other electromagnetic waves.

254 | Chapter 8: Cascading Style Sheets

8.4.2 Property Inheritance
In lieu of a specific rule for a particular element, properties and their values for tags
within tags are inherited from the parent tag. Thus, setting a property for the <body>
tag effectively applies that property to every tag in the body of your document,
except for those that specifically override it. So, to make all the text in your docu-
ment blue, you need only write:

body {color: blue}

instead of creating a rule for every tag you use in your document.

This inheritance extends to any level. If you later created a <div> tag with text styled
by a different color, the styles-conscious browser would display all the text contents
of that <div> tag and all its enclosed tags in that new color. When the <div> tag ends,
the color reverts to that of the containing <body> tag.

In many of the following property descriptions, we refer to the tag containing the
current tag as the parent element of that tag.

8.4.3 Font Properties
The loudest complaint that we hear about HTML and its progeny, XHTML, is that
they lack font styles and characteristics that even the simplest of text editors imple-
ment. The various attributes address part of the problem, but they are tedious
to use, because each text font change requires a different tag.

Stylesheets simplify all that, of course. The CSS2 standard provides seven font prop-
erties that modify the appearance of text contained within the affected tag: font-
family, font-size, font-size-adjust, font-style, font-variant, font-stretch, and
font-weight. In addition, there is a universal font property in which you can declare
all the font values.

Please be aware that stylesheets cannot overcome limitations of the user’s display/
document-rendering system, and the browser cannot conjure effects if the fonts it
uses do not provide the means.

8.4.3.1 The font-family property

The font-family property accepts a comma-separated list of font names. The
browser uses the first font named in the list that also is installed and available for dis-
play on the client machine for text display.

Font-name values are for specific font styles, such as Helvetica and Courier, or for a
generic font style, as defined by the CSS2 standard: serif, sans-serif, cursive,
fantasy, and monospace. The browser defines which font it actually uses for each
generic font. For instance, Courier is the most popular choice for a monospaced font.

8.4 Style Properties | 255

Because fonts vary wildly among browsers, you should usually provide several choices
when specifying a font style, ending with a suitable generic font. For example:

h1 {font-family: Helvetica, Univers, sans-serif}

causes the browser to look for and use Helvetica, and then Univers. If neither font is
available for the client display, the browser uses the generic sans-serif typeface.

Enclose font names that contain spaces—New Century Schoolbook, for example—
in quotation marks. For instance:

p {font-family: Times, "New Century Schoolbook", Palatino, serif}

With inline styles, that extra set of double quotation marks causes problems. The
solution is to use single quotation marks in an inline style:

<p style="font-family: Times, 'New Century Schoolbook', Palatino, serif">

In practice, you don’t have to use quotation marks, because font-name values are
comma separated, so the browser normally ignores the spaces. Hence, both of the
following are legal:

p {font-family: Times, New Century Schoolbook, Palatino, serif}
<p style="font-family: Times, New Century Schoolbook, Palatino, serif">

Nonetheless, we recommend that you use quotation marks. It’s a good habit to get
into, and it makes things that much less ambiguous.

8.4.3.2 The font-size property

The font-size property lets you prescribe absolute or relative length values, percent-
ages, and keywords to define the font size. For example:

p {font-size: 12pt}
p {font-size: 120%}
p {font-size: +2pt}
p {font-size: medium}
p {font-size: larger}

The first rule is probably the most used, because it is the most familiar: it sets the
font size for text enclosed in your document’s paragraph(s) to a specific number of
points (12 in this example). The second example rule sets the font size to be 20 per-
cent larger than the parent element’s font size. The third increases the font’s normal
size by 2 points.

The fourth example selects a predefined font size set by the browser, identified by
the medium keyword. Valid absolute-size keywords are xx-small, x-small, small,
medium, large, x-large, and xx-large; these usually correspond to the seven font sizes
used with the size attribute of the tag.

The last font-size rule selects the next size larger than the font associated with the
parent element. Thus, if the size were normally medium, it would be changed to large.
You can also specify smaller, with the expected results.

256 | Chapter 8: Cascading Style Sheets

None of the current browsers handles incremented or decremented font sizes correctly.
Rather, they ignore the decrement sign and size altogether, and misinterpret the incre-
mented size value as an absolute size. For instance, in the middle example in this sec-
tion, the font size would end up as 2 points, not 2 points larger than the normal size.

8.4.3.3 The font-stretch property
In addition to different sizes, font families sometimes contain condensed and
expanded versions, in which the characters are squeezed or stretched, respectively.
Use the font-stretch property to choose more compressed or stretched-out charac-
ters from your font.

Use the property value of normal to select the normal-size version of the font. The rel-
ative values wider and narrower select the next-wider or next-narrower variant of the
font’s characters, respectively, but not wider or narrower than the most (“ultra”)
expanded or contracted one in the family.

The remaining font-stretch property values choose specific variants from the font
family. Starting from the most condensed and ending with the most expanded, the val-
ues are ultra-condensed, extra-condensed, condensed, semi-condensed, semi-expanded,
expanded, extra-expanded, and ultra-expanded.

The font-stretch property, of course, assumes that your display fonts support
stretchable fonts. Even so, the currently popular browsers ignore this property.

8.4.3.4 The font-size-adjust property

Without too many details, the legibility and display size of a font depend principally
on its aspect ratio: the ratio of its rendered size to its x-height, which is a measure of
the font’s lowercase glyph height. Fonts with aspect ratios approaching 1.0 tend to
be more legible at smaller sizes than fonts with aspect ratios approaching 0.

Also, because of aspect ratios, the actual display size of one font may appear smaller
or larger than another font at the same size. So, when one font is not available for
rendering, the substituted font may distort the presentation.

The font-size-adjust property lets you readjust the substituted font’s aspect ratio so
that it better fits the display. Use the property value of none to ignore the aspect ratio.
Otherwise, include your desired aspect ratio (a decimal value less than one), typically
the aspect ratio for your first-choice display font. The styles-conscious browser com-
putes and displays the substituted font at a size adjusted to your specified aspect ratio:

s = (n/a) * fs

where s is the new, computer font size for display of the substituted font, calculated
as the font-size-adjust value n divided by the substituted font’s aspect ratio a times
the current font size fs.

For example, let’s imagine that your first-choice font is Times New Roman, which
has an aspect ratio of 0.45. If it’s not available, the browser may then substitute

8.4 Style Properties | 257

Comic Sans MS, which has an aspect ratio of 0.54. So that the substitution main-
tains nearly equivalent sizing for the font display—say, at an 18-px font size—with
the font-size-adjust property set to 0.45, the CSS2-compliant browser would dis-
play or print the text with the substituted Comic Sans MS font at the smaller size of
(0.45/0.54 × 18 px) = 15 px.

Unfortunately, we can’t show you how the popular browsers would do this because
they don’t support it.

8.4.3.5 The font-style property
Use the font-style property to slant text. The default style is normal and may be
changed to italic or oblique. For example:

h2 {font-style: italic}

makes all level-2 header text italic. Netscape 4 supported only the italic value for
font-style; all current browsers support both values, although it is usually difficult
to distinguish italic from oblique.

8.4.3.6 The font-variant property
Use the font-variant property to display text in small capitals. The default value for
this property is normal, indicating the conventional version of the font. Otherwise,
give the property the value small-caps to select a version of the font in which the
lowercase letters have been replaced with small capital letters.

All the current browsers support this property. Internet Explorer versions 4 and 5
incorrectly displayed small-caps as all uppercase letters.

8.4.3.7 The font-weight property

The font-weight property controls the weight or boldness of the lettering. The
default value of this property is normal. You may specify bold to obtain a bold ver-
sion of a font or use the relative bolder and lighter values to obtain a version of the
font that is bolder or lighter than the parent element’s font.

To specify varying levels of lightness or boldness, set the value to a multiple of 100,
between the values 100 (lightest) and 900 (boldest). The value 400 is equal to the
normal version of the font, and 700 is the same as specifying bold.

The current browsers fully support this property.

8.4.3.8 The font property
More often than not, you’ll find yourself specifying more than one font-related prop-
erty at a time for a tag’s text content display. A complete font specification can get
somewhat unwieldy. For example:

p {font-family: Times, Garamond, serif;
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt}

258 | Chapter 8: Cascading Style Sheets

To mitigate this troublesome and potentially unreadable collection, use the compre-
hensive font property and group all the attributes into one set of declarations:

p {font: bold 12pt/14pt Times, Garamond, serif}

The grouping and ordering of font attributes is important within the font property.
The font style, weight, and variant attributes must be specified first, followed by the
font size and the line height separated by a slash character, and ending with the list
of font families. Of all the properties, the size and family are required; the others may
be omitted.

Here are a few more example font style rules:

em {font: italic 14pt Times}
h1 {font: 24pt/48pt sans-serif}
code {font: 12pt Courier, monospace}

The first example tells the styles-conscious browser to emphasize text using a
14-point italic Times face. The second rule has <h1> text displayed in the boldest 24-
point sans-serif font available, with an extra 24 points of space between the lines of
text. Finally, text within a <code> tag is set in 12-point Courier or the browser-
defined monospaced font.

We leave it to your imagination to conjure up examples of the abuses you could fos-
ter with font styles. Perhaps a recent issue of Wired magazine, notorious for avant-
garde fonts and other print-related abuses, would be helpful in that regard.

8.4.4 Font Selection and Synthesis
The original CSS standard, CSS1, had a simplistic font-matching algorithm: if your
specified font does not exist in the local client’s font collection, substitute a generic
font. Of course, the results are often less than pleasing to the eye and can wreak
havoc with the display. Moreover, there are often more suitable font substitutes than
generic ones. The CSS2 standard significantly extends the CSS1 font-matching model
and includes a new at-rule that lets authors define, download, and use new fonts in
their documents.

8.4.4.1 CSS2 font-matching steps

The CSS2 font-matching algorithm has four steps. The first step is simply to use the
specified font when it is found on the user’s machine; this could be one of several
font families specified in the stylesheet rule, parsed in their order of appearance.

The second step, taken when none of the fonts specified in the rule exists on the user’s
machine, has the browser attempt to find a close match among similar local fonts. For
example, a request for Helvetica might wind up using Arial, a similar sans-serif font.

The third step in the CSS2 font-matching algorithm has the browser try to synthesize a
font, taking a local font and changing it to match the specified one. For example, a

8.4 Style Properties | 259

request for 72-point Helvetica might be satisfied by taking the local 12-point Arial font
and scaling it up to match the desired size.

Failing all three previous steps, the browser may take a fourth step and download the
desired font, provided the author has supplied suitable external font definitions.
These external font definitions are created with the @font-face at-rule, whose gen-
eral syntax is:

@font-face {
 descriptor : value;
 ...
 descriptor : value
 }

Each @font-face at-rule defines a new font to the browser. Subsequent requests for
fonts may be satisfied by these new fonts. The browser uses the various descriptor
values to ensure that the font supplied matches the font requested.

8.4.4.2 Basic font descriptors

The basic font descriptors that you use in the @font-face at-rule correspond to the
CSS2 font properties and accept the same values as those properties. Accordingly,
use the font-family, font-style, font-variant, font-weight, font-stretch, and font-

size descriptors and their associated values to define a new font to the browser. For
example:

@font-face {
 font-family : "Kumquat Sans";
 font-style : normal, italic;
 src : url("http://www.kumquat.com/foundry/kumquat-sans")
 }

defines a font named Kumquat Sans that is available for download from www.
kumquat.com. Within that downloadable font, both the normal and the italic ver-
sions of Kumquat Sans are available. Because we provide no other font descriptors,
the browser assumes that all other font properties (weight, variant, etc.) can be satis-
fied within this font.

In general, omitting a font descriptor lets the browser match any value provided for
that descriptor. By providing one or more values for a font descriptor, you are
restricting the browser to match only those values in later font requests. Hence, you
should be as specific as possible when defining a font this way, to better ensure that
the browser makes good matches later. For example, if a font does not contain an
italic version and you fail to tell the browser, it may use an incorrect font when
attempting to fulfill a request for an italic style of that font.

8.4.4.3 The src descriptor

The src descriptor in the @font-face at-rule tells the browser where to retrieve the
font. For downloadable fonts, the value of this descriptor is its document URL,

260 | Chapter 8: Cascading Style Sheets

expressed in CSS2 syntax with the url keyword. To reference locally installed
fonts—ones stored on the user’s machine—with src, use the keyword local rather
than url and supply the local name of the font.

The src descriptor’s value may also be a list of locations, separated by commas. In
our previous example, we could have used:

src : url("http://www.kumquat.com/foundry/kumquat-sans"), local("Lucida Sans")

which asks the browser to download and use Kumquat Sans from www.kumquat.com
and, if that fails, to look for a locally installed copy of Lucida Sans.

You can even provide hints to the browser. CSS2 is decidedly nonpartisan when it
comes to the format of the font file. Recognizing that a number of different font for-
mats exist, the standard lets you use any format you want, presuming that the
browser can make sense of it. To provide a format hint, use the keyword format fol-
lowed by one or more format names, such as:

src : url("http://www.kumquat.com/foundry/kumquat-sans") format("type-1"),
 local("Lucida Sans") format("truetype", "intellitype")

In this case, the external font is in Type 1 format, and the local flavors of Lucida Sans
are available in both TrueType and Intellifont formats. Other recognized font formats
include truedoc-pfr, opentype, embedded-opentype, truetype, truetype-gx, and speedo.

8.4.4.4 Advanced font descriptors

In addition to the standard font descriptors, CSS2 supports a number of more eso-
teric ones that further refine the defined font. Typical page designers do not have
much need for these descriptors, but more discriminating typographers may find
them useful.

The unicode-range descriptor accepts a comma-separated list of Unicode values,
each beginning with U+ followed by a hexadecimal value. You can specify ranges of
values by adding a dash and another hexadecimal value; the question mark matches
any value in that position.

The purpose of the unicode-range descriptor is to define exactly which character
glyphs are defined in the font. If characters used in your document are not available,
the browser does not download and use the font. For example, a value of U+2A70
indicates that the font contains the glyph at that position in the font. Using U+2A7?

represents characters in the range 2A70 to 2A7F, and U+2A70-2A9F defines a broader
range. For the most part, this descriptor is used to restrict the use of special symbol
fonts to just those symbols defined in the font.

The units-per-em descriptor accepts a single numeric value defining the size of the
font’s em area. This value is important if you specify the values of other descriptors
using em units.

8.4 Style Properties | 261

The panose-1 descriptor accepts exactly 10 integer values, separated by spaces, corre-
sponding to the Panose-1 characterization of this font. Defining the actual Panose-1
values is well beyond the scope of this book; interested authors should refer to
appropriate documentation for the Panose-1 system for more information.

The stemv and stemh descriptors define the thickness, in ems, of the vertical and hori-
zontal strokes of the font. Similarly, the cap-height and x-height descriptors define
the height of the upper- and lowercase glyphs in the font. Finally, the ascent and
descent descriptors define the font’s maximum height and depth. If you use any of
these descriptors, you must also specify the units-per-em descriptor.

The slope descriptor defines the slope of the vertical stroke of the font. This is
important for matching italic and oblique versions of a font.

The baseline, centerline, mathline, and topline descriptors define the conventional
baseline, center baseline, mathematical baseline, and top baseline of the font. All
accept a numeric value expressed in ems. All require that you specify the units-per-
em descriptor, too.

The bbox descriptor accepts exactly two coordinate (X, Y) pairs, specifying the lower-
left and upper-right corners of the font’s bounding box. The bbox descriptor is
important if the browser chooses to synthesize a font based on this font. By specify-
ing the size of the bounding box, you ensure that the synthesized font occupies the
same space as the desired one.

The widths descriptor accepts a comma-separated list of Unicode ranges, followed by
space-separated values which define the widths of the characters in the indicated
range. If you supply one value for a range, all the characters in that range have the
same width. Multiple values are assigned to successive characters in a range. Like the
bbox descriptor, the widths descriptor is used to ensure good fidelity between a syn-
thesized font and its requested counterpart.

Finally, the optional definitions-src descriptor provides the URL of a file that con-
tains all of the descriptors for a font. This is handy if you need to define a font in
great detail. Instead of including the lengthy descriptors in each document or
stylesheet that uses the font, you define the descriptors once in a separate file and ref-
erence that file using the definitions-src descriptor.

8.4.5 Color and Background Properties
Every element in your document has a foreground and a background color. In some
cases, the background is not one color, but a colorful image. The color and
background style properties control these colors and images.

The children of an HTML/XHTML element normally inherit the foreground color of
their parent. For instance, if you make <body> text red, the styles-conscious browser
also displays header and paragraph text in red.

262 | Chapter 8: Cascading Style Sheets

Background properties behave differently, however—they are not inherited. Instead,
each element has a default background that is transparent, allowing the parent’s
background to show through. Thus, setting the background image of the <body> tag
does not cause that image to be reloaded for every element within the body tag.
Instead, the browser loads the image once and displays it behind the rest of the docu-
ment, serving as the background for all elements that do not themselves have an
explicit background color or image.

All the current popular browsers support the following background and color properties.

8.4.5.1 The background-color property

The background-color property controls the (you guessed it!) background color of an
element. Set it to a color value or to the keyword transparent (the default value). The
effects should be obvious.

While you may have become accustomed to setting the background color of an
entire document through the special attributes for the <body> tag, you can apply the
background-color style property to any element. For example, to set the background
color of one item in a bulleted list, you could use:

<li style="background-color: blue">

Similarly, you could give all the table header cells in a document a snapshot negative
effect with:

th {background-color: black; color: white}

If you really want your emphasized text to stand out, paint its background red:

em {background-color: red}

8.4.5.2 The background-image property

The background-image property puts an image behind the contents of an element. Its
value is either a URL or the keyword none (the default value).

As with background colors, you can place a background image behind the entire
document or behind selected elements of a document. With this style property,
effects such as placing an image behind a table or selected text are now simple:

<table style="background-image: url(backgrounds/woodgrain.gif)">
li.marble {background-image: url(backgrounds/marble.gif)}

The first example uses an inline style to place a wood grain finish behind a table. The
second defines a list-item class that places a marble background behind tags
that use the class=marble attribute. For example, this XHTML snippet:

<h2>Here's what's for dinner tonight:</h2>

 <li class="marble">Liver with Onions
 <li class="marble">Mashed Potatoes and Gravy
 <li class="marble">Green Beans

8.4 Style Properties | 263

 <li class="marble">Choice of Milk, Tea, or Coffee

<h2>And for dessert:</h2>

 Creamed Quats in Milk (YUM! YUM!)

produces a result like that in Figure 8-6.

If the image is larger than the containing element, it is clipped to the area occupied
by the element. If the image is smaller, it is repeated to tile the area occupied by the
element, as dictated by the value of the background-repeat attribute.

You control the starting position of the image within the element with the
background-position property. The background-attachment property manages the
scrolling behavior of the image.

While it may seem that a background color and a background image are mutually
exclusive, you should usually define a background color even if you are using a back-
ground image. That way, if the image is unavailable—for example, when the user
doesn’t automatically download images—the browser displays the background color
instead. In addition, if the background image has transparent areas, the background
color is used to fill in those areas.

8.4.5.3 The background-attachment property
If you specify a background image for an element, use the background-attachment

property to control how that image is attached to the browser’s display window.
With the default value scroll, the browser moves the background image with the
element as the user scrolls through the document. A value of fixed prevents the
image from moving.

Figure 8-6. Placing a background image behind an element

264 | Chapter 8: Cascading Style Sheets

8.4.5.4 The background-position property
By default, the styles-conscious browser begins rendering a background image start-
ing in the upper-left corner of the allotted display area. With the background-

position property, you can offset the starting position of the background image by
an absolute (length) or relative (percentage or keyword) offset. The resulting, poten-
tially “cropped,” image fills the area from that offset starting point.

You may specify one or two values for the background-position property. If you use a
single value, it applies to both the vertical and horizontal positions. With two val-
ues, the first is the horizontal offset and the second is the vertical offset.

Length values (with their appropriate units; see section 8.4.1.2, earlier in this chapter)
indicate an absolute distance from the upper-left corner of the element behind which
you display the background image. Negative length values effectively crop the corre-
sponding top and left sides of the image within the allotted viewport, just as an image
that is too big for the browser’s window gets cropped on the bottom and right sides.

For example:

table {background-image: url(backgrounds/marble.gif);
 background-position: 10px 20px}

offsets the marble background 10 pixels to the right and 20 pixels down from the
upper-left corner of any <table> element in your document.

Percentage values are a bit trickier but somewhat easier to use. Measured from 0 per-
cent to 100 percent from left to right and top to bottom, the center of the element’s
content display space is at 50%, 50%. Similarly, the position one-third of the way
across the area and two-thirds of the way down is at 33%, 66%. So, to offset the
background for our example dinner menu to the center of the element’s content dis-
play space, we use:*

background-position: 50%

Why use a number when a single word will do? You can use the keywords left,
center, and right, as well as top, center, and bottom, for 0%, 50%, and 100%, respec-
tively. To center an image in the tag’s content area, use:

background-position: center

You can mix and match length and percentage values,† too, so that:

background-position: 1cm 50%

places the image one centimeter to the right of the tag’s left edge, centered vertically
in the tag’s area.

* Interestingly, this property worked as advertised with Internet Explorer versions 4 and 5 but is broken in ver-
sion 6, as it is with other popular browsers: the offset works only if you set the background-repeat property.

† That is, if the browser supports the value units. So far, Internet Explorer andNetscape support only ameager
repertoire of length units—pixels and percents.

8.4 Style Properties | 265

Note that with relative offsets, the image moves relative to the tag’s contents when
the user resizes the browser display window because the space allotted to the con-
tent also gets resized. By contrast, the image stays in the same place relative to the
element’s contents if you use absolute offset values.

Finally, one might also expect that the repeating background (by default; see the fol-
lowing section, 8.4.5.5) would tile down and to the right of the offset. Not so. Current
browsers “wrap” the image around to fill the element’s allotted display space. For
example, look closely at Figure 8-7 and notice the tiling effects for an offset versus non-
offset background image displayed from the following example style fragments:

<style type=css/text>
<!--
pre {background-image: url(backgrounds/vert.gif)}
pre.offset {background-image: url(backgrounds/vert.gif); background-position: -20px -
20px}
-->
</style>
...
The following background image is offset by -20 pixels left and up:
<pre class=offset>

</pre>
<p>
This background image is not offset:
<pre>

</pre>

8.4.5.5 The background-repeat property
Normally, the browser tiles a background image to fill the allotted space, repeating
the image both horizontally and vertically. Use the background-repeat property to
alter this repeat (default value) behavior. To have the image repeat horizontally but
not vertically, use the value repeat-x. For only vertical repetition, use repeat-y. To
suppress tiling altogether, use no-repeat.

A common use of this property is to place a watermark or logo in the background of
a page without repeating the image over and over. For instance, this code places the
watermark image in the background at the center of the page:

body {background-image: url(backgrounds/watermark.gif);
 background-position: center center;
 background-repeat: no-repeat
 }

266 | Chapter 8: Cascading Style Sheets

A popular trick is to create a vertical ribbon down the righthand side of the page:

body {background-image: url(backgrounds/ribbon.gif);
 background-position: top right;
 background-repeat: repeat-y
 }

8.4.5.6 The background property

Like the various font properties, the many background CSS2 properties can get cum-
bersome to write and hard to read later. So, like the font property, there is also a gen-
eral background property.

The background property accepts values from any and all of the background-color,
background-image, background-attachment, background-repeat, and background-position

properties, in any order. If you do not specify values for some of the properties, those
properties are explicitly set to their default values. Thus:

background: red

sets the background-color property to red and resets the other background proper-
ties to their default values. A more complex example:

background: url(backgrounds/marble.gif) blue repeat-y fixed center

sets all the background image and color properties at once, resulting in a marble image
on top of a blue background (blue showing through any transparent areas). The image
repeats vertically, starting from the center of the content display area, and does not
scroll when the user scrolls the display. Notice that we include just a single position
value (center), and the browser uses it for both the vertical and horizontal positions.

Figure 8-7. Background-offset with tiling

8.4 Style Properties | 267

8.4.5.7 The color property

The color property sets the foreground color for a tag’s contents—the color of the
text lettering, for instance. Its value is either the name of a color, a hexadecimal RGB
triple, or a decimal RGB triple, as outlined earlier in section 8.4.1.5. The following
are all valid property declarations:

color: mauve
color: #ff7bd5
color: rgb(255, 125, 213)
color: rgb(100%, 49%, 84%)

Generally, you’ll use the color property with text, but you may also modify nontextual
content of a tag. For instance, the following example produces a green horizontal rule:

hr {color: green}

If you don’t specify a color for an element, it inherits the color of its parent element.

8.4.6 Text Properties
Cascading stylesheets make a distinction between font properties, which control the
size, style, and appearance of text, and text properties, which control how text is
aligned and presented to the user.

8.4.6.1 The letter-spacing property

The letter-spacing property puts additional space between text letters as they are dis-
played by the browser. Set the property with either a length value or the default key-
word normal, indicating that the browser should use normal letter spacing. For example:

blockquote {letter-spacing: 2px}

puts an additional two pixels between adjacent letters within the <blockquote> tag.
Figure 8-8 illustrates what happens when you put five pixels between characters.

All the popular browsers support this property.

Figure 8-8. The letter-spacing property lets you stretch text

268 | Chapter 8: Cascading Style Sheets

8.4.6.2 The line-height property

Use the line-height property to define the minimum spacing between lines of a tag’s
text content. Normally, browsers single-space text lines—the top of the next line is
just a few points below the last line. By adding to that line height, you increase the
amount of space between lines.

The line-height value can be an absolute or a relative length, a percentage, a scaling
factor, or the keyword normal. For example:

p {line-height: 14pt}
p {line-height: 120%}
p {line-height: 2.0}

The first example sets the line height to exactly 14 points between baselines of adja-
cent lines of text. The second computes the line height to 120 percent of the font
size. The last example uses a scaling factor to set the line height to twice as large as
the font size, creating double-spaced text. The value normal, the default, is usually
equal to a scaling factor of 1.0 to 1.2.

Keep in mind that absolute and percentage values for line-height compute the line
height based on the value of the font-size property. Children of the element inherit
the computed property value. Subsequent changes to font-size by either the parent
or the child elements do not change the computed line height.

Scaling factors, on the other hand, defer the line-height computation until the
browser actually displays the text. Hence, varying font sizes affect line height locally.
In general, it is best to use a scaling factor for the line-height property so that the
line height changes automatically as the font size changes.

Although it is usually considered separate from font properties, you may include this
text-related line-height property’s value as part of the shorthand notation of the
font property. [The font property, 8.4.3.8]

8.4.6.3 The text-align property
Text justified with respect to the page margins is a rudimentary feature of nearly all text
processors. The text-align property brings that capability to HTML for any block-level
tag. (The W3C standards people prefer that you use CSS2 text-align styles rather than
the explicit align attribute for block-level tags such as <div> and <p>.) Use one of four
values: left, right, center, or justify. The default value is, of course, left.*

For example:

div {text-align: right}

tells the styles-conscious browser to align all the text inside <div> tags against the
right margin. The justify value tells the browser to align the text to both the left and
right margins, spreading the letters and words in the middle to fit.

* For left-to-right locales. In right-to-left locales, the default is right.

8.4 Style Properties | 269

All the popular browsers currently support the left, right, and center alignments, but
not justify.

8.4.6.4 The text-decoration property
The text-decoration property produces text embellishments, some of which are also
available with the original physical style tags. Its value is one or more of the key-
words underline, overline, line-through, and blink. The value none is the default,
which tells the styles-conscious browser to present text normally.

The text-decoration property is handy for defining different link appearances:

a:visited, a:link, a:active {text-decoration: underline overline}

This puts lines above and below the links in your document.

This text property is not inherited, and nontextual elements are not affected by the
text-decoration property.

Interestingly, all the popular browsers support the text-decoration property, but
only Internet Explorer has the good taste not to support its blink value.

8.4.6.5 The text-indent property
Although less common today, it is still standard practice to indent the first line of a
paragraph of text.* And some text blocks, such as definitions, typically “out-dent”
the first line, creating what is called a hanging indent.

The CSS2 text-indent property lets you apply these features to any block tag and
thereby control the amount of indentation of the first line of the block. Use length
and percentage values: negative values create the hanging indent, and percentage val-
ues compute the indentation as a percentage of the parent element’s width. The
default value is 0.

To indent all the paragraphs in your document, for example, you could use:

p {text-indent: 3em}

The length unit em scales the indent as the font of the paragraph changes in size on
different browsers.

Hanging indents are a bit trickier, because you have to watch out for the element
borders. Negative indentation does not shift the left margin of the text; it simply
shifts the first line of the element left, possibly into the margin, border, or padding of
the parent element. For this reason, hanging indents work as expected only if you
also shift the left margin of the element to the right by an amount equal to or greater
than the size of the hanging indent. For example:

p.wrong {text-indent: -3em}
p.hang {text-indent: -3em; margin-left: 3em}
p.large {text-indent: -3em; margin-left: 6em}

* But not, obviously, in this book.

270 | Chapter 8: Cascading Style Sheets

creates three paragraph styles. The first creates a hanging indent that extends into
the left margin, the second creates a conventional hanging indent, and the third cre-
ates a paragraph whose body is indented more than the hanging indent. Figure 8-9
shows all three styles in use.

All the popular browsers support the text-indent property.

8.4.6.6 The text-shadow property

The text-shadow property lets you give your text a three-dimensional appearance
through the time-honored use of shadowing. Values for the property include a required
offset and optional blur radius and color. The property may include more than one set
of values, separated with commas, to achieve a stack of shadows, with each subsequent
set of values layered on top of the previous one but always beneath the original text.

The property’s required offset is composed of two length values: the first specifies
the horizontal offset, and the second specifies the vertical offset. Positive values place
the shadow to the right and below the respective length distance from the text. Nega-
tive values move the shadow left and up, respectively.

The optional blur radius is also a length value that specifies the boundaries for blur-
ring, an effect that depends on the rendering agent. The other shadow value is color.
This, of course, may be an RGB triple or color name, as for other properties, and
specifies the shadow color. If you don’t specify this value, text-shadow uses the color
value of the color property. For example:

h1 {text-shadow; 10px 10px 2px yellow}
p:first-letter {text-shadow: -5px -5px purple, 10px 10px orange}

The first text-shadow example puts a 2-pixel blurred-yellow shadow behind, 10 pix-
els below, and 10 pixels to the right of level-1 headers in your document. The sec-
ond example puts two shadows behind the first letter of each paragraph. The purple
shadow sits 5 pixels above and 5 pixels to the left of that first letter. The other
shadow, like in the first example (although orange in this case), goes 10 pixels to the
right and 10 pixels below the first letter of each paragraph.

Figure 8-9. The effects of text-indent and margin-left on a paragraph

8.4 Style Properties | 271

Unfortunately, we can’t show you any of these effects, because none of the popular
browsers supports this property.

8.4.6.7 The text-transform property
The text-transform property lets you automatically convert portions or all of your
document’s text into uppercase or lowercase lettering. Acceptable values are
capitalize, uppercase, lowercase, and none.

capitalize renders the first letter of each word in the text into uppercase, even if the
source document’s text is in lowercase. The uppercase and lowercase values respec-
tively render all the text in the corresponding case. none, of course, cancels any trans-
formations. For example:

h1 {text-transform: uppercase}

formats all the letters in level-1 headers, presumably titles, in uppercase text, whereas:
h2 {text-transform: capitalize}

makes sure that each word in level-2 headers begins with a capital letter, a conven-
tion that might be appropriate for section heads, for instance.

Note that while uppercase and lowercase affect the entire text, capitalize affects
only the first letter of each word in the text. Consequently, transforming the word
“htMl” with capitalize generates “HtMl.”

All the popular browsers support the text-transform property.

8.4.6.8 The vertical-align property
The vertical-align property controls the relative position of an element with respect
to the line containing the element. Valid values for this property include:

baseline

Align the baseline of the element with the baseline of the containing element.

middle

Align the middle of the element with the middle (usually the x-height) of the
containing element.

sub

Subscript the element.

super

Superscript the element.

text-top

Align the top of the element with the top of the font of the parent element.

text-bottom

Align the bottom of the element with the bottom of the font of the parent element.

top

Align the top of the element with the top of the tallest element in the current line.

bottom

Align the bottom of the element with the bottom of the lowest element in the
current line.

272 | Chapter 8: Cascading Style Sheets

In addition, a percentage value indicates a position relative to the current baseline so
that a position of 50% puts the element halfway up the line height above the baseline.
A position value of -100% puts the element an entire line height below the baseline of
the current line.

All the popular browsers agree on where to place images relative to a line of text for
baseline (default and the same as no vertical-align specification), middle (but not
center), super (but not sub), text-top, text-bottom, top (same as text-top; but not
bottom), and for both plus and minus percentage offset values. Figure 8-10 shows you
how Internet Explorer treats the various vertical-align values.

For the differences, Firefox treats center like Internet Explorer and different from
middle (Figure 8-10), whereas Netscape treats center identical to middle, but Opera
doesn’t recognize the value at all. With sub, it’s Netscape’s turn to agree with Firefox
and place the bottom of the subscripted image at the bottom of the character

Figure 8-10. Internet Explorer’s treatment of the vertical alignment property values

8.4 Style Properties | 273

descender, whereas Opera places the bottom of the image perceptively below the base-
line, but unlike Internet Explorer, not so low as to be just above the next line of text.

With the bottom value, it’s Opera’s turn to agree—with Internet Explorer, aligning
the bottom of the image with the bottom of the line just above the next line of text,
whereas Firefox and Netscape place the bottom of the image at the bottom of the
character descender. Clear as mud? Perhaps Figures 8-11 through 8-13 will help you
to visualize the differences when also compared with Figure 8-10.

Figure 8-11. Firefox’s rendering of selected vertical-align values

Figure 8-12. Opera’s rendering of selected vertical-align values

Figure 8-13. Netscape’s rendering of selected vertical-align values

274 | Chapter 8: Cascading Style Sheets

8.4.6.9 The word-spacing property

Use the word-spacing property to add space between words within a tag. You can
specify a length value, or use the keyword normal to revert to normal word spacing.
For example:

h3 {word-spacing: 25px}

places an additional 25 pixels of space between words in the <h3> tag.

All the currently popular browsers support the word-spacing property.

8.4.7 Box Properties
The CSS2 model assumes that HTML and XHTML elements always fit within rect-
angular boxes. Using the properties defined in this section, you can control the size,
appearance, and position of the boxes containing the elements in your documents.

8.4.7.1 The CSS2 formatting model

Each element in a document fits into a rectangular space or box. The CSS2 authors
call this box the core content area and surround it with three more boxes: the pad-
ding, the border, and the margin. Figure 8-14 shows these boxes and defines some
useful terminology.

The top, bottom, left-outer, and right-outer edges bound the content area of an ele-
ment and all of its padding, border, and margin spaces. The inner-top, inner-bottom,
left-inner, and right-inner edges define the sides of the core content area. The extra

Figure 8-14. The CSS2 formatting model and terminology

content

left
outer
edge

top margin

top border

top padding

left
padding

left
border

left
margin

right
padding

right
margin

right
border

left
inner
edge

right
inner
edge

bottom

top

inner
top

inner
bottom

right
outer
edge

bottom padding

bottom border

bottom margin

8.4 Style Properties | 275

space around the element is the area between the inner and outer edges, including
the padding, border, and margin. A browser may omit any and all of these extra
spaces for any element, and for many, the inner and outer edges are the same.

When elements are vertically adjacent, the bottom margin of the upper elements and
the top margin of the lower elements overlap so that the total space between the ele-
ments is the greater of the adjacent margins. For example, if one paragraph has a bot-
tom margin of 1 inch, and the next paragraph has a top margin of 0.5 inches, the
greater of the two margins, 1 inch, is placed between the two paragraphs. This practice
is known asmargin collapsing and generally results in better document appearance.

Horizontally adjacent elements do not have overlapping margins. Instead, the CSS2
model adds together adjacent horizontal margins. For example, if a paragraph has a
left margin of 1 inch and is adjacent to an element with a right margin of 0.5 inches,
the total space between the two is 1.5 inches. This rule also applies to nested ele-
ments so that a paragraph within a division has a left margin equal to the sum of the
division’s left margin and the paragraph’s left margin.

As shown in Figure 8-14, the total width of an element is equal to the sum of seven
items: the left and right margins, the left and right borders, the left and right pad-
ding, and the element’s content itself. The sum of these seven items must equal the
width of the containing element. Of these seven items, only three (the element’s
width and its left and right margins) can be given the value auto, indicating that the
browser can compute a value for that property. When this becomes necessary, the
browser follows these rules:

• If none of these properties is set to auto and the total width is less than the width
of the parent element, the margin-right property is set to auto and made large
enough to make the total width equal to the width of the parent element.

• If exactly one property is set to auto, that property is made large enough to make
the total width equal to the width of the parent element.

• If width, margin-left, and margin-right are set to auto, the CSS2-compliant
browser sets both margin-left and margin-right to 0 and sets width large enough
to make the total equal to the width of the parent element.

• If both the left and right margins are set to auto, they are always set to equal val-
ues, centering the element within its parent.

There are special rules for floating elements. A floating element (such as an image
with align=left specified) does not have its margins collapsed with the margins of
containing or preceding elements, unless the floating element has negative margins.
Figure 8-15 shows how the following bit of HTML might be rendered:

<body>
<p>

Some sample text...
</body>

276 | Chapter 8: Cascading Style Sheets

The browser moves the image, including its margins, as far as possible to the left and
toward the top of the paragraph without overlapping the left and top margins of the
paragraph or the document body. The left margins of the paragraph and the contain-
ing body are added, and their top margins are collapsed.

8.4.7.2 The border properties
The border surrounding an element has a color, a thickness, and a style. You can use
various properties to control these three aspects of the border on each of the four
sides of an element. Shorthand properties make it easy to define the same color,
thickness, and style for the entire border, if desired. Border properties are not inher-
ited; you must explicitly set them for each element that has a border.

8.4.7.3 The border-color property
Use the border-color property to set the border color. If this property is not speci-
fied, the browser draws the border using the value of the element’s color property.

The border-color property accepts from one to four color values. The number of val-
ues determines how they are applied to the borders (summarized in Table 8-1). If you
include just one property value, all four sides of the border are set to the specified
color. Two values set the top and bottom borders to the first value and the left and
right borders to the second value. With three values, the first is the top border, the sec-
ond sets the right and left borders, and the third color value is for the bottom border.
Four values specify colors for the top, right, bottom, and left borders, in that order.

Figure 8-15. Handling the margins of floating elements

Table 8-1. Order of effects for multiple border, margin, and padding property values

Number of values Affected border(s), margin(s), or padding

1 All items have the same value.

2 The first value sets top and bottom; the second value sets left and right.

3 The first value sets top; the second sets both left and right; the third value sets bottom.

4 The first value sets top; the second sets right; the third sets bottom; the fourth value sets left.

IMG
BO

DY
 m

ar
gi

n

IMG margins

P
m

ar
gi

n

Some sample text that has no other
purpose than to show how floating
elements are moved to the side of
the parent element while
honoring margins, borders, and
padding. Note how adjacent

vertical margins are collapsed between non-
floating ‘block’ elements.

max (BODY margin, P margin)

8.4 Style Properties | 277

8.4.7.4 The border-width property

The border-width property lets you change the width of the border. Like the border-
color property, it accepts from one to four values that are applied to the various bor-
ders in a similar manner (refer to Table 8-1).

Besides a specific length value, you may also specify the width of a border as one of
the keywords thin, medium, or thick. The default value, if the width is not explicitly
set, is medium. Some typical border widths are:

border: 1px
border: thin thick medium
border: thick 2mm

The first example sets all four borders to exactly 1 pixel. The second makes the top
border thin, the right and left borders thick, and the bottom border medium. The last
example makes the top and bottom borders thick and the right and left borders 2
millimeters wide.

If you are uncomfortable defining all four borders with one property, you can use the
individual border-top-width, border-bottom-width, border-left-width, and border-

right-width properties to define the thickness of each border. Each property accepts
just one value; the default is medium.

All the currently popular browsers support this property.

8.4.7.5 The border-style property

According to the CSS2 model, you may apply a number of embellishments to your
HTML element borders.

The border-style property values include none (default), dotted, dashed, solid,
double, groove, ridge, inset, and outset. The border-style-conscious browser applies
one to four values for the property to each border, in the same order as for the bor-
der colors and widths, as described in Table 8-1.

The browser draws dotted, dashed, solid, and double borders as flat lines on top of
the tag’s background. The groove, ridge, inset, and outset values create three-
dimensional borders: the groove is an incised line, the ridge is an embossed line, the
inset border makes the entire tag area appear set into the document, and the outset
border makes the entire tag area appear raised above the document. The effect of the
three-dimensional nature of these last four styles on the tag’s background image is
undefined and left up to the browser. Netscape supports three-dimensional effects.

All the currently popular browsers support the border styles. An example is shown in
Figure 8-16.

278 | Chapter 8: Cascading Style Sheets

8.4.7.6 Borders in shorthand

Specifying a complex border can get tedious, so the CSS2 standard provides five
shorthand properties that accept any or all of the width, color, and style values for
one or all of the border edges. The border-top, border-bottom, border-left, and
border-right properties affect their respective borders’ sides; the comprehensive
border property controls all four sides of the border simultaneously. For example:

border-top: thick solid blue
border-left: 1ex inset
border-bottom: blue dashed
border: red double 2px

The first property makes the top border a thick, solid, blue line. The second sets the
left border to use an inset effect that is as thick as the x-height of the element’s font,
while leaving the color the same as the element’s color. The third property creates a
blue dashed line at the bottom of the element, using the default medium thickness.
Finally, the last property makes all four borders a red double line, 2 pixels thick.

That last property raises two issues. First, you cannot supply multiple values to the
border property to selectively affect certain borders, as you can with the individual
border-color, border-width, and border-style properties. The border property
always affects all four borders around an element.

Second, a bit of reflection should reveal that it is not possible to create a double-line
border just 2 pixels thick. In cases like this, the browser is free to adjust the thick-
ness to render the border properly.

While we usually think of borders surrounding block elements such as images,
tables, and text flows, you also can apply borders to inline tags. This lets you put a

Figure 8-16. The border-style property nicely frames images

8.4 Style Properties | 279

box around a word or phrase within a text flow. The implementation of borders on
inline tags that span multiple lines is undefined and left to the browser.

All of the currently popular browsers support the border styles.

8.4.7.7 The clear property

Like its cousin attribute for the
 tag, the clear property tells the browser whether
to place a tag’s contents adjacent to a “floating” element or on the first line below it.
Text flows around floating elements such as images and tables with an align=left or
align=right attribute or any HTML/XHTML element with its float property set to
anything but none. [
, 4.6.1] [The float property, 8.4.7.9]

The value of the clear property can be none, left, right, or both. A value of none, the
default, means that the browser acts normally and places the tag’s contents adjacent
to floating elements on either side, if there is room to do so. The value left prevents
contents from being placed adjacent to a floating element on its left; right prevents
placement on the right side of a floating element; and both prevents the tag’s con-
tents from appearing adjacent to any floating element.

The effect of this style is the same as preceding the tag with a
 tag with its clear
attribute set. Hence:

h1 {clear: left}

has the same effect as preceding every <h1> tag with <br clear=left>.

8.4.7.8 The clip property

Normally, the content of an element is completely visible within the display space of
the element. The clip property defines a viewing window within an element’s dis-
play space, letting you hide unwanted elements and focus attention on some area or
aspect of the content.

The default value of the clip property is auto, meaning that the viewing window
matches the box of the element. Instead, you may specify a shape that creates a dis-
tinct viewing window into the element’s display area. Currently, the only shape sup-
ported by CSS2* is a rectangle, denoted by the rect keyword. For example:

p {overflow : hidden;
 clip : rect(15px, -10px, 5px, 10px) }

The four values define the top, right, bottom, and left edges of the clipping rectangle.
Each value is an offset relative to the box edges defined for the element. So, in this
example, the top of the clipping area is 15 pixels below the top of the element’s box,
the right edge is 10 pixels to the right of the box, the bottom is 5 pixels above the bot-
tom of the box, and the left edge is 10 pixels to the right of the left side of the box.

* Presumably, future versions of the standard will expand to include other shapes.

280 | Chapter 8: Cascading Style Sheets

Note that the clip property takes effect only when the overflow property of an ele-
ment is set to some value other than visible. When overflow is set to visible, no
clipping occurs and the clip property is ignored.

The popular browsers don’t yet support the clip property.

8.4.7.9 The float property

The float property designates a tag’s display space as a floating element and causes
text to flow around it in a specified manner. It is generally analogous to the align

attribute for images and tables, but you can apply it to any element, including text.
[The align attribute (deprecated), 10.2.1.1]

The float property accepts one of three values: left, right, or none (the default).
Using none disables the float property. The others work like their align attribute-
value counterparts, telling the browser to place the content to either side of the flow
and allow other content to be rendered next to it.

Accordingly, the browser places a tag’s contents (including its margins, padding, and
borders) specified with float: left against the left margin of the current text flow,
and subsequent content flows to its right, down and below the tag’s contents. The
float: right pair puts the tag contents against the right edge of the flow and flows
other content on its left, down and below the tag’s contents.

Although the float property is most commonly used with tables and images, it is
perfectly acceptable to apply it to a text element. For example, the following creates
a “run-in” header, with the text flowing around the header text, as shown in
Figure 8-17:

h2 {float: left;
text-align: center;
margin-right: 10px }

All the popular browsers support this property.

Figure 8-17. Use the float property with text blocks to create run-in headers

8.4 Style Properties | 281

8.4.7.10 The height property

As you might suspect, the height property controls the height of the associated tag’s
display region. You’ll find it most often used with images and tables, but you can use
it to control the height of other document elements as well.

The value of the height property is either a length value or the keyword auto (the
default). Using auto implies that the affected tag has an initial height that should be
used when displaying the tag. Otherwise, the height of the tag is set to the desired
height. If an absolute value is used, the height is set to that length value. For example:

img {height: 100px}

tells the browser to display the image referenced by the tag scaled so that it is
100 pixels tall. If you use a relative value, the base size to which it is relative is
browser and tag dependent.

When scaling elements to a specific height, you can preserve the aspect ratio of the
object by also setting the width property of the tag to auto. Thus:

img {height: 100px; width: auto}

ensures that the images are always 100 pixels tall, with an appropriately scaled
width. [The width property, 8.4.7.16]

If you want to constrain the height of an element to a range rather than a specific
value, use the min-height and max-height properties. These properties accept values
like the height property and establish a range for the height of the element. The
browser then adjusts the height of the element to fall within the desired range.

All of the popular browsers fully support the height property, but none of the brows-
ers yet supports the min-height and max-height properties.

8.4.7.11 The margin properties

Like the border properties, the various margin properties let you control the margin
space around an element, just outside of its border (see Figure 8-14). Margins are
always transparent, allowing the background color or image of the containing ele-
ment to show through. As a result, you can specify only the size of a margin; it has
no color or rendered style.

The margin-left, margin-right, margin-top, and margin-bottom properties all accept a
length or percentage value indicating the amount of space to reserve around the ele-
ment. In addition, the keyword auto tells the styles-conscious browser to revert to the
margins it normally would place around an element. Percentage values are computed as
a percentage of the containing element’s width. The default margin, if not specified, is 0.

These are all valid margin settings:

body {margin-left: 1in; margin-top: 0.5in; margin-right: 1in}
p {margin-left: -0.5cm}
img {margin-left: 10%}

282 | Chapter 8: Cascading Style Sheets

The first example creates 1-inch margins down the right and left edges of the entire
document and a 0.5-inch margin across the top of the document. The second exam-
ple shifts the left edge of the <p> tag 0.5 centimeters left, into the left margin. The last
example creates a margin to the left of the tag equal to 10 percent of the par-
ent element’s width.

As you can the shorthand border property, you can use the shorthand margin prop-
erty to define all four margins, using from one to four values, which affect the mar-
gins in the order described in Table 8-1. Using this notation, our <body> margins in
the previous example could also have been specified as:

body {margin: 0.5in 1in}

The margin-left and margin-right properties interact with the width property to
determine the total width of an element, as described earlier in section 8.4.7.1.

All the popular browsers support the margin properties and values.

8.4.7.12 The padding properties

Like the margin properties, the various padding properties let you control the pad-
ding space around an element, between the element’s content area and its border
(see Figure 8-14, earlier in the chapter).

Padding always is rendered using the background color or image of the element. As a
result, you can specify only the size of the padding; it has no color or rendered style.

The padding-left, padding-right, padding-top, and padding-bottom properties all
accept a length or percentage value indicating the amount of space the styles-con-
scious browser should reserve around the element. Percentage values are computed
as a percentage of the containing element’s width. Padding can never be negative.
The default padding is 0.

These are valid padding settings:

p {padding-left: 0.5cm}
img {padding-left: 10%}

The first example creates 0.5 centimeters of padding between the contents of the <p>
tag and its left border. The second example creates padding to the left of the
tag equal to 10 percent of the parent element’s width.

Like the shorthand margin and border properties, you can use the shorthand padding

property to define all four padding amounts, using from one to four values to affect
the padding sides as described in Table 8-1. Internet Explorer does not support the
padding property, but all the other popular browsers do.

8.4.7.13 The overflow property

The overflow property tells the browser how to handle content that overflows the
display area of an element. The default value of this property, visible, tells the

8.4 Style Properties | 283

browser to render all content, making it visible even if it falls outside of the ele-
ment’s display area.

Erring on the side of caution, you most often want the browser to display all of your
document’s contents. But in rare cases, elements may overlap, creating an ugly display.
To prevent such mishaps, set the overflow property to either hidden, scroll, or auto.

The hidden value forces the browser to hide all content that overflows its allotted
space, making it invisible to the user. The value scroll creates scroll bars for the ele-
ment, which viewers may use to see the hidden content. However, scroll bars are
added to the element even if the content does not overflow.

Adding permanent scroll bars ensures that the scroll bars do not come and go as the
content of the element changes in size in a dynamic document. The downside to this
is the clutter and distractions that scroll bars create. Avoid all this with the auto value
for the overflow property. When on auto, scroll bars appear only when they are
needed. If the element’s content changes so that it is not clipped, the scroll bars are
removed from the element.

None of the currently popular browsers supports the overflow property.

8.4.7.14 The position properties

Without intervention, the browser flows document elements together, positioned
sequentially through the display. You can change this standard behavior with the CSS2
position property, in conjunction with the top, bottom, left, and right properties.

If the position property is set to static, conventional HTML/XHTML layout and
positioning rules apply, with the left and top edges of the element’s box determined
by the browser. To shift an element with respect to its containing flow, set the
position property to relative. In this case, the top, bottom, left, and right proper-
ties are used to compute the box position relative to its normal position in the flow.
Subsequent elements are not affected by this position change and are placed in the
flow as though this element had not been shifted.

Setting the position property to absolute removes the element from the containing
flow, allowing subsequent elements to move up accordingly. The position of the ele-
ment is then computed relative to the containing block, using the top, bottom, left,
and right properties. This type of positioning allows an element to be placed in a
fixed position with respect to its containing element but to move as that containing
element moves.

Finally, setting the position property to fixed positions an element with respect to
the window or page in which it is displayed. Like absolute positioning, the element
is removed from the containing flow, with other elements shifting accordingly. The
top, bottom, left, and right properties are used to set the element’s position with
respect to the containing window or page. Note that for continuous media (such as a
scrolling browser display), the element is displayed once at the desired position. For

284 | Chapter 8: Cascading Style Sheets

printed media, the element is printed on each page at the desired position. You
might used fixed positioning to place headers and footers at the top and bottom of
the browser window or at the top and bottom of each printed page.

The top, bottom, left, and right properties each accept a length or percentage value.
When the position attribute is set to relative, the percentage is based on the size of
the element’s box. When position is set to absolute or fixed, the percentage is based
on the size of the containing element’s box. When length values are used, they spec-
ify offsets from the corresponding edge of the element’s containing box. For exam-
ple, to position an element such that its bottom is 1 centimeter above the bottom of
the browser window (or each printed page), you would set the position property to
fixed and the bottom property to 1cm.

8.4.7.15 The visibility property

The visibility property determines whether the contents of an element are visible in
the display. The space set aside for the element is still created and affects the layout
of the document, but the content of the element may be made invisible within that
space.

The default value for this property, visible, causes the element’s content to be dis-
played. Setting this property to hidden makes the content invisible without removing
the element’s display box, altering the layout of the document. Note that you can
remove an element’s content and display box from the document by setting the
display property to none.

This property is often used in dynamic documents, where changing its value for an
element removes its content from the display without reformatting the document.

When this property is used in conjunction with table rows, row groups, columns,
and column groups, you may also specify the value collapse. Used in this context,
the collapse value removes the associated row(s) or column(s) from the table with-
out otherwise reformatting or redrawing the table. Within dynamic documents, this
lets you remove elements from a table without reformatting the entire table. Used
outside of a table, the collapse value has the same effect as the hidden value.

8.4.7.16 The width property

The width property is the companion to the height property and controls the width
of an associated tag. Specifically, it defines the width of the element’s content area,
as shown in Figure 8-8. You’ll see it most often used with images and tables, but you
could conceivably use it to control the width of other elements as well.

The value for the width property is either a length or percentage value, or the key-
word auto. The value auto is the default and implies that the affected tag has an ini-
tial width that should be used when displaying the tag. If a length value is used, the

8.4 Style Properties | 285

width is set to that value; percentage values compute the width to be a percentage of
the width of the containing element. For example:

img {width: 100px}

displays the image referenced by the tag scaled to 100 pixels wide.

When scaling elements to a specific width, the aspect ratio of the object is preserved
if the height property of the tag is set to auto. Thus:

img {width: 100px; height: auto}

makes all the images 100 pixels wide and scales their heights appropriately. [The
height property, 8.4.7.10]

If you want to constrain the width of an element to a range rather than a specific
value, use the min-width and max-width properties. These properties accept values
like the width property and establish a range for the width of the element. The
browser then adjusts the width of the element to fall within the desired range.

The width property interacts with the margin-left and margin-right properties to
determine the total width of an element, as described earlier in section 8.4.7.1.

8.4.7.17 The z-index property

In addition to the x and y positions of an element within the browser window or on
the printed page, each element has a vertical, or z, position. Elements with higher z
positions are “closer” to the viewer and obscure elements underneath them.

Z positions are not absolute throughout a document. Instead, z positions are relative
to the containing element. For example, two <div> elements within a document
might be positioned to lie on top of one another. The first <div> might have a z posi-
tion of 1, and the second might have a z position of 2. The entire contents of the sec-
ond <div> are displayed over (or in front of) the first <div>. If elements within the
first <div> have z positions of 3 or 4, they are still displayed within their containing
<div>s and do not “jump out” in front of the second <div>.

You control the z position of an element with the z-index property. The value of the
z-index property is a positive integer that sets the z position of the element with
respect to its containing element. With the z-index property, you can dynamically
alter the z position of an element to make it visible, or position a text element in
front of an image to label items of interest.

8.4.8 List Properties
The CSS2 standard also lets you control the appearance of list elements—
specifically, ordered and unordered lists. Browsers format list items just like any
other block item, except that the block has some sort of marker preceding the con-
tents. For unordered lists, the marker is a bullet of some sort; for numbered lists, the

286 | Chapter 8: Cascading Style Sheets

marker is a numeric or alphabetic character or symbol. The CSS2 list properties let
you control the appearance and position of the marker associated with a list item.

8.4.8.1 The list-style-image property

The list-style-image property defines the image that the browser uses to mark a list
item. The value of this property is the URL of an image file or the keyword none. The
default value is none.

The image is the preferred list marker. If it is available, the browser displays it in
place of any other defined marker. If the image is unavailable, or if the user has dis-
abled image loading, the browser uses the marker defined by the list-style-type

property (see section 8.4.8.3, later in this chapter).

HTML/XHTML authors use the list-style-image property to define custom bullets
for their unordered lists. While you conceivably could use any image as a bullet, we
recommend that you keep your marker GIF or JPEG images small, to ensure attrac-
tively rendered lists.

For example, by placing the desired bullet image in the file mybullet.gif on your
server, you could use that image:

li {list-style-image: url(pics/mybullet.gif); list-style-type: square}

In this case, the browser uses the image if it is able to successfully download
mybullet.gif. Otherwise, the browser uses a conventional square bullet.

All the popular browsers support the list-style-image property, as shown in
Figure 8-18.

8.4.8.2 The list-style-position property

There are two ways to position the marker associated with a list item: inside the
block associated with the item or outside the block. Accordingly, the list-style-

position property accepts one of two values: inside or outside.

The default value is outside, meaning that the item marker hangs to the left of the
item, like this:

• This is a bulleted list

with an "outside" marker

The value inside causes the marker to be drawn with the list item flowing around it,
much like a floating image:

• This is a bulleted list

with an "inside" marker

Notice that the second line of text is not indented but instead lines up with the left
edge of the marker.

8.4 Style Properties | 287

The current versions of the popular browsers fully support the list-style-position
property.

8.4.8.3 The list-style-type property

The list-style-type property serves double duty in a sense, determining how a styles-
conscious browser renders both ordered and unordered list items. The property has the
same effect as the type attribute on a list item. [The type attribute, 6.7.2.4]

When applied to items within an unordered list, the list-style-type property uses
one of four values—disc, circle, square, or none—and marks the unordered list
items with a corresponding dingbat. The default value of a level-1 list item is disc,
although browsers change that default depending on the nesting level of the list.

When applied to items within an ordered list, the list-style-type property uses one
of six values—decimal, lower-roman, upper-roman, lower-alpha, upper-alpha, or
none—corresponding to the item numbers expressed as decimal values, lowercase
Roman numerals, uppercase Roman numerals, lowercase letters, uppercase letters,
or with no style, respectively. Most browsers use decimal numbering as the default.

The popular browsers support list-style-type as well as the list-style property
described in the next section.

Figure 8-18. The list-style-image property lets you use your own bullets

288 | Chapter 8: Cascading Style Sheets

8.4.8.4 The list-style property

The list-style property is the shorthand version for all the other list-style proper-
ties. It accepts any or all of the values allowed for the list-style-type, list-style-
position, and list-style-image properties, in any order and with values appropriate
for the type of list they are to affect. These are valid list-style properties:

li {list-style: disc}
li {list-style: lower-roman inside}
li {list-style: url(http://www.kumquat.com/images/tiny-quat.gif) square}

The first example creates list items that use a disc as the bullet image. The second
causes numbered list items to use lowercase Roman numerals, drawn inside the list
item’s block. In the last example, the styles-conscious browser uses a square as the
bullet image if the referenced image is unavailable.

8.4.8.5 Using list properties effectively

Although you can apply list properties to any element, they affect only the appear-
ance of elements whose display property is set to list-item. Normally, the only tag
with this property is the tag.

However, this shouldn’t deter you from using these properties elsewhere, particu-
larly with the and tags. Because these properties are inherited by elements
whose parents have them set, modifying a list property for the and tags
subsequently modifies it for all the tags contained within that list. This makes it
much easier to define lists with a particular appearance.

For example, suppose you want to create a list style that uses lowercase Roman
numerals. One way is to define a class of the tag with the appropriate list-

style-type defined:

li.roman {list-style-type: lower-roman}

Within your list, you’ll need to specify each list element using that class:

 <li class=roman>Item one
 <li class=roman>Item two
 <li class=roman>And so forth

Having to repeat the class name is tedious and error-prone. A better solution is to
define a class of the tag:

ol.roman {list-style-type: lower-roman}

Any tag within the list inherits the property and uses lowercase Roman numerals:

<ol class=roman>
 Item one
 Item two
 And so forth

8.4 Style Properties | 289

This is much easier to understand and manage. If you want to change the number-
ing style later, you need only change the tag properties, instead of finding and
changing each instance of the tag in the list.

You can use these properties in a much more global sense, too. Setting a list prop-
erty on the <body> tag changes the appearance of all lists in the document; setting it
on a <div> tag changes all the lists within that division.

8.4.9 Table Properties
For the most part, HTML/XHTML browsers render table content using the same
properties that control the rendering of conventional document content. However, a
few special circumstances occur only within tables. To give authors greater control
over these items, CSS2 has added a few table-specific properties. The popular brows-
ers do not yet support any of them.

8.4.9.1 The border-collapse, border-spacing, and empty-cells properties

There are two divergent views regarding cell borders within tables. The first view
holds that each cell is an independent entity with unique borders. The second view
holds that adjacent cells share the border side and that changing a border in one cell
should affect the neighboring cell.

To give the most control to authors, CSS2 provides the border-collapse property,
which lets you choose the model that suits your style. By default, the value of this
property is collapse, meaning adjacent cells share their border style. Alternatively,
you can set the border-collapse property to separate, which enlarges the table so
that borders are rendered separately and distinctly around each cell.

If you choose the separate model, you can also use the border-spacing property to
set the spacing between adjacent borders. The default border spacing is 0, meaning
that adjacent cell borders touch each other, although some browsers may use a dif-
ferent default. By increasing this value, you cause the browser to insert additional
space between borders, allowing the background color or image of the table to show
through. If you specify just one value for border-spacing, it sets the spacing for both
horizontal and vertical borders. If you provide two values, the first sets the horizon-
tal spacing and the second determines the vertical spacing.

Within the separate model, you can also control how borders are drawn around
empty cells. By default, borders are drawn around every cell in a table, even if it has
no content. You can change this by switching the empty-cells property from its
default value of show to the value hide. When this property is set, empty cells simply
show the table background. If a whole row of cells is empty, the browser removes the
row from the table entirely.

290 | Chapter 8: Cascading Style Sheets

8.4.9.2 The caption-side property

Use the caption-side property only with the <caption> element. It accepts values of
top (default), bottom, left, or right, and tells the browser where to place the caption
adjacent to its associated table. The caption-side property provides a more consis-
tent method of placing the caption than the browser-dependent and standards-
deprecated align attribute of the <caption> tag.

All of the popular browsers, except Internet Explorer, support caption-side.

8.4.9.3 The speak-header property

An audio-capable browser might offer a number of ways for users to navigate by hear-
ing the contents of a table. A simplistic approach would have the browser read the
table contents in order, from top to bottom and right to left. A more sophisticated
audio browser organizes the table contents according to their respective headers and
reads the information in a more comprehensible manner. To avoid confusion in any
case, the browser must provide some way to tell the user which cell it is reading.

The speak-header property provides two ways for a browser to identify a cell or col-
lection of cells in the table. If once (the default) is specified, the browser reads the
contents of a header cell only once before proceeding to read the contents of each
associated data cell. This way, a user moving across a row of cells would hear the
row header and column header of the first cell in the row, but would hear the chang-
ing column headers only as she moved to subsequent cells in the row.

If you set the speak-header property to always, the browser prefaces the reading of
each cell’s contents with a reading of its associated header. This may prove more use-
ful with complex tables or where the header values make it easier to understand the
table contents—especially when a table contains only numbers.

Note that headers are spoken only when the browser knows which header cells are
associated with which data cells. Conscientious authors always use the header attribute
with their table cells, to specify the header cells related to each data cell in their tables.

8.4.9.4 The table-layout property

Table layout is a tough task for any browser. To create an attractive table, the
browser must find the widest cell in each column, adjust that column to accommo-
date the width, and then adjust the overall table to accommodate all of its columns.
For large tables, document rendering can be noticeably slowed as the browser makes
several passes over the table, trying to get things just right.

To help in this process, use the table-layout property. If you set the property to
fixed, the browser determines column widths based on the widths of cells in the first
row of the table. If you explicitly set the column widths, setting the table’s table-
layout property to fixed makes the table-rendering process even faster, enhancing
the readers’ experience as they view your document.

8.4 Style Properties | 291

By default, the table-layout property is set to auto, which forces the browser to use
the more time-consuming, multiple-pass layout algorithm, even if you specify the
widths of your columns in the table. If your table content is variable and you cannot
explicitly set the widths, leave the table-layout property set to auto. If you can fix
your column widths and your table content is amenable, set table-layout to fixed.

8.4.10 Classification Properties
Classification properties are the most fundamental of the CSS2 style properties. They
do not directly control how a styles-conscious browser renders HTML or XHTML
elements. Instead, they tell the browser how to classify and handle various tags and
their contents as they are encountered.

For the most part, you should not set these properties on an element unless you are
trying to achieve a specific effect.

8.4.10.1 The display property

Every element in an HTML or XHTML document can be classified, for display pur-
poses, as a block item, an inline item, or a list item. Block elements, like headings,
paragraphs, tables, and lists, are formatted as separate blocks of text, separate from
their previous and following block items. Inline items, like the physical and content-
based style tags and hyperlink anchors, are rendered within the current line of text
within a containing block. List items, specifically -tagged content, are rendered
like block items, with a preceding bullet or number known as a marker.

The display property lets you change an element’s display type to block, inline,
list-item, or none. The first three values change the element’s classification accord-
ingly; the value none turns off the element, preventing it and its children from being
displayed in the document.

Conceivably, you could wreak all sorts of havoc by switching element classifications,
forcing paragraphs to be displayed as list items and converting hyperlinks to block
elements. In practice, this is just puerile monkey business, and we don’t recommend
that you change element classifications without a very good reason to do so.

All the popular browsers support this property, but Internet Explorer supports only
the block and none values.

8.4.10.2 The white-space property

The white-space property defines how the styles-conscious browser treats
whitespace (tabs, spaces, and carriage returns) within a block tag. The keyword
value normal—the default—collapses whitespace so that one or more spaces, tabs,
and carriage returns are treated as a single space between words. The value pre emu-
lates the <pre> tag, in that the browser retains and displays all spaces, tabs, and car-
riage returns. Finally, the nowrap value tells the browser to ignore carriage returns

292 | Chapter 8: Cascading Style Sheets

and not insert automatic line breaks; all line breaking must be done with explicit

 tags.

Like the display property, the white-space property is rarely used for good pur-
poses. Don’t change how elements handle whitespace without a compelling reason
for doing so.

Internet Explorer only supports the nowrap value, and the other popular browsers
support both pre and nowrap values for the white-space property.

8.4.11 Generated Content Properties
The idea of generated content is not new to HTML. Even the earliest browsers auto-
matically appended appropriate bullets or numbers to enhance the readability of
your unordered and ordered list items. Such features are hardly enough, though, and
authors have wished for better content-generation tools in HTML. CSS2 finally
comes through, giving authors the ability to create arbitrary content, numbered lists,
and all sorts of element-based content.

The foundation of the CSS2 generated-content model is the content and quotes prop-
erties, along with the :before and :after pseudoelements. You use the former to
define the content you need, and use the latter to position that content with respect
to the elements in your document.

8.4.11.1 The :before and :after pseudoelements

We introduced you to pseudoelements earlier in this chapter, and you even saw
some in action (refer to Figures 8-2 and 8-3). The :before and :after pseudoele-
ments operate similarly. Append either to a style-element selector to select and spec-
ify the content and properties of generated content in your document. In general, any
content created within these pseudoelements inherits the display attributes of the
parent element, such that fonts, sizes, and colors applied to an element are also
applied to its generated content. For example:

p.note { color : blue }
p.note:before { content : "Note: " }

This style example inserts the word Note: before every <p class=note> element. The
inserted text is rendered in blue, like the rest of the paragraph. Replacing it with this
style would color the inserted text red, and the remainder of the note would be blue:

p.note:before {content : "Note: "; color : red}

Any generated content, before or after an element, is included in the box of an ele-
ment and affects its formatting, flow, size, and layout.

8.4 Style Properties | 293

8.4.11.2 The content property

The content property accepts a wide variety of values, ranging from simple strings to
automatic counter references. You can include any number of these values, sepa-
rated by spaces, in a single content property. The browser concatenates the values to
form a single value that it then inserts into the document.

The simplest of content values is a quote-enclosed string. You may not include
HTML or XHTML markup in the string. Rather, use escape sequences to generate
special text (e.g., \A, which generates a line break).

CSS2 escape sequences are like HTML/XHTML character entities. Whereas charac-
ter entities begin with the ampersand (&), followed by the name or decimal value of a
character (# suffix for the latter), you create the same characters for CSS2 string-con-
tent property values by preceding the hexadecimal equivalent of the character with a
backslash (\). The escape sequence \A is the same as the character entity
,
which, if you consult Appendix F, you’ll find is the line-feed character.

The content property also accepts URL values. Expressed in styles, not HTML-like
fashion, the URL may point to any object acceptable to the browser, including text,
images, and sound files. For example, to place a decorative symbol next to each
equation in a document, you might use:

p.equation:before { content : url("http://www.kumquat.com/decorative-symbol.jpg") }

Keep in mind that the object shouldn’t contain HTML/XHTML markup because the
browser inserts its contents verbatim into the document.

The content property also supports automatic generation of contextually correct,
locale-specific quotation marks. You insert them using the open-quote and close-

quote keywords. These keywords insert the appropriate quotation mark and incre-
ment or decrement, respectively, the browser’s nested quotation counter. You can
control the appearance of the quotation marks using the quotes property, described
shortly. You may also use the no-open-quote and no-close-quote keywords, which
increment or decrement the nesting depth without inserting a quotation mark.

A clever feature of the content property is its ability to have the browser render the
value of any attribute of its associated element. The attr value has a single parame-
ter, corresponding to the name of an attribute. If that attribute is defined for the ele-
ment, its value is inserted into the document. To display the URL of an image after
the image, for instance, you might write:

img:after { content : "("attr(src) ") " }

If the attribute is not defined for the element, no content gets inserted, although the
other values for the content property (like the parentheses we included in the earlier
example) would still be inserted.

One of the most powerful features of the content property is its ability to create num-
bered lists. We cover this in detail in the upcoming section, 8.4.11.4.

294 | Chapter 8: Cascading Style Sheets

All the popular browsers support the :before and :after pseudoelements, but Inter-
net Explorer does not support the content property.

8.4.11.3 Specifying quotation marks

While you insert quotation marks using the open-quote and close-quote values with
the content property, you control the actual characters used for quotation marks
with the quotes property.

The value of this property is one or more pairs of strings. The first pair defines the
open and close quotation marks for the outermost level of quotations in your docu-
ment. The next pair specifies the next level, and so forth. If the quotation level
exceeds the supplied pairs of characters, the browser starts over with the outermost
pair. Note that while most languages use single characters as quotation marks, you
can specify strings of any length to be used as quotation marks.

You may also want to specify alternative quotation marks based on the language
used. You can use the :lang pseudoelement to associate different quotes properties
with different languages. For example:

q:lang(en) { quotes : `"' `"' "`" "'" }
q:lang(no) { quotes : "«" "»" "<" ">" }

ensures that English and Norwegian documents use their respective quotation
marks.

8.4.11.4 Creating counters

You can create simple numbered lists easily in HTML and XHTML with the ele-
ment. More complex numbered lists, especially nested numbered lists, are impossible
with the markup languages, though. Instead, CSS2 provides the notion of a counter
whose value can be set and changed as the browser renders your document. Insert the
value of the counter using special functions recognized by the content property, and
alter the appearance and format of the counter with other CSS2 properties.

Every CSS2 counter has a name. To create a counter, simply mention its name in the
counter-reset or counter-increment properties associated with any element. If an
instance of that named counter does not already exist in the current document nest-
ing level, the CSS2-conscious browser automatically creates it. Thereafter, set or reset
the value of the counter as needed. For example, suppose we want to use <h1> ele-
ments as chapter headings, with <h2> elements as section headings. Both chapters
and sections are numbered, with section headings being reset with each new chap-
ter. You can achieve this with:

h1:before { counter-increment : chapter; counter-reset : section }
h2:before { counter-increment : section }

When the CSS2-conscious browser encounters the first <h1> element in the docu-
ment, it creates both the chapter and section counters and resets their values to 0. At

8.4 Style Properties | 295

the same time, and for every encounter thereafter, the CSS2-conscious browser
enacts the counter-increment property to set the chapter counter to 1, representing
Chapter 1, then 2, and so on. As <h2> elements are encountered within a chapter, the
section counter gets incremented according to the h2 style rule, numbering each sec-
tion in order. Notice, too, that the section counter gets reset by the h1 rule so that
the section counter restarts for each chapter.*

Both the counter-reset and counter-increment properties accept lists of counter
names, letting you reset or increment groups of counters in one property. You can
also supply a numeric value after a counter name so that with counter-reset, the
counter gets initialized to that specified value, and counter-increment adds the value
to the current counter value. Negative numbers are allowed, too, so that you may
count down, if desired.

For example, if we want our document to begin with Chapter 7 and we want section
numbers to increase by 2, we might rewrite the previous example as follows:

body { counter-reset : chapter 6 }
h1:before { counter-increment : chapter; counter-reset : section }
h2:before { counter-increment : section 2 }

Notice how we created the chapter counter in the earliest possible element in our
document, using a value one less than the desired first value. When the browser
encounters the first <h1> element, it creates, sets to 6, and then increments the
chapter counter.

The scope of a counter name is the nesting level in which it is defined; it is not neces-
sarily document-wide. If you use the same counter name in a child element, the
browser creates a new instance of the counter at that level. In our example, all the
<h1> and <h2> elements exist at the same nesting level, so one instance of the chapter
and section counters serves that whole level. If you nested a <div> tag in that ele-
ment, which in turn contained <h1> and <h2> elements, new instances of both
counters would be created at that new level.

This nesting behavior is critical for nested numbered lists to work. If you associate a
counter with the element and then nest several ordered lists, each list level has
its own instance of the counter, with separate number sequences at each level.

8.4.11.5 Using counters in your documents

Creating counters is of little use if you don’t display their values in your documents.
The display is not automatic. To show a counter, use the special counter() and
counters() values in the content property.

* Note here that the browser doesn’t display counters unless you explicitly tell it to. See “Using counters in
your documents.”

296 | Chapter 8: Cascading Style Sheets

The counter() value requires the name of a counter inside its parentheses, with an
optional format specification. The browser then displays the value of the specified
counter within the generated content in the format desired. The format can be any
list format accepted by the list-style-type property, as described earlier in section
8.4.8.3.

For example, to actually display the numbers of our numbered chapters and sec-
tions, we expand our style rules for the <h1> and <h2> elements:

h1:before { counter-increment : chapter;
 counter-reset : section;
 content : "Chapter " counter(chapter) ": " }
h2:before { counter-increment : section;
 content : "Section " counter(section) ": "}

Then, when the CSS2-conscious browser encounters this in the document:

<h1>Kumquat Growers</h1>

it renders it as shown in Figure 8-19. To number our chapters using Roman numer-
als, we would change the properties to:

h1:before { counter-increment : chapter;
 counter-reset : section;
 content : "Chapter " counter(chapter, upper-roman) ": " }
h2:before { counter-increment : section;
 content : "Section " counter(section, lower-roman) ": "}

The counter() value is the value of the counter at the current nesting level. To access
all the values of the same-named counter at all nesting levels, use the plural
counters() value instead. Include the counter name in the parentheses and a separa-
tor string. The browser puts the separator string between each list of values for the
counter in the display. You may also supply a format type to switch from the default
decimal numbering.

The counters() value is most useful when creating nested numbered lists. Consider
these properties:

ol { counter-reset: item }
li:before { counter-increment: item ;
 content: counters(item, ".") }

If you nest several elements in your document, each includes all the nested
values, separated by periods. This should create the familiar numbering pattern* of 1,
1.1, 1.1.1, and so on, as the nesting increases, as we demonstrated much earlier in
this chapter (refer to Figure 8-3).

Again, only the newcomers Firefox and Opera properly display styles-generated
counters and content.

* Surely you’ve noticed it in this book!

8.4 Style Properties | 297

8.4.11.6 Creating markers

According to the CSS2 standard, the browser should place styles-generated content
before or after the conventional HTML/XHTML content of the affected element, and
it should therefore become part of the element’s flow. This is not acceptable for
numbered lists, where the number should be displayed separate from the content of
each numbered item. To do this, add the display property to your generated con-
tent, with the special value of marker. To make our nested numbered list example
completely correct, for instance, we use the rules:

ul { counter-reset: item }
li:before { display : marker;
 counter-increment: item ;
 content: counters(item, ".") }

This way, the generated counter number gets rendered to the left of the element’s
actual content. In a similar fashion, you can place markers after an element. For
example, use the following properties to create numbered equations within chapters
(the <blockquote> element delineates the equation):

h1:before { counter-increment : chapter;
 counter-reset : equation }
blockquote:after { counter-increment : equation;
 display : marker;
 content : "("counter(chapter, upper-roman) "-" counter(equation) ")" }

When rendering a marker, the browser determines where to place the marker con-
tent in relation to the element’s actual content. You modify this behavior with the
marker-offset property. It accepts a numerical (length) value equal to the distance
between the edge of the marker and the edge of the associated element. For example,

Figure 8-19. Use CSS2 counters to automatically number chapters and sections

298 | Chapter 8: Cascading Style Sheets

to ensure that our equation numbers get shifted 0.5 inches away from the related
equation, we could use:

h1:before { counter-increment : chapter;
 counter-reset : equation }
blockquote:after { counter-increment : equation;
 display : marker;
 content : "("counter(chapter, upper-roman) "-" counter(equation) ")";
 marker-offset : 0.5in }

8.4.12 Audio Properties
From its humble beginnings, HTML has been a visual medium for computer display
devices. Although increasing attention has been paid to other media as the standard
evolved, CSS2 is the first real effort to comprehensively address using HTML/
XHTML documents for nonvisual media.

For example, CSS2 forecasts that someday some browsers will be able to speak the
textual content of a document, using some sort of text-to-speech technology. Such a
browser would be of enormous help for the visually impaired and would also allow
web browsing via the phone and other devices where a visual display is not readily
available or usable. Imagine the excitement of driving down the road while your
favorite web pages are read to you!*

CSS2 attempts to standardize these alternative renderings by defining a number of
properties that control the aural experience of a web listener. None of them is cur-
rently supported in any popular browser, but we envision a time in the near future
when you may be able to take advantage of some or all of these properties.

8.4.12.1 The volume property

The most basic aural property is volume. It accepts numeric length or percentage val-
ues along with a few keywords corresponding to preset volume levels.

Numeric values range from 0 to 100, with 0 corresponding to the minimum audible
level and 100 being the maximum comfortable level. Note that 0 is not the same as
silent, as the minimum audible level in an environment with loud background noise
(like a factory floor) may be quite high.

Percentage values compute an element’s volume as a percentage of the containing
element’s volume. Computed values less than 0 are set to 0; values greater than 100
are set to 100. Thus, to make an element twice as loud as its parent element, set the
volume property to 200%. If the volume of the parent element is 75, the child ele-
ment’s volume gets set to the limit of 100.

* Conversely, imagine the annoyance of someone having web pages read to themwhile you try to enjoy a quiet
meal or watch a movie. We are constantly reminded that every advance in technology has a dark side.

8.4 Style Properties | 299

You also may specify a keyword value for the volume property. Here, silent actually
turns the sound off. The x-soft value corresponds to a value of 0; soft is the same as
the numeric volume of 25; medium is 50, loud is 75, and x-loud corresponds to 100.

8.4.12.2 Speaking properties

Three properties control whether and how text is converted to speech. The first is
speak, which turns speech on and off. By default, the value of speak is normal, mean-
ing that text is converted to speech using standard, locale-specific rules for pronunci-
ation, grammar, and inflection. If you set speak to none, speech is turned off. You
might use this feature to suppress speaking of secondary content or content that does
not readily translate to audio, such as a table.

Finally, you can set the speak property to spell-out, which spells out each word.
This is useful for acronyms and abbreviations. For example, using:

acronym { speak : spell-out }

ensures that acronyms such as URL get translated aurally as “you-are-ell” and not as
“earl.”

By default, the speak-punctuation property is set to none, causing punctuation to be
expressed as pauses and inflection in the generated speech. If you give this property
the code value, punctuation is spoken literally. This might be useful for aurally repro-
ducing programming code fragments or literal transcriptions of some content.*

The speak-numeral property defaults to the value continuous, meaning that numerals
are pronounced as a single number. Accordingly, the number “1234” would be
reproduced as “one thousand two hundred thirty-four.” When set to digits, the
numbers are pronounced digit by digit, such as “one, two, three, four.”

8.4.12.3 Voice characteristics

To create a richer listening experience, CSS2 defines a number of properties that alter
the spoken content. This lets you use different voices for different content, speed up
the speech, and change the pitch and stress levels in the speech.

The speech-rate property accepts a numeric length value that defines the number of
words spoken per minute. The default value is locale dependent because different
cultures have different notions of a “normal” rate of speech. Instead of a specific
value, you may use any of the keywords x-slow, slow, medium, fast, and x-fast, corre-
sponding to 80, 120, 180, 300, and 500 words per minute, respectively. The faster
keyword sets the rate to 40 words per minute faster than the containing element, and
slower sets the rate to 40 words per minute slower than the containing element.

* Regrettably, there is no victor-borge mode for this property. Perhaps CSS3 will address this egregious
oversight.

300 | Chapter 8: Cascading Style Sheets

The voice-family property is the aural analog of the font-family property. A voice
family defines a style and type of speech. Such definitions are browser and platform
specific, much like fonts. It is assumed that browsers will define generic voice fami-
lies, such as “male,” “female,” and “child,” and may also offer specific voice families
like “television announcer” or “book author.” The value of the voice-family prop-
erty is a comma-separated list of these voice family names; the browser goes down
the list until it finds a voice family that it can use to speak the element’s text.

The pitch property controls the average pitch, with units in hertz (hz), of the spoken
content. The basic pitch of a voice is defined by the voice family. Altering the pitch
lets you create a variation of the basic voice, much like changing the point size of a
font. For example, with a change in pitch, the “book author” might be made to
sound like a chipmunk.*

You can set the pitch property to a numeric value such as 120hz or 210hz (the aver-
age pitches of typical male and female voices) or to one of the keywords x-low, low,
medium, high, or x-high. Unlike other speech property keywords, these do not corre-
spond to specific pitch frequencies but instead depend on the base pitch of the voice
family. The only requirement is that these keywords correspond to increasingly
lower or higher pitches.

While the pitch property sets the average pitch, the pitch-range property defines
how far the pitch can change as the browser reproduces text aurally. The value of
this property is a numeric value ranging from 0 to 100, with a default value of 50.
Setting the pitch-range to 0 produces a flat, monotonic voice; values over 50 pro-
duce increasingly animated and excited-sounding voices.

The stress property controls the amount of inflection that is placed on elements in
the spoken text. Various languages have differing rules for stressing syllables and
adding inflection based on grammar and pronunciation rules. The stress property
accepts a value in the range of 0 to 100, with the default value of 50 corresponding to
“normal” stress. Using a value of 0 eliminates inflection in the spoken content. Val-
ues over 50 increasingly exaggerate the inflection of certain spoken elements.

The richness property controls the quality or fullness of the voice. A richer voice
tends to fill a room and carries farther than a less rich, or smoother, voice. Like pitch
and stress, the richness property accepts a numeric value in the range of 0 to 100,
with a default value of 50. Values approaching 0 make the voice softer. Values over
50 make the voice fuller and more booming.

* Assuming, of course, that she doesn’t already sound like a chipmunk.

8.4 Style Properties | 301

8.4.12.4 Pause properties

Like whitespace in a printed document, insert pauses in spoken content to offset and
thereby draw attention to content as well as to create a better-paced, more under-
standable spoken presentation.

The pause-before and pause-after properties generate pauses just before or just after
an element’s spoken content. These properties accept either an absolute time value
(using the s or ms unit) or a percentage value. With a percentage value, the pause is
relative to the length of time required to speak a single word. For example, if the
speech rate is 120 words per minute, one word, on average, is spoken every 0.5 sec-
onds. A pause of 100 percent, therefore, would be 0.5 seconds long; a 20 percent
pause would be 0.1 seconds long, and so on.

The pause property sets both the pause-before and pause-after properties at once.
Use one value for pause to set both properties; the first of two values sets pause-
before, and the second sets the pause-after property value.

8.4.12.5 Cue properties

Cue properties let you insert audible cues before or after an element. For example,
you might precede each chapter in a book with a musical cue, or denote the end of
quoted text with an audible tone.

The cue-before and cue-after properties take as their value the URL of a sound file,
which the browser loads and plays before or after the styled document element,
respectively. Technically, the sound can be of any duration, but the presumption is
that audible cues are short and nonintrusive, enhancing the audio experience instead
of overwhelming it.

Use the cue property to set both the cue-before and cue-after properties at once. If
you provide one URL value, it sets both cue sounds; with two values, the first sets
the cue-before sound and the second sets the cue-after sound.

8.4.12.6 Audio mixing

To create a more pleasant listening experience, you may want to play background
music during a spoken passage. The play-during property meets this need. Its values
are the URL of the sound file and several keywords that control playback.

The repeat keyword repeats the background audio until the spoken content is com-
plete. If you don’t use this keyword, the background sound plays once, even if it is
shorter than the spoken content. A background sound that is longer than the spoken
content ends when the content ends.

The mix keyword tells the CSS2-conscious browser to meld the background sound with
any other background sounds that may be playing as defined by some parent element.

302 | Chapter 8: Cascading Style Sheets

If you don’t use this keyword, child-element background sounds replace parent-ele-
ment background sounds, which resume when the current element has finished.

In lieu of a URL representing the background sound, you can use the value none.
This lets you silence all background sounds, such as one or more playing from par-
ent elements, while the current element is being spoken.

8.4.12.7 Spatial positioning

While a rendered document exists on a two-dimensional page, spoken content can be
placed anywhere in the three-dimensional space surrounding the listener. The CSS2
standard defines the azimuth and elevation properties so that you can place spoken
content from elements in different places around the listener. azimuth relates to where
and elevation tells how far above or below the sound appears to the listener.

The azimuth property accepts either an angle value or keywords indicating a position
around the listener. The position directly in front of the listener is defined to be 0
degrees. The listener’s right is at 90 degrees, and directly behind is 180 degrees. The
listener’s left is at 270 degrees or, equivalently, –90 degrees.

Position keywords include a base position, possibly modified by the behind key-
word. These keywords correspond to the angular positions listed in Table 8-2.

The leftwards keyword subtracts 20 degrees from the parent element’s azimuth. Sim-
ilarly, rightwards adds 20 degrees to the parent element’s azimuth. Note that this
process can continue until you work your way around the listener; these values add
or subtract 20 degrees no matter what the azimuth of the parent is.

The elevation property accepts an angular value ranging from –90 degrees to 90
degrees, corresponding to from directly below the listener to directly above the lis-
tener. Zero degrees is considered to be level with the listener’s ears. You can also use
the below, level, and above keywords for –90, 0, and 90 degrees, respectively.

Table 8-2. Angular equivalents for azimuth keywords

Keyword Angular position Angular position when used with behind

left-side 270 270

far-left 300 240

left 320 220

center-left 340 200

center 0 180

center-right 20 160

right 40 140

far-right 60 120

right-side 90 90

8.4 Style Properties | 303

Use the higher keyword to increase the elevation by 10 degrees over the parent ele-
ment’s elevation; lower changes the elevation of the sound to 10 degrees below the
parent element’s elevation.

8.4.13 Paged Media
Printing has never been HTML’s strong suit. In fact, the HTML and XHTML stan-
dards have intentionally ignored printing because printing assumes page layout, and
HTML and XHTML are not layout tools.

Authors use cascading stylesheets to format and lay out their HTML/XHTML docu-
ment contents, so it is not surprising that the CSS2 standard introduces some basic
pagination control features that let authors help the browser figure out how to best
print their documents. These features fall into two groups: those that define a partic-
ular page layout and those that control the pagination of a document.

8.4.13.1 Defining pages

As an extension to the box model, CSS2 defines a page box, a box of finite dimen-
sions in which content is rendered. The page box does not necessarily correspond to
a physical sheet of paper; the user agent maps one or more page boxes to sheets of
paper during the printing process. Many small page boxes may fit on a single sheet;
large page boxes may be scaled to fit on a sheet or may be broken across several
sheets at the discretion of the browser.

During the printing process, content flows into the page box, is paginated appropri-
ately, and is transferred to a target sheet on a hard-copy output device. The dimen-
sions of the page box may differ from the browser’s display window, so the flow and
rendering of a printed document may be completely different from its onscreen rep-
resentation. As always, obtaining a specific rendered appearance for your documents
is generally impossible. However, you can use the CSS2 pagination features to help
the browser print your document in an attractive, useful manner.

You define a page box using the special @page at-rule. Immediately following the
@page keyword is an optional name for the page, followed by a list of properties sepa-
rated by semicolons and enclosed in curly braces. These properties define the size,
margins, and appearance of the page box.

Use the size property to specify the size of the page box. The value of this property is
either one or two length values, or one of the special keywords portrait, landscape,
or auto. If you provide a single length value, it creates a square, setting both the
width and the height of the page to that value. Two length values set the width and
the height of the page, respectively. The portrait keyword specifies the locally
accepted page size that is taller than it is wide (typically 8 × 11), and landscape uses a
locally accepted page size that is wider than it is tall (typically 11 × 8 inches). Finally,

304 | Chapter 8: Cascading Style Sheets

auto creates a page box that is the same size as the target sheet of paper on which the
document is printed.

In general, you should use the special page size keywords to ensure that your docu-
ment prints well in the local environment. Using:

@page normal { size : 8.5in 11in }

works fine in the U.S. but may fail in European locales. Instead, use:

@page normal { size : portrait }

which should select an 8.5" × 11" page in the U.S. and an A4 sheet in Europe.*

Use the margin, margin-top, margin-bottom, margin-left, and margin-right proper-
ties within the @page at-rule to set margins for your page. Keep in mind that the
browser may define margins for rendering the page box within the target sheet, so
your margins are in addition to those margins. The default margins for the page box
are not defined and are browser dependent.

Finally, the marks property is used within the @page at-rule to create crop and regis-
tration marks outside the page box on the target sheet. By default, no marks are
printed. You may use one or both of the crop and cross keywords to create crop
marks and registration marks, respectively, on the target print page.

8.4.13.2 Left, right, and first pages

In many printing applications, authors want different page layouts for the first page
of their document as well as differing formats for right and left pages in double-sided
documents. CSS2 accommodates all of these cases using three pseudoclasses
attached to the name of a page.

The :first pseudoclass applies the page format to the first page in a document.
Page-layout attributes specified in the :first page override corresponding attributes
in the general page layout. You can use the :first pseudoclass in conjunction with a
named page layout; the appropriate first-page layout is applied if the first page of the
document is rendered using the named page.

In a similar fashion, the :left and :right pseudoclasses define left and right page
layouts for your document. Again, named pages can have left and right variations.
The browser automatically applies appropriate left and right layouts to every page in
the document, if such layouts exist.

You need not specify named pages to use any of these pseudoclasses. Indeed, most
documents do not do so. For example, if you use these settings:

@page :first { margin-top : 3in }
@page :left { margin-left : 2in; margin-right : 1in }
@page :right { margin-left : 1in; margin-right : 2in }

* The word normal in the rule is the page name, of course.

8.4 Style Properties | 305

without further intervention, the first page of your document will have a 3-inch top
margin (and an appropriate right and left margin, depending on how your locale
defines whether the first page of a document is on the right or the left). Subsequent
pages will alternate between wide and narrow inner and outer margins.

8.4.13.3 Using named pages

Once you create a named page layout, you can use it in your document by adding the
page property to a style that is later applied to an element in your document. If an
element has a page layout that is different from that of the preceding or containing
element, a page break is inserted into the document, and formatting resumes using
the new page layout. When the scope of the element ends, the page layout reverts to
the previous layout, with appropriate page breaks as needed.

For example, this style renders all the tables in your document on landscape pages:

@page { size : portrait }
@page rotated { size : landscape }
table { page : rotated }

While printing, if the browser encounters a <table> element in your document and
the current page layout is the default portrait layout, it starts a new page and prints
the table on a landscape page. If nontabular content follows the table, the browser
inserts another page break, and the flow resumes on the default portrait-size page.
Several tables in a row would be rendered on a single landscape sheet, if they all fit.

8.4.13.4 Controlling pagination

Unless you specify otherwise, page breaks occur only when the page format changes
or when the content overflows the current page box. To otherwise force or suppress
page breaks, use the page-break-before, page-break-after, and page-break-inside

properties.

Both the page-break-before and page-break-after properties accept the auto, always,
avoid, left, and right keywords. auto is the default; it lets the browser generate page
breaks as needed. The keyword always forces a page break before or after the ele-
ment, and avoid suppresses a page break immediately before or after the element.
The left and right keywords force one or two page breaks so that the element is
rendered on a lefthand or righthand page.

Using pagination properties is straightforward. Suppose your document has level-1
headers start new chapters, with sections denoted by level-2 headers. You’d like each
chapter to start on a new, righthand page, but you don’t want section headers to be
split across a page break from the subsequent content. Accordingly, you might write
your CSS2 print rule as follows:

h1 { page-break-before : right }
h2 { page-break-after : avoid }

306 | Chapter 8: Cascading Style Sheets

Use only the auto and avoid values with the page-break-inside property. auto allows
page breaks within the element (the default behavior), and avoid suppresses them.
Even so, elements that are larger than the printed page get broken up; that is why the
keyword is avoid and not prevent.

If you prefer that your tables not be broken across pages if possible, you would write
the following rule:

table { page-break-inside : avoid }

8.4.13.5 Controlling widows and orphans

In typographic lingo, orphans are those lines of a paragraph stranded at the bottom
of a page due to a page break, and widows are those lines remaining at the top of a
page following a page break. Generally, printed pages do not look attractive with sin-
gle lines of text stranded at the top or bottom. Most printers try to leave at least two
or more lines of text at the top or bottom of each page.

If you want to take control of this behavior, you can apply the widows and orphans

properties to an element. The value of each property is the minimum number of lines
of text that can be left at the top or bottom of the page, respectively. The default is 2,
meaning that the browser generates page breaks as needed to ensure that at least two
lines of text from the element appear at the top or bottom of each page. You gener-
ally want to apply this property to all of the elements in your document, to ensure
consistent pagination throughout.

8.5 Tagless Styles: The Tag
Up to now, we have used cascading stylesheets to change the appearance of content
within a designated tag. In some cases, however, you may want to alter the appear-
ance of only a portion of a tag’s contents—usually text. Designate these special seg-
ments with the tag.

Function Delimits an arbitrary amount of text

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag ; never omitted

Contains html_content

Used in body_content

8.6 Applying Styles to Documents | 307

The tag simply delimits a portion of content (constrained by normal tag-nest-
ing rules, of course). Browsers treat the tag as another physical or content-
based style tag—the only difference is that the default meaning of the tag is to
leave the text alone.

The tag became part of HTML so that you could apply style, display, and
event management to an arbitrary section of document content. Define a style for the
 tag as you would any other HTML or XHTML tag:

span {color: purple}
span.bigger {font-size: larger}

and use it like any other HTML or XHTML tag:

Quat harvest projections are bigger than ever!

Similarly, apply an inline style to the tag to modify the appearance of its
contents:

Quat harvest projections are bigger than ever!

Like any other physical or content-based style tag, tags can be nested and may
contain other tags.

The tag also supports the many common tag attributes. The style and class

attributes, of course, let you control the display style; the id and title tag attributes
let you uniquely label its contents; the dir and lang attributes let you specify its
native language; and the many on-event attributes let you react to user-initiated
mouse and keyboard actions on the contents. Not all are implemented by the cur-
rently popular browsers for this tag or for many others. [The dir attribute, 3.6.1.1]
[The lang attribute, 3.6.1.2] [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]
[Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3] [JavaScript Event Han-
dlers, 12.3.3]

8.6 Applying Styles to Documents
You should consider several issues before, during, and after you use styles in your
web documents and document collections. The first, overarching issue is whether to
use them at all. Frankly, few of the style effects are unique; you can achieve most of
them, albeit less easily and with much less consistency, via the physical and content-
based style tags (e.g., <i> and) and the various tag attributes (e.g., color and
background).

8.6.1 To Style or Not to Style
We think the CSS2 standard is a winner, not only over JavaScript-based standards
but also for the convenience and effectiveness of all of your markup documents,
including HTML, XHTML, and most other XML-compliant ones. Most browsers in

308 | Chapter 8: Cascading Style Sheets

use today support CSS1 and many of the features of CSS2. The benefits are clear. So,
why wouldn’t you use styles?

Although we strongly urge you to learn and use CSS2 stylesheets for your docu-
ments, we realize that creating stylesheets is an investment of time and energy that
pays off only in the long run. Designing a stylesheet for a one- or two-page docu-
ment is probably not time effective, particularly if you won’t be reusing the stylesheet
for any other documents. In general, however, we believe the choice is not if you
should use CSS2 stylesheets, but when.

8.6.2 Which Type of Stylesheet, and When
Once you have decided to use cascading stylesheets (for pain or pleasure), the next
question is which type of stylesheet—inline, document level, or external—you
should apply, and when. Each has its pros and cons; each is best applied under cer-
tain circumstances.

8.6.2.1 The pros and cons of external styles

Because stylesheets provide consistency in the presentation of your documents,
external stylesheets are the best and easiest way to manage styles for your entire doc-
ument collection. Simply place the desired style rules in a stylesheet, and apply those
styles to the desired documents. Because all of the documents are affected by a sin-
gle stylesheet, conversion of the entire collection to a new style is as simple as chang-
ing a single rule in the corresponding external stylesheet.

Even in cases where documents may differ in style, it is often possible to collect a few
basic style rules in a single sheet that can be shared among several otherwise differ-
ent documents, including:

• Background color

• Background image

• Font sizes and faces

• Margins

• Text alignment

Another benefit of external stylesheets is that other web authors who want to copy
your style can easily access that sheet and make their pages look like yours. Imita-
tion being the sincerest form of flattery, you should not be troubled when someone
elects to emulate the look and feel of your pages. More to the point, you can’t stop
them from linking to your stylesheets, so you might as well learn to like it. Like con-
ventional HTML documents, it is not possible to encrypt or otherwise hide your
stylesheets so that others cannot view and use them.

8.6 Applying Styles to Documents | 309

The biggest problem with external stylesheets is that they may increase the amount
of time needed to access a given web page. Not only must the browser download the
page itself, but it must also download the stylesheet before the page can be displayed
to the user. While most stylesheets are relatively small, their existence can definitely
be felt when accessing the Web over a slow connection.

Without appropriate discipline, external stylesheets can become large and unwieldy.
When creating stylesheets, include only those styles that are common to the pages
using the sheet. If a set of styles is needed for only one or two pages, you are better
off isolating them in a separate sheet or adding them to those documents using docu-
ment-level styles. Otherwise, you may find yourself expending an exorbitant amount
of effort counteracting the effects of external styles in many individual documents.

8.6.2.2 The pros and cons of document-level styles

Document-level styles are most useful when creating custom documents. They let
you override one or more rules in your externally defined style to create a slightly dif-
ferent document.

You might also want to use document-level styles to experiment with new style rules
before moving them to your stylesheets. By adding and changing rules using docu-
ment-level styles, you eliminate the risk of adding a broken style to your stylesheets,
breaking the appearance of all the documents that use that sheet.

The biggest problem with document styles is that you may succumb to using them in
lieu of creating a formal, external stylesheet to manage your document collection. It
is easy to simply add rules to each document, cutting and pasting as you create new
documents. Unfortunately, managing a collection of documents with document-level
styles is tedious and error-prone. Even a simple change can result in hours of editing
and potential mistakes.

As a rule of thumb, any style rule that impacts three or more documents should be
moved to a stylesheet and applied to those documents using the <link> tag or
@import at-rule. Adhering to this rule as you create your document families pays off
in the long run when it is time to change your styles.

8.6.2.3 The pros and cons of inline styles

At the end of the cascade, inline styles override the more general styles. Get into the
habit now of using inline styles rarely and just for that purpose. You cannot reuse
inline styles, making style management difficult. Moreover, such changes are spread
throughout your documents, making finding and altering inline styles error-prone.
(That’s why we might eschew tag- and attribute-based styles in the first place, no?)

Anytime you use an inline style, think long and hard about whether you might
accomplish the same effect using a style class definition. For instance, you are better
off defining:

310 | Chapter 8: Cascading Style Sheets

<style type="text/css">
<!--
 p.centered {text-align: center}
 em.blue {color: blue}
-->
</style>

and later using:

<p class=centered>
<em class=blue>

rather than:

<p style="text-align: center">
<em style="color: blue">

Your styles are easier to find and manage and can easily be reused throughout your
documents.

311

Chapter 9!ti
In this chapter:

• Form Fundamentals
• The <form> Tag
• A Simple Form Example
• Using Email to Collect Form Data
• The <input> Tag
• The <button> Tag
• Multiline Text Areas
• Multiple-Choice Elements
• General Form-Control Attributes
• Labeling and Grouping Form

Elements
• Creating Effective Forms
• Forms Programming

CHAPTER 9

Forms9

Forms, forms, forms, forms: we fill ’em out for nearly everything, from the moment
we’re born, ‘til the moment we die. Pretty mundane, really. So what’s to explain all
the hoopla and excitement over HTML forms? Simply this: they make HTML and, of
course, XHTML truly interactive.

When you think about it, interacting with a web page is basically a lot of button
pushing: click here, click there, go here, go there—there’s no real interactivity, and
it’s certainly not personalized. Programs such as applets, servlets, JSPs, and ASPs
provide extensive user-interaction capability but can be difficult to write. Forms, on
the other hand, are easily made in HTML/XHTML and make it possible to create
documents that collect and process user input and to formulate personalized replies.

This powerful mechanism has far-reaching implications, particularly for electronic
commerce. It finishes an online catalog by giving buyers a way to immediately order
products and services. It gives nonprofit organizations a way to sign up new mem-
bers. It lets market researchers collect user data. It gives you an automated way to
interact with your readers.

Mull over the ways you might want to interact with your readers while we take a
look at both the client- and server-side details of creating forms.

9.1 Form Fundamentals
Forms are composed of one or more text-input boxes, clickable buttons, multiple-
choice checkboxes, and even pull-down menus and image maps, all placed inside the

312 | Chapter 9: Forms

<form> tag. You can have more than one form in a document, and within each one
you also may put regular body content, including text and images. The text is partic-
ularly useful for providing form element labels, prompts, and instructions to the
users on how to fill out the form. And, within the various form elements, you can use
JavaScript event handlers for a variety of effects, such as testing and verifying form
contents and calculating a running sum.

A user fills out the various fields in the form, then clicks a special Submit button (or,
sometimes, presses the Enter key) to submit the form to a server. The browser pack-
ages up the user-supplied values and choices and sends them to a server or to an
email address.* The server passes the information along to a supporting program or
application that processes the information and creates a reply, usually in HTML. The
reply simply may be a thank you, or it might prompt the user on how to fill out the
form correctly or to supply missing fields. The server sends the reply to the browser
client, which then presents it to the user. With emailed forms, the information is
simply put into someone’s mailbox; there is no notification of the form being sent.

The server-side, data-processing aspects of forms are not part of the HTML or
XHTML standard; they are defined by the server’s software. While a complete dis-
cussion of server-side forms programming is beyond the scope of this book, we’d be
remiss if we did not include at least a simple example to get you started. To that pur-
pose, we’ve included at the end of this chapter a few skeletal programs that illustrate
some of the common styles of server-side forms programming.

A final caveat: as is its wont, the World Wide Web Consortium (W3C) has been
working on an XML-based definition of forms. This new version of forms, known as
XForms, is currently a “working document,” subject to review and changes as
needed. XForms differs from the conventional forms model in almost every way: the
forms are defined differently, data is validated differently, and information is trans-
mitted to the server differently. As you might imagine, XForms is not currently sup-
ported by any browser or server, although a preliminary version of XForms is
available for testing as part of the Mozilla XForms Project. Given its lack of general
support, dramatic differences from the current model, and the long odds that
XForms will replace the millions of forms already in use, it would be premature to
address it in any detail in this chapter. Instead, we’ll cover the forms as defined in
HTML and XHTML, and leave you with a warning that a new forms model may be
coming at some point in the future.

* The popular browsers may also encrypt the information, securing it from credit card thieves, for example.
However, the encryption facility must be supported on the server as well: consult the web server documen-
tation for details.

9.2 The <form> Tag | 313

9.2 The <form> Tag
Place a form anywhere inside the body of a document, with its elements enclosed by
the <form> tag and its respective end tag (</form>). You can, and we recommend you
often do, include regular body content inside a form to specially label user-input
fields and to provide directions.

Browsers flow the special form elements into the containing paragraphs as though
they were small images embedded into the text. There aren’t any special layout rules
for form elements, so you need to use other elements, such as tables and stylesheets,
to control the placement of elements within the text flow.

You must define at least two special form attributes, which provide the name of the
form’s processing server and the method by which the parameters are to be sent to
the server. A third, optional attribute lets you change how the parameters get
encoded for secure transmission over the network.

9.2.1 The action Attribute
The required action attribute for the <form> tag gives the URL of the application that
is to receive and process the form’s data. Most webmasters keep their forms-process-
ing applications in a special directory on their web server, usually named cgi-bin,
which stands for Common Gateway Interface-binaries.* Keeping these special forms-
processing programs and applications in one directory makes it easier to manage and
secure the server.

<form>

Function Defines a form

Attributes accept, action, charset, class, dir, enctype, id, lang, method, name,
onClick, onDblClick, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp, onReset,
onSubmit, style, target, title

End tag </form>; never omitted

Contains form_content

Used in block

* The Common Gateway Interface (CGI) defines the protocol by which servers interact with programs that
process form data.

314 | Chapter 9: Forms

A typical <form> tag with the action attribute looks like this:

<form action="http://www.kumquat.com/cgi-bin/update">
...
</form>

The example URL tells the browser to contact the web server named www in the
kumquat.com domain and pass along the user’s form values to the application named
update located in the cgi-bin directory.

In general, if you see a URL that references a document in a directory named cgi-bin,
you can be pretty sure that the document is actually an application that dynamically
creates the desired page each time it’s invoked.

9.2.2 The enctype Attribute
The browser specially encodes the form’s data before passing that data to the server so
that it does not become scrambled or corrupted during the transmission. It is up to the
server to either decode the parameters or pass them, still encoded, to the application.

The standard encoding format is the Internet Media Type application/x-www-form-
urlencoded. You can change that encoding with the optional enctype attribute in the
<form> tag. The only optional encoding formats currently supported are multipart/
form-data and text/plain.

The multipart/form-data alternative is required for those forms that contain file-
selection fields for upload by the user. You should use the text/plain format in con-
junction with a mailto URL in the action attribute for sending forms to an email
address rather than a server. Unless your forms need file-selection fields or you must
use a mailto URL in the action attribute, you probably should ignore this attribute
and simply rely upon the browser and your processing server to use the default
encoding type. [File-selection controls, 9.5.1.3]

9.2.2.1 The application/x-www-form-urlencoded encoding
The standard encoding—application/x-www-form-urlencoded—converts any spaces
in the form values into a plus sign (+), nonalphanumeric characters into a percent
sign (%) followed by two hexadecimal digits that are the ASCII code of the character,
and the line breaks in multiline form data into %0D%0A.

The standard encoding also includes a name for each field in the form. (A field is a
discrete element in the form, whose value can be nearly anything from a single num-
ber to several lines of text—the user’s address, for example.) If there is more than
one value in the field, the values are separated by ampersands.

For example, here’s what the browser sends to the server after the user fills out a
form with two input fields labeled name and address; the former field has just one line
of text, and the latter field has several lines of input:

name=O'Reilly+Media&address=1005+Gravenstein+Highway+North%0D%0A
Sebastopol,%0D%0ACA+95472

9.2 The <form> Tag | 315

We’ve broken the value into two lines here for clarity, but in reality, the browser
sends the data in an unbroken string. The name field is O'Reilly Media, and the value
of the address field, complete with embedded newline characters, is:

1005 Gravenstein Highway North
Sebastopol,
CA 95472

9.2.2.2 The multipart/form-data encoding

The multipart/form-data encoding encapsulates the fields in the form as several parts
of a single Multipurpose Internet Mail Extension (MIME)-compatible compound
document. Each field has its own section in the resulting file, set off by a standard
delimiter. Within each section, one or more header lines define the name of the field,
followed by one or more lines containing the value of the field. Because the value
part of each section can contain binary data or otherwise unprintable characters, no
character conversion or encoding occurs within the transmitted data.

This encoding format is by nature more verbose and longer than the application/
x-www-form-urlencoded format. As such, you can use it only when the method

attribute of the <form> tag is set to post, as described in section 9.2.4, later in this
chapter. A simple example makes it easy to understand this format. Here’s our previ-
ous example, when transmitted as multipart/form-data:

------------------------------146931364513459
Content-Disposition: form-data; name="name"

O'Reilly Media
------------------------------146931364513459
Content-Disposition: form-data; name="address"

1005 Gravenstein Highway North
Sebastopol,
CA 95472
------------------------------146931364513459--

The first line of the transmission defines the delimiter that appears before each sec-
tion of the document. It always consists of 30 dashes and a long random number
that distinguishes it from other text that might appear in actual field values.

The next lines contain the header fields for the first section. There is always a
Content-Disposition field indicating that the section contains form data and provid-
ing the name of the form element whose value is in this section. You may see other
header fields; in particular, some file-selection fields include a Content-Type header
field that indicates the type of data contained in the file being transmitted.

After the headers, there is a single blank line followed by the actual value of the field
on one or more lines. The section concludes with a repeat of the delimiter line that

316 | Chapter 9: Forms

started the transmission. Another section follows immediately, and the pattern
repeats until all of the form parameters have been transmitted. The end of the trans-
mission is indicated by an extra two dashes at the end of the last delimiter line.

As we pointed out earlier, use multipart/form-data encoding only when your form
contains a file-selection field. Here’s an example of how the transmission of a file-
selection field might look:

------------------------------146931364513459
Content-Disposition: form-data; name="thefile"; filename="test"
Content-Type: text/plain

First line of the file
...
Last line of the file
------------------------------146931364513459--

The only notable difference is that the Content-Disposition field contains an extra
element, filename, which defines the name of the file being transmitted. There might
also be a Content-Type field to further describe the file’s contents.

9.2.2.3 The text/plain encoding

Use this encoding only when you don’t have access to a forms-processing server and
need to send the form information by email (the form’s action attribute must be a
mailto URL). The conventional encodings are designed for computer consumption;
text/plain is designed with people in mind.

In this encoding, each element in the form is placed on a single line, with the name
and value separated by an equals sign. Returning to our name and address example,
the form data would be returned as:

name=O'Reilly Media
address=1005 Gravenstein Highway North%0D%0ASebastopol,%0D%0ACA 95472

As you can see, the only characters still encoded in this form are the carriage-return
and line-feed characters in multiline text-input areas. Otherwise, the result is easily
readable and generally parsable by simple tools.

9.2.3 The accept-charset Attribute
The accept-charset attribute was introduced in the HTML 4.0 standard. It lets you
specify a list of character sets that the server must support to properly interpret the
form data. The value of this attribute is a quote-enclosed list of one or more Interna-
tional Organization for Standardization (ISO) character set names. The browser may
choose to disregard the form or handle it differently if the acceptable character sets
do not match the character set the user is using. The default value of this attribute is
unknown, implying that the form’s character set is the same as that of the document
containing the form.

9.2 The <form> Tag | 317

9.2.4 The method Attribute
This attribute for the <form> tag sets the method by which the browser sends the
form’s data to the server for processing. There are two ways: the POST method and
the GET method. If method is not specified, GET is used.

With the POST method, the browser sends the data in two steps: the browser first
contacts the forms-processing server specified in the action attribute and then, once
contact is made, sends the data to the server in a separate transmission.

On the server side, POST-style applications are expected to read the parameters from a
standard location once they begin execution. Once read, the parameters must be
decoded before the application can use the form values. Your particular server defines
exactly how your POST-style applications can expect to receive their parameters.

The GET method, on the other hand, contacts the forms-processing server and sends
the form data in a single transmission step: the browser appends the data to the
form’s action URL, separated by the question mark character.

The common browsers transmit the form information by either method; some serv-
ers receive the form data by only one or the other method. You indicate which of the
two methods—POST or GET—your forms-processing server handles with the
method attribute in the <form> tag.

Here’s the complete tag including the GET transmission method attribute for the pre-
vious form example:

<form method=GET
 action="http://www.kumquat.com/cgi-bin/update">
 ...
</form>

9.2.4.1 POST or GET?

Which one should you use if your forms-processing server supports both the POST
and GET methods? Here are some rules of thumb:

• For best form-transmission performance, send small forms with a few short
fields via the GET method.

• Because some server operating systems limit the number and length of com-
mand-line arguments that can be passed to an application at once, use the POST
method to send forms that have many fields or that have long text fields.

• If you are inexperienced in writing server-side forms-processing applications,
choose GET. The extra steps involved in reading and decoding POST-style trans-
mitted parameters, while not too difficult, may be more than you are willing to
tackle.

• If security is an issue, choose POST. GET places the form parameters directly in
the application URL, where they easily can be captured by network sniffers or

318 | Chapter 9: Forms

extracted from a server logfile. If the parameters contain sensitive information
like credit card numbers, you may be compromising your users without their
knowledge. While POST applications are not without their security holes, they
can at least take advantage of encryption when transmitting the parameters as a
separate transaction with the server.

• If you want to invoke the server-side application outside the realm of a form,
including passing it parameters, use GET, because it lets you include form-like
parameters as part of a URL. POST-style applications, on the other hand, expect
an extra transmission from the browser after the URL—something you can’t do
as part of a conventional <a> tag.

9.2.4.2 Passing parameters explicitly

The foregoing bit of advice warrants some explanation. Suppose you had a simple
form with two elements named x and y. The browser encodes them like this:

x=27&y=33

If method=GET, the browser also includes the server-side’s processing application’s
URL as a prefix, like this:

http://www.kumquat.com/cgi-bin/update?x=27&y=33

There is nothing to keep you from creating a conventional <a> tag that invokes the
form with any parameter value you desire, like so:

The only hitch is that the ampersand that separates the parameters is also the charac-
ter-entity insertion character. When placed within the href attribute of the <a> tag,
the ampersand causes the browser to replace the characters following it with a corre-
sponding character entity.

To keep this from happening, you must replace the literal ampersand with its entity
equivalent, either & or & (see Appendix F). With this substitution, our exam-
ple of the alternative form reference to the server-side application looks like this:

Because of the potential confusion that arises from having to escape the ampersands
in the URL, server implementers are encouraged to also accept the semicolon as a
parameter separator. You might want to check the documentation to see whether
your server honors this convention.

9.2.5 The target Attribute
It is possible to redirect the results of a form to another window or frame. Simply add
the target attribute to your <form> tag and provide the name of the window or frame
to receive the results.

9.2 The <form> Tag | 319

Like the target attribute used in conjunction with the <a> tag, you can use a number
of special names with the target attribute in the <form> tag to create a new window
or to replace the contents of existing windows and frames. [The target Attribute for
the <a> Tag, 11.7.1]

9.2.6 The id, name, and title Attributes
The id attribute lets you attach a unique string label to your form for reference by
programs (applets) and hyperlinks. Before id was introduced in HTML 4.0, Netscape
used the name attribute to achieve similar effects, although it cannot be used in a
hyperlink. To be compatible with the broadest range of browsers, we recommend
that for now you include both name and id with <form>, if needed. In the future, you
should use only the id attribute for this purpose.

The title attribute defines a quote-enclosed string value to label the form. How-
ever, it titles only the form segment; its value cannot be used in an applet reference
or hyperlink. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

9.2.7 The class, style, lang, and dir Attributes
The style attribute creates an inline style for the elements enclosed by the form,
overriding any other style rules in effect. The class attribute lets you format the con-
tent according to a predefined class of the <form> tag; its value is the name of that
class. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

The actual effects of style with <form> are hard to predict, however. In general, style
properties affect the body content—text, in particular—that you may include as part
of the form’s contents, but <form> styles do affect the display characteristics of the
form elements.

For instance, you may create a special font face and background color style for the
form. The form’s text labels, but not the text inside a text-input form element,
appear in the specified font face and background color. Similarly, the text labels you
put beside a set of radio buttons appear in the form-specified style, but the radio but-
tons themselves do not.

The lang attribute lets you specify the language used within the form, with its value
being any of the ISO standard two-character language abbreviations, including an
optional language modifier. For example, adding lang=en-UK tells the browser that
the list is in English (“en”) as spoken and written in the United Kingdom (“UK”).
Presumably, the browser may make layout or typographic decisions based upon your
language choice.

Similarly, the dir attribute tells the browser in which direction to display the list con-
tents—from left to right (dir=ltr), like English and French, or from right to left
(dir=rtl), as with Hebrew and Chinese.

320 | Chapter 9: Forms

The popular browsers support the dir and lang attributes, even though no behaviors are
defined for any specific language. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

9.2.8 The Event Attributes

As for most other elements in a document, the <form> tag honors the standard mouse
and keyboard event-related attributes the compliant browser will recognize. We
describe the majority of these attributes in detail in Chapter 12. [JavaScript Event
Handlers, 12.3.3]

Forms have two special event-related attributes: onSubmit and onReset. The value of
each event attribute is—enclosed in quotation marks—one or a sequence of semico-
lon-separated JavaScript expressions, methods, and function references. With
onSubmit, the browser executes these commands before it actually submits the form’s
data to the server or sends it to an email address.

You may use the onSubmit event for a variety of effects. The most popular is for a cli-
ent-side forms-verification program that scans the form data and prompts the user to
complete one or more missing elements. Another popular and much simpler use is to
inform users when a mailto URL form is being processed via email.

The onReset attribute is used just like the onSubmit attribute, except that the associ-
ated program code is executed only if the user presses a Reset button in the form.

9.3 A Simple Form Example
In a moment, we’ll examine each of the many form controls in detail. Let’s first take
a quick look at a simple example, to see how forms are put together. This HTML
form (shown in Figure 9-1) gathers basic demographic information about a user:

<form method=POST action="http://www.kumquat.com/demo">
 Name:
 <input type=text name=name size=32 maxlength=80>
 <p>
 Sex:
 <input type=radio name=sex value="M"> Male
 <input type=radio name=sex value="F"> Female
 <p>
 Annual Income:
 <select name=income size=1>
 <option>Under $25,000
 <option>$25,001 to $50,000
 <option>$50,001 and higher
 </select>
 <p>
 <input type=submit>
</form>

9.4 Using Email to Collect Form Data | 321

The first line of the example starts the form and indicates we’ll be using the POST
method for data transmission. The form’s user-input controls follow, each defined
by an <input> tag and type attribute. There are three controls in the simple example,
each contained within its own paragraph.

The first control is a conventional text-entry field, letting the user type up to 80 charac-
ters but displaying only 32 of them at a time. The next one is a multiple-choice option,
which lets the user select only one of two radio buttons. This is followed by a pull-
down menu for choosing one of three options. The final control is a simple submis-
sion button, which, when clicked by the user, sets the form’s processing in motion.

9.4 Using Email to Collect Form Data
It is increasingly common to find authors who have no access to a web server other
than to upload their documents. Consequently, they have no ability to create or
manage CGI programs. In fact, some Internet service providers (ISPs), particularly
those hosting space for hundreds or even thousands of sites, typically disable CGI
services to limit their servers’ processing load and as a security precaution.

If you are working with one of the many sites where you cannot get a form pro-
cessed to save your life, all is not lost: you can use a mailto URL as the value of the
form’s action attribute. The latest browsers automatically email the various form
parameters and values to the address supplied in the URL. The recipient of the mail
can then process the form and take action accordingly.

By substituting the following for the <form> tag in our previous example:

<form method=POST action="mailto:chuckandbill@oreilly.com"
 enctype="text/plain"
 onSubmit="window.alert('This form is being sent by email, even
 though it may not appear that anything has happened...')">

Figure 9-1. A simple form

322 | Chapter 9: Forms

the form data gets emailed to chuckandbill when submitted by the user, not other-
wise processed by a server. Notice, too, that we have a simple JavaScript alert mes-
sage that appears when the browser gets ready to send out the form data. The alert
tells the user not to expect confirmation that the form data was sent (see Figure 9-2).

Also, unless disabled by the user or if you omit the method=POST attribute, the browser
typically warns users that they are about to send unencrypted (text/plain) and thereby
unsecured information over the network and gives them the option to cancel the sub-
mission. Otherwise, the form is sent via email without incident or notification.

The body of the resulting emailed form message looks something like this:

name=Bill Kennedy
sex=M
income=Under $25,000

9.4.1 Problems with Email Forms
If you choose to use either mailto or a form-to-email facility, there are several prob-
lems you may have to deal with:

• Your forms won’t work on browsers that don’t support a mailto URL as a form
action. All of the currently popular browsers do support mailto forms.

• Some browsers, including some early versions (pre-version 5) of Internet
Explorer, do not properly place the form data into the email message body and
may even open an email dialog box, confusing the user.

• A mailto URL doesn’t present users with a confirmation page to assure them
that their forms have been processed. After executing the mailto form, the user is

Figure 9-2. A warning about a mailto form submission

9.5 The <input> Tag | 323

left looking at the form, as though nothing had happened. (As we did in the pre-
ceding example, use JavaScript to overcome some of this dilemma with an
onSubmit or onClick event handler.)

• Your data may arrive in a form that is difficult, if not impossible, to read, unless
you use a readable enctype, such as text/plain.

• Most importantly, you lose whatever security protections the server may have
provided with the form.

The last problem deserves additional explanation. Some web providers support
secure web servers that attach an encryption key to your web page when sent to the
user’s browser. The popular browsers use that key to encrypt any data your docu-
ment may send back to that same server, including the user’s form data. Because
only the client’s browser and the server know the key, only that server is able to deci-
pher the information coming back to it from the client browser, effectively securing
the information from nefarious eavesdroppers and hackers.

However, if you use email to retrieve the form data, the server decrypts it before
packaging the form information into the body of an email message and sending it to
you. Email normally is highly susceptible to eavesdropping and other types of snoop-
ing. Its contents are very insecure.

So, please, if you use an email method to retrieve sensitive form data, such as credit
cards and personal information, be aware of the potential consequences. And don’t
be fooled or fool your users with a “secure” server when insecure email comes out
the back end.

In spite of all these problems, email forms present an attractive alternative to the web
author constrained by a restricted server. Our advice: use CGI scripts if at all possi-
ble and fall back on mailto URLs if all else fails.

9.5 The <input> Tag
Use the <input> tag to define any one of a number of common form “controls,” as
they are called in the HTML and XHTML standards, including text fields, multiple-
choice lists, clickable images, and submission buttons. Although there are many
attributes for the <input> tag, only the name attribute is required for each element
(but not for a submission or reset button; see the following explanation). And as we
describe in detail later, each type of input control uses only a subset of the allowed
attributes. Additional <input> attributes may be required based upon which type of
form element you specify.

Table 9-1 summarizes the various form <input> types and attributes, required and
optional.

324 | Chapter 9: Forms

You select the type of control to include in the form with the <input> tag’s type

attribute, and you name the field (used during the form submission process to the
server; see earlier description) with the name attribute. If you do not specify it, the
type field defaults to a value of text. Although the value of the name attribute is tech-
nically an arbitrary string, we recommend that you use a name without embedded
spaces or punctuation. If you stick to just letters and numbers (but no leading digits)

<input>

Function Creates an input element within a form

Attributes accept, accesskey, align, alt, border , checked, class, dir,
disabled, id, lang, maxlength, name, notab , onBlur, onChange,
onClick, onDblClick, onFocus, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelect, size, src, tabindex, taborder , title, type, usemap,
value

End tag None in HTML; </input> or <input ... /> in XHTML

Contains Nothing

Used in form_content

Table 9-1. Required and some common form element attributes

Form tag or
<input> type

 Attributes (× = required; ▲= optional; blank = not supported)

ac
ce

pt

ac
ce

ss
ke

y

al
ig

n

al
t

bo
rd

er

co
ls

ch
ec

ke
d

di
sa

bl
ed

m
ax

le
ng

th

m
ul

tip
le

na
m

e

no
ta

b

on
Bl

ur

on
Ch

an
ge

on
Cl

ic
k

on
Fo

cu
s

on
Se

le
ct

re
ad

on
ly

ro
w

s

si
ze

sr
c

ta
bi

nd
ex

ta
bo

rd
er

us
em

ap

va
lu

e

w
ra

p

button ▲ ▲ × ▲ ▲ ▲ ▲ ▲ ▲ ×

checkbox ▲ ▲ ▲ × ▲ ▲ ▲ ▲ ▲ ×

file ▲ ▲ ▲ ▲ × ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

hidden × ×

image ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ × ▲ ▲ ▲

password ▲ ▲ ▲ × ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ×

radio ▲ ▲ ▲ × ▲ ▲ ▲ ▲ ▲ ×

reset ▲ ▲ ▲ ▲ ▲ ▲ ▲

submit ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

text ▲ ▲ ▲ × ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

<button> ▲ ▲ × ▲ ▲ ▲ ▲ ▲

<select> ▲ ▲ × ▲ ▲ ▲ ▲ ▲ ▲

<textarea> ▲ ▲ ▲ × ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

9.5 The <input> Tag | 325

and represent spaces with the underscore (_) character, you’ll have fewer problems.
For example, cost_in_dollars and overhead_percentage are good choices for ele-
ment names; $cost and overhead % might cause problems.

In addition, notice that the name you give to a form control is directly associated
with the data that the user inputs to that control and that gets passed to the forms-
processing server. It is not the same as nor does it share the same namespace with the
name attribute for a hyperlink fragment or a frame document.

9.5.1 Text Fields in Forms
The HTML and XHTML standards let you include four types of text-entry controls
in your forms: a conventional text-entry field, a masked field for secure data entry, a
field that names a file to be transmitted as part of your form data, and a special mul-
tiline text-entry <textarea> tag. The first three types are <input>-based controls; the
fourth is a separate tag that we describe later in this chapter, in section 9.7.

9.5.1.1 Conventional text fields

The most common form input control is the text-entry field for usernames,
addresses, and other unique data. A text-entry field appears in the browser window
as an empty box on one line and accepts a single line of user input. Eventually, that
line of text becomes the value of the control when the user submits the form to the
server. To create a text-entry field inside a form in your document you set the type of
the <input> form element to text. Include a name attribute as well; it’s required.

What constitutes a line of text differs among the various browsers. Fortunately,
HTML and XHTML give us a way, with the size and maxlength attributes, to dictate
the width (in the number of characters) of the text-input display box, and how many
total characters to accept from the user, respectively. The value for either attribute is
an integer equal to the maximum number of characters you’ll allow the user to see
and type in the field. If maxlength exceeds size, the text scrolls back and forth within
the text-entry box. If maxlength is smaller than size, there is extra blank space in the
text-entry box to make up the difference between the two attributes.

The default value for size depends on the browser, but typically it is 80 characters;
the default value for maxlength is unlimited. We recommend that you set them your-
self. Adjust the size attribute so that the text-entry box does not extend beyond the
right margin of a typical browser window (about 60 characters with a very short
prompt). Set maxlength to a reasonable number of characters; for example, two for
state abbreviations, 12 for phone numbers, and so on.

A text-entry field is usually blank until the user types something into it. You may,
however, specify an initial default value for the field with the value attribute. The
user may modify the default, of course. If the user presses a form’s Reset button, the
value of the field is reset to this default value. [Reset buttons, 9.5.4.2]

326 | Chapter 9: Forms

All of these are valid text-entry form controls:

<input type=text name=comments>
<input type=text name=zipcode size=10 maxlength=10>
<input type="text" name="address" size="30" maxlength="256" />
<input type="text" name="rate" size="3" maxlength="3" value="100" />

The first example is HTML and creates a text-entry field set to the browser’s default
width and maximum length. As we argued, this is not a good idea, because defaults
may vary among browsers, and your form layout is sure to look bad with some of
them. Rather, fix the width and maximum number of acceptable input characters as
we do in the second example: it lets the user type in up to 10 characters inside an
input box 10 characters wide. Its value is sent to the server with the name zipcode
when the user submits the form.

The third example is XHTML and tells the browser to display a text-input box 30
characters wide into which the user may type up to 256 characters. The browser
automatically scrolls text inside the input box to expose the extra characters.

The last text-input control is XHTML, too. It tells the browser to display a text box
three characters wide, into which the user can type up to three characters. Its initial
value is set to 100.

Notice that in the second and fourth examples it is implied that the user will enter
certain kinds of data—a postal code or a numeric rate, respectively. Except for limit-
ing how many, neither HTML nor XHTML provide a way for you to dictate what
characters may be typed into a text-input field. For instance, in the last example
field, the user may type “ABC,” even though you intend the field’s value to be a
number less than 1,000. Your server-side application or applet must trap erroneous
or mistaken input, check for incomplete forms, and send the appropriate error mes-
sage to the user when things aren’t right. That can be a tedious process, so we
emphasize again: provide clear and precise instructions and prompts. Make sure
your forms tell users what kinds of input you expect from them, thereby reducing the
number of mistakes they may make when filling them out.

9.5.1.2 Masked text controls

Like the Lone Ranger and Zorro, the mask is on the good guys in a masked text field. It
behaves just like a conventional text control in a form, except that the user-typed char-
acters don’t appear onscreen. Rather, the browser obscures the characters in masked
text to keep such things as passwords and other sensitive codes away from prying eyes.

To create a masked text control, set the value of the type attribute to password. All
other attributes and semantics of the conventional text control apply to the masked
one. Hence, you must provide a name, and you may specify a size and maxlength for
the field, as well as an initial value (we recommend it).

9.5 The <input> Tag | 327

Don’t be misled: a masked text control is not all that secure. The typed-in value is
only obscured onscreen; the browser transmits it unencrypted when the form is sub-
mitted to the server, unless you are using a web server running Secure Sockets Layer
(SSL) (https server, for example). So, while prying eyes may not see them onscreen,
devious bad guys may steal the information electronically.

9.5.1.3 File-selection controls

As its name implies, the file-selection control lets a user select a file stored on the
computer and send it to the server when she submits the form. Create a file-selection
control in a form by setting the value of the type attribute to file. Like other text
controls, the size and maxlength of a file-selection field should be set to appropriate
values, with the browser creating a field 20 characters wide, if not otherwise directed.

The browser presents the file-selection form control to the user like other text fields,
accompanied by a button labeled Browse to its right. Users either type the pathname
of the file directly as text into the field or, with the Browse option, select the path-
name of the file from a system-specific dialog box.

The Browse button opens a platform-specific file-selection dialog box that allows
users to select a value for the field. In this case, the entire pathname of the selected
file is placed into the field, even if the length of that pathname exceeds the control’s
specified maxlength.

Use the accept attribute to constrain the types of files that the browser lets the user
browse, even though it does not constrain what they may type in as the pathname.
accept’s value is a comma-separated list of MIME encodings; users browse and select
only files whose type matches one of those in the list. For example, to restrict the
selection to images, you might add accept="image/*" to the file-selection <input> tag.

Unlike other form input controls, the file-selection field works correctly only with a
specific form data encoding and transmission method. If you include one or more
file-selection fields in your form, you must set the enctype attribute of the <form> tag
to multipart/form-data and the <form> tag’s method attribute to post. Otherwise, the
file-selection field behaves like a regular text field, transmitting its value (that is, the
file’s pathname) to the server instead of the contents of the file itself.

All of this is easier than it may sound. For example, here is an HTML form that col-
lects a person’s name and favorite file:

<form enctype="multipart/form-data" method=post
 action="cgi-bin/save_file">
Your name: <input type=text size=20 name=the_name>
<p>
Your favorite file: <input type=file size=20 name=fav_file>
</form>

328 | Chapter 9: Forms

The data transmitted from the browser to the server for this example form has two
parts. The first contains the value for the name field, and the second contains the
name and contents of the specified file:

-----------------------------6099238414674
Content-Disposition: form-data; name="the_name"

One line of text field contents
-----------------------------6099238414674
Content-Disposition: form-data; name="fav_file"; filename="abc"

First line of file
...
Last line of file
-----------------------------6099238414674--

The browsers don’t check that the user has specified a valid file. If no file is speci-
fied, the filename portion of the Content-Disposition header is empty. If the file
doesn’t exist, its name appears in the filename subheader, but there is no Content-

Type header or subsequent lines of file content. Valid files may contain nonprintable
or binary data; there is no way to restrict user-selectable file types. In light of these
potential problems, the forms-processing application on the server should be robust
enough to handle missing files, erroneous files, extremely large files, and files with
unusual or unexpected formats.

9.5.2 Checkboxes
The checkbox form control gives users a way to select or deselect an item quickly
and easily in your form. Checkboxes also may be grouped to create a set of choices,
any and all of which the user may select or deselect.

Create individual checkboxes by setting the type attribute for each <input> tag to
checkbox. Include the required name and value attributes. Only the values of those
items selected by the user appear in the submitted form. The optional checked
attribute (no value) tells the browser to display a selected (checked) checkbox and
include its value when submitting the form to the server unless the user deliberately
deselects (unchecks) the box.

The value of the checked checkbox submitted to the server is the text string you
specify in the required value attribute. For example, in XHTML:

<form>
 What pets do you own?
 <p>
 <input type="checkbox" name="pets" value="dog" /> Dog

 <input type="checkbox" checked="checked" name="pets" value="cat" /> Cat

 <input type="checkbox" name="pets" value="bird" /> Bird

9.5 The <input> Tag | 329

 <input type="checkbox" name="pets" value="fish" /> Fish
 </p>
</form>

creates a checkbox group as shown in Figure 9-3.

Although part of the group, each checkbox control appears as a separate choice
onscreen. Notice, too, with all due respect to dog, bird, and fish lovers, that we’ve
preselected the Cat checkbox with the checked attribute in its tag. We’ve also pro-
vided text labels; the similar value attributes don’t appear in the browser’s window
but are the values submitted with their associated name to the server if the user
selects the checkbox. Also, you need to use paragraph or line-break tags to control
the layout of your checkbox group, as you do for other form controls.

In the example, if the user selects Cat and Fish and submits the form, the values
included in the parameter list sent to the server would be:

pets=cat
pets=fish

9.5.3 Radio Buttons
Radio button form controls are similar in behavior to checkboxes, except that the
user can select only one in the group.* Create a radio button by setting the type

attribute of the <input> tag to radio. As with checkbox controls, radio buttons each
require a name and value attribute. Radio buttons with the same name are members
of a group. One of them may be checked by including the checked attribute with that
element. If you don’t check one in the group, the browser does it automatically for
you by checking the first element in the group.

Figure 9-3. A checkbox group

* Some of us are old enough, while not yet senile, to recall when automobile radios had mechanical push but-
tons for selecting a station. Pushing in one button popped out the previously depressed one, implementing
a mechanical one-of-many choice mechanism.

330 | Chapter 9: Forms

You should give each radio button element a different value so that the forms-pro-
cessing server can sort them out after form submission.

Here’s the previous example reworked in HTML so that you get to choose only one
animal as a favorite pet (see Figure 9-4):

<form>
 Which type of animal is your favorite pet?
 <p>
 <input type=radio name=favorite value="dog"> Dog
 <input type=radio checked name=favorite value="cat"> Cat
 <input type=radio name=favorite value="bird"> Bird
 <input type=radio name=favorite value="fish"> Fish
</form>

As in the previous example with checkboxes, we’ve tipped our hat toward felines, mak-
ing the Cat radio button the default choice. If the user selects an alternative—Bird, for
instance—the browser automatically deselects Cat and selects Bird. When the user
submits the form to the server, the browser includes only one value with the name
“favorite” in the list of form parameters; favorite=bird, if that was the last choice.

One of the controls in a group of radio buttons always is selected, so it makes no
sense to create a single radio button. Instead, use groups of two or more options,
such as for On/Off and Yes/No types of form controls.

9.5.4 Action Buttons
Although the terminology is potentially confusing, there is another class of buttons
for forms. Unlike the radio buttons and checkboxes described previously, these spe-
cial types of form controls act immediately, their effects cannot be reversed, and they
affect the entire contents of the form, not just the value of a single field. These
“action” buttons (for lack of a better term) include submit, reset, regular, and image
buttons. When the user selects them, both the submit and image buttons cause the
browser to submit all of the form’s parameters to the forms-processing server. A reg-
ular button does not submit the form but can be used to invoke an applet to manipu-
late or validate the form. The reset button acts locally to erase any user input and
have the form revert to its original (default) contents.

Figure 9-4. Radio buttons allow only one selection per group

9.5 The <input> Tag | 331

In this section, we describe the action buttons that you may create with the standard
form <input> element. In the next section, we describe in detail the newer <button>
tag that achieves identical effects and allows you greater control over the presenta-
tion and display of your form buttons.

9.5.4.1 Submission buttons

The submit button (<input type=submit>) does what its name implies, setting in
motion the form’s submission to the server from the browser. You may have more
than one submit button in a form. You may also include name and value attributes
with the submit type of form <input> button.

With the simplest submit button (one without a name or value attribute), the browser
displays a small rectangle or oval with the default label “Submit.” Otherwise, the
browser labels the button with the text you include with the tag’s value attribute. If
you provide a name attribute, the browser adds the value attribute for the submit but-
ton to the parameter list and sends it along to the server. That’s good, because it gives
you a way to identify which submit button in a form the user selected, letting you pro-
cess any one of several different forms with a single forms-processing application.

All of the following are valid submission buttons:

<input type=submit>
<input type=submit value="Order Kumquats">
<input type="submit" value="Ship Overnight" name="ship_style" />

The first one is in HTML and is also the simplest: the browser displays a button,
labeled “Submit,” which activates the forms-processing sequence when the user
clicks it. It does not add an element to the parameter list that the browser passes to
the forms-processing server and application.

The second example HTML button has a value attribute that makes the displayed
button’s label “Order Kumquats” but, like the first example, does not include the
button’s value in the form’s parameter list.

The last example, in XHTML, sets the button label and makes it part of the form’s
parameter list. When the user clicks this submission button, it adds the parameter
ship_style="Ship Overnight" to the form’s parameter list.

9.5.4.2 Reset buttons

The reset type of form <input> button is nearly self-explanatory: it lets the user
reset—erase or set to some default value—all elements in the form. Unlike the other
buttons, a reset button does not initiate form processing. Instead, the browser does
the work of resetting the form elements. The server never knows (or cares, for that
matter) whether or when the user selects a reset button.

By default, the browser displays a reset button with the label “Reset.” You can
change that by specifying a value attribute with your own button label.

332 | Chapter 9: Forms

Here are two sample reset buttons:

<input type=reset>
<input type="reset" value="Use Defaults" />

The first one, in HTML, creates a reset button that is by default labeled “Reset” by
the browser. The second example, in XHTML, tells the browser to label the reset
button with “Use Defaults.” Both examples initiate the same response in the browser
by resetting the form to its original contents.

9.5.4.3 Custom image buttons

The image type of form <input> element is a special submit button made out of a pic-
ture that, when selected by the user, tells the browser to submit the form to the
server. Upon submission, the browser also includes the X,Y coordinates of the mouse
pointer within the image in the form’s parameter list, much like the mouse-sensitive
image maps we discussed in Chapter 6.

Image buttons require an src attribute and, as its value, the URL of the image file.
You can include a name attribute and a descriptive alt attribute for use by nongraphi-
cal browsers. Although it is deprecated in HTML 4, you also may use align to con-
trol alignment of the image within the current line of text. Use the border attribute to
control the width, if any, of the frame that Netscape and Firefox put around the form
image, much like the border attribute for the tag. (Neither Internet Explorer
nor Opera puts borders around form <input> images.)

Here are a couple of valid image buttons:

<input type="image" src="pics/map.gif" name="map" />
<input type=image src="pics/xmap.gif" align=top name=map>

The browser displays the designated image within the form’s content flow. The sec-
ond button’s image is aligned with the top of the adjacent text, as specified by the
align attribute. Netscape and Firefox add a border, as they do when an image is part
of an anchor (<a>) tag, to signal that the image is a form button.

When the user clicks the image, the browser sends the horizontal offset, in pixels, of
the mouse from the left edge of the image and the vertical offset from the top edge of
the image to the server. These values are assigned the name of the image as specified
with the name attribute, followed by .x and .y, respectively. Thus, if someone clicked
the image specified in the first example, the browser would send parameters named
map.x and map.y to the server.

Image buttons behave much like mouse-sensitive image maps (usemap), and like the
programs or client-side <map> tags that process image maps, your forms processor may
use the X,Y mouse-pointer parameters to choose a special course of action. You should
use an image button when you need the additional form information to process the
user’s request. If an image map of links is all you need, use a mouse-sensitive image
map. Mouse-sensitive images also have the added benefit of providing server-side

9.5 The <input> Tag | 333

support for automatic detection of shape selection within the image, letting you deal
with the image as a selectable collection of shapes. Form buttons with images require
you to write code that determines where the user clicked on the image and how the
server can translate this position to an appropriate action.

Oddly, the HTML 4 and XHTML standards allow the use of the usemap attribute
with an image button, but do not explain how such a use might conflict with normal
server processing of the X,Y coordinates of the mouse position. We recommend not
mixing the two, using mouse-sensitive images outside of forms and image buttons
within forms.

9.5.4.4 Push buttons

Using the <input type=button> tag (or the <button> tag, described later in this chap-
ter, in section 9.6), you create a button that the user may click, but that does not
submit or reset the form. Use the value attribute to set the label on the button. The
name attribute, if included in the tag, causes the supplied value to be passed to the
forms-processing script.

You might wonder what value the button type provides: little or none, unless you
supply one or more of the on-event attributes along with a snippet of JavaScript to be
executed when the user interacts with the button. Thus empowered, these buttons
provide a way for the user to initiate form content validation, update fields, manipu-
late the document, and perform all other kinds of client-side activity. [JavaScript
Event Handlers, 12.3.3]

9.5.4.5 Multiple buttons in a single form

You can have several buttons of the same or different types in a single form. Even
simple forms often have both reset and submit buttons, for example. To distinguish
between them, make sure each has a different value attribute, which the browser
uses for the button label. Depending on the way you program the forms-processing
application, you might make the name of each button different, but it is usually easier
to name all similarly acting buttons the same and let the button-handling subroutine
sort them out by value. For instance (all in HTML):

<input type=submit name=edit value="Add">
<input type=submit name=edit value="Delete">
<input type=submit name=edit value="Change">
<input type=submit name=edit value="Cancel">

When the user selects one of these example buttons, a form parameter named edit

gets sent to the server. The value of this parameter is one of the button names. The
server-side application takes the value and behaves accordingly.

Because an image button doesn’t have a value attribute, the only way to distinguish
among several image buttons on a single form is to ensure that they all have different
names.

334 | Chapter 9: Forms

9.5.5 Hidden Fields
The last type of form <input> control we describe in this chapter is hidden from view.
No, we’re not trying to conceal anything; it’s a way to embed information into your
forms that the browser or user cannot ignore or alter. The browser automatically
includes the <input type=hidden> tag’s required name and value attributes in the sub-
mitted form’s parameter list. These attributes serve to label the form and can be
invaluable when sorting out different forms or form versions from a collection of
submitted and saved forms.

Another use for hidden fields is to manage user-server interactions. For instance, it
helps the server to know that the current form has come from a person who made a
similar request a few moments ago. Normally, the server does not retain this infor-
mation, and each transaction between the server and client is completely indepen-
dent from all other transactions.

For example, the first form the user submits might have asked for some basic infor-
mation, such as the user’s name and where she lives. Based on that initial contact,
the server might create a second form asking more specific questions of the user.
Because it is tedious for users to reenter the same basic information from the first
form, you can program the server to put the originally submitted values back into the
second form in hidden fields. When the second form comes back, all the important
information from both forms is there, and the second form can be matched to the
first one, if necessary.

Hidden fields also may direct the server toward some specific action. For example,
you might embed the following hidden field:

<input type=hidden name=action value=change>

Then, if you have one server-side application that handles the processing of several
forms, each form might contain a different action code to help that server applica-
tion sort them out.

9.6 The <button> Tag
As we described earlier, you create an action button with standard HTML or
XHTML by including its type value in the standard <input> tag. For instance, the
<input type=submit> form control creates a button that, when selected by the user,
tells the browser to send the form’s contents to the processing server or to an email
address (the mailto option). Display-wise, you don’t have any direct control over
what that submit button looks like, beyond changing the default label “Submit” to
some other word or short phrase (e.g., “Hit me” or “Outta here!”).

First introduced in the HTML 4.0 standard, the <button> tag acts the same as
<input>, but it gives you more control over how the browser displays the element. In
particular, all of the attributes you might use with the <input type=button> element
are acceptable with the <button> tag.

9.6 The <button> Tag | 335

9.6.1 The <button> Button
Neither the HTML 4 nor the XHTML standard is overly clear as to what display
enhancements to a form the <button> element should provide, other than to suggest
that the contents should be 3D and visually appear to react like a push button when
the user selects it (i.e., go in and back out when pressed). All the popular browsers
support <button>.

The <button> control provides for a greater variety and richer contents than its <input>
analogs. Everything between the <button> and </button> tags becomes the content of
the button, including any acceptable body content, such as text or multimedia. For
instance, you could include an image and related text within a button, creating attrac-
tive labeled icons in your buttons. The only verboten element is an image map because
its mouse- and keyboard-sensitive actions interfere with the form button.

9.6.2 The type Attribute
Use the type attribute for the <button> tag to define the button’s action. You should
set its value to submit, reset, or button. Like its <input> analog, a <button

type=submit> form element, when selected by the user, tells the browser to package
and send the contents of the form to the forms-processing server or email it to the
mailto recipient. Using type=reset creates a conventional reset button, and using
type=button creates a conventional push button.

For example, Figure 9-5 shows the following exclaim.gif icon inset on a 3D button
that pushes in and pops back out when the user clicks it with the mouse. In doing so,
the browser submits the form to the server:

<button type=submit>
Order Now!
</button>

<button>

Function Creates a button element within a form

Attributes accesskey, class, dir, disabled, id, lang, name, notab , onBlur,
onClick, onDblClick, onFocus, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp,
style, tabindex, taborder , title, type, value

End tag </button>; never omitted

Contains button_content

Used in form_content

336 | Chapter 9: Forms

Notice that you can exploit the rich set of tag attributes, including align and
alt, for this <button> style of form control.

Because the <button> tag is so similar to the <input type=button> element, why have
it at all? The only reason is to provide far richer content for buttons. If your buttons
are conventional text buttons, the <input> tag will suffice. If you want to create
fancy, mixed-content buttons, you’ll need to use the <button> tag.

9.7 Multiline Text Areas
The conventional and hidden-text types for forms restrict user input to a single line
of characters. The <textarea> form tag sets users free.

9.7.1 The <textarea> Tag

As part of a form, the <textarea> tag creates a multiline text-entry area in the user’s
browser display. In it, the user may type a nearly unlimited number of lines of text.
Upon submission of the form, the browser collects all the lines of text, each sepa-
rated by %0D%0A (carriage return/line feed), and sends them to the server as the value
of this form element, using the name specified by the required name attribute.

You may include plain text inside the <textarea> tag and its end tag (</textarea>).
That default text must be plain text, with no tags or other special elements. The user
may modify the contents and the browser uses that text as the default value if the
user presses a reset button for the form. Hence, the text content is most often
included for instructions and examples:

Tell us about yourself:
<textarea name=address cols=40 rows=4>
 Your Name Here
 1234 My Street
 Anytown, State Zipcode
</textarea>

Figure 9-5. A form-submit <button>

9.7 Multiline Text Areas | 337

9.7.1.1 The rows and cols attributes

A multiline text-input area stands alone onscreen: body content flows above and
below, but not around it. You can control its dimensions, however, by defining the
cols and rows attributes for the visible rectangular area set aside by the browser for
multiline input. We suggest you set these attributes. The common browsers have a
habit of setting aside the smallest, least readable region possible for <textarea> input,
and the user can’t resize it. Both attributes require integer values for the respective
dimension’s size in characters. The browser automatically scrolls text that exceeds
either dimension.

9.7.1.2 The wrap attribute

Normally, the browser sends the text that you type into the text area to the server
exactly as typed, with lines broken only where the user pressed the Enter key.
Because this is often not the action the user desired, you can enable word wrapping
within the text area. When the user types a line that is longer than the width of the
text area, the browser automatically moves the extra text down to the next line,
breaking the line at the nearest point between words in the line.

With the wrap attribute set to virtual, the text is wrapped within the text area for
presentation to the user, but is transmitted to the server as though no wrapping had
occurred except where the user pressed the Enter key.

With the wrap attribute set to physical, the text is wrapped within the text area and
is transmitted to the server as though the user had actually typed it that way. This is
the most useful way to use word wrap because the text is transmitted exactly as the
user sees it in the text area.

To obtain the default action, set the wrap attribute to off.

<textarea>

Function Creates a multiline text-input area

Attributes accesskey, class, cols, dir, disabled, id, lang, name, notab ,
onBlur, onChange, onClick, onDblClick, onFocus, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onSelect, readonly, rows, style, tabindex,
taborder , title, wrap

End tag </textarea>; never omitted

Contains plain_text

Used in form_content

338 | Chapter 9: Forms

As an example, consider the following 60 characters of text that are being typed into
a 40-character-wide text area:

Word wrapping is a feature that makes life easier for users.

With wrap=off, the text area contains one line and the user must scroll to the right to
see all of the text. One line of text is transmitted to the server.

With wrap=virtual, the text area contains two lines of text, broken after the word
makes. Only one line of text is transmitted to the server: the entire line with no
embedded newline characters.

With wrap=physical, the text area contains two lines of text, broken after the word
makes. Two lines of text are sent to the server, separated by a newline character after
the word makes.

9.8 Multiple-Choice Elements
Checkboxes and radio buttons give you powerful means for creating multiple-choice
questions and answers, but they can lead to long forms that are tedious to write and
put a fair amount of clutter onscreen. The <select> tag gives you two compact alter-
natives: pull-down menus and scrolling lists.

9.8.1 The <select> Tag
By placing a list of <option>-tagged items inside the <select> tag of a form, you magi-
cally create a pull-down menu of choices. Figure 9-2, earlier in this chapter, displays
a <select> pull-down menu.

<select>

Function Creates single- and multiple-choice menus

Attributes class, dir, disabled, id, lang, multiple, name, notab , onBlur,
onChange, onClick, onDblClick, onFocus, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, size, style, tabindex, taborder , title

End tag </select>; never omitted

Contains select_content

Used in form_content

9.8 Multiple-Choice Elements | 339

As with other form tags, the name attribute is required and used by the browser when
submitting the <select> choices to the server. Unlike with radio buttons, no item is
preselected, so if the user doesn’t select one, the browser doesn’t send any value to
the server with the submitted form.

Otherwise, the browser submits the selected item with the name attribute value when
submitting <select> form data to the server.

9.8.1.1 The multiple attribute
To allow more than one option selection at a time, add the multiple attribute to the
<select> tag. This causes the <select> element to behave like an <input

type=checkbox> element. When submitted, the browser collects the multiple selec-
tions, separated with commas, into a single parameter list, such as:

pets=dog,cat,mouse

If you don’t include the multiple attribute, the user may select only one option at a
time, just like in a group of radio buttons.

9.8.1.2 The size attribute
The size attribute determines how many options are visible to the user at a time. The
value of size should be a positive integer. The default value is 1. When size=1 with-
out multiple, the browser typically displays the <select> list as a pop-up menu. With
size values greater than 1 or with multiple, the browser typically displays the
<select> element’s contents as a scrolling list.

In the following XHTML example, we’ve converted our previous checkbox example
into a scrolling, multiple-choice menu. Notice that the size attribute tells the
browser to display three options at a time:*

What pets do you have?
 <select name="pets" size="3" multiple="multiple">
 <option>Dog</option>
 <option>Cat</option>
 <option>Bird</option>
 <option>Fish</option>
 </select>

The result is shown in Figure 9-6.

9.8.2 The <option> Tag
Use the <option> tag to define each item within a <select> form control. The browser
displays the <option> tag’s contents as an element within the <select> tag’s menu or
scrolling list, so the contents must be plain text only, without any other sort of
markup.

* Notice the </option> end tags. They are not usually included in standardHTML documents but must appear
in XHTML.

340 | Chapter 9: Forms

9.8.2.1 The value attribute

Use the value attribute to set a value for each option the browser sends to the server
if the user selects that option. If the value attribute has not been specified, the value
of the option is set to the content of the <option> tag. As an example, consider these
HTML options:

<option value=Dog>Dog
<option>Dog

Both have the same value. The first is explicitly set within the <option> tag; the sec-
ond defaults to the content of the <option> tag itself: “Dog”.

9.8.2.2 The selected attribute

By default, all options within a multiple-choice <select> tag are unselected and
therefore not included in the parameters list when the client submits the form to the
server. Include the selected attribute inside the <option> tag to preselect one or more
options, which the user may then deselect.

Figure 9-6. A <select> element, formatted with size=3

<option>

Function Defines available options within a <select> menu

Attributes class, dir, disabled, id, label, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, selected, style, title, value

End tag </option>; usually omitted in HTML

Contains plain_text

Used in select_content

9.8 Multiple-Choice Elements | 341

The HTML version of the selected attribute has no value; the XHTML version has
the value selected="selected". Single-choice <select> tags preselect the first option
if no option is explicitly preselected.

9.8.2.3 The label attribute

Normally, the browser creates a label from the contents of the <option> tag when display-
ing it to the user. If the label attribute is supplied, its value is used as the label instead.

9.8.3 The <optgroup> Tag
Menus of choices in forms can be quite large, making them difficult to display and use.
In these cases, it is helpful to group related choices, which can then be presented as a
set of nested, cascading menus to the user. Introduced in HTML 4.0, the <optgroup>
tag brings this capability to HTML and XHTML forms, albeit in a limited way.

You can use the <optgroup> tag only within a <select> tag, and it may contain only
<option> tags. The browser creates submenus for each <optgroup> tag within the
main <select> menu.

For example, with HTML you might use <optgroup> to present a form menu of states
organized by region (Figure 9-7):

<select name=state>
 <optgroup label=Northeast>
 <option>Maine
 <option>New Hampshire
 ...
 </optgroup>
 <optgroup label=South>
 <option>Florida
 <option>Georgia
 </optgroup>
 ...
</select>

Figure 9-7. The <optgroup> tag helps organize form <select> menus

342 | Chapter 9: Forms

Like that shown for Opera in Figure 9-7, the other popular GUI browsers similarly
indent the <optgroup> items within a scrolling menu, though the others italicize and
make the group headers bold.

The biggest drawback to the <optgroup> tag is that it cannot be nested, limiting you
to one level of submenus. Presumably, this restriction will be lifted in a future ver-
sion of XHTML.

9.8.3.1 The label attribute

Use the label attribute to define an <optgroup> submenu title to the user. You should
keep the label short and to the point to ensure that the menu can be displayed easily
on a large variety of displays.

9.9 General Form-Control Attributes
The many form-control tags contain common attributes that, like most other tags,
generally serve to label, set up the display, extend the text language, and make the
tag extensible programmatically.

9.9.1 The id and title Attributes
The id attribute, as for most other standard tags, lets you attach a unique string label
to the form control and its contents for reference by programs (applets) and hyper-
links. This name is distinct from the name assigned to a control element with the
name attribute. Names assigned with the id attribute are not passed to the server
when the form is processed.

The title attribute is similar to id in that it uses a quote-enclosed string value to
label the form control. However, it titles only the form segment; you cannot use its
value in an applet reference or hyperlink. Browsers may use the title as pop-up help

<optgroup>

Function Groups related <option> elements within a <select> menu

Attributes class, dir, disabled, id, label, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, style, title

End tag </optgroup>; may be omitted in HTML

Contains optgroup_content

Used in select_content

9.9 General Form-Control Attributes | 343

for the user or in nonvisual presentation of the form. [The id attribute, 4.1.1.4] [The
title attribute, 4.1.1.5]

9.9.2 The event Attributes
Like most other elements, most of the form controls support a number of user mouse
and keyboard event-related attributes that the HTML 4/XHTML-compliant browser
recognizes and lets you specially process using JavaScript or a Java applet, for exam-
ple. We describe the majority of these events in detail in Chapter 12.

9.9.3 The style, class, lang, and dir Attributes
The style attribute for the various form controls creates an inline style for the ele-
ments enclosed by the tag, overriding any other style rules in effect. The class

attribute lets you format the content according to a predefined class of the <form>

tag; its value is the name of that class. [Inline Styles: The style Attribute, 8.1.1] [Style
Classes, 8.3]

The lang attribute specifies the language used within a control, accepting as its value
any of the ISO standard two-character language abbreviations, including an optional
language modifier. For example, adding lang=en-UK tells the browser that the list is in
English (“en”) as spoken and written in the United Kingdom (“UK”). Presumably,
the browser may make layout or typographic decisions based upon your language
choice. [The lang attribute, 3.6.1.2]

Similarly, the dir attribute tells the browser in which direction to display the control
contents—either from left to right (dir=ltr), like English and French, or from right
to left (dir=rtl), as with Hebrew and Chinese. [The dir attribute, 3.6.1.1]

The popular browsers support the dir and lang attributes, even though there are no
behaviors defined for any specific language.

9.9.4 The tabindex, taborder , and notab Attributes
By default, all elements (except hidden elements) are part of the form’s tab order. As
the user presses the Tab key, the browser shifts the input focus from element to ele-
ment in the form. For most browsers, the tabbing order of the elements matches the
order of the elements within the <form> tag. With the tabindex attribute, you can
change the order and the position of those elements within the tab order.

To reposition an element within the tab order, set the value of the attribute to the
element’s desired position in the tab order, with the first element in the order being
number one. If you really want to change a form’s tab order, we suggest you include
the tabindex attribute with every element in the form, with an appropriate value for
each element. In this way, you’ll be sure to place every element explicitly in the tab
order, and there will be no surprises when the user tabs through the form.

344 | Chapter 9: Forms

The value of the tabindex attribute is a positive integer indicating the position of the
tagged contents in the overall tab sequence for the document. The tabbing order
begins with elements with explicit tabindex values, starting from the lowest to the
highest numbers. Same-valued tags get tab-selected in the order in which they appear
in the document. All other selectable tags, such as the various form controls and
hyperlinks, are the last to get tabbed, in the order in which they appear in the docu-
ment. To exclude an element from the tab order, set the value of tabindex to 0. The
element is skipped when the user tabs around the form.

Internet Explorer introduced the concept of tab-order management with its propri-
etary taborder and notab attributes. The taborder attribute functions exactly like the
tabindex attribute, and notab is equivalent to tabindex=0. Internet Explorer versions 5
and later now support the standard tabindex, as do the other popular browsers. Conse-
quently, we strongly suggest that you use the tabindex attribute and not taborder.

9.9.5 The accesskey Attribute
Many user interfaces promote the idea of shortcut keys: short sequences of key-
strokes that give you quick access to an element in the user interface. HTML 4 and
XHTML provide support for this capability with the accesskey attribute. The value
of the accesskey attribute is a single character that, when pressed in conjunction with
some other special key, causes focus to shift immediately to the associated form ele-
ment. This special key varies with each user interface: PC users press the Alt key,
whereas Unix keyboard users typically press the Meta key.

For example, adding accesskey="T" to a <textarea> element would cause focus to
shift to that text area when a Windows user pressed Alt-T. Note that the value of the
accesskey attribute is a single character and is case sensitive (a capital “T” is not the
same as its lowercase cousin, for instance).

All the popular browsers support the accesskey attribute. Be careful to test your hot-
key options, however. For instance, while Alt-f works with Internet Explorer to
jump-select the tag with the accesskey="f" attribute, in Netscape this key combina-
tion opens the File pull-down menu.

Also note that the accesskey option not only jumps to but also selects the associated
form element. So, for instance, if you associate an accesskey with a radio button, by
pressing the access-key combination, the user display not only shifts focus to that
radio button but also selects it, as though the user had clicked the mouse on that ele-
ment. The same goes for all action form elements: jump and select.

9.9.6 The disabled and readonly Attributes
The HTML 4 and XHTML standards let you define but otherwise disable a form
control simply by inserting the disabled attribute within the tag. A disabled form
control appears in the display but cannot be accessed via the Tab key or otherwise

9.9 General Form-Control Attributes | 345

selected with the mouse. Its parameters are not passed to the server when the user
submits the form.

Browsers can change the appearance of disabled elements and alter any labels associ-
ated with them. The popular browsers gray out disabled radio and submit buttons,
as in the following HTML fragment (also shown in Figure 9-8):

<form>
 Name:
 <input type=text name=name size=32 maxlength=80 readonly>
 <p>
 Sex:
 <input type=radio name=sex value="M" disabled> Male
 <input type=radio name=sex value="F" accesskey="z"> Female
 <p>
 Income:
 <select name=income size=1 disabled>
 <option>Under $25,000
 <option>$25,001 to $50,000
 <option>$50,001 and higher
 </select>
 <p>
 <input type=submit disabled>
</form>

Similarly, the user may not alter a text-related <input> or <textarea> form control that
you designate as readonly with the attribute. These elements are still part of the tab
order and may be selected, and the value of the control gets sent to the server when the
user submits the form. The user just can’t alter the value. So, in a sense, a form control
rendered readonly is the visible analog of the <input type=hidden> control.

What is the point of all these hidden and unchangeable form elements? Automation.
By automatically generating enabled and disabled form elements, you can tailor the
form to the user. For example, if the user indicates on one form that she is female, a

Figure 9-8. Disabled form controls turn gray

346 | Chapter 9: Forms

subsequent form may contain that information in a hidden attribute, and certain ele-
ments in the form may be displayed for familiarity while certain elements are dis-
abled to make the form easier to navigate.

9.10 Labeling and Grouping Form Elements
The common text and other content you may use to label and otherwise explain a
form are static. Other than by their visual relationship to the form’s input areas,
these labels and instructions are unassociated with the form controls that they serve.
Because of this, forms are not easily understood and navigable, particularly by peo-
ple with impaired vision. Try it. Get a simple personal-information form onscreen,
close your eyes, and find the place to enter your name.

The HTML 4.0 standard introduced three tags that make navigation of forms easier
for users, particularly those with disabilities. They include a way to group and cap-
tion regions of the form and a way to individually label form controls. All are sup-
posed to get special treatment by the browser, such as being rendered by a speech
synthesizer as well as specially displayed, and can be easily accessed from the user
keyboard—that is, when browsers become fully HTML 4/XHTML compliant.

9.10.1 The <label> Tag
Use the <label> tag to define relationships between a form control, such as a text-
input field, and one or more text labels. According to the latest standards, the text in
a label is to receive special treatment by the browser. Browsers may choose a special
display style for the label (you can, too, with stylesheets). And when selected by the
user, the browser automatically transfers focus to a label’s associated form control.

<label>

Function Creates a label for a form element

Attributes accesskey, class, dir, for, id, lang, onBlur, onClick, onDblClick,
onFocus, onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, style, title

End tag </label>; never omitted

Contains label_contents

Used in form_content

9.10 Labeling and Grouping Form Elements | 347

9.10.1.1 Implicit and explicit associations

One or more labels get associated with a form control in one of two ways: implicitly,
by including the form control as contents of the label tag, or explicitly, by naming
the ID of the target form control in the <label> tag’s for attribute.

For example, in XHTML:

<label for="SSN">Social Security Number:</label>
<input type="text" name="SocSecNum" id="SSN" />
<label>Date of birth: <input type="text" name="DofB" /></label>

The first label explicitly relates the text “Social Security Number:” with the form’s
Social Security number text-input control (SocSecNum), because its for attribute’s
value is identical to the control’s id, SSN. The second label (“Date of birth:”) does not
require a for attribute, nor does its related control require an id attribute, because
they are implicitly joined by placing the <input> tag within the <label> tag.

Be careful not to confuse the name and id attributes. The former creates a name for an
element that the browser sends to the server-side forms processor; id creates a name
that <label> tags and URLs can use. Note also that although a label may reference
only a single form control, several labels may reference a single control. Thus, you
can steer users to a particular form input region from several places in a document.

9.10.1.2 Other label attributes

Labels also share many of the general display, access, and event-related tag attributes
described earlier in section 9.9. In addition to the standard HTML 4 and XHTML
event attributes, labels also support the onfocus and onblur attributes.

9.10.2 Forming a Group
Beyond individual labels, you may group a set of form controls and label the group
with the <fieldset> and <legend> tags. Again, the HTML 4 and XHTML standards
attempt to make forms more readily accessible by users, particularly those with dis-
abilities. Grouping form controls into explicit sections gives you the opportunity to
specially display and otherwise manage the form contents.

9.10.2.1 The <fieldset> tag

The <fieldset> tag encapsulates a section of form contents, creating a group of
related form fields. <fieldset> doesn’t have any required or unique attributes.

When a group of form elements are placed within a <fieldset> tag, the browser may
display them in a special manner. This might include a special border, 3D effects, or
even creating a subform to handle the elements.

348 | Chapter 9: Forms

9.10.2.2 The <legend> tag

Use the <legend> tag to create a label for a fieldset in a form. The tag may appear
only inside a <fieldset>. As with <label>, the <legend> contents are to be specially
treated by the HTML 4/XHTML-compliant browser, transferring focus to associated
form elements when selected and serving to improve accessibility of users to a
<fieldset>.

In addition to supporting many of the form element attributes described earlier in
section 9.9, the <legend> tag accepts the accesskey attribute and the align attribute.
The value of align may be top, bottom, left, or right, instructing the browser where
the legend should be placed with respect to the field set.

Bringing all these tags together, here are a field set and legend containing a few form
elements, individually labeled:

<fieldset>
 <legend>Personal information</legend>

<fieldset>

Function Groups related elements within a form

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </fieldset>; never omitted

Contains form_content

Used in form_content

<legend>

Function Creates a legend for a field set within a form

Attributes accesskey, align, class, dir, id, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, style, title

End tag </legend>; may be omitted in HTML

Contains legend_content

Used in form_content

9.11 Creating Effective Forms | 349

 <label>Name:<input type="text" /></label>
 <label>Address:<input type="text" /></label>
 <label>Phone:<input type="text" /></label>
</fieldset>

Notice in Figure 9-9 how Firefox neatly puts a frame around the field set and
through the legend but doesn’t otherwise format the field set’s contents. Obviously,
you’ll need to do some format-tweaking yourself.

9.11 Creating Effective Forms
Properly done, a form can provide an effective user interface for your readers. With
some server-side programming tricks, you can use forms to personalize the docu-
ments that you present to readers and thereby significantly increase the value of your
pages on the Web.

9.11.1 Browser Constraints
Unlike other GUIs, browser displays are static. They have little or no capability for
real-time data validation, for example, or for updating the values in a form based
upon user input, giving users no help or guidance.* Consequently, poorly designed
web forms are difficult to fill out.

Make sure your forms assist users as much as possible. For example, adjust the size
of text-input fields to give clues on acceptable input; five-character (or nine-charac-
ter) zip codes, for instance. Use checkboxes, radio buttons, and selection lists when-
ever possible to narrow the list of choices the user must make.

Figure 9-9. Browsers fully frame form fieldsets

* This is not entirely true. While neither HTML nor XHTML provides for data validation and user guidance,
it is possible to attach to your form elements Java or JavaScript applets that do a very nice job of validating
form data, updating form fields based upon user input, and guiding users through your forms.

350 | Chapter 9: Forms

Make sure you also adequately document your forms. Explain how to fill them out,
supplying examples for each field. Provide appropriate hyperlinks to documentation
that describes each field, if necessary.

When the form is submitted, make sure that the server-side application exhaustively
validates the user’s data. If an error is discovered, present the user with intelligent
error messages and possible corrections. One of the most frustrating aspects of fill-
ing out forms is to have to start over from scratch whenever the server discovers an
error. To alleviate this ugly redundancy and burden on your readers, consider spend-
ing extra time and resources on the server side that returns the user’s completed form
with the erroneous fields flagged for changes.

While these suggestions require significant effort on your part, they pay off many
times over by making life easier for your users. Remember, you create the form just
once, but it may be used thousands or even millions of times by users.

9.11.2 Handling Limited Displays
Although most PCs have been upgraded to provide resolution significantly better
than the 600 × 480 that was common when we wrote the first edition of this book,
many devices (WebTV, cell phones with built-in browsers, PDAs) dictate that form
design should be conservative. The best compromise is to assume a document-view-
ing window roughly 75 readable characters wide and 30 to 50 lines tall.* You should
design your forms (and all your documents) so that they are effective when viewed
through a window of this size.

You should structure your form to scroll naturally into two or three logical sections.
The user can fill out the first section, page down; fill out the second section, page
down; and so forth.

You should also avoid wide input elements. It is difficult enough to deal with a
scrolling text field or text area without having to scroll the document itself horizon-
tally to see additional portions of the input element.

9.11.3 User-Interface Considerations
When you elect to create a form, you immediately assume another role: that of a
user-interface designer. While a complete discussion of user-interface design is
beyond the scope of this book, it helps to understand a few basic design rules to cre-
ate effective, attractive forms.

* Some devices, such as cell phones, have tiny displays, as small as four lines. A better approach, though
beyond the scope of this book, is to tailor your design to the device, using Extensible Stylesheet Transforma-
tions (XSLT).

9.11 Creating Effective Forms | 351

Any user interface is perceived at several levels simultaneously. Forms are no differ-
ent. At the lowest level, your brain recognizes shapes within the document, attempt-
ing to categorize the elements of the form. At a higher level, you are reading the text
guides and prompts, trying to determine what input is required of you. At the high-
est level, you are seeking to accomplish a goal with the interface as your tool.

A good form accommodates all three of these perceptive needs. Input elements
should be organized in logical groups so that your brain can process the form layout
in chunks of related fields. Consistent, well-written prompts and supporting text
assist and lead the user to enter the correct information. Text prompts also remind
users of the task at hand and reinforce the form’s goal.

9.11.4 Creating Forms That Flow
Users process forms in a predictable order, one element after another, seeking to find
the next element as they finish the previous one. To accommodate this searching
process, you should design your forms so that one field leads naturally to another
and related fields are grouped together. Similarly, groups should lead naturally to
one another and should be formatted in a consistent manner.

Simply stringing a number of fields together does not constitute an effective form.
You must put yourself in the place of your users, who are using the form for the first
time. Test your form on unsuspecting friends and colleagues before you release it to
the general public. Is it easy to determine the purpose of the form? Where do you
start filling things out? Can the user find a button to click to submit the form? Is
there an opportunity to confirm decisions? Do readers understand what is expected
of them for each field?

Your forms should lead the user naturally through the process of supplying the nec-
essary data for the application. You wouldn’t ask for a street address before asking
for the user’s name; other rules may dictate the ordering of other groups of input ele-
ments. To see whether your form really works, make sure you view it on several
browsers and have several people fill it out and comment on its effectiveness.

9.11.5 Good Form, Old Chap
At first glance, the basic rule of HTML and XHTML—content, not style—seems in
direct opposition to the basic rule of good interface design—precise, consistent lay-
out. Even so, it is possible to use some elements to greatly improve the layout and
readability of most forms.

Traditional page layout uses a grid of columns to align common elements within a page.
The resulting implied vertical and horizontal “edges” of adjacent elements give a sense
of order and organization to the page and make it easy for the eye to scan and follow.

352 | Chapter 9: Forms

HTML and XHTML make it hard, but you can accomplish the same sort of layout
for your forms. For example, you can group related elements and separate groups
with empty paragraphs or horizontal rules.

Vertical alignment is more difficult, but not impossible. In general, forms are easier
to use if you arrange the input elements vertically and aligned to a common margin.
One popular form layout keeps the left edge of the input elements aligned, with the
element labels immediately to the left of the elements. This is done by using tables to
place and align each form element and its label. Here is our previous HTML form
example, with the labels placed in the first column and the corresponding elements
in the second:

<form method=POST action="http://www.kumquat.com/demo">
 <table border=0>
 <tr valign=top>
 <td align=right>Name:</td>
 <td align=left><input type=text name=name size=32 maxlength=80>
 </td>
 </tr>
 <tr valign=top >
 <td align=right>Sex:</td>
 <td align=left>
 <input type=radio name=sex value="M"> Male

 <input type=radio name=sex value="F"> Female
 </td>
 </tr>
 <tr valign=top >
 <td align=right>Income:</td>
 <td align=left>
 <select name=income size=1>
 <option>Under $25,000
 <option>$25,001 to $50,000
 <option>$50,001 and higher
 </select>
 </td>
 </tr>
 <tr valign=top>
 <td colspan=2 align=center>
 <input type=submit value="Submit Query">
 </td>
 </tr>
 </table>
</form>

Notice in the resulting rendered form, shown in Figure 9-10, that the table has
placed each input element in its own row. The align attributes in the table cells force
the labels to the right and the elements to the left, creating a vertical margin through
the form. By spanning the cell in the last row, the submission button is centered with
respect to the entire form. In general, using tables in this manner makes form layout
much easier and more consistent throughout your documents. If you find this exam-
ple at all difficult, see Chapter 10, which explains in detail all the glories of tables.

9.12 Forms Programming | 353

You may find other consistent ways to lay out your forms. The key is to find a useful
layout style that works well across most browsers and stick with it. Even though
HTML and XHTML have limited tools to control layout and positioning, take advan-
tage of what is available in order to make your forms more attractive and easier to use.

9.12 Forms Programming
If you create forms, sooner or later you’ll need to create the server-side application
that processes them. Don’t panic. There is nothing magic about server-side program-
ming, nor is it overly difficult. With a little practice and some perseverance, you’ll be
cranking out forms applications.

The most important advice we can give about forms programming is easy to remem-
ber: copy others’ work. Writing a forms application from scratch is fairly hard; copy-
ing a functioning forms application and modifying it to support your form is far easier.

Fortunately, server vendors know this, and they usually supply sample forms appli-
cations with their server. Rummage about for a directory named cgi-src, and you
should discover a number of useful examples you can easily copy and reuse.

We can’t hope to replicate all the useful stuff that came with your server or provide a
complete treatise on forms programming. What we can do is offer a simple example
of GET and POST applications, giving you a feel for the work involved and hope-
fully getting you moving in the right direction.

Before we begin, keep in mind that not all servers invoke these applications in the
same manner. Our examples cover the broad class of servers derived from the origi-
nal National Center for Supercomputing Applications (NCSA) HTTP server. They
also should work with the very popular and public-domain Apache server. In all
cases, consult your server documentation for complete details. You will find even
more detailed information in CGI Programming with Perl, by Scott Guelich, Gunther

Figure 9-10. Use a consistent vertical margin to align form elements

354 | Chapter 9: Forms

Birznieks, and Shishir Gundavaram, andWebmaster in a Nutshell, by Stephen Spain-
hour and Robert Eckstein, both published by O’Reilly.

One alternative to CGI programming is the Java servlet model, covered in Java Servlet
Programming, by Jason Hunter with William Crawford (O’Reilly). Servlets can be
used to process GET and POST form submissions, although they are actually more
general objects. There are no examples of servlets in this book.

9.12.1 Returning Results
Before we begin, we need to discuss how server-side applications end. All server-side
applications pass their results back to the server (and on to the user) by writing those
results to the application’s standard output as a MIME-encoded file. Hence, the first
line of the application’s output must be a MIME Content-Type descriptor. If your
application returns an HTML document, the first line is:

Content-type: text/html

The second line must be completely empty. Your application can return other con-
tent types, too—just include the correct MIME type. A GIF image, for example, is
preceded with:

Content-type: image/gif

Generic text that is not to be interpreted as HTML can be returned with:

Content-type: text/plain

This is often useful for returning the output of other commands that generate plain
text rather than HTML.

9.12.2 Handling GET Forms
With the GET method, the browser passes form parameters as part of the URL that
invokes the server-side forms application. A typical invocation of a GET-style appli-
cation might use a URL like this:

http://www.kumquat.com/cgi-bin/dump_get?name=bob&phone=555-1212

When the www.kumquat.com server processes this URL, it invokes the application
named dump_get that is stored in the directory named cgi-bin. Everything after the
question mark is passed to the application as parameters.

Things diverge a bit at this point, due to the nature of the GET-style URL. While
forms place name/value pairs in the URL, it is possible to invoke a GET-style appli-
cation with only values in the URL. Thus, the following is a valid invocation as well,
with parameters separated by plus signs (+):

http://www.kumquat.com/cgi-bin/dump_get?bob+555-1212

9.12 Forms Programming | 355

This is a common invocation when the browser references the application via a
searchable document with the <isindex> tag. The parameters typed by the user into
the document’s text-entry field get passed to the server-side application as unnamed
parameters separated by plus signs.

If you invoke your GET application with named parameters, your server passes those
parameters to the application in one way; unnamed parameters are passed differently.

9.12.2.1 Using named parameters with GET applications

Named parameters are passed to GET applications by creating an environment vari-
able named QUERY_STRING and setting its value to the entire portion of the URL fol-
lowing the question mark. Using our previous example, the value of QUERY_STRING
would be set to:

name=bob&phone=555-1212

Your application must retrieve this variable and extract from it the parameter name/
value pairs. Fortunately, most servers come with a set of utility routines that perform
this task for you, so a simple C program that just dumps the parameters might look
like this:

#include <stdio.h>
#include <stdlib.h>

#define MAX_ENTRIES 10000

typedef struct {char *name;
 char *val;
 } entry;

char *makeword(char *line, char stop);
char x2c(char *what);
void unescape_url(char *url);
void plustospace(char *str);

main(int argc, char *argv[])

{ entry entries[MAX_ENTRIES];
 int num_entries, i;
 char *query_string;

/* Get the value of the QUERY_STRING environment variable */
 query_string = getenv("QUERY_STRING");

/* Extract the parameters, building a table of entries */
 for (num_entries = 0; query_string[0]; num_entries++) {
 entries[num_entries].val = makeword(query_string, '&');

 plustospace(entries[num_entries].val);
 unescape_url(entries[num_entries].val);

356 | Chapter 9: Forms

 entries[num_entries].name =
 makeword(entries[num_entries].val, '=');
 }

/* Spit out the HTML boilerplate */
 printf("Content-type: text/html\n");
 printf("\n");

 printf(<html>);
 printf(<head>);
 printf("<title>Named Parameter Echo</title>\n");
 printf("</head>");
 printf(<body>);
 printf("You entered the following parameters:\n");
 printf("\n");

/* Echo the parameters back to the user */
 for(i = 0; i < num_entries; i++)
 printf(" %s = %s\n", entries[i].name,
 entries[i].val);

/* And close out with more boilerplate */
 printf("\n");
 printf("</body>\n");
 printf("</html>\n");
}

The example program begins with a few declarations that define the utility routines
that scan through a character string and extract the parameter names and values.*

The body of the program obtains the value of the QUERY_STRING environment variable
using the getenv() system call, uses the utility routines to extract the parameters
from that value, and then generates a simple HTML document that echoes those val-
ues back to the user.

For real applications, you should insert your actual processing code after the parame-
ter extraction and before the HTML generation. Of course, you’ll also need to
change the HTML generation to match your application’s functionality.

9.12.2.2 Using unnamed parameters with GET applications

Unnamed parameters get passed to the application as command-line parameters.
This makes writing the server-side application almost trivial. Here is a simple shell
script that dumps the parameter values back to the user:

#!/bin/csh -f
#
Dump unnamed GET parameters back to the user

echo "Content-type: text/html"

* These routines are usually supplied by the server vendor. They are not part of the standard C or Unix library.

9.12 Forms Programming | 357

echo
echo '<html>'
echo '<head>'
echo '<title>Unnamed Parameter Echo</title>'
echo '</head>'
echo '<body>'
echo 'You entered the following parameters:'
echo ''

foreach i ($*)
 echo '' $i
end

echo ''
echo '</body>'

exit 0

Again, we follow the same general style: output a generic document header, includ-
ing the MIME Content-Type, followed by the parameters and some closing boiler-
plate. To convert this to a real application, replace the foreach loop with commands
that actually do something.

9.12.3 Handling POST Forms
Forms-processing applications that accept HTML/XHTML POST-style parameters
expect to read encoded parameters from their standard input. Like GET-style appli-
cations with named parameters, they can take advantage of the server’s utility rou-
tines to parse these parameters.

Here is a program that echoes the POST-style parameters back to the user:

#include <stdio.h>
#include <stdlib.h>

#define MAX_ENTRIES 10000

typedef struct {char *name;
 char *val;
 } entry;

char *makeword(char *line, char stop);
char *fmakeword(FILE *f, char stop, int *len);
char x2c(char *what);
void unescape_url(char *url);
void plustospace(char *str);

main(int argc, char *argv[])

{ entry entries[MAX_ENTRIES];
 int num_entries, i;

358 | Chapter 9: Forms

/* Parse parameters from stdin, building a table of entries */
 for (num_entries = 0; !feof(stdin); num_entries++) {
 entries[num_entries].val = fmakeword(stdin, '&', &cl);
 plustospace(entries[num_entries].val);
 unescape_url(entries[num_entries].val);
 entries[num_entries].name =
 makeword(entries[num_entries].val, '=');
 }

/* Spit out the HTML boilerplate */
 printf("Content-type: text/html\n");
 printf("\n");
 printf(<html>);
 printf(<head>);
 printf("<title>Named Parameter Echo</title>\n");
 printf("</head>");
 printf(<body>);
 printf("You entered the following parameters:\n");
 printf("\n");

/* Echo the parameters back to the user */
 for(i = 0; i < num_entries; i++)
 printf(" %s = %s\n", entries[i].name,
 entries[i].val);

/* And close out with more boilerplate */
 printf("\n");
 printf("</body>\n");
 printf("</html>\n");
}

Again, we follow the same general form. The program starts by declaring the various
utility routines needed to parse the parameters, along with a data structure to hold
the parameter list. The actual code begins by reading the parameter list from the
standard input and building a list of parameter names and values in the array named
entries. Once this is complete, a boilerplate document header is written to the stan-
dard output, followed by the parameters and some closing boilerplate.

Like the other examples, this program is handy for checking the parameters being
passed to the server application early in the forms- and application-debugging pro-
cess. You can also use it as a skeleton for other applications by inserting appropriate
processing code after the parameter list is built up and altering the output section to
send back the appropriate results.

359

Chapter 10!ti
In this chapter:

• The Standard Table Model
• Basic Table Tags
• Advanced Table Tags
• Beyond Ordinary Tables

CHAPTER 10

Tables10

Of all the extensions that found their way into HTML and XHTML, none is more
welcome than tables. While tables are useful for the general display of tabular data,
they also serve an important role in managing document layout. Creative use of
tables, as we’ll show in this chapter, can go a long way to enliven an otherwise dull
document layout. And you can apply all the Cascading Style Sheet (CSS) styles to the
various elements of a table to achieve a desktop-published look and feel.

10.1 The Standard Table Model
The standard model for tables is fairly straightforward: a table is a collection of num-
bers and words arranged in rows and columns of cells. Most cells contain the data
values; others contain row and column headers that describe the data.

You define a table and include all of its elements between the <table> tag and its cor-
responding </table> end tag. Table elements, including data items, row and column
headers, and captions, each have their own markup tags. Working from left to right
and top to bottom, you define, in sequence, the header and data for each column cell
across and down the table.

The latest standards also provide a rich collection of tag attributes, many of which
once were popular extensions to HTML as supported by the popular browsers. They
make your tables look good, by enabling special alignment of the table values and
headers, borders, table rule lines, and automatic sizing of the data cells to accommo-
date their content, among other capabilities. The various popular browsers have
slightly different sets of table attributes; we’ll point out those variations as we go.

360 | Chapter 10: Tables

10.1.1 Table Contents
You can put nearly anything you might have within the body of an HTML or
XHTML document inside a table cell, including images, forms, rules, headings, and
even another table. The browser treats each cell as a window unto itself, flowing the
cell’s content to fill the space, but with some special formatting provisions and
extensions.

10.1.2 An Example Table
Here’s a quick example that should satisfy your itching curiosity to see what an HTML
table looks like in a source document and when finally rendered, as shown in
Figure 10-1. More importantly, it shows you the basic structure of a table, from which
you can infer many of the elements, tag syntax and order, attributes, and so on, and to
which you may refer as you read the following various detailed descriptions:

<table border cellspacing=0 cellpadding=5>
 <caption align=bottom>
 Kumquat versus a poked eye, by gender</caption>
 <tr>
 <td colspan=2 rowspan=2></td>
 <th colspan=2 align=center>Preference</th>
 </tr>
 <tr>
 <th>Eating Kumquats</th>
 <th>Poke In The Eye</th>
 </tr>
 <tr align=center>
 <th rowspan=2>Gender</th>
 <th>Male</th>
 <td>73%</td>
 <td>27%</td>
 </tr>
 <tr align=center>
 <th>Female</th>
 <td>16%</td>
 <td>84%</td>
 </tr>
</table>

10.1.3 Missing Features
At one time, standard HTML tables didn’t have all the features of a full-fledged
table-generation tool you might find in a popular word processor. Rather, the popu-
lar browsers, Internet Explorer and Netscape in particular, provided extensions to
the language.

10.2 Basic Table Tags | 361

Missing were features that supported running headers and footers, particularly use-
ful when printing a lengthy table. Another missing feature was control over table
rules and divisions.

Today, the standards are ahead of the browsers in terms of table features; HTML 4
and XHTML standardize the many extensions and provide additional solutions.

10.2 Basic Table Tags
You can create a wide variety of tables with only five tags: the <table> tag, which
encapsulates a table and its elements in the document’s body content; the <tr> tag,
which defines a table row; the <th> and <td> tags, which define the table’s headers
and data cells; and the <caption> tag, which defines a title or caption for the table.
Beyond these core tags, you may also define and control whole sections of tables,
including adding running headers and footers, with the <colgroup>, <col>, <tbody>,
<thead>, and <tfoot> tags. Each tag has one or more required and optional attributes,
some of which affect not only the tag itself but also related tags.

10.2.1 The <table> Tag
The <table> tag and its </table> end tag define and encapsulate a table within the
body of your document. Unless you place them within the browser window by
stylesheet, paragraph, division-level, or other alignment options, the browser stops
the current text flow, breaks the line, inserts the table beginning on a new line, and
then restarts the text flow on a new line below the table.

Figure 10-1. HTML table example

362 | Chapter 10: Tables

The only content allowed within the <table> is one or more <tr> tags, which define
each row of table contents, along with the various table sectioning tags: <thead>,
<tfoot>, <tbody>, <col>, and <colgroup>.

10.2.1.1 The align attribute (deprecated)

The HTML 4 and XHTML standards have deprecated this attribute in favor of the
align property provided by CSS, yet it remains popular and is currently well sup-
ported by the popular browsers.

Like images, tables are rectangular objects that float in the browser display, aligned
according to the current text flow. Normally, the browser left-justifies a table, abut-
ting its left edge to the left margin of the display window. Or the table may be cen-
tered if under the influence of the <center> tag, a centered paragraph, or a centered
division. Unlike images, however, tables are not inline objects. Text content nor-
mally flows above and below a table, not beside it. You can change that display
behavior with the align attribute or a cascading style definition for the <table> tag.

The align attribute accepts a value of either left, right, or center, indicating that
the table should be placed flush against the left or right margin of the text flow, with
the text flowing around the table, or in the middle with text flowing above and
below, respectively.

Note that the align attribute within the <table> tag is different from those used
within a table’s element tags, <tr>, <td>, and <th>. In those tags, the attribute con-
trols text alignment within the table’s cells, not alignment of the table within the
containing body-text flow.

<table>

Function Defines a table

Attributes align, background, bgcolor, border, bordercolor ,
bordercolordark , bordercolorlight , cellpadding,
cellspacing, class, cols, dir, frame, height, hspace, id, lang,
nowrap, onClick, onDblClick, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp,
rules, style, summary, title, valign, vspace, width

End tag </table>; never omitted

Contains table_content

Used in block

10.2 Basic Table Tags | 363

10.2.1.2 The bgcolor and background attributes

You can make the background of a table a different color than the document’s back-
ground with the bgcolor attribute for the <table> tag. You must set the color value
for the bgcolor attribute to either a red, blue, and green (RGB) color value or a stan-
dard color name. Appendix G provides both the syntax of color values and the
acceptable color names.

The popular browsers give every cell in the table (but not the caption) this back-
ground color. You may also set individual row and cell colors by providing the
bgcolor attribute or a style attribute for those rows or cells.

The background attribute, a nonstandard extension supported by all the popular
browsers, supplies the URL of an image that is tiled to fill the background of the
table. The image is clipped if the table is smaller than the image. By using this
attribute with a borderless table, you can put text over an image contained within a
document.

10.2.1.3 The border attribute

The optional border attribute for the <table> tag tells the browser to draw lines
around the table and the rows and cells within it. The default is no borders at all.
You may specify a value for border, but you don’t have to with HTML. Alone, the
attribute simply enables borders and a set of default characteristics. With XHTML,
use border="border" to achieve the same default results. Otherwise, in HTML or
with XHTML, supply an integer value for border equal to the pixel width of the 3D
chiseled-edge lines that surround the outside of the table and make it appear to be
embossed onto the page.

10.2.1.4 The frame and rules attributes

With Netscape 4, the border attribute was all or nothing, affecting the appearance and
spacing both of the frame around the table and of the rule lines between data cells.
Internet Explorer versions 4 and later and Netscape 6 and later versions, as well as the
popular Firefox and Opera, let you individually modify the various line segments that
make up the borders around the table (frame) and around the data cells (rules).

The standard frame attribute modifies border’s effects for the lines that surround the
table. The default value—what you get if you don’t use frame at all—is box, which
tells the browser to draw all four lines around the table. The value border does the
same thing as box. The value void removes all four of the frame segments. The frame
values above, below, lhs, and rhs draw the various border segments on the top, bot-
tom, left, and right side, respectively, of the table. The value hsides draws borders on
the top and bottom (horizontal) sides of the table; vsides draws borders on the left
and right (vertical) sides of the table.

364 | Chapter 10: Tables

With standard tables now supported by the latest versions of all the popular brows-
ers, you also may control the thickness of a table’s internal cell borders via the rules
attribute. The default behavior, represented by the value of all, is to draw borders
around all cells. Specifying groups places thicker borders between row and column
groups defined by the <thead>, <tbody>, <tfoot>, <col>, and <colgroup> tags. Using
rows or cols places borders only between every row or column, respectively, and
using none removes borders from every cell in the table.

10.2.1.5 The bordercolor, bordercolorlight, and bordercolordark attributes

The popular browsers normally draw a table border in three colors, using light and
dark variations on the document’s background color to achieve a 3D effect. Internet
Explorer’s nonstandard bordercolor attribute lets you set the color of the table bor-
ders and rules to something other than the background (if borders are enabled, of
course). The bordercolor attribute’s value can be either an RGB hexadecimal color
value or a standard color name, both of which we describe fully in Appendix G.

Internet Explorer also lets you set the border edge colors individually with special
extension attributes: the bordercolorlight and bordercolordark colors shade the
lighter and darker edges of the border. The 3D beveled-border effect is tied to the
relationship between these two colors. In general, the light color should be about 25
percent brighter than the border color, and the dark color should be about 25 per-
cent darker. That is, if you use them at all: only your Internet Explorer users will see
the effects.

10.2.1.6 The cellspacing attribute

The cellspacing attribute controls the amount of space placed between adjacent
cells in a table and along the outer edges of cells along the edges of a table.

Browsers normally put two pixels of space between cells and along the outer edges of
a table. If you include a border attribute in the <table> tag, the cell spacing between
interior cells grows by two more pixels (for a total of four) to make space for the
chiseled edge on the interior border. The outer edges of edge cells grow by the value
of the border attribute.

By including the cellspacing attribute, you can widen or reduce the interior cell bor-
ders. For instance, to make the thinnest possible interior cell borders, include the
border and cellspacing=0 attributes in the table’s tag.

10.2.1.7 The cellpadding attribute

The cellpadding attribute controls the amount of space between the edge of a cell
and its contents, which by default is 1 pixel. You may make all the cell contents in a
table touch their respective cell borders by including cellpadding=0 in the table tag.
You may also increase the cellpadding space by making its value greater than 1.

10.2 Basic Table Tags | 365

10.2.1.8 Combining the border, cellspacing, and cellpadding attributes

The interactions between the border, cellspacing, and cellpadding attributes of the
<table> tag combine in ways that can be confusing. Figure 10-2 summarizes how the
attributes create interior and exterior borders of various widths.

While all sorts of combinations of the border and cellspacing attributes are possi-
ble, these are the most common:

• border=1 and cellspacing=0 produces the narrowest possible interior and exte-
rior borders: 2 pixels wide.

• border=n and cellspacing=0 makes the narrowest possible interior borders (2
pixels wide) with an external border that is n + 1 pixels wide.

• border=1 and cellspacing=n tables have equal-width exterior and interior bor-
ders, all with chiseled edges just 1 pixel wide. All borders will be n + 2 pixels
wide.

10.2.1.9 The cols attribute

To format a table, the browser must first read a table’s entire content to determine
the number and width of each column in the table. This can be a lengthy process for
long tables, forcing users to wait to see your pages. The nonstandard cols attribute
tells the browser, in advance, how many columns to expect in the table. The value of
this attribute is an integer value defining the number of columns in the table.

The cols attribute only advises the browser. If you define a different number of col-
umns, the browser is free to ignore the cols attribute in order to render the table

Figure 10-2. The border, cellspacing, and cellpadding attributes of a table

border

cellspacing

cellpadding

366 | Chapter 10: Tables

correctly. In general, it is good form to include this attribute with your <table> tag, if
only to help the browser do a faster job of formatting your tables.

10.2.1.10 The valign and nowrap attributes

The valign attribute sets the default vertical alignment of data in cells for the entire
table. Acceptable values for the valign attribute in <table> are top, bottom, middle,
and baseline; the default vertical position is the center of the cell.

Browsers treat each table cell as though it’s a browser window unto itself, flowing
contents inside the cell as they would common body contents (although they are
subject to special table-cell alignment properties). Accordingly, the browsers auto-
matically wrap text lines to fill the allotted table cell space. The nowrap attribute,
when included in the <table> tag, stops that normal word wrapping in all rows in the
table. With nowrap, the browser assembles the contents of the cell onto a single line,
unless you insert a
 or <p> tag, which then forces a break so that the contents
continue on a new line inside the table cell.

With the <table> tag, only Opera supports valign. None of the browsers supports
nowrap at that level. Instead, you can achieve similar effects by including a valign or
nowrap attribute within the individual <tr>, <td>, and <th> tags, an approach that all
the popular browsers support.

10.2.1.11 The width and height attributes

Browsers automatically make a table only as wide as needed to correctly display all of
the cell contents. If necessary, you can make a table wider with the width attribute.

The value of the width attribute is either an integer number of pixels or a relative per-
centage of the screen width, including values greater than 100 percent. For example:

<table width=400>

tells the extended browser to make the table 400 pixels wide, including any borders
and cell spacing that extend into the outer edge of the table. If the table is wider than
400 pixels, the browser ignores the attribute. Alternatively:

<table width="50%">

tells the browser to make the table half as wide as the display window. Again, this
width includes any borders or cell spacing that extends into the outer edge of the
table and has no effect if the table normally is more than half the user’s current
screen width.

Use relative widths for tables you want to resize automatically to the user’s window;
for instance, tables you always want to extend across the entire window (<table
width="100%">). Use an absolute width value for carefully formatted tables whose
contents become hard to read in wide display windows.

10.2 Basic Table Tags | 367

Also with the popular browsers, you can use the nonstandard height attribute to sug-
gest a recommended height for the table. The browser makes the table no shorter
than this height but may make the table taller if needed to contain the table’s con-
tents. This attribute is useful when trying to stretch tables to fit in a frame or some
specific area of a document but is of little use otherwise, particularly because it is not
a standard attribute.

10.2.1.12 The summary attribute

The summary attribute was introduced to HTML in the 4.0 standard. Its value is a
quote-enclosed string that describes the purpose and summarizes the contents of the
table. Its intended use, according to the standard, is to provide extended access to
nonvisual browsers, particularly for users with disabilities.

10.2.1.13 The hspace and vspace attributes

As with images, give your table some extra space within the body of your document.
Use the nonstandard hspace and vspace attributes in the <table> tag, each with a
value equal to the number of pixels of space to offset the table from the left and right
or top and bottom, respectively, of the enclosing text. Interestingly, all of the popu-
lar browsers, except for Internet Explorer, support these as <table> attributes, even
though Internet Explorer supports them with the tag.

10.2.2 Common Table Attributes
The HTML and XHTML standards, combined with the CSS standard, provide a
number of attributes common not only to the <table> tag and the other table-cre-
ation tags, but to most other tags as well.

10.2.2.1 The id and title attributes

Use the id attribute with a quote-enclosed string value to uniquely label a <table> tag
for later reference by a hyperlink or an applet. Use the title attribute with a string
value to optionally title the table or any of its segments for general reference. A
title’s value need not be unique, and the browser may or may not use it. The popu-
lar browsers, for example, display the title attribute’s text value whenever the user
passes the mouse pointer over the element’s contents. [The id attribute, 4.1.1.4] [The
title attribute, 4.1.1.5]

10.2.2.2 The dir and lang attributes

Although its contents are predominantly in English, the Web is worldwide. The
HTML 4 and XHTML standards take pains to extend the language to all cultures.
We support that effort wholeheartedly. The dir and lang attributes are just small
parts of that process.

368 | Chapter 10: Tables

The dir attribute advises the browser in which direction the text of the contents
should flow—from left to right (dir=ltr), as for common Western languages like
English and German, or right to left (dir=rtl), as for common Eastern languages like
Hebrew and Chinese.

The lang attribute lets you explicitly indicate the language used in the table or even
individual cell contents. Its value should be an International Organization for Stan-
dardization (ISO) standard two-letter primary code followed by an optional dialect
subcode, with a hyphen (-) between the two.

All the latest versions of the popular browsers support the dir and lang attributes.
[The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2]

10.2.2.3 The class and style attributes

The CSS standard is the sanctioned way to define display attributes for HTML/
XHTML elements, and it is rapidly becoming the only way. Use the style attribute
to define display characteristics for the table and its elements that take immediate
effect and override the display styles that may be currently in effect for the whole
document. Use the class attribute to reference a stylesheet that defines the unique
display characteristics for the table and its elements.

We discuss the class and style attributes and the CSS standard in detail in
Chapter 8. Their effects apply to all aspects of tables, and are well supported by the
popular browsers. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

10.2.2.4 The event attributes

Most of today’s browsers have internal mechanisms that detect the various user-initi-
ated mouse and keyboard events that can happen in and around your tables and
their elements. For instance, the user might click the mouse pointer in one of the
table cells or highlight the caption and then press the Enter key.

With the various event attributes, such as onClick and onKeyDown, you can react to
these events by having the browser execute one or more JavaScript commands or
applets that you reference as the value to the respective event attribute. See
Chapter 12 for details.

10.2.3 The <tr> Tag
Make a new row in a table with the <tr> tag. Place within the <tr> tag one or more
cells containing headers, defined with the <th> tag, or data, defined with the <td> tag
(see section 10.2.4). The <tr> tag accepts a number of special attributes that control its
behavior, along with the common table attributes described earlier in section 10.2.2 .

Every row in a table has the same number of cells as the longest row; the browser
automatically creates empty cells to pad rows with fewer defined cells.

10.2 Basic Table Tags | 369

10.2.3.1 The align and valign attributes

The align attribute for the <table> tag may be deprecated in the HTML and XHTML
standards, but it is alive and kicking for <tr> and other table elements. The align

attribute for the <tr> tag lets you change the default horizontal alignment of all the
contents of the cells in a row. The attribute affects all the cells within the current
row, but not subsequent rows.

An align attribute value of left, right, center, justify, or char causes the browser to
align the contents of each cell in the row against the left or right edge, in the center of
the cell, spread across the cell, or to a specified character in the cell, respectively.

Similarly, you can change the default vertical alignment for the contents of data cells
contained within a table row with the valign attribute. Normally, browsers render
cell contents centered vertically. By including the valign attribute in the <tr> tag
with a value of top, bottom, center, middle, or baseline (Internet Explorer only), you
tell the browser to place the table row’s contents flush against the top or bottom of
their cells, centered, or aligned to the baseline of the top line of text in other cells in
the row, respectively (see Figure 10-3):

<table border="border">
 <tr>
 <th>Alignment</th>
 <th>Top</th>
 <th>Baseline</th>
 <th>Center</th>
 <th>Middle></th>
 <th>Bottom</th>
 </tr>
 <tr align="center">
 <th><h1>Baseline_ _
Another line</h1></th>
 <td valign="top">AAyy</td>

<tr>

Function Defines a row within a table

Attributes align, background , bgcolor, bordercolor , bordercolordark ,
bordercolorlight , char, charoff, class, dir, id, lang, nowrap,
onClick, onDblClick, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp, style, title,
valign

End tag </tr>; may be omitted in HTML

Contains tr_content

Used in table_content

370 | Chapter 10: Tables

 <td valign="baseline">_AAyy_</td>
 <td valign="center">AAyy</td>
 <td valign="middle">AAyy</td>
 <td valign="bottom">AAyy</td>
 </tr>
</table>

You also can specify the horizontal and vertical alignments for individual cells within a
row (see 10.2.3.1). Use the alignment attributes in the <tr> tag to specify the most com-
mon cell-content justifications for the row (if not the default), and use a different align
or valign attribute for those individual cells that deviate from the common alignment.

Table 10-1 contains the horizontal (align) and vertical (valign) table cell-content
attribute values and options. Values in parentheses are the defaults for the popular
browsers.

Figure 10-3. Effects of the valign attribute; only Internet Explorer (shown here) supports the
baseline value for valign

Table 10-1. Table cell-content alignment attribute values and options

Attribute Headers (<th>) Data (<td>)

align Left (Left)

(Center) Center

Right Right

Justify Justify

Chara

a Value not yet supported.

Chara

valign Top Top

(Center) (Center)

(Middle) (Middle)

Bottom Bottom

Baseline Baseline

10.2 Basic Table Tags | 371

10.2.3.2 The char and charoff attributes

Even simple word processors let you line up decimal points for numbers in a table.
Until the advent of the HTML 4.0 standard, however, the language was deficient in
this feature. Now you may include the char attribute to indicate which letter in each
of the table row’s cells should be the axis for that alignment. You need not include a
value with char. If you don’t, the default character is language based: it’s a period in
English, for example, and a comma in French. Include the char attribute and a single
letter as its value to specify a different alignment character.

Use the charoff attribute and an integer value to specify the offset to the first occur-
rence of the alignment character on each line. If a line doesn’t include the alignment
character, it should be horizontally shifted to end at the alignment position.

The char and charoff attributes are defined in HTML 4 and XHTML but are not yet
supported by any of the popular browsers.

10.2.3.3 The bgcolor and background attributes

Like its relative for the <table> tag, the bgcolor attribute for the <tr> tag sets the
background color of the entire row. Its value is either an RGB color value or a stan-
dard color name. Appendix G provides both the syntax of color values and the
acceptable color names.

Every cell in the row is given this background color. You can change individual cell
colors by providing the bgcolor attribute for those cells.

The nonstandard background attribute with its image-file URL value places a graphic
tiled into and behind the text of the entire table row. For example, this tag fills the
table row with bricks:

<tr background="bricks.gif">

All the popular browsers support bgcolor and all support the background extension,
except Internet Explorer.

10.2.3.4 The bordercolor, bordercolorlight, and bordercolordark attributes

Like their nonstandard brethren for the <table> tag, Internet Explorer only lets you
use these attributes to set the color of the borders within the current row.

Their values override any values set by the corresponding attributes in the containing
<table> tag. See the corresponding descriptions of these extensions in section 10.2.1.5,
earlier in this chapter, for details. Color values can be either RGB color values or stan-
dard color names, both of which we describe fully in Appendix G.

372 | Chapter 10: Tables

10.2.3.5 The nowrap attribute

Browsers treat each table cell as though it were a browser window unto itself, flow-
ing contents inside the cell as they would common body contents (although subject
to special table cell-alignment properties). Accordingly, the browsers automatically
wrap text lines to fill the allotted table cell space. The nowrap attribute, when
included in a table row, stops that normal word wrapping in all cells in that row.
With nowrap, the browser assembles the contents of the cell onto a single line, unless
you insert a
 or <p> tag, which forces a break so that the contents continue on a
new line inside the table cell.

10.2.4 The <th> and <td> Tags
The <th> and <td> tags go inside the <tr> tags of a table to create the header and data
cells, respectively, and to define the cell contents within the rows. The tags operate
similarly; the only real differences are that the browsers render header text—meant
to title or otherwise describe table data—in boldface font style and that the default
alignment of their respective contents may be different than for data. Data typically
gets left-justified by default; headers get centered (refer to Table 10-1).

Like those available for the table row (<tr>) tag, the table cell tags support a rich set
of style and content-alignment attributes that you may apply to a single data or
header cell. These attributes override the default values for the current row. Special
attributes control the number of columns or rows a cell may span in the table. The
<th> and <td> tags also accept the common table attributes described earlier in
section 10.2.2.

<th> and <td>

Function Define table data and header cells

Attributes abbr, align, background, bgcolor, bordercolor , bordercolordark ,
bordercolorlight , char, charoff, class, colspan, dir, headers,
height, id, lang, nowrap, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, rowspan, scope, style, title, valign, width

End tag </th> or </td>; may be omitted in HTML

Contains body_content

Used in tr_content

10.2 Basic Table Tags | 373

The contents of the <th> and <td> tags can be anything you might put in the body of
a document, including text, images, forms, and so on—even another table. And, as
described earlier, the browser automatically creates a table large enough, both verti-
cally and horizontally, to display all the contents of any and all the cells.

If a particular row has fewer header or data items than other rows, the browser adds
empty cells at the end to fill the row. If you need to make an empty cell before the
end of a row—for instance, to indicate a missing data point—create a header or data
cell with no content.

Empty cells look different from those containing data or headers if the table has bor-
ders: the empty cell does not appear embossed onto the window but instead is sim-
ply left blank. If you want to create an empty cell that has incised borders like all the
other cells in your table, be sure to place a minimal amount of content in the cell: a
single
 tag, for instance.

10.2.4.1 The align and valign attributes

The align and valign attributes are identical to those of the same name for the table
row tag (<tr>; see 10.2.3, earlier in this chapter), except that when used with a <th>
or <td> tag, they control the horizontal or vertical alignment of content in just the
current cell. Their value overrides any alignment established by the respective align
or valign attribute of the <tr> tag but does not affect the alignment of subsequent
cells. Refer to Table 10-1 for alignment details.

You may set the align attribute’s value to left, right, or center, causing the brows-
ers to align the cell contents against the left or right edge or in the center of the cell,
respectively.

In earlier versions, Internet Explorer (version 5) also supported the align value justify
so that the words spread out to fill the cell, as in a newspaper column. No longer.

The valign attribute may have a value of top (default), bottom, center, middle, or
baseline, telling the browser to align the cell’s contents to the top or bottom edge, in
the center or middle of the cell, or (Internet Explorer only) to the baseline of the first
line of text in other cells in the row.

10.2.4.2 The width attribute

Like its twin in the <table> tag that lets you widen a table, the width attribute for
table cell tags lets you widen an individual cell and hence the entire column it occu-
pies. You set the width to an integer number of pixels or a percentage indicating the
cell’s width as a fraction of the table as a whole.

For example:

<th width=400>

374 | Chapter 10: Tables

sets the current header cell’s width, and hence the entire column of cells, to 400 pix-
els wide. Alternatively:

<td width="40%">

creates a data cell with a column occupying 40 percent of the entire table’s width.

Because the popular browsers make all cells in a column the same width, you should
place a width attribute in only one cell within a column, preferably the first instance
of the cell in the first row, for source readability. If two or more cells in the same col-
umn happen to have width attributes, the widest one is honored. You can’t make a
column thinner than the minimum needed to display all of the cells in the column.
Accordingly, if the browser determines that the column of cells needs to be at least
150 pixels wide to accommodate all the cells’ contents, it ignores a width attribute in
one of the column’s cell tags that attempts to make the cell only 100 pixels wide.

10.2.4.3 The height attribute

The height attribute lets you specify a minimum height, in pixels, for the current cell.
Because all cells in a row have the same height, you need to specify this attribute on
only one cell in the row, preferably the first. If some other cell in the row needs to be
taller to accommodate its contents, the browser ignores the height attribute, and all
the cells in the row are set to the larger size.

By default, all the cells in a row are the height of the largest cell in the row that just
accommodates its contents.

10.2.4.4 The colspan attribute

It’s common to have a table header that describes several columns beneath it, like the
headers we used in Figure 10-1. Use the colspan attribute in a table header or data
tag to extend a table cell across two or more columns in its row. Set the value of the
colspan attribute to an integer value equal to the number of columns you want the
header or data cell to span. For example:

<td colspan="3">

tells the browser to make the cell occupy the same horizontal space as three cells in
rows above or below it. The browser flows the contents of the cell to occupy the
entire space.

What happens if there aren’t enough extra cells on the right? The browser just
extends the cell over as many columns as exist to the right; it doesn’t add extra
empty cells to each row to accommodate an overextended colspan value. You may
defeat that limitation by adding the needed extra but contentless cells to a single
row. (Give them a single
 tag as their contents if you want an embossed border
around them.)

10.2 Basic Table Tags | 375

10.2.4.5 The rowspan attribute

Just as the colspan attribute layers a table cell across several columns, the rowspan

attribute stretches a cell down two or more rows in the table.

Include the rowspan attribute in the <th> or <td> tag of the uppermost row of the
table where you want the cell to begin and set its value equal to the number of rows
you want it to span. The cell then occupies the same space as the current row and an
appropriate number of cells below that row. The browser flows the contents of the
cell to occupy the entire extended space. For example:

<td rowspan="3">

creates a cell that occupies the current row plus the two rows below it.

Like the colspan attribute, the browser ignores overextended rowspan attributes and
extends the current cell only down rows you’ve explicitly defined by other <tr> tags
following the current row. The browsers do not add empty rows to a table to fill a
rowspan below the last defined row in a table.

10.2.4.6 Combining the colspan and rowspan attributes

You may extend a single cell both across several columns and down several rows by
including both the colspan and rowspan attributes in its table header or data tag. For
example:

<th colspan="3" rowspan="4">

creates a header cell that, as you might expect, spans across three columns and down
four rows, including the current cell and extending two more cells to the right and
three more cells down. The browser flows the contents of the cell to occupy the
entire space, aligned inside according to the current row’s alignment specifications or
to those you explicitly include in the same tag, as described earlier.

10.2.4.7 The nowrap attribute

Browsers treat each table cell as though it were a browser window unto itself, flow-
ing contents inside the cell as they would common body contents (although subject
to special table cell-alignment properties). Accordingly, the browsers automatically
wrap text lines to fill the allotted table cell space. The nowrap attribute, when
included in a table header or data tag, stops that normal word wrapping. With
nowrap, the browser assembles the contents of the cell onto a single line, unless you
insert a
 or <p> tag, which forces a break so that the contents continue on a new
line inside the table cell.

10.2.4.8 The bgcolor and background attributes

Yet again, you can change the background color—this time for an individual data
cell. This attribute’s value is either an RGB hexadecimal color value or a standard

376 | Chapter 10: Tables

color name. Appendix G provides both the syntax of color values and the acceptable
color names.

The background attribute supplies the URL of an image that is tiled to fill the back-
ground of the cell. The image is clipped if the cell is smaller than the image. Interest-
ingly, Internet Explorer, like all the other popular browsers, supports background

when applied to a single cell, but unlike the other popular browsers, does not sup-
port background for <table> or <tr>.

Neither background nor bgcolor overrides a related stylesheet property.

10.2.4.9 The bordercolor, bordercolorlight, and bordercolordark attributes

Internet Explorer lets you alter the colors that make up an individual cell’s border—
if table borders are turned on with the border attribute, of course. See the respective
attributes’ descriptions under the <table> tag in section 10.2.1.5, earlier in this chap-
ter, for details.

The values for these three attributes override any values set for the containing
<table> or <tr> tag. Their values can be either RGB color values or standard color
names, both of which we describe fully in Appendix G.

10.2.4.10 The char and charoff attributes

Just as for the <tr> tag, you may use the char attribute with <th> or <td> to indicate
which letter in the table cell should be the axis for alignment, such as for decimal
numbers. You need not include a value with char in HTML. If you don’t, the default
character is language based: it’s a period in English, for example, and a comma in
French. Include the char attribute and a single letter as its value to specify a different
alignment character.

Use the charoff attribute and an integer value to specify the offset to the first occur-
rence of the alignment character in the cell. If a cell doesn’t include the alignment
character, it should be shifted horizontally to end at the alignment position.

The char and charoff attributes are standard in HTML 4 and XHTML but are not
yet supported by any of the popular browsers.

10.2.4.11 The headers and scope attributes

The headers attribute associates header cells with a data cell in the table. The value
of this attribute is a quote-enclosed list of names that have been defined for various
header cells using the id attribute. The headers attribute is especially useful for non-
visual browsers, which might speak the contents of a header cell before presenting
the associated data cell contents.

10.2 Basic Table Tags | 377

Use the scope attribute to associate data cells with a header cell. With a value of row,
all cells in the header’s row are associated with the header cell. Specifying col binds
all the cells in the current column to the cell. Using rowgroup or colgroup binds all the
cells in the cell’s row group (defined by a <thead>, <tbody>, or <tfoot> tag) or col-
umn group (defined by a <col> or <colgroup> tag) with the header cell.

10.2.4.12 The abbr attribute

The value of this attribute should be an abbreviated description of the cell’s con-
tents. When short on space, browsers might choose to render the abbreviation
instead, or they might use it in nonvisual contexts.

10.2.4.13 The axis attribute

Tables are usually chock-full of data, prompting the reader to ask questions. A tabu-
lar expense report, for example, naturally leads to queries like “How much did I
spend on meals?” or “What did my cab fares total?” In the future, browsers may sup-
port such queries with the help of the axis attribute.

The value of this attribute is a quote-enclosed list of category names that might be used
to form a query. As a result, if you used axis=meals on the cells containing meal pur-
chases, the browser could locate those cells, extract their values, and produce a sum.

10.2.5 The <caption> Tag
A table commonly needs a caption to explain its contents, so the popular browsers
provide a table-caption tag. Authors typically place the <caption> tag and its con-
tents immediately after the <table> tag, but you can place it nearly anywhere inside
the table and between the row tags. The caption may contain any body content,
much like a cell within a table.

<caption>

Function Defines a table caption

Attributes align , class, dir, id, lang, onClick, onDblClick, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, style, title, valign

End tag </caption>; never omitted

Contains body_content

Used in table_content

378 | Chapter 10: Tables

10.2.5.1 The align and valign attributes

By default, browsers place the caption’s contents centered above the table. You may
place it below the table with the align attribute set to the value bottom (the value top,
of course, is equivalent to the default).

Also use the align attribute to control the horizontal position of the caption, but
the interpretation of the alternative values varies with the popular browsers: with
Internet Explorer and Opera, for example, setting the align attribute to left or
right respectively left-justifies or right-justifies the caption text against the
horizontal edge at the top of the table. With Netscape and Firefox, the caption
text gets placed next to and at the top of the left or right side of the table,
respectively.

Internet Explorer additionally supports the valign attribute with top or bottom val-
ues for <caption>. In combination with align, you place the caption text aligned at
any of the four corners of the table, but not along either side. The other browsers
ignore valign.

For example, Figure 10-4 demonstrates how Internet Explorer displays the following
caption at the bottom of the table and left-justified, whereas Firefox, because it
ignores valign and interprets left alignment differently, places the caption against the
left side of the table (Figure 10-5):

<caption valign=bottom align=left>
 Kumquat versus a poked eye, by gender
</caption>

Figure 10-4. Combining Internet Explorer’s align and valign <caption> attributes lets you place the
text at any of the table’s four corners as well as centered top or bottom

10.3 Advanced Table Tags | 379

10.2.5.2 The many other attributes

Like the other table tags, <caption> supports the many and various language-, event-,
and styles-related attributes, which we described earlier in “Common Table Attributes.”
Use them in good health. Just be sure to use the contextual selector TABLE CAPTION

when referring to caption styles at the document level or in external stylesheets.

10.3 Advanced Table Tags
While it is possible to build a simple table quickly, complex tables with varying bor-
der styles, running headers and footers, and column-based layout were not easily
constructed from the old HTML 3.2 table model. Microsoft rectified this inadequacy
somewhat by adding a number of table-layout controls to Internet Explorer version
3.0. These very useful extensions found their way into the HTML 4 standard and
subsequently into XHTML. They provide row-based grouping and running headers
and footers, along with column-based layout features.

10.3.1 Defining Table Sections
Within tables, all rows are created equal. In real tables, some rows are more equal
than others. And most tables have header and footer rows that repeat from page to
page. In large tables, adjacent rows are grouped and delineated with different rule
lines to make the tables easier to read and understand. HTML 4 and XHTML sup-
port all of these features with the <thead>, <tfoot>, and <tbody> tags.

10.3.2 The <thead> Tag
Use the <thead> tag to define a set of table header rows. The <thead> tag may appear
only once per table and is placed at the beginning, just after the <table> tag. Within

Figure 10-5. Firefox, like Netscape, ignores valign and places the left-aligned caption to the left of
the table

380 | Chapter 10: Tables

the <thead> tag, you may place one or more <tr> tags, defining the rows within the
table header. If given the opportunity, the HTML 4/XHTML-compliant browser
replicates these heading rows when the table is printed or displayed in multiple sec-
tions. Thereafter, it repeats these headings on each printed page if the table appears
on more than one page.

The ending </thead> tag is optional for HTML. Because the <thead> tag appears only
in tables where, presumably, other rows are designated as the table body or footer,
browsers automatically close the <thead> tag when they encounter a <tbody> or
<tfoot> tag or when the table ends.

The many attributes of the <thead> tag operate identically, take the same values, and
affect all the enclosed <tr> contents as though you had specified them individually
for each <tr> entry. For example, the align attribute accepts values of left, right, or
center, controlling the horizontal alignment of text in all of the heading’s rows. Simi-
larly, the valign attribute accepts values of top, middle, baseline (Internet Explorer
only), or bottom, dictating the vertical alignment of text in all of the heading rows.

If you don’t specify any alignments or styles, the browser centers the heading text
vertically and horizontally within the respective cells, equivalent to specifying
align=center and valign=middle for each. Of course, individual row and cell or
stylesheet specifications may override these attributes.

10.3.3 The <tfoot> Tag
Use the <tfoot> tag to define a footer for a table. The <tfoot> tag may appear only
once, just before the <tbody> tag. Like <thead>, it may contain one or more <tr> tags
that let you define those rows that the currently popular browsers use as the table
footer. Thereafter, the browser repeats these rows if the table is broken across

<thead>

Function Defines a table header

Attributes align, char, charoff, class, dir, id, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, style, title, valign

End tag </thead>; may be omitted in HTML

Contains table_content

Used in table_content

10.3 Advanced Table Tags | 381

multiple physical or virtual pages. Most often, the browser repeats the table footer at
the bottom of each portion of a table printed on multiple pages.

The closing </tfoot> tag is optional in HTML because the footer ends at the follow-
ing <tbody> tag or at the end of the table.

10.3.4 The <tbody> Tag
Use the <tbody> tag to divide your table into discrete sections. The <tbody> tag collects
one or more rows into a group within a table. It is perfectly acceptable to have no
<tbody> tags within a table, although where you might include one, you probably will
have two or more <tbody> tags within a table. So identified, you can give each <tbody>

group different rule line sizes above and below the section. Within a <tbody> tag, only
table rows may be defined using the <tr> tag. And, by definition, a <tbody> section of a
table stands alone. For example, you may not span from one <tbody> into another.

<tfoot>

Function Defines a table footer

Attributes align, char, charoff, class, dir, id, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, style, title, valign

End tag </tfoot>; may be omitted in HTML

Contains table_content

Used in table_content

<tbody>

Function Defines a section within a table

Attributes align, char, charoff, class, dir, id, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, style, title, valign

End tag </tbody>; may be omitted in HTML

Contains table_content

Used in table_content

382 | Chapter 10: Tables

The closing </tbody> tag is optional in HTML because the section ends at the next
<tbody> tag, or when the table ends. Like <tfoot>, there are many attributes for the
<tbody> tag, but none is supported by the popular browsers. If you have special align-
ment attributes for this section, you’ll need to specify them for each row within the
<tbody> tag.

10.3.5 Using Table Sections
From a presentation standpoint, the most important thing you can do with the
<thead>, <tfoot>, and <tbody> tags is divide your table into logical sections that are
delimited by different borders. By default, Internet Explorer does not do anything
special with the borders around the headers, footers, and sections within your table.
By adding the rules attribute to the <table> tag, however, you can draw thicker rule
lines between your <thead>, one or more <tbody>, and <tfoot> table sections, helping
readers better understand your table’s organization. [The align attribute (depre-
cated), 10.2.1.1]

For example, here is the simple table you saw earlier in this chapter, augmented with
a header and footer. Notice that we’ve omitted many of the closing tags for brevity
and readability of the HTML but that the tags must appear in an XHTML-compliant
document:

<table border cellspacing=0 cellpadding=5 rules=groups>
 <caption align=bottom>Kumquat versus a poked eye, by gender</caption>
 <thead>
 <tr>
 <td colspan=2 rowspan=2>
 <th colspan=2 align=center>Preference
 </tr>
 <tr>
 <th>Eating Kumquats
 <th>Poke In The Eye
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td colspan=4 align=center>
 Note: eye pokes did not result in permanent injury
 </tr>
 </tfoot>
 <tbody>
 <tr align=center>
 <th rowspan=2>Gender
 <th>Male
 <td>73%
 <td>27%
 </tr>
 <tr align=center>

10.3 Advanced Table Tags | 383

 <th>Female
 <td>16%
 <td>84%
 </tr>
 </tbody>
</table>

The table as rendered by Opera is shown in Figure 10-6. Notice that the rules after
the table header and before the footer are thinner than the borders around the other
table rows. This happened because we included the special rules=groups attribute to
the <table> tag. You may obtain similar effects by specifying rules=rows or
rules=all.

Long tables often benefit from thicker rules every few rows, making it easier to read
the tables. Do this by grouping the rules in your table with several <tbody> tags. Each
set of rows contained in a single <tbody> tag will have thicker rules before and after it.

Here is an expanded version of our HTML table example, with additional sections
set off as separate groups:

<table border cellspacing=0 cellpadding=5 rules=groups>
 <caption align=bottom>Kumquat versus a poked eye, by gender</caption>
 <thead>
 <tr>
 <td colspan=2 rowspan=2>
 <th colspan=2 align=center>Preference
 <tr>
 <th>Eating Kumquats
 <th>Poke In The Eye
 <tfoot>
 <tr>
 <td colspan=4 align=center>
 Note: eye pokes did not result in permanent injury

Figure 10-6. Use HTML 4/XHTML table tags to specially section your tables

384 | Chapter 10: Tables

 <tbody>
 <tr align=center>
 <th rowspan=4>Gender
 <th>Males under 18
 <td>94%
 <td>6%
 <tr align=center>
 <th>Males over 18
 <td>73%
 <td>27%
 <tbody>
 <tr align=center>
 <th>Females under 18
 <td>34%
 <td>66%
 <tr align=center>
 <th>Females over 18
 <td>16%
 <td>84%
 </table>

The result is shown in Figure 10-7. Notice the Gender column? Netscape versions 4
and earlier placed it to the left and centered between the Males and Females rows, as
you might expect. However, the HTML 4 and XHTML standards explicitly disallow
spanning <tbody> sections so that the compliant browsers all display the example
with just up to four rows in the table, separated into two groups. You could create
any number of groups within the table by adding more <tbody> tags.

Figure 10-7. Multiple <tbody> segments further divide a table, but you cannot span across them

10.3 Advanced Table Tags | 385

10.3.6 Defining Column Groups
The basic table model is row centric. Sometimes, though, it is easier to deal with
your table as a collection of columns. Using the <colgroup> and <col> tags, HTML 4
and XHTML, as originally implemented by Internet Explorer through table exten-
sions, help you turn the tables and think in columns.

Unlike the sectioning tags described in the previous sections, which are interspersed
with the rows of a table to define headers, footers, and sections within the table, the
column-related tags cannot be intermingled with the content of a table. You must
place them at the very beginning of a table, before the content. They define the
model by which HTML 4/XHTML-compliant browsers render the columns.

10.3.7 The <colgroup> Tag
The <colgroup> tag defines a column group. You can use the <colgroup> tag in two
ways: as a single definition of several identical columns, or as a container for several
dissimilar columns. You can put one or more <colgroup> tags within a <table> tag. The
ending </colgroup> tag is rarely used in HTML but is required in XHTML. In HTML,
the <colgroup> ends at the next <colgroup>, <thead>, <tbody>, <tfoot>, or <tr> tag.

All the currently popular browsers support <colgroup> and its attributes.

10.3.7.1 The span attribute

Use the span attribute with the <colgroup> tag to achieve the first type of column
grouping. The value of the span attribute is the integer number of columns affected
by the <colgroup> tag. For example, a table with six columns—four in the first group
and two in the other—would appear in the source code as:

<colgroup span="4">
<colgroup span="2">

When the HTML 4/XHTML-compliant browser collects the table cells into columns by
the example definition, it groups the first four cells in each row as the first column group
and the next two cells into a second column group. Any other attributes of the individ-
ual <colgroup> tags then are applied to the columns contained within that group.

10.3.7.2 When to span and col

To use the <colgroup> tag as a container for dissimilar columns, leave out the span
attribute, but include within each <colgroup> tag an individual <col> tag for each col-
umn within the group. For instance, in HTML:

<colgroup>
 <col>
 <col>
 <col>
 <col>

386 | Chapter 10: Tables

<colgroup>
 <col>
 <col>

This method creates the same number of columns in each group as we had with the
span attribute, but it lets you specify column attributes individually. You can still
supply attributes for all the columns via the <colgroup> tag, but the attributes in the
<col> tags will override them, as appropriate.

For instance, suppose we want our first example group of four columns to each
occupy 20 percent of the table, and the remaining two columns to each take up 10
percent of the total table width. That’s easy with the span attribute:

<colgroup span=4 width="20%">
<colgroup span=2 width="10%">

You can also create this structure with individually specified columns (in HTML):

<colgroup width="20%">
 <col>
 <col>
 <col>
 <col>
<colgroup width="10%">
 <col>
 <col>

You can use both methods in the same table. For instance, we could specify our
example column groupings, complete with width attributes:

<colgroup span=4 width="20%" align=right>
<colgroup width="10%">
 <col align=left>
 <col align=right>

<colgroup>

Function Defines a column group within a table

Attributes align, char, charoff, class, dir, id, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, span, style, title, valign,
width

End tag </colgroup>; usually omitted in HTML

Contains column_content

Used in table_content

10.3 Advanced Table Tags | 387

Notice that this lets us align the contents of the two columns of the second group
individually (the default alignment is centered).

10.3.7.3 The other <colgroup> attributes

The many attributes common to tables control the familiar aspects of each column in
the <colgroup>-encapsulated column group. These attributes accept the same values
and behave exactly like the equivalent attributes for the <td> tag.

10.3.8 The <col> tag
Use the <col> tag to control the appearance of one or more columns within a col-
umn group.

The <col> tag may appear only within a <colgroup> tag within a table. It has no con-
tent and thus has no ending tag in HTML. Use </col> or a lone forward slash at the
end of the tag (<col />) for the required XHTML end tag. The <col> tag represents
one or more columns within a <colgroup> to which an HTML 4/XHTML-compliant
browser applies the <col> tag’s attributes.

All the currently popular browsers support the <col> tag and its attributes.

10.3.8.1 The span attribute

The span attribute for the <col> tag, like for the <colgroup> tag, lets you specify how
many successive columns are affected by this <col> tag. By default, only one is
affected. For example, let’s create a <colgroup> that has five columns. We align the
first and last columns to the left and right, respectively, and center the middle three:

<colgroup>
 <col align=left>

<col>

Function Define a column within a column group

Attributes align, char, charoff, class, dir, id, lang, onClick, onDblClick,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, span, style, title, valign,
width

End tag None in HTML; </col> or <col ... /> in XHTML

Contains Nothing

Used in column_content

388 | Chapter 10: Tables

 <col align=center span=3>
 <col align=right>

You should use the <col> tag only within <colgroup> tags that do not themselves use
the span attribute. Otherwise, the HTML 4/XHTML-compliant browsers ignore the
individual <col> tags and their attributes.

10.3.8.2 The other <col> attributes

The many attributes common to tables control the familiar aspects of the column
defined by the <col> tag. These attributes accept the same values and behave exactly
like the equivalent attributes for the <td> tag.

10.3.9 Using Column Groups
Column groups are easier to use than they first appear. Think of them as a template
for how to format your table columns. Their main purpose is to create groups that
can be separated by thicker rules within your table and to streamline the process of
applying formatting attributes to all the cells in one or more columns.

Returning to our original table example, we can place a thicker rule between the col-
umn labels and the data cells by placing the column labels in one column group and
the data cells in another (in HTML):

<table border= cellspacing=0 cellpadding=5 rules=groups>
 <caption align=bottom>Kumquat versus a poked eye, by gender</caption>
 <colgroup span=2>
 <colgroup span=2>
 <thead>
 <tr>
 <td colspan=2 rowspan=2>
 <th colspan=2 align=center>Preference
 <tr>
 <th>Eating Kumquats
 <th>Poke In The Eye
 <tbody>
 <tr align=center>
 <th rowspan=4>Gender
 <th>Males under 18
 <td>94%
 <td>6%
 <tr align=center>
 <th>Males over 18
 <td>73%
 <td>27%
 <tr align=center>
 <th>Females under 18
 <td>34%</td>
 <td>66%</td>
 <tr align=center>
 <th>Females over 18

10.4 Beyond Ordinary Tables | 389

 <td>16%
 <td>84%
 <tfoot>
 <tr>
 <td colspan=4 align=center>
 Note: eye pokes did not result in permanent injury
</table>

The results are shown in Figure 10-8. All we added were the two <colgroup> tags; the
additional borders were drawn by the rules=groups attribute in the <table> tag. For
borders between column groups to be drawn, the rules attribute must be set to
groups, cols, or all.

10.4 Beyond Ordinary Tables
On the face of it, tables are pretty ordinary: just a way for academics and other like-
minded data crunchers to format items into columns and rows for easy comparison.
Scratch below the surface, though, and you will see that tables are really extraordi-
nary. Besides <pre>, the <table> tag and related attributes provide the only way for
you to easily control the layout of your document. The content inside a <pre> tag, of
course, is very limited. Tables, on the other hand, may contain nearly anything
allowed in normal body content, including multimedia and forms. And the table
structure lets you explicitly control where those elements appear in the user’s
browser window. With the right combinations of attributes, tables provide a way for
you to create multicolumn text and side and straddle heads. They also enable you to
make your forms easier to read, understand, and fill out. That’s just for starters.

Figure 10-8. Example demonstrating the various HTML 4/XHTML table features

390 | Chapter 10: Tables

We don’t know that we can recommend getting too caught up with page layout—
tables or beyond. Remember, it ain’t about looks, it’s about content. But….

It’s easy to argue that tables of information benefit from some controlled layout and
that forms follow a close second. Tables provide the only way to create predictable,
browser-independent layouts for your web pages. Used in moderation and filled with
quality content, tables are a tool that every author should be able to wield.

And now that we’ve whetted your appetite for page layout with tables, don’t despair
that we’ve let you down by ending this chapter without examples—we have several
in Chapter 17.

391

Chapter 11!ti
In this chapter:

• An Overview of Frames
• Frame Tags
• Frame Layout
• Frame Contents
• The <noframes> Tag
• Inline Frames
• Named Frame or Window Targets
• XFrames

CHAPTER 11

Frames11

You can divide the browser’s main display window into independent window
frames, each simultaneously displaying a different document—something like a wall
of monitors in a TV control room. Netscape invented the feature in the mid-1990s.
Instantly popular, frames now are standard features for HTML 4 and XHTML.

11.1 An Overview of Frames
Figure 11-1 is a simple example of a frame display. It shows how you can divide the
document window into columns and rows of individual frames separated by rules
and scroll bars. Although it is not immediately apparent in the example, each frame
in the window contains an independent document. Frames may contain any valid
content the browser is capable of displaying, including XHTML documents and mul-
timedia. If the frame’s contents include a hyperlink that the user selects, the new
document’s contents—even another frame document—may replace that same frame,
another frame’s content, or the entire browser window.

Frames are enabled with a special frame document. Its contents do not get displayed.
Instead, the frame document contains tags that tell the browser how to divide its main
display window into discrete frames and what documents go inside the frames.

The individual documents referenced and displayed in the frame document window
act independently, to a degree; the frame document controls the entire window. You
can, however, direct one frame’s document to load new content into another frame.
You do that by attaching a name to a frame and targeting the named frame with a
special attribute for the hyperlink <a> tag.

392 | Chapter 11: Frames

11.2 Frame Tags
You need to know only two tags in order to create a frame document: <frameset>
and <frame>. In addition, the HTML 4 and XHTML standards provide the <iframe>
tag, which you may use to create inline, or floating, frames, and the <noframes> tag to
handle browsers that cannot handle frames.

A frameset is simply the collection of frames that make up the browser’s window. Col-
umn- and row-definition attributes for the <frameset> tag let you define the number of
and initial sizes for the columns and rows of frames. The <frame> tag defines which
document—HTML or otherwise—initially goes into the frame within those framesets
and is where you may give the frame a name to use for document hyperlinks.

Here is the HTML source we used to generate Figure 11-1:

<html>
<head>
<title>Frames Layout</title>
</head>
<frameset rows="60%,*" cols="65%,20%,*">
 <frame src="frame1.html">
 <frame src="frame2.html">
 <frame src="frame3.html" name="fill_me">
 <frame scrolling=yes src="frame4.html">
 <frame src="frame5.html">
 <frame src="frame6.html" id="test">
 <noframes>
 Sorry, this document can be viewed only with a
 frames-capable browser.
 Take this link
 to the first HTML document in the set.
 </noframes>
</frameset>
</html>

Notice a few things in the simple frame example and its rendered image
(Figure 11-1). First, like tables, the browser fills frames in a frameset row by row.
Second, Frame 4 sports a scroll bar because we told it to, even though the contents
may otherwise fit without scrolling. (Scroll bars automatically appear if the contents
overflow the frame’s dimensions, unless explicitly disabled with the scrolling

attribute in the <frame> tag.)

Another item of interest is the name attribute in the example frame tags. Once named,*

you can reference that particular frame as the target in which to display a hyper-
linked document or perform some automated action. To do that, you add a special
target attribute to the anchor (<a>) tag of the source link.

* But, interestingly, not id’d, even though the attribute exists for frames and can identify other HTML/
XHTML elements as hyperlink targets.

11.2 Frame Tags | 393

For instance, to link a document called new.html for display in Frame 3, which we’ve
named fill_me, the anchor looks like this:

If the user chooses the hyperlink—say, in Frame 1—the new.html document
replaces the original frame3.html contents in Frame 3. [The target Attribute for the
<a> Tag, 11.7.1]

11.2.1 What’s in a Frame?
Anyone who has opened more than one window on their desktop display to compare
contents or operate interrelated applications knows instinctively the power of frames.

One simple use for frames is to put content that is common in a collection, such as
copyright notices, introductory material, and navigational aids, into one frame, with
all other document content in an adjacent frame. As the user visits new pages, each
loads into the scrolling frame, while the fixed-frame content persists.

A richer frame document-enabled environment provides navigational tools for your
document collections. For instance, assign one frame to hold a table of contents and
various searching tools for the collection. Have another frame hold the user-selected
document contents. As users visit your pages in the content frame, they never lose
sight of the navigational aids in the other frame.

Another beneficial use of frame documents is to compare a returned form with its
original to verify the content the user submitted. By placing the form in one frame
and its submitted result in another, you let the user quickly verify that the result

Figure 11-1. A simple six-panel frame layout

394 | Chapter 11: Frames

corresponds to the data entered in the form. If the results are incorrect, the form is
readily available to be filled out again.

11.3 Frame Layout
Frame layout is similar to table layout. Using the <frameset> tag, you can arrange
frames into rows and columns while defining their relative or absolute sizes.

11.3.1 The <frameset> Tag
Use the <frameset> tag to define a collection of frames and other framesets and to
control their spacing and borders. You may also nest framesets, resulting in a richer
set of layout capabilities.

Use the <frameset> tag in lieu of a <body> tag in the frame document. You may not
include any other content except valid <head> and <frameset> content in a frame doc-
ument. Combining frames with a conventional document containing a <body> sec-
tion may result in unpredictable browser behavior.

11.3.1.1 The rows and cols attributes

The <frameset> tag has one required attribute: either cols or rows—your choice.
They define the size and number of columns or rows of either frames or nested
framesets for the document window. Both attributes accept a quote-enclosed,
comma-separated list of values that specifies either the absolute (pixels) or relative
(percentage or remaining space) width (for columns) or height (for rows) for the
frames. The number of attribute values determines how many rows or columns of
frames the browser displays in the document window.

As with tables, the browser matches the size you give a frameset as closely as possi-
ble. The browser does not, however, extend the boundaries of the main document

<frameset>

Function Defines a collection of frames

Attributes border, bordercolor , class, cols, frameborder , framespacing ,
id, onLoad, onUnload, style, title

End tag </frameset>; never omitted

Contains frameset_content

Used in html_content

11.3 Frame Layout | 395

window to accommodate framesets that would otherwise exceed those boundaries or
fill the window with empty space if the specified frames don’t fill the window.
Rather, browsers allocate space to a particular frame relative to all other frames in
the row and column and resolutely fill the entire document window. (Did you notice
that the main frame window does not have scroll bars?)

For example:

<frameset rows="150,300,150">

creates three rows of frames, each extending across the entire document window.
The first and last frames are set to 150 pixels tall, and the second is set to 300 pixels.
In reality, unless the browser window is exactly 600 pixels tall, the browser automat-
ically and proportionately stretches or compresses the first and last frames so that
each occupies one-quarter of the window space. The center row occupies the remain-
ing half of the window space.

Frame row- and column-size values expressed as percentages of the window dimen-
sions are more sensible. For instance, the following example is effectively identical to
the preceding one:

<frameset rows="25%,50%,25%">

Of course, if the percentages don’t add up to 100 percent, the browser automatically
and proportionally resizes each row to make up the difference.

If you are like us, making things add up is not a strength. Perhaps some of the frame
designers suffer the same difficulty, which would explain why they included the very
nifty asterisk option for <frameset> rows and cols values. It tells the browser to size
the respective column or row to whatever space is left over after putting adjacent
frames into the frameset.

For example, when the browser encounters the following frame tag:

<frameset cols="100,*">

it makes a fixed-size column 100 pixels wide and then creates another frame column
that occupies all of the remaining space in the browser window.

Here’s a fancier layout example:

<frameset cols="10,*,10">

This one creates two very thin columns down the edges of the window and gives the
remaining center portion to the middle column.

You may also use the asterisk for more than one row- or column-attribute value. In that
case, the corresponding rows or columns equally divide the available space. For example:

<frameset rows="*,100,*">

creates a 100-pixel-tall row in the middle of the browser display and equal-size rows
above and below it.

396 | Chapter 11: Frames

If you precede the asterisk with an integer value, the corresponding row or column
gets proportionally more of the available space. For example:

<frameset cols="10%,3*,*,*">

creates four columns: the first column occupies 10 percent of the overall width of the
display. The browser then gives the second frame three-fifths of the remaining space,
and the third and the fourth are each given one-fifth of the remaining space.

Using asterisks (especially with the numeric prefix) makes it easy to divide the
remaining space in a frameset.

Be aware, too, that unless you explicitly tell it not to, the browser allows users to
resize the individual frame document’s columns and rows manually and, hence,
change the relative proportions each frame occupies in the frame’s display. To pre-
vent this, use the noresize attribute for the <frame> tag, which we describe later.
[<frame>, 11.4.1]

11.3.1.2 The border, frameborder, framespacing, and bordercolor attributes

The popular browsers provide attribute extensions that you may use to generally
define and change the borders surrounding the frames in a frameset. The HTML 4
and XHTML standards prefer instead that you include these border-related display
features via Cascading Style Sheet (CSS) styles.

By default, every frame in a frameset is surrounded by a thin 3D border (see
Figure 11-1). Make these borders uniformly thicker or get rid of them altogether with
the border attribute for the <frameset> tag. Set the value of border to 0 to turn off
borders (see Figure 11-2). The value 1 is the same as the default. To uniformly
increase the width of all the frame borders in the frameset, set the border attribute
value to an integer greater than 1.

Figure 11-2. The border and frameborder attributes let you remove the borders between frames

11.3 Frame Layout | 397

Use the frameborder attribute with the value 1 or yes to enable, or with a value 0 or
no to disable borders. Use the framespacing attribute with an integer value 1 or
greater to thicken the border between frames. Why two separate attributes to achieve
the same effect as the single border? Historical reasons, mostly. Suffice it to say here
that some confusion still exists. All the popular browsers accept border for
<frameset>, so please use it rather than the individual alternatives.

All the popular browsers, except Opera for some reason, also let you control the
color of the frame borders with the bordercolor attribute (Figure 11-3). Use a color
name or hexadecimal triple as its value. For example, although you can’t see the
color in this black-and-white book, the borders in Figure 11-3 are light green, corre-
sponding to the red, green, and blue (RGB) value of “00CC00.” (For clarity, we also
increase the size of the border with the border attribute.) You can find a complete list
of color names and values in Appendix G.

11.3.1.3 Frames and JavaScript

All the popular browsers support JavaScript-related event handlers that let your
frame documents react when they are first loaded and when the frame window gets
resized (onLoad); when the user unloads them from the browser (onUnload); when the
window containing the frameset loses focus, such as when the user selects another
window (onBlur); or when the frameset becomes the active window (onFocus).
Included as <frameset> attributes, these event handlers take quote-enclosed lists of
JavaScript commands and function calls as their values.

For example, you might notify the user when all the contents have been loaded into
their respective frames of a lengthy frameset:

<frameset onLoad="window.alert('Everything is loaded. You may now continue.')">

Figure 11-3. Use the bordercolor and border attributes to control the color and spacing between
frames

398 | Chapter 11: Frames

You also may use these four attributes with the <body> tag. We cover JavaScript event
handlers in more detail in section 12.3.3.

11.3.1.4 Other <frameset> attributes

Like most of the other standard tags, the <frameset> tag honors four of the standard
attributes: class, style, title, and id.

Use the class attribute to associate a predefined style class with this frame and, via
style inheritance, its content. Alternatively, use the style attribute to define a style
inline with the <frameset> tag. We cover styles more completely in Chapter 8.

The id attribute creates a unique identifier for the frame, and the title attribute cre-
ates a title for the frame that might be presented to the user or used by a nonvisual
browser. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

11.3.2 Nesting <frameset> Tags

You can create some elaborate browser displays with a single <frameset>, but the
frame layout is unimaginative. Instead, create staggered frames and other, more com-
plex, layouts with multiple <frameset> tags nested within a top-level <frameset> in
the frame document.

For example, create a layout of two columns, the first with two rows and the second
with three rows (as shown in Figure 11-4), by nesting two <frameset> tags with row
specifications within a top-level <frameset> that specifies the columns:

<frameset cols="50%,*">
 <frameset rows="50%,*">
 <frame src="frame1.html">
 <frame src="frame2.html">
 </frameset>
 <frameset rows ="33%,33%,*">
 <frame src="frame3.html">
 <frame src="frame4.html">
 <frame src="frame5.html">
 </frameset>
</frameset>

11.4 Frame Contents
A frame document contains no displayable content, except perhaps a message for
nonframes-enabled browsers. Instead, <frame> tags inside one or more <frameset>

tags (which encapsulate the contents of a frame document) provide URL references
to the individual documents that occupy each frame. [<noframes>, 11.5]

11.4 Frame Contents | 399

11.4.1 The <frame> Tag
The <frame> tag appears only within a <frameset>. Use it to set, via its associated src

attribute, the URL of the document content that initially gets displayed inside the
respective frame.

Browsers place the frame contents into the frameset column by column, from left to
right, and then row by row, from top to bottom. Accordingly, the sequence and
number of <frame> tags inside the <frameset> tag are important.

The browser displays empty frames for <frame> tags that do not have src attributes.
It also displays empty frames if the <frameset> tag calls for more frames than the cor-
responding <frame> tags define—if your frame document calls for three columns and
you provide only two frames, for example. Orphan frames remain empty, and you

Figure 11-4. Staggered frame layouts use nested <frameset> tags

<frame>

Function Defines a single frame in a <frameset>

Attributes bordercolor , class, frameborder , id, longdesc, marginheight,
marginwidth, name, noresize, scrolling, src, style, title

End tag </frame>; rarely included in HTML

Contains Nothing

Used in frameset_content

400 | Chapter 11: Frames

cannot put content into them later, even if they have a target name or id for display
redirection. [The name and id attributes, 6.3.1.3]

11.4.1.1 The src attribute

The value of the src attribute for the <frame> tag is the URL of the document that is
to be displayed in the frame. There is no other way to provide content for a frame.
You shouldn’t, for instance, include any <body> content within the frame document;
the browser ignores the frame tags and displays just the contents of a <body> tag if it
comes first, or vice versa.

The document referenced by the src attribute may be any valid document or any dis-
playable object, including images and multimedia. In particular, the referenced docu-
ment may itself be composed of one or more frames. The frames are displayed within
the referencing frame, providing yet another way of achieving complex layouts using
nested frames.

Because the source may be a complete document, all the features of HTML/
XHTML apply within a frame, including backgrounds and colors, tables, fonts,
and the like. Unfortunately, this also means that multiple frames in a single
browser window may conflict with each other. Specifically, if each nested frame
document (not a regular HTML or XHTML document) has a different <title> tag,
the title of the overall browser window is the title of the most recently loaded
frame document. The easiest way to avoid this problem is to ensure that all related
frame documents use the same title.

11.4.1.2 The name and id attributes

The optional name attribute for the <frame> tag labels that frame for later reference by
a target attribute for the anchor (<a>) tag and the <form> tag. This way, you can alter
the contents of a frame using a hyperlink in another frame. Otherwise, like normal
browser windows, linked documents replace the contents of the source frame. We
discuss names and targets at greater length later in this chapter. [The target Attribute
for the <a> Tag, 11.7.1]

Similarly, the id attribute uniquely identifies a frame, but the browsers do not sup-
port its use for target redirection, even though they do support id’s use as a hyper-
link target in many other HTML and XHTML tags.

The value of the name or id attribute is a text string enclosed in quotation marks.

11.4.1.3 The noresize attribute

Even though you may explicitly set frame dimensions with attributes in the
<frameset> tag, users can manually alter the size of a column or row of frames. To
suppress this behavior, add the noresize attribute to the frame tags in the row or col-
umn whose relative dimensions you do not want users fiddling with. For example,

11.4 Frame Contents | 401

for a two-by-two frame document, a noresize attribute in any one of the four associ-
ated frame tags effectively freezes the relative proportions of all the frames.

The noresize attribute is especially useful for frames that contain fixed images serv-
ing as advertisements, a button bar, or a logo. By fixing the size of the frame to con-
tain just the image and setting the noresize attribute, you guarantee that the image is
displayed in the intended manner and that the remainder of the browser window is
always given over to the other frames in the document.

11.4.1.4 The scrolling attribute

The browser displays vertical and horizontal scroll bars with frames whose contents
are larger than the allotted window space. If there is sufficient room for the content,
the scroll bars disappear. The scrolling attribute for the <frame> tag gives you
explicit control over whether the scroll bars appear or disappear.

With scrolling="yes", all the popular browsers except Netscape add scroll bars to
the designated frame even if there is nothing to scroll. If you set the scrolling

attribute value to no, scroll bars are never added to the frame, even if the frame con-
tents are larger than the frame itself. The value auto, the default, works as though
you didn’t include the scrolling attribute in the tag.

11.4.1.5 The marginheight and marginwidth attributes

The browser normally places a small amount of space between the edge of a frame
and its contents. You can change those margins with the marginheight and
marginwidth attributes, each including a value for the exact number of pixels to place
around the frame’s contents.

You cannot make a margin less than 1 pixel or make it so large that there is no room
for the frame’s contents. That’s because, like most other HTML attributes, these
advise; they do not dictate to the browser. If your desired margin values cannot be
accommodated, the browser ignores them and renders the frame as best it can.

11.4.1.6 The frameborder and bordercolor attributes

With some earlier versions of Internet Explorer, you could add and remove borders
from a single frame with the frameborder attribute. Values of yes or 1 and no or 0
respectively enable or disable borders for the frame and override the value of the
frameborder attribute for any frameset containing the frame. Don’t use it.

With all the popular browsers except Opera, you also can change the color of the
individual frame’s borders with the bordercolor attribute. Use a color name or hexa-
decimal triple as its value. If two adjacent frames have different bordercolor

attributes, the resulting border color is undefined. You can find a complete list of
color names and values in Appendix G.

402 | Chapter 11: Frames

11.4.1.7 The title and longdesc attributes

Like most other standard tags, you can provide a title for a frame with the title

attribute. The value of the attribute is a quote-enclosed string that describes the con-
tents of the frame. Browsers might display the title, for instance, when the mouse
passes over the frame.

If the title attribute isn’t quite enough for you, you can use the longdesc attribute.
Its value is the URL of a document that describes the frame. Presumably, this long
description might be in some alternative media, suitable for use by a nonvisual
browser.

11.5 The <noframes> Tag
A frame document has no <body>. It must not because the browser ignores any frame
tags if it finds any <body> content before it encounters the first <frameset> tag. A
frame document, therefore, is all but invisible to any nonframes-capable browser.
The <noframes> tag gives some relief to the frames-disabled.

You should use the <noframes> tag only within the outermost <frameset> tag of a frame
document. Content between the <noframes> tag and its required end tag (</noframes>) is
not displayed by any frames-capable browser but is displayed in lieu of other con-
tents in the frame document by browsers that do not handle frames. The content of
the <noframes> tag can be any normal body content, including the <body> tag itself.

Although this tag is optional, experienced authors typically include the <noframes> tag
in their frame documents with content that warns nonframes-capable browser users
that they’re missing the show. And smart authors give those users a way out, if not
direct access to the individual documents that make up the frame document contents.

<noframes>

Function Supplies content for nonframes-capable browsers

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </noframes>; sometimes omitted in HTML

Contains body_content

Used in frameset_content

11.6 Inline Frames | 403

Remember our first frame example in this chapter? Figure 11-5 shows what happens
when that frame document gets loaded into an old version of Mosaic.

The HTML to produce this message looks like this:

<noframes>
 Sorry, this document can be viewed only with a
 frame-capable browser. Go to the
 first HTML document in the set.
</noframes>

<noframes> works because most browsers are extremely tolerant of erroneous tags
and incorrect documents. A nonframes browser simply ignores the frame tags.
What’s left, then, is the content of the <noframes> tag, which the browser dutifully
displays.

If your browser strictly enforces some version of HTML or XHTML that does not
support frames, it may simply display an error message and refuse to display the doc-
ument, even if it contains a <noframes> tag.

11.5.1 <noframes> Attributes
No attributes are specific to the <noframes> tag, but you can use any of the 16 standard
attributes: class and style for style management, lang and dir for language type and
display direction, title and id for titling and naming the enclosed content, and any of
the event attributes for user-activated JavaScript processing within the <noframes> tag.
[The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2] [The id attribute, 4.1.1.4] [The
title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3] [Java-
Script Event Handlers, 12.3.3]

11.6 Inline Frames
To this point, our discussion has centered on frames that are defined as part of a
frameset. A frameset, in turn, replaces the conventional <body> of a document and
supplies content to the user via its contained frames.

The HTML 4 and XHTML standards let you do things a bit differently: you can also
define a frame that exists within a conventional document, displayed as part of that

Figure 11-5. A <noframes> message in a nonframes-capable browser

404 | Chapter 11: Frames

document’s text flow. These frames behave a lot like inline images, which is why
they are known as inline frames.

All the popular browsers support inline frames.

11.6.1 The <iframe> Tag
Define an inline frame with the <iframe> tag. The <iframe> tag is not used within a
<frameset> tag. Instead, it appears anywhere in your document that an tag
might appear. The <iframe> tag defines a rectangular region within the document in
which the browser displays a separate document, including scroll bars and borders.

Use the src attribute with <iframe> to specify the URL of the document that occu-
pies the inline frame. All of the other, optional attributes for the <iframe> tag, includ-
ing name, class, frameborder, id, longdesc, marginheight, marginwidth, name,
scrolling, style, and title, behave exactly like the corresponding attributes for the
<frame> tag. [The <frame> Tag, 11.4.1]

Use the content of the <iframe> tag to provide information to users of browsers that
do not support inline frames. Compliant browsers ignore these contents, whereas all
other browsers ignore the <iframe> tag and therefore display its contents as though
they were regular body content. For instance, use the <iframe> content to explain to
users what they are missing:

...other document content...

<iframe src="sidebar.html" width=75 height=200 align=right>
Your browser does not support inline frames. To view this
document correctly, you need
to install a more recent browser on your computer.
</iframe>...subsequent document content...

In this example, we let the user know that she was accessing an unsupported feature
and provided a link to the missing content.

<iframe>

Function Defines an inline frame within a text flow

Attributes align, class, frameborder, height, id, longdesc, marginheight,
marginwidth, name, scrolling, src, style, title, width

End tag </iframe>; never omitted

Contains body_content

Used in text

11.7 Named Frame or Window Targets | 405

11.6.1.1 The align attribute

Like the deprecated align attribute for the <table> and tags, this inline frame
attribute lets you control where the frame gets placed in line with the adjacent text or
moved to the edge of the document, allowing text to flow around the frame.

For inline alignment, use top, middle, or bottom as the value of this attribute. The
browser aligns the frame with the top, middle, or bottom of the adjacent text, respec-
tively. To allow text to flow around the inline frame, use the left or right values for
this attribute. The frame is moved to the left or right edge of the text flow, respec-
tively, and the remaining content of the document is flowed around the frame. A
value of center places the inline frame in the middle of the display, with text flowing
above and below.

11.6.1.2 The height and width attributes

The popular browsers put the contents of an inline frame into a predefined, 150-
pixel-tall, 300-pixel-wide box. Use the height and width attributes with values as the
number of pixels to change those dimensions.

11.6.2 Using Inline Frames
Although you’ll probably shy away from them for most of your web pages, inline
frames can be useful, particularly for providing information related to the current
document being viewed, similar to the sidebar articles you find in a conventional
printed publication.

Except for their location within conventional document content, inline frames are
treated exactly like regular frames. You can load other documents into the inline
frame using its name (see the next section) and link to other documents from within
the inline frame.

11.7 Named Frame or Window Targets
As we discussed earlier in section 11.4.1, you can label a frame by adding the name
attribute to its <frame> tag.* Once named, the frame may become the destination dis-
play window for a hyperlinked document selected within a document displayed in
some other frame. You accomplish this redirection by adding the special target
attribute to the anchor that references the document.

* The id attribute provides the same unique labeling but you cannot use it for frame content redirection.
Instead, the browser ignores the id-named target frame and displays the linked document in a new window.

406 | Chapter 11: Frames

11.7.1 The target Attribute for the <a> Tag
If you include a target attribute within an <a> tag, the browser loads and displays the
document named in the tag’s href attribute in a frame or window whose name matches
the target. If the named frame or window doesn’t exist, the browser opens a new win-
dow, gives it the specified label, and loads the new document into that window. Once
this process has been completed, linked documents can target the new window.

Targeted hyperlinks make it easy to create effective navigational tools. A simple table of
contents document, for example, might redirect documents into a separate window:

<h3>Table of Contents</h3>

 Preface
 Chapter 1
 Chapter 2
 Chapter 3

The first time the user selects one of the table-of-contents hyperlinks the browser
opens a new window, labels it view_window, and displays the desired document’s con-
tents inside it. If the user selects another hyperlink from the table of contents and the
view_window is still open, the browser again loads the selected document into that
window, replacing the previous document.

Throughout the whole process, the window containing the table of contents is acces-
sible to the user. By clicking on a hyperlink in one window, the user causes the con-
tents of the other window to change.

Instead of opening an entirely new browser window, a more common use of target
is to direct hyperlink contents to one or more frames in a <frameset> display or to an
inline <iframe> window. You might place the table of contents into one frame of a
two-frame document and use the adjacent frame to display the selected documents:

<frameset cols="150,*">
 <frame src="toc.html">
 <frame src="pref.html" name="view_frame">
</frameset>

When the browser initially displays the two frames, the left frame contains the table
of contents, and the right frame contains the Preface (see Figure 11-6).

When a user selects a hyperlink from the table of contents in the left frame (for
example, Chapter 1), the browser loads and displays the associated document into
the view_frame frame on the right side (Figure 11-7). As other links get selected, the
right frame’s contents change, while the left frame continuously makes the table of
contents available to the user.

11.7 Named Frame or Window Targets | 407

11.7.2 Special Targets
There are four reserved target names for special document-redirection actions:

_blank

The browser always loads a target="_blank" linked document into a newly
opened, unnamed window.

_self

This target value is the default for all <a> tags that do not specify a target, caus-
ing the target document to be loaded and displayed in the same frame or win-
dow as the source document. This target is redundant and unnecessary unless
used in combination with the target attribute in the <base> tag in a document’s
head (see the next section, 11.7.3).

Figure 11-6. Table of contents frame controls content of adjacent frame

Figure 11-7. The contents of Chapter 1 are displayed in the adjacent frame

408 | Chapter 11: Frames

_parent

This target causes the document to be loaded into the parent window or
frameset containing the frame containing the reference. If the reference is in a
window or top-level frame, it is equivalent to the target _self.

A brief example may help clarify how this hyperlink target works. Consider a
link in a frame that is part of a three-column frameset. This frameset, in turn, is a
row in the top-level frameset being displayed in the browser window.
Figure 11-8 shows this arrangement.

If no target is specified for the hyperlink, it is loaded into the containing frame. If
a target of _parent is specified, the document is loaded into the area occupied by
the three-column frameset containing the frame that contains the link.

_top

This target causes the document to be loaded into the window containing the
hyperlink, replacing any frames currently displayed in the window.

Continuing with the frame hierarchy, as shown in Figure 11-8, using a target of _top
would remove all the contained frames and load the document into the entire
browser window.

Figure 11-8. Using special targets in nested frames and framesets

Browser Window

Frameset

Frame

Frame

Frame

Frame

link to _top

link to _ parent

11.7 Named Frame or Window Targets | 409

All four of these target values begin with the underscore character. The browser
ignores any other window or target beginning with an underscore, so don’t use the
underscore as the first character of any frame name or id you define in your documents.

11.7.3 The <base> Default Target
It can be tedious to specify a target for every hyperlink in your documents, especially
when most are targeted at the same window or frame. To alleviate this problem, you
can add a target attribute to the <base> tag. [<base>, 6.7.1]

The target attribute in the <base> tag sets the default target for every hyperlink in the
current document that does not contain an explicit target attribute. For instance, in
our example table of contents document, almost every link causes the document to
be displayed in another window named view_frame. Instead of including that target
in each hyperlink, you should place the common target in the table of contents’
<base> tag within its <head>:

<head>
<title>Table of Contents</title>
<base target="view_frame">
</head>
<body>
<h3>Table of Contents</h3>

 Preface
 Chapter 1
 Chapter 2
 Chapter 3

</body>

Notice that we don’t include any other target references in the list of hyperlinks,
because the browser loads and displays all the respective documents in the base tar-
get view_frame.

11.7.4 Traditional Link Behavior
Before the onset of frames, each time you selected a hyperlink, the corresponding
document replaced the contents of the browser window. With frames, this behavior
is modified so that the corresponding document replaces the content of the referenc-
ing frame. This is often not the desired behavior, and it can be disconcerting to peo-
ple browsing your documents.

For example, suppose you have arranged all of the documents on your site to present
themselves in three frames: a navigational frame at the top of the browser window, a
scrolling content frame in the middle, and a feedback form at the bottom. You named
the content frame with the name attribute of the <frame> tag in the top-level document

410 | Chapter 11: Frames

for your collection and used the target attribute of the <base> tag in every document
on your site to ensure that all links are loaded into the center content frame.

This arrangement works perfectly for all the documents on your site, but what hap-
pens when a user selects a link that takes him to a different site? The referenced doc-
ument is still loaded into the center content frame. Now the user is confronted by a
document from some other site, surrounded by your navigation and feedback
frames!* Very impolite.

The solution is to make sure that every hyperlink that references a remote document
has a target of _top. This way, when the user selects a link that takes him away from
your site, the remote document replaces the contents of the entire browser window,
including your navigation and feedback frames. If the majority of the links in your
documents are to other sites, you might consider adding target="_top" to a <base>

tag in your document and using explicit target attributes in the links to your local
documents.

11.8 XFrames
Frames are a rags-to-riches success story. From a nonstandard extension in the
Netscape browser to a standard component of HTML and XHTML, frames have
proven themselves as a core element of the HTML world. Nonetheless, there are
problems with frames that have never been fully resolved:

• Navigation with a browser’s Back button can be unpredictable.

• You cannot directly reference a document within a frameset.

• You cannot reference a particular collection of frames with a single URL.

• Search engines often do not follow framed content.

To correct these deficiencies while retaining the power of frames, the World Wide
Web Consortium (W3C) has proposed a slightly different model for framed content.
This model is still a working document, and has not yet been implemented in any
browser. Still, we briefly describe it here to make authors aware of what they might
expect from frames in the near future.

11.8.1 An XFrames Document
Within HTML and XHTML, frames replace the <body> of a document, leaving the
<html> and <head> tags intact. In the XFrames model, an XFrames document replaces
the entire <html> document, carrying with it its own <head> and framed content.
Within the <head> tag, authors can provide a <title> and <style> tags; the framed

* Check out Chapter 17 for how to step out into the forefront when your pages happen to be on the other end
of a targetless hyperlink.

11.8 XFrames | 411

content is then denoted within <group> and <frame> tags. A short XFrames docu-
ment might look like this:

<frames xmlns="http://www.w3.org/2002/06/xframes/">
 <head>
 <title>Kumquat Lore</title>
 <style type="text/css">
 #header {height: 10em }
 #toc, #nav {width: 20%}
 #footer {height: 4em }
 </style>
 </head>
 <group compose="vertical">
 <frame xml:id="header" source="lore.xhtml"/>
 <group compose="horizontal">
 <frame xml:id="toc" source="toc.xhtml"/>
 <frame xml:id="main" source="intro.xhtml"/>
 <frame xml:id="nav" source="main-nav.xhtml"/>
 </group>
 <frame xml:id="footer" source="copyright.xhtml"/>
 </group>
</frames>

The <head> tag sets the title for the framed document and defines styles that will
affect the display of the correspondingly named frames within the document set. The
<group> tag, analogous to the <frameset> tag, defines a group of frames and other
groups whose layout is controlled by the compose attribute. The <frame> tag defines a
single document whose content is displayed within that frame in the document. In
this document, five frames are arranged in three rows, with one frame at the top, one
at the bottom, and three in the middle row. In that row, the left and right frames
each occupy 20 percent of the available space, with the center frame taking up the
remainder. Individual frames are named with the xml:id attribute; these names are
referenced when loading new content in a frame, when associating styles with a
frame, and when creating a URL to display a specific frameset, as described shortly.

The compose attribute in the <group> tag provides some additional layout capabilities
that conventional frames do not allow. While the horizontal and vertical layout
choices perform the appropriate action, the single and free choices are more inter-
esting. Setting compose to single causes the browser to display only one of the frames
in the group at a time, while providing some sort of mechanism to indicate the pres-
ence of other frames and a way to select them. One can imagine a pull-down menu
that lets the user choose one frame at a time, for example.

The free value for the compose attribute displays the frames in a group as a set of freely
movable windows within a display area. The user can move and rearrange the win-
dows as desired, even overlapping them! Presumably, this would allow frames to be
displayed in a sort of “desktop” within the browser, completely at the user’s discretion.

412 | Chapter 11: Frames

11.8.2 XFrames URLs
To support explicit reference to frames within a framed document, the XFrames
model extends the definition of a URL to include a special #frames keyword. This
feature lets you specify the content for each frame in a document, something that is
impossible with the current HTML and XHTML frames model.

To use this feature, add the special #frames keyword to the end of a URL referencing
a frame document. Follow the keyword with a list of frame IDs and their desired
content, all enclosed in parentheses. Sound difficult? It’s not:

http://www.kumquat.com/lore.html#frames(toc=section7.xhtml,main=arctic-quats.xhtml)

This URL opens the framed document named lore.html, and loads the toc and main

frames with the desired pages. The other frames named in the document are loaded
with their default content because they are not mentioned in this URL. Frames with-
out default content are left blank.

This powerful syntax has lots of benefits for authors and end users. Authors can now
construct links that will open a complete set of framed documents in a specific,
repeatable manner. And users can save a bookmark to a framed document, assured
that when they return to the document, all the frames will be opened with the same
content as when they saved the URL.

413

Chapter 12!ti
In this chapter:

• Applets and Objects
• Embedded Content
• JavaScript
• JavaScript Stylesheets (Antiquated)

CHAPTER 12

Executable Content12

One of the most useful web technologies is the ability to deliver applications directly
to the browser. These typically small programs perform simple tasks on the client
computer, from responding to user mouse or keyboard actions to spicing up your
web page displays with multimedia-enabling software.

You can embed scripts in your documents using a language known as JavaScript. Or
you can load and execute small, Java-based, platform-independent applications
known as applets. During execution, these programs may generate dynamic content,
interact with the user, validate form data, or even create windows and run entire
applications independent of your pages. The possibilities are endless, and they go far
beyond the simple document model originally envisioned for HTML.

In this chapter, we show you, with simple examples, how to include two kinds of
executable content—scripts and applets—in your documents. We won’t, however,
teach you how to write and debug executable content. This is a book about HTML
and XTHML, after all. Rather, get an expert opinion: turn to any of the many excel-
lent texts from O’Reilly, especially the companion JavaScript: The Definitive Guide,
by David Flanagan.

12.1 Applets and Objects
Applets represent a shift in the basic model of web communications. In most other
web applications, servers perform most of the computational work, client browsers
being not much more than glorified terminals. With applets, web technology shifts

414 | Chapter 12: Executable Content

to the client, distributing some or all of the computational load from the server to the
client computer and its browser.

Applets also represent a way of extending a browser’s features without forcing users to
acquire new browsers, as is the case when developers implement new tag and attribute
extensions to HTML. Nor do users have to acquire and install a special application, as
is required for helper or plug-in applications.* This means that once users have a
browser that supports applets (all the currently popular ones do), you can deliver
applets directly to the browser, including display and multimedia innovations.

12.1.1 The Object Model
Java-based applets—web page-referenced programs retrieved from a network server
and executed on the user’s client computer—are an example of what the HTML 4 and
XHTML standards call inclusions. As with images, the browser first loads the HTML
document, then examines it for inclusions—additional, separate, and discrete content
that the client browser is to handle. A GIF image is one type of inclusion. A .wav sound
file, an MPEG movie, and a Java-based clock program are other types.

The HTML 4 and XHTML standards generally call the inclusion contents objects. In
fact, in your document you may identify and load nearly any object file over the net-
work through a universal <object> tag, discussed in detail shortly in section 12.2.1.

Once the object has been downloaded, the standards dictate that the browser some-
how render the object, by internal or external mechanisms. Otherwise, plug-ins and
other helper applications may provide the necessary rendering mechanism. Internet
Explorer, for example, has its internal resources play an AVI movie, whereas other
browsers rely upon some third-party software, such as RealPlayer or QuickTime, to
show the movie.

12.1.1.1 The applet model

With Java applets, the browser sets aside a portion of the document display space.
You may control the size and position of this display area; the applet controls what is
presented inside.

The applet is software, an executable program. Accordingly, besides providing a dis-
play space, the browser, in tandem with the client computer environment and
resources, provides the applet with a runtime environment called a virtual machine.

During execution, Java applets have access to a restricted environment within the
user’s computer. For instance, applets have access to the mouse and keyboard so
that they may receive input from the user. Depending on the security policy in place,
applets also may initiate network connections and retrieve data from other servers on

* Actually, Internet Explorer 6 users must download and install Java support. Read on for details.

12.1 Applets and Objects | 415

the Internet. In sum, applets are full-fledged programs, complete with a variety of
input and output mechanisms, along with a full suite of network services.

You may place several applets in a single document; they all execute in parallel and
may communicate with each other. While the browser may limit their access to its
computer system, applets have complete control of their virtual environment within
the browser.

12.1.1.2 The applet advantage

There are several advantages of applets, not the least of which is providing more
compelling user interfaces within a web page. For instance, an applet might create a
unique set of menus, choices, text fields, and similar user-input tools different from
those available through the browser. When the user clicks a button within the
applet’s interaction/display region, the applet might respond by displaying results
within the region, signaling another applet, or even loading a completely new page
into the browser.

We don’t mean to imply that the only use of applets is to enhance the user interface.
An applet is a full-fledged program that can perform any number of computational
and user-interactive tasks on the client computer. An applet might implement a real-
time video display, perform circuit simulation, engage the user in a game, provide a
chat interface, and so on.

12.1.1.3 Using applets correctly

An applet is nothing more than another tool you can use to produce compelling and
useful web pages. Keep in mind that an applet uses computational resources on the
client to run and therefore places a load on the user’s computer. It can degrade sys-
tem performance.

Similarly, if an applet uses a lot of network bandwidth to accomplish its task (a real-
time video feed, for example), it may make other network communication unbear-
ably slow. While such applications are fun, they do little more than annoy your tar-
get audience.

To use an applet correctly, balance the load between the browser and the server. For
each page, decide which tasks are best left to the server (forms processing, index
searches, and the like) and which tasks are better suited for local processing (user-
interface enhancements, real-time data presentation, small animations, input valida-
tion, and so on). Divide the processing accordingly. Remember that many users have
slower network connections and computers than you do, and design your applets to
satisfy the majority of your audience.

Used the right way, applets seamlessly enhance your pages and provide a satisfying
experience for your audience. Used improperly, applets are just another annoying
bandwidth waster, alienating your users and hurting your pages.

416 | Chapter 12: Executable Content

12.1.1.4 Writing applets

Creating Java applets is a programming task, not usually a job for the HTML or
XHTML author. For details, we recommend that you consult any of the many Java
programming texts, including those from O’Reilly.

Developed by Sun Microsystems, Inc. of Mountain View, California, Java supports
an object-oriented programming style wherein classes of applets can be used and
reused to build complex applications. One would think that applets written in the
same language should run in any browser that supports Java. As is so often the case,
reality is more complex. Until Netscape 6 and Internet Explorer 6, browsers included
their own Java Virtual Machines (JVMs), and their implementations, especially
Microsoft’s, could be quirky. Certain Microsoft implementation decisions in Inter-
net Explorer 4 and earlier caused some valid Java applets to fail when running.
Microsoft fixed these problems with Internet Explorer version 5 but, because of its
lawsuit with Sun, chose not to include a JVM in Internet Explorer 6.* Although this
may sound like bad news for applets, in fact, Internet Explorer 6 prompts you to
download Microsoft’s JVM. Sun’s Java Plug-in is free over the Internet. Users of any
browser can install the Java Plug-in to get state-of-the-art Java support.

We should take this opportunity also to mention ActiveX, an alternative executable
content technology originally developed by Microsoft. ActiveX itself is proprietary,
closely coupled with various versions of Microsoft Windows, and Microsoft’s plug-in
works only when used with Internet Explorer, though alternative plug-in implemen-
tations now exist for all the popular browsers.

ActiveX controls (as they are called) run on browser versions targeted to various ver-
sions of Windows, but a single ActiveX control will not run on these different ver-
sions without recompilation. This is in contrast with Java applets; a single Java
applet can be written and compiled once and immediately run on a broad range of
browsers and operating systems.

ActiveX also presents an unacceptably high security risk to any user whose browser
supports ActiveX technology.† Though over the years security has gotten better, it is
ridiculously easy to penetrate and damage a computer running a browser that allows
ActiveX applets to be executed. In fact, all the popular browsers, Internet Explorer
included, let users explicitly block ActiveX applets. For this reason, we cannot rec-
ommend ActiveX as a viable applet implementation technology and we go so far as
to recommend that users disable ActiveX capability within their browsers.

* As we wrote this, even this situation may change, with Microsoft reversing itself and deciding to include a
JVM in a service pack for Windows XP. There is still no sign of default inclusion of a JVM in Internet
Explorer 6 downloads, however.

† You can find a good description of the risks at http://www.digicrime.com/activex.

12.2 Embedded Content | 417

12.2 Embedded Content
In this section, we cover three tags that support embedded content. The <object> tag
is in the HTML 4 and XHTML standards. It is a generalized hybrid of the depre-
cated <applet> tag for embedding applets, particularly Java applets, and the <embed>
tag extension that lets you include an object whose Multipurpose Internet Mail
Extension (MIME) type references the plug-in needed to process and possibly dis-
play that object.

The latest standards strongly encourage you to use the <object> tag to incorporate
applets and other discrete inclusions in your documents, including images (although
the standards do not go so far as to deprecate the tag). Use <object> with the
classid attribute to insert Java and other applets into a document, along with their
execution parameters as contents of the associated <param> tag. Use <object> with
the data attribute to download and display non-HTML/XHTML content, such as
multimedia, in the user’s computing environment. Object data may be processed and
rendered by an included applet, by utilities that come with your browser, or by a
plug-in (helper) application that the user supplies.

For applets, the browser creates a display region in the containing text flow exactly
like an inline image or an <iframe>: without line breaks and as a single large entity.
The browser then downloads and executes the applet’s program code, if specified,
and downloads and renders any included data just after download and display of the
document. Execution of the applet continues until the code terminates itself or when
the user stops viewing the page containing the applet.

With data, the browser decodes the object’s data type and either handles its render-
ing directly, such as with GIF, PNG, and JPEG images, or invokes an associated
plug-in application for the job.

12.2.1 The <object> Tag
The <object> tag was originally implemented by Microsoft to support its ActiveX
controls. Only later did Microsoft add Java support. In a similar manner, Netscape
initially supported the alternative <embed> and <applet> tags for inclusion objects and
later provided limited support for the <object> tag.

All that jostling for position by the browser giants* made us nervous, and we were hesi-
tant in previous editions of this book to even suggest that you use <object> at all. We
now heartily endorse it, based on the strength of the HTML 4 and (particularly)
XHTML standards, especially because the currently popular browsers support <object>.

* Believe it or not, Netscape once dominated the browser market!

418 | Chapter 12: Executable Content

Nonetheless, be aware that the popular browsers interpret <object> and <embed> a bit
differently. For example, Internet Explorer still treats <object> content as ActiveX
controls and launches its helper program to display the data. By contrast, the
browser displays <embed> content within the document display.

The contents of the <object> tag may be any valid HTML or XHTML content, along
with <param> tags that pass parameters to an applet. If the browser can retrieve the
requested object and successfully process it, either by executing the applet or by pro-
cessing the object’s data with a plug-in application, the contents of the <object> tag,
except for the <param> tags, are ignored. If any problem occurs during the retrieval
and processing of the object, the browser won’t insert the object into the document
but instead will display the contents of the <object> tag, except for the <param> tags.
In short, you should provide alternative content in case the browsers cannot handle
the <object> tag or the object cannot be loaded successfully.

12.2.1.1 The classid attribute

Use the classid attribute to specify the location of the object, typically a Java class,
which you want the browser to include. The value may be the absolute or relative
URL of the desired object. Relative URLs are considered to be relative to the URL
specified by the codebase attribute if it is provided; otherwise, they are relative to the
current document’s URL.

For example, to execute a clock Java applet contained in a file named clock.class, you
might include the following code in your HTML document:

<object classid="java:clock.class">
</object>

<object>

Function Embeds an object or applet in a document

Attributes align, archive, border, class, classid, codebase, codetype, data,
declare, dir, height, hspace, id, lang, name, notab , onClick,
onDblClick, onKeyDown, onKeyPress, onKeyUp, onLoad, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp, shapes, standby,
style, tabindex, title, type, usemap, vspace, width

End tag </object>; never omitted

Contains object_content

Used in text

12.2 Embedded Content | 419

The browser locates the code for the applet using the current document’s base URL.
Hence, if the current document’s URL is:

http://www.kumquat.com/harvest_time.html

the browser retrieves the applet code for our clock.class example as:

http://www.kumquat.com/clock.class

12.2.1.2 The codebase attribute

Use the codebase attribute to provide an alternative base URL from which the browser
should retrieve an object. The value of this attribute is a URL pointing to a directory
containing the object referenced by the classid attribute. The codebase URL over-
rides, but does not permanently replace, the document’s base URL, which is the
default if you don’t use codebase. [Referencing Documents: The URL, 6.2]

Continuing with our previous examples, suppose your document comes from http://
www.kumquat.com, but the clock applet is kept in a separate directory named
classes. You cannot retrieve the applet by specifying classid="classes/clock.class".
Rather, include the codebase attribute and new base URL:

<object classid="clock.class" codebase="http://www.kumquat.com/classes/">
</object>

which resolves to the URL:

http://www.kumquat.com/classes/clock.class

Although we used an absolute URL in this example, you also can use a relative URL.
For instance, applets typically are stored on the same server as the host documents,
so we’d usually be better off, for relocation’s sake, specifying a relative URL for the
codebase, such as:

<object code="clock.class" codebase="/classes/">
</object>

The classid attribute is similar to the code attribute of the <applet> tag, providing
the name of the file containing the object; it is used in conjunction with the codebase
attribute to determine the full URL of the object to be retrieved and placed in the
document.

12.2.1.3 The archive attribute

For performance reasons, you may choose to preload collections of objects con-
tained in one or more archives. This is particularly true of Java-based applications,
where one Java class relies on many other classes to get its work done. The value of
the archive attribute is a quote-enclosed list of URLs, each pointing to an archive to
be loaded by the browser before it renders or executes the object.

420 | Chapter 12: Executable Content

12.2.1.4 The codetype attribute

The codetype attribute is required only if the browser cannot determine an applet’s
MIME type from the classid attribute or if the server does not deliver the correct
MIME type when downloading an object. This attribute is nearly identical to type

(see section 6.7.2.4), except that it is used to identify program code type, whereas
type should be used to identify datafile types.

The following example explicitly tells the browser that the object’s code is Java:

<object code="clock.class" codetype="application/java">
</object>

12.2.1.5 The data attribute

Use the data attribute to specify the datafile, if any, that the object is to process. The
data attribute’s value is the URL of the file, either absolute or relative to the document’s
base URL or to that which you provide with the codebase attribute. The browser deter-
mines the data type by the type of object that is being inserted in the document.

This attribute is similar to the src attribute of the tag, in that it downloads data
to be processed by the included object. The difference, of course, is that the data

attribute lets you include just about any file type, not just an image file. In fact, the
<object> tag expects, but doesn’t require, that you explicitly name an enabling appli-
cation for the object with the classid attribute, or indicate the MIME type of the file
via the type attribute to help the browser decide how to process and render the data.

For example, here is an image included as an object, rather than as an file:

<object data="pics/kumquat.gif" type="image/gif">
</object>

12.2.1.6 The type attribute

The type attribute lets you explicitly define the MIME type of the data that appears in
the file you declare with the data attribute. (Use codetype to indicate an applet’s MIME
type.) If you don’t provide data, or if the MIME type of the data is apparent from the
URL or is provided by the server, you may omit this attribute. We recommend that you
include it anyway, to ensure that the browser handles your data correctly.

For examples of data MIME types, look in your browser preferences for applica-
tions. There you’ll find a list of the many file data types your browser recognizes and
the application, if not the browser itself, that processes and renders that file type.

12.2.1.7 The align, class, border, height, hspace, style, vspace, and width attributes

As with the corresponding attributes for the tag, several attributes let you con-
trol the appearance of the <object> display region. The height and width attributes

12.2 Embedded Content | 421

control the size of the viewing region. The hspace and vspace attributes define a mar-
gin around the viewing region. The value for each dimension attribute should be an
actual number of pixels.

The align attribute determines how the browser aligns the region in context with the
surrounding text.* Use top, texttop, middle, absmiddle, baseline, bottom, or
absbottom to align the object display space with adjacent text, or left and right

alignments for wraparound content.

The display region’s dimensions often must match some other applet requirement,
so be careful to check these values with the applet programmer. Sometimes the
applet may scale its display output to match your specified region.

For instance, our example clock applet might grow or shrink to fit nearly any size
display region. Instead, we might fix it to a square space, 100 × 100 pixels:

<object classid="clock.class" height="100" width="100">
</object>

As with , use the border attribute to control the width of the frame that sur-
rounds the object’s display space when you include it as part of a hyperlink. The null
value (border=0) removes the frame. [, 5.2.6]

Use the class and style attributes to control the display style for the content
enclosed by the tag and to format the content according to a predefined class of the
<object> tag. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

12.2.1.8 The declare attribute

The declare attribute lets you define an object but restrains the browser from down-
loading and processing it. Used in conjunction with the name attribute, this facility is
similar to a forward declaration in a more conventional programming language that
lets you defer download of an object until it actually gets used in the document.

12.2.1.9 The id, name, and title attributes

Use the id or name attribute to uniquely label an object. Use the title attribute to
simply title the tag. Each attribute’s value is a text string. The browser may choose to
display a title to the user or may use it in some other manner while rendering the
document. Use id or name to reference the object in other elements of your docu-
ment, including hyperlinks and other objects.

For example, suppose you have two clock applets in your document, along with two
applets the user operates to set those clocks. Provide unique labels for the clock

* The align attribute is deprecated in the HTML 4 and XHTML standards because of the CSS standard, but
it is still popularly used and supported.

422 | Chapter 12: Executable Content

applets using the name or id attribute, then pass those labels to the setting applets
using the <param> tag, which we discuss later in this chapter in section 12.2.2:

<object classid="clock.class" id="clock1">
</object>
<object classid="clock.class" id="clock2">
</object>
<object classid="setter.class">
 <param id="clockToSet" value="clock1">
</object>
<object classid="setter.class">
 <param id="clockToSet" value="clock2">
</object>

Because we have no need to distinguish between the setter applets, we choose not to
identify their instances.

12.2.1.10 The shapes and usemap attributes

Recall from our detailed discussion of hyperlinks in Chapter 6 that you can divide a
picture into geometric regions and attach a hyperlink to each, creating a so-called
image map. The shapes and usemap attributes for the <object> tag generalize that fea-
ture to include other object types.

The standard shapes attribute informs the browser that the <object> tag’s contents
are a series of hyperlinks and shape definitions. The usemap attribute and required
URL value point to a <map> where you define the shapes and associated hyperlinks,
identical to the client-side image maps discussed in section 6.5.2.

For example, here is the image map we described in Chapter 6, rewritten in XHTML
as a “shaped” object:

<object data="pics/map.gif" shapes="shapes">

</object>

and as the more familiar image map:

<object data="pics/map.gif" usemap="#map1">
</object>
...
<map name="map1">
 <area coords="0,0,49,49" href="main.html#link1" />
 <area coords="50,0,99,49" href="main.html#link2" />
 <area coords="0,50,49,99" href="main.html#link3" />
 <area coords="50,50,99,99" href="main.html#link4" />
</map>

12.2 Embedded Content | 423

You also may take advantage of all the attributes associated with the hyperlink, <map>,
and <area> tags to define and arrange the image-map regions. For instance, we rec-
ommend that you include alternative (alt attribute) text descriptions for each sensi-
tive region of the image map.

12.2.1.11 The standby attribute

The standby attribute lets you display a message—the attribute’s value text string—
during the time the browser is downloading the object data. If your objects are large or
if you expect slow network responses add this attribute as a courtesy to your users.

12.2.1.12 The tabindex and notab attributes

For Internet Explorer with ActiveX objects only, the notab attribute excludes the
object from the document tabbing order.

As an alternative to the mouse, users also may press the Tab key to select and the
Return or Enter key to activate a hyperlink or to access a form control, and browsers
may provide other mechanisms to select content. Normally, each time the user
moves to the next object—by pressing the Tab key, for example—the browser steps
to the next hyperlink or form control in the order in which they appear in the docu-
ment. To change that order, use the HTML 4/XHTML standard tabindex attribute
and an integer value to indicate the object’s position in the sequence of selectable ele-
ments on the page.

12.2.1.13 The dir and lang attributes

Use the dir and lang attributes, like their counterparts for most other tags, to specify
the language and dialect of the <object>-enclosed contents as well as the direction by
which the browser adds text characters to the display. [The dir attribute, 3.6.1.1]
[The lang attribute, 3.6.1.2]

12.2.1.14 Object event handling

As user-initiated mouse and keyboard events occur within the object, you may want
to perform special actions. Accordingly, you can use the 10 standard event attributes
to catch these events and execute JavaScript code. We describe JavaScript event han-
dlers more fully shortly in section 12.3.3.

12.2.1.15 Supporting incompatible browsers

Because some browsers may not support applets or the <object> tag, sometimes you
may need to tell readers what they are missing. You do this by including body con-
tent between the <object> and </object> tags.

Browsers that support the <object> tags ignore the extraneous content inside. Of
course, browsers that don’t support objects don’t recognize the <object> tags. Being

424 | Chapter 12: Executable Content

generally tolerant of apparent mistakes, browsers usually ignore the unrecognized
tags and blithely go on to display whatever content appears inside. It’s as simple as
that. The following fragment tells object-incapable browser users that they won’t see
our clock example:

<object classid=clock.class>
 If your browser were capable of handling applets, you'd see
 a nifty clock right here!
</object>

More importantly, object-capable browsers display the contents of the <object> tag if
they cannot load, execute, or render the object. If you have several objects of similar
intent but with differing capabilities, you can nest their <object> tags. The browser
tries each object in turn, stopping with the first one it can handle. Thus, the outer-
most object might be a full-motion video. Within that <object> tag, you might
include a simpler MPEG video, and within that <object> tag, a simple GIF image. If
the browser can handle full-motion video, your users get the full effect. If that level of
video isn’t available, the browser can try the simpler MPEG video stream. If that
fails, the browser can just display the image. If images aren’t possible, the innermost
<object> tag might contain a text description of the object.

12.2.2 The <param> Tag
The <param> tag supplies parameters for a containing <object> or <applet> tag. (We
discuss the deprecated <applet> tag in the upcoming section, 12.2.3.)

The <param> tag has no content and, with HTML, no end tag. It appears, perhaps
with other <param> tags, only between an <object> or <applet> tag and its end tag.
Use the <param> tag to pass parameters to the embedded object, such as a Java
applet, as required for it to function correctly.

<param>

Function Supplies a parameter to an embedded object

Attributes id, name, type, value, valuetype

End tag None in HTML; </param> or <param ... /> in XHTML

Contains Nothing

Used in applet_content

12.2 Embedded Content | 425

12.2.2.1 The id, name, and value attributes

The <param> tag has two required attributes: name or id, and value. You’ve seen these
attributes before with forms. Together, they define a name/value pair that the
browser passes to the applet.

For instance, our clock applet example might let users specify the time zone by
which it sets its hour hand. To pass the parameter identified as "timezone" with the
value "EST" to our example applet, specify the parameters as:

<object classid="clock.class">
 <param id="timezone" value="EST" />
</object>

The browser passes the name/value pairs to the applet, but that is no guarantee that
the applet is expecting the parameters, that the names and values are correct, or that
the applet will even use the parameters. Correct parameter names, including capitali-
zation and acceptable values, are determined by the applet author. The wise HTML/
XHTML author works closely with the applet programmer or has detailed documen-
tation to ensure that the applet parameters are named correctly and are assigned
valid values.

12.2.2.2 The type and valuetype attributes

Use the type and valuetype attributes to define the type of the parameter the browser
passes to the embedded object and how that object is to interpret the value. The
valuetype attribute can have one of three values: data, ref, or object. The value data
indicates that the parameter value is a simple string. This is the default value. The
ref value indicates that the value is a URL of some other resource on the Web.
Finally, object indicates that the value is the name of another embedded object in
the current document. This may be needed to support interobject communication
within a document.

The value of the type attribute is the MIME media type of the value of the parame-
ter. This usually is of no significance when the parameter value is a simple string, but
it can be important when the value is actually a URL pointing to some other object
on the Web. In those cases, the embedded object may need to know the MIME type
of the object in order to use it correctly. For example, this parameter tells the embed-
ded object that the parameter is actually the URL of a Microsoft Word document:

<param id="document" value="http://kumquats.com/quat.doc"
 type="application/msword" valuetype="ref" />

12.2.3 The <applet> Tag (Deprecated)
Use the <applet> tag within your documents to download and execute an applet.
Also, use the tag to define a region within the document display for the applet’s

426 | Chapter 12: Executable Content

display area. You may supply alternative content within the <applet> tag for display
by browsers that do not support applets.

Most applets require one or more parameters that you supply in the document to con-
trol their execution. Put these parameters between the <applet> tag and its correspond-
ing </applet> end tag, using the <param> tag. The browser will pass the document-
specific parameters to the applet at the time of execution. [<param>, 12.2.2]

The <applet> tag has been deprecated in the HTML 4 and XHTML standards in def-
erence to the generalized <object> tag, which can do the same as <applet> and much
more. Nonetheless, <applet> is a popular tag and remains supported by the popular
browsers.

12.2.3.1 Applet rendering

The browser creates an applet’s display region in the containing text flow exactly like
an inline image: without line breaks and as a single large entity. The browser down-
loads and executes the applet just after download and display of the document and
continues execution until the code terminates itself or the user stops viewing the
page containing the applet.

12.2.3.2 The align attribute

As with an image or <iframe>, you can use the align attribute to control the applet’s
display region with respect to its surrounding text, although the standards prefer that
you use respective Cascading Style Sheet (CSS) alignment properties. Set the align

attribute’s value to top, texttop, middle, absmiddle, baseline, bottom, or absbottom, or
use the left and right alignments for wraparound content. For a detailed descrip-
tion, see section 5.2.6.

<applet>

Function Inserts an application into the current text flow

Attributes align, alt, archive, class, code, codebase, height, hspace, id,
mayscript, name, object, style, title, vspace, width

End tag </applet>; never omitted

Contains applet_content

Used in text

12.2 Embedded Content | 427

12.2.3.3 The alt attribute

The alt attribute gives you a way to tell users gracefully that something is missing if,
for some reason, the applet cannot or will not execute on their computer. Its value is
a quote-enclosed message string that, like the alt attribute for images, gets displayed
in lieu of the applet itself. The alt message is only for browsers that support applets.
See section 12.2.1.15 earlier in this chapter to find out how to inform users of applet-
incapable browsers why they can’t view an applet.

12.2.3.4 The archive attribute

The archive attribute collects common Java classes into a single library that is cached
on the user’s local disk. Once the data is cached, the browser doesn’t need to use the
network to access an applet; it retrieves the software from the local cache, thereby
reducing the inherent delays of additional network activity to load the class.

The value of the archive attribute is a URL identifying the archive file. The suffix of
the archive filename may be either .zip or .jar. Archived .zip files are in the familiar
ZIP archive format. Archived .jar files are in the Java archive format. Archived .jar
files support compression and advanced features such as digital signatures.

You can use the archive attribute with any <applet> tag, even if the class referenced
by the tag’s code attribute does not exist in the archive. If the class is not found in the
archive, the browser simply attempts to retrieve the class relative to the document
URL or the codebase URL, if specified.

12.2.3.5 The code and codebase attributes

The code attribute is required with <applet>. Use code to specify the filename, not the
URL, of the Java class to be executed by the browser. Like <object>, make the search
relative to another storage location by using the codebase attribute, described earlier
in section 12.2.1.2, or an archive, as described earlier in section 12.2.1.3. The exten-
sion suffix of the filename should be .class. If you don’t include the suffix, some
browsers append .class automatically when searching for the applet.

Here is our clock example from earlier rewritten as an <applet>:

<applet code="clock.class" codebase="http://www.kumquat.com/classes/">
</applet>

which the browser retrieves and displays from:

http://www.kumquat.com/classes/clock.class

12.2.3.6 The name attribute

The name attribute lets you supply a unique name for this instance of the code class—
the copy of the applet that runs on the individual user’s computer. As with other

428 | Chapter 12: Executable Content

named elements in your document, providing a name for the applet lets other parts
of your document, including other applets, reference and interact with this one (e.g.,
for sharing computed results).

12.2.3.7 The height, hspace, vspace, and width attributes

Use the height and width attributes (identical to the counterparts for the and
<object> tags) to define the size of the applet’s display region in the document. Use
hspace and vspace to interpose some empty space around the applet region and
thereby set it off from the text. They all accept values indicating the size of the region
in pixels. [The height and width attributes, 5.2.6.10]

12.2.3.8 The mayscript attribute

The mayscript attribute indicates that the Java applet is accessing JavaScript features
within the browser. Normally, Java applets attempting to access JavaScript cause a
browser error. If your applets access JavaScript, you must specify mayscript in the
<applet> tag.

12.2.3.9 The title attribute

The value of this attribute is a quoted string that provides a title, if necessary, for the
applet.

12.2.3.10 The object attribute

This unfortunately named attribute and its string value reference the name of the
resource that contains a serialized version of the applet. How and what it does is an
enigma; none of the popular browsers supports it.

12.2.4 The <embed> Tag (Extension)
At one time, the <embed> tag was the only way you could include a reference in your
document for the browser to handle some special plug-in application and perhaps
data for that application. Today’s standard is the <object> tag with the data

attribute, and we recommend that you use it in lieu of <embed>. Nonetheless, <embed>
currently remains well supported by all the popular browsers.

With <embed>, you reference the data object via the src attribute and URL value for
download by the browser. The browser uses the MIME type of the src’d object to
determine the plug-in that is required to process the object. Alternatively, you may
also use the type attribute to specify a MIME type without an object and thereby ini-
tiate execution of a plug-in application, if it exists on the user’s computer.

Like all other tags, the nonstandard <embed> tag extension has a set of predefined
attributes that define parameters and modify the tag’s behavior. Unlike most other

12.2 Embedded Content | 429

tags, however, the browsers let you include plug-in-specific name/value attribute
pairs in <embed> that, instead of altering the action of the tag itself, get passed to the
plug-in application for further processing.

For example, this tag:

<embed src=movie.avi width=320 height=200 autostart=true loop=3>

has attributes that are processed by the <embed> tag (src, width, and height), and two
that are not recognized, but rather are passed to the plug-in associated with AVI
video clips: autostart and loop.*

It is not possible to document all the possible attributes that the many different plug-
ins might need with their associated <embed> tags. Instead, you must turn to the plug-
in developer to learn about all of their required and optional attributes for each plug-
in that you plan to use in your pages.

12.2.4.1 The align, border, height, hspace, vspace, and width attributes

The browser displays embedded objects to the user in a region set aside within the
document window. The <embed> tag’s align, border, height, width, hspace, and
vspace attributes let you control the appearance of that region exactly as they do for
the tag, so we won’t belabor them. [, 5.2.6]

Briefly, the height and width attributes control the size of the viewing region. Nor-
mally, you should specify the height and width in pixels, but you may use some
other units of measure if you also specify the units attribute (see section 12.2.4.8,
later in this chapter). The hspace and vspace attributes define a margin, in pixels,
around the viewing region. The align attribute determines how the browser aligns

<embed>

Function Embeds an object in a document

Attributes align, border , height, hidden, hspace , name, palette ,
pluginspage , src, type, units, vspace , width

End tag None

Contains Nothing

Used in text

* Internet Explorer has built-in support for AVI movies; other browsers require that users download and
install a plug-in that plays the AVI movie.

430 | Chapter 12: Executable Content

the region within surrounding text, and the border attribute determines the width of
the border, if any, surrounding the viewing region.

All the popular browsers support the height, width, and align attributes, but unlike
<applet> or <object>, Internet Explorer does not support border, hspace, or vspace
for the <embed> tag.

12.2.4.2 The hidden attribute

The hidden attribute makes an object invisible to the user, forcing it to have a height
and width of 0. Note that setting hidden does not cause the browser to display an
empty region within the document, but rather completely removes the object from
the containing text flow.

This attribute is useful for audio streams placed within documents. The HTML
entry:

<embed src=music.wav hidden autostart=true loop=true>

embeds an audio object in the page. The browser does not show anything to the
user, but rather plays background music for the page. By contrast, the plug-in associ-
ated with:

<embed src=music.wav>

might present an audio control panel to users so that they can start and stop the
audio playback, adjust the volume, and so forth.

12.2.4.3 The name attribute

Like other name attributes, this one lets you label the embedded object for later refer-
ence by other elements in your document, including other objects. The value of the
name attribute is a character string.

12.2.4.4 The palette attribute

Netscape and Internet Explorer support the palette attribute, but in completely dif-
ferent ways. With Netscape, the value of the palette attribute is either foreground or
background, indicating which palette of window system colors the plug-in uses for its
display.

With Internet Explorer, the value of palette is a pair of hexadecimal color values,
separated by a vertical bar. The first value determines the foreground color used by
the plug-in; the second sets the background color. Thus, specifying this palette:

palette=#ff0000|#00ff00

causes the plug-in to use red as its foreground color and green as its background
color. For a complete description of hexadecimal color values, see Appendix G.

12.2 Embedded Content | 431

12.2.4.5 The pluginspage attribute

The pluginspage attribute, once supported only by Netscape, but no longer, speci-
fies the URL of a web page that provides instruction on where to obtain and how to
install the plug-in associated with the embedded object. Now all the popular brows-
ers direct you to their supporting plug-in home pages for downloads.

12.2.4.6 The src attribute

Like its document-referencing counterparts for myriad other tags, the src attribute
supplies the URL of the data object that you embed in the HTML document. The
server providing the object must be configured so that it notifies the browser of the
correct MIME type of the object. If not, the browser uses the suffix of the last ele-
ment of the src value—the object’s filename in the URL path—to determine the type
of the object. The browser uses this MIME type to determine which plug-in it exe-
cutes to process the object.

If you don’t include an src attribute with the <embed> tag, you must include a type

attribute to explicitly reference the MIME type and, as a result, the plug-in application.

12.2.4.7 The type attribute

Use the type attribute in addition to or in lieu of the src attribute. Its value explicitly
indicates the MIME type of the embedded object, which in turn determines which
plug-in the browser invokes to process the object. This attribute is not required if
you include the src attribute and the browser can determine the object type from the
object’s URL or server. You must supply a type attribute if you don’t include the src
attribute.

It may seem odd to use an <embed> tag without an src attribute reference to some
object, but this is common if the plug-in requires no data or retrieves its data dynam-
ically after it is started. In these cases, the type attribute is required so that the
browser knows which plug-in to invoke.

12.2.4.8 The units attribute

Pixels are the default unit of measure for the height and width attributes that control
the <embed> display space. The units attribute lets you explicitly state that the abso-
lute measure is pixels, or change it to the relative en, which is one-half the current
point size of text in the document. With the en units, you tailor the object’s viewing
area (viewport) to be proportional to its immediately surrounding content, the size of
which is varied by the user.

For example, this tag creates a viewport of 200 × 320 pixels:

<embed src=movie.avi height=200 width=320 units=pixels>

432 | Chapter 12: Executable Content

By changing units to en, that same viewport, when included within a flow of 12-
point text, becomes 1200 × 1920 pixels.

12.2.5 The <noembed> Tag (Extension)
The <noembed> tag, although not part of the standards, is supported by the popular
browsers; they consequently ignore the <noembed> enclosed text. On the other hand,
browsers that do not recognize <embed> ignore <noembed>, too, consequently display-
ing the latter tag’s enclosed text and thereby supplying alternative content to tell
users what they are missing in the <embed> content.

Normally, you use the contents of the <noembed> tag to display some sort of message
placating users of inadequate browsers:

<embed src=cool.mov autostart=true loop=true>
<noembed>To view the cool movie, you need to upgrade to a browser
that supports the <embed> tag!</noembed>

We recommend using a <noembed> message only in those cases where the object is
crucial for the user to comprehend and use your document. And, in those cases, you
should provide a link to a document that can stand alone without the embedded
object, or nicely explain the difficulty.

12.3 JavaScript
All the executable content elements we’ve discussed so far have had one common
trait: they are separate from the browser and the HTML/XHTML document—sepa-
rate data, separate execution engine.

JavaScript is different. It is a scripting language that taps the native functionality of
the browser. You may sprinkle JavaScript statements throughout your documents,
either as blocks of code or as single statements attached to individual tags. Java-
Script-enabled browsers, including all the currently popular ones, interpret and act

<noembed>

Function Supplies content to <embed>-incompatible browsers

Attributes None

End tag </noembed>; never omitted

Contains Nothing

Used in text

12.3 JavaScript | 433

upon the JavaScript statements you provide to do such things as alter the appear-
ance of the document, control the display, validate and manipulate form elements,
and perform general computational tasks.

As with Java, we do not pretend to teach JavaScript programming in this book. We’ll
show you how to embed and execute JavaScript within your documents, but we ask
that you turn to books like the companion JavaScript: The Definitive Guide (O’Reilly)
for a complete reference.

12.3.1 The <script> Tag
One way to place JavaScript code in your document is via the HTML and XHTML
standard <script> tag.

The browser processes everything between <script> and </script> as executable
JavaScript statements and data. You cannot place HTML or XHTML within this tag;
the browser flags it as an error.

However, browsers that do not support <script> process its contents as regular
HTML, to the confusion of the user. For this reason, we recommend that you
include the contents of the <script> tag inside HTML comments, just like CSS
<style> rules:

<script language="JavaScript">
<!--
 JavaScript statements go here

// -->
</script>

For browsers that ignore the <script> tag, the contents are masked by the comment
delimiters <!-- and -->. JavaScript-enabled browsers, on the other hand, automati-
cally recognize and interpret the JavaScript statements delimited by the comment
tags. By using this skeleton for all your <script> tags, you can be sure that all brows-
ers handle your document gracefully, if not completely.

Unfortunately, as we discuss in Chapter 16, script content for XHTML documents
must be within a special CDATA declaration, rather than within comments. Hence,
HTML browsers won’t honor XHTML scripts, and vice versa. Our only recommen-
dation at this point is to follow the popular browsers: write in HTML, but use as
many of the features of XHTML as you can in preparation for the future.

You may include more than one <script> tag in a document, located in either the
<head> or the <body>. The JavaScript-enabled browser executes the statements in order.
Variables and functions defined within one <script> tag may be referenced by Java-
Script statements in other <script> tags. In fact, one common JavaScript programming
style is to use a single <script> in the document <head> to define common functions
and global variables for the document and then to call those functions and reference
their variables in other JavaScript statements sprinkled throughout the document.

434 | Chapter 12: Executable Content

12.3.1.1 The language and type attributes

Use the language or type attribute in the <script> tag to declare the scripting lan-
guage that you used to compose the contents of the tag. The HTML 4 and XHTML
standards deprecate the language attribute in favor of the type attribute. Regrettably,
the value for each attribute is different.

If you are using JavaScript—by far the most common scripting language on the
Web—use language=JavaScript or type="text/javascript". You may occasionally
see the language value VBScript (text/vbscript for type), indicating that the enclosed
code is written in Microsoft’s Visual Basic script.

With JavaScript, you may also use the language value "JavaScript 1.2", indicating
that the enclosed script is written for browsers that support version 1.2 of the lan-
guage (most current browsers do). Versioning can be a problem, but it’s not too
severe. Netscape 2.0, for instance, supports JavaScript 1.0 but does not process
scripts identified as "JavaScript 1.1". Then again, what proportion of your audience
is still running Netscape 2.0?

12.3.1.2 The src and charset attributes

For particularly large JavaScript programs and ones you reuse often, you should store
the code in a separate file. In these cases, have the browser load that separate file
through the src attribute. The value of the src attribute is the URL of the file con-
taining the JavaScript program. The stored file should have a MIME type of
application/javascript, but it will be handled automatically by a properly config-
ured server if the filename suffix is .js.

For example:

<script type="text/javascript" src="http://www.kumquat.com/quatscript.js">
</script>

tells the <script>-able browser to load a JavaScript program named quatscript.js from
the server. Although there are no <script> contents, the ending </script> still is
required.

<script>

Function Defines an executable script within a document

Attributes charset, defer, language, src, type

End tag </script>; never omitted

Contains scripts

Used in head_content, body_content

12.3 JavaScript | 435

Used in conjunction with the src attribute, the charset attribute tells the browser the
character set used to encode the JavaScript program. Its value is the name of any
International Organization for Standardization (ISO) standard character set encoding.

12.3.1.3 The defer attribute

Some JavaScript scripts create actual document content using the document.write

method. If your scripts do not alter the contents of the document, add the defer

attribute to the <script> tag to speed its processing. Because the browser knows that it
can safely read the remainder of the document without executing your scripts, it defers
interpretation of the script until after the document has been rendered for the user.

12.3.2 The <noscript> Tag
Use the <noscript> tag to tell users of browsers that do not support the <script> tag
that they are missing something. You’ve already seen many examples of this type of
tag. You know the drill.. . .

Very old, albeit <script>-able, browsers like Netscape 2 and Internet Explorer 3
blithely display the contents of the <noscript> tag, to the confusion of their users.
Given the paucity of users of these browsers, we question the need, but there are
ways to detect and handle <script>-challenged browsers, detailed in any good Java-
Script book.

The <noscript> tag supports the six standard HTML 4/XHTML attributes—class and
style for style management, lang and dir for language type and display direction, title
and id for titling and naming the enclosed content—and the event attributes for user-
initiated processing. [The dir attribute, 3.6.1.1] [The lang attribute, 3.6.1.2] [The id
attribute, 4.1.1.4] [The title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 8.1.1]
[Style Classes, 8.3] [JavaScript Event Handlers, 12.3.3]

<noscript>

Function Supplies content to <script>-challenged browsers

Attributes class, dir, id, lang, onClick, onDblClick, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, style, title

End tag </noscript>; never omitted

Contains body_content

Used in text

436 | Chapter 12: Executable Content

12.3.3 JavaScript Event Handlers
One of the most important features JavaScript provides is the ability to detect and
react to events that occur while a document is loading, rendering, and being browsed
by the user. The JavaScript code that handles these events may be placed within the
<script> tag, but more commonly, it is associated with a specific tag via one or more
special tag attributes.

For example, you might want to invoke a JavaScript function when the user passes
the mouse over a hyperlink in a document. The JavaScript-aware browsers support a
special “mouse over” event-handler attribute for the <a> tag, called onMouseOver, to
do just that:

<a href="doc.html" onMouseOver="status='Click me!';
return true">

When the mouse passes over this example link, the browser executes the JavaScript
statements. (Notice that the two JavaScript statements are enclosed in quotes and
separated by a semicolon, and that single quotes surround the text-message portion
of the first statement.)

While a complete explanation of this code is beyond our scope, the net result is that
the browser places the message “Click me!” in the status bar of the browser win-
dow. Commonly, authors use this simple JavaScript function to display a more
descriptive explanation of a hyperlink, in place of the often cryptic URL that the
browser traditionally displays in the status window.

HTML and XHTML both support a rich set of event handlers through related on-
event tag attributes. The value of any of the JavaScript event-handler attributes is a
quoted string containing one or more JavaScript statements separated by semico-
lons. If necessary, you can break extremely long statements across several lines. You
also should take care to use entities for embedded double quotes in the statements,
to avoid syntax errors when processing the attribute values.

12.3.3.1 Standard event handler attributes

Table 12-1 presents the current set of event handlers as tag attributes. Most are sup-
ported by the popular browsers, which also support a variety of nonstandard event
handlers (tagged with asterisks in the table).

We put the event handlers into two categories: user related and document related.
The user-related ones are the mouse and keyboard events that occur when the user
handles either device on the computer. User-related events are quite ubiquitous,
appearing as standard attributes in nearly all the standard tags (even though they
may not yet be supported by any browser), so we don’t list their associated tags in
Table 12-1. Instead, we’ll tell you which tags do not accept these event attributes:
<applet>, <base>, <basefont>, <bdo>,
, , <frame>, <frameset>, <head>, <html>,
<iframe>, <isindex>, <meta>, <param>, <script>, <style>, and <title>.

12.3 JavaScript | 437

Some events, however, occur rarely and with special tags. These relate to the special
events and states that occur during the display and management of a document and
its elements by the browser.

12.3.3.2 The mouse-related events

The onClick, onDblClick, onMouseDown, and onMouseUp attributes refer to the mouse
button. The onClick event happens when the user presses down and then quickly
releases the mouse button. If the user then quickly clicks the mouse button for a sec-
ond time, the onDblClick event gets triggered in the browser as well.

If you need to detect both halves of a mouse click as separate events, use onMouseDown
and onMouseUp. When the user presses the mouse button, the onMouseDown event
occurs. The onMouseUp event happens when the user releases the mouse button.

The onMouseMove, onMouseOut, and onMouseOver events happen when the user drags
the mouse pointer. The onMouseOver event occurs when the mouse first enters the

Table 12-1. Event handlers

Event handler HTML/XHTML tags

onAbort*

* Nonstandard handlers.

onBlur <a>,<area>,<body>,<button>,<frameset>,<input>,<label>,<select>, <textarea>

onChange <input>, <select>, <textarea>

onClick Most tags

onDblClick Most tags

onError*

onFocus <a>,<area>,<body>,<button>,<frameset>,<input>,<label>,<select>,<textarea>

onKeyDown Most tags

onKeyPress Most tags

onKeyUp Most tags

onLoad <body>, <frameset>, *

onMouseDown Most tags

onMouseMove Most tags

onMouseOut Most tags

onMouseOver Most tags

onMouseUp Most tags

onReset <form>

onSelect <input>, <textarea>

onSubmit <form>

onUnload <body>, <frameset>

438 | Chapter 12: Executable Content

display region occupied by the associated HTML element. After entry, onMouseMove
events are generated as the mouse moves about within the element. Finally, when the
mouse exits the element, onMouseOut occurs.

For some elements, the onFocus event corresponds to onMouseOver, and onBlur corre-
sponds to onMouseOut.

12.3.3.3 The keyboard events

The HTML 4 and XHTML standards currently support only three events relating to
user keyboard actions: onKeyDown, onKeyUp, and onKeyPress. The onKeyDown event
occurs when the user depresses a key on the keyboard; onKeyUp happens when the
key is released. The onKeyPress event is triggered when a key is pressed and released.
Usually, you’ll have handlers for either the up and down events or the composite
key-press event, but not for both.

12.3.3.4 Document events

Most of the document-related event handlers relate to the actions and states of form
controls. For instance, onReset and onSubmit happen when the user activates the
respective reset or submit button. Similarly, onSelect and onChange occur as users
interact with certain form elements. See Chapter 9 for a detailed discussion of these
forms-related events.

There also are some document-related event handlers that occur when various docu-
ment elements get handled by the browser. For instance, the onLoad event may hap-
pen when a frameset is complete or when the body of an HTML or XHTML
document gets loaded and displayed by the browser. Similarly, onUnload occurs when
a document is removed from a frame or window.

12.3.4 javascript URLs
You can replace any conventional URL reference in a document with one or more
JavaScript statements. The browser then executes the JavaScript code, instead of
downloading another document, whenever the browser references the URL. The
result of the last statement is taken to be the “document” referenced by the URL and
is displayed by the browser accordingly. The result of the last statement is not the
URL of a document; it is the actual content to be displayed by the browser.

To create a javascript URL, use javascript as the URL’s protocol:

In this example, the JavaScript function generate_document() gets executed when-
ever the user selects the hyperlink. The value returned by the function, presumably a
valid HTML or XHTML document, is rendered and displayed by the browser.

12.3 JavaScript | 439

It may be that the executed statement returns no value. In this case, the current doc-
ument is left unchanged. For example, this javascript URL:

pops up an alert dialog box and does nothing else. The document containing the
hyperlink is still visible after the dialog box is displayed and dismissed by the user.

12.3.5 JavaScript Entities
Character entities in HTML and XHTML consist of an ampersand (&), an entity
name or number, and a closing semicolon. For instance, to insert the ampersand
character itself in a document text flow, use the character sequence &. Similarly,
JavaScript entities consist of an ampersand, one or more JavaScript statements
enclosed in curly braces, and a closing semicolon. For example:

&{document.fgColor};

You must separate multiple statements by semicolons within the curly braces. The
value of the last (or only) statement is converted to a string and replaces the entity in
the document.

Normally, entities can appear anywhere in a document. JavaScript entities, however,
are restricted to values of tag attributes. This lets you write “dynamic tags” whose
attributes are not known until the document is loaded and the JavaScript is exe-
cuted. For example, this tag sets the text color of the document to the color value
returned by the individual’s favorite_color() function:

<body text=&{favorite_color()};>

Support for JavaScript entities is inconsistent among the various browsers and for
this reason we recommend against their use.

12.3.6 The <server> Tag
The <server> tag is a strange beast. The web server processes it and the browser
never sees it, so what you can do with this tag depends on the server you are using,
not on the reader’s browser.

Netscape’s web servers, for example (not to be confused with their browser), use the
<server> tag to let you place JavaScript statements within a document that the server
processes. The results of the executed JavaScript are then inserted into the docu-
ment, replacing the <server> tag. A complete discussion of this so-called “server-
side” JavaScript is completely beyond this book; we include this brief reference only
to document the <server> tag.

Like the <script> tag, the <server> tag contains JavaScript code. However, the latter
tag and content code must appear inside the document <head>. The server extracts it
from the document and executes it when the document is requested for download.

440 | Chapter 12: Executable Content

Obviously, server-side JavaScript is tightly coupled to the server, not to the browser.
To fully exploit this tag and the benefits of server-side JavaScript or other server-side
programming languages, consult your web server’s documentation.

12.4 JavaScript Stylesheets (Antiquated)
Much of a browser’s work is manipulating the display, and much of its display code
already has been exposed for JavaScripting. So it seemed only natural, perhaps even
relatively easy, for the developers at Netscape to implement JavaScript Stylesheets
(JSS). Based on the World Wide Web Consortium (W3C)-recommended CSS model,
outlined in Chapter 8, this alternative document style technology lets you prescribe
display properties for all the various HTML elements, either inline as tag attributes,
at the document level, or for an entire document collection.

JSS is antiquated. Even the inventor eschews support for JSS entirely in favor of the
standard CSS2. We are strong proponents of reasonable standards, and now that the
CSS2 model is fully supported in HTML 4 and XHTML, we can’t recommend that
you use anything but CSS-standard stylesheets.

We thoroughly discuss the concepts and ideas behind stylesheets—specifically, Cas-
cading Style Sheets—in Chapter 8, so we won’t repeat ourselves here. Rather, we
address only how to create and manipulate styles with JavaScript here purely for his-
torical reasons. Before forging ahead in this section, we recommend that you first
absorb the information in Chapter 8.

12.4.1 JavaScript Stylesheet Syntax
Netscape versions 4 and earlier implemented JSS by extending several existing
HTML tags and defining a few objects that store your document’s styles. Netscape
no longer supports JSS, nor does any other browser.

<server>

Function Defines server-side JavaScript

Attributes None

End tag </server>; never omitted

Contains JavaScript

Used in head_content

12.4 JavaScript Stylesheets (Antiquated) | 441

12.4.1.1 External, document-level, and inline JSS

As with CSS, you can reference and load external JSS files with the <link> tag. For
example:

<link href="styles.js" rel=stylesheet type=text/JavaScript>

The only real difference between this tag and the one for a CSS external stylesheet is
that the type attribute of the <link> tag is set to text/JavaScript rather than text/

CSS. The referenced file, styles.js, contains JavaScript statements that define styles
and classes that Netscape then uses to control display of the current document.

Document-level JSS is defined within a <style> tag in the <head> of the document,
just like with CSS. Again, there is only one real difference: the type attribute of the
<style> tag is set to text/JavaScript rather than text/CSS.

The contents of the <style> tag for JSS are quite different from those for CSS, how-
ever. For example:

<style type=text/JavaScript>
<!--
 tags.BODY.marginLeft = "20px";
 tags.P.fontWeight = "bold";
 // -->
</style>

First, notice that we use the standard JavaScript and HTML comments to surround
our JSS definitions, preventing noncompliant browsers from processing them as
HTML content. Also notice that the syntax of the style definition is that of Java-
Script, where letter case, among other things, does make a difference.

You associate inline JavaScript-based style rules with a specific tag using the style

attribute, just like with CSS inline styles. The value of the attribute is a list of JSS
assignments, separated by semicolons. For example:

<p style="color = 'green'; fontWeight = 'bold'">

creates a green, boldfaced text paragraph. Notice first that you need to enclose inline
style values within single quotation marks, not double quotation marks, as you
might use for document-level and external JSS styles. This is reasonable because the
style attribute value itself must be enclosed in double quotation marks.

Also note that inline JSS definitions use only the property name, not the containing
tag object that owns the property. This makes sense because inline JSS styles affect
only the current tag, not all instances of the tag.

12.4.1.2 JSS values

In general, all of the values you may use for CSS you may also use in JSS definitions.
For keyword, length, and percentage values, simply enclose the value in quotes and
use it as you would any string value in JavaScript. Thus, the CSS value bold becomes

442 | Chapter 12: Executable Content

"bold" or 'bold' for JSS document-level or inline styles, respectively; 12pt in CSS
becomes '12pt' or "12pt" in JSS.

Specify color values as the color name or a hexadecimal color value, enclosed in sin-
gle or double quotes. JSS does not support the CSS decimal red, green, and blue
(RGB) notation.

JSS URL values are strings containing the desired URL. Thus, the CSS URL value
url(http://www.kumquat.com) becomes 'http://www.kumquat.com' for a JSS inline
style, or "http://www.kumquat.com" at the document level.

One unique power of JSS is that any value can be computed dynamically when the
browser processes the document. Instead of statically specifying the font size, for
example, you can compute it on the fly:

tags.P.fontSize = favorite_font_size();

We assume that the JavaScript function favorite_font_size() somehow determines
the desired font size and returns a string value containing that size. This, in turn, is
assigned to the fontSize property for the <p> tag, defining the font size for all para-
graphs in the document.

12.4.1.3 Defining styles for tags

JavaScript defines a document property called tags that contains the style properties
for all HTML tags. To define a style for a tag, simply set the appropriate property of the
desired style property within the tag property of the document object. For example:

document.tags.P.fontSize = '12pt';
document.tags.H2.color = 'blue';

These two JSS definitions set the font size for the <p> tag to 12 points and render all
<h2> tags in blue. The equivalent CSS definitions are:

p {font-size : 12pt}
h2 {color : blue}

Because the tags property always refers to the current document, you may omit
document from any JSS tag style definition. We could have written the preceding two
styles as:

tags.P.fontSize = '12pt';
tags.H2.color = 'blue';

Moreover, as we mentioned previously, you may omit the tag name, as well as the
document and tags properties for inline JSS, using the style attribute.

Capitalization and case are significant in JSS. The tag names within the tags prop-
erty must always be fully capitalized. The embedded capital letters within the tag
properties are significant: any deviation from the exact lettering produces an error,

12.4 JavaScript Stylesheets (Antiquated) | 443

and Netscape won’t honor your JSS declaration. All of the following JSS definitions
are invalid, though the reasons are not overly apparent:

tags.p.fontsize = '12pt';
tags.Body.Color = 'blue';
tags.P.COLOR = 'red';

The correct versions are:

tags.P.fontSize = '12pt';
tags.BODY.color = 'blue';
tags.P.color = 'red';

It can be very tedious to specify a number of properties for a single tag, so you can
take advantage of the JavaScript with statement to reduce your typing burden. These
styles:

tags.P.fontSize = '14pt';
tags.P.color = 'blue';
tags.P.fontWeight = 'bold';
tags.P.leftMargin = '20%';

can more easily be written as:

with (tags.P) {
 fontSize = '14pt';
 color = 'blue';
 fontWeight = 'bold';
 leftMargin = '20%';
 }

You can apply similar styles to diverse tags just as easily:

with (tags.P, tags.LI, tags.H1) {
 fontSize = '14pt';
 color = 'blue';
 fontWeight = 'bold';
 leftMargin = '20%';
 }

12.4.1.4 Defining style classes

Like CSS, JSS lets you target styles for specific ways that a tag can be used in your
document. JSS uses the classes property to define separate styles for the same tag.
There are no predefined properties within the classes property; instead, any prop-
erty you reference is defined as a class to be used by the current document. For
example:

classes.bold.P.fontWeight = 'bold';
with (classes.abstract.P) {
 leftMargin = '20pt';
 rightMargin = '20pt';
 fontStyle = 'italic';
 textAlign = 'justify';
 }

444 | Chapter 12: Executable Content

The first style defines a class of the <p> tag named bold whose font weight is set to
bold. The next style uses the with statement to create a class of the <p> tag named
abstract with the specified properties. The equivalent CSS rules would be:

P.bold {font-weight : bold}
P.abstract {left-margin : 20pt;
 right-margin : 20pt;
 font-style : italic;
 text-align : justify
 }

Once defined, use a JSS class just like any CSS class: with the class attribute and the
class name.

Like CSS, JSS also lets you define a class without defining the tag that uses the class.
This lets you define generic classes that you can later apply to any tag. To create a
generic style class in JSS, use the special tag property all:

classes.green.all.color = "green";

You can then add class="green" to any tag to have Netscape render its contents in
green. The equivalent CSS is:

.green {color : green}

12.4.1.5 Using contextual styles

One of the most powerful aspects of CSS is its contextual style capability, wherein
the browser applies a style to tags only if they appear in the document in a certain
nesting. JSS supports contextual styles as well, through the special contextual()

method within the tags property. The parameters to this method are the tags and
classes that define the context in which Netscape applies the style. For example:

tags.contextual(tags.UL, tags.UL, tags.LI).listStyleType = 'disc';

defines a context wherein the elements (tags.LI) of an unordered list nested within
another unordered list (tags.UL, tags.UL) use the disc as their bullet symbol. The CSS
equivalent is:

ul ul li {list-style-type : disc}

You can mix tags and classes in the contextual() method. For instance:

tags.contextual(classes.abstract.P, tags.EM).color = 'red';

tells the browser to display in red tags that appear within paragraphs that are of
the abstract class. The CSS equivalent is:

p.abstract em {color : red}

Because the tags object is unambiguously included within the contextual() method,
you may omit it from the definition. Hence, our nested list example may be rewritten as:

tags.contextual(UL, UL, LI).listStyleType = 'disc';

12.4 JavaScript Stylesheets (Antiquated) | 445

12.4.2 JavaScript Stylesheet Properties
A subset of the CSS style properties are supported in JSS. Table 12-2 shows the JSS
style properties, their CSS equivalents, and the sections in which those properties are
fully documented.

Table 12-2. JSS properties and CSS equivalents

JSS property CSS property See section

align float 8.4.7.9

backgroundImage background-image 8.4.5.2

backgroundColor background-color 8.4.5.1

borderBottomWidth border-bottom-width 8.4.7.4

borderLeftWidth border-left-width 8.4.7.4

borderRightWidth border-right-width 8.4.7.4

borderStyle border-style 8.4.7.5

borderTopWidth border-top-width 8.4.7.4

clear clear 8.4.7.7

display display 8.4.10.1

fontSize font-size 8.4.3.2

fontStyle font-style 8.4.3.5

height height 8.4.7.10

lineHeight line-height 8.4.6.2

listStyleType list-style-type 8.4.8.3

marginBottom margin-bottom 8.4.7.11

marginLeft margin-left 8.4.7.11

marginRight margin-right 8.4.7.11

marginTop margin-top 8.4.7.11

paddingBottom padding-bottom 8.4.7.12

paddingLeft padding-left 8.4.7.12

paddingRight padding-right 8.4.7.12

paddingTop padding-top 8.4.7.12

textDecoration text-decoration 8.4.6.4

textTransform text-transform 8.4.6.7

textAlign text-align 8.4.6.3

textIndent text-indent 8.4.6.5

verticalAlign vertical-align 8.4.6.7

whiteSpace white-space 8.4.10.2

width width 8.4.7.16

446 | Chapter 12: Executable Content

JSS also defines three methods that allow you to define margins, padding, and border
widths within a single style property. The three methods, margins(), paddings(), and
borderWidths(), accept four parameters, corresponding to the top, right, bottom,
and left margins, padding, and border width, respectively. Unlike their CSS counter-
parts (margin, discussed in section 8.4.7.11; padding, discussed in section 8.4.7.12;
and border-width, discussed in section 8.4.7.4), these JSS methods require that you
always specify all four parameters. There is no shorthand way in JSS to set multiple
margins, paddings, or border widths with a single value.

447

Chapter 13!ti
In this chapter:

• An Overview of Dynamic Documents
• Client-Pull Documents
• Server-Push Documents

CHAPTER 13

Dynamic Documents13

The standard HTML/XHTML document model is static. Once displayed on the
browser, a document does not change until the user initiates some activity, such as
selecting a hyperlink. The Netscape developers found that limitation unacceptable
and built some special features into their browser that let you change HTML docu-
ment content dynamically. In fact, they provide two different mechanisms for
dynamic documents, which we describe in detail in this chapter. Internet Explorer
supports some of these mechanisms, which we’ll discuss as well.

We should mention that many of the features of dynamic documents have been dis-
placed by plug-in browser accessories and, in particular, applets, as well as the new
Asynchronous JavaScript and XML (Ajax) technologies. Nonetheless, Netscape and
Internet Explorer continue to support dynamic documents, and we believe the tech-
nology has virtues you should be aware of, if not take advantage of, in your HTML
documents. [Applets and Objects, 12.1]

13.1 An Overview of Dynamic Documents
Recall from our discussion in Chapter 1 that the client browser initiates data flow on
the Web by contacting a server with a document request. The server honors the
request by sending the document to the client. The client subsequently displays the
document’s contents to the user. For normal web documents, a single transaction
initiated from the client side is all that is needed to collect and display the docu-
ment. Once displayed, however, it does not change.

448 | Chapter 13: Dynamic Documents

Dynamic documents, on the other hand, are the result of multiple transactions initi-
ated from either or both the server side and the client side. A client-pull document is
one that initiates multiple transactions from the client side. When the server is the
instigator, the dynamic document is known as a server-push document.

In a client-pull document, special HTML codes tell the client to periodically request
and download another document from one or more servers on the network, dynami-
cally updating the display.

Server-push documents also advance the way servers communicate with clients. Nor-
mally, over the Web, the client stays connected with a server for only as long as it
takes to retrieve a single document. With server-push documents, the connection
remains open and the server continues to send data to the client periodically, adding
to or replacing the previous contents.

Mozilla-based browsers, including Firefox and Netscape, currently are the only
browsers able to handle HTTP server-push dynamic documents natively. And
because server-push documents don’t work without an HTTP server, you can’t
develop and test them unless you have a server running locally as well.

13.1.1 Another Word of Caution
As always, we tell you exactly how to use these exciting but nonstandard features,
and we admonish you not to use them unless you have a compelling and overriding
reason to do so. We are particularly strident with that admonition for dynamic docu-
ments, not only because they aren’t part of the HTML standard, but also because
dynamic documents can hog the network. They require larger, longer downloads
than their static counterparts, and they require many more (in the case of client-pull)
or longer-term (for server-push) client/server connections. Multiple connections on a
single server are limited to a few of the millions of web users at a time. We’d hate to
see your readers miss out because you’ve created a jiggling image in a dynamic docu-
ment that would otherwise have been an effective and readily accessible static docu-
ment that more people could enjoy.

13.2 Client-Pull Documents
Client-pull documents are relatively easy to prepare, and you can run them locally
without requiring an HTTP server. That’s because the client-pull document has the
browser request and load another document, even if from local storage. All you need to
do is embed a <meta> tag into the header of your HTML or XHTML document. The
special tag tells the client browser to display the current document for a specified
period of time and then load and display an entirely new one, just as though the user
had selected the new document from a hyperlink. (Note that currently there isn’t an
easy way to change just a portion of a document dynamically using client-pull, though
you could use frames if you wanted a split-screen effect.) [<meta>, 6.8.1]

13.2 Client-Pull Documents | 449

13.2.1 Uniquely Refreshing
Client-pull dynamic documents work with all the popular browsers because they
respond to a special HTTP header field called Refresh.

You may recall from previous discussions that whenever an HTTP server sends a
document to the client browser, it precedes the document’s data with one or more
header fields. One header field, for instance, contains a description of the docu-
ment’s content type, used by the browser to decide how to display the document’s
contents. For example, the server precedes HTML documents with the header “Con-
tent-type: text/html,” whose meaning should be fairly obvious.

As we discussed in Chapter 6, you can add your own special fields to an HTML doc-
ument’s HTTP header by inserting a <meta> tag into its <head>. [<meta>, 6.8.1]

The HTTP Refresh field implements client-pull dynamic HTML documents, enabled
by the <meta> tag format:

<meta http-equiv="Refresh" content="field value">

The tag’s http-equiv attribute tells the HTTP server to include the Refresh field, with
a value specified by the content attribute (if any, carefully enclosed in quotation
marks), in the string of headers it sends to the client browser just before it sends the
rest of the document’s content. The browser recognizes the Refresh header as the
mark of a dynamic HTML document and responds accordingly, as we discuss in the
next section.

13.2.2 The Refresh Header Contents
The value of the content attribute in the special Refresh <meta> tag determines when
and how the browser updates the current document. Set it to an integer, and the
browser delays that many seconds before automatically loading another document.
You may set the content field value to 0, meaning no delay at all. In that case, the
browser loads the next document immediately after it finishes rendering the current
one, which allows you to achieve some very crude animation effects. [<meta>, 6.8.1]

13.2.2.1 Refreshing the same document

If the Refresh field’s content value is just the number of seconds, the browser reloads
that same document over and over again, delaying the specified time between each
cycle, until the user goes to another document or shuts down the browser.

For example, the browser reloads the following client-pull document every 15 seconds:

<html>
<head>
 <meta http-equiv="Refresh" content="15">
 <title>Kumquat Market Prices</title>
</head>
<body>

450 | Chapter 13: Dynamic Documents

 <h3> Kumquat Market Prices</h3>
 Kumquats are currently trading at $1.96 per pound.
</body>
</html>

The financial wizards among you may have noticed that, with some special software
tricks on the server side, you can update the price of kumquats in the document so
that it acts like a ticker-tape machine, with the latest kumquat commodity price
updated every 15 seconds.

13.2.2.2 Refreshing with a different document

Instead of reloading the same document repeatedly, you can tell the browser to load
a different document dynamically. You do so by adding that document’s URL after
the delay time and an intervening semicolon in the <meta> tag’s content attribute. For
example:

<meta http-equiv="Refresh"
 content="15; URL=http://www.kumquat.com/next.html">

causes the browser to retrieve the next.html document from the www.kumquat.com
web server after having displayed the current document for 15 seconds.

13.2.2.3 Cycling between documents

Keep in mind that the effects of the Refresh <meta> tag apply only to the document in
which it appears. Hence, to cycle between several documents, you must include a
Refresh <meta> tag in each one. To achieve the effect, set the content value for each
document in the cycle with a URL which points to the next document, and the last
document pointing back to the first one to complete the cycle.

For example, the following are the <meta> tags for the headers of each in a three-
HTML-document cycle.

The first.html document contains:

<meta http-equiv="Refresh"
 content="30; URL=second.html">

The second.html document contains:

<meta http-equiv="Refresh"
 content="30; URL=third.html">

And the third.html document has in its <head> (besides other crazy ideas):

<meta http-equiv="Refresh"
 content="30; URL=first.html">

If it is left alone, the browser endlessly loops between the three documents at 30-
second intervals.

Cycling documents make excellent attractors, catching the attention of passers-by to
a web-driven kiosk, for example. Users can navigate through the wider collection of

13.2 Client-Pull Documents | 451

kiosk documents by clicking hyperlinks in one of the kiosk’s attractor pages and then
by clicking subsequent ones.*

To complete the cycle, documents selected from an attractor page also should have
their own Refresh fields that point back to the originating attractor document in the
cycling set of attractors. You should specify a fairly long delay period for the nonat-
tractor pages—120 to 300 seconds or more—so that the kiosk doesn’t automatically
reset while a user is reading the current document. However, the delay period should
be short enough so that the kiosk resets to the attractor mode in a reasonable period
of time after the user finishes.

13.2.3 Pulling Non-HTML Content
The client-pull feature is not restricted to HTML documents, although it is certainly
easiest to create dynamic documents with HTML. With a bit of server-side program-
ming, you can add a Refresh field to the HTTP header of any sort of document, from
audio files to images to video clips.

For example, create a real-time video feed by adding a Refresh header field in each of
a sequence of images grabbed and digitized from a camera. Include a delay of 0 with
the URL that points to the next image so that as quickly as the browser displays one
image, it retrieves the next. Assuming that the network keeps up, the result is a crude
(really crude) TV.

Because the browser clears the window before presenting each subsequent image, the
resulting flicker and flash make it almost impossible to present a coherent sequence
of images. This technique is more effective when presenting a series of images
designed to be viewed as a slide show, where the user expects some sort of display
activity between each image.

Perhaps a better use of the client-pull feature is with long-playing multimedia docu-
ments, which the popular browsers use special helper applications to display. On a
multitasking computer, such as one running Linux or Windows, the browser down-
loads one document, while a helper application plays another. Combine the client-
pull capabilities with that multitasking to improve multimedia document perfor-
mance. Instead of waiting for a single, large document such as a movie or audio file
to download before playing, break it into smaller segments, each automatically
downloaded by the previous segment via the Refresh header. The browser plays the
first segment while downloading the second, then third, then fourth, and so on.

* This brings up a good point: the user may override the Refresh dynamic action at any time (for instance, by
clicking a hyperlink before the client-pull timeout expires). The browser always ignores the Refresh action
in lieu of user interaction.

452 | Chapter 13: Dynamic Documents

13.2.4 Combining Refresh with Other HTTP Header Fields
You can have your client-pull dynamic documents perform some neat tricks by com-
bining the effects of the Refresh field with other HTTP header fields. One combina-
tion that is particularly useful is Refresh with a Redirect field.

The Redirect field lets the server tell the browser to retrieve the requested document
elsewhere at the field’s accompanying URL value. The client browser automatically
redirects its request to the new URL and gets the document from the new location,
usually without telling the user. We retrieve redirected documents all the time and
may never notice.

The most common cause for redirection is when someone moves an HTML docu-
ment collection to a new directory or to a new server. As a courtesy, the webmaster
programs the original host server to send an HTTP header field containing the
Redirect field and new URL (without a document body) to any and all browsers that
request the document from the original location. That way, the new document loca-
tion is transparent to users, and they won’t have to reset their browser bookmarks.

But sometimes you want the users to reset their bookmarks to the new location,
because the old one won’t be redirecting browsers forever (perhaps because it’s being
taken out of service). One way to notify users of the new location is to have the redi-
rection URL point to some HTML document other than the home page of the new
collection that contains a message about the new location. Once noted, users then
take a “Continue” hyperlink to the new home page location and set their bookmarks
accordingly.

By combining the Redirect and Refresh fields, you can make that notification screen
automatically move to the new home page. If the browser receives an HTTP header
with both fields, it honors both; it immediately fetches the redirected URL and dis-
plays it, and it sets the refresh timer and replacement URL, if specified. When the
time expires, the browser automatically retrieves the next URL—your new home
page location.

13.2.4.1 A random URL generator

Another application for the combination of Redirect and Refresh HTTP header fields
is a perpetual, random URL generator. You’ll need some programming skills to cre-
ate a server-side application that selects a random URL from a prepared list and out-
puts a Redirect field that references that URL along with a Refresh field that
reinvokes the random-URL application after some delay.

When the modern browser receives the complete header, it immediately loads and
displays the randomly selected document specified in the Redirect field’s URL. After
the delay specified in the Refresh field, the browser reruns the random-URL genera-
tor on the server (as specified in the refresh URL), and the cycle starts over. The
result is an endless cycle of random URLs displayed at regular intervals.

13.3 Server-Push Documents | 453

13.2.5 Performance Considerations
Client-pull documents consume extra network resources, especially when the refresh
delay is small, because each refresh may involve a new connection to a server. It may
take a browser several seconds to contact the server and begin retrieving the docu-
ment. As a result, rapid updates generally are not feasible, especially over slow net-
work connections.

Use client-pull dynamic documents for low-frequency updates of entire documents,
or for cycling among documents without user intervention.

13.3 Server-Push Documents
Netscape invented server-push dynamic documents. With the technology, the client/
server connection remains open after an initial transfer of data, and the server period-
ically sends new data to the client, updating the document’s display. Server-push is
made possible by some special programming on the server side and is enabled by the
multipart/mixed-media type feature of Multipurpose Internet Mail Extensions
(MIME), the computer industry’s standard for multimedia document transmission
over the Internet.

13.3.1 The Multipart/Mixed Media Type
As we mentioned earlier in this chapter in the discussion of client-pull dynamic doc-
uments, the HTTP server sends a two-part transmission to the client browser: a
header describing the document, followed by the document itself. The document’s
MIME type is part of the HTTP header field. Normally, the server includes “Con-
tent-Type: text/html” in an HTML document’s header before sending its actual con-
tents. By changing that content type to “multipart/mixed,” you can send an HTML
document or several documents in several pieces, rather than in a single chunk. Only
Mozilla-based browsers, such as Netscape and Firefox, though, understand and
respond to the multipart header field; other browsers either ignore additional parts
or refuse the document altogether.

The general form of the MIME multipart/mixed-media Content-Type header looks
like this:

Content-type: multipart/mixed;boundary="SomeRandomString"

This HTTP header component tells the Mozilla client to expect the document to fol-
low in several parts and to look for SomeRandomString, which separates the parts.
That boundary string should be unique and should not appear anywhere, in any of
the individual parts. The content of the server-to-client transmission looks like this:

--SomeRandomString
Content-type: text/plain

454 | Chapter 13: Dynamic Documents

Data for the first part
--SomeRandomString
Content-type: text/plain

Data for the second part

--SomeRandomString--

The preceding example has two document parts, both composed of just plain text.
The server sends each part, preceded by our SomeRandomString document-boundary
delimiter (which itself is preceded by two dashes), followed by the Content-Type field
and then the data for each part. The last transmission from server to client is a single
reference to the boundary string, followed by two more dashes indicating that this
was the last part of the document.

Upon receipt of each part, the Mozilla browser automatically adds the incoming data
to the current document display.

You have to write a special HTTP server application to enable this type of server-
push dynamic document—one that creates the special HTTP MIME multipart/
mixed header and sends the various documents separated by the boundary delimiter.

13.3.2 The Multipart/X-Mixed-Replace Media Type
Server-push dynamic document authors may use an experimental variant of the
MIME multipart/mixed media type known as multipart/x-mixed-replace media. The
difference between this special content type and its predecessor is that, instead of
simply adding content to the current display, the “replace” version has each subse-
quent part replace the preceding one.

The format of the mixed-replace HTTP header is very similar to its multipart/mixed
counterpart; the only difference is in the Content-Type:

multipart/x-mixed-replace;boundary=SomeRandomString

All other rules regarding the format of the multipart content are the same, including
the boundary string used to separate the parts and the individual Content-Type fields
for each part of the content.

13.3.3 Exploiting Multipart Documents
It is easy to see how you can use the two special MIME multipart content types to
create server-push dynamic documents. By delaying the time between parts, you
might create an automatically scrolling message in the Mozilla browser window. Or
by replacing portions of the document through the x-mixed-replace MIME type, you
might include a dynamic billboard in your document, or perhaps even animation.

Note that server-push multipart documents need not apply only to HTML or other
plain-text documents. Images, too, are a MIME-encoded content type, so you can
have the HTTP server transmit several images in sequence as parts of a multipart

13.3 Server-Push Documents | 455

transmission. Because you may also have each new image replace the previous one,
the result is crude animation. Done correctly, over a network of sufficient band-
width, the effect can be quite satisfying.

13.3.3.1 Efficiency considerations
Server-push documents maintain a connection between the client and server for the
duration of the dynamic document’s activity. For some servers, this may consume
extra network resources and may also require that several processes remain active,
servicing the open connection. Make sure the server-push process (and, hence, the
client/server connection) expires upon completion or after some idle period. Other-
wise, someone will inadvertently camp on an endlessly cycling server-push docu-
ment and choke off other users’ access to the server.

Before choosing to implement server-push documents, make sure that your server
can support the added processing and networking load. Keep in mind that many
simultaneous server-push documents may be active, multiplying the impact on the
server and seriously affecting overall server performance.

13.3.4 Creating a Server-Push Document
Create a special application that runs with the HTTP server to enable server-push
dynamic documents. The application must create the special MIME Content-Type

header field that notifies the Mozilla browser that the following document comes in
several parts—added to or replacing a portion of the current document. The applica-
tion must create the appropriate boundary delimiter and send the Content-Type

header and data for each part, perhaps also delaying transmission of each part by
some period of time. Consult your server’s documentation to learn how to create a
server-side application that can be invoked by accessing a specific URL on the server.
With some servers, this may be as simple as placing the application in a certain direc-
tory on the server. With others, you may have to bend over backward and howl at
the moon on certain days.

13.3.4.1 Server-push example application for NCSA and Apache httpd
The National Center for Supercomputing Applications (NCSA) and Apache httpd
servers run on most Unix and Linux systems. Administrators usually configure the
servers to run server-side applications stored in a directory named cgi-bin.

The following is a simple shell script that illustrates how to send a multipart docu-
ment to a Netscape or Firefox client via httpd:*

#!/bin/sh
#

* It is an idiosyncrasy of NCSA httpd that no spaces are allowed in the Content-Type field that precedes your
multipart document. Some authors like to place a space after the semicolon and before the boundary key-
word. Don’t do this with NCSA httpd; run the whole Content-Type together without spaces to get the server
to recognize the correct multipart content type.

456 | Chapter 13: Dynamic Documents

Let the client know we are sending a multipart document
with a boundary string of "NEXT"
#
echo "HTTP/1.0 200"
echo "Content-type: multipart/x-mixed-replace;boundary=NEXT"
echo ""
echo "--NEXT"
while true
do
#
Send the next part, followed by a boundary string
Then sleep five seconds before repeating
#
 echo "Content-type: text/html"
 echo ""
 echo <html>
 echo <head>
 echo "<title>Processes On This Server</title>"
 echo "</head>"
 echo <body>
 echo "<h3> Processes On This Server</h3>"
 echo "Date:"
 date
 echo <p>
 echo <pre>
 ps -el
 echo "</pre>"
 echo "</body>"
 echo "</html>"
 echo "--NEXT"
 sleep 5
done

In a nutshell, this example script updates a list of the processes running on the server
machine every five seconds. The update continues until the browser breaks the con-
nection by moving on to another document.

We offer this shell script example to illustrate the basic logic behind any server-push
document generator. In reality, you should try to create your server-side applications
using a more conventional programming language, such as Perl or C. These applica-
tions will run more efficiently and can better detect when the client has severed the
connection to the server.

457

Chapter 14!ti
In this chapter:

• The Mobile Web
• Device Considerations
• XHTML Basic
• Effective Mobile Web Design

CHAPTER 14

Mobile Devices14

Just now, as most web developers have become very proficient at developing engag-
ing content for the popular PC-based browsers, they are being confronted with the
challenge of providing equally elegant pages for those ubiquitous, tiny mobile
devices. But mobile web-enabled devices were not anticipated back in the early
1990s when HTML was first defined and refined, and the current standards don’t
help much, either. In this chapter, we look at the broad range of mobile web-enabled
devices, the challenge they present to web designers, and a subset of XHTML that
addresses those devices. We also offer some suggestions—and lots of sympathy—for
creating effective content that works across many of these devices.

14.1 The Mobile Web
With the World Wide Web now firmly entrenched as a part of normal modern life, it
is only natural that users want to access web content wherever they may be, at any
time. Responding to this demand, vendors now offer an incredible array of devices
and access methods to meet that need. Although the types of devices number in the
hundreds, the overall market can be examined as a few key product categories.

14.1.1 Devices
Most of today’s mobile devices—mobile phones and personal digital assistants
(PDAs)—have digital displays, typically an LCD, and onboard processing. So why
not a built-in browser?

458 | Chapter 14: Mobile Devices

14.1.1.1 Mobile phones

The browser software resides in the cell phone’s core operating system and the end
user cannot easily upgrade or extend it. And, as we discuss in more detail shortly, it
has far fewer features than are normally associated with a typical desktop browser.
Other features are available only to the persistent user willing to endure horrifically
bad user interfaces to reach them.

The cell phone provider gives you access to the Internet by any one of several differ-
ent technologies, and some restrict the available content, or make it difficult to
access content outside of their proprietary web portal.

14.1.1.2 PDAs
PDAs arguably provide the best mobile web experience. The PDA marketplace is
dominated by devices running the Palm OS operating system from PalmSource, Inc.
(originally Palm Computing, Inc.) and those running the Windows Mobile operat-
ing system from Microsoft. Regardless of vendor, these devices provide a high-
quality browser that may include many of the features you would normally find in a
desktop browser. The end user can upgrade or extend the browser with relative ease.
Other network applications, such as email and FTP, may be available as well.

PDAs typically rely on the Institute of Electrical and Electronics Engineers (IEEE)
standard 802.11, commonly known as WiFi (pronounced “why fie”), for wireless
Ethernet-based connectivity with a network and, ultimately, the Internet. Some
PDAs use Bluetooth, an alternative wireless technology, to connect with another net-
work device, such as a mobile phone, laptop computer, or Bluetooth network access
point, in order to ultimately connect with the Web.

14.1.1.3 Convergence devices

Convergence devices attempt to marry the convenience of a mobile phone with the
flexibility and power of a PDA. They use cellular network connectivity, but may also
offer 802.11 networking, as well. They can run most applications available to PDA
users and provide some integration between the PDA experience and conventional
telephony features. Convergence products are currently offered by PalmSource (run-
ning Palm OS and Windows Mobile) and various cellular phone manufacturers (run-
ning Windows Mobile). Convergence devices offer distinct compromises between
the PDA experience, with its larger screen and computing power, and mobile
phones, with their small form factor and ease of use.

14.1.2 Cellular Access
In addition to the device type, users can choose from a number of access plans that
allow their mobile device to connect with the Internet. As with mobile devices, hun-
dreds of access plans are available, but they can generally be categorized into a few
common groups.

14.2 Device Considerations | 459

14.1.2.1 Low speed

Often known as first- or second-generation data access, low-speed cellular access
operates at rates similar to that of a 56-kilobaud dial-up modem. Providers typically
charge by the byte (!), with packages offering blocks of bytes on a monthly basis.
Because of its speed and relatively high cost, low-speed access is intended for inter-
mittent, sparse use for specific small-volume tasks. Continuous access using these
plans is not feasible, both from the cost perspective and from its arduously slow data
rate. This kind of low-speed access is available exclusively on mobile phones and
some convergence devices from many different vendors.

14.1.2.2 High-speed cellular access

Recent advances in cellular technology have enabled carriers to offer high-speed cel-
lular access with speeds ranging up to 1.5 megabits per second. At these speeds,
users can enjoy a high-quality web experience that includes video and audio con-
tent. Recognizing the market potential, most carriers offer high-speed access in a sin-
gle-price, unlimited-usage plan. Marketed under a variety of monikers (such as
EDGE and EVDO, among others), this kind of connectivity was originally deployed
in mobile phones, but is fast showing up in PDAs, convergence devices, and some
laptop computers.

14.1.2.3 WiFi

Many web-enabled PDAs and some convergence devices include 802.11 wireless net-
working and, consequently, can connect with compatible wireless LAN access points
that have become ubiquitous in the last few years. Whole cities and campuses now
provide pervasive wireless and consequent mobile access to the Internet. While most
devices offer the “b” version of the technology (802.11b), which operates at a maxi-
mum of 11 megabits per second, some newer devices include the “g” version, which
provides for rates up to 54 megabits per second. Access costs range from free (home
networks, employer networks, and public access points) to tens of dollars per month
for independent suppliers, such as Cingular and T-Mobile.

Based on this device and access taxonomy, the mobile web content designer has nine
potential user environments to consider. Unfortunately, it gets much worse because
each specific device and access plan may have its own restrictions and idiosyncra-
sies. As we’ll see in the next section, dozens of variables can affect the overall mobile
web user experience.

14.2 Device Considerations
When designing content for mobile devices, the developer needs to keep many
design constraints in mind. If the developer neglects any one of them, the resulting
web pages will be difficult if not impossible to use on the mobile web. We suggest

460 | Chapter 14: Mobile Devices

that the successful mobile web designer always keep browser, input, network, and
display constraints in mind to keep from getting in a bind.*

14.2.1 Browser Constraints
Browser variations present the biggest challenge to the mobile web content designer.
Limited by the host device, mobile browsers cannot support the full range of tags
available in a conventional desktop browser. For those tags that are supported,
implementation is not consistent across a range of mobile devices. As a result,
designers need to carefully consider which tags they will use in their content and
often have to sacrifice more complicated page designs in favor of simpler pages that
display correctly on a larger number of devices.

Beyond tag availability, mobile browsers may or may not support scripting,
stylesheets, frames, embedded objects, layers, cookies, and other support structures
within the page content. Even widely supported <meta> tags, such as refresh tags,
may not be supported. In general, cautious designers will avoid any of these ele-
ments in their content. While the resulting content will certainly be simpler, it is
guaranteed to be viewable on many devices. Unlike desktop browsers that try to
muddle through when presented with unsupported tags, many mobile browsers just
give up when confronted with complex content. More than anything else, mobile
web designers do not want attempts to access their content to result in a “page not
viewable” error within the browser.

Even when the content sticks to the “safe” tags, as described later in this chapter, the
results are unpredictable among different browsers. There are no standard fonts, and
some mobile browsers offer only one font, in one size, without bold or italic embel-
lishment. Most devices allow the user to select different font sizes for the device to
accommodate aging eyes and small displays; these size differences can dramatically
affect the rendering of content on the device’s small screen.

Some mobile browsers cannot handle any sort of images in their pages, although this
is becoming less of a problem in more recent mobile devices. Almost all mobile
browsers have a difficult time with large images and may ignore or alter such images
as they see fit. There is no clear definition of what constitutes a “large” image; it is in
the eye of the browser and may be determined by both image dimensions and over-
all size. Formatting and wrapping of text with images is inconsistent, and mobile
browsers often ignore image alignment attributes altogether. Needless to say, the
current generation of devices cannot handle any sort of embedded video, flash, or
animated content in any form.

* The astute reader will note that “browser, input, network, and display” form the clever and helpful acronym
BIND.

14.2 Device Considerations | 461

14.2.2 Input Constraints
Cellular phones lack the single most convenient input device that makes the desktop
browser successful: a mouse. PDAs and convergence devices do not suffer this limita-
tion, typically allowing the user to tap on the screen with a stylus, but the majority of
your target audience for mobile content is using a cellular phone. Consequently, general
page navigation is a chore on mobile devices. Moving the focus within a page to select a
link can be tedious at best, especially when there are several links to navigate among.

Entering text on a cellular phone is tiresome, too. Most phones offer two text entry
modes: a multitap mode where pressing a key cycles through the letters on that key,
and a predictive mode where the user adds letters until the phone finds the desired
word based on the letter pattern. The former is tedious but ultimately more accu-
rate; the latter may be quicker, but usually fails because typing URLs is the most
common mobile web activity and does not follow typical spelling patterns.

For both modes, typing punctuation is difficult because fewer common punctuation
symbols are often available through a single key, which cycles through a dozen or
more symbols.

14.2.3 Network Constraints
Most mobile content designers are keenly aware of the constraints imposed by the
slow networking speeds of most mobile devices. What many fail to appreciate, how-
ever, is how much users have to pay for each byte of mobile web content. Ironically,
today’s mobile web designers need to return to a 1995-era design mindset, when
advanced dial-up speeds were reaching just 56 kilobits per second and connection
times were metered by the Internet service provider (ISP). Is your content so valu-
able that users are willing to pay every time they want to view your pages?

Beyond bandwidth concerns, mobile device users often operate within odd, carrier-
imposed limitations that network PC users would never tolerate. Some URLs may be
blocked by certain carriers, and others may be passed through proxy servers that
alter or translate content for the mobile device. It is difficult to predict how a particu-
lar carrier will treat a particular page. The best defensive strategy is to keep your con-
tent as simple as possible to avoid odd translation and conversion of your pages.

Finally, network connectivity is not constant while viewing content on a mobile
device. Users may reach your site, view a page or two, and suddenly lose their con-
nection as they pass into a dead zone in their coverage. Content that requires lots of
navigation among pages can be frustrating in marginal coverage areas.

14.2.4 Display Constraints
There is no denying one attribute of all mobile devices: the display is small, even
tiny. Even convergence device displays, which manufacturers boast to be the largest

462 | Chapter 14: Mobile Devices

within the mobile phone market, are miniscule when compared to a conventional
desktop browser. Most devices provide vertical scrolling, allowing content to flow
beyond the bottom of the display, but very few support horizontal scrolling. As a
result, content must be consciously designed to work in a small display with tightly
bounded horizontal space and a limited amount of vertical space.

To make matters worse, the actual display dimensions are different for almost every
device that reaches the market. Unlike desktops, where designers typically assume
800 × 600 or 1024 × 768 displays, the dimensions of a mobile device can range from
128 × 128 on some cellular phones to 320 × 480 and higher on some PDAs. Cell
phones often sport odd display sizes, such as 176 × 220 or 122 × 96. In general, you
cannot make any assumptions about display size nor should you target a specific size
with your content. This is good design advice for any web page in any environment!

14.3 XHTML Basic
Recognizing the inherent limitations in mobile browsing, and seeking to promote a
standard content model for those devices, the World Wide Web Consortium (W3C)
has defined a reduced version of XHTML that caters to these devices. Known as
XHTML Basic, this version of XHTML defines a standard set of tags that are suffi-
cient for creating effective content for mobile devices, yet are simple enough to
ensure that they will be consistently adopted across a wide range of mobile browsers.

Be forewarned: just because a standard supports mobile devices doesn’t mean that a
browser will. Often hardware limitations prevent implementation.

14.3.1 Supported Tags
XHTML Basic is best addressed as several groups of tags that together define a mini-
mal but useful version of XHTML.

14.3.1.1 Basic content

XHTML Basic wouldn’t work if it didn’t support the four core tags that define any
document: <html>, <head>, <title>, and <body>. You should never write a document
without these tags, of course, and you should use them to delimit your document
accordingly.

More complicated document structure is not supported. XHTML Basic specifically
excludes frames and layers from mobile web devices.

Within the document body, XHTML Basic supports a core set of text-structural tags,
including the six heading tags (<h1> through <h6>),
, <p>, <pre>, and
<blockquote>. These are sufficient to create flows of text that are organized into para-
graphs and blocks of text and are identified by headings at various levels, which
makes for a readable document in any browser.

14.3 XHTML Basic | 463

Within a text flow, XHTML Basic also supports all of the content-based style tags,
including <abbr>, <acronym>, <address>, <cite>, <code>, <dfn>, , <kbd>, <q>,
<samp>, , and <var>. But given the paucity of fonts on most mobile devices,
especially mobile phones, a mobile browser may be hard-pressed to even have more
than one way to represent all these tags. This warning also applies to the heading
tags, as it is highly unlikely that most mobile phones can offer six font sizes to distin-
guish the six heading tags.

Device font limitations also force the XHTML Basic standard to rule out the physi-
cal style tags, such as bold and italic text. With no guarantee that those styles will be
available, it would be misleading to support the equivalent tags. Bidirectional text
also is not supported; many mobile devices have a hard enough time rendering con-
ventional text flows.

XHTML Basic has a strong focus on using stylesheets to manage the presentation of
your mobile content, but not within the context of the page itself: the <style> tag itself
is not supported. Instead, XHTML Basic defers to external stylesheets and, to support
them, includes the <div> and tags so that you can delimit your content and
apply styles to it as needed. Use the class attribute to associate a style with that text.

Of course, XHTML Basic also supports the <a> tag so that you can link your pages to
other documents.

14.3.1.2 Images, objects, and scripting

Although you should use it very judiciously, XHTML Basic does include the tag.
You should never drop images into your documents without due consideration, and
even more so for mobile browsing, because they can dramatically affect the time needed
to download a document and even may break certain browsers if they are too large. We
offer more advice on using images effectively in your documents later in this chapter.

XHTML Basic also supports more general object embedding in mobile content with
the <object> and <param> tags. While the intent is noble, these tags pave the road to
heck for mobile browsing. Support is highly browser and device specific, and the
mobile market is not yet mature enough to let authors assume broad support for any
sort of embedded content beyond simple images. Nonetheless, if you are able to tar-
get your content to a specific device that provides appropriate support, these tags are
here for your use.

XHTML Basic does not support scripting or event handling. None of the event-han-
dling attributes is supported, nor are the <script> and <noscript> tags. Given the
limited memory and computing power of the typical mobile device, this is not unrea-
sonable. Highly dynamic, script-driven pages are better left to a full desktop browser.

14.3.1.3 Lists

In order to provide additional structure to your content, XHTML Basic supports
ordered (), unordered (), and definition (<dfn>) lists and their supporting

464 | Chapter 14: Mobile Devices

, <dl>, <dd>, and <dt> tags. These lists can really help to organize and structure
your content, especially navigation pages that offer multiple links to the user.

In particular, coupling a numbered list of links with the accesskey attribute in their
associated <a> tags makes it very easy for a cell phone-based browser user to navi-
gate your pages with a single press of a key.

14.3.1.4 Forms

Interactivity is another feature critical to web browsing, so XHTML Basic provides
support for forms, including the basic structure and input elements <form>, <input>,
<label>, <select>, <option>, and <textarea> tags. The XHTML Basic specification
does not restrict the kinds of form elements that you might use, but keep in mind
that some mobile devices may not support extremely large choice items or menus.

The only form elements specifically prohibited by the XHTML Basic standard are file
and image uploading elements. Ironically, these would be attractive browser options
for all those cell phones that sport built-in cameras by allowing users to upload pic-
tures to a web server.

14.3.1.5 Tables

Web designers commonly use tables to structure content display. While you may
achieve similar effects for the mobile browser, be judicious. Although not explicitly
stated, the XHTML standard bearers frown on the practice and want you to use
tables for tables of information, not layout.

XHTML Basic supports only the core table tags: <table>, <tr>, <td>, <th>, and
<caption>. Fancier things, such as spanning columns and even nested tables, are spe-
cifically not supported by the XHTML Basic standard. Complex tables may not be
rendered correctly, and the narrow display size can easily disrupt your intended table
presentation. Subtle table effects, such as varying cell margins and rule widths, will
almost certainly be handled inconsistently between mobile browsers and are best
avoided to ensure broad compatibility of your content.

14.3.1.6 Document header

XHTML Basic supports a few of the common tags found in the document <head>;
specifically, the <meta>, <link>, and <base> tags. The primary intent of the <link> and
<base> tags is to allow you to link to your stylesheets from within your mobile docu-
ments. Be somewhat cautious with the <meta> tag, though: the mobile browsers do
not support all variations of its attributes.

14.3.2 Design Versus Intent
While the XHTML Basic standard defines a specific set of tags that should work on
any compliant mobile browser, do not be misled into thinking that you can push the

14.4 Effective Mobile Web Design | 465

elements of XHTML Basic to the limit in designing your content. The mobile device
market is too young and the browsers too immature to provide consistent support
for every possible tag variation within XHTML Basic. More, ahem, mature designers
may think back to when they were designing pages in the mid-90s, when creating
content that worked across Netscape Navigator and early versions of Internet
Explorer was challenging at best and more likely infuriating. Both browsers
attempted to implement the early HTML standards, but there were too many varia-
tions in the products to make anyone’s life easy.

The intent of the mobile-web standard is to create a small set of tags that work rea-
sonably well across a wide range of devices, from phones to PDAs to set-top boxes
and other devices. The W3C even lists appliances such as smart refrigerators and
washing machines as potential targets for human interactions through web pages.
Good designers will stay within the intent of the design, using the tags in a reason-
able manner and avoiding tricks and clever coding to implement a particular page.
The resulting content will work well on lots of devices, and the designers will be
calmer and happier people.

14.4 Effective Mobile Web Design
There is no secret to creating effective mobile content. In fact, the advice we’ve been
giving throughout this book applies to mobile devices just like it does for their larger
desktop cousins: know your audience, know their needs, and know their browsing
environment. With that said, the mobile browsing experience is different enough
from the desktop that we’d be remiss if we did not offer some specific hints to make
your web content look and act great.

With the popularity of mobile web access mushrooming, there is an abundance of
mobile web design advice, good and bad. In the following sections, we’ll offer up our
favorite bits of guidance, based upon personal experience and many visits to many
bad mobile sites.

14.4.1 Understand Your User
People turn to a mobile browser for different reasons than when they access the Web
from the desktop or laptop. Most users are not seeking an extended perusal of some
deep, thought-provoking dissertation, nor are they looking to apply for their next
home mortgage. Instead, they most often need small bits of data delivered quickly:
news headlines, weather information, flight information, sports scores, and the like.
Browsers have become the interface to many other networked devices, too, so a
mobile browser can have commercial and industrial applications. They won’t be
looking to download large pictures or a feature-length movie. They may want to
receive driving directions, to obtain a price check, to buy tickets to a movie in a real
theater, to adjust the operating parameters of a smart machine, to….

466 | Chapter 14: Mobile Devices

Keep this in mind when designing your content. What are you making available to your
users? Why would they want to view it in a mobile browser? Is your content so useful
that users will want to see it on the run, in their hand, while they do other things? Don’t
try to shoehorn your site into a mobile format just to say you did it. Select and deliver
content that matters to people when they are in a mobile setting. In almost all cases,
judicious editing is the first step to creating an effective mobile experience.

Once you have determined who will see and use your content in their mobile
browser, think about their environment during the browsing session. Most likely,
they will be distracted while viewing your site; many will be driving, in a meeting, or
talking with others. Your content needs to punch through the distraction, quickly
deliver the needed data, and get out of the way. It needs to be easily understood,
readily navigated, and quickly accessed. Bandwidth restrictions will most likely make
your content arrive slowly; don’t make things worse by making users work to get
what they want. Fast and mobile are the catchwords.

14.4.2 Links and Navigation
Except for overly large pages, poorly designed content navigation models are the
worst aspect of most mobile web pages. Many pages offer useful content, but they
make it so difficult to navigate that most users give up and surf elsewhere. It seems
that many designers, having built complex navigation structures for a conventional
desktop browser, feel compelled to reuse that same structure in a tiny, little mobile
browser. It also seems apparent that these designers never actually try to use their
content in a mobile environment. If they did, surely they would make things simpler
and more accessible.

Moving around within a page on a mobile browser is much more difficult than in a
desktop browser. Scrolling is a pain in a mobile browser, requiring many clicks of
tiny buttons. Shifting focus from link to link is similarly tedious, often requiring use
of slightly different tiny buttons. Be kind to your users: design your page navigation
to avoid scrolling and focus movement wherever possible. If you require traditional
“home,” “next,” and “previous” links in your pages, put them at the very top, where
users can see them and access them immediately. Don’t force users to scroll through
the entire page to find your navigation elements at the very bottom. Use just a few
effective navigational elements that clearly indicate where they will lead the user.

Some browsers support the accesskey attribute, allowing you to associate a key on
the keypad with a link or form element in your content. Pressing the key selects the
link or switches the focus to an appropriate form element. If you arrange your links
as a numbered list map, each with an accesskey number, users can quickly jump to a
link with a single key press, instead of tediously tapping to get to the desired link.
For example:

Kumquat Resources:

14.4 Effective Mobile Web Design | 467

 Growers
 Vendors
 Fan Clubs

enables the user to press “1” on the device keypad in order to access the kumquat
growers page, “2” to see vendors, and “3” to find a fan club. Enable these as simple
hyperlinks, and the user has to make several key presses to access and select the
embedded link. Small design decisions like this can make a big difference in the over-
all user experience.

In general, following a link in a mobile browser is costly, in both time and money.
Clearly identify your links so that the user knows where they lead and what they will
provide. Anonymous “click here” links are annoying. Users do not want to explore
your site; they want to get to the desired content quickly. If a link might lead to a
large amount of content, such as an image, let users know in the linking page so that
they can choose to avoid it.

Especially avoid image-based links, except when the images are very small. Many
mobile browsers allow the user to navigate the page and select a link before the full
page is loaded. Remember that the page gets fully downloaded from the server before
going back and downloading supporting files such as images. Accordingly, text-
based links appear nearly immediately, whereas image-based ones make the user
wait. In any case, avoid image-map navigation because the regions in the map may
not be easily visible or selectable, as they would in a browser with a mouse.

Resist the urge to link to other windows with the target attribute. Many mobile
browsers cannot handle multiple windows and will simply drop the linking window
content. Users will be confused and your content will certainly not be presented as
you intended.

14.4.3 Forms
Forms present a challenge to the mobile web designer. To make the mobile experience
interactive, you need to include forms for users to input requests and parameters and
for them to receive customized content from a site. Unfortunately, most forms do not
translate well to the mobile browser, where text input and field selection is difficult and
error-prone. Mobile users crave quick, customized information. Design your forms to
be easy to use, and your users will return again and again to use them.

As always, good content begins with good editing and forms are no exception. Make
sure that your forms are short and to the point. Clearly and succinctly label the vari-
ous input fields and elements so that users know immediately what is expected of
them. Whenever possible, set default values in the form so that users need not fum-
ble through every element before they can submit the form. This is especially useful
when a user must return to a form to correct an error. Forcing the user to reenter
data each time he visits the form is especially punitive.

468 | Chapter 14: Mobile Devices

Text entry is a special problem, especially when entering passwords and other
masked text. Not all mobile devices handle masked text input cleanly, and entering a
masked password using multitap text entry is exquisitely painful. In some mobile
browsers, the text entry is conducted in a separate pop-up window provided by the
browser, forcing the user to go through several levels of selection and acknowledg-
ment to place a single text value in a field.

Keep it simple. Forms with many input elements do not translate well to the small
mobile screen. As users scroll through the form to fill it out, they are unable to see
the previous elements already entered and cannot see the items to come. This disori-
entation makes it harder to get forms right in a mobile setting. You might consider
breaking your large form into multiple smaller forms, letting users incrementally
enter their information. If you take this approach, make sure you validate data as you
receive it; don’t collect six screens of information and then force the user to return to
the first screen to fix an error.

14.4.4 Layout and Presentation
The mobile web is not the place for fancy layout and slick content presentation. The
limited tags in XHTML Basic help ensure this, and the prudent mobile designer will
not try to go beyond those limits. While the transition from the feature-rich desktop
browser to the minimal mobile environment can be difficult, designers must remem-
ber that the point of content design is to inform the user, not to impress your
designer peers.

14.4.4.1 Stylesheets

All is not lost for those wanting to create attractive mobile content. Good designers
use stylesheets to separate their content from its presentation attributes. This also
makes it easier to have a single content source whose appearance is controlled by dif-
ferent stylesheets depending on the user device. Because inline styles are not recom-
mended or supported in the standard for mobile content, use external links to your
mobile content stylesheets. For example:

<link rel="stylesheet" type="text/css" media="handheld" href="sheet.css">

In this link, the media attribute is key: it ensures that this stylesheet will be applied
when your content is viewed on a mobile device, and will be ignored otherwise.
You’ll want to keep your stylesheets small because they contribute to the delay
required to load your pages over a slower mobile connection.

Know, too, that not all mobile browsers support stylesheets. For those that do, con-
nectivity issues may prevent the browser from loading the stylesheet. Test all your
content without any stylesheet, and make sure that it presents well without styles.

14.4 Effective Mobile Web Design | 469

14.4.4.2 Text fonts

Fonts present a particular problem to mobile content designers. Unlike desktop
browsers with access to hundreds of fonts in many variations, mobile browsers often
have just one available. It may come in only one or two sizes, and may not offer italic
and bold characters. The reality is that the tiny displays on mobile devices are not
equipped to show complex fonts, so the device vendors avoid them because they
would be illegible.

To work around these font restrictions, use header tags to enable different font sizes,
if they are available, instead of relative or absolute font sizing. Most mobile browsers
try to make a distinction between the <h1>, <h2>, and <h3> tags, so use them as
intended for page titles, section headers, and content delimiters in your pages. Keep
in mind, too, that many mobile browsers represent all the various emphasis tags
(bold, italic, emphasis, and the like) with bold text. If you try to use different empha-
sis tags in a single page, your users may see only one kind of emphasized text.

14.4.4.3 Margins and spacing

The narrow display on mobile devices constrains how you lay out your pages. Avoid
any sort of margins; you’ll just be giving up precious horizontal space. The same is
true for nested lists: deep nesting will cause your content to creep to the right, forc-
ing your text into a single river of words down the right edge of the display.

Absolute spacing and layout control is difficult on mobile devices. Common desktop
tricks, such as 1×1 images and transparent GIFs, just don’t work as you would expect
on a mobile device. Standard HTML elements such as frames and layers are generally
not supported, and limited table support makes table-based layout difficult as well. In
general, view the mobile device as a simple vertical flow of content and allow the
mobile browser to format your content as best it can without your interference.

Finally, be aware that adaptation may occur with your content. Adaptation is the
automated conversion of your content to make it more suitable for a mobile client. It
may occur at the server, when a mobile device is found to be requesting a page. It
often occurs within the carrier networks, where pages are stripped of offending tags
and images are dramatically reduced to make them more acceptable to the mobile
device. It also occurs implicitly in the mobile browser, where unsupported tags and
attributes are ignored during rendering.

You cannot prevent adaptation. Your best bet is to avoid it by creating simple content
that will not be subjected to adaptation at any layer. In short, the simpler that your
content is, the more likely it is going to appear as intended on the mobile device.

14.4.5 Images
In the early days of the Web, images made life difficult. Dial-up connections just
weren’t able to deliver large images in a timely fashion, leading to user frustration

470 | Chapter 14: Mobile Devices

and unusable pages. Older web users may remember the days when links often had
parenthetical sizes appended to them. When running on a 28.8 kilobit modem,
selecting a link followed by “(132K)” gave you time to grab a coffee while the image
made its way to your browser.

Fabulous advances in cheap bandwidth have made an image-rich web experience the
norm. Designers are used to using large images to make their pages beautiful. Unfor-
tunately, these kinds of designs fail on slow mobile devices, as well as fast mobile
devices with limited memory. As a result, images, especially large images, are a lux-
ury in a mobile environment.

That isn’t to say that images are forbidden in your mobile content. Instead, use
images sparingly. A small logo may work just fine in your pages, and tiny naviga-
tional icons will certainly make your pages easier to use. If you must deliver large
images do it with a separate link, with a warning about the size of the object the user
will be accessing. This way, users understand the cost before they select the link.

When you do deliver large images, use common file formats such as GIF89a and
JPEG. We know of no mobile browser that cannot handle these well-established file
formats. Keeping in mind the small display sizes of mobile devices, use images that
are close to the display size. In any case, do not send an enormous image and expect
the browser to scale it to the display size. It is downright mean to send a “gigantic”
1024 × 768 image over a slow mobile connection, swamping the mobile device’s
memory and forcing the device to shrink the image to fit its display. To further assist
the browser, always use the height and width attributes in the tag to let the
browser know what to expect as the image trickles in.

14.4.6 General Advice
In closing, we offer one final bit of advice: less is more. The mobile web is not the
place to show off your cutting-edge page-layout skills or fancy image library. Instead,
it is about quick delivery of great content that meets a specific need at a specific
point in time.

To stay focused on this minimalist approach, consider adopting the W3C’s recom-
mended mobile page design guidelines:

• Design all your pages to work within a display that is 120 pixels wide. While
many newer devices are wider than this, targeting this smaller number will
ensure reasonable presentation on a broad range of devices, old and new.

• Use GIF89a or JPEG images. As we noted before, this ensures that your images
will render on almost any mobile device.

• Do not deviate from the XHTML Basic document type. Using tags not sup-
ported by XHTML Basic almost guarantees rendering errors on a large percent-
age of mobile devices.

14.4 Effective Mobile Web Design | 471

• Use stylesheets to separate content from presentation. XHTML Basic defines the
best way to integrate stylesheets with your mobile content.

• Keep your total page size under 20 kilobytes. This includes the base page con-
tent, any associated stylesheets, and all included images.

By adopting these guidelines, judiciously editing your content, and structuring your
pages to be easily navigated, you’ll be creating remarkable mobile content that will
have your users cheering.

472

Chapter 15!ti
In this chapter:

• Languages and Metalanguages
• Documents and DTDs
• Understanding XML DTDs
• Element Grammar
• Element Attributes
• Conditional Sections
• Building an XML DTD
• Using XML

CHAPTER 15

XML 15

HTML is a maverick. It only loosely follows the rules of formal electronic document-
markup design and implementation. The language was born out of the need to assem-
ble text, graphics, and other digital content and send them over the global Internet. In
the early days of the Web’s boom, the demand for better browsers and document serv-
ers—driven by hordes of new users with insatiable appetites for more and cooler web
pages—left little time for worrying about things like standards and practices.

Of course, without guiding standards, HTML would eventually have devolved into
Babel. That almost happened, during the browser wars in the mid- to late 1990s.
Chaos is not an acceptable foundation for an industry whose value is measured in
the trillions of dollars. Although the standards people at the World Wide Web Con-
sortium (W3C) managed to rein in the maverick HTML with standard version 4, it is
still too wild for the royal herd of markup languages.

The HTML 4.01 standard is defined using the Standard Generalized Markup Lan-
guage (SGML). While more than adequate for formalizing HTML, SGML is far too
complex to use as a general tool for extending and enhancing HTML. Instead, the
W3C has devised a standard known as the Extensible Markup Language, or XML.
Based on the simpler features of SGML, XML is kinder, gentler, and more flexible,
well suited to guiding the birth and orderly development of new markup languages.
With XML, HTML is being reborn as XHTML.

In this chapter, we cover the basics of XML, including how to read it, how to create sim-
ple XML Document Type Definitions (DTDs), and the ways you might use XML to
enhance your use of the Internet. In the next chapter, we explore the depths of XHTML.

You don’t have to understand everything there is to know about XML to write
XHTML. We think it’s helpful, but if you want to cut to the chase, feel free to skip to
the next chapter. Before you do, however, you may want to take a look at some of
the uses of XML covered at the end of this chapter, starting with section 15.8.

15.1 Languages and Metalanguages | 473

This chapter provides only an overview of XML. Our goal is to whet your appetite and
make you conversant in XML. For full fluency, consult Learning XML by Erik T. Ray or
XML in a Nutshell by W. Scott Means and Elliotte Rusty Harold, both from O’Reilly.

15.1 Languages and Metalanguages
A language is composed of commonly accepted symbols that we assemble in a mean-
ingful way in order to express ourselves and to pass along information that is intelligi-
ble to others. For example, English is a language with rules (grammar) that define how
to put its symbols (words) together to form sentences, paragraphs, and, ultimately,
books like the one you are holding. If you know the words and understand the gram-
mar, you can read the book, even if you don’t necessarily understand its contents.

An important difference between human and computer-based languages is that
human languages are self-describing. We use English sentences and paragraphs to
define how to create correct English sentences and paragraphs. Our brains are mar-
velous machines that have no problem understanding that you can use a language to
describe itself. However, computer languages are not so rich and computers are not
so bright that you could easily define a computer language with itself. Instead, we
define one language—a metalanguage—that defines the rules and symbols for other
computer languages.

Software developers create the metalanguage rules and then define one or more lan-
guages based on those rules.* The metalanguage also guides developers who create
the automated agents that display or otherwise process the contents of documents
that use its language(s).

XML is the metalanguage the W3C created and that developers use to define markup
languages such as XHTML. Browser developers rely on XML’s metalanguage rules to
create automated processes that read the language definition of XHTML and imple-
ment the processes that ultimately display or otherwise process XHTML documents.

Why bother with a markup metalanguage? Because, as the familiar proverb goes, the
W3C wants to teach us how to fish so that we can feed ourselves for a lifetime. With
XML, there is a standardized way to define markup languages for different needs,
instead of having to rely upon HTML extensions. Mathematicians need a way to
express mathematical notations, for instance; composers need a way to present musi-
cal scores; businesses want their web sites to take sales orders from customers; physi-
cians look to exchange medical records; plant managers want to run their factories

* The use of metalanguages has long been popular in the world of computer programming. The C program-
ming language, for instance, has a set of rules and symbols defined by one of several metalanguages, includ-
ing yacc. Developers use yacc to create compilers, which in turn process language source files into computer-
intelligible programs (hence, its name: Yet Another Compiler Compiler). yacc’s only purpose is to help
developers create new programming languages.

474 | Chapter 15: XML

from web-based documents. All of these groups need an acceptable, resilient way to
express these different kinds of information so that the software industry can develop
the programs that process and display these diverse documents.

XML provides the answer. Each content sector—the business group, the factory-
automation consortium, a trade association—may define a markup language that suits
their particular need for information exchange and processing over the Web. Computer
programmers then create XML-compliant processes—parsers—that read the new lan-
guage definitions and allow the server to process the documents of those languages.

15.1.1 Creation Versus Display
While there is no limit to the kinds of markup languages that you can create with
XML, displaying your documents may be more complicated. For instance, when you
write HTML, a browser understands what to do with the <h1> tag because it is
defined in the HTML DTD.

With XML, you create the DTD.* For example, wouldn’t a recipe DTD be a great
way to capture and standardize all those kumquat recipes you’ve been collecting in
your kitchen drawers? With special <ingredient> and <portion> tags, the recipes are
easy to define and understand. However, browsers won’t know what to do with
these new tags unless you attach a stylesheet that defines their handling. Without a
stylesheet, XML-compliant browsers render these tags in a very generic way—certainly
not the flourishing presentation your kumquat recipes deserve.

Even with stylesheets, there are limitations to presenting XML-based information.
Let’s say you want to create something more challenging, such as a DTD for musical
notation or silicon chip design. While describing these data types in a DTD is possi-
ble, displaying this information graphically is certainly beyond the capabilities of any
stylesheets we’ve seen yet; properly displaying this type of graphically rich informa-
tion would require a specialized rendering tool.

Nonetheless, your recipe DTD is a great tool for capturing and sharing recipes. As
we’ll see later in this chapter, XML isn’t simply about creating markup languages for
displaying content in browsers. It has great promise for sharing and managing infor-
mation so that those precious kumquat dishes will be preserved for many genera-
tions to come. Just bear in mind that, in addition to writing a DTD to describe your
new XML-based markup language, in most cases you will want to supplement the
DTD with a stylesheet.†

* An alternative to DTDs is XML Schemas. Schemas offer features related to data typing and are more pro-
grammatically oriented than document-oriented. For more information, check out XML Schema by Eric van
der Vlist (O’Reilly).

† In fact, it is possible to write XML documents using only a stylesheet. DTDs are highly recommended but
optional. See http://www.w3c.org/TR/xml-stylesheet for details.

15.2 Documents and DTDs | 475

15.1.2 A Little History
To complete your education into the whys and wherefores of markup languages, it
helps to know how all these markup languages came to be.

In the beginning, there was SGML. SGML was intended to be the only metalanguage
from which all markup languages would derive. With SGML, you can define every-
thing from hieroglyphics to HTML, negating the need for any other metalanguage.

The problem with SGML is that it is so broad and all-encompassing that mere mor-
tals cannot use it. Using SGML effectively requires very expensive and complex tools
that are completely beyond the scope of regular people who just want to bang out an
HTML document in their spare time. As a result, developers created other markup
languages that are greatly reduced in scope and are much easier to use. The HTML
standards themselves were initially defined using a subset of SGML that eliminated
many of its more esoteric features. The DTD in Appendix D uses this subset of
SGML to define the HTML 4.01 standard.

Recognizing that SGML was too unwieldy to describe HTML in a useful way and
that there was a growing need to define other HTML-like markup languages, the
W3C defined XML. XML is a formal markup metalanguage that uses select features
of SGML to define markup languages in a style similar to that of HTML. It elimi-
nates many SGML elements that aren’t applicable to languages such as HTML, and
simplifies other elements to make them easier to use and understand.

XML is a middle ground between SGML and HTML, a useful tool for defining a
wide variety of markup languages. XML is becoming increasingly important as the
Web extends beyond browsers and moves into the realm of direct data interchange
among people, computers, and disparate systems. A small number of people wind up
creating new markup languages with XML, and many more people want to be able
to understand XML DTDs in order to use all of these new markup languages.

15.2 Documents and DTDs
To be perfectly correct, we must explain that “XML” has come to mean many subtly
different things. An XML document is a document containing content that conforms
to a markup language defined from the XML standard. An XML Document Type
Definition (XML DTD) is a set of rules—more formally known as entity and element
declarations—that define an XML markup language; i.e., how the tags are arranged
in a correct (valid) XML document. To make things even more confusing, entity and
element declarations may appear in an XML document itself, as well as within an
XML DTD.

An XML document contains character data, which consists of plain content and
markup in the form of tags and XML declarations. Thus:

<blah>harrumph</blah>

476 | Chapter 15: XML

is a line in a well-formed XML document. Well-formed XML documents follow cer-
tain rules, such as the requirement for every tag to have a closing tag. These rules are
presented in the context of XHTML in Chapter 16.

To be considered valid—a valid XML document conforms to a DTD—every XML
document must have a corresponding set of XML declarations that define how the
tags and content should be arranged within it. These declarations may be included
directly in the XML document, or they may be stored separately in an XML DTD. If
an XML DTD exists that defines the <blah> tag, our well-formed XML document is
valid, provided you preface it with a <!DOCTYPE> tag that explains where to find the
appropriate DTD:

<?xml version="1.0"?>
<!DOCTYPE blah SYSTEM "blah.dtd">
<blah>harrumph</blah>

The example document begins with the optional <?xml> directive declaring the ver-
sion of XML it uses. It then uses the <!DOCTYPE> directive to identify the DTD that
some automated system, such as a browser, uses to process and perhaps display the
contents of the document. In this case, a DTD named blah.dtd should be accessible
to the browser* so that the browser can determine whether the <blah> tag is valid
within the document.

XML DTDs contain only XML entity and element declarations. XML documents, on
the other hand, may contain both XML element declarations and conventional con-
tent that uses those elements to create a document. This intermingling of content
and declarations is perfectly acceptable to a computer processing an XML docu-
ment, but it can get confusing for humans trying to learn about XML. For this rea-
son, we focus our attention in this chapter on the XML entity and element
declaration features that you can use to define new tags and document types. In
other words, we are addressing only the DTD features of XML; the content features
mirror the rules and requirements you already know and use in order to create
HTML documents.

15.3 Understanding XML DTDs
To use a markup language defined with XML, you should be able to read and under-
stand the elements and entities found in its XML DTD. But don’t be put off: while
XML DTDs are verbose, filled with obscure punctuation, and designed primarily for
computer consumption, they are actually easy to understand once you get past all the
syntactic sugar. Remember, your brain is better at languages than any computer.

* We use the word browser here because that’s what most people will use to process and view XML docu-
ments. The XML specification uses themore generic phrase “processing application” because, in some cases,
the XML document will be processed not by a traditional browser, but by some other tool that knows how
to interpret XML documents.

15.3 Understanding XML DTDs | 477

As we said previously, an XML DTD is a collection of XML entity and element decla-
rations and comments. Entities are name/value pairs that make the DTD easier to
read and understand, and elements are the actual markup tags defined by the DTD,
such as HTML’s <p> and <h1> tags. The DTD also describes the content and gram-
mar for each tag in the language. Along with the element declarations, you’ll also
find attribute declarations that define the attributes authors may use with the tags
defined by the element declarations.

There is no required order, although the careful DTD author arranges declarations in
such a way that humans can easily find and understand them, computers notwith-
standing. The beloved DTD author includes lots of comments, too, that explain the
declarations and how they can be used to create a document. Throughout this chap-
ter, we use examples taken from the XHTML 1.0 DTD, which you can find in its
entirety at the W3C web site. Although it is lengthy, you’ll find this DTD to be well
written, complete, and, with a little practice, easy to understand.

XML also provides for conditional sections within a DTD, allowing groups of decla-
rations to be optionally included or excluded by the DTD parser. This is useful when
a DTD actually defines several versions of a markup language; the desired version
can be derived by including or excluding appropriate sections. The XHTML 1.0
DTD, for example, defines both the “regular” version of HTML and a version that
supports frames. By allowing the parser to include only the appropriate sections of
the DTD, the rules for the <html> tag can change to support either a <body> tag or a
<frameset> tag, as needed.

15.3.1 Comments
The syntax for comments within an XML DTD is exactly like that for HTML com-
ments: comments begin with <!-- and end with -->. The XML processor ignores
everything between these two elements. Comments may not be nested.

15.3.2 Entities
An entity is a fancy term for a constant. Entities are crucial to creating modular, eas-
ily understood DTDs. Although they may differ in many ways, all entities associate a
name with a string of characters. When you use the entity name elsewhere within a
DTD, or in an XML document, language parsers replace the name with the corre-
sponding characters. Drawing an example from HTML, the < entity is replaced by
the < character wherever it appears in an HTML document.

Entities come in two flavors: parsed and unparsed. An XML processor will handle
parsed entities and ignore unparsed ones. The vast majority of entities are parsed. An
unparsed entity is reserved for use within attribute lists of certain tags; it is nothing
more than a replacement string used as a value for a tag attribute.

478 | Chapter 15: XML

You can further divide the group of parsed entities into general entities and
parameter entities. General entities are used in the XML document, and parameter
entities are used in the XML DTD.

You may not realize that you’ve been using general entities within your HTML docu-
ments all along. They’re the ones that have an ampersand (&) character preceding
their name. For example, the entity for the copyright (©) symbol (©) is a gen-
eral entity defined in the HTML DTD. Appendix F lists all of the other general enti-
ties you know and love.

To make life easier, XML predefines the five most common general entities, which you
can use in any XML document. While it is still preferred that they be explicitly defined
in any DTD that uses them, these five entities are always available to any XML author:

& &
' '
> >
< <
" "

You’ll find parameter entities littered throughout any well-written DTD, including
the HTML DTD. Parameter entities have a percent sign (%) preceding their names.
The percent sign tells the XML processor to look up the entity name in the DTD’s
list of parameter entities, insert the value of the entity into the DTD in place of the
entity reference, and process the value of the entity as part of the DTD.

That last bit is important. By processing the contents of the parameter entity as part
of the DTD, the XML processor allows you to place any valid XML content in a
parameter entity. Many parameter entities contain lengthy XML definitions and may
even contain other entity definitions. Parameter entities are the workhorses of the
XML DTD; creating DTDs without them would be extremely difficult.*

15.3.3 Entity Declarations
Let’s define an entity with the <!ENTITY> tag in an XML DTD. Inside the tag, first
supply the entity name and value, and then indicate whether it is a general or a
parameter entity:

<!ENTITY name value>
<!ENTITY % name value>

The first version creates a general entity; the second, because of the percent sign, cre-
ates a parameter entity.

For both entity types, the name is simply a sequence of characters beginning with a
letter, colon, or underscore and followed by any combination of letters, numbers,

* C and C++ programmers may recognize that the entity mechanism in XML is similar to the #define macro
mechanism in C and C++. The XML entities provide only simple character-string substitution and do not
employ C’s more elaborate macro parameter mechanism.

15.3 Understanding XML DTDs | 479

periods, hyphens, underscores, or colons. The only restriction is that names may not
begin with a symbol other than the colon or underscore, or the sequence “xml”
(either upper- or lowercase).

The entity value is either a character string within quotes (unlike HTML markup,
you must use quotes even if it is a string of contiguous letters) or a reference to
another document containing the value of the entity. For these external entity val-
ues, you’ll find either the keyword SYSTEM, followed by the URL of the document
containing the entity value, or the keyword PUBLIC, followed by the formal name of
the document and its URL.

A few examples will make this clear. Here is a simple general entity declaration:

<!ENTITY fruit "kumquat or other similar citrus fruit">

In this declaration, the entity "&fruit;" within the document is replaced with the
phrase “kumquat or other similar citrus fruit” wherever it appears.

Similarly, here is a parameter entity declaration:

<!ENTITY % ContentType "CDATA">

Anywhere the reference %ContentType; appears in your DTD, it is replaced with the
word CDATA. This is the typical way to use parameter entities: to create a more
descriptive term for a generic parameter that will be used many times in a DTD.

Here is an external general entity declaration:

<!ENTITY boilerplate SYSTEM "http://server.com/boilerplate.txt">

It tells the XML processor to retrieve the contents of the file boilerplate.txt from
server.com and use it as the value of the boilerplate entity. Anywhere you use
&boilerplate; in your document, the contents of the file are inserted as part of your
document content.

Here is an external parameter entity declaration, lifted from the HTML DTD, which
references a public external document:

<!ENTITY % HTMLlat1 PUBLIC "-//W3C//ENTITIES Latin 1 for XHTML//EN"
 "xhtml-lat1.ent">

It defines an entity named HTMLlat1 whose contents are to be taken from the public
document identified as -//W3C//ENTITIES Latin 1 for XHTML//EN. If the processor
does not have a copy of this document available, it can use the URL xhtml-lat1.ent to
find it. This particular public document is actually quite lengthy, containing all of the
general entity declarations for the Latin 1 character encodings for HTML.* Accord-
ingly, simply writing this in the HTML DTD:

%HTMLlat1;

causes all of those general entities to be defined as part of the language.

* You can enjoy this document for yourself at http://www.w3.org/TR/xhtml1/DTD/xhtml-symbol.ent.

480 | Chapter 15: XML

A DTD author can use the PUBLIC and SYSTEM external values with general and
parameter entity declarations. You should structure your external definitions to
make your DTDs and documents easy to read and understand.

You’ll recall that we began the section on entities with a mention of unparsed enti-
ties whose only purpose is to be used as values to certain attributes. You declare an
unparsed entity by appending the keyword NDATA to an external general entity decla-
ration, followed by the name of the unparsed entity. If we wanted to convert our gen-
eral boilerplate entity to an unparsed general entity for use as an attribute value, we
could say:

<!ENTITY boilerplate SYSTEM "http://server.com/boilerplate.txt" NDATA text>

With this declaration, attributes defined as type ENTITY (as described in section 15.5.1)
could use boilerplate as one of their values.

15.3.4 Elements
Elements are definitions of the tags that you can use in documents based on your
XML markup language. In some ways, element declarations are easier than entity
declarations because all you need to do is specify the name of the tag and what sort
of content that tag may contain:

<!ELEMENT name contents>

The name follows the same rules as names for entity definitions. The contents section
may be one of four types described here:

• The keyword EMPTY defines a tag with no content, such as <hr> and
 in HTML.
Empty elements in XML get a bit of special handling, as described in section 15.4.5.

• The keyword ANY indicates that the tag can have any content, without restriction
or further processing by the XML processor.

• The content may be a set of grammar rules that defines the order and nesting
of tags within the defined element. You use this content type when the tag
being defined contains only other tags, without conventional content allowed
directly within the tag. In HTML, the tag is such a tag, as it can contain
only tags.

• Mixed content, denoted by a comma-separated list of element names and the
keyword #PCDATA, is enclosed in parentheses. This content type allows tags to
have user-defined content, along with other markup elements. The tag, for
example, may contain user-defined content as well as other tags.

The last two content types form the meat of most DTD element declarations. This is
where the fun begins.

15.4 Element Grammar | 481

15.4 Element Grammar
The grammar of human language is rich with a variety of sentence structures, verb
tenses, and all sorts of irregular constructs and exceptions to the rules. Nonetheless,
you mastered most of it by the age of three. Computer language grammars typically
are simple and regular, and have few exceptions. In fact, computer grammars use
only four rules to define how elements of a language may be arranged: sequence,
choice, grouping, and repetition.

15.4.1 Sequence, Choice, Grouping, and Repetition
Sequence rules define the exact order in which elements appear in a language. For
instance, if a sequence grammar rule states that element A is followed by B and then by
C, your document must provide elements A, B, and C in that exact order. A missing
element (A and C, but no B, for example), an extra element (A, B, E, then C), or an ele-
ment out of place (C, A, then B) violates the rule and does not match the grammar.

In many grammars, XML included, sequences are defined by simply listing the
appropriate elements, in order and separated by commas. Accordingly, our example
sequence in the DTD would appear simply as A, B, C.

Choice grammar rules provide flexibility by letting the DTD author choose one ele-
ment from among a group of valid elements. For example, a choice rule might state
that you may choose elements D, E, or F; any one of these three elements would sat-
isfy the grammar. Like many other grammars, XML denotes choice rules by listing
the appropriate choices separated by a pipe character (|). Thus, we could write our
simple choice in the DTD as D | E | F. If you read the vertical bar as the word or,
choice rules become easy to understand.

Grouping rules collect two or more rules into a single rule, building richer, more
usable languages. For example, a grouping rule might allow a sequence of elements,
followed by a choice, followed by a sequence. You can indicate groups within a rule
by enclosing them in parentheses in the DTD. For example:

Document ::= A, B, C, (D | E | F), G

requires that a document begin with elements A, B, and C, followed by a choice of
one element out of D, E, or F, followed by element G.

Repetition rules let you repeat one or more elements some number of times. With
XML, as with many other languages, you denote repetition by appending a special
character suffix to an element or group within a rule. Without the special character,
that element or group must appear exactly once in the rule. Special characters include
the plus sign (+), meaning that the element may appear one or more times in the docu-
ment; the asterisk (*), meaning that the element may appear zero or more times; and
the question mark (?), meaning that the element may appear either zero or one time.

482 | Chapter 15: XML

For example, the rule:

Document ::= A, B?, C*, (D | E | F)+, G*

creates an unlimited number of correct documents with the elements A through F.
According to the rule, each document must begin with A, optionally followed by B,
followed by zero or more occurrences of C, followed by at least one, but perhaps
more, of either D, E, or F, followed by zero or more Gs. All of the following exam-
ples (and many others) match this rule:

ABCDG
ACCCFFGGG
ACDFDFGG

You might want to work through these examples to prove to yourself that they are,
in fact, correct with respect to the repetition rule.

15.4.2 Multiple Grammar Rules
By now, you can probably imagine that specifying an entire language grammar in a
single rule is difficult, although possible. Unfortunately, the result would be an
almost unreadable sequence of nearly unintelligible rules. To remedy this situation,
the items in a rule may themselves be rules containing other elements and rules. In
these cases, the items in a grammar that are themselves rules are known as
nonterminals, and the items that are elements in the language are known as
terminals. Eventually, all the nonterminals must reference rules that create sequences
of terminals, or the grammar would never produce a valid document.

For example, we can express our sample grammar in two rules:

Document ::= A, B?, C*, Choices+, G*
Choices ::= D | E | F

In this example, Document and Choices are nonterminals, and A, B, C, D, E, F, and
G are terminals.

There is no requirement in XML (or most other grammars) that dictates or limits the
number of nonterminals in your grammar. Most grammars use nonterminals wher-
ever it makes sense for clarity and ease of use.

15.4.3 XML Element Grammar
The rules for defining the contents of an element match the grammar rules we just
discussed. You may use sequences, choices, groups, and repetition to define the
allowable contents of an element. The nonterminals in rules must be names of other
elements defined in your DTD.

A few examples show how this works. Consider the declaration of the <html> tag,
taken from the HTML DTD:

<!ELEMENT html (head, body)>

15.4 Element Grammar | 483

This defines the element named htmlwhose content is a head element followed by a body
element. Notice you do not enclose the element names in angle brackets within the
DTD; you use that notation only when the elements are actually used in a document.

Within the HTML DTD, you can find the declaration of the <head> tag:

<!ELEMENT head (%head.misc;,
 ((title, %head.misc;, (base, %head.misc;)?) |
 (base, %head.misc;, (title, %head.misc;))))>

Gulp. What on Earth does this mean? First, notice that a parameter entity named
head.misc appears several times in this declaration. Let’s go get it:

<!ENTITY % head.misc "(script|style|meta|link|object)*">

Now things are starting to make sense: head.misc defines a group of elements, from
which you may choose one. However, the trailing asterisk indicates that you may
include zero or more of these elements. The net result is that anywhere %head.misc;
appears, you can include zero or more script, style, meta, link, or object elements,
in any order. Sound familiar?

Returning to the head declaration, we see that we are allowed to begin with any num-
ber of the miscellaneous elements. We must then make a choice: either a group con-
sisting of a title element, optional miscellaneous items, and an optional base

element followed by miscellaneous items; or a group consisting of a base element,
miscellaneous items, a title element, and some more miscellaneous items.

Why such a convoluted rule for the <head> tag? Why not just write:

<!ELEMENT head (script|style|meta|link|object|base|title)*>

which allows any number of head elements to appear, or none at all? The HTML
standard requires that every <head> tag contain exactly one <title> tag. It also allows
for only one <base> tag, if any. Otherwise, the standard does allow any number of
the other head elements, in any order.

Put simply, the head element declaration, while initially confusing, forces the XML
processor to ensure that exactly one title element appears in the head element and
that, if specified, just one base element appears as well. It then allows for any of the
other head elements, in any order.

This one example demonstrates a lot of the power of XML: the ability to define com-
monly used elements using parameter entities and the use of grammar rules to dic-
tate document syntax. If you can work through the head element declaration and
understand it, you are well on your way to reading any XML DTD.

15.4.4 Mixed Element Content
Mixed element content extends the element grammar rules to include the special
#PCDATA keyword. PCDATA stands for “parsed character data” and signifies that the

484 | Chapter 15: XML

content of the element will be parsed by the XML processor for general entity refer-
ences. After the entities are replaced, the character data is passed to the XML appli-
cation for further processing.

What this boils down to is that parsed character data is the actual content of your
XML document. Elements that accept parsed character data may contain plain old
text, plus whatever other tags you allow, as defined in the DTD.

For instance:

<!ELEMENT title (#PCDATA)>

means that the title element may contain only text with entities. No other tags are
allowed, just as in the HTML standard.

A more complex example is the <p> tag, whose element declaration is:

<!ELEMENT p %Inline;>

Another parameter entity, %Inline;, is defined in the HTML DTD as:

<!ENTITY % Inline "(#PCDATA | %inline; | %misc;)*">

which expands to these entities when you replace the parameters:

<!ENTITY % special "br | span | bdo | object | img | map">
<!ENTITY % fontstyle "tt | i | b | big | small">
<!ENTITY % phrase "em | strong | dfn | code | q | sub | sup | samp | kbd |
 var | cite | abbr | acronym">
<!ENTITY % inline.forms "input | select | textarea | label | button">
<!ENTITY % misc "ins | del | script | noscript">
<!ENTITY % inline "a | %special; | %fontstyle; | %phrase; | %inline.forms;">

What do we make of all this? The %Inline; entity defines the contents of the p ele-
ment as parsed character data, plus any of the elements defined by %inline; and any
defined by %misc;. Note that case does matter: %Inline; is different from %inline;.

The %inline; entity includes lots of stuff: special elements, font-style elements,
phrase elements, and inline form elements. %misc includes the ins, del, script, and
noscript elements. You can read the HTML DTD for the other entity declarations to
see which elements are also allowed as the contents of a p element.

Why did the HTML DTD authors break up all these elements into separate groups?
If they were simply defining elements to be included in the p element, they could
have built a single long list. However, HTML has rules that govern where inline ele-
ments may appear in a document. The authors grouped elements that are treated
similarly into separate entities that could be referenced several times in the DTD.
This makes the DTD easier to read and understand, as well as easier to maintain
when a change is needed.

15.5 Element Attributes | 485

15.4.5 Empty Elements
Elements whose content is defined to be empty deserve a special mention. XML
introduced notational rules for empty elements, different from the traditional HTML
rules that govern them.

HTML authors are used to specifying an empty element as a single tag, such as

or . XML requires that every element have an opening and a closing tag, so an
image tag would be written as , with no embedded content. Other empty
elements would be written in a similar manner.

Because this format works well for nonempty tags but is a bit of overkill for empty ones,
you can use a special shorthand notation for empty tags. To write an empty tag in XML,
just place a slash (/) immediately before the closing angle bracket of the tag. Thus, you
can write a line break as
 and an image tag as . Notice
that the attributes of the empty element, if any, appear before the closing slash and
bracket.

15.5 Element Attributes
The final piece of the DTD puzzle involves attributes. You know attributes: they are
the name/value pairs included with tags in your documents that control the behav-
ior and appearance of those tags. To define attributes and their allowed values within
an XML DTD, use the <!ATTLIST> directive:

<!ATTLIST element attributes>

The element is the name of the element to which the attributes apply. The attributes
are a list of attribute declarations for the element. Each attribute declaration in this
list consists of an attribute name, its type, and its default value, if any.

15.5.1 Attribute Values
Attribute values can be of several types, each denoted in an attribute definition with
one of the following keywords:

CDATA

Indicates that the attribute value is a character or string of characters. This is the
attribute type you would use to specify URLs or other arbitrary user data. For
example, the src attribute of the tag in HTML has a value of CDATA.

ID

Indicates that the attribute value is a unique identifier within the scope of the
document. This attribute type is used with an attribute, such as the HTML id

attribute, whose value defines an ID within the document, as discussed in “Core
Attributes” in Appendix B.

486 | Chapter 15: XML

IDREF or IDREFS
Indicate that the attribute accepts an ID defined elsewhere in the document via
an attribute of type ID. You use the ID type when defining IDs; you use IDREF and
IDREFS when referencing a single ID and a list of IDs, respectively.

ENTITY or ENTITIES
Indicate that the attribute accepts the name or list of names of unparsed general
entities defined elsewhere in the DTD. The definition and use of unparsed gen-
eral entities is covered in section 15.3.2.

NMTOKEN or NMTOKENS
Indicate that the attribute accepts a valid XML name or list of names. These
names are given to the processing application as the value of the attribute. The
application determines how they are used.

In addition to these keyword-based types, you can create an enumerated type by list-
ing the specific values allowed with this attribute. To create an enumerated type, list
the allowed values, separated by pipe characters and enclosed in parentheses, as the
type of the attribute. For example, here is how the method attribute for the <form> tag
is defined in the HTML DTD:

method (get|post) "get"

The method attribute accepts one of two values, either get or post; get is the default
value if nothing is specified in the document tag.

15.5.2 Required and Default Attributes
After you define the name and type of an attribute, you must specify how the XML
processor should handle default or required values for the attribute. You do this by
supplying one of four values after the attribute type.

If you use the #REQUIRED keyword, the associated attribute must always be provided when
the element is used in a document. Within the XHTML DTD, the src attribute of the
 tag is required because an image tag makes no sense without an image to display.

The #IMPLIED keyword means that the attribute may be used but is not required and
that no default value is associated with the attribute. If it is not supplied by the docu-
ment author, the attribute has no value when the XML processor handles the element.
For the tag, the width and height attributes are implied because the browser
derives sizing information from the image itself if these attributes are not specified.

If you specify a value, it then becomes the default value for that attribute. If the user
does not specify a value for the attribute, the XML processor inserts the default value
(the value specified in the DTD).

If you precede the default value with the keyword #FIXED, the value is not only the
default value for the attribute, it is the only value that can be used with that attribute
if it is specified.

15.6 Conditional Sections | 487

For example, examine the attribute list for the form element, taken (and abridged)
from the HTML DTD:

<!ATTLIST form
action CDATA #REQUIRED
method (get|post) "get"
enctype CDATA "application/x-www-form-urlencoded"
onsubmit CDATA #IMPLIED
onreset CDATA #IMPLIED
accept CDATA #IMPLIED
accept-charset CDATA #IMPLIED
>

This example associates seven attributes with the form element. The action attribute
is required and accepts a character string value. The method attribute has one of two
values, either get or post. get is the default, so if the document author doesn’t
include the method attribute in the form tag, the XML parser assumes method=get

automatically.

The enctype attribute for the form element accepts a character string value and, if not
specified, defaults to a value of application/x-www-form-urlencoded. The remaining
attributes all accept character strings, are not required, and have no default values if
they are not specified.

If you look at the attribute list for the form element in the HTML DTD, you’ll see
that it does not exactly match our example. That’s because we’ve modified our
example to show the types of the attributes after any parameter entities have been
expanded. In the actual HTML DTD, the attribute types are provided as parameter
entities whose names give a hint of the kinds of values the attribute expects. For
example, the type of the action attribute appears as %URI;, not CDATA, but elsewhere
in the DTD is defined to be CDATA. By using this style, the DTD author lets you know
that the string value for this attribute should be a URL, not just any old string. Simi-
larly, the type of the onsubmit and onreset attributes is given as %Script. This is a hint
that the character string value should name a script to be executed when the form is
submitted or reset.

15.6 Conditional Sections
As we mentioned earlier in this chapter, XML lets you include or ignore whole sec-
tions of your DTD, so you can tailor the language for alternative uses. The HTML
DTD, for instance, defines transitional, strict, and frame-based versions of the lan-
guage. DTD authors can select the portions of the DTD they plan to include or
ignore by using XML conditional directives:

<![INCLUDE [
 ...any XML content...
]]>

488 | Chapter 15: XML

or:

<![IGNORE [
 ...any XML content...
]]>

The XML processor either includes or ignores the contents, respectively. Condi-
tional sections may be nested, with the caveat that all sections contained within an
ignored section are ignored, even if they are set to be included.

You rarely see a DTD with the INCLUDE and IGNORE keywords spelled out. Instead,
you see parameter entities that document why the section is being included or
ignored. Suppose you are creating a DTD to exchange construction plans among
builders. Because you have an international customer base, you build a DTD that
can handle both English and metric units. You might define two parameter entities:

<!ENTITY % English "INCLUDE">
<!ENTITY % Metric "IGNORE">

You would then place all the English-specific declarations in a conditional section
and isolate the metric declarations similarly:

<![%English [...English stuff here...
]]>
<![%Metric [...Metric stuff here...
]]>

To use the DTD for English construction jobs, define %English as INCLUDE and
%Metric as IGNORE, which causes your DTD to use the English declarations. For met-
ric construction, reverse the two settings, ignoring the English section and including
the metric section.

15.7 Building an XML DTD
Now that we’ve emerged from the gory details of XML DTDs, let’s see how they
work by creating a simple example. You can create a DTD with any text editor and a
clear idea of how you want to mark up your XML documents. You’ll need an XML
parser and processing application to actually interpret and use your DTD, as well as
a stylesheet to permit XML-capable browsers to display your document.

15.7.1 An XML Address DTD
Let’s create a simple XML DTD that defines a markup language for specifying docu-
ments containing names and addresses. We start with an address element, which
contains other elements that tag the address contents. Our address element has a sin-
gle attribute indicating whether it is a work or a home address:

<!ELEMENT address (name, street+, city, state, zip?)>
<!ATTLIST address type (home|business) #REQUIRED>

15.7 Building an XML DTD | 489

Voilà! The first declaration creates an element named address that contains a name
element, one or more street elements, a city and state element, and an optional zip
element. The address element has a single attribute, type, which must be specified
and can have a value of either home or business.

Let’s define the name elements first:

<!ELEMENT name (first, middle?, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT middle (#PCDATA)>
<!ELEMENT last (#PCDATA)>

The name element also contains other elements—a first name, an optional middle
name, and a last name—each defined in the subsequent DTD lines. These three ele-
ments have no nested tags and contain only parsed character data; i.e., the actual
name of the person.

The remaining address elements are easy, too:

<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>
<!ATTLIST zip length CDATA "5">

All these elements contain parsed character data. The zip element has an attribute
named length that indicates the length of the zip code. If the length attribute is not
specified, it is set to 5.

15.7.2 Using the Address DTD
Once we have defined our address DTD, we can use it to mark up address docu-
ments. For example:

<address type="home">
 <name>
 <first>Chuck</first>
 <last>Musciano</last>
 </name>
 <street>123 Kumquat Way</street>
 <city>Cary</city>
 <state>NC</state>
 <zip length="10">27513-1234</zip>
</address>

With an appropriate XML parser and an application to use this data, we can parse
and store addresses, create addresses to share with other people and applications,
and create display tools that would publish addresses in a wide range of styles and
media. Although our DTD is simple, it has defined a standard way to capture
address data that is easy to use and understand.

490 | Chapter 15: XML

15.8 Using XML
Our address example is trivial. It hardly scratches the surface of the wide range of
applications that XML is suited for. To whet your appetite, here are some common
uses for XML that you will certainly be seeing now and in the future.

15.8.1 Creating Your Own Markup Language
We touched on this earlier when we mentioned that the latest versions of HTML are
being reformulated as compliant XML DTDs. We cover the impact XML has on
HTML in the next chapter.

But even more significantly, XML enables communities of users to create languages
that best capture their unique data and ideas. Mathematicians, chemists, musicians,
and professionals from hundreds of other disciplines can create special tags that rep-
resent unique concepts in a standardized way. Even if no browser exists that can
accurately render these tags in a displayable form, the ability to capture and stan-
dardize information is tremendously important for future extraction and interpreta-
tion of these ideas.

For more mainstream XML applications with established audiences, it is easy to
envision custom browsers being created to appropriately display the information.
Smaller applications or markets may have more of a challenge creating markup lan-
guages that enjoy such wide acceptance. Creating the custom display tool for a
markup language is difficult; delivering that tool for multiple platforms is expensive.
As we’ve noted, you can mitigate some of these display concerns through appropri-
ate use of stylesheets. Luckily, XML’s capabilities extend beyond document display.

15.8.2 Document Exchange
Because XML grew out of the tremendous success of HTML, many people think of
XML as yet another document-display tool. In fact, the real power of XML lies not in
the document-display arena, but in the world of data capture and exchange.

Despite the billions of computers deployed worldwide, sharing data is as tedious and
error-prone as ever. Competing applications do not operate from common docu-
ment-storage formats, so sending a single document to a number of recipients is
fraught with peril. Even when vendors attempt to create an interchange format, it
still tends to be proprietary and often is viewed as a competitive advantage for partic-
ipating vendors. There is little incentive for vendors to release application code for
the purpose of creating easy document-exchange tools.

XML avoids these problems. It is platform neutral, is generic, and can perform
almost any data-capture task. It is equally available to all vendors and can easily be
integrated into most applications. The stabilization of the XML standard and the

15.8 Using XML | 491

increasing availability of XML authoring and parsing tools is making it easier to cre-
ate XML markup languages for document capture and exchange.

Most importantly, document exchange rarely requires document presentation, thus
eliminating “display difficulties” from the equation. Often, an existing application
uses XML to include data from another source and then uses its own internal dis-
play capabilities to present the data to the end user. The cost of adding XML-based
data exchange to existing applications is relatively small.

15.8.3 Connecting Systems
A level below applications, there is also a need for systems to exchange data. As busi-
ness-to-business communication increases, this need grows even faster. In the past,
this meant that someone had to design a protocol to encode and exchange the data.
With XML, exchanging data is as easy as defining a DTD and integrating the parser
into your existing applications.

The data sets exchanged can be quite small. Imagine shopping for a new PC on the
Web. If you could capture your system requirements as a small document using an
XML DTD, you could send that specification to a hundred different vendors to
quote you a system. If you extend that model to include almost anything you can
shop for—from cars to hot tubs—XML provides an elegant base layer of communi-
cation among cooperating vendors on the Internet.

Almost any data that is captured and stored can more easily be shared using XML.
For many systems, the XML DTDs may define a data-transfer protocol and nothing
more. The data may never actually be stored using the XML-defined markup; it may
exist in an XML-compatible form only long enough to pass on the wire between two
systems.

One increasingly popular use of XML is web services, which make it possible for
diverse applications to discover each other and exchange data seamlessly over the
Internet, regardless of their programming language or architecture. For more infor-
mation on web services, consultWeb Services Essentials by Ethan Cerami (O’Reilly).

In conjunction with XML-based data exchange, the Extensible Stylesheet Language,
or XSL, is increasingly being used to describe the appearance and definition of the
data represented by these XML DTDs. Much like Cascading Style Sheets (CSS) and
its ability to transform HTML documents, XSL supports the creation of stylesheets
for any XML DTD. You can use CSS with XML documents as well, but it is not as
programmatically rich as XSL. While CSS stops with stylesheets, XSL is a style lan-
guage. XSL certainly addresses the need for data display, and it provides rich tools
that allow data represented with one DTD to be transformed into another DTD in a
controlled and deterministic fashion. A complete discussion of XSL is beyond the
scope of this book; consult XSLT by Doug Tidwell (O’Reilly) for complete details.

492 | Chapter 15: XML

The potential for XML goes well beyond that of traditional markup and presentation
tools. What we now see and use in the XML world is only scratching the surface of
the potential for this technology.

15.8.4 Standardizing HTML
Last, but certainly not least, the W3C uses XML to define a standard version of
HTML known as XHTML. XHTML retains almost all of the features of HTML 4.01,
but it also introduces a number of minor (and a few not-so-minor) differences. The
next chapter compares and contrasts XHTML and HTML, mapping out the differ-
ences so that you can begin creating documents that comply with both the HTML
and XHTML standards.

493

Chapter 16!ti
In this chapter:

• Why XHTML?
• Creating XHTML Documents
• HTML Versus XHTML
• XHTML 1.1
• Should You Use XHTML?

CHAPTER 16

XHTML16

Despite its name, you don’t use the Extensible Markup Language (XML) to directly
create and mark up web documents. Instead, you use XML to define a new markup
language, which you then use to mark up web documents. This should come as no
surprise to anyone who has read the preceding chapter in this book. Nor, then,
should it surprise you that one of the first languages defined using XML is an XML-
ized version of HTML, the most popular markup language ever. HTML is being dis-
ciplined and cleaned up by XML, to bring it back into line with the larger family of
markup languages. This standard is XHTML 1.0.*

Because of HTML’s legacy features and oddities, using XML to describe HTML was
not an easy job for the World Wide Web Consortium (W3C). In fact, certain HTML
rules, as we’ll discuss later, cannot be expressed with XML. Nonetheless, if the W3C
has its way, XHTML will ultimately replace the HTML we currently know and love.

So much of XHTML is identical to HTML’s current standard, version 4.01, that you
can apply almost everything presented elsewhere in this book to both HTML and
XHTML. We detail the differences, both good and bad, in this chapter. To become
fluent in XHTML, you’ll first need to absorb the rest of this book, and then adjust
your thinking to embrace what we present in this chapter.

* Throughout this chapter, we use “XHTML” to mean the XHTML 1.0 standard. There is a nascent XHTML
1.1 standard that diverges fromHTML 4.01 and is more restrictive than XHTML 1.0.We describe the salient
features of XHTML 1.1 in section 16.4.

494 | Chapter 16: XHTML

16.1 Why XHTML?
As we described in the preceding chapter, HTML began as a simple markup lan-
guage similar in appearance and usage to other Standard Generalized Markup Lan-
guage (SGML)-based markup languages. In its early years, little effort was put into
making HTML perfectly SGML compliant. As a result, odd features and a lax atti-
tude toward enforcing the rules became standard parts of both HTML and the
browsers that processed HTML documents.

As the Web grew from an experiment into an industry, the desire for a standard ver-
sion of HTML led to the creation of several official versions, culminating most
recently with version 4.01. As HTML has stabilized into this latest version, browsers
have become more alike in their support of various HTML features. In general, the
world of HTML has settled into a familiar set of constructs and usage rules.

Unfortunately, HTML offers only a limited set of document-creation primitives, is
incapable of handling nontraditional content such as chemical formulae, musical
notation, or mathematical expressions, and fails to adequately support alternative
display media such as handheld computers or intelligent cellular phones. We need
new ways to deliver information that can be parsed, processed, displayed, sliced, and
diced by the many different communication technologies that have emerged since
the Web sparked the digital communication revolution a decade ago.

Instead of trying to rein in another herd of maverick, nonstandard markup lan-
guages, the W3C introduced XML as a standard way to create new markup lan-
guages. XML is the framework upon which organizations can develop their own
markup languages to suit the needs of their users. XML is an updated version of
SGML, streamlined and enhanced for today’s dynamic systems. And while the W3C
originally intended it as a tool to create document markup languages, XML is also
becoming quite useful as a standard way to define small languages that different
applications use as data-exchange protocols.

Of course, we don’t want to abandon the plethora of documents already marked up
with HTML, or the infrastructure of knowledge, tools, and technologies that cur-
rently support HTML and the Web. Yet, we do not want to miss the opportunities of
XML, either. XHTML is the bridge. It uses the features of XML to define a markup
language that is nearly identical to standard HTML 4.01 and gets us all started down
the XML road.

16.1.1 XHTML Document Type Definitions
HTML 4.01 comes in three variants, each defined by a separate SGML Document
Type Definition (DTD). XHTML also comes in three variants, with XML DTDs cor-
responding to the three SGML DTDs that define HTML 4.01. To create an XHTML

16.2 Creating XHTML Documents | 495

document, you must choose one of these DTDs and then create a document that
uses that DTD’s elements and rules.

The first XHTML DTD corresponds to the “strict” HTML DTD. The strict definition
excludes all deprecated elements (tags and attributes) in HTML 4.01 and forces
authors to use only those features that are fully supported in HTML. Many of the
HTML elements and attributes dealing with presentation and appearance, such as the
 tag and the align attribute, are missing from the strict XHTML DTD and have
been replaced by the equivalent properties in the Cascading Style Sheets (CSS) model.

Most HTML authors find the strict XHTML DTD too restrictive because many of
the deprecated elements and attributes are still in widespread use throughout the
Web. More importantly, lots of content out there on the Web uses the legacy ele-
ments and attributes, and the popular browsers still support most of the deprecated
elements. The only real advantage of using the strict XHTML DTD is that compliant
documents are guaranteed to be fully supported in future versions of XHTML.*

Most authors will probably choose to use the “transitional” XHTML DTD. It’s clos-
est to the current HTML standard and includes all those wonderful, but deprecated,
features that make life as an HTML author easier. With the transitional XHTML
DTD, you can ease into the XML family while staying current with the browser
industry.

The third DTD is for frames. It is identical to the transitional DTD in all other
respects; the only difference is the replacement of the document body with appropri-
ate frame elements. You might think that, for completeness’s sake, there would be
strict and transitional frame DTDs, but the W3C decided that if you use frames, you
might as well use all the deprecated elements as well.

16.2 Creating XHTML Documents
For the most part, creating an XHTML document is no different from creating an
HTML document. Using your favorite text editor, simply add the markup elements
to your document’s contents in the right order, and display it using your favorite
browser. To be strictly correct (“valid,” as they say at the W3C), your XHTML docu-
ment needs a boilerplate declaration upfront that specifies the DTD you used to cre-
ate the document and defines a namespace for the document.

* If the W3C has its way, HTML won’t change beyond version 4.01. No more HTML; all new developments
will be in XHTML and many other XML-based languages.

496 | Chapter 16: XHTML

16.2.1 Declaring Document Types
For an XHTML browser to correctly parse and display your XHTML document, you
should tell it which version of XML is being used to create the document. You must
also state which XHTML DTD defines the elements in your document.

The XML version declaration uses a special XML processing directive. In general,
these XML directives begin with <? and end with ?>, but otherwise they look like typ-
ical tags in your document.* To declare that you are using XML version 1.0, place
this directive in the first line in your document:

<?xml version="1.0" encoding="UTF-8"?>

This tells the browser that you are using XML 1.0 along with the 8-bit Unicode char-
acter set, the one most commonly used today. The encoding attribute’s value should
reflect the character set used in your document. Refer to the appropriate Interna-
tional Organization for Standardization (ISO) standards for other encoding names.

Once you’ve gotten the important issue of the XML version squared away, you
should then declare the markup language’s DTD:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

With this statement, you declare that your document’s root element is html, as
defined in the DTD whose public identifier is defined as "-//W3C//DTD XHTML 1.0

Strict//EN". The browser may know how to find the DTD matching this public
identifier. If it does not, it can use the URL following the public identifier as an alter-
native location for the DTD.

As you may have noticed, the preceding <!DOCTYPE> directive told the browser to use
the strict XHTML DTD. Here’s the one you’ll probably use for your transitional
XHTML documents:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

And, as you might expect, the <!DOCTYPE> directive for the frame-based XHTML
DTD is:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

* <! was already taken.

16.2 Creating XHTML Documents | 497

16.2.2 Understanding Namespaces
As described in the last chapter, an XML DTD defines any number of element and
attribute names as part of the markup language. These elements and attributes are
stored in a namespace that is unique to the DTD. As you reference elements and
attributes in your document, the browser looks them up in the namespace to find
out how they should be used.

For instance, the <a> tag’s name (a) and attributes (e.g., href and style) are defined
in the XHTML DTD, and their names are placed in the DTD’s namespace. Any pro-
cessing agent—usually a browser, but your eyes and brain can serve the same func-
tion—can look up the name in the appropriate DTD to figure out what the markup
means and what it should do.

With XML, your document actually can use more than one DTD and therefore
require more than one namespace. For example, you might create a transitional
XHTML document but also include special markup for some math expressions
according to an XML math language. What happens when both the XHTML DTD
and the math DTD use the same name to define different elements, such as <a> for
XHTML hypertext and <a> for an absolute value in math? How does the browser
choose which namespace to use?

The answer is the xmlns* attribute. Use it to define one or more alternative
namespaces within your document. You can place it within the start tag of any ele-
ment within your document, and its URL-like† value defines the namespace that the
browser should use for all content within that element.

With XHTML, according to XML conventions, you should at the very least include
within your document’s <html> tag an xmlns attribute that identifies the primary
namespace used throughout the document:

<html xmlns="http://www.w3.org/TR/xhtml1">

If and when you need to include math markup, use the xmlns attribute again to
define the math namespace. So, for instance, you could use the xmlns attribute within
some math-specific tag of your otherwise common XHTML document (assuming the
MATH element exists, of course):

<div xmlns="http://www.w3.org/1998/Math/MathML">x2/x</div>

* XML namespace—xmlns—get it? This is why XML doesn’t let you begin any element or attribute with the
three-letter prefix of “xml”: it’s reserved for special XML attributes and elements.

† It looks like a URL, and youmight think that it references a document that contains the namespace, but alas,
it doesn’t. It is simply a unique name that identifies the namespace. Display agents use that placeholder to
refer to their own resources for how to treat the named element or attribute.

498 | Chapter 16: XHTML

In this case, the XML-compliant browser would use the http://www.w3.org/1998/
Math/MathML namespace to divine that this is the MATH, not the XHTML, version
of the <div> tag, and should therefore be displayed as a division equation.

It would quickly become tedious if you had to embed the xmlns attribute into each
and every <div> tag anytime you wanted to show a division equation in your docu-
ment. A better way—particularly if you plan to apply it to many different elements in
your document—is to identify and label the namespace at the beginning of your doc-
ument, and then refer to it by that label as a prefix to the affected element in your
document. For example:

<html xmlns="http://www.w3.org/TR/xhtml1"
 xmlns:math="http://www.w3.org/1998/Math/MathML">

The math namespace can now be abbreviated to “math” later in your document. So
the streamlined:

</math:div>x2/x</div>

now has the same effect as the lengthy earlier example of the math <div> tag contain-
ing its own xmlns attribute.

The vast majority of XHTML authors will never need to define multiple namespaces
and so will never have to use fully qualified names containing the namespace prefix.
Even so, you should understand that multiple namespaces exist and that you will
need to manage them if you choose to embed content based on one DTD within con-
tent defined by another DTD.

16.2.3 A Minimal XHTML Document
As a courtesy to all fledgling XHTML authors, we now present the minimal and cor-
rect XHTML document, including all the appropriate XML, XHTML, and
namespace declarations. With this most difficult part out of the way, you need only
supply content to create a complete XHTML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/TR/xhtml1" xml:lang="en" lang="en">
 <head>
 <title>Every document must have a title</title>
 </head>
 <body>
 ...your content goes here...

 </body>
</html>

Working through the minimal document one element at a time, we begin by declar-
ing that we are basing the document on the XML 1.0 standard and using 8-bit

16.3 HTML Versus XHTML | 499

Unicode characters to express its contents and markup. We then announce, in the
familiar HTML-like <!DOCTYPE> statement, that we are following the markup rules
defined in the transitional XHTML 1.0 DTD, which allow us free rein to use nearly
any HTML 4.01 element in our document.

Our document content actually begins with the <html> tag, which has its xmlns

attribute declare that the XHTML namespace is the default namespace for the entire
document. Also note the lang attribute, in both the XML and XHTML namespaces,
which declares that the document language is English.

Finally, we include the familiar document <head> and <body> tags, along with the
required <title> tag.

16.3 HTML Versus XHTML
The majority of HTML is completely compatible with XHTML, and this book is
devoted to that majority. In this chapter, however, we talk about the minority: where
the HTML 4.01 standard and the XHTML DTD differs. If you truly desire to create
documents that are both HTML and XHTML compliant, you must heed the various
warnings and caveats we outline in the following sections.

The biggest difference—that’s Difference with a capital D and that spells difficult—is
that writing XHTML documents requires much more discipline and attention to
detail than even the most fastidious HTML author ever dreamed necessary. In W3C
parlance, that means your documents must be impeccably well formed. Throughout
the history of HTML—and in this book—authors have been encouraged to create
well-formed documents, but you have to break rank with the HTML standards for
your documents to be considered well formed by XML standards.

Nonetheless, your efforts to master XHTML will be rewarded with documents that
are well formed and a sense of satisfaction from playing by the new rules. You will
truly benefit in the future, too: through XML, your documents will be able to appear
in places you never dreamed would exist (mostly good places, we hope).

16.3.1 Correctly Nested Elements
One requirement of a well-formed XHTML document is that its elements are nested
correctly. This isn’t any different from the HTML standards: simply close the
markup elements in the order in which you opened them. If one element is within
another, the end tag of the inner element must appear before the end tag of the outer
element.

Hence, in the following well-formed XHTML segment, we end the italics tag before we
end the bold one, because we started italicizing after we started bolding the content:

Close the italics tag <i>first</i>.

500 | Chapter 16: XHTML

On the other hand, the following:

Well formed, this is <i>not!</i>

is not well formed.

XHTML strictly enforces other nesting restrictions that have always been part of
HTML but have not always been enforced. These restrictions are not formally part of
the XHTML DTD; they are instead defined as part of the XHTML standard that is
based on the DTD.*

Nesting restrictions include the following:

• The <a> tag cannot contain another <a> tag.

• The <pre> tag cannot contain , <object>, <big>, <small>, <sub>, or <sup> tags.

• The <button> tag cannot contain <input>, <select>, <textarea>, <label>,
<button>, <form>, <fieldset>, <iframe>, or <isindex> tags.

• The <label> tag cannot contain other <label> tags.

• The <form> tag cannot contain other <form> tags.

These restrictions apply to nesting at any level. For example, because an <a> tag can-
not contain any other <a> tags, any tag contained within that <a> tag cannot itself
contain an <a> tag, even though it might otherwise.

16.3.2 End Tags
As we’ve documented throughout this book, any HTML tag that contains other tags
or content has a corresponding end tag. However, one of the hallmarks of HTML
(codified in the 4.01 standard) is that you may leave out the end tags if the process-
ing agent can infer their presence. This is why most of us HTML authors commonly
leave out the </p> end tag between adjacent paragraphs. Also, lists and tables can be
complicated to wade through, and not having to visually stumble over all the ,
</td>, </th>, and </tr> end tags certainly makes HTML easier to read, albeit a bit
more ambiguous.

This is not so for XHTML. Every tag that contains other tags or content must have a
corresponding end tag present, correctly nested within the XHTML document. A
missing end tag is an error and renders the document noncompliant. Although seem-
ingly draconian, this and the nesting rules nonetheless remove any and all ambigu-
ities as to where one tag starts and another tag ends.

* This is hair splitting within the XHTML standard. The XML standard has no mechanism to define which tags
may not be placed within another tag. SGML, upon which XML is based, does have such a feature, but it was
removed fromXML tomake the language easier to use and implement. As a result, these restrictions are simply
listed in an appendix of the XHTML standard instead of being explicitly defined in the XHTML DTD.

16.3 HTML Versus XHTML | 501

16.3.3 Handling Empty Elements
In XML, and thus XHTML, every tag must have a corresponding end tag—even
those that aren’t allowed to contain other tags or content. Accordingly, XHTML
expects the line break to appear as
</br> in your document. Ugh.

Fortunately, there is an acceptable alternative: include a slash before the closing
bracket of the tag to indicate its ending (e.g.,
). If the tag has attributes, the
slash comes after all the attributes so that an image could be defined as:

While this notation may seem foreign and annoying to an HTML author, it actually
serves a useful purpose. Any XHTML element that has no content can be written this
way. Thus, an empty paragraph can be written as <p />, and an empty table cell can
be written as <td />. This is a handy way to mark empty table cells.

Clever as it may seem, writing empty tags in this abbreviated way may confuse
HTML browsers. To avoid compatibility problems, you can fool the HTML brows-
ers by placing a space before the forward slash in an empty element using the
XHTML version of its end tag. For example, use
, with a space between the br
and /, instead of the XHTML equivalents
 and
</br>. Table 16-1 contains
all of the empty HTML tags, expressed in their acceptable XHTML (transitional
DTD) forms.

16.3.4 Case Sensitivity
If you thought getting all those end tags in the right place and cleaning up the occa-
sional nesting error would make writing XHTML documents difficult, hold on to
your hat. XHTML is case-sensitive for all tag and attribute names. In an XHTML
document, <a> and <A> are different tags; src and SRC are different attributes, and so
are sRc and SrC! How forgiving HTML seems now.

The XHTML DTD defines all former HTML tags and attributes using lowercase let-
ters. Uppercase tag or attribute names are not valid XHTML tags or attributes.

This can be a difficult situation for any author wishing to convert existing HTML
documents into XHTML-compliant ones. Lots of web pages use uppercase tag and
attribute names, to make them stand out from the surrounding lowercase content.

Table 16-1. HTML empty tags in XHTML format

<area /> <base /> <basefont />

 <col /> <frame />

<hr /> <input />

<isindex /> <link /> <meta />

<param />

502 | Chapter 16: XHTML

To become compliant, all those names must be converted to lowercase—even the
ones you used in your CSS stylesheet definitions. Fortunately, it’s easy to accom-
plish this kind of change with various editing tools, and XHTML authoring systems
should perform the conversion for you.

16.3.5 Quoted Attribute Values
As if all those case-sensitive attribute names weren’t aggravating enough, XHTML
requires that you enclose every attribute value—even the numeric ones—in double
quotes. In HTML, you could quote anything your heart desired, but quote marks are
required only if the attribute value included whitespace or other special characters.
To be XHTML compliant, every attribute must be enclosed in quotes.

For example:

<table rows=3>

is wrong in XHTML. It is correctly written as:

<table rows="3">

16.3.6 Explicit Attribute Values
Within HTML, there are a small number of attributes that have no value. Instead,
their mere presence within a tag causes that tag to behave differently. In general,
these attributes represent a sort of on/off switch for the tag, like the compact attribute
for the various list tags or the ismap attribute for the tag.

In XHTML, every attribute must have a value. Those without values must use their
own names. Thus, compact in XHTML is correctly specified as compact="compact",
and checked becomes checked="checked". Each must contain the required attribute
value enclosed in quotes. Table 16-2 contains a list of attributes with the required
XHTML values.

Be aware that this attribute value requirement may cause some old HTML browsers
to ignore the attribute altogether. All the modern browsers don’t have that problem,
so the vast majority of users won’t notice any difference. There is no good solution to
this problem, other than distributing HTML 4.0-compliant browsers to the needy.

Table 16-2. XHTML values for valueless HTML attributes

checked="checked" compact="compact" declare="declare"

defer="defer" disabled="disabled" ismap="ismap"

multiple="multiple" noresize="noresize" noshade="noshade"

nowrap="nowrap" readonly="readonly" selected="selected"

16.3 HTML Versus XHTML | 503

16.3.7 Handling Special Characters
XHTML is more sensitive than HTML to the use of the < and & characters in Java-
Script and CSS declarations within your documents. In HTML, you can avoid poten-
tial conflicts by enclosing your scripts and stylesheets in comments (<!-- and -->).
XML browsers, however, may simply remove all the contents of comments from
your document, thereby deleting your hidden scripts and stylesheets.

To properly shield your special characters from XML browsers, enclose your styles or
scripts in a CDATA section. This tells the XML browser that any characters con-
tained within are plain old characters, without special meanings. For example:

<script language="JavaScript">
<![CDATA[
 ...JavaScript here...

]]>
</script>

This doesn’t solve the problem, though. HTML browsers ignore the contents of the
CDATA XML tag but honor the contents of comment-enclosed scripts and stylesheets,
whereas XML browsers do just the opposite. We recommend that you put your
scripts and styles in external files and reference them in your document with appro-
priate external links.

Special characters in attribute values are problematic in XHTML, too. In particular,
you always should write an ampersand within an attribute value using & and not
simply an & character. Similarly, play it safe and encode less-than and greater-than
signs using their < and > entities. For example, while:

is perfectly valid HTML, you must write it as:

for it to be compliant XHTML.

16.3.8 The id and name Attributes
Early versions of HTML used the name attribute with the <a> tag to create a fragment
identifier in the document. This fragment could then be used in a URL to refer to a
particular spot within a document. The name attribute was later added to other tags,
such as <frame> and , allowing those elements to be referenced by name from
other spots in the document.

With HTML 4.0, the W3C added the id attribute to almost every tag. Like name, id
lets you associate an identifier with nearly any element in a document for later refer-
ence and use, perhaps by a hyperlink or a script.

XHTML has a strong preference for the id attribute as the anchor of choice within a
document. The name attribute is defined but formally deprecated for those elements

504 | Chapter 16: XHTML

that have historically used it. With widespread support of HTML 4.0 now in place,
you should begin to avoid the name attribute where possible and instead use the id
attribute to bind names to elements in your documents. If you must use the name

attribute on certain tags, include an identical id attribute to ensure that the tag will
behave similarly when processed by a strict XHTML browser.

16.4 XHTML 1.1
In May 2001, the W3C released an updated the XHTML standard, XHTML 1.1.
While most standards expand upon their previous versions, XHTML 1.1 takes the
unusual step of defining a more restrictive version of XHTML. If you think of
XHTML 1.0 as unwieldy, picky, and time consuming, you’ll find XHTML 1.1 even
more so. In our opinion, XHTML 1.1 is an example of the standards process taken to
absurd levels, defining a standard that may be academically pure but is essentially
unusable.

16.4.1 Differences in XHTML 1.1
XHTML 1.1 begins with the XHTML 1.0 strict DTD and makes a few modifica-
tions. By supporting only the strict version of XHTML 1.0, version 1.1 eliminates all
deprecated elements and all browser extensions still in common use on the Web. It
also makes the following minor changes:

• The lang attribute has been removed from every element. Instead, authors
should use the xml:lang attribute.

• The name attribute has been removed from the <a> and <map> elements. Authors
should use the id attribute in its place.

Finally, the XHTML 1.1 standard defines a new set of elements that implement a
typographic feature known as ruby text. Ruby text is short runs of text placed along-
side the base text; it is often used to annotate the text or to indicate pronunciation.
Ruby text has its roots in East Asian documents, particularly Chinese schoolbooks
and Japanese books and magazines. Ruby text is typically displayed in a smaller font*

than the base text and follows certain alignment rules to ensure that it appears adja-
cent to the appropriate base text element.

You define and manage ruby text with a set of elements that provides grouping and
layout control. We’ll be blunt: this new feature is so esoteric and of so little impor-
tance to the vast majority of HTML authors—even those who would subject them-
selves to the needless agony of XHTML 1.1 conformance—that it does not warrant

* The origin of the name “ruby” lies in the name that printers use for the 5.5-point font used by the British
press to set this smaller adjacent text.

16.5 Should You Use XHTML? | 505

extensive coverage in this book. Those who are interested can find a complete dis-
cussion of ruby text at http://www.w3.org/TR/ruby.

For the rest of us, it is sufficient to know that there are a few new elements in
XHTML 1.1 that you would be wise not to use in your own DTDs, if only to prevent
confusion with the XHTML 1.1 DTD. These new elements are:

<ruby>

Defines a segment of ruby text

<rb>

Defines the ruby base text

<rt>

Defines the ruby text associated with the base text

<rp>

Is used as a “ruby parenthesis” to group related ruby elements

<rbc>

Serves as a ruby base text container to group several base text elements

<rtc>

Serves as a ruby text container to group several ruby elements

Should you encounter any of these elements in a document, refer to the aforemen-
tioned specification for details on how they are used. In general, you’ll find a single
outer <ruby> element with at least one <rb> and <rt> element within it. You can col-
lect multiple <rb> and <rt> elements within an <rp> element or group them within
the <rbc> or <rtc> container element.

16.5 Should You Use XHTML?
For a document author used to HTML, XHTML is clearly a more painful and cer-
tainly a less forgiving document markup language. Whereas at one time we prided
ourselves on being able to crank out HTML with pencil and paper, it’s much more
tedious to write XHTML without special document-preparation applications. Why
should any author want to take on that extra baggage?

16.5.1 The Dusty Deck Problem
Over just a few years, authors have generated billions upon billions of web pages. It
is a safe bet that the majority of these pages are not compliant with any defined ver-
sion of HTML. It is an even safer bet that the vast majority of these pages are not
XHTML compliant.

The harsh reality is that these billions of pages will never be converted to XHTML.
Who has the time to go back, root out these old pages, and tweak them to make
them XHTML compliant—especially when the end result, as perceived by the user,

506 | Chapter 16: XHTML

will not change? Like the dusty decks of COBOL programs that lay unchanged for
decades before Y2K forced programmers to bring them up to snuff, these dusty decks
of web pages will also lie untouched until a similarly dramatic event forces us to
update them.

However, the dusty-deck problem is no excuse for not writing compliant documents
going forward. Leave those old documents alone, but don’t create a new conversion
problem every time you create a new document. A little effort now will help your
documents work across a wider range of browsers in the future.

16.5.2 Automatic Conversion
If your sense of responsibility leads you to undertake the conversion of your existing
HTML documents into XHTML, you’ll find a utility named Tidy to be exceptionally
useful. Written by Dave Raggett, one of the movers and shakers at the W3C, it auto-
mates a significant amount of the work required to convert HTML documents into
XHTML.

While Tidy’s capabilities are too varied and wonderful to be fully listed here, we can
at least assure you that Tidy can detect and correct case conversion, quoted
attributes, and proper element nesting. For the complete list of features and the lat-
est version of Tidy for various computing platforms, visit http://tidy.sourceforge.net.

16.5.3 Lenient Browsers and Lazy Authors
There is a good rule of thumb regarding data sharing, especially on the Internet: be
lenient in what you accept and strict in what you produce. This is a not a commen-
tary on social policy, but rather a pragmatic admonition to tolerate ambiguity and
errors in data you receive while making sure that anything you send is scrupulously
correct.

Web browsers are good examples of lenient acceptors. Most current web pages have
some sort of error in them, albeit often just an error of omission. Nonetheless,
browsers accept the error and present a reasonable document to the user. This
leniency lets authors get away with all sorts of things, often without even knowing
they’ve made a mistake.

Most authors stop developing a page when it looks good and works the way they
want it to. Very few take the time to run their pages through the various HTML-
compliance tools to catch potential errors. Many of those who do try to test for com-
pliance are so overwhelmed by the number of minor errors they have committed that
they simply give up and continue to create bad pages that can be handled by good
browsers.

Because the number of bad pages continues to grow, browsers cannot afford to start
being strict. Any browser that tried to enforce even the most basic rules of the HTML

16.5 Should You Use XHTML? | 507

standard would be abandoned by users who want to see web pages, not error mes-
sages. A vicious cycle ensues: bad pages force the use of lenient browsers, which
encourage the creation of more bad pages. Break the cycle by vowing to create only
XHTML-compliant content whenever you can.

16.5.4 Time, Money, and Standards
XHTML was developed as an XML representation of the HTML standard. It is
intended, going forward, to become the single standard everyone should use to cre-
ate content for the Web.

In a perfect world, standards are universally adopted and used. Full compliance is
required of any document before it is placed on the Web. Conversion of legacy docu-
ments is done immediately.

In the real world, a shortage of time and money prevents the universal use of stan-
dards. Under pressure to quickly deliver something that works, developers turn out
pages that work only well enough. Because browsers allow second-rate content to
exist on the Web, the need to comply with a standard becomes a secondary issue—
one that is too quickly ignored in the dizzying pace of web development.

16.5.5 Man Versus Machine
All is not lost, however. While XHTML is painful and tedious for humans to create,
it is quite easy for machines to create. The number of web-authoring tools continues
to increase, and the pages created by these machines should be completely XHTML
compliant. While it doesn’t make much economic sense for a web author to spend a
lot of time getting all those end tags in the right spot, it does make sense for the pro-
grammer developing an authoring tool to ensure that the tool generates all those cor-
rect end tags. The effort the web author expends is leveraged exactly once for each
page; the effort of the tool creator is leveraged over and over, each time the tool pro-
duces a new page.

It seems that the real future of XHTML lies in the realm of machine-generated content.
XHTML is far too picky to be successfully used by the millions of casual web authors
who create small sites. However, if those same authors use a tool to create their pages,
they could be generating XHTML-compliant pages and never even know it.

If you are among that small community of developers who create tools that generate
HTML output, you are doing a great disservice to your many potential customers if
your tool does not generate excruciatingly correct XHTML-compliant output. There
is no technical excuse for any tool not to generate XHTML-compliant output. If
there are compatibility issues surrounding how the output might be used (with a
nonXHTML browser, perhaps), the tool should provide a switch that lets the author
select XHTML-compliant output as an option.

508 | Chapter 16: XHTML

16.5.6 What to Do?
We recommend that all HTML authors take the time to absorb the differences
between HTML and XHTML outlined in this chapter. Given the resources and
opportunity, you should try to create XHTML-compliant pages wherever possible for
the sites you are creating. Certainly you should choose authoring tools that support
XHTML and give you the option of generating XHTML-compliant pages.

One day, XHTML may replace HTML as the official standard language of the Web.
Even so, the number of noncompliant pages on the Web is overwhelming, forcing
browsers to honor old HTML constructs and features for at least the next five years.
For better or worse, HTML is here to stay as the de facto standard for web authors
for years to come.

509

Chapter 17!ti
In this chapter:

• Top of the Tips
• Cleaning Up After Your HTML Editor
• Tricks with Tables
• Tricks with Windows and Frames

CHAPTER 17

Tips, Tricks, and Hacks17

We’ve sprinkled a number of tips, tricks, and hacks throughout this book, along
with style guidelines, examples, and instructions. So why have a special chapter on
tips, tricks, and hacks? Because HTML and XHTML are the languages, albeit con-
strained, that make the Web the exciting place that it is, and interested readers want
to know, “How do I do the cool stuff?”

17.1 Top of the Tips
The most important tip for even veteran authors is to surf the Web yourself. We can
show and explain a few neat tricks to get you started, but hundreds of thousands of
authors out there are combining and recombining HTML and XHTML tags and jug-
gling content to create compelling and useful documents.

All the popular browsers provide a way to view the source for the web pages that you
download. Examine (don’t steal) them for how they create the eye-catching and
effective features, and use them to guide your own creations. Get a feel for the more
effective web collections. How are their documents organized? How large is each
document?

We all learn from experience, so go get it!

17.1.1 Design for Your Audience
We repeatedly argue throughout this book that content matters most, not look. But
that doesn’t mean presentation doesn’t matter.

510 | Chapter 17: Tips, Tricks, and Hacks

Effective documents match your target audience’s expectations, giving them a famil-
iar environment in which to explore and gather information. Serious academicians,
for instance, expect a journal-like appearance for a treatise on the physiology of the
kumquat: long on meaningful words, figures, and diagrams and short on frivolous
trappings like cute bullets and font abuse. Don’t insult the reader’s eye, except when
exercising artistic license to jar or to attack your reader’s sensibilities. By anticipat-
ing your audience and designing your documents to appeal to their tastes, you also
subtly deflect unwanted surfers from your pages.

For instance, use subtle colors and muted text transitions between sections for a clas-
sical art museum’s collection, to mimic the hushed environment of a real classical art
museum. The typical rock ’n’ roll-crazed web-surfer maniac probably won’t take
more than a glance at your site, but the millionaire arts patron might.

Also, use effective layout to gently guide your readers’ eyes to areas of interest in
your documents. Do that, by adhering to the basic rules of document layout and
design, such as placing figures and diagrams near (if not inline with) their content
references. Nothing’s worse than having to scroll up and down the browser window
in a desperate search for a picture that can explain everything.

We won’t lie and suggest that we’re design experts. We aren’t, but they’re not hard
to find. So, another tip for the serious web page author is to seek professional help.
The best situation is to have design experience yourself. Next best is to have a pro
looking over your shoulder, or at least somewhere within earshot.

Make a trip to your local library and do some reading on your own, too. Better yet,
browse the various online guides. Check out Web Design in a Nutshell by Jennifer
Niederst Robbins (O’Reilly). Your readers will be glad you did. [Tools for the Web
Designer, 1.6]

17.1.2 Consistent Documents
The next best tip we can give you is to reuse your documents. Don’t start from
scratch each time. Rather, develop a consistent framework, even to the point of a
content outline into which you add the detail and character for each page. And
endeavor to create CSS2-based stylesheets so that the look and feel of your docu-
ments remains consistent across your collection.

17.2 Cleaning Up After Your HTML Editor
Although you can create and edit HTML/XHTML documents with a text editor,
such as vi or Notepad, most HTML authors use an application that is designed for
creating web pages—several are free of charge, many offer a free evaluation period,
and most are available for download over the Web. Be forewarned, though; in our

17.2 Cleaning Up After Your HTML Editor | 511

experience, you will rarely (if ever) be able to create a web document from one of
these editors without having to inspect, add to, edit, and sometimes even repair the
source HTML that the editor generates. The following sections discuss a few things
that you should know about and watch out for.

17.2.1 Where Did My Document Go?
One of the first things you will notice is that many of the HTML editors automati-
cally introduce into your document markup that you did not explicitly select or
write. Remember this very simple HTML document that we started with in
Chapter 2?

<html>
<head>
<title>My first HTML document</title>
</head>
<body>
<h2>My first HTML document</h2>
Hello, <i>World Wide Web!</i>
 <!-- No "Hello, World" for us -->
<p>
Greetings from

O'Reilly Media
<p>
Composed with care by:
<cite>(insert your name here)</cite>

©2000 and beyond
</body>
</html>

Here is what the source looks like after you load it into Microsoft Word fromOffice XP:

<html xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns="http://www.w3.org/TR/REC-html40">

<head>
<meta http-equiv=Content-Type content="text/html; charset=windows-1252">
<meta name=ProgId content=Word.Document>
<meta name=Generator content="Microsoft Word 10">
<meta name=Originator content="Microsoft Word 10">
<link rel=File-List href="html_files/filelist.xml">
<title><html></title>
<!--[if gte mso 9]><xml>
 <w:WordDocument>
 <w:Compatibility>
 <w:BreakWrappedTables/>
 <w:SnapToGridInCell/>
 <w:WrapTextWithPunct/>
 <w:UseAsianBreakRules/>
 </w:Compatibility>

512 | Chapter 17: Tips, Tricks, and Hacks

 <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
 </w:WordDocument>
</xml><![endif]-->
<style>
<!--
 /* Style Definitions */
 p.MsoNormal, li.MsoNormal, div.MsoNormal
 {mso-style-parent:"";
 margin:0in;
 margin-bottom:.0001pt;
 mso-pagination:widow-orphan;
 font-size:12.0pt;
 font-family:"Times New Roman";
 mso-fareast-font-family:"Times New Roman";}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
 {margin:0in;
 margin-bottom:.0001pt;
 mso-pagination:widow-orphan;
 font-size:10.0pt;
 font-family:"Courier New";
 mso-fareast-font-family:"Times New Roman";}
@page Section1
 {size:8.5in 11.0in;
 margin:1.0in 65.95pt 1.0in 65.95pt;
 mso-header-margin:.5in;
 mso-footer-margin:.5in;
 mso-paper-source:0;}
div.Section1
 {page:Section1;}
-->
</style>
<!--[if gte mso 10]>
<style>
 /* Style Definitions */
 table.MsoNormalTable
 {mso-style-name:"Table Normal";
 mso-tstyle-rowband-size:0;
 mso-tstyle-colband-size:0;
 mso-style-noshow:yes;
 mso-style-parent:"";
 mso-padding-alt:0in 5.4pt 0in 5.4pt;
 mso-para-margin:0in;
 mso-para-margin-bottom:.0001pt;
 mso-pagination:widow-orphan;
 font-size:10.0pt;
 font-family:"Times New Roman";}
</style>
<![endif]-->
</head>

<body lang=EN-US style='tab-interval:.5in'>

17.2 Cleaning Up After Your HTML Editor | 513

<div class=Section1>

<p class=MsoPlainText><html><o:p></o:p></p>

<p class=MsoPlainText><head><o:p></o:p></p>

<p class=MsoPlainText><title>My first HTML document</title><o:p></o:p></
p>

<p class=MsoPlainText></head><o:p></o:p></p>

<p class=MsoPlainText><body><o:p></o:p></p>

<p class=MsoPlainText><h2>My first HTML document</h2><o:p></o:p></p>

<p class=MsoPlainText>Hello, <i>World Wide Web!</i><o:p></o:p></p>

<p class=MsoPlainText> <!-- No
"Hello, World" for us --><o:p></o:p></p>

<p class=MsoPlainText><p><o:p></o:p></p>

<p class=MsoPlainText>Greetings from
<o:p></o:p></p>

<p class=MsoPlainText>O'Reilly
Media<o:p></o:p></p>

<p class=MsoPlainText><p><o:p></o:p></p>

<p class=MsoPlainText>Composed with care by: <o:p></o:p></p>

<p class=MsoPlainText><cite>(insert your name here)</cite><o:p></o:p></p>

<p class=MsoPlainText>
&copy;2000 and beyond<o:p></o:p></p>

<p class=MsoPlainText></body><o:p></o:p></p>

<p class=MsoPlainText></html></p>

</div>

</body>

</html>

Yeow! Where did the document go? Excessive markup makes the source document
almost humanly impossible to read. What infuriates document purists like us,
beyond the fact that lots of stuff that we neither wanted nor asked for was added, is
that Word automatically treats any text document containing HTML markup as fod-
der for its mill. You can remove the .html or .htm suffix from the filename or delete
<html> and <head> from the document, to no avail—Word will still get you.

514 | Chapter 17: Tips, Tricks, and Hacks

Microsoft isn’t alone in cluttering the source. Most HTML editors add at least a
<meta> tag that contains their product information. Many go through and “fix” your
document to comply with current standards and practices, too—for example, by
adding all those paragraph and list-item end tags that HTML allows you to omit.
(From an XHTML standpoint, we admit that this meddling is probably valid.)

To its credit, Word runs well, unlike other tools that routinely crashed without
warning as we fought with their treatment of the markup. Microsoft even offers a
Word plug-in that removes the additional markup so that you can recover a reason-
able facsimile of the original document.*

17.2.2 When and Why to Edit the Editor
No matter how good the HTML editor is, you’ll inevitably have to edit the (albeit
cluttered) source it generates. We’ve had to do it a lot ourselves, and so have all the
web developers we’ve talked with over the last few years.

Not all HTML editors provide an easy means to add JavaScript to your documents,
and many are not up-to-date with the HTML/XHTML and CSS2 standards. Remem-
ber, too, that the popular browsers don’t always agree on how they render a tag, and
even different versions of the same browser may differ. Furthermore, even the best
HTML editors don’t necessarily support extensions to the language.

So into the source you’ll have to go, whether to include some HTML feature not yet
supported by the editor (such as a new CSS2 property), to insert an attribute value or
keyword, or to modify ones that the editor added.

The tip is this: compose first. Try to start with a clean, finished document. Concen-
trate on content from the outset, and add the special effects later. Use a good HTML
editor from the start, or prepare your documents in two steps with two different
tools—a good content editor followed by a good HTML editor—particularly if you
plan to distribute the document in a format other than HTML.

17.2.3 Use the Best
If you compose web pages, we can’t imagine you not using an HTML editor of some
sort. The convenience is just too compelling. But choose carefully: some HTML edi-
tors are abysmal, and you’ll spend more time hunting down misplaced tags and
errant attributes than you’ll spend actually creating the document. Top tip: you get
what you pay for.

* You can find this plug-in at http://office.microsoft.com/downloads/2000/Msohtmf2.aspx.

17.3 Tricks with Tables | 515

It’s no surprise that HTML editors vary greatly in their features. Many editors let you
switch the display from source text to what may appear when rendered by a browser.
Some simply let you add tags and modify attribute values through pull-down menus
and hot-key options. Others are WYSIWYG layout tools that make it easy to include
graphics and other multimedia content. Other advanced features include embedding
and testing applets and scripts.

In general, HTML editors fall into one of two categories: either they are good layout
tools, including advanced styling features and tools for dynamic content, or they
excel at content creation and management. Obviously, if you are producing flashy,
commercial web pages that rely on advanced layout techniques and include lots of
different styles and dynamic content, use a good layout tool. If you are producing a
content-rich document, use a tool that provides good editorial assistance.

No matter which type you use, there are some common considerations to keep in
mind when selecting an HTML editor:

Is it up-to-date?
No HTML editor is yet entirely up-to-date with the current standards, particu-
larly CSS2. Read the product specifications and update often.

Does it include a source editor?
Although you may load an HTML editor-generated document into a different
text editor to change the source, it’s much more convenient if the editor itself
lets you view and edit the HTML source. Also, make sure that your HTML edi-
tor doesn’t automatically “fix” your source edits.

Is it modifiable?
Ideally, the HTML editor should let you customize its behavior to fit your speci-
fications. For example, at a minimum you should be allowed to choose your
own font colors, styles, and backgrounds, if those are automatically included in
the editor’s boilerplate document.

Is it affordable and reliable?
We can’t stress enough that you get what you pay for. If creating web pages is
more than just a passing fancy, get the best editor you can find. Find one that is
well supported and well reviewed by other HTML authors. Ask around, and per-
haps join an HTML author’s newsgroup to get the latest scoop on products.

17.3 Tricks with Tables
By design, tables let authors create appealing, accessible tables of information. But
the table tags also can be exploited to create innovative, attractive page designs that
are otherwise unattainable in standard HTML and XHTML.

516 | Chapter 17: Tips, Tricks, and Hacks

17.3.1 Multicolumn Pages
One very common and popular page-layout element missing from HTML and XHTML
is multiple columns of text. Here’s a tip on how to use tables to achieve that effect.*

17.3.1.1 Basic multicolumn layout

The basic two-column layout using <table> has a single table row with three data
cells: one each for the columns of text and an intervening empty cell to more attrac-
tively separate the two columns. We’ve also added a large cellspacing attribute
value to create additional intervening space between the columns.

The following example HTML table is an excellent template for a simple two-column
text layout:

<table border=0 cellspacing=7>
 <tr>
 <td>Copy for column 1...
 <td>

 <td>Copy for column 2...
 </table>

See Figure 17-1 for the results.

* Okay, it’s true that earlier versions of Netscape supported the <multicol> extension. No longer. This is a
more universal solution.

Figure 17-1. A simple two-column layout

17.3 Tricks with Tables | 517

The one thing the browsers won’t do is automatically balance the text in the col-
umns, resulting in adjacent columns of approximately the same length. You’ll have
to experiment with your document, manually shifting text from one column to
another until you achieve a nicely balanced page.

Keep in mind, though, that users may resize their display windows, and the col-
umns’ contents will shift accordingly. So don’t spend a lot of time getting the last
sentences of each column to line up exactly; they’re bound to be skewed in other
browser-window widths.

Of course, you can easily convert the example layout to three or more columns by
dividing the text among more cells in the table. But keep in mind that pages with
more than three columns may prove difficult to read on small displays, where the
actual column width might be quite small.

17.3.1.2 Straddle heads

The basic multicolumn format is just the start. By adding cells that span across the col-
umns, you create headlines. Similarly, you can make figures span across more than one
column: simply add the colspan attribute to the cell containing the headline or figure.
Figure 17-2 shows an attractive three-column layout with straddle heads and a span-
ning figure, created from the following HTML source with table tags:

<table border=0 cellspacing=7>
 <tr>
 <th colspan=5><h2>The History of the Kumquat</h2>
 <tr valign=top>
 <td rowspan=2>Copy for column 1...
 <td rowspan=2 width=24>

 <td>Copy for column 2...
 <td width=24>

 <td>Copy for column 3...
 <tr>
 <td colspan=3 align=center>
 <p>
 <i>The Noble Fruit</i>
</table>

To achieve this nice layout, we used the colspan attribute on the cell in the first
row to span all five table columns (three with copy and the two intercolumn
spaces). We used the rowspan attribute on the first column and its adjacent column
spacer to extend the columns down beside the figure. The figure’s cell has a
colspan attribute so that the contents span the other two columns and intervening
spaces.

518 | Chapter 17: Tips, Tricks, and Hacks

17.3.2 Side Heads
The only text-heading features available in HTML and XHTML are the <h1> through
<h6> tags. These tags are always embedded in the text flow, separating adjacent para-
graphs of text. Through multiple columns, you can achieve an alternative style that
places headings into a separate side column, running vertically alongside the docu-
ment text.

Figure 17-3 shows you a fairly fancy pair of side heads, the result of the following bit
of source XHTML table code:

<table>
 <tr>
 <th width="20%" align="right">
 <h3>Section 1</h3></th>
 <td></td>
 <td>
 Copy for section 1 goes on and on a bit
 so that it will take up more than one line in the
 table cell window... </td>
 </tr>
 <tr>

Figure 17-2. Fancy straddle heads and spanning figures with HTML table tags

17.3 Tricks with Tables | 519

 <th align="right">
 <h3>Section 2</h3></th>
 <td></td>
 <td>
 Copy for section 2 goes on and on a bit
 so that it will take up more than one line in the
 table cell window...</td>
 </tr>
</table>

Notice how we created reasonably attractive side heads set off from the left margin of
the browser window by adjusting the first header cell’s width and right-justifying the
cell contents.

Just as in our multicolumn layout, the example side-head layout uses an empty col-
umn to create a space between the narrow left column containing the heading and
the wider right column containing the text associated with that heading. It’s best to
specify that column’s width as a percentage of the table width instead of explicitly in
numbers of pixels, to make sure that the heading column scales to fit both wide and
narrow display windows.

17.3.3 Better Forms Layout
Of all the features in HTML and XHTML, forms cry out for better layout control.
Unlike other structured elements, forms look best when rendered in a fixed layout with
precise margins and vertical alignment of elements. However, except for carefully
planned, <pre>-formatted form segments, the standards just don’t give us any special
tools to better control forms layout. You can accomplish a lot with stylesheets, but that
gets complicated quickly. Instead, tables provide easy forms layout.

17.3.3.1 Basic forms layout

Your forms almost always look better and are easier for your readers to follow if you
use a table to structure and align the elements. For example, you might use a vertical

Figure 17-3. Table tags created these side heads

520 | Chapter 17: Tips, Tricks, and Hacks

alignment to your forms, with field labels to the left and their respective form ele-
ments aligned to an adjacent vertical margin on the right. Don’t try that with just
standard HTML or XHTML. Rather, prepare a form that contains a two-column
table. The following HTML source does just that, as shown in Figure 17-4:

<form method=post action="http:/cgi-bin/process">
 <table>
 <tr>
 <th align=right>Name:
 <td><input type=text size=32>
 <tr>
 <th align=right>Address:
 <td><input type=text size=32>
 <tr>
 <th align=right>Phone:
 <td><input type=text size=12>
 <tr>
 <td colspan=2 align=center>
 <input type=submit value="Register">
 </table>
</form>

Of course, more complex form layouts can be managed with tables, too. We recom-
mend that you first sketch the form layout on paper and plan how various combina-
tions of table elements, including row- and column-straddled table cells, might be
used to affect the layout.

17.3.3.2 Building forms with nested tables

As we mentioned earlier, you can place a table inside a cell in another table. While
this alone can lead to some elaborate table designs, nested tables also are useful for
managing a subset of form elements within the larger table containing the entire

Figure 17-4. Align your forms nicely with tables

17.4 Tricks with Windows and Frames | 521

form. The best application for using a nested table in a form is for laying out check-
boxes and radio buttons.

For example, insert the following row containing a table into the form table in the
previous example. It creates a checkbox with four choices:

<tr>
 <th align=right valign=top>Preferences:
 <td>
 <table>
 <tr>
 <td><input type=checkbox name=pref>Lemons
 <td><input type=checkbox name=pref>Limes
 <tr>
 <td><input type=checkbox name=pref>Oranges
 <td><input type=checkbox name=pref>Kumquats
 </table>

Figure 17-5 shows you how this nested table attractively formats the checkboxes,
which browsers would otherwise render on a single line and not well aligned.

17.4 Tricks with Windows and Frames
For the vast majority of links in your documents, you’ll want the newly loaded docu-
ment displayed in the same window, replacing the previous one. That makes sense
because your users usually follow a sequential path through your collection.

But sometimes it makes sense to open a document in a new window so that the new
document and the old document are both directly accessible on the user’s screen. If the
new document is related to the original, for instance, it makes sense to have both in
view. Other times, you might want to open more than one document in multiple win-
dows in a frameset. More commonly, the new document starts the user down a new
web of documents, and you want her to see and remember where she came from.

Figure 17-5. Nesting tables to format elements of a form

522 | Chapter 17: Tips, Tricks, and Hacks

Regardless of the reason, it is easy to open a new browser window from your
document. All you need to do is add the target attribute in the appropriate hyper-
link (<a>) tag.

17.4.1 Targeting Windows
We normally use the target attribute to load a document into a specific frame that
we’ve named in a frameset. It also serves to create a new window, by one of two
methods:

Reference a new name
If you use a name you haven’t previously defined as the value for the target

attribute of a hyperlink, the popular browsers automatically create a new win-
dow with that name and load the referenced document into that window. This is
the preferred way to create new windows because you can subsequently use the
name to load other documents into the same window. Using this technique, you
can control which document gets loaded where.

Create an unnamed window
All the popular browsers support a special target named _blank* that lets you cre-
ate a new window. The _blank window has limited use, though, because it is
nameless—you cannot direct any other documents into that window. (New doc-
uments loaded via hyperlinks selected by the user within the window get dis-
played in that same window, of course.)

17.4.2 Overriding Others’ Targets
Ever visited a site whose home page is a frame document that never gives up? You
know, the kind that leaves its great big logo on the top of the window and its site
TOC running down the side of the display, staring you in the face long after you’ve
hyperlinked away from the site? What if your site’s frameset gets trapped into one of
their window frames? What to do? (Apparently their webmasters haven’t heard
about the _blank target.)

The short answer is to use JavaScript to force open a new window for your docu-
ments. But that, too, is potentially confusing for users because they may already have
a full window ready for your document. So, to embellish, let JavaScript discover
whether your page is destined for a corner frame or for the whole window.

Here is an example script that loads a web page called index2.html into its own full
window. Note that JavaScript-enabled browsers won’t let you clear a previously
loaded document display unless your document owns it. So, in the case where the
target is not the whole window (i.e., self is not window.top), the example script

* Some browsers also accept the name _new. If you can’t get _blank to work with your browser, try _new.

17.4 Tricks with Windows and Frames | 523

opens a new window that becomes the target for your pages. The user may choose to
close your document window and return to the other one, or vice versa:

<html>
<head>
<title>I need a window of my own</title>
<script language="JavaScript">
<!--
 if (self != window.top)
 window.open("http://www.kumquats.com/index2.html");
 else
 self.location.href = "http://www.kumquats.com/index2.html";
//-->
</script>
</head>
<body>
Your browser apparently doesn't support JavaScript. Please
 hyperlink to our site manually.
</body>
</html>

17.4.3 Multiple Frames in One Link
Loading a new document from a hyperlink is a snap, even if you put the new docu-
ment into an alternative frame or window from its hyperlink parent. Occasionally,
though, you’ll want to load documents into two frames when the user clicks just one
link. With a bit of trickery, you can load two or more frames at once, provided they
are arranged a certain way in the browser window.

Consider this frame layout:

<frameset rows=2>
 <frameset cols=2>
 <frame name=A>
 <frame name=B>
 </frameset>
 <frameset>
 <frame name=C>
 <frame name=D>
 </frameset>
</frameset>

If someone clicks a link in frame A, the only thing you can do is update one of the
four frames. Suppose you wanted to update frames B and D at the same time. The
trick is to replace frames B and D with a single frame, like this:

<frameset cols=2>
 <frameset rows=2>
 <frame name=A>
 <frame name=C>
 </frameset>
 <frame name=BD>
</frameset>

524 | Chapter 17: Tips, Tricks, and Hacks

Aha! Now you have a single target in which to load a single document, frame BD.
The document you load should contain the original frames B and D in one column,
like this:

<frameset cols=2>
 <frame name=B>
 <frame name=D>
</frameset>

The two frames fill frame BD. When you update frame BD, both frames are replaced,
giving the appearance of two frames being updated at once.

The drawback to this is that the frames must be adjacent and able to be grouped into
a single document. For most pages, though, this solution works fairly well.

We’ve only scratched the surface of HTML and XHTML tips and tricks here. Our
advice: keep hacking!

525

Appendix A APPENDIX A

HTML Grammar1

For the most part, browsers do not rigidly enforce the exact syntax of an HTML or
even an XHTML document. This gives authors wide latitude in creating documents
and gives rise to documents that work on most browsers but actually are incompati-
ble with the HTML and XHTML standards. Our advice is to stick to the standards,
unless your documents are fly-by-night affairs.

The standards explicitly define the ordering and nesting of tags and document ele-
ments. This syntax is embedded within the appropriate Document Type Definition
(DTD) and is not readily understood by those who are not versed in Standard Gener-
alized Markup Language (SGML; for the HTML 4.01 DTD, see Appendix D) or
Extensible Markup Language (XML; for the XHTML 1.0 DTD, see Appendix E).
Accordingly, we provide an alternate definition of the allowable HTML and XHTML
syntax, using a fairly common tool called a grammar.

Grammar, whether it defines English sentences or HTML documents, is just a set of
rules that indicates the order of language elements. These language elements can be
divided into two sets: terminal (the actual words of the language) and nonterminal
(all other grammatical rules). In HTML and XHTML, the words correspond to the
embedded markup tags and text in a document.

To use the grammar to create a valid document, follow the order of the rules to see
where the tags and text may be placed to create a valid document.

Grammatical Conventions
We use a number of typographic and punctuation conventions to make our gram-
mar easy to understand.

526 | Appendix A: HTML Grammar

Typographic and Naming Conventions
For our grammar, we denote the terminals with a monospaced typeface. The nonter-
minals appear in italicized text.

We also use a simple naming convention for the majority of our nonterminals: if a
nonterminal defines the syntax of a specific tag, its name is the tag name followed by
_tag. If a nonterminal defines the various language elements that may be nested
within a certain tag, its name is the tag name followed by _content.

For example, if you are wondering exactly which elements are allowed within an <a>

tag, you can look for the a_content rule within the grammar. Similarly, to determine
the correct syntax of a definition list created with the <dl> tag, look for the dl_tag rule.

Punctuation Conventions
Each rule in the grammar starts with the rule’s name, followed by the replacement
symbol (::=) and the rule’s value. We’ve intentionally kept the grammar simple, but
we do use three punctuation elements to denote alternation, repetition, and optional
elements in the grammar.

Alternation

Alternation indicates a rule may actually have several different values, of which you
must choose exactly one. Pipes (|) separate the alternatives for the rule.

For example, the heading rule is equivalent to any one of six HTML heading tags, so
it appears in the table as:

heading ::= h1_tag

 | h2_tag

 | h3_tag

 | h4_tag

 | h5_tag

 | h6_tag

The heading rule tells us that wherever the heading nonterminal appears in a rule,
you can replace it with exactly one of the actual heading tags.

Repetition

Repetition indicates that an element within a rule may be repeated some number of
times. Repeated elements are enclosed in curly braces ({...}). The closing brace has
a subscripted number other than 1 if the element must be repeated a minimum num-
ber of times.

For example, the tag may contain only tags, or it may be empty. The rule,
therefore, is:

ul_tag ::=
 {li_tag }0

The Grammar | 527

This rule says that the syntax of the tag requires the tag and zero or more
 tags, followed by a closing tag. We spread this rule across several lines
and indented some of the elements to make it more readable; your documents need
not actually be formatted this way.

Optional elements

Some elements may appear in a document but are not required. Optional elements
are enclosed in square brackets ([. . .]). The <table> tag, for example, has an
optional caption:

table_tag ::= <table>
 [caption_tag]
 {tr_tag }0
 </table>

In addition, the rule says that a table begins with the <table> tag, followed by an
optional caption and zero or more table-row tags, and ends with the </table> tag.

More Details
Our grammar stops at the tag level; it does not delve further to show the syntax of
each tag, including tag attributes. For these details, refer to the quick-reference card
included with this book.

Predefined Nonterminals
The HTML and XHTML standards define a few specific kinds of content that corre-
spond to various types of text. We use these content types throughout the grammar.
They are:

literal_text
Text is interpreted exactly as specified; no character entities or style tags are
recognized.

plain_text
Regular characters in the document character encoding, along with character
entities denoted by the ampersand character, are recognized.

style_text
Like plain_text, with physical and content-based style tags allowed.

The Grammar
The grammar is a composite of the HTML 4.01 and XHTML 1.0 standard tags and
special extensions to the language as currently supported by the popular browsers.

528 | Appendix A: HTML Grammar

The rules are in alphabetical order. The starting rule for an entire document is named
html_document.

a_contenta ::= heading

| text

a_tag ::= <a>

{a_content}0

abbr_tag ::= <abbr> text </abbr>

acronym_tag ::= <acronym> text </acronym>

address_content ::= p_tag

| text

address_tag ::= <address>

{address_content}0

</address>

applet_content ::= {<param>}0

body_content

applet_tag ::= <applet> applet_content </applet>

b_tag ::= text

basefont_tag ::= <basefont> body_content </basefont>

bdo_tag ::= <bdo> text </bdo>

big_tag ::= <big> text </big>

blink_tag ::= <blink> text </blink>

block ::= {block_content}0

block_content ::= <isindex>

| basefont_tag

| blockquote_tag

| center_tag

| dir_tag

| div_tag

| dl_tag

| form_tag

| listing_tag

| menu_tag

| multicol_tag

| nobr_tag

| ol_tag

| p_tag

The Grammar | 529

| pre_tag

| table_tag

| ul_tag

| xmp_tag

blockquote_tag ::= <blockquote> body_content </blockquote>

body_content ::= <bgsound>

| <hr>

| address_tag

| block

| del_tag

| heading

| ins_tag

| layer_tag

| map_tag

| marquee_tag

| text

body_tag ::= <body>

{body_content}0

</body>

caption_tag ::= <caption> body_content </caption>

center_tag ::= <center> body_content </center>

cite_tag ::= <cite> text </cite>

code_tag ::= <code> text </code>

colgroup_content ::= {<col>}0

colgroup_tag ::= <colgroup>

colgroup_content

content_style ::= abbr_tag

| acronym_tag

| cite_tag

| code_tag

| dfn_tag

| em_tag

| kbd_tag

| q_tag

| strong_tag

| var_tag

dd_tag ::= <dd> flow </dd>

del_tag ::= flow

530 | Appendix A: HTML Grammar

dfn_tag ::= <dfn> text </dfn>

dir_tagb ::= <dir>

{li_tag}

</dir>

div_tag ::= <div> body_content </div>

dl_content ::= dt_tag dd_tag

dl_tag ::= <dl>

{dl_content}

</dl>

dt_tag ::= <dt>

text

</dt>

em_tag ::= text

fieldset_tag ::= <fieldset>

[legend_tag]

{form_content}0

</fieldset>

flow ::= {flow_content}0

flow_content ::= block

| text

font_tag ::= style_text

form_contentc ::= <input>

| <keygen>

| body_content

| fieldset_tag

| label_tag

| select_tag

| textarea_tag

form_tag ::= <form>

{form_content}0

</form>

frameset_content ::= <frame>

| noframes_tag

frameset_tag ::= <frameset>

{frameset_content}0

</frameset>

h1_tag ::= <h1> text </h1>

h2_tag ::= <h2> text </h2>

The Grammar | 531

h3_tag ::= <h3> text </h3>

h4_tag ::= <h4> text </h4>

h5_tag ::= <h5> text </h5>

h6_tag ::= <h6> text </h6>

head_content ::= <base>

| <isindex>

| <link>

| <meta>

| <nextid>

| style_tag

| title_tag

head_tag ::= <head>

{head_content}0

</head>

heading ::= h1_tag

| h2_tag

| h3_tag

| h4_tag

| h5_tag

| h6_tag

html_content ::= head_tag body_tag

| head_tag frameset_tag

html_document ::= html_tag

html_tag ::= <html> html_content </html>

i_tag ::= <i> text </i>

ilayer_tag ::= <ilayer> body_content </ilayer>

ins_tag ::= <ins> flow </ins>

kbd_tag ::= <kbd> text </kbd>

label_contentd ::= <input>

| body_content

| select_tag

| textarea_tag

label_tag ::= <label>

{label_content}0

</label>

layer_tag ::= <layer> body_content </layer>

legend_tag ::= <legend> text </legend>

532 | Appendix A: HTML Grammar

li_tag ::= flow

listing_tag ::= <listing> literal_text </listing>

map_content ::= {<area>}0

map_tag ::= <map> map_content </map>

marquee_tag ::= <marquee> style_text </marquee>

menu_tage ::= <menu>

{li_tag}0

</menu>

multicol_tag ::= <multicol> body_content </multicol>

nobr_tag ::= <nobr> text </nobr>

noembed_tag ::= <noembed> text </noembed>

noframes_tag ::= <noframes>

{body_content}0

</noframes>

noscript_tag ::= <noscript> text </noscript>

object_content ::= {<param>}0

body_content

object_tag ::= <object> object_content </object>

ol_tag ::=

{li_tag}

optgroup_tag ::= <optgroup>

{option_tag}0

</optgroup>

option_tag ::= <option> plain_text </option>

p_tag ::= <p> text </p>

physical_style ::= b_tag

| bdo_tag

| big_tag

| blink_tag

| font_tag

| i_tag

| s_tag

| small_tag

| span_tag

| strike_tag

| sub_tag

| sup_tag

The Grammar | 533

| tt_tag

| u_tag

pre_content ::=

| <hr>

| a_tag

| style_text

pre_tag ::= <pre>

{pre_content}0

</pre>

q_tag ::= <q> text </q>

s_tag ::= <s> text </s>

samp_tag ::= <samp> text </samp>

script_tagf ::= <script> plain_text </script>

select_content ::= optgroup_tag

| option_tag

select_tag ::= <select>

{select_content}0

</select>

server_tag g ::= <server> plain_text </server>

small_tag ::= <small> text </small>

span_tag ::= text

strike_tag ::= <strike> text </strike>

strong_tag ::= text

style_tag ::= <style> plain_text </style>

sub_tag ::= _{text}

sup_tag ::= ^{text}

table_cell ::= td_tag

| th_tag

table_content ::= <tbody>

| <tfoot>

| <thead>

| tr_tag

table_tag ::= <table>

[caption_tag]

{colgroup_tag}0

{table_content}0

</table>

td_tag ::= <td> body_content </td>

534 | Appendix A: HTML Grammar

text ::= {text_content}0

text_content ::=

| <embed>

| <iframe>

|

| <spacer>

| <wbr>

| a_tag

| applet_tag

| content_style

| ilayer_tag

| noembed_tag

| noscript_tag

| object_tag

| physical_style

| plain_text

textarea_tag ::= <textarea> plain_text </textarea>

th_tag ::= <th> body_content </th>

title_tag ::= <title> plain_text </title>

tr_tag ::= <tr>

{table_cell}0

</tr>

tt_tag ::= <tt> text </tt>

u_tag ::= <u> text </u>

ul_tag ::=

{li_tag}

var_tag ::= <var> text </var>

xmp_tag ::= <xmp> literal_text </xmp>

a a_content may not contain a_tags; you may not nest <a> tags within other <a> tags.

b The li_tag within the dir_tag may not contain any element found in a block.

c form_content may not contain form_tags; you may not nest one <form> within another <form>.

d As with the <form> tag, you cannot embed <form> or <label> tags within a <label> tag.

e The li_tag within the menu_tag may not contain any element found in a block.

f A script_tag may be placed anywhere within an HTML document, without regard to syntactic rules.

g A server_tag may be placed anywhere within an HTML document, without regard to syntactic rules.

535

Appendix B APPENDIX B

HTML/XHTML Tag Quick Reference2

In this appendix, we list in alphabetical order all the known (and some undocu-
mented) HTML and XHTML tags and attributes currently supported by one or more
of today’s popular browsers.

Core Attributes
Prior to HTML 4.0, few attributes could be used consistently for all the HTML tags.
HTML 4.0 changed this, defining a set of 16 core attributes that you can apply to
almost all the elements in both HTML 4.01 and XHTML 1.0. For brevity, we list these
core attributes in this section and spare you the redundancies in the table that follows:

class=name Specify a style class controlling the appearance of the tag’s contents.

dir=dir Specify the rendering direction for text—either left to right (ltr) or right to left (rtl).

id=name Define a reference name for the tag that is unique in the document.

lang=language Specify the human language for the tag’s contents with an International Organization for Standard-
ization (ISO) 639 standard two-character name and optional dialect subcode.

onclick=applet Specify an applet to be executed when the user clicks the mouse on the tag’s content display area.

ondblclick=applet Specify an applet to be executed when the user double-clicks the mouse button on the tag’s content
display area.

onkeydown=applet Specify an applet to be executed when the user presses down on a key while the tag’s contents have
input focus.

onkeypress=applet Specify an applet to be executed when the user presses and releases a key while the tag’s contents
have focus.

onkeyup=applet Specify an applet to be executed when the user releases a pressed key while the tag’s contents have
focus.

536 | Appendix B: HTML/XHTML Tag Quick Reference

Only a small handful of tags accept none or only some, but not all, of these
attributes. They are:

For convenience, we’ve marked each of these tags with an asterisk (*) in the follow-
ing table, and we list all of the attributes supported by these special tags, including
the common ones. For all other tags (those without an asterisk), assume that the
common attributes listed previously apply. Do note, however, that the popular
browsers do not support all of the HTML 4.0 standard attributes, common or not.
Please refer to the main text for details.

HTML Quick Reference
We use the alert icon to the far right of each item to indicate tags and attributes
that are extensions to the HTML 4.01 and XHTML 1.0 standards. We use the Inter-
net Explorer icon to identify those extension tags and attributes that are unique
to Internet Explorer and are not well supported by the other popular browsers. Even
though we include them in the main text, we have not included here any of the
antiquated or obsolete elements or attributes that are explicitly not part of the stan-
dards and are no longer supported by any browser.

onmousedown=applet Specify an applet to be executed when the user presses down on the mouse button while pointing
to the tag’s content display area.

onmousemove=applet Specify an applet to be executed when the user moves the mouse in the tag’s content display area.

onmouseout=applet Specify an applet to be executed when the user moves the mouse off the tag’s content display area.

onmouseover=applet Specify an applet to be executed when the user moves the mouse into the tag’s content display
area.

onmouseup=applet Specify an applet to be executed when the user releases the mouse button while in the tag’s con-
tent display area.

style=style Specify an inline style for the tag.

title=string Specify a title for the tag.

<applet> <base> <basefont>

<bdo>
 <comment>

<embed> <frame>

<frameset> <head> <hr>

<html> <iframe> <isindex>

<keygen> <marquee> <meta>

<nextid> <nobr> <noembed>

<param> <script> <server>

<spacer> <style> <title>

<wbr>

HTML Quick Reference | 537

We include the possible attributes (some required) indented below their respective
tags. In the description, we give possible attribute values as either a range of integer
numbers or a definitive list of options, where possible.

<a> ... Create a hyperlink anchor (href attribute) or fragment identifier (id
attribute).

accesskey=char Define the hot-key character for this anchor.

charset=encoding Specify the character set used to encode the target.

coords=list Specify a list of shape-dependent coordinates.

href=url Specify the URL of a hyperlink target.

hreflang=language Specify the language encoding for the target.

name=name Specify the name of a fragment identifier.

rel=relationship Indicate the relationship of this document to the target.

rev=relationship Indicate the reverse relationship of the target to this document.

shape=shape Define the region’s shape to be circ, circle, poly, polygon,
rect, or rectangle.

tabindex=value Define the position of this anchor in the document’s tabbing order.

target=name Define the name of the frame or window to receive the referenced
document.

type=type Specify the Multipurpose Internet Mail Extension (MIME) type of the
target.

<abbr> ... </abbr> The enclosed text is an abbreviation.

<acronym> ... </acronym> The enclosed text is an acronym.

<address> ... </address> The enclosed text is an address.

<applet> ... </applet> Define an executable applet within a text flow. *

align=position Align the <applet> region to either the top, middle, bottom
(default), left, right, absmiddle, baseline, or absbottom
of the text in the line.

alt=string Specify alternative text to replace the <applet> region within
browsers that support the <applet> tag but cannot execute the
application.

archive=url Specify a class archive to be downloaded to the browser and then
searched for code class.

class=name Specify a style class controlling the appearance of this tag.

code=class Specify the class name of the code to be executed (required).

codebase=url Specify the URL from which the code is retrieved.

height=n Specify the height, in pixels, of the <applet> region.

hspace=n Specify additional space, in pixels, to allow to the left and right of the
<applet> region.

id=name Define a name for this applet that is unique to this document.

mayscript Allow the applet to access JavaScript within the page.

name=name Specify the name of this particular instance of the applet.

538 | Appendix B: HTML/XHTML Tag Quick Reference

object=data Specify a representation of the object’s execution state.

style=style Specify an inline style for this tag.

title=string Provide a title for the applet.

vspace=n Specify additional space, in pixels, to allow above and below the
<applet> region.

width=n Specify the width, in pixels, of the <applet> region.

<area> Define a mouse-sensitive area in a client-side image map.

accesskey=char Define the hot-key character for this area.

alt=string Provide alternative text to be displayed by nongraphical browsers.

coords=list Specify a comma-separated list of shape-dependent coordinates that
define the edge of this area.

href=url Specify the URL of a hyperlink target associated with this area.

nohref Indicate that no document is associated with this area; clicking in the
area has no effect.

notab Do not include this area in the tabbing order.

onblur=applet Specify an applet to be run when the mouse leaves the area.

onfocus=applet Specify an applet to be run when the mouse enters the area.

shape=shape Define the region’s shape to be circ, circle, poly, polygon,
rect, or rectangle.

tabindex=value Define the position of this area in the document’s tabbing order.

taborder=n Specify this area’s position in the tabbing order.

target=name Specify the frame or window to receive the document linked by this
area.

 ... Format the enclosed text using a bold typeface.

<base> Specify the base URL for all relative URLs in this document. *

href=url Specify the base URL (required).

target=name Define the default target of all <a> links in the document.

<basefont> Specify the font size for subsequent text (deprecated; do not use). *

color=color Specify the base font’s color.

face=name Specify the local font to be used for the base font.

id=name Define a name for this tag that is unique to this document.

name=name Specify the local font to be used for the base font.

size=value Set the base font size, from 1 to 7 (required; default is 3).

<bdo> ... </bdo> Bidirectional override, changing the rendering direction of the
enclosed text.

*

class=name Specify a style class controlling the appearance of this tag.

dir=dir Specify the rendering direction for text—either left to right (ltr) or
right to left (rtl).

id=name Define a name for this tag that is unique to this document.

HTML Quick Reference | 539

lang=language Specify the language used for this tag’s contents using a standard
two-character ISO language name.

style=style Specify an inline style for this tag.

title=string Specify a title for this tag.

<bgsound> Define background audio for the document. *

loop=value Set the number of times to play the audio; value may be an integer or
the value infinite.

src=url Provide the URL of the audio file to be played.

<big> ... </big> Format the enclosed text using a bigger typeface.

<blink> ... </blink> Cause the enclosed content to blink.

<blockquote> ... </blockquote> The enclosed text is a block quotation.

cite=url Specify the URL of the source of the quoted material.

<body> ... </body> Delimit the beginning and end of the document body.

alink=color Set the color of active hypertext links in the document.

background=url Specify the URL of an image to be tiled in the document background.

bgcolor=color Set the background color of the document.

bgproperties=value With value set to fixed, prevent the background image from scroll-
ing with the document content.

leftmargin=value Set the size, in pixels, of the document’s left margin.

link=color Set the color of unvisited hypertext links in the document.

onblur=applet Specify an applet to be run when the mouse leaves the document
window.

onfocus=applet Specify an applet to be run when the mouse enters the document
window.

onload=applet Specify an applet to be run when the document is loaded.

onunload=applet Specify an applet to be run when the document is unloaded.

text=color Set the color of regular text in the document.

topmargin=value Set the size, in pixels, of the document’s top margin.

vlink=color Set the color of visited links in the document.

 Break the current text flow, resuming at the beginning of the next line. *

class=name Specify a style class controlling the appearance of this tag.

clear=margin Break the flow and move downward until the desired margin, either
left, right, none, or all, is clear.

id=name Define a name for this tag that is unique to this document.

style=style Specify an inline style for this tag.

title=string Specify a title for this tag.

<button> Create a push-button element within a <form>.

accesskey=char Define the hot-key character for this button.

disabled Disable the button, preventing the user from clicking it.

540 | Appendix B: HTML/XHTML Tag Quick Reference

name=name Specify the name of the parameter to be passed to the forms-process-
ing application if the input element is selected (required).

onblur=applet Specify an applet to be run when the mouse moves out of the button.

onfocus=applet Specify an applet to be run when the mouse moves into the button.

tabindex=n Specify this element’s position in the tabbing order.

type=type Specify the button type—either button, submit, or reset.

value=string Specify the value of the parameter sent to the forms-processing appli-
cation if this form element is selected (required).

<caption> ... </caption> Define a caption for a table.

align=position Set the horizontal alignment of the caption to left, center, or
right.

valign=position Set the vertical position of the caption to either top or bottom.

<center> ... </center> Center the enclosed text.

<cite> ... </cite> The enclosed text is a citation.

<code> ... </code> The enclosed text is a code sample.

<col> Define a column within a <colgroup>.

align=position Set the column alignment to left, center, or right.

char=character Specify the alignment character for text in these cells.

charoff=value Set the offset within the cell at which the alignment character is
placed.

span=n Define the number of columns affected by this <col> tag.

valign=position Set the vertical alignment of text within the column to top, middle,
or bottom.

width=n Set the width, in pixels or as a percentage, of the column.

<colgroup> Define a column group within a table.

align=position Set the horizontal alignment of text within the columns to left,
center, or right.

char=character Specify the alignment character for text in these cells.

charoff=value Set the offset within the cell at which the alignment character is
placed.

span=n Define the number of columns in the group.

valign=position Set the vertical alignment of text within the columns to top,
middle, or bottom.

width=n Set the width, in pixels or as a percentage, of each column in the
group.

<comment> ... </comment> Place a comment in the document (comments are visible in all other
browsers).

*

<dd> ... </dd> Define the definition portion of an element in a definition list.

 ... Delineate a deleted section of a document.

cite=url Cite a document justifying the deletion.

datetime=date Specify the date and time of the deletion.

HTML Quick Reference | 541

<dfn> ... </dfn> Format the enclosed text as a definition.

<dir> ... </dir> Create a directory list containing tags.

type=bullet Set the bullet style for this list to circle, disc (default), or
square.

<div> ... </div> Create a division within a document.

align=type Align the text within the division to left, center, or right.

nowrap Suppress word wrapping within this division.

<dl> ... </dl> Create a definition list containing <dt> and <dd> tags.

compact Make the list more compact if possible.

<dt> ... </dt> Define the definition term portion of an element in a definition list.

 ... Format the enclosed text with additional emphasis.

<embed> Embed an application in a document. *

align=position Align the applet area to either the top or bottom of the adjacent
text, or to the left or right margin of the page, with subsequent
text flowing around the applet.

border=n Specify the size, in pixels, of the border around the applet.

height=n Specify the height, in pixels, of the applet.

hidden If present, hide the applet on the page.

hspace=n Define, in pixels, additional space to be placed to the left and right of
the applet.

name=name Provide a name for the applet.

palette=value In Netscape and Opera, a value of foreground causes the applet to
use the foreground palette (in Windows only), and background
uses the background palette; with Internet Explorer and Firefox, pro-
vide the foreground and background colors for the applet, specified as
two color values separated by a pipe (|).

src=url Supply the URL of the data to be fed to the applet.

type=type Specify the MIME type of the plug-in to be used.

units=type Set the units for the height and width attributes to either pixels
(the default) or en (half the text point size).

vspace=n Define, in pixels, additional space to be placed above and below the
applet.

width=n Specify the width, in pixels, of the applet.

<fieldset> ... </fieldset> Create a group of elements in a form.

 ... Set the size or color of the enclosed text (deprecated; do not use). *

class=name Specify a style class controlling the appearance of this tag.

color=color Set the color of the enclosed text to the desired color.

dir=dir Specify the rendering direction for text—either left to right (ltr) or
right to left (rtl).

face=list Set the typeface of the enclosed text to the first available font in the
comma-separated list of font names.

id=name Define a name for this tag that is unique to this document.

542 | Appendix B: HTML/XHTML Tag Quick Reference

lang=language Specify the language used for this tag’s contents using a standard
two-character ISO language name.

size=value Set the size to an absolute size, from 1 to 7, or relative to the
<basefont> size, using +n or -n (required).

style=style Specify an inline style for this tag.

title=string Specify a title for this tag.

<form> ... </form> Delimit a form.

accept-charset=list Specify a list of character sets accepted by the server processing this
form.

action=url Specify the URL of the application that processes the form (required).

enctype=encoding Specify how the form element values are encoded.

method=style Specify the parameter-passing style—either get or post
(required).

name=name Supply a name for this form for use by JavaScript.

onreset=applet Specify an applet to be run when the form is reset.

onsubmit=applet Specify an applet to be run when the form is submitted.

target=name Specify the name of the frame or window to receive the results of the
form after submission.

<frame> ... </frame> Define a frame within a frameset. *

bordercolor=color Set the color of the frame’s border.

class=name Specify a style class controlling the appearance of this tag.

frameborder=n If value is 1, enable frame borders; if value is 0, disable frame borders

id=name Define a name for this tag that is unique to this document.

longdesc=url Provide the URL of a document describing the contents of the frame.

marginheight=n Place n pixels of space above and below the frame contents.

marginwidth=n Place n pixels of space to the left and right of the frame contents.

name=name Define the name of the frame.

noresize Disable user resizing of the frame.

scrolling=type Always add scroll bars (yes), never add scroll bars (no), or, for
Netscape only, add scroll bars when needed (auto).

src=url Define the URL of the source document for this frame.

style=style Specify an inline style for this tag.

title=string Specify a title for this tag.

<frameset> ... </frameset> Define a collection of frames or other framesets. *

border=n Set the thickness of the frame borders in this frameset.

bordercolor=color Define the color of the borders in this frameset.

cols=list Specify the number and width of frames within this frameset.

frameborder=value If value is 1, enable frame borders; if value is 0, disable frame borders.

framespacing=n Define the thickness of the frame borders in this frameset.

onblur=applet Define an applet to be run when the mouse leaves this frameset.

HTML Quick Reference | 543

onfocus=applet Define an applet to be run when the mouse enters this frameset.

onload=applet Define an applet to be run when this frameset is loaded.

onunload=applet Define an applet to be run when this frameset is removed from the
display.

rows=list Specify the number and height of frames within a frameset.

<hn> ... </hn> The enclosed text is a level-n header, for level n from 1 to 6.

align=type Specify the heading alignment as left (default), center, or
right.

<head> ... </head> Delimit the beginning and end of the document head. *

dir=dir Specify the rendering direction for text—either left to right (ltr) or
right to left (rtl).

lang=language Specify the language used for this tag’s contents using a standard
two-character ISO language name.

profile=url Provide the URL of a profile for this document.

<hr> Break the current text flow and insert a horizontal rule. *

align=type Specify the rule alignment as left, center (default), or right.

class=name Specify a style class controlling the appearance of the rule.

color=color Define the color of the rule.

dir=dir Specify the rendering direction for text—either left to right (ltr) or
right to left (rtl).

id=name Define a name for this tag that is unique to this document.

lang=language Specify the language used for this tag’s contents using a standard
two-character ISO language name.

noshade Do not use 3D shading to render the rule.

onclick=applet Specify an applet to be executed when the mouse button is clicked on
this tag.

ondblclick=applet Specify an applet to be executed when the mouse button is double-
clicked on this tag.

onkeydown=applet Specify an applet to be executed when a key is pressed down while
this tag has input focus.

onkeypress=applet Specify an applet to be executed when a key is pressed and released
while this tag has focus.

onkeyup=applet Specify an applet to be executed when a key is released while this tag
has focus.

onmousedown=applet Specify an applet to be executed when a mouse button is pressed
down on this tag.

onmousemove=applet Specify an applet to be executed when the mouse is moved over this
tag.

onmouseout=applet Specify an applet to be executed when the mouse moves out of this
tag’s display area.

onmouseover=applet Specify an applet to be executed when the mouse moves into this
tag’s display area.

544 | Appendix B: HTML/XHTML Tag Quick Reference

onmouseup=applet Specify an applet to be executed when a mouse button is released
while over this tag.

size=pixels Set the thickness of the rule to an integer number of pixels.

style=style Specify an inline style for this tag.

title=string Specify a title for this tag.

width=value or % Set the width of the rule to either an integer number of pixels or a per-
centage of the page width.

<html> ... </html> Delimit the beginning and end of the entire Hypertext Markup Lan-
guage (HTML) document.

*

dir=dir Specify the rendering direction for text—either left to right (ltr) or
right to left (rtl).

lang=language Specify the language used for this tag’s contents using a standard
two-character ISO language name.

version=string Indicate the HTML version used to create this document.

<i> ... </i> Format the enclosed text in an italic typeface.

<iframe> ... </iframe> Define an inline frame. *

align=position Set the position of the frame aligned to the top, center, or
bottom of the surrounding text, or flush against the left or right
margins with subsequent text flowing around the frame.

class=name Specify a style class controlling the appearance of the frame.

frameborder=value If value is 1, enable frame borders; if value is 0, disable frame borders.

height=n Set the height, in pixels, of the frame.

id=name Define a name for this tag that is unique to this document.

longdesc=url Provide the URL of a document describing the contents of the frame.

marginheight=n Place n pixels of space above and below the frame contents.

marginwidth=n Place n pixels of space to the left and right of the frame contents.

name=name Define the name of the frame.

scrolling=type Always add scroll bars (yes) or never add scroll bars (no).

src=url Define the URL of the source document for this frame.

style=style Specify an inline style for this tag.

title=string Specify a title for this tag.

width=n Set the width, in pixels, of the frame.

 Insert an image into the current text flow.

align=type Align the image to the top, middle, bottom (default), left,
right, absmiddle, baseline, or absbottom of the text.

alt=text Provide alternative text for nonimage-capable browsers.

border=n Set the pixel thickness of the border around images contained within
hyperlinks.

controls Add playback controls for embedded video clips.

dynsrc=url Specify the URL of a video clip to be displayed.

HTML Quick Reference | 545

height=n Specify the height of the image in scan lines.

hspace=n Specify the space, in pixels, to be added to the left and right of the
image.

ismap Indicate that the image is mouse-selectable when used within an<a>
tag.

longdesc=url Provide the URL of a document describing the image.

loop=value Set the number of times to play the video; value may be an integer or
the value infinite.

lowsrc=url Specify a low-resolution image to be loaded by the browser first,
followed by the image specified by the src attribute.

name=name Provide a name for the image for use by JavaScript.

onabort=applet Provide an applet to be run if image loading is aborted.

onerror=applet Provide an applet to be run if image loading is unsuccessful.

onload=applet Provide an applet to be run if image loading is successful.

src=url Specify the source URL of the image to be displayed (required).

start=start Specify when to play the video clip—either fileopen or
mouseover.

usemap=url Specify the map of coordinates and links that define the hypertext
links within this image.

vspace=n Specify the vertical space, in pixels, added at the top and bottom of
the image.

width=n Specify the width of the image in pixels.

<input type=button> Create a push-button element within a <form>.

accesskey=char Define the hot-key character for this element.

disabled Disable this control, making it inactive.

name=name Specify the name of the parameter to be passed to the forms-
processing application if the input element is selected (required).

notab Specify that this element is not part of the tabbing order.

onblur=applet Specify an applet to be run when the mouse leaves this control.

onfocus=applet Specify an applet to be run when the mouse enters this control.

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

value=string Specify the value of the parameter sent to the forms-processing appli-
cation if this form element is selected (required).

<input type=checkbox> Create a checkbox input element within a <form>.

accesskey=char Define the hot-key character for this element.

checked Mark the element as initially selected.

disabled Disable this control, making it inactive.

name=string Specify the name of the parameter to be passed to the forms-
processing application if the input element is selected (required).

546 | Appendix B: HTML/XHTML Tag Quick Reference

notab Specify that this element is not part of the tabbing order.

readonly Prevent user modification of this element.

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

value=string Specify the value of the parameter sent to the forms-processing
application if this form element is selected (required).

<input type=file> Create a file-selection element within a <form>.

accept=list Specify a list of MIME types that can be accepted by this element.

accesskey=char Define the hot-key character for this element.

disabled Disable this control, making it inactive.

maxlength=n Specify the maximum number of characters to accept for this element.

name=name Specify the name of the parameter that is passed to the forms-
processing application for this input element (required).

notab Specify that this element is not part of the tabbing order.

onblur=applet Specify an applet to be run when the mouse leaves this control.

onchange=applet Specify an applet to be run when the user changes the value of this
element.

onfocus=applet Specify an applet to be run when the mouse enters this control.

readonly Prevent user modification of this element.

size=n Specify the number of characters to display for this element.

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

value=string Specify the value of the parameter sent to the forms-processing
application if this form element is selected (required).

<input type=hidden> Create a hidden element within a <form>.

name=name Specify the name of the parameter that is passed to the forms-
processing application for this input element (required).

value=string Specify the value of this element that is passed to the forms-
processing application.

<input type=image> Create an image input element within a <form>.

accesskey=char Define the hot-key character for this element.

align=type Align the image to the top, middle, or bottom of the form
element’s text.

alt=string Provide an alternative description for the image.

border=n Set the pixel thickness of the border of the image.

disabled Disable this control, making it inactive.

name=name Specify the name of the parameter to be passed to the forms-
processing application for this input element (required).

notab Specify that this element is not part of the tabbing order.

src=url Specify the source URL of the image (required).

HTML Quick Reference | 547

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

usemap=url Specify the URL of a map to be used with this image.

<input type=password> Create a content-protected text-input element within a <form>.

accesskey=char Define the hot-key character for this element.

disabled Disable this control, making it inactive.

maxlength=n Specify the maximum number of characters to accept for this element.

name=name Specify the name of the parameter to be passed to the forms-
processing application for this input element (required).

notab Specify that this element is not part of the tabbing order.

onblur=applet Specify an applet to be run when the mouse leaves this element.

onchange=applet Specify an applet to be run when the user changes the value of this
element.

onfocus=applet Specify an applet to be run when the mouse enters this element.

onselect=applet Specify an applet to be run if the user clicks this element.

readonly Prevent user modification of this element.

size=n Specify the number of characters to display for this element.

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

value=string Specify the initial value for this element.

<input type=radio> Create a radio-button input element within a <form>.

accesskey=char Define the hot-key character for this element.

checked Mark the element as initially selected.

disabled Disable this control, making it inactive.

name=string Specify the name of the parameter to be passed to the forms-
processing application if the input element is selected (required).

notab Specify that this element is not part of the tabbing order.

readonly Prevent user modification of this element.

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

value=string Specify the value of the parameter sent to the forms-processing
application if this form element is selected (required).

<input type=reset> Create a reset button within a <form>.

accesskey=char Define the hot-key character for this element.

disabled Disable this control, making it inactive.

notab Specify that this element is not part of the tabbing order.

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

value=string Specify an alternate label for the reset button (default is “Reset”).

548 | Appendix B: HTML/XHTML Tag Quick Reference

<input type=submit> Create a submit button within a <form>.

accesskey=char Define the hot-key character for this element.

disabled Disable this control, making it inactive.

name=name Specify the name of the parameter that is passed to the forms-
processing application for this input element (required).

notab Specify that this element is not part of the tabbing order.

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

value=string Specify an alternate label for the submit button, as well as the value
passed to the forms-processing application for this parameter if this
button is clicked.

<input type=text> Create a text-input element within a <form>.

accesskey=char Define the hot-key character for this element.

disabled Disable this control, making it inactive.

maxlength=n Specify the maximum number of characters to accept for this element.

name=name Specify the name of the parameter that is passed to the forms-
processing application for this input element (required).

notab Specify that this element is not part of the tabbing order.

onblur=applet Specify an applet to be run when the mouse leaves this element.

onchange=applet Specify an applet to be run when the user changes the value of this
element.

onfocus=applet Specify an applet to be run when the mouse enters this element.

onselect=applet Specify an applet to be run if the user clicks this element.

readonly Prevent user modification of this element.

size=n Specify the number of characters to display for this element.

tabindex=n Specify this element’s position in the tabbing order.

taborder=n Specify this element’s position in the tabbing order.

value=string Specify the initial value for this element.

<ins> ... </ins> Delineate an inserted section of a document.

cite=url Cite a document dissatisfying the insertion.

datetime=date Specify the date and time of the insertion.

<isindex> Create a “searchable” HTML document (deprecated; do not use). *

action=url For Internet Explorer only, provide the URL of the program that
performs the searching action.

class=name Specify a style class controlling the appearance of this tag.

dir=dir Specify the rendering direction for text—either left to right (ltr)
or right to left (rtl).

id=name Define a name for this tag that is unique to this document.

lang=language Specify the language used for this tag’s contents using a standard
two-character ISO language name.

HTML Quick Reference | 549

prompt=string Provide an alternate prompt for the input field.

style=style Specify an inline style for this tag.

title=string Specify a title for this tag.

<kbd> ... </kbd> The enclosed text is keyboard-like input.

<keygen> Generate key information in a form. *

challenge=string Provide a challenge string to be packaged with the key.

name=name Provide a name for the key.

<label> ... </label> Define a label for a form control.

accesskey=char Define the hot-key character for this label.

for=id Specify the form element associated with this label.

onblur=applet Specify an applet to be run when the mouse leaves this label.

onfocus=applet Specify an applet to be run when the mouse enters this label.

<legend> ... </legend> Define a legend for a form field set.

accesskey=char Define the hot-key character for this legend.

align=position Align the legend to the top, bottom, left, or right of the field set.

 ... Delimit a list item in an ordered () or unordered () list.

type=format Set the type of this list element to the desired format—for
within : A (capital letters), a (lowercase letters), I (capital
Roman numerals), i (lowercase Roman numerals), or 1 (Arabic
numerals; default); for within : circle, disc (default),
or square.

value=n Set the number for this list item to n.

<link> Define a link between this document and another document in the
document <head>.

charset=charset Specify the character set used to encode the target of this link.

href=url Specify the hypertext reference URL of the target document.

hreflang=language Specify the language used for the target’s contents using a standard
two-character ISO language name.

media=list Specify a list of media types upon which this object can be rendered.

rel=relation Indicate the relationship from this document to the target.

rev=relation Indicate the reverse relationship from the target to this document.

type=string Specify the MIME type for the linked document. Usually used in con-
junction with links to stylesheets, when the type is set to text/css.

<map> ... </map> Define a map containing hotspots in a client-side image map.

name=name Define the name of this map (required).

<marquee> ... </marquee> Create a scrolling-text marquee (Internet Explorer only). *

align=position Align the marquee to the top, middle, or bottom of the
surrounding text.

behavior=style Define the marquee style to be scroll, slide, or alternate.

550 | Appendix B: HTML/XHTML Tag Quick Reference

bgcolor=color Set the background color of the marquee.

class=name Specify a style class controlling the appearance of this tag.

direction=dir Define the direction, left or right, in which the text is to scroll.

height=n Define the height, in pixels, of the marquee area.

hspace=n Define the space, in pixels, to be inserted to the left and right of the
marquee.

loop=value Set the number of times to animate the marquee; value is an integer
or infinite.

scrollamount=value Set the number of pixels to move the text for each scroll movement.

scrolldelay=value Specify the delay, in milliseconds, between successive movements
of the marquee text.

style=style Specify an inline style for this tag.

vspace=n Define the space, in pixels, to be inserted above and below the
marquee.

width=n Define the width, in pixels, of the marquee area.

<menu> ... </menu> Define a menu list containing tags.

type=bullet Set the bullet style for this list to circle, disc (default),
or square.

<meta> Provide additional information about a document. *

content=string Specify the value for the meta-information (required).

dir=dir Specify the rendering direction for text—either left to right (ltr)
or right to left (rtl).

http-equiv=string Specify the HTTP equivalent name for the meta-information and
cause the server to include the name and content in the HTTP header
for this document when it is transmitted to the client.

lang=language Specify the language used for this tag’s contents using a standard
two-character ISO language name.

name=string Specify the name of the meta-information.

scheme=scheme Specify the profile scheme used to interpret this property.

<nextid> Define the next valid document entity identifier (obsolete; do not
use).

*

n=n Set the next ID number.

<nobr> ... </nobr> No breaks allowed in the enclosed text. *

<noembed> ... </noembed> Define content to be presented by browsers that do not support
the <embed> tag.

*

<noframes> ... </noframes> Define content to be presented by browsers that do not support
frames.

<noscript> ... </noscript> Define content to be presented by browsers that do not support
the <script> tag.

HTML Quick Reference | 551

<object> Insert an object into a document.

align=position Align the object with the surrounding text (texttop, middle,
textmiddle, baseline, textbottom, or center) or against
the margin with subsequent text flowing around the object (left or
right).

archive=list Specify a list of URLs of archives containing resources used by this
object.

border=n Define, in pixels, the object’s border width.

classid=url Supply the URL of the object.

codebase=url Supply the URL of the object’s code base.

codetype=type Specify the MIME type of the code base.

data=url Supply data for the object.

declare Declare this object without instantiating it.

height=n Define, in pixels, the height of the object.

hspace=n Provide extra space, in pixels, to the right and left of the object.

name=name Define the name of this object.

notab Do not make this object part of the tabbing order.

shapes Specify that this object has shaped hyperlinks.

standby=string Define a message to display while the object loads.

tabindex=n Specify this object’s position in the document tab order.

type=type Specify the MIME type for the object data.

usemap=url Define an image map for use with this object.

vspace=n Provide extra space, in pixels, above and below the object.

width=n Define, in pixels, the width of the object.

 ... Define an ordered list containing numbered (ascending)
elements.

compact Present the list in a more compact manner.

start=n Start numbering the list at n rather than 1.

type=format Set the numbering format for this list to A (capital letters),
a (lowercase letters), I (capital Roman numerals), i (lowercase
Roman numerals), or 1 (Arabic numerals; default).

<optgroup> ... </optgroup> Define a group of options within a <select> element.

disabled Disable this group, making it inactive.

label=string Provide a label for this group.

<option> ... </option> Define an option within a <select> item in a <form>.

disabled Disable this option, making it inactive.

label=string Provide a label for this option.

selected Make this item initially selected.

value=string Return the specified value to the forms-processing application instead
of the <option> contents.

552 | Appendix B: HTML/XHTML Tag Quick Reference

<p> ... </p> Start and end a paragraph.

align=type Align the text within the paragraph to left, center, or right.

<param> ... </param> Supply a parameter to a containing <applet>. *

id=name Define the unique identifier for this parameter.

name=name Define the name of the parameter.

type=type Specify the MIME type of the parameter.

value=string Define the value of the parameter.

valuetype=type Define the type of the value attribute, either as data, ref (the
value is a URL pointing to the data), orobject (the value is the name
of an object in this document).

<pre> ... </pre> Render the enclosed text in its original, preformatted style, honoring
line breaks and spacing verbatim.

width=n Size the text, if possible, so that n characters fit across the display
window.

<q> ... </q> The enclosed text is an inline quotation (not supported by Internet
Explorer).

cite=url Specify the URL of the source of the quoted material.

<s> ... </s> Same as <strike>; the enclosed text is struck through
with a horizontal line.

<samp> ... </samp> The enclosed text is a sample.

<script> ... </script> Define a script within a document. *

charset=encoding Specify the character set used to encode the script.

defer Defer execution of this script.

language=encoding Specify the language used to create the script.

src=url Provide the URL of the document containing the script.

type=encoding Specify the MIME type of the script.

<select> ... </select> Define a multiple-choice menu or scrolling list within a <form>,
containing one or more <option> tags.

disabled Disable this control, making it inactive.

multiple Allow the user to select more than one <option> within the
<select>.

name=name Define the name for the selected <option> values that, if selected,
are passed to the forms-processing application (required).

onblur=applet Specify an applet to be run when the mouse leaves this element.

onchange=applet Specify an applet to be run when the user changes the value of this
element.

onfocus=applet Specify an applet to be run when the mouse enters this element.

size=n Display n items using a pull-down menu for size=1 (without
multiple specified) and a scrolling list of n items otherwise.

tabindex=n Specify this element’s position in the tabbing order.

HTML Quick Reference | 553

<small> ... </small> Format the enclosed text using a smaller typeface.

 ... Define a span of text for style application.

<strike> ... </strike> Strike through the enclosed text with a horizontal line.

 ... Strongly emphasize the enclosed text.

<style> ... </style> Define one or more document-level styles. *

dir=dir Specify the rendering direction for the title text—either left to right
(ltr) or right to left (rtl).

lang=language Specify the language used for this tag’s title using a standard two-
character ISO language name.

media=list Specify a list of media types upon which this object can be rendered.

title=string Specify a title for this tag.

type=type Define the format of the styles (always text/css).

_{...} Format the enclosed text as subscript.

^{...} Format the enclosed text as superscript.

<table> ... </table> Define a table.

align=position Align the table in the center and flow the subsequent text around the
table.

background=url Define a background image for the table.

bgcolor=color Define a background color for the entire table.

border=n Create a border that is n pixels wide.

bordercolor=color Define the border color for the entire table.

bordercolordark=color Define the dark border-highlighting color for the entire table.

bordercolorlight=color Define the light border-highlighting color for the entire table.

cellpadding=n Place n pixels of padding around each cell’s contents.

cellspacing=n Place n pixels of spacing between cells.

cols=n Specify the number of columns in this table.

frame=type Define where table borders are displayed—border (default),void,
above, below, hsides, lhs, rhs, vsides, or box.

height=n Define the height of the table in pixels.

hspace=n Specify the horizontal space, in pixels, added at the left and right of
the table.

nowrap Suppress text wrapping in table cells.

rules=edges Determine where inner dividers are drawn—all (default), groups
(only around row and column groups), rows, cols, or none.

summary=string Provide a summary description of this table.

valign=position Align text in the table to the top, center, bottom, or baseline.

vspace=n Specify the vertical space, in pixels, added at the top and bottom of
the table.

width=n Set the width of the table to n pixels or a percentage of the window
width.

554 | Appendix B: HTML/XHTML Tag Quick Reference

<tbody> ... </tbody> Create a row group within a table.

align=position Align the table body cells’ contents to the left, center, or right.

char=char Specify the body group cell alignment character.

charoff=value Specify the offset within the cells of the alignment position.

valign=position Vertically align the body group cells’ contents to the top, center,
bottom, or baseline of the cell.

<td> ... </td> Define a table data cell.

abbr=string Specify an abbreviation for the cell’s contents.

align=position Align the cell contents to the left, center, or right.

axis=string Provide a name for a related group of cells.

background=url Define a background image for this cell.

bgcolor=color Define the background color for the cell.

bordercolor=color Define the border color for the cell.

bordercolordark=color Define the dark border-highlighting color for the cell.

bordercolorlight=color Define the light border-highlighting color for the cell.

char=char Specify the cell alignment character.

charoff=value Specify the offset of the alignment position within the cell.

colspan=n Have this cell straddle n adjacent columns.

headers=list Provide a list of header cell IDs associated with this cell.

height=n Define the height, in pixels, for this cell.

nowrap Do not automatically wrap and fill text in this cell.

rowspan=n Have this cell straddle n adjacent rows.

scope=scope Define the scope of this header cell—row, col, rowgroup,
or colgroup.

valign=position Vertically align this cell’s contents to the top, center, bottom,
or baseline of the cell.

width=n Set the width of this cell to n pixels or a percentage of the table width.

<textarea> ... </textarea> Define a multiline text-input area within a <form>; the content of
the <textarea> tag is the initial, default value.

accesskey=char Define the hot-key character for this element.

cols=n Display n columns (characters) of text within the text area.

disabled Disable this control, making it inactive.

name=string Define the name for the text-area value that is passed to the forms-
processing application (required).

onblur=applet Specify an applet to be run when the mouse leaves this element.

onchange=applet Specify an applet to be run when the user changes the value of this
element.

onfocus=applet Specify an applet to be run when the mouse enters this element.

HTML Quick Reference | 555

onselect=applet Specify an applet to be run if the user clicks this element.

readonly Prevent user modification of this element.

rows=n Display n rows of text within the text area.

tabindex=n Specify this element’s position in the tabbing order.

<tfoot> ... </tfoot> Define a table footer.

align=position Align the footer cells’ contents to the left, center, or right.

char=char Specify the cell alignment character.

charoff=value Specify the offset within the cell of the alignment position.

valign=position Vertically align the footer cells’ contents to the top, center,
bottom, or baseline of the cell.

<th> ... </th> Define a table header cell.

abbr=string Specify an abbreviation for the cell’s contents.

align=position Align the cell contents to the left, center, or right.

axis=string Provide a name for a related group of cells.

background=url Define a background image for this cell.

bgcolor=color Define the background color for the cell.

bordercolor=color Define the border color for the cell.

bordercolordark=color Define the dark border-highlighting color for the cell.

bordercolorlight=color Define the light border-highlighting color for the cell.

char=char Specify the cell alignment character.

charoff=value Specify the offset of the alignment position within the cell.

colspan=n Have this cell straddle n adjacent columns.

headers=list Provide a list of header cell IDs associated with this cell.

height=n Define the height, in pixels, for this cell.

nowrap Do not automatically wrap and fill text in this cell.

rowspan=n Have this cell straddle n adjacent rows.

scope=scope Define the scope of this header cell—row, col, rowgroup,
or colgroup.

valign=position Vertically align this cell’s contents to the top, center, bottom,
or baseline of the cell.

width=n Set the width of this cell to n pixels or a percentage of the table width.

<thead> ... </thead> Define a table heading.

align=position Define the horizontal text alignment in the heading—left,
center, right, or justify.

char=char Specify the cell alignment character for heading cells.

charoff=value Specify the offset within the cells of the alignment position.

valign=position Define the vertical text alignment in the heading—left, center,
right, or justify.

556 | Appendix B: HTML/XHTML Tag Quick Reference

<title> ... </title> Define the HTML document’s title. *

dir=dir Specify the rendering direction for text—either left to right (ltr)
or right to left (rtl).

lang=language Specify the language used for this tag’s contents using a standard
two-character ISO language name.

<tr> ... </tr> Define a row of cells within a table.

align=type Align the cell contents in this row to the left, center, or right.

background=url Define a background image for this cell.

bgcolor=color Define the background color for this row.

bordercolor=color For Internet Explorer, define the border color for this row.

bordercolordark=color For Internet Explorer, define the dark border-highlighting color
for this row.

bordercolorlight=color For Internet Explorer, define the light border-highlighting color
for this row.

char=char Specify the cell alignment character for this row.

charoff=value Specify the offset of the alignment position within the cells of this
row.

nowrap Disable word wrap for all cells in this row.

valign=position Vertically align the cell contents in this row to the top, center,
bottom, or baseline of the cell.

<tt> ... </tt> Format the enclosed text in teletype-style (monospaced) font.

<u> ... </u> Underline the enclosed text.

 ... Define an unordered list of bulleted elements.

compact Display the list in a more compact manner, if possible.

type=bullet Set the bullet style for this list to circle, disc (default), or square.

<var> ... </var> The enclosed text is a variable’s name.

<wbr> Indicate a potential word break point within a <nobr> section. *

557

Appendix C APPENDIX C

Cascading Style Sheet Properties
Quick Reference3

In the following table, we list, in alphabetical order, all the properties defined in the
World Wide Web Consortium’s (W3C’s) Recommended Specification for Cascad-
ing Style Sheets (CSS), Level 2 (http://www.w3.org/pub/WWW/TR/REC-CSS2). We
include each property’s possible values, defined as either an explicit keyword (shown
in constant width) or as one of these values:

angle
A numeric value followed by deg, grad, or rad.

color
Either a color name or hexadecimal RGB value, as defined in Appendix G, or an
RGB triple of the form:

rgb(red, green, blue)

where red, green, and blue are either numbers in the range 0 to 255 or percent-
age values indicating the brightness of that color component. Values of 255 or
100% indicate that the corresponding color component is at its brightest; values
of 0 or 0% indicate that the corresponding color component is turned off com-
pletely. For example:

rgb(27, 119, 207)
rgb(50%, 75%, 0%)

are both valid color specifications.

frequency
A numeric value followed by hz or khz, indicating hertz or kilohertz.

558 | Appendix C: Cascading Style Sheet Properties Quick Reference

length
An optional sign (either + or –), immediately followed by a number (with or
without a decimal point), immediately followed by a two-character unit identi-
fier. For values of 0, the unit identifier may be omitted.

The unit identifiers em and ex refer to the overall height of the font and to the
height of the letter “x,” respectively. The unit identifier px is equal to a single
pixel on the display device. The unit identifiers in, cm, mm, pt, and pc refer to
inches, centimeters, millimeters, points, and picas, respectively. There are 72.27
points in an inch and 12 points in a pica.

number
An optional sign, immediately followed by a number (with or without a decimal
point).

percent
An optional sign, immediately followed by a number (with or without a decimal
point), immediately followed by a percent sign. The actual value is computed as
a percentage of some other element property, usually the element’s size.

shape
A shape keyword, followed by a parentheses-enclosed list of comma-separated,
shape-specific parameters. Currently, the only supported shape keyword is rect,
which expects four numeric parameters denoting the offsets of the top, right,
bottom, and left edges of the rectangle.

time
A numeric value followed by s or ms, designating a time in seconds or in
milliseconds.

url
The keyword url, immediately followed (no spaces) by a left parenthesis, fol-
lowed by a URL optionally enclosed in single or double quotes, followed by a
matching right parenthesis. For example:

url("http://www.oreilly.com/catalog")

is a valid URL value.

Finally, some values are lists of other values and are described as a “list of” some
other value. In these cases, a list consists of one or more of the allowed values, sepa-
rated by commas.

If several different values are allowed for a property, these alternative choices are sep-
arated by pipes (|).

If the standard defines a default value for the property, that value is underlined.

Cascading Style Sheet Properties Quick Reference | 559

azimuth angle | left-side | far-left |
left | center-left | center |
center-right | right | far-
right | right-side

Determines the position around the listener
at which a sound is played.

8.4.12.7

background Composite property for the background-
attachment, background-color,
background-image, background-
position, and background-repeat
properties; value is any of these properties’
values, in any order.

8.4.5.6

background-
attachment

scroll | fixed Determines whether the background image
is fixed in the window or scrolls as the
document scrolls.

8.4.5.3

background-color color | transparent Sets the background color of an element. 8.4.5.1

background-image url | none Sets the background image of an element. 8.4.5.2

background-position percent | length | top | center |
bottom | left | right

Sets the initial position of the element’s
background image, if specified; values
normally are paired to provide X,Y positions;
default position is 0% 0%.

8.4.5.4

background-repeat repeat | repeat-x | repeat-y
| no-repeat

Determines how the background image is
repeated (tiled) across an element.

8.4.5.5

border Sets all four of an element’s borders; value is
one or more of a color, a value for border-
width, and a value for border-style.

8.4.7.6

border-bottom Sets an element’s bottom border; value is
one or more of a color, a value for border-
bottom-width, and a value for border-
style.

8.4.7.6

border-bottom-width length | thin | medium | thick Sets the thickness of an element’s bottom
border.

8.4.7.4

border-collapse collapse | separate Sets the table border rendering algorithm. 8.4.9.1

border-color color Sets the color of all four of an element’s
borders; default is the color of the element.

8.4.7.3

border-left Sets an element’s left border; value is one or
more of a color, a value for border-left-
width, and a value for border-style.

8.4.7.6

border-left-width length | thin | medium | thick Sets the thickness of an element’s left border 8.4.7.4

border-right Sets an element’s right border; value is one
or more of a color, a value for border-
right-width, and a value for
border-style.

8.4.7.6

border-right-width length | thin | medium | thick Sets the thickness of an element’s right
border.

8.4.7.4

560 | Appendix C: Cascading Style Sheet Properties Quick Reference

border-spacing With separate borders, sets the spacing
between borders—one value sets vertical
and horizontal spacing; two values set
horizontal and vertical spacing, respectively.

8.4.9.1

border-style dashed | dotted | double |
groove |inset | none |outset
| ridge | solid

Sets the style of all four of an element’s
borders.

8.4.7.5

border-top Sets an element’s top border; value is one or
more of a color, a value for border-top-
width, and a value for border-style.

8.4.7.6

border-top-width length | thin | medium | thick Sets the thickness of an element’s top
border.

8.4.7.4

border-width length | thin | medium | thick Sets the thickness of all four of an element’s
borders.

8.4.7.4

bottom length | percent Used with the position property to place
the bottom edge of an element.

8.4.7.14

caption-side top | bottom | left | right Sets the position for a table caption. 8.4.9.2

clear both | left | none | right Sets which margins of an element must not
be adjacent to a floating element; the
element is moved down until that margin is
clear.

8.4.7.7

clip shape Sets the clipping mask for an element. 8.4.7.8

color color Sets the color of an element. 8.4.5.7

content Inserts generated content around an
element; see text for details.

8.4.11.2

counter-increment Increments a counter by 1; value is a list of
counter names, with each name optionally
followed by a value by which it is incremented.

8.4.11.4

counter-reset Resets a counter to zero; value is a list of
counter names, with each name optionally
followed by a value to which it is reset.

8.4.11.4

cue-after url | none Plays the designated sound after an element
is spoken.

8.4.12.5

cue-before url | none Plays the designated sound before an
element is spoken.

8.4.12.5

display block | inline | list-item |
marker | none

Controls how an element is displayed. 8.4.10.1

elevation angle | below | level | above |
higher | lower

Sets the height at which a sound is played. 8.4.12.7

empty-cells hide | show With separate borders, hides empty cells in a
table.

8.4.9.1

Cascading Style Sheet Properties Quick Reference | 561

float left | none | right Determines whether an element floats to
the left or right, allowing text to wrap
around it or be displayed inline (using
none).

8.4.7.9

font Sets all font attributes for an element; value
is any of the values for font-style,
font-variant, font-weight,
font-size, line-height, and
font-family, in that order.

8.4.3.8

font-family List of font names Defines the font for an element, either as a
specific font or as one of the generic fonts
serif, sans-serif, cursive,
fantasy, and monospace.

8.4.3.1

font-size xx-small | x-small | small |
medium | large | x-large | xx-
large | larger | smaller |
length | percent

Defines the font size. 8.4.3.2

font-size-adjust none | ratio Adjusts the current font’s aspect ratio. 8.4.3.4

font-stretch wider | normal | narrower |
ultra-condensed | extra-
condensed | condensed |
semi-condensed | semi-
expanded | expanded |
extra-expanded | ultra-
expanded

Determines the amount to stretch the
current font.

8.4.3.3

font-style normal | italic | oblique Defines the style of the face, either normal or
some type of slanted style.

8.4.3.5

font-variant normal | small-caps Defines a font to be in small caps. 8.4.3.6

font-weight normal | bold | bolder |
lighter | number

Defines the font weight—if a number is
used, it must be a multiple of 100 between
100 and 900; 400 is normal, 700 is the same
as the keyword bold.

8.4.3.7

height length | auto Defines the height of an element. 8.4.7.10

left length | percent Used with the position property to place
the left edge of an element.

8.4.7.14

letter-spacing length | normal Inserts additional space between text
characters.

8.4.6.1

line-height length | number | percent | normal Sets the distance between adjacent text
baselines.

8.4.6.2

list-style Defines list-related styles using any of the
values for list-style-image, list-
style-position, and list-style-
type.

8.4.8.4

list-style-image url | none Defines an image to be used as a list item’s
marker, in lieu of the value for list-
style-type.

8.4.8.1

562 | Appendix C: Cascading Style Sheet Properties Quick Reference

list-style-position inside | outside Indents or extends (default) a list item’s
marker with respect to the item’s content.

8.4.8.2

list-style-type circle | disc | square |
decimal | lower-alpha |
lower-roman | none | upper-
alpha | upper-roman

Defines a list item’s marker either for unor-
dered lists (circle, disc, or square) or
for ordered lists (decimal, lower-
alpha, lower-roman, none, upper-
alpha, or upper-roman).

8.4.8.3

margin length | percent | auto Defines all four of an element’s margins. 8.4.7.11

margin-bottom length | percent | auto Defines the bottom margin of an element;
default value is 0.

8.4.7.11

margin-left length | percent | auto Defines the left margin of an element;
default value is 0.

8.4.7.11

margin-right length | percent | auto Defines the right margin of an element;
default value is 0.

8.4.7.11

margin-top length | percent | auto Defines the top margin of an element;
default value is 0.

8.4.7.11

orphans number Sets the minimum number of lines allowed
in an orphaned paragraph fragment.

8.4.13.5

overflow auto | hidden | scroll |
visible

Determines how overflow content is
rendered.

8.4.7.13

padding Defines all four padding amounts around an
element.

8.4.7.12

padding-bottom length | percent Defines the bottom padding of an element;
default value is 0.

8.4.7.12

padding-left length | percent Defines the left padding of an element;
default value is 0.

8.4.7.12

padding-right length | percent Defines the right padding of an element;
default value is 0.

8.4.7.12

padding-top length | percent Defines the top padding of an element;
default value is 0.

8.4.7.12

page name Associates a named page layout with an
element.

8.4.13.3

page-break-after auto | always | avoid | left |
right

Forces or suppresses page breaks after an
element.

8.4.13.4

page-break-before auto | always | avoid | left |
right

Forces or suppresses page breaks before an
element.

8.4.13.4

page-break-inside auto | avoid Suppresses page breaks within an element. 8.4.13.4

pause-after percent | time Pauses after speaking an element. 8.4.12.4

pause-before percent | time Pauses before speaking an element. 8.4.12.4

pitch frequency | x-low | low | medium
| high | x-high

Sets the average pitch of an element’s
spoken content.

8.4.12.3

Cascading Style Sheet Properties Quick Reference | 563

pitch-range number Sets the range of the pitch, from 0 (flat) to
100 (broad); default is 50.

8.4.12.3

play-during url | mix | none | repeat If a URL is provided, it is played during an
element’s spoken content—specifying
repeat loops the audio; mix causes it to
mix with, rather than replace, other back-
ground audio.

8.4.12.6

position absolute | fixed | relative |
static

Sets the positioning model for an element. 8.4.7.14

quotes List of strings Sets the quote symbols used to quote text. 8.4.11.3

richness number Sets the richness of the voice, from 0 (flat) to
100 (mellifluous); default is 50.

8.4.12.3

right length | percent Used with the position property to place
the right edge of an element.

8.4.7.14

speak normal | none | spell-out Determines how an element’s content is
spoken.

8.4.12.2

speak-header always | once Determines whether table headers are
spoken once for each row or column or each
time a cell is spoken.

8.4.9.3

speak-numeral continuous | digits Determines how numerals are spoken. 8.4.12.2

speak-punctuation code | none Determines whether punctuation is spoken
or used for inflection.

8.4.12.2

speech-rate number | x-slow | slow |
medium | fast | x-fast |
faster | slower

Sets the rate of speech; a number sets the
rate in words per minute.

8.4.12.3

stress number Sets the stress of the voice, from 0 (cata-
tonic) to 100 (hyperactive); default is 50.

8.4.12.3

table-layout auto | fixed Determines the table-rendering algorithm. 8.4.9.4

text-align center | justify | left |
right

Sets the text alignment style for an element. 8.4.6.3

text-decoration blink | line-through | none |
overline | underline

Defines any decoration for the text; values
may be combined.

8.4.6.4

text-indent length | percent Defines the indentation of the first line of
text in an element; default is 0.

8.4.6.5

text-shadow See text Creates text drop shadows of varying colors
and offsets.

8.4.6.6

text-transform capitalize | lowercase |
none | uppercase

Transforms the text in the element
accordingly.

8.4.6.7

top length | percent Used with the position property to place
the top edge of an element.

8.4.7.14

564 | Appendix C: Cascading Style Sheet Properties Quick Reference

vertical-align percent | baseline | bottom |
middle | sub | super | text-
bottom | text-top | top

Sets the vertical positioning of an element. 8.4.6.8

visibility collapse | hidden | visible Determines whether an element is visible in
the document or table.

8.4.7.15

voice-family List of voices Selects a named voice family to speak
an element’s content.

8.4.12.3

volume number | percent | silent | x-
soft | soft | medium | loud | x-
loud

Sets the volume of spoken content; numeric
values range from 0 to 100.

8.4.12.1

white-space normal | nowrap | pre Defines how whitespace within an element
is handled.

8.4.10.2

widows number Sets the minimum number of lines allowed
in a widowed paragraph fragment.

8.4.13.5

width length | percent | auto Defines the width of an element. 8.4.7.16

word-spacing length | normal Inserts additional space between words. 8.4.6.9

z-index number Sets the rendering layer for the current
element.

8.4.7.17

565

Appendix D APPENDIX D

The HTML 4.01 DTD4

The HTML 4.01 standard is formally defined as three Standard Generalized Markup
Language (SGML) Document Type Definitions (DTDs): the Strict DTD, the Transi-
tional DTD, and the Frameset DTD. The Strict DTD defines only those elements
that are not deprecated in the 4.0 standard. Ideally, everyone would create HTML
documents that conform to the Strict DTD. The Transitional DTD includes all those
deprecated elements and more accurately reflects the HTML in use today, with many
older elements still in common use. The Frameset DTD is identical to the Transi-
tional DTD, with the exception that the document <body> is replaced by the
<frameset> tag.

Since the Transitional DTD provides the broadest coverage of all HTML elements
currently in use, it is the DTD upon which this book is based and the one we repro-
duce here. Note that we have reprinted this DTD verbatim and have not attempted
to add extensions to it. Where our description and the DTD deviate, assume the
DTD is correct:

<!--
 This is the HTML 4.01 Transitional DTD, which includes
 presentation attributes and elements that W3C expects to phase out
 as support for style sheets matures. Authors should use the Strict
 DTD when possible, but may use the Transitional DTD when support
 for presentation attributes and elements is required.
 HTML 4 includes mechanisms for style sheets, scripting,
 embedding objects, improved support for right to left and mixed
 direction text, and enhancements to forms for improved
 accessibility for people with disabilities.
 Draft: $Date: 2006/10/04 18:18:48 $

566 | Appendix D: The HTML 4.01 DTD

 Authors:
 Dave Raggett <dsr@w3.org>
 Arnaud Le Hors <lehors@w3.org>
 Ian Jacobs <ij@w3.org>
 Further information about HTML 4.01 is available at:
 http://www.w3.org/TR/1999/REC-html401-19991224
 The HTML 4.01 specification includes additional
 syntactic constraints that cannot be expressed within
 the DTDs.
-->
<!ENTITY % HTML.Version "-//W3C//DTD HTML 4.01 Transitional//EN"
 -- Typical usage:
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
 <html>
 <head>
 ...
 </head>
 <body>
 ...
 </body>
 </html>
 The URI used as a system identifier with the public identifier allows
 the user agent to download the DTD and entity sets as needed.
 The FPI for the Strict HTML 4.01 DTD is:
 "-//W3C//DTD HTML 4.01//EN"
 This version of the strict DTD is:
 http://www.w3.org/TR/1999/REC-html401-19991224/strict.dtd
 Authors should use the Strict DTD unless they need the
 presentation control for user agents that don't (adequately)
 support style sheets.
 If you are writing a document that includes frames, use
 the following FPI:
 "-//W3C//DTD HTML 4.01 Frameset//EN"
 This version of the frameset DTD is:
 http://www.w3.org/TR/1999/REC-html401-19991224/frameset.dtd
 Use the following (relative) URIs to refer to
 the DTDs and entity definitions of this specification:
 "strict.dtd"
 "loose.dtd"
 "frameset.dtd"
 "HTMLlat1.ent"
 "HTMLsymbol.ent"
 "HTMLspecial.ent"
-->
<!--================== Imported Names ====================================-->
<!-- Feature Switch for frameset documents -->
<!ENTITY % HTML.Frameset "IGNORE">
<!ENTITY % ContentType "CDATA"
 -- media type, as per [RFC2045]
 -->
<!ENTITY % ContentTypes "CDATA"
 -- comma-separated list of media types, as per [RFC2045]
 -->

The HTML 4.01 DTD | 567

<!ENTITY % Charset "CDATA"
 -- a character encoding, as per [RFC2045]
 -->
<!ENTITY % Charsets "CDATA"
 -- a space-separated list of character encodings, as per [RFC2045]
 -->
<!ENTITY % LanguageCode "NAME"
 -- a language code, as per [RFC1766]
 -->
<!ENTITY % Character "CDATA"
 -- a single character from [ISO10646]
 -->
<!ENTITY % LinkTypes "CDATA"
 -- space-separated list of link types
 -->
<!ENTITY % MediaDesc "CDATA"
 -- single or comma-separated list of media descriptors
 -->
<!ENTITY % URI "CDATA"
 -- a Uniform Resource Identifier,
 see [URI]
 -->
<!ENTITY % Datetime "CDATA" -- date and time information. ISO date format -->
<!ENTITY % Script "CDATA" -- script expression -->
<!ENTITY % StyleSheet "CDATA" -- style sheet data -->
<!ENTITY % FrameTarget "CDATA" -- render in this frame -->
<!ENTITY % Text "CDATA">
<!-- Parameter Entities -->
<!ENTITY % head.misc "SCRIPT|STYLE|META|LINK|OBJECT" -- repeatable head elements -->
<!ENTITY % heading "H1|H2|H3|H4|H5|H6">
<!ENTITY % list "UL | OL | DIR | MENU">
<!ENTITY % preformatted "PRE">
<!ENTITY % Color "CDATA" -- a color using sRGB: #RRGGBB as Hex values -->
<!-- There are also 16 widely known color names with their sRGB values:
 Black = #000000 Green = #008000
 Silver = #C0C0C0 Lime = #00FF00
 Gray = #808080 Olive = #808000
 White = #FFFFFF Yellow = #FFFF00
 Maroon = #800000 Navy = #000080
 Red = #FF0000 Blue = #0000FF
 Purple = #800080 Teal = #008080
 Fuchsia= #FF00FF Aqua = #00FFFF
 -->
<!ENTITY % bodycolors "
 bgcolor %Color; #IMPLIED -- document background color --
 text %Color; #IMPLIED -- document text color --
 link %Color; #IMPLIED -- color of links --
 vlink %Color; #IMPLIED -- color of visited links --
 alink %Color; #IMPLIED -- color of selected links --
 ">
<!--================ Character mnemonic entities =========================-->
<!ENTITY % HTMLlat1 PUBLIC
 "-//W3C//ENTITIES Latin1//EN//HTML"
 "HTMLlat1.ent">
%HTMLlat1;

568 | Appendix D: The HTML 4.01 DTD

<!ENTITY % HTMLsymbol PUBLIC
 "-//W3C//ENTITIES Symbols//EN//HTML"
 "HTMLsymbol.ent">
%HTMLsymbol;
<!ENTITY % HTMLspecial PUBLIC
 "-//W3C//ENTITIES Special//EN//HTML"
 "HTMLspecial.ent">
%HTMLspecial;
<!--=================== Generic Attributes ===============================-->
<!ENTITY % coreattrs
 "id ID #IMPLIED -- document-wide unique id --
 class CDATA #IMPLIED -- space-separated list of classes --
 style %StyleSheet; #IMPLIED -- associated style info --
 title %Text; #IMPLIED -- advisory title --"
 >
<!ENTITY % i18n
 "lang %LanguageCode; #IMPLIED -- language code --
 dir (ltr|rtl) #IMPLIED -- direction for weak/neutral text --"
 >
<!ENTITY % events
 "onclick %Script; #IMPLIED -- a pointer button was clicked --
 ondblclick %Script; #IMPLIED -- a pointer button was double clicked--
 onmousedown %Script; #IMPLIED -- a pointer button was pressed down --
 onmouseup %Script; #IMPLIED -- a pointer button was released --
 onmouseover %Script; #IMPLIED -- a pointer was moved onto --
 onmousemove %Script; #IMPLIED -- a pointer was moved within --
 onmouseout %Script; #IMPLIED -- a pointer was moved away --
 onkeypress %Script; #IMPLIED -- a key was pressed and released --
 onkeydown %Script; #IMPLIED -- a key was pressed down --
 onkeyup %Script; #IMPLIED -- a key was released --"
 >
<!-- Reserved Feature Switch -->
<!ENTITY % HTML.Reserved "IGNORE">
<!-- The following attributes are reserved for possible future use -->
<![%HTML.Reserved; [
<!ENTITY % reserved
 "datasrc %URI; #IMPLIED -- a single or tabular Data Source --
 datafld CDATA #IMPLIED -- the property or column name --
 dataformatas (plaintext|html) plaintext -- text or html --"
 >
]]>
<!ENTITY % reserved "">
<!ENTITY % attrs "%coreattrs; %i18n; %events;">
<!ENTITY % align "align (left|center|right|justify) #IMPLIED"
 -- default is left for ltr paragraphs, right for rtl --
 >
<!--=================== Text Markup ======================================-->
<!ENTITY % fontstyle
 "TT | I | B | U | S | STRIKE | BIG | SMALL">
<!ENTITY % phrase "EM | STRONG | DFN | CODE |
 SAMP | KBD | VAR | CITE | ABBR | ACRONYM" >
<!ENTITY % special
 "A | IMG | APPLET | OBJECT | FONT | BASEFONT | BR | SCRIPT |
 MAP | Q | SUB | SUP | SPAN | BDO | IFRAME">

The HTML 4.01 DTD | 569

<!ENTITY % formctrl "INPUT | SELECT | TEXTAREA | LABEL | BUTTON">
<!-- %inline; covers inline or "text-level" elements -->
<!ENTITY % inline "#PCDATA | %fontstyle; | %phrase; | %special; | %formctrl;">
<!ELEMENT (%fontstyle;|%phrase;) - - (%inline;)*>
<!ATTLIST (%fontstyle;|%phrase;)
 %attrs; -- %coreattrs, %i18n, %events --
 >
<!ELEMENT (SUB|SUP) - - (%inline;)* -- subscript, superscript -->
<!ATTLIST (SUB|SUP)
 %attrs; -- %coreattrs, %i18n, %events --
 >
<!ELEMENT SPAN - - (%inline;)* -- generic language/style container -->
<!ATTLIST SPAN
 %attrs; -- %coreattrs, %i18n, %events --
 %reserved; -- reserved for possible future use --
 >
<!ELEMENT BDO - - (%inline;)* -- I18N BiDi over-ride -->
<!ATTLIST BDO
 %coreattrs; -- id, class, style, title --
 lang %LanguageCode; #IMPLIED -- language code --
 dir (ltr|rtl) #REQUIRED -- directionality --
 >
<!ELEMENT BASEFONT - O EMPTY -- base font size -->
<!ATTLIST BASEFONT
 id ID #IMPLIED -- document-wide unique id --
 size CDATA #REQUIRED -- base font size for FONT elements --
 color %Color; #IMPLIED -- text color --
 face CDATA #IMPLIED -- comma-separated list of font names --
 >
<!ELEMENT FONT - - (%inline;)* -- local change to font -->
<!ATTLIST FONT
 %coreattrs; -- id, class, style, title --
 %i18n; -- lang, dir --
 size CDATA #IMPLIED -- [+|-]nn e.g. size="+1", size="4" --
 color %Color; #IMPLIED -- text color --
 face CDATA #IMPLIED -- comma-separated list of font names --
 >
<!ELEMENT BR - O EMPTY -- forced line break -->
<!ATTLIST BR
 %coreattrs; -- id, class, style, title --
 clear (left|all|right|none) none -- control of text flow --
 >
<!--================== HTML content models ===============================-->
<!--
 HTML has two basic content models:
 %inline; character level elements and text strings
 %block; block-like elements e.g. paragraphs and lists
-->
<!ENTITY % block
 "P | %heading; | %list; | %preformatted; | DL | DIV | CENTER |
 NOSCRIPT | NOFRAMES | BLOCKQUOTE | FORM | ISINDEX | HR |
 TABLE | FIELDSET | ADDRESS">
<!ENTITY % flow "%block; | %inline;">

570 | Appendix D: The HTML 4.01 DTD

<!--=================== Document Body ====================================-->
<!ELEMENT BODY O O (%flow;)* +(INS|DEL) -- document body -->
<!ATTLIST BODY
 %attrs; -- %coreattrs, %i18n, %events --
 onload %Script; #IMPLIED -- the document has been loaded --
 onunload %Script; #IMPLIED -- the document has been removed --
 background %URI; #IMPLIED -- texture tile for document background --
 %bodycolors; -- bgcolor, text, link, vlink, alink --
 >
<!ELEMENT ADDRESS - - ((%inline;)|P)* -- information on author -->
<!ATTLIST ADDRESS
 %attrs; -- %coreattrs, %i18n, %events --
 >
<!ELEMENT DIV - - (%flow;)* -- generic language/style container -->
<!ATTLIST DIV
 %attrs; -- %coreattrs, %i18n, %events --
 %align; -- align, text alignment --
 %reserved; -- reserved for possible future use --
 >
<!ELEMENT CENTER - - (%flow;)* -- shorthand for DIV align=center -->
<!ATTLIST CENTER
 %attrs; -- %coreattrs, %i18n, %events --
 >
<!--================== The Anchor Element ================================-->
<!ENTITY % Shape "(rect|circle|poly|default)">
<!ENTITY % Coords "CDATA" -- comma-separated list of lengths -->
<!ELEMENT A - - (%inline;)* -(A) -- anchor -->
<!ATTLIST A
 %attrs; -- %coreattrs, %i18n, %events --
 charset %Charset; #IMPLIED -- char encoding of linked resource --
 type %ContentType; #IMPLIED -- advisory content type --
 name CDATA #IMPLIED -- named link end --
 href %URI; #IMPLIED -- URI for linked resource --
 hreflang %LanguageCode; #IMPLIED -- language code --
 target %FrameTarget; #IMPLIED -- render in this frame --
 rel %LinkTypes; #IMPLIED -- forward link types --
 rev %LinkTypes; #IMPLIED -- reverse link types --
 accesskey %Character; #IMPLIED -- accessibility key character --
 shape %Shape; rect -- for use with client-side image maps --
 coords %Coords; #IMPLIED -- for use with client-side image maps --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 >
<!--================== Client-side image maps ============================-->
<!-- These can be placed in the same document or grouped in a
 separate document although this isn't yet widely supported -->
<!ELEMENT MAP - - ((%block;) | AREA)+ -- client-side image map -->
<!ATTLIST MAP
 %attrs; -- %coreattrs, %i18n, %events --
 name CDATA #REQUIRED -- for reference by usemap --
 >

The HTML 4.01 DTD | 571

<!ELEMENT AREA - O EMPTY -- client-side image map area -->
<!ATTLIST AREA
 %attrs; -- %coreattrs, %i18n, %events --
 shape %Shape; rect -- controls interpretation of coords --
 coords %Coords; #IMPLIED -- comma-separated list of lengths --
 href %URI; #IMPLIED -- URI for linked resource --
 target %FrameTarget; #IMPLIED -- render in this frame --
 nohref (nohref) #IMPLIED -- this region has no action --
 alt %Text; #REQUIRED -- short description --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 >
<!--================== The LINK Element ==================================-->
<!--
 Relationship values can be used in principle:
 a) for document specific toolbars/menus when used
 with the LINK element in document head e.g.
 start, contents, previous, next, index, end, help
 b) to link to a separate style sheet (rel=stylesheet)
 c) to make a link to a script (rel=script)
 d) by stylesheets to control how collections of
 html nodes are rendered into printed documents
 e) to make a link to a printable version of this document
 e.g. a postscript or pdf version (rel=alternate media=print)
-->
<!ELEMENT LINK - O EMPTY -- a media-independent link -->
<!ATTLIST LINK
 %attrs; -- %coreattrs, %i18n, %events --
 charset %Charset; #IMPLIED -- char encoding of linked resource --
 href %URI; #IMPLIED -- URI for linked resource --
 hreflang %LanguageCode; #IMPLIED -- language code --
 type %ContentType; #IMPLIED -- advisory content type --
 rel %LinkTypes; #IMPLIED -- forward link types --
 rev %LinkTypes; #IMPLIED -- reverse link types --
 media %MediaDesc; #IMPLIED -- for rendering on these media --
 target %FrameTarget; #IMPLIED -- render in this frame --
 >
<!--=================== Images ===-->
<!-- Length defined in strict DTD for cellpadding/cellspacing -->
<!ENTITY % Length "CDATA" -- nn for pixels or nn% for percentage length -->
<!ENTITY % MultiLength "CDATA" -- pixel, percentage, or relative -->
<![%HTML.Frameset; [
<!ENTITY % MultiLengths "CDATA" -- comma-separated list of MultiLength -->
]]>
<!ENTITY % Pixels "CDATA" -- integer representing length in pixels -->
<!ENTITY % IAlign "(top|middle|bottom|left|right)" -- center? -->
<!-- To avoid problems with text-only UAs as well as
 to make image content understandable and navigable
 to users of non-visual UAs, you need to provide
 a description with ALT, and avoid server-side image maps -->

572 | Appendix D: The HTML 4.01 DTD

<!ELEMENT IMG - O EMPTY -- Embedded image -->
<!ATTLIST IMG
 %attrs; -- %coreattrs, %i18n, %events --
 src %URI; #REQUIRED -- URI of image to embed --
 alt %Text; #REQUIRED -- short description --
 longdesc %URI; #IMPLIED -- link to long description
 (complements alt) --
 name CDATA #IMPLIED -- name of image for scripting --
 height %Length; #IMPLIED -- override height --
 width %Length; #IMPLIED -- override width --
 usemap %URI; #IMPLIED -- use client-side image map --
 ismap (ismap) #IMPLIED -- use server-side image map --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 border %Pixels; #IMPLIED -- link border width --
 hspace %Pixels; #IMPLIED -- horizontal gutter --
 vspace %Pixels; #IMPLIED -- vertical gutter --
 >
<!-- USEMAP points to a MAP element which may be in this document
 or an external document, although the latter is not widely supported -->
<!--==================== OBJECT ======================================-->
<!--
 OBJECT is used to embed objects as part of HTML pages
 PARAM elements should precede other content. SGML mixed content
 model technicality precludes specifying this formally ...
-->
<!ELEMENT OBJECT - - (PARAM | %flow;)*
 -- generic embedded object -->
<!ATTLIST OBJECT
 %attrs; -- %coreattrs, %i18n, %events --
 declare (declare) #IMPLIED -- declare but don't instantiate flag --
 classid %URI; #IMPLIED -- identifies an implementation --
 codebase %URI; #IMPLIED -- base URI for classid, data, archive--
 data %URI; #IMPLIED -- reference to object's data --
 type %ContentType; #IMPLIED -- content type for data --
 codetype %ContentType; #IMPLIED -- content type for code --
 archive CDATA #IMPLIED -- space-separated list of URIs --
 standby %Text; #IMPLIED -- message to show while loading --
 height %Length; #IMPLIED -- override height --
 width %Length; #IMPLIED -- override width --
 usemap %URI; #IMPLIED -- use client-side image map --
 name CDATA #IMPLIED -- submit as part of form --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 border %Pixels; #IMPLIED -- link border width --
 hspace %Pixels; #IMPLIED -- horizontal gutter --
 vspace %Pixels; #IMPLIED -- vertical gutter --
 %reserved; -- reserved for possible future use --
 >
<!ELEMENT PARAM - O EMPTY -- named property value -->
<!ATTLIST PARAM
 id ID #IMPLIED -- document-wide unique id --
 name CDATA #REQUIRED -- property name --
 value CDATA #IMPLIED -- property value --

The HTML 4.01 DTD | 573

 valuetype (DATA|REF|OBJECT) DATA -- How to interpret value --
 type %ContentType; #IMPLIED -- content type for value
 when valuetype=ref --
 >
<!--=================== Java APPLET ==================================-->
<!--
 One of code or object attributes must be present.
 Place PARAM elements before other content.
-->
<!ELEMENT APPLET - - (PARAM | %flow;)* -- Java applet -->
<!ATTLIST APPLET
 %coreattrs; -- id, class, style, title --
 codebase %URI; #IMPLIED -- optional base URI for applet --
 archive CDATA #IMPLIED -- comma-separated archive list --
 code CDATA #IMPLIED -- applet class file --
 object CDATA #IMPLIED -- serialized applet file --
 alt %Text; #IMPLIED -- short description --
 name CDATA #IMPLIED -- allows applets to find each other --
 width %Length; #REQUIRED -- initial width --
 height %Length; #REQUIRED -- initial height --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 hspace %Pixels; #IMPLIED -- horizontal gutter --
 vspace %Pixels; #IMPLIED -- vertical gutter --
 >
<!--=================== Horizontal Rule ==================================-->
<!ELEMENT HR - O EMPTY -- horizontal rule -->
<!ATTLIST HR
 %attrs; -- %coreattrs, %i18n, %events --
 align (left|center|right) #IMPLIED
 noshade (noshade) #IMPLIED
 size %Pixels; #IMPLIED
 width %Length; #IMPLIED
 >
<!--=================== Paragraphs =======================================-->
<!ELEMENT P - O (%inline;)* -- paragraph -->
<!ATTLIST P
 %attrs; -- %coreattrs, %i18n, %events --
 %align; -- align, text alignment --
 >
<!--=================== Headings ===-->
<!--
 There are six levels of headings from H1 (the most important)
 to H6 (the least important).
-->
<!ELEMENT (%heading;) - - (%inline;)* -- heading -->
<!ATTLIST (%heading;)
 %attrs; -- %coreattrs, %i18n, %events --
 %align; -- align, text alignment --
 >
<!--=================== Preformatted Text ================================-->
<!-- excludes markup for images and changes in font size -->
<!ENTITY % pre.exclusion "IMG|OBJECT|APPLET|BIG|SMALL|SUB|SUP|FONT|BASEFONT">
<!ELEMENT PRE - - (%inline;)* -(%pre.exclusion;) -- preformatted text -->

574 | Appendix D: The HTML 4.01 DTD

<!ATTLIST PRE
 %attrs; -- %coreattrs, %i18n, %events --
 width NUMBER #IMPLIED
 >
<!--===================== Inline Quotes ==================================-->
<!ELEMENT Q - - (%inline;)* -- short inline quotation -->
<!ATTLIST Q
 %attrs; -- %coreattrs, %i18n, %events --
 cite %URI; #IMPLIED -- URI for source document or msg --
 >
<!--=================== Block-like Quotes ================================-->
<!ELEMENT BLOCKQUOTE - - (%flow;)* -- long quotation -->
<!ATTLIST BLOCKQUOTE
 %attrs; -- %coreattrs, %i18n, %events --
 cite %URI; #IMPLIED -- URI for source document or msg --
 >
<!--=================== Inserted/Deleted Text ============================-->
<!-- INS/DEL are handled by inclusion on BODY -->
<!ELEMENT (INS|DEL) - - (%flow;)* -- inserted text, deleted text -->
<!ATTLIST (INS|DEL)
 %attrs; -- %coreattrs, %i18n, %events --
 cite %URI; #IMPLIED -- info on reason for change --
 datetime %Datetime; #IMPLIED -- date and time of change --
 >
<!--=================== Lists ==-->
<!-- definition lists - DT for term, DD for its definition -->
<!ELEMENT DL - - (DT|DD)+ -- definition list -->
<!ATTLIST DL
 %attrs; -- %coreattrs, %i18n, %events --
 compact (compact) #IMPLIED -- reduced interitem spacing --
 >
<!ELEMENT DT - O (%inline;)* -- definition term -->
<!ELEMENT DD - O (%flow;)* -- definition description -->
<!ATTLIST (DT|DD)
 %attrs; -- %coreattrs, %i18n, %events --
 >
<!-- Ordered lists (OL) numbering style
 1 arablic numbers 1, 2, 3, ...
 a lower alpha a, b, c, ...
 A upper alpha A, B, C, ...
 i lower roman i, ii, iii, ...
 I upper roman I, II, III, ...
 The style is applied to the sequence number which by default
 is reset to 1 for the first list item in an ordered list.
 This can't be expressed directly in SGML due to case folding.
-->
<!ENTITY % OLStyle "CDATA" -- constrained to: "(1|a|A|i|I)" -->
<!ELEMENT OL - - (LI)+ -- ordered list -->
<!ATTLIST OL
 %attrs; -- %coreattrs, %i18n, %events --
 type %OLStyle; #IMPLIED -- numbering style --
 compact (compact) #IMPLIED -- reduced interitem spacing --
 start NUMBER #IMPLIED -- starting sequence number --
 >

The HTML 4.01 DTD | 575

<!-- Unordered Lists (UL) bullet styles -->
<!ENTITY % ULStyle "(disc|square|circle)">
<!ELEMENT UL - - (LI)+ -- unordered list -->
<!ATTLIST UL
 %attrs; -- %coreattrs, %i18n, %events --
 type %ULStyle; #IMPLIED -- bullet style --
 compact (compact) #IMPLIED -- reduced interitem spacing --
 >
<!ELEMENT (DIR|MENU) - - (LI)+ -(%block;) -- directory list, menu list -->
<!ATTLIST DIR
 %attrs; -- %coreattrs, %i18n, %events --
 compact (compact) #IMPLIED -- reduced interitem spacing --
 >
<!ATTLIST MENU
 %attrs; -- %coreattrs, %i18n, %events --
 compact (compact) #IMPLIED -- reduced interitem spacing --
 >
<!ENTITY % LIStyle "CDATA" -- constrained to: "(%ULStyle;|%OLStyle;)" -->
<!ELEMENT LI - O (%flow;)* -- list item -->
<!ATTLIST LI
 %attrs; -- %coreattrs, %i18n, %events --
 type %LIStyle; #IMPLIED -- list item style --
 value NUMBER #IMPLIED -- reset sequence number --
 >
<!--================ Forms ===-->
<!ELEMENT FORM - - (%flow;)* -(FORM) -- interactive form -->
<!ATTLIST FORM
 %attrs; -- %coreattrs, %i18n, %events --
 action %URI; #REQUIRED -- server-side form handler --
 method (GET|POST) GET -- HTTP method used to submit the form--
 enctype %ContentType; "application/x-www-form-urlencoded"
 accept %ContentTypes; #IMPLIED -- list of MIME types for file upload --
 name CDATA #IMPLIED -- name of form for scripting --
 onsubmit %Script; #IMPLIED -- the form was submitted --
 onreset %Script; #IMPLIED -- the form was reset --
 target %FrameTarget; #IMPLIED -- render in this frame --
 accept-charset %Charsets; #IMPLIED -- list of supported charsets --
 >
<!-- Each label must not contain more than ONE field -->
<!ELEMENT LABEL - - (%inline;)* -(LABEL) -- form field label text -->
<!ATTLIST LABEL
 %attrs; -- %coreattrs, %i18n, %events --
 for IDREF #IMPLIED -- matches field ID value --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 >
<!ENTITY % InputType
 "(TEXT | PASSWORD | CHECKBOX |
 RADIO | SUBMIT | RESET |
 FILE | HIDDEN | IMAGE | BUTTON)"
 >

576 | Appendix D: The HTML 4.01 DTD

<!-- attribute name required for all but submit and reset -->
<!ELEMENT INPUT - O EMPTY -- form control -->
<!ATTLIST INPUT
 %attrs; -- %coreattrs, %i18n, %events --
 type %InputType; TEXT -- what kind of widget is needed --
 name CDATA #IMPLIED -- submit as part of form --
 value CDATA #IMPLIED -- specify for radio buttons and checkboxes --
 checked (checked) #IMPLIED -- for radio buttons and checkboxes --
 disabled (disabled) #IMPLIED -- unavailable in this context --
 readonly (readonly) #IMPLIED -- for text and passwd --
 size CDATA #IMPLIED -- specific to each type of field --
 maxlength NUMBER #IMPLIED -- max chars for text fields --
 src %URI; #IMPLIED -- for fields with images --
 alt CDATA #IMPLIED -- short description --
 usemap %URI; #IMPLIED -- use client-side image map --
 ismap (ismap) #IMPLIED -- use server-side image map --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 onselect %Script; #IMPLIED -- some text was selected --
 onchange %Script; #IMPLIED -- the element value was changed --
 accept %ContentTypes; #IMPLIED -- list of MIME types for file upload --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 %reserved; -- reserved for possible future use --
 >
<!ELEMENT SELECT - - (OPTGROUP|OPTION)+ -- option selector -->
<!ATTLIST SELECT
 %attrs; -- %coreattrs, %i18n, %events --
 name CDATA #IMPLIED -- field name --
 size NUMBER #IMPLIED -- rows visible --
 multiple (multiple) #IMPLIED -- default is single selection --
 disabled (disabled) #IMPLIED -- unavailable in this context --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 onchange %Script; #IMPLIED -- the element value was changed --
 %reserved; -- reserved for possible future use --
 >
<!ELEMENT OPTGROUP - - (OPTION)+ -- option group -->
<!ATTLIST OPTGROUP
 %attrs; -- %coreattrs, %i18n, %events --
 disabled (disabled) #IMPLIED -- unavailable in this context --
 label %Text; #REQUIRED -- for use in hierarchical menus --
 >
<!ELEMENT OPTION - O (#PCDATA) -- selectable choice -->
<!ATTLIST OPTION
 %attrs; -- %coreattrs, %i18n, %events --
 selected (selected) #IMPLIED
 disabled (disabled) #IMPLIED -- unavailable in this context --
 label %Text; #IMPLIED -- for use in hierarchical menus --
 value CDATA #IMPLIED -- defaults to element content --
 >

The HTML 4.01 DTD | 577

<!ELEMENT TEXTAREA - - (#PCDATA) -- multi-line text field -->
<!ATTLIST TEXTAREA
 %attrs; -- %coreattrs, %i18n, %events --
 name CDATA #IMPLIED
 rows NUMBER #REQUIRED
 cols NUMBER #REQUIRED
 disabled (disabled) #IMPLIED -- unavailable in this context --
 readonly (readonly) #IMPLIED
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 onselect %Script; #IMPLIED -- some text was selected --
 onchange %Script; #IMPLIED -- the element value was changed --
 %reserved; -- reserved for possible future use --
 >
<!--
 #PCDATA is to solve the mixed content problem,
 per specification only whitespace is allowed there!
 -->
<!ELEMENT FIELDSET - - (#PCDATA,LEGEND,(%flow;)*) -- form control group -->
<!ATTLIST FIELDSET
 %attrs; -- %coreattrs, %i18n, %events --
 >
<!ELEMENT LEGEND - - (%inline;)* -- fieldset legend -->
<!ENTITY % LAlign "(top|bottom|left|right)">
<!ATTLIST LEGEND
 %attrs; -- %coreattrs, %i18n, %events --
 accesskey %Character; #IMPLIED -- accessibility key character --
 align %LAlign; #IMPLIED -- relative to fieldset --
 >
<!ELEMENT BUTTON - -
 (%flow;)* -(A|%formctrl;|FORM|ISINDEX|FIELDSET|IFRAME)
 -- push button -->
<!ATTLIST BUTTON
 %attrs; -- %coreattrs, %i18n, %events --
 name CDATA #IMPLIED
 value CDATA #IMPLIED -- sent to server when submitted --
 type (button|submit|reset) submit -- for use as form button --
 disabled (disabled) #IMPLIED -- unavailable in this context --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 %reserved; -- reserved for possible future use --
 >
<!--======================= Tables =======================================-->
<!-- IETF HTML table standard, see [RFC1942] -->
<!--
 The BORDER attribute sets the thickness of the frame around the
 table. The default units are screen pixels.
 The FRAME attribute specifies which parts of the frame around

578 | Appendix D: The HTML 4.01 DTD

 the table should be rendered. The values are not the same as
 CALS to avoid a name clash with the VALIGN attribute.
 The value "border" is included for backwards compatibility with
 <TABLE BORDER> which yields frame=border and border=implied
 For <TABLE BORDER=1> you get border=1 and frame=implied. In this
 case, it is appropriate to treat this as frame=border for backwards
 compatibility with deployed browsers.
-->
<!ENTITY % TFrame "(void|above|below|hsides|lhs|rhs|vsides|box|border)">
<!--
 The RULES attribute defines which rules to draw between cells:
 If RULES is absent then assume:
 "none" if BORDER is absent or BORDER=0 otherwise "all"
-->
<!ENTITY % TRules "(none | groups | rows | cols | all)">

<!-- horizontal placement of table relative to document -->
<!ENTITY % TAlign "(left|center|right)">
<!-- horizontal alignment attributes for cell contents -->
<!ENTITY % cellhalign
 "align (left|center|right|justify|char) #IMPLIED
 char %Character; #IMPLIED -- alignment char, e.g. char=':' --
 charoff %Length; #IMPLIED -- offset for alignment char --"
 >
<!-- vertical alignment attributes for cell contents -->
<!ENTITY % cellvalign
 "valign (top|middle|bottom|baseline) #IMPLIED"
 >
<!ELEMENT TABLE - -
 (CAPTION?, (COL*|COLGROUP*), THEAD?, TFOOT?, TBODY+)>
<!ELEMENT CAPTION - - (%inline;)* -- table caption -->
<!ELEMENT THEAD - O (TR)+ -- table header -->
<!ELEMENT TFOOT - O (TR)+ -- table footer -->
<!ELEMENT TBODY O O (TR)+ -- table body -->
<!ELEMENT COLGROUP - O (COL)* -- table column group -->
<!ELEMENT COL - O EMPTY -- table column -->
<!ELEMENT TR - O (TH|TD)+ -- table row -->
<!ELEMENT (TH|TD) - O (%flow;)* -- table header cell, table data cell-->
<!ATTLIST TABLE -- table element --
 %attrs; -- %coreattrs, %i18n, %events --
 summary %Text; #IMPLIED -- purpose/structure for speech output--
 width %Length; #IMPLIED -- table width --
 border %Pixels; #IMPLIED -- controls frame width around table --
 frame %TFrame; #IMPLIED -- which parts of frame to render --
 rules %TRules; #IMPLIED -- rulings between rows and cols --
 cellspacing %Length; #IMPLIED -- spacing between cells --
 cellpadding %Length; #IMPLIED -- spacing within cells --
 align %TAlign; #IMPLIED -- table position relative to window --
 bgcolor %Color; #IMPLIED -- background color for cells --
 %reserved; -- reserved for possible future use --
 datapagesize CDATA #IMPLIED -- reserved for possible future use --
 >

The HTML 4.01 DTD | 579

<!ENTITY % CAlign "(top|bottom|left|right)">
<!ATTLIST CAPTION
 %attrs; -- %coreattrs, %i18n, %events --
 align %CAlign; #IMPLIED -- relative to table --
 >
<!--
COLGROUP groups a set of COL elements. It allows you to group
several semantically related columns together.
-->
<!ATTLIST COLGROUP
 %attrs; -- %coreattrs, %i18n, %events --
 span NUMBER 1 -- default number of columns in group --
 width %MultiLength; #IMPLIED -- default width for enclosed COLs --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 >
<!--
 COL elements define the alignment properties for cells in
 one or more columns.
 The WIDTH attribute specifies the width of the columns, e.g.
 width=64 width in screen pixels
 width=0.5* relative width of 0.5
 The SPAN attribute causes the attributes of one
 COL element to apply to more than one column.
-->
<!ATTLIST COL -- column groups and properties --
 %attrs; -- %coreattrs, %i18n, %events --
 span NUMBER 1 -- COL attributes affect N columns --
 width %MultiLength; #IMPLIED -- column width specification --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 >
<!--
 Use THEAD to duplicate headers when breaking table
 across page boundaries, or for static headers when
 TBODY sections are rendered in scrolling panel.
 Use TFOOT to duplicate footers when breaking table
 across page boundaries, or for static footers when
 TBODY sections are rendered in scrolling panel.
 Use multiple TBODY sections when rules are needed
 between groups of table rows.
-->
<!ATTLIST (THEAD|TBODY|TFOOT) -- table section --
 %attrs; -- %coreattrs, %i18n, %events --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 >
<!ATTLIST TR -- table row --
 %attrs; -- %coreattrs, %i18n, %events --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 bgcolor %Color; #IMPLIED -- background color for row --
 >

580 | Appendix D: The HTML 4.01 DTD

<!-- Scope is simpler than headers attribute for common tables -->
<!ENTITY % Scope "(row|col|rowgroup|colgroup)">
<!-- TH is for headers, TD for data, but for cells acting as both use TD -->
<!ATTLIST (TH|TD) -- header or data cell --
 %attrs; -- %coreattrs, %i18n, %events --
 abbr %Text; #IMPLIED -- abbreviation for header cell --
 axis CDATA #IMPLIED -- comma-separated list of related headers--
 headers IDREFS #IMPLIED -- list of id's for header cells --
 scope %Scope; #IMPLIED -- scope covered by header cells --
 rowspan NUMBER 1 -- number of rows spanned by cell --
 colspan NUMBER 1 -- number of cols spanned by cell --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 nowrap (nowrap) #IMPLIED -- suppress word wrap --
 bgcolor %Color; #IMPLIED -- cell background color --
 width %Length; #IMPLIED -- width for cell --
 height %Length; #IMPLIED -- height for cell --
 >
<!--================== Document Frames ===================================-->
<!--
 The content model for HTML documents depends on whether the HEAD is
 followed by a FRAMESET or BODY element. The widespread omission of
 the BODY start tag makes it impractical to define the content model
 without the use of a marked section.
-->
<![%HTML.Frameset; [
<!ELEMENT FRAMESET - - ((FRAMESET|FRAME)+ & NOFRAMES?) -- window subdivision-->
<!ATTLIST FRAMESET
 %coreattrs; -- id, class, style, title --
 rows %MultiLengths; #IMPLIED -- list of lengths, default: 100% (1 row) --
 cols %MultiLengths; #IMPLIED -- list of lengths, default: 100% (1 col) --
 onload %Script; #IMPLIED -- all the frames have been loaded --
 onunload %Script; #IMPLIED -- all the frames have been removed --
 >
]]>
<![%HTML.Frameset; [
<!-- reserved frame names start with "_" otherwise starts with letter -->
<!ELEMENT FRAME - O EMPTY -- subwindow -->
<!ATTLIST FRAME
 %coreattrs; -- id, class, style, title --
 longdesc %URI; #IMPLIED -- link to long description
 (complements title) --
 name CDATA #IMPLIED -- name of frame for targetting --
 src %URI; #IMPLIED -- source of frame content --
 frameborder (1|0) 1 -- request frame borders? --
 marginwidth %Pixels; #IMPLIED -- margin widths in pixels --
 marginheight %Pixels; #IMPLIED -- margin height in pixels --
 noresize (noresize) #IMPLIED -- allow users to resize frames? --
 scrolling (yes|no|auto) auto -- scrollbar or none --
 >
]]>

The HTML 4.01 DTD | 581

<!ELEMENT IFRAME - - (%flow;)* -- inline subwindow -->
<!ATTLIST IFRAME
 %coreattrs; -- id, class, style, title --
 longdesc %URI; #IMPLIED -- link to long description
 (complements title) --
 name CDATA #IMPLIED -- name of frame for targetting --
 src %URI; #IMPLIED -- source of frame content --
 frameborder (1|0) 1 -- request frame borders? --
 marginwidth %Pixels; #IMPLIED -- margin widths in pixels --
 marginheight %Pixels; #IMPLIED -- margin height in pixels --
 scrolling (yes|no|auto) auto -- scrollbar or none --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 height %Length; #IMPLIED -- frame height --
 width %Length; #IMPLIED -- frame width --
 >
<![%HTML.Frameset; [
<!ENTITY % noframes.content "(BODY) -(NOFRAMES)">
]]>
<!ENTITY % noframes.content "(%flow;)*">
<!ELEMENT NOFRAMES - - %noframes.content;
 -- alternate content container for non frame-based rendering -->
<!ATTLIST NOFRAMES
 %attrs; -- %coreattrs, %i18n, %events --
 >
<!--================ Document Head =======================================-->
<!-- %head.misc; defined earlier on as "SCRIPT|STYLE|META|LINK|OBJECT" -->
<!ENTITY % head.content "TITLE & ISINDEX? & BASE?">
<!ELEMENT HEAD O O (%head.content;) +(%head.misc;) -- document head -->
<!ATTLIST HEAD
 %i18n; -- lang, dir --
 profile %URI; #IMPLIED -- named dictionary of meta info --
 >
<!-- The TITLE element is not considered part of the flow of text.
 It should be displayed, for example as the page header or
 window title. Exactly one title is required per document.
 -->
<!ELEMENT TITLE - - (#PCDATA) -(%head.misc;) -- document title -->
<!ATTLIST TITLE %i18n>
<!ELEMENT ISINDEX - O EMPTY -- single line prompt -->
<!ATTLIST ISINDEX
 %coreattrs; -- id, class, style, title --
 %i18n; -- lang, dir --
 prompt %Text; #IMPLIED -- prompt message -->
<!ELEMENT BASE - O EMPTY -- document base URI -->
<!ATTLIST BASE
 href %URI; #IMPLIED -- URI that acts as base URI --
 target %FrameTarget; #IMPLIED -- render in this frame --
 >
<!ELEMENT META - O EMPTY -- generic metainformation -->
<!ATTLIST META
 %i18n; -- lang, dir, for use with content --
 http-equiv NAME #IMPLIED -- HTTP response header name --
 name NAME #IMPLIED -- metainformation name --

582 | Appendix D: The HTML 4.01 DTD

 content CDATA #REQUIRED -- associated information --
 scheme CDATA #IMPLIED -- select form of content --
 >
<!ELEMENT STYLE - - %StyleSheet -- style info -->
<!ATTLIST STYLE
 %i18n; -- lang, dir, for use with title --
 type %ContentType; #REQUIRED -- content type of style language --
 media %MediaDesc; #IMPLIED -- designed for use with these media --
 title %Text; #IMPLIED -- advisory title --
 >
<!ELEMENT SCRIPT - - %Script; -- script statements -->
<!ATTLIST SCRIPT
 charset %Charset; #IMPLIED -- char encoding of linked resource --
 type %ContentType; #REQUIRED -- content type of script language --
 language CDATA #IMPLIED -- predefined script language name --
 src %URI; #IMPLIED -- URI for an external script --
 defer (defer) #IMPLIED -- UA may defer execution of script --
 event CDATA #IMPLIED -- reserved for possible future use --
 for %URI; #IMPLIED -- reserved for possible future use --
 >
<!ELEMENT NOSCRIPT - - (%flow;)*
 -- alternate content container for non script-based rendering -->
<!ATTLIST NOSCRIPT
 %attrs; -- %coreattrs, %i18n, %events --
 >
<!--================ Document Structure ==================================-->
<!ENTITY % version "version CDATA #FIXED '%HTML.Version;'">
<![%HTML.Frameset; [
<!ENTITY % html.content "HEAD, FRAMESET">
]]>
<!ENTITY % html.content "HEAD, BODY">
<!ELEMENT HTML O O (%html.content;) -- document root element -->
<!ATTLIST HTML
 %i18n; -- lang, dir --
 %version;
 >

583

Appendix E APPENDIX E

The XHTML 1.0 DTD5

The XHTML 1.0 standard is formally defined as three Extensible Markup Language
(XML) Document Type Definitions (DTDs): the Strict DTD, the Transitional DTD,
and the Frameset DTD. These DTDs correspond to the respective HTML 4.01
DTDs, defining the same elements and attributes using XML rather than the Stan-
dard Generalized Markup Language (SGML) as the DTD authoring language.

The Strict DTD defines only those elements that are not deprecated in the HTML 4.
01 standard. Ideally, everyone would create XHTML documents that conform to the
Strict DTD. The Transitional DTD includes all those deprecated elements and more
accurately reflects the HTML in use today, with many older elements still in com-
mon use. The Frameset DTD is identical to the Transitional DTD, with the excep-
tion that the document <body> is replaced by the <frameset> element.

Since the HTML Transitional DTD is the one upon which this book is based, it is
only appropriate that we include the corresponding XHTML DTD. Note that we
have reprinted this DTD verbatim and have not attempted to add extensions to it.
Where our description and the DTD deviate, assume the DTD is correct:

<!--
 Extensible HTML version 1.0 Transitional DTD
 This is the same as HTML 4.0 Transitional except for
 changes due to the differences between XML and SGML.
 Namespace = http://www.w3.org/1999/xhtml
 For further information, see: http://www.w3.org/TR/xhtml1
 Copyright (c) 1998-2000 W3C (MIT, INRIA, Keio),
 All Rights Reserved.
 This DTD module is identified by the PUBLIC and SYSTEM identifiers:
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"

584 | Appendix E: The XHTML 1.0 DTD

 $Revision: 1.18 $
 $Date: 2006/10/04 18:18:49 $
-->
<!--================ Character mnemonic entities =========================-->
<!ENTITY % HTMLlat1 PUBLIC
 "-//W3C//ENTITIES Latin 1 for XHTML//EN"
 "xhtml-lat1.ent">
%HTMLlat1;
<!ENTITY % HTMLsymbol PUBLIC
 "-//W3C//ENTITIES Symbols for XHTML//EN"
 "xhtml-symbol.ent">
%HTMLsymbol;
<!ENTITY % HTMLspecial PUBLIC
 "-//W3C//ENTITIES Special for XHTML//EN"
 "xhtml-special.ent">
%HTMLspecial;
<!--================== Imported Names ====================================-->
<!ENTITY % ContentType "CDATA">
 <!-- media type, as per [RFC2045] -->
<!ENTITY % ContentTypes "CDATA">
 <!-- comma-separated list of media types, as per [RFC2045] -->
<!ENTITY % Charset "CDATA">
 <!-- a character encoding, as per [RFC2045] -->
<!ENTITY % Charsets "CDATA">
 <!-- a space separated list of character encodings, as per [RFC2045] -->
<!ENTITY % LanguageCode "NMTOKEN">
 <!-- a language code, as per [RFC1766] -->
<!ENTITY % Character "CDATA">
 <!-- a single character from [ISO10646] -->
<!ENTITY % Number "CDATA">
 <!-- one or more digits -->
<!ENTITY % LinkTypes "CDATA">
 <!-- space-separated list of link types -->
<!ENTITY % MediaDesc "CDATA">
 <!-- single or comma-separated list of media descriptors -->
<!ENTITY % URI "CDATA">
 <!-- a Uniform Resource Identifier, see [RFC2396] -->
<!ENTITY % UriList "CDATA">
 <!-- a space separated list of Uniform Resource Identifiers -->
<!ENTITY % Datetime "CDATA">
 <!-- date and time information. ISO date format -->
<!ENTITY % Script "CDATA">
 <!-- script expression -->
<!ENTITY % StyleSheet "CDATA">
 <!-- style sheet data -->
<!ENTITY % Text "CDATA">
 <!-- used for titles etc. -->
<!ENTITY % FrameTarget "NMTOKEN">
 <!-- render in this frame -->
<!ENTITY % Length "CDATA">
 <!-- nn for pixels or nn% for percentage length -->
<!ENTITY % MultiLength "CDATA">
 <!-- pixel, percentage, or relative -->
<!ENTITY % MultiLengths "CDATA">
 <!-- comma-separated list of MultiLength -->

The XHTML 1.0 DTD | 585

<!ENTITY % Pixels "CDATA">
 <!-- integer representing length in pixels -->
<!-- these are used for image maps -->
<!ENTITY % Shape "(rect|circle|poly|default)">
<!ENTITY % Coords "CDATA">
 <!-- comma separated list of lengths -->
<!-- used for object, applet, img, input and iframe -->
<!ENTITY % ImgAlign "(top|middle|bottom|left|right)">
<!-- a color using sRGB: #RRGGBB as Hex values -->
<!ENTITY % Color "CDATA">
<!-- There are also 16 widely known color names with their sRGB values:
 Black = #000000 Green = #008000
 Silver = #C0C0C0 Lime = #00FF00
 Gray = #808080 Olive = #808000
 White = #FFFFFF Yellow = #FFFF00
 Maroon = #800000 Navy = #000080
 Red = #FF0000 Blue = #0000FF
 Purple = #800080 Teal = #008080
 Fuchsia= #FF00FF Aqua = #00FFFF
-->
<!--=================== Generic Attributes ===============================-->
<!-- core attributes common to most elements
 id document-wide unique id
 class space separated list of classes
 style associated style info
 title advisory title/amplification
-->
<!ENTITY % coreattrs
 "id ID #IMPLIED
 class CDATA #IMPLIED
 style %StyleSheet; #IMPLIED
 title %Text; #IMPLIED"
 >
<!-- internationalization attributes
 lang language code (backwards compatible)
 xml:lang language code (as per XML 1.0 spec)
 dir direction for weak/neutral text
-->
<!ENTITY % i18n
 "lang %LanguageCode; #IMPLIED
 xml:lang %LanguageCode; #IMPLIED
 dir (ltr|rtl) #IMPLIED"
 >
<!-- attributes for common UI events
 onclick a pointer button was clicked
 ondblclick a pointer button was double clicked
 onmousedown a pointer button was pressed down
 onmouseup a pointer button was released
 onmousemove a pointer was moved onto the element
 onmouseout a pointer was moved away from the element
 onkeypress a key was pressed and released
 onkeydown a key was pressed down
 onkeyup a key was released
-->

586 | Appendix E: The XHTML 1.0 DTD

<!ENTITY % events
 "onclick %Script; #IMPLIED
 ondblclick %Script; #IMPLIED
 onmousedown %Script; #IMPLIED
 onmouseup %Script; #IMPLIED
 onmouseover %Script; #IMPLIED
 onmousemove %Script; #IMPLIED
 onmouseout %Script; #IMPLIED
 onkeypress %Script; #IMPLIED
 onkeydown %Script; #IMPLIED
 onkeyup %Script; #IMPLIED"
 >
<!-- attributes for elements that can get the focus
 accesskey accessibility key character
 tabindex position in tabbing order
 onfocus the element got the focus
 onblur the element lost the focus
-->
<!ENTITY % focus
 "accesskey %Character; #IMPLIED
 tabindex %Number; #IMPLIED
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED"
 >
<!ENTITY % attrs "%coreattrs; %i18n; %events;">
<!-- text alignment for p, div, h1-h6. The default is
 align="left" for ltr headings, "right" for rtl -->
<!ENTITY % TextAlign "align (left|center|right) #IMPLIED">
<!--=================== Text Elements ====================================-->
<!ENTITY % special
 "br | span | bdo | object | applet | img | map | iframe">
<!ENTITY % fontstyle "tt | i | b | big | small | u
 | s | strike |font | basefont">
<!ENTITY % phrase "em | strong | dfn | code | q | sub | sup |
 samp | kbd | var | cite | abbr | acronym">
<!ENTITY % inline.forms "input | select | textarea | label | button">
<!-- these can occur at block or inline level -->
<!ENTITY % misc "ins | del | script | noscript">
<!ENTITY % inline "a | %special; | %fontstyle; | %phrase; | %inline.forms;">
<!-- %Inline; covers inline or "text-level" elements -->
<!ENTITY % Inline "(#PCDATA | %inline; | %misc;)*">
<!--================== Block level elements ==============================-->
<!ENTITY % heading "h1|h2|h3|h4|h5|h6">
<!ENTITY % lists "ul | ol | dl | menu | dir">
<!ENTITY % blocktext "pre | hr | blockquote | address | center | noframes">
<!ENTITY % block
 "p | %heading; | div | %lists; | %blocktext; | isindex |fieldset | table">
<!ENTITY % Block "(%block; | form | %misc;)*">
<!-- %Flow; mixes Block and Inline and is used for list items etc. -->
<!ENTITY % Flow "(#PCDATA | %block; | form | %inline; | %misc;)*">
<!--================== Content models for exclusions =====================-->
<!-- a elements use %Inline; excluding a -->

The XHTML 1.0 DTD | 587

<!ENTITY % a.content
 "(#PCDATA | %special; | %fontstyle; | %phrase; | %inline.forms; | %misc;)*">
<!-- pre uses %Inline excluding img, object, applet, big, small,
 sub, sup, font, or basefont -->
<!ENTITY % pre.content
 "(#PCDATA | a | br | span | bdo | map | tt | i | b | u | s |
 %phrase; | %inline.forms;)*">
<!-- form uses %Flow; excluding form -->
<!ENTITY % form.content "(#PCDATA | %block; | %inline; | %misc;)*">
<!-- button uses %Flow; but excludes a, form, form controls, iframe -->
<!ENTITY % button.content
 "(#PCDATA | p | %heading; | div | %lists; | %blocktext; |
 table | br | span | bdo | object | applet | img | map |
 %fontstyle; | %phrase; | %misc;)*">
<!--================ Document Structure ==================================-->
<!-- the namespace URI designates the document profile -->
<!ELEMENT html (head, body)>
<!ATTLIST html
 %i18n;
 xmlns %URI; #FIXED 'http://www.w3.org/1999/xhtml'
 >
<!--================ Document Head =======================================-->
<!ENTITY % head.misc "(script|style|meta|link|object|isindex)*">
<!-- content model is %head.misc; combined with a single
 title and an optional base element in any order -->
<!ELEMENT head (%head.misc;,
 ((title, %head.misc;, (base, %head.misc;)?) |
 (base, %head.misc;, (title, %head.misc;))))>
<!ATTLIST head
 %i18n;
 profile %URI; #IMPLIED
 >
<!-- The title element is not considered part of the flow of text.
 It should be displayed, for example as the page header or
 window title. Exactly one title is required per document.
 -->
<!ELEMENT title (#PCDATA)>
<!ATTLIST title %i18n;>
<!-- document base URI -->
<!ELEMENT base EMPTY>
<!ATTLIST base
 href %URI; #IMPLIED
 target %FrameTarget; #IMPLIED
 >
<!-- generic metainformation -->
<!ELEMENT meta EMPTY>
<!ATTLIST meta
 %i18n;
 http-equiv CDATA #IMPLIED
 name CDATA #IMPLIED
 content CDATA #REQUIRED
 scheme CDATA #IMPLIED
 >

588 | Appendix E: The XHTML 1.0 DTD

<!--
 Relationship values can be used in principle:
 a) for document specific toolbars/menus when used
 with the link element in document head e.g.
 start, contents, previous, next, index, end, help
 b) to link to a separate style sheet (rel="stylesheet")
 c) to make a link to a script (rel="script")
 d) by stylesheets to control how collections of
 html nodes are rendered into printed documents
 e) to make a link to a printable version of this document
 e.g. a PostScript or PDF version (rel="alternate" media="print")
-->
<!ELEMENT link EMPTY>
<!ATTLIST link
 %attrs;
 charset %Charset; #IMPLIED
 href %URI; #IMPLIED
 hreflang %LanguageCode; #IMPLIED
 type %ContentType; #IMPLIED
 rel %LinkTypes; #IMPLIED
 rev %LinkTypes; #IMPLIED
 media %MediaDesc; #IMPLIED
 target %FrameTarget; #IMPLIED
 >
<!-- style info, which may include CDATA sections -->
<!ELEMENT style (#PCDATA)>
<!ATTLIST style
 %i18n;
 type %ContentType; #REQUIRED
 media %MediaDesc; #IMPLIED
 title %Text; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 >
<!-- script statements, which may include CDATA sections -->
<!ELEMENT script (#PCDATA)>
<!ATTLIST script
 charset %Charset; #IMPLIED
 type %ContentType; #REQUIRED
 language CDATA #IMPLIED
 src %URI; #IMPLIED
 defer (defer) #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 >
<!-- alternate content container for non script-based rendering -->
<!ELEMENT noscript %Flow;>
<!ATTLIST noscript
 %attrs;
 >
<!--======================= Frames =======================================-->
<!-- inline subwindow -->
<!ELEMENT iframe %Flow;>
<!ATTLIST iframe
 %coreattrs;
 longdesc %URI; #IMPLIED

The XHTML 1.0 DTD | 589

 name NMTOKEN #IMPLIED
 src %URI; #IMPLIED
 frameborder (1|0) "1"
 marginwidth %Pixels; #IMPLIED
 marginheight %Pixels; #IMPLIED
 scrolling (yes|no|auto) "auto"
 align %ImgAlign; #IMPLIED
 height %Length; #IMPLIED
 width %Length; #IMPLIED
 >
<!-- alternate content container for non frame-based rendering -->
<!ELEMENT noframes %Flow;>
<!ATTLIST noframes
 %attrs;
 >
<!--=================== Document Body ====================================-->
<!ELEMENT body %Flow;>
<!ATTLIST body
 %attrs;
 onload %Script; #IMPLIED
 onunload %Script; #IMPLIED
 background %URI; #IMPLIED
 bgcolor %Color; #IMPLIED
 text %Color; #IMPLIED
 link %Color; #IMPLIED
 vlink %Color; #IMPLIED
 alink %Color; #IMPLIED
 >
<!ELEMENT div %Flow;> <!-- generic language/style container -->
<!ATTLIST div
 %attrs;
 %TextAlign;
 >
<!--=================== Paragraphs =======================================-->
<!ELEMENT p %Inline;>
<!ATTLIST p
 %attrs;
 %TextAlign;
 >
<!--=================== Headings ===-->
<!--
 There are six levels of headings from h1 (the most important)
 to h6 (the least important).
-->
<!ELEMENT h1 %Inline;>
<!ATTLIST h1
 %attrs;
 %TextAlign;
 >
<!ELEMENT h2 %Inline;>
<!ATTLIST h2
 %attrs;
 %TextAlign;
 >

590 | Appendix E: The XHTML 1.0 DTD

<!ELEMENT h3 %Inline;>
<!ATTLIST h3
 %attrs;
 %TextAlign;
 >
<!ELEMENT h4 %Inline;>
<!ATTLIST h4
 %attrs;
 %TextAlign;
 >
<!ELEMENT h5 %Inline;>
<!ATTLIST h5
 %attrs;
 %TextAlign;
 >
<!ELEMENT h6 %Inline;>
<!ATTLIST h6
 %attrs;
 %TextAlign;
 >
<!--=================== Lists ==-->
<!-- Unordered list bullet styles -->
<!ENTITY % ULStyle "(disc|square|circle)">
<!-- Unordered list -->
<!ELEMENT ul (li)+>
<!ATTLIST ul
 %attrs;
 type %ULStyle; #IMPLIED
 compact (compact) #IMPLIED
 >
<!-- Ordered list numbering style
 1 arabic numbers 1, 2, 3, ...
 a lower alpha a, b, c, ...
 A upper alpha A, B, C, ...
 i lower roman i, ii, iii, ...
 I upper roman I, II, III, ...
 The style is applied to the sequence number which by default
 is reset to 1 for the first list item in an ordered list.
-->
<!ENTITY % OLStyle "CDATA">
<!-- Ordered (numbered) list -->
<!ELEMENT ol (li)+>
<!ATTLIST ol
 %attrs;
 type %OLStyle; #IMPLIED
 compact (compact) #IMPLIED
 start %Number; #IMPLIED
 >
<!-- single column list (DEPRECATED) -->
<!ELEMENT menu (li)+>
<!ATTLIST menu
 %attrs;
 compact (compact) #IMPLIED
 >

The XHTML 1.0 DTD | 591

<!-- multiple column list (DEPRECATED) -->
<!ELEMENT dir (li)+>
<!ATTLIST dir
 %attrs;
 compact (compact) #IMPLIED
 >
<!-- LIStyle is constrained to: "(%ULStyle;|%OLStyle;)" -->
<!ENTITY % LIStyle "CDATA">
<!-- list item -->
<!ELEMENT li %Flow;>
<!ATTLIST li
 %attrs;
 type %LIStyle; #IMPLIED
 value %Number; #IMPLIED
 >
<!-- definition lists - dt for term, dd for its definition -->
<!ELEMENT dl (dt|dd)+>
<!ATTLIST dl
 %attrs;
 compact (compact) #IMPLIED
 >
<!ELEMENT dt %Inline;>
<!ATTLIST dt
 %attrs;
 >
<!ELEMENT dd %Flow;>
<!ATTLIST dd
 %attrs;
 >
<!--=================== Address ==-->
<!-- information on author -->
<!ELEMENT address %Inline;>
<!ATTLIST address
 %attrs;
 >
<!--=================== Horizontal Rule ==================================-->
<!ELEMENT hr EMPTY>
<!ATTLIST hr
 %attrs;
 align (left|center|right) #IMPLIED
 noshade (noshade) #IMPLIED
 size %Pixels; #IMPLIED
 width %Length; #IMPLIED
 >
<!--=================== Preformatted Text ================================-->
<!-- content is %Inline; excluding
 "img|object|applet|big|small|sub|sup|font|basefont" -->
<!ELEMENT pre %pre.content;>
<!ATTLIST pre
 %attrs;
 width %Number; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 >

592 | Appendix E: The XHTML 1.0 DTD

<!--=================== Block-like Quotes ================================-->
<!ELEMENT blockquote %Flow;>
<!ATTLIST blockquote
 %attrs;
 cite %URI; #IMPLIED
 >
<!--=================== Text alignment ===================================-->
<!-- center content -->
<!ELEMENT center %Flow;>
<!ATTLIST center
 %attrs;
 >
<!--=================== Inserted/Deleted Text ============================-->
<!--
 ins/del are allowed in block and inline content, but its
 inappropriate to include block content within an ins element
 occurring in inline content.
-->
<!ELEMENT ins %Flow;>
<!ATTLIST ins
 %attrs;
 cite %URI; #IMPLIED
 datetime %Datetime; #IMPLIED
 >
<!ELEMENT del %Flow;>
<!ATTLIST del
 %attrs;
 cite %URI; #IMPLIED
 datetime %Datetime; #IMPLIED
 >
<!--================== The Anchor Element ================================-->
<!-- content is %Inline; except that anchors shouldn't be nested -->
<!ELEMENT a %a.content;>
<!ATTLIST a
 %attrs;
 charset %Charset; #IMPLIED
 type %ContentType; #IMPLIED
 name NMTOKEN #IMPLIED
 href %URI; #IMPLIED
 hreflang %LanguageCode; #IMPLIED
 rel %LinkTypes; #IMPLIED
 rev %LinkTypes; #IMPLIED
 accesskey %Character; #IMPLIED
 shape %Shape; "rect"
 coords %Coords; #IMPLIED
 tabindex %Number; #IMPLIED
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 target %FrameTarget; #IMPLIED
 >
<!--===================== Inline Elements ================================-->
<!ELEMENT span %Inline;> <!-- generic language/style container -->
<!ATTLIST span
 %attrs;
 >

The XHTML 1.0 DTD | 593

<!ELEMENT bdo %Inline;> <!-- I18N BiDi over-ride -->
<!ATTLIST bdo
 %coreattrs;
 %events;
 lang %LanguageCode; #IMPLIED
 xml:lang %LanguageCode; #IMPLIED
 dir (ltr|rtl) #REQUIRED
 >
<!ELEMENT br EMPTY> <!-- forced line break -->
<!ATTLIST br
 %coreattrs;
 clear (left|all|right|none) "none"
 >
<!ELEMENT em %Inline;> <!-- emphasis -->
<!ATTLIST em %attrs;>
<!ELEMENT strong %Inline;> <!-- strong emphasis -->
<!ATTLIST strong %attrs;>
<!ELEMENT dfn %Inline;> <!-- definitional -->
<!ATTLIST dfn %attrs;>
<!ELEMENT code %Inline;> <!-- program code -->
<!ATTLIST code %attrs;>
<!ELEMENT samp %Inline;> <!-- sample -->
<!ATTLIST samp %attrs;>
<!ELEMENT kbd %Inline;> <!-- something user would type -->
<!ATTLIST kbd %attrs;>
<!ELEMENT var %Inline;> <!-- variable -->
<!ATTLIST var %attrs;>
<!ELEMENT cite %Inline;> <!-- citation -->
<!ATTLIST cite %attrs;>
<!ELEMENT abbr %Inline;> <!-- abbreviation -->
<!ATTLIST abbr %attrs;>
<!ELEMENT acronym %Inline;> <!-- acronym -->
<!ATTLIST acronym %attrs;>
<!ELEMENT q %Inline;> <!-- inlined quote -->
<!ATTLIST q
 %attrs;
 cite %URI; #IMPLIED
 >
<!ELEMENT sub %Inline;> <!-- subscript -->
<!ATTLIST sub %attrs;>
<!ELEMENT sup %Inline;> <!-- superscript -->
<!ATTLIST sup %attrs;>
<!ELEMENT tt %Inline;> <!-- fixed pitch font -->
<!ATTLIST tt %attrs;>
<!ELEMENT i %Inline;> <!-- italic font -->
<!ATTLIST i %attrs;>
<!ELEMENT b %Inline;> <!-- bold font -->
<!ATTLIST b %attrs;>
<!ELEMENT big %Inline;> <!-- bigger font -->
<!ATTLIST big %attrs;>
<!ELEMENT small %Inline;> <!-- smaller font -->
<!ATTLIST small %attrs;>
<!ELEMENT u %Inline;> <!-- underline -->
<!ATTLIST u %attrs;>

594 | Appendix E: The XHTML 1.0 DTD

<!ELEMENT s %Inline;> <!-- strike-through -->
<!ATTLIST s %attrs;>
<!ELEMENT strike %Inline;> <!-- strike-through -->
<!ATTLIST strike %attrs;>
<!ELEMENT basefont EMPTY> <!-- base font size -->
<!ATTLIST basefont
 id ID #IMPLIED
 size CDATA #REQUIRED
 color %Color; #IMPLIED
 face CDATA #IMPLIED
 >
<!ELEMENT font %Inline;> <!-- local change to font -->
<!ATTLIST font
 %coreattrs;
 %i18n;
 size CDATA #IMPLIED
 color %Color; #IMPLIED
 face CDATA #IMPLIED
 >
<!--==================== Object ======================================-->
<!--
 object is used to embed objects as part of HTML pages.
 param elements should precede other content. Parameters
 can also be expressed as attribute/value pairs on the
 object element itself when brevity is desired.
-->
<!ELEMENT object (#PCDATA | param | %block; | form | %inline; | %misc;)*>
<!ATTLIST object
 %attrs;
 declare (declare) #IMPLIED
 classid %URI; #IMPLIED
 codebase %URI; #IMPLIED
 data %URI; #IMPLIED
 type %ContentType; #IMPLIED
 codetype %ContentType; #IMPLIED
 archive %UriList; #IMPLIED
 standby %Text; #IMPLIED
 height %Length; #IMPLIED
 width %Length; #IMPLIED
 usemap %URI; #IMPLIED
 name NMTOKEN #IMPLIED
 tabindex %Number; #IMPLIED
 align %ImgAlign; #IMPLIED
 border %Pixels; #IMPLIED
 hspace %Pixels; #IMPLIED
 vspace %Pixels; #IMPLIED
 >
<!--
 param is used to supply a named property value.
 In XML it would seem natural to follow RDF and support an
 abbreviated syntax where the param elements are replaced
 by attribute value pairs on the object start tag.
-->

The XHTML 1.0 DTD | 595

<!ELEMENT param EMPTY>
<!ATTLIST param
 id ID #IMPLIED
 name CDATA #REQUIRED
 value CDATA #IMPLIED
 valuetype (data|ref|object) "data"
 type %ContentType; #IMPLIED
 >
<!--=================== Java applet ==================================-->
<!--
 One of code or object attributes must be present.
 Place param elements before other content.
-->
<!ELEMENT applet (#PCDATA | param | %block; | form | %inline; | %misc;)*>
<!ATTLIST applet
 %coreattrs;
 codebase %URI; #IMPLIED
 archive CDATA #IMPLIED
 code CDATA #IMPLIED
 object CDATA #IMPLIED
 alt %Text; #IMPLIED
 name NMTOKEN #IMPLIED
 width %Length; #REQUIRED
 height %Length; #REQUIRED
 align %ImgAlign; #IMPLIED
 hspace %Pixels; #IMPLIED
 vspace %Pixels; #IMPLIED
 >
<!--=================== Images ===-->
<!--
 To avoid accessibility problems for people who aren't
 able to see the image, you should provide a text
 description using the alt and longdesc attributes.
 In addition, avoid the use of server-side image maps.
-->
<!ELEMENT img EMPTY>
<!ATTLIST img
 %attrs;
 src %URI; #REQUIRED
 alt %Text; #REQUIRED
 name NMTOKEN #IMPLIED
 longdesc %URI; #IMPLIED
 height %Length; #IMPLIED
 width %Length; #IMPLIED
 usemap %URI; #IMPLIED
 ismap (ismap) #IMPLIED
 align %ImgAlign; #IMPLIED
 border %Length; #IMPLIED
 hspace %Pixels; #IMPLIED
 vspace %Pixels; #IMPLIED
 >
<!-- usemap points to a map element which may be in this document
 or an external document, although the latter is not widely supported -->

596 | Appendix E: The XHTML 1.0 DTD

<!--================== Client-side image maps ============================-->
<!-- These can be placed in the same document or grouped in a
 separate document although this isn't yet widely supported -->
<!ELEMENT map ((%block; | form | %misc;)+ | area+)>
<!ATTLIST map
 %i18n;
 %events;
 id ID #REQUIRED
 class CDATA #IMPLIED
 style %StyleSheet; #IMPLIED
 title %Text; #IMPLIED
 name CDATA #IMPLIED
 >
<!ELEMENT area EMPTY>
<!ATTLIST area
 %attrs;
 shape %Shape; "rect"
 coords %Coords; #IMPLIED
 href %URI; #IMPLIED
 nohref (nohref) #IMPLIED
 alt %Text; #REQUIRED
 tabindex %Number; #IMPLIED
 accesskey %Character; #IMPLIED
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 target %FrameTarget; #IMPLIED
 >
<!--================ Forms ===-->
<!ELEMENT form %form.content;> <!-- forms shouldn't be nested -->
<!ATTLIST form
 %attrs;
 action %URI; #REQUIRED
 method (get|post) "get"
 name NMTOKEN #IMPLIED
 enctype %ContentType; "application/x-www-form-urlencoded"
 onsubmit %Script; #IMPLIED
 onreset %Script; #IMPLIED
 accept %ContentTypes; #IMPLIED
 accept-charset %Charsets; #IMPLIED
 target %FrameTarget; #IMPLIED
 >
<!--
 Each label must not contain more than ONE field
 Label elements shouldn't be nested.
-->
<!ELEMENT label %Inline;>
<!ATTLIST label
 %attrs;
 for IDREF #IMPLIED
 accesskey %Character; #IMPLIED
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 >

The XHTML 1.0 DTD | 597

<!ENTITY % InputType
 "(text | password | checkbox |
 radio | submit | reset |
 file | hidden | image | button)"
 >
<!-- the name attribute is required for all but submit & reset -->
<!ELEMENT input EMPTY> <!-- form control -->
<!ATTLIST input
 %attrs;
 type %InputType; "text"
 name CDATA #IMPLIED
 value CDATA #IMPLIED
 checked (checked) #IMPLIED
 disabled (disabled) #IMPLIED
 readonly (readonly) #IMPLIED
 size CDATA #IMPLIED
 maxlength %Number; #IMPLIED
 src %URI; #IMPLIED
 alt CDATA #IMPLIED
 usemap %URI; #IMPLIED
 tabindex %Number; #IMPLIED
 accesskey %Character; #IMPLIED
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 onselect %Script; #IMPLIED
 onchange %Script; #IMPLIED
 accept %ContentTypes; #IMPLIED
 align %ImgAlign; #IMPLIED
 >
<!ELEMENT select (optgroup|option)+> <!-- option selector -->
<!ATTLIST select
 %attrs;
 name CDATA #IMPLIED
 size %Number; #IMPLIED
 multiple (multiple) #IMPLIED
 disabled (disabled) #IMPLIED
 tabindex %Number; #IMPLIED
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 onchange %Script; #IMPLIED
 >
<!ELEMENT optgroup (option)+> <!-- option group -->
<!ATTLIST optgroup
 %attrs;
 disabled (disabled) #IMPLIED
 label %Text; #REQUIRED
 >
<!ELEMENT option (#PCDATA)> <!-- selectable choice -->
<!ATTLIST option
 %attrs;
 selected (selected) #IMPLIED
 disabled (disabled) #IMPLIED
 label %Text; #IMPLIED
 value CDATA #IMPLIED
 >

598 | Appendix E: The XHTML 1.0 DTD

<!ELEMENT textarea (#PCDATA)> <!-- multi-line text field -->
<!ATTLIST textarea
 %attrs;
 name CDATA #IMPLIED
 rows %Number; #REQUIRED
 cols %Number; #REQUIRED
 disabled (disabled) #IMPLIED
 readonly (readonly) #IMPLIED
 tabindex %Number; #IMPLIED
 accesskey %Character; #IMPLIED
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 onselect %Script; #IMPLIED
 onchange %Script; #IMPLIED
 >
<!--
 The fieldset element is used to group form fields.
 Only one legend element should occur in the content
 and if present should only be preceded by whitespace.
-->
<!ELEMENT fieldset (#PCDATA | legend | %block; | form | %inline; | %misc;)*>
<!ATTLIST fieldset
 %attrs;
 >
<!ENTITY % LAlign "(top|bottom|left|right)">
<!ELEMENT legend %Inline;> <!-- fieldset label -->
<!ATTLIST legend
 %attrs;
 accesskey %Character; #IMPLIED
 align %LAlign; #IMPLIED
 >
<!--
 Content is %Flow; excluding a, form, form controls, iframe
-->
<!ELEMENT button %button.content;> <!-- push button -->
<!ATTLIST button
 %attrs;
 name CDATA #IMPLIED
 value CDATA #IMPLIED
 type (button|submit|reset) "submit"
 disabled (disabled) #IMPLIED
 tabindex %Number; #IMPLIED
 accesskey %Character; #IMPLIED
 onfocus %Script; #IMPLIED
 onblur %Script; #IMPLIED
 >
<!-- single-line text input control (DEPRECATED) -->
<!ELEMENT isindex EMPTY>
<!ATTLIST isindex
 %coreattrs;
 %i18n;
 prompt %Text; #IMPLIED
 >

The XHTML 1.0 DTD | 599

<!--======================= Tables =======================================-->
<!-- Derived from IETF HTML table standard, see [RFC1942] -->
<!--
 The border attribute sets the thickness of the frame around the
 table. The default units are screen pixels.
 The frame attribute specifies which parts of the frame around
 the table should be rendered. The values are not the same as
 CALS to avoid a name clash with the valign attribute.
-->
<!ENTITY % TFrame "(void|above|below|hsides|lhs|rhs|vsides|box|border)">
<!--
 The rules attribute defines which rules to draw between cells:
 If rules is absent then assume:
 "none" if border is absent or border="0" otherwise "all"
-->
<!ENTITY % TRules "(none | groups | rows | cols | all)">

<!-- horizontal placement of table relative to document -->
<!ENTITY % TAlign "(left|center|right)">
<!-- horizontal alignment attributes for cell contents
 char alignment char, e.g. char=':'
 charoff offset for alignment char
-->
<!ENTITY % cellhalign
 "align (left|center|right|justify|char) #IMPLIED
 char %Character; #IMPLIED
 charoff %Length; #IMPLIED"
 >
<!-- vertical alignment attributes for cell contents -->
<!ENTITY % cellvalign
 "valign (top|middle|bottom|baseline) #IMPLIED"
 >
<!ELEMENT table
 (caption?, (col*|colgroup*), thead?, tfoot?, (tbody+|tr+))>
<!ELEMENT caption %Inline;>
<!ELEMENT thead (tr)+>
<!ELEMENT tfoot (tr)+>
<!ELEMENT tbody (tr)+>
<!ELEMENT colgroup (col)*>
<!ELEMENT col EMPTY>
<!ELEMENT tr (th|td)+>
<!ELEMENT th %Flow;>
<!ELEMENT td %Flow;>
<!ATTLIST table
 %attrs;
 summary %Text; #IMPLIED
 width %Length; #IMPLIED
 border %Pixels; #IMPLIED
 frame %TFrame; #IMPLIED
 rules %TRules; #IMPLIED
 cellspacing %Length; #IMPLIED
 cellpadding %Length; #IMPLIED
 align %TAlign; #IMPLIED
 bgcolor %Color; #IMPLIED
 >

600 | Appendix E: The XHTML 1.0 DTD

<!ENTITY % CAlign "(top|bottom|left|right)">
<!ATTLIST caption
 %attrs;
 align %CAlign; #IMPLIED
 >
<!--
colgroup groups a set of col elements. It allows you to group
several semantically related columns together.
-->
<!ATTLIST colgroup
 %attrs;
 span %Number; "1"
 width %MultiLength; #IMPLIED
 %cellhalign;
 %cellvalign;
 >
<!--
 col elements define the alignment properties for cells in
 one or more columns.
 The width attribute specifies the width of the columns, e.g.
 width=64 width in screen pixels
 width=0.5* relative width of 0.5
 The span attribute causes the attributes of one
 col element to apply to more than one column.
-->
<!ATTLIST col
 %attrs;
 span %Number; "1"
 width %MultiLength; #IMPLIED
 %cellhalign;
 %cellvalign;
 >
<!--
 Use thead to duplicate headers when breaking table
 across page boundaries, or for static headers when
 tbody sections are rendered in scrolling panel.
 Use tfoot to duplicate footers when breaking table
 across page boundaries, or for static footers when
 tbody sections are rendered in scrolling panel.
 Use multiple tbody sections when rules are needed
 between groups of table rows.
-->
<!ATTLIST thead
 %attrs;
 %cellhalign;
 %cellvalign;
 >
<!ATTLIST tfoot
 %attrs;
 %cellhalign;
 %cellvalign;
 >

The XHTML 1.0 DTD | 601

<!ATTLIST tbody
 %attrs;
 %cellhalign;
 %cellvalign;
 >
<!ATTLIST tr
 %attrs;
 %cellhalign;
 %cellvalign;
 bgcolor %Color; #IMPLIED
 >
<!-- Scope is simpler than headers attribute for common tables -->
<!ENTITY % Scope "(row|col|rowgroup|colgroup)">
<!-- th is for headers, td for data and for cells acting as both -->
<!ATTLIST th
 %attrs;
 abbr %Text; #IMPLIED
 axis CDATA #IMPLIED
 headers IDREFS #IMPLIED
 scope %Scope; #IMPLIED
 rowspan %Number; "1"
 colspan %Number; "1"
 %cellhalign;
 %cellvalign;
 nowrap (nowrap) #IMPLIED
 bgcolor %Color; #IMPLIED
 width %Pixels; #IMPLIED
 height %Pixels; #IMPLIED
 >
<!ATTLIST td
 %attrs;
 abbr %Text; #IMPLIED
 axis CDATA #IMPLIED
 headers IDREFS #IMPLIED
 scope %Scope; #IMPLIED
 rowspan %Number; "1"
 colspan %Number; "1"
 %cellhalign;
 %cellvalign;
 nowrap (nowrap) #IMPLIED
 bgcolor %Color; #IMPLIED
 width %Pixels; #IMPLIED
 height %Pixels; #IMPLIED
 >

602

Appendix FAPPENDIX F

Character Entities 6

The following table lists the defined standard and proposed character entities for
HTML and XHTML, as well as several that are nonstandard but generally supported.

Entity names, if defined, appear for their respective characters and can be used in the
character-entity sequence &name; to define any character for display by the browser.
Otherwise, or alternatively for named characters, use the character’s three-digit
numeral value in the sequence &#nnn; to specially define a character entity. Actual
characters, however, may or may not be displayed by the browser, depending on the
computer platform and user-selected font for display.

Not all 256 characters in the International Organization for Standardization (ISO)
character set appear in the table. Missing ones are not recognized by the browser as
either named or numeric entities.

To be sure that your documents are fully compliant with the HTML 4.0 and
XHTML 1.0 standards, use only those named character entities with no entries in the
Conformance column. Characters with a value of “!!!” in the Conformance column
are not formally defined by the standards; use them at your own risk.

Numeric entity Named entity Symbol Description Conformance

	 Horizontal tab

 Line feed

 Carriage return

 Space

! ! Exclamation point

" " “ Quotation mark

Hash mark

$ $ Dollar sign

% % Percent sign

& & & Ampersand

' ‘ Apostrophe

((Left parenthesis

Character Entities | 603

)) Right parenthesis

* * Asterisk

+ + Plus sign

, , Comma

- - Hyphen

. . Period

/ / Slash

0–9 0–9 Digits 0–9

: : Colon

; ; Semicolon

< < < Less than sign

= = Equals sign

> > > Greater than sign

? ? Question mark

@ @ Commercial at sign

A–Z A–Z Letters A–Z

[[Left square bracket

\ \ Backslash

]] Right square bracket

^ ^ Caret

_ _ Underscore

` ` Grave accent

a–z a–z Letters a–z

{ { Left curly brace

| | Vertical bar

} } Right curly brace

~ ~ Tilde

‚ , Low left single quote !!!

ƒ ƒ Florin !!!

„ ,, Low left double quote !!!

… ... Ellipsis !!!

† † Dagger !!!

‡ ‡ Double dagger !!!

ˆ ^ Circumflex !!!

‰ ‰ Permil !!!

Š Capital S, caron !!!

‹ < Less than sign !!!

Œ Œ Capital OE ligature !!!

Numeric entity Named entity Symbol Description Conformance

604 | Appendix F: Character Entities

Ž Capital Z, caron !!!

‘ ` Left single quote !!!

’ ‘ Right single quote !!!

“ “ Left double quote !!!

” “ Right double quote !!!

• • Bullet !!!

– - En dash !!!

— — Em dash !!!

˜ ~ Tilde !!!

™ ™ Trademark !!!

š Small s, caron !!!

› > Greater than sign !!!

œ œ Small oe ligature !!!

ž Small z, caron !!!

Ÿ Ÿ Capital Y, umlaut !!!

 Nonbreaking space

¡ ¡ ¡ Inverted exclamation point

¢ ¢ ¢ Cent sign

£ £ £ Pound sign

¤ ¤ ¤ General currency sign

¥ ¥ ¥ Yen sign

¦ ¦ Broken vertical bar

§ § § Section sign

¨ ¨ ¨ Umlaut

© © © Copyright

ª ª ª Feminine ordinal

« « « Left angle quote

¬ ¬ ¬ Not sign

­ ­ - Soft hyphen

® ® ® Registered trademark

¯ ¯ ¯ Macron accent

° ° ˚ Degree sign

± ± Plus or minus

² ² 2 Superscript 2

³ ³ 3 Superscript 3

´ ´ ´ Acute accent

Numeric entity Named entity Symbol Description Conformance

|

±

Character Entities | 605

µ µ µ Micro sign (Greek mu)

¶ ¶ ¶ Paragraph sign

· · · Middle dot

¸ ¸ ‚ Cedilla

¹ ¹ 1 Superscript 1

º º º Masculine ordinal

» » » Right angle quote

¼ ¼ 1/4 Fraction one-fourth

½ ½ 1/2 Fraction one-half

¾ ¾ 3/4 Fraction three-fourths

¿ ¿ ¿ Inverted question mark

À À À Capital A, grave accent

Á Á Á Capital A, acute accent

Â Â Â Capital A, circumflex accent

Ã Ã Ã Capital A, tilde

Ä Ä Ä Capital A, umlaut

Å Å Å Capital A, ring

Æ Æ Æ Capital AE ligature

Ç Ç Ç Capital C, cedilla

È È È Capital E, grave accent

É É É Capital E, acute accent

Ê Ê Ê Capital E, circumflex accent

Ë Ë Ë Capital E, umlaut

Ì Ì Ì Capital I, grave accent

Í Í Í Capital I, acute accent

Î Î Î Capital I, circumflex accent

Ï Ï Ï Capital I, umlaut

Ð Ð Œ Capital eth, Icelandic

Ñ Ñ Ñ Capital N, tilde

Ò Ò Ò Capital O, grave accent

Ó Ó Ó Capital O, acute accent

Ô Ô Ô Capital O, circumflex accent

Õ Õ Õ Capital O, tilde

Ö Ö Ö Capital O, umlaut

× × x Multiply sign

Ø Ø Ø Capital O, slash

Ù Ù Ù Capital U, grave accent

Ú Ú Ú Capital U, acute accent

Numeric entity Named entity Symbol Description Conformance

606 | Appendix F: Character Entities

Û Û Û Capital U, circumflex accent

Ü Ü Ü Capital U, umlaut

Ý Ý Capital Y, acute accent

Þ Þ Capital thorn, Icelandic

ß ß ß Small sz ligature, German

à à à Small a, grave accent

á á á Small a, acute accent

â â â Small a, circumflex accent

ã ã ã Small a, tilde

ä ä ä Small a, umlaut

å å å Small a, ring

æ æ æ Small ae ligature

ç ç ç Small c, cedilla

è è è Small e, grave accent

é é é Small e, acute accent

ê ê ê Small e, circumflex accent

ë ë ë Small e, umlaut

ì ì ì Small i, grave accent

í í í Small i, acute accent

î î î Small i, circumflex accent

ï ï î Small i, umlaut

ð ð Small eth, Icelandic

ñ ñ ñ Small n, tilde

ò ò ò Small o, grave accent

ó ó ó Small o, acute accent

ô ô ô Small o, circumflex accent

õ õ õ Small o, tilde

ö ö ö Small o, umlaut

÷ ÷ ÷ Division sign

ø ø ø Small o, slash

ù ù ù Small u, grave accent

ú ú ú Small u, acute accent

û û û Small u, circumflex accent

ü ü ü Small u, umlaut

ý ý y Small y, acute accent

þ þ Small thorn, Icelandic

ÿ ÿ ÿ Small y, umlaut

Numeric entity Named entity Symbol Description Conformance

607

Appendix G APPENDIX G

Color Names and Values7

With the popular browsers, and according to the Cascading Style Sheets (CSS) stan-
dard, you may prescribe the display color for various elements in your documents.
You do so by specifying a color value or a standard name. The user may override
these color specifications through her browser preferences.

Color Values
In all cases, you may set the color value for an HTML element, such as <body> text,
<table> background, and so on, as a six-digit hexadecimal number that represents
the red, green, and blue (RGB) components of the color. The first two digits corre-
spond to the red component of the color, the next two are the green component, and
the last two are the blue component. A value of 00 corresponds to a component
being completely off; the hexadecimal value of FF (decimal 255) corresponds to the
component being completely on. Thus, bright red is FF0000, bright green is 00FF00,
and bright blue is 0000FF. Other primary colors are mixtures of the components,
such as yellow (FFFF00), magenta (FF00FF), and cyan (00FFFF). White (FFFFFF) and
black (000000) also are easy to figure out.

You use these values in a tag by replacing the color with the RGB triple, preceded by a
pound sign (#). Thus, to make all visited links display as magenta, use this body tag:

<body vlink="#FF00FF">

608 | Appendix G: Color Names and Values

Color Names
Determining the RGB-triple value for anything other than the simplest colors (you
try figuring out esoteric colors like “papaya whip” or “navajo white”) is not easy.
You can go crazy trying to adjust the RGB triple for a color to get the shade just
right, especially when each adjustment requires loading a document into your
browser to view the result.

To make life easier, the standards define 16 standard color names that you can use
anywhere you can use a numeric color value. For example, you can make all visited
links in the display magenta with the following attribute and value for the body tag:

<body vlink="magenta">

The color names and RGB values defined in the HTML/XHTML standards are:

The popular browsers go well beyond the standard and support the several hundred
color names defined for use in the X Window System. Note that these color names
may contain no spaces; also, the word gray may be spelled grey in any color name.

Those colors marked with an asterisk (*) actually represent a family of colors num-
bered one through four. Thus, there are actually four variants of blue, named
“blue1,” “blue2,” “blue3,” and “blue4,” along with plain old “blue.” Blue1 is the
lightest of the four; blue4 is the darkest. The unnumbered color name is the same
color as the first; thus, blue and blue1 are identical.

Finally, if all that isn’t enough, there are 100 variants of gray (and grey), numbered 1
through 100. “Gray1” is the darkest, “gray100” is the lightest, and “gray” is very
close to “gray75.”

The extended color names are:

aqua (#00FFFF) gray (#808080) navy (#000080) silver (#C0C0C0)

black (#000000) green (#008000) olive (#808000) teal (#008080)

blue (#0000FF) lime (#00FF00) purple (#800080) yellow (#FFFF00)

fuchsia (#FF00FF) maroon (#800000) red (#FF0000) white (#FFFFFF)

aliceblue darkturquoise lightseagreen palevioletred*

antiquewhite* darkviolet lightskyblue* papayawhip

aquamarine* deeppink* lightslateblue peachpuff*

azure* deepskyblue* lightslategray peru

beige dimgray lightsteelblue* pink*

bisque* dodgerblue* lightyellow* plum*

black firebrick* limegreen powderblue

blanchedalmond floralwhite linen purple*

blue* forestgreen magenta* red*

The Standard Color Map | 609

The Standard Color Map
Supporting hundreds of color names and millions of RGB triples is nice, but the real-
ity is that a large (albeit shrinking) population of users can display only 256 colors on
their systems. When confronted with a color not defined in this set of 256, the
browser has two choices: convert the color to one of the existing colors, or dither the
color using the available colors in the color map.

Conversion is easy; the color is compared to all the other colors in the color map and
is replaced by the closest color found. Dithering is more difficult. Using two or more
colors in the color map, the errant color is approximated by mixing different ratios of
the available colors. When you view them up close, you’ll see a pattern of alternat-
ing pixels using the available colors. At a distance, the pixels blend to form a color
close to the original color.

blueviolet gainsboro maroon* rosybrown*

brown* ghostwhite mediumaquamarine royalblue*

burlywood* gold* mediumblue saddlebrown

cadetblue* goldenrod* mediumorchid* salmon*

chartreuse* gray mediumpurple* sandybrown

chocolate* green* mediumseagreen seagreen*

coral* greenyellow mediumslateblue seashell*

cornflowerblue honeydew* mediumspringgreen sienna*

cornsilk* hotpink* mediumturquoise skyblue*

cyan* indianred* mediumvioletred slateblue*

darkblue ivory* midnightblue slategray*

darkcyan khaki* mintcream snow*

darkgoldenrod* lavender mistyrose* springgreen*

darkgray lavenderblush* moccasin steelblue*

darkgreen lawngreen navajowhite* tan*

darkkhaki lemonchiffon* navy thistle*

darkmagenta lightblue* navyblue tomato*

darkolivegreen* lightcoral oldlace turquoise*

darkorange* lightcyan* olivedrab* violet

darkorchid* lightgoldenrod* orange* violetred*

darkred lightgoldenrodyellow orangered* wheat*

darksalmon lightgray orchid* white

darkseagreen* lightgreen palegoldenrod whitesmoke

darkslateblue lightpink* palegreen* yellow*

darkslategray* lightsalmon* paleturquoise* yellowgreen

610 | Appendix G: Color Names and Values

In general, your images will look best if you can avoid both conversion and dither-
ing. Conversion will make your colors appear “off”; dithering makes them look
fuzzy. How to avoid these problems? Easy: use colors in the standard color map
when creating your images.

The standard color map actually has 216 values in it. There are six variants of red,
six of green, and six of blue that are combined in all possible ways to create these
216 (6 × 6 × 6) colors. These variants have decimal brightness values of 0, 51, 102,
153, 204, and 255, corresponding to hexadecimal values of 00, 33, 66, 99, CC, and FF.
Colors such as 003333 (dark cyan) and 999999 (medium gray) exist directly in the
color map and won’t be converted or dithered.

Keep in mind that many of the extended color names are not in the standard color map
and will be converted or dithered to a (hopefully) similar color. Using color names,
while convenient, does not guarantee that the browser will use the desired color.

When creating images, try to use colors in the standard color map. When selecting
colors for text, links, or backgrounds, make sure you select colors in the standard
color map. Your pages will look better and will be more consistent when viewed with
different browsers.

611

Appendix H APPENDIX H

Netscape Layout Extensions8

From the start of their enterprise before the turn of the century, the developers at
Netscape were at the forefront of browser design that addressed the needs of com-
mercial interests. During those heady years, Netscape extended HTML to provide
authors with far more sophisticated page-layout capabilities than otherwise available
in any other browser. And they were very successful in that enterprise. Netscape
Navigator was the dominant browser by far until the early 2000s with the advent of
Cascading Style Sheets (CSS) and other standards. Microsoft finally caught on, too.

In this appendix, we document for historical purposes three features that were
unique to Netscape versions 4 and earlier and no other browsers since then: spacers,
multiple columns, and layers. These tags lure the designer with exciting page-layout
capabilities. Play with them as you will, but we warn you: they won’t ever become
part of HTML/XHTML standards. They aren’t even supported by the latest version
of Netscape Navigator.

Creating Whitespace
One of the simplest elements in any page design is the empty space surrounding con-
tent. Empty space is often just as important to the look and feel of a page as the areas
filled with text and images. Commonly known as whitespace, these empty areas
shape and contain the content of your page.

Native HTML has no way to create empty space on your page, short of using a <pre>
tag filled with blank lines or an empty image. In fact, browsers—acting according to
the HTML/XHTML standards—remove leading, trailing, and any other extra spaces
in text and ignore extra linefeeds. Netscape 4 fills this void with the <spacer> tag.
[The
 Tag, 4.6.1]

612 | Appendix H: Netscape Layout Extensions

The <spacer> Tag (Antiquated)
Use the <spacer> tag to create horizontal, vertical, and rectangular whitespace in doc-
uments rendered by Netscape 4.

Creating horizontal space

The most common use of the <spacer> tag is to indent a line of text. To achieve this
effect, set the value of the type attribute to horizontal, and use the size attribute to
define the width, in pixels (not text characters), of the horizontal area. For example:

<spacer type=horizontal size=100>

inserts 100 pixels of space in line with the current line of text. Netscape 4 appends
subsequent content at the end of the spacer if sufficient space remains on the current
line. Otherwise, it places the next element onto the next line, following its normal
word-wrap behavior.

If there is not enough room to place the entire <spacer> tag’s whitespace on the cur-
rent line, the browser shortens the space to fit on the current line. In a sense, the size
of the spacer is soft, telling the browser to insert up to the specified number of pixels
until the end of the current line is reached.

For example, if a spacer is 100 pixels wide, and only 75 pixels of space remain on the
current line within the browser’s display window, Netscape 4 inserts 75 pixels of
space into the line and places the next element at the beginning of the next line in the
display. Accordingly, a horizontal spacer is never broken across a line, creating space
at the end of one line and the beginning of the next.

By far, the most common application of the horizontal spacer is to indent the first
line of a paragraph. Simply place a horizontal spacer at the start of a paragraph to get
the desired result:

<spacer type=horizontal size=50>
The effects of cooler weather on the kumquat's ripening process
vary based upon the temperature. Temperatures above 28°
sweeten the fruit, while four or more hours below 28° will
damage the tree.

<spacer>

Function Defines a blank area in a document

Attributes align, height, size, type, width

End tag None in HTML

Contains Nothing

Used in text

Creating Whitespace | 613

Figure H-1 shows the results.

Of course, you also can use horizontal spacers to insert additional space between let-
ters or words in a line of text. This might be useful for displaying poetry or special-
ized ad copy. But don’t use a spacer to create an indented block of text—you cannot
predict the size of the user’s browser window, font sizes, and so forth, and, hence,
where it will break a particular line of text. Instead, use the <blockquote> tag or
adjust the paragraph’s left margin with an appropriate style.

Creating vertical space

You may insert extra whitespace between lines of text and paragraphs in your docu-
ments by setting the type attribute in the <spacer> tag to vertical. You also must
include the size attribute. Make its value a positive integer equal to the amount of
whitespace, in pixels.

The vertical spacer acts just like the
 tag. Both tags cause an immediate line
break. The difference is that with the vertical spacer, you control how far below the
current line of text Netscape 4 should start the subsequent line. The whitespace is
added to—and therefore is never less than—the normal amount of space that would
appear below the current line of text as a result of the paragraph’s line spacing.

Because HTML pages are infinitely tall, the vertical space may be any number of pix-
els high. Of course, it’d be sophomoric to be excessive (oh, OK, try size=100000000).
Most of today’s monitors have a vertical scan of no more than 1,024 lines, so a verti-
cal pixel size value of 1,025 ensures that the next line of text is placed off the user’s
screen, if that is the effect you desire.

Vertical spacers aren’t quite as common as horizontal spacers, but they can still be
useful. In the following text, we’ve used a vertical spacer to provide a bit more sepa-
ration between the document’s header and the regular text:

<h1 align=right>Temperature Effects</h1>
<spacer type=vertical size=50>
The effects of cooler weather on the kumquat's ripening process
vary based upon the temperature. Temperatures above 28°
sweeten the fruit, while four or more hours below 28° will
damage the tree.

Figure H-2 shows the results.

Figure H-1. Indenting a paragraph with a horizontal spacer (Netscape 4 only)

614 | Appendix H: Netscape Layout Extensions

Creating blocks of space

The third spacer type creates a rectangular block of blank space, much like a blank
image. Set the type attribute to block and include three other attributes to fully
define the space: width, height, and align.

The width and height attributes specify the size of the spacer in pixels or as a per-
centage of the element containing the spacer. These attributes are used only when
the type attribute is set to block and otherwise are ignored. Similarly, the size

attribute is ignored when the <spacer> type is block. If specifying a size in pixels, you
must give a positive integer value to both the width and height attributes; their
default value is 0.

The third required block spacer attribute, align, controls how Netscape 4 places the
empty block relative to the surrounding text. The values for this attribute are identi-
cal to those for the align attribute in the tag. Use the top, texttop, middle,
absmiddle, baseline, bottom, and absbottom values to obtain the desired vertical align-
ment of the block spacer. Use the left and right values to force the block spacer to
the indicated margin and cause the following text to flow up and around the spacer.
The default value is bottom. For a complete description of the align attribute and its
values, see section 4.1.1.1.

This HTML fragment places the compass points around an empty area:

<center>
North

West
<spacer type=block width=50 height=50 align=absmiddle>
East

South
</center>

Figure H-3 shows the resulting document.

Figure H-2. Using a vertical spacer to separate a header from the text (Netscape 4 only)

Creating Whitespace | 615

Mimicking the <spacer> Tag
Because only Netscape versions 4 and earlier support the <spacer> tag, other brows-
ers ignore it, ruining your carefully contrived layout. We strongly suggest that you
instead use the CSS standard text-indent property for identical results.

You might also emulate the <spacer> tag with the tag and a special, small
image. This way, you can achieve <spacer>-like effects even with browsers that don’t
support CSS. For an image to emulate <spacer>, you’ll need a GIF that is completely
transparent. Because no part of the image is ever seen, you can make it as small as
you want; we recommend a 1 × 1-pixel GIF image. In the following examples, our
tiny 1 × 1-pixel transparent image is named small.gif.

To emulate a horizontal spacer of the form:

<spacer type=horizontal size=n>

use this tag:

Replace n with the desired pixel width. Keep in mind, however, that the width of the
 tag is fixed and may not integrate into the text flow exactly like the <spacer>
tag would, especially if the tag falls at or near the end of a line of text.

To emulate a vertical spacer of the form:

<spacer type=vertical size=n>

use this HTML fragment:

The
 tags are needed in the example to emulate the line-breaking behavior of the
vertical spacer. Again, replace n with the desired height.

To emulate a block spacer of the form:

<spacer type=block width=w height=h align=a>

use this tag:

Figure H-3. Using a block spacer to create space in a document (Netscape 4 only)

616 | Appendix H: Netscape Layout Extensions

Replace w, h, and a with the desired width, height, and alignment values.

Multicolumn Layout
Multicolumn text formatting is one of the most common features of desktop publish-
ing. In addition to creating attractive pages in a variety of formats, multiple columns
let you present your text using shorter, easier-to-read lines. HTML page designers
have longed for the ability to easily create multiple text columns in a single page, but
they have been forced to use various tricks, such as multicolumn tables (see
Chapter 17).

Netscape 4 neatly solved this problem with the unique <multicol> tag. While fancy
unbalanced columns and straddling are not possible with this tag, as they are with
tables, conventionally balanced text columns are easy to create with <multicol>. And
while this capability is available only with Netscape 4, the <multicol> tag degrades
nicely in other browsers.

The <multicol> Tag (Antiquated)
The <multicol> tag creates multiple columns of text and lets you control the size and
number of columns.

The <multicol> tag can contain any other HTML content, much like the <div> tag.
All of the content within the <multicol> tag is displayed just like conventional con-
tent, except that Netscape 4 places the contents into multiple columns rather than
just one.

The <multicol> tag creates a break in the text flow and inserts a blank line before
rendering its content into multiple columns. After the tag, another blank line is
added and the text flow resumes using the previous layout and formatting.

<multicol> (Antiquated)

Function Formats text with multiple columns

Attributes class, cols, gutter, style, width

End tag </multicol>; never omitted

Contains body_content

Used in block

Multicolumn Layout | 617

Netscape 4 automatically balances the columns, making each approximately the
same length. Where possible, the browser moves text between columns to accom-
plish the balancing. In some cases, the columns cannot be balanced perfectly because
of embedded images, tables, or other large elements.

You can nest <multicol> tags, embedding one set of columns within another set of
columns. While infinite nesting is supported, more than two levels of nesting are
generally impractical and results in unattractive text flows.

The cols attribute

The cols attribute is required by the <multicol> tag to define the number of col-
umns. If this attribute is omitted, Netscape 4 creates just one column, as though the
<multicol> tag isn’t there at all. You may create any number of columns, but in prac-
tice, more than three or four columns make text unreadable on most displays.

The following example creates a three-column layout:

<h1 align=right>Temperature Effects</h1>
<multicol cols=3>
The effects of cooler weather on the kumquat's ripening process
vary based upon the temperature. Temperatures above 28°
sweeten the fruit, while four or more hours below 28° will
damage the tree. The savvy quat farmer will carefully monitor
the temperature, especially in the predawn hours when the mercury
dips to its lowest point. Smudge pots and grove heaters may be
required to keep the trees warm; many growers will spray the trees
with water to create an insulating layer of ice over the fruit and
leaves.
<p>
If a disastrous frost is predicted, below 20°, the only recourse
may be to harvest the fruit early to save it from an assured disaster.
Kumquats may subsequently be ripened using any of the popular methane
and cyanoacrylate injection systems used for other citrus fruits.
Used correctly, these systems will produce fruit whose taste is
indistinguishable from tree-ripened kumquats.
</multicol>

Figure H-4 shows the results.

You can see in Figure H-4 how Netscape 4 has balanced the columns to approxi-
mately equal lengths. You also can see how several lines within the columns appear
shorter because longer words were wrapped to the next line of text. These overly
ragged right margins within the columns are unavoidable and serve to emphasize
that you shouldn’t create more than four or five columns in a flow. Our example is
still barely readable if displayed as five columns; it breaks down completely and even
induces rendering errors if cols is set to 7, as shown in Figure H-5.

618 | Appendix H: Netscape Layout Extensions

Figure H-4. A three-column <multicol> document segment (Netscape 4 only)

Figure H-5. Too many columns create unreadable pages (Netscape 4 only)

Multicolumn Layout | 619

The gutter attribute

The space between columns is known as the gutter. By default, Netscape creates a gut-
ter that is 10 pixels wide between each of your columns. To change this, set the gutter
attribute’s value to the desired width in pixels. Netscape 4 reserves this much space
between your columns; the remaining space is used for the columns themselves.

Figure H-6 shows the effect this can have on your columns. In this figure, we’ve
reformatted our sample text using <multicol cols=3 gutter=50>. Contrast this with
Figure H-4, which uses the default 10-pixel gutters.

The width attribute

Normally, the <multicol> tag fills the current width of the current text flow. To have
your multiple columns occupy a thinner space, or to extend them beyond the visible
window, use the width attribute to specify the overall width of the <multicol> tag.
The columns are resized so that the columns plus the gutters fill the width you’ve
specified.* The width may be specified as an absolute number of pixels or as a per-
centage of the width of the current text flow.

Figure H-6. Change gutter widths with the <multicol> gutter attribute (Netscape 4 only)

* To be exact, each column is (w -g(n - 1))/n pixels wide, where w is the width of the <multicol>tag, g is the
width of a gutter, and n is the number of columns. Thus, using <multicol cols=3 gutter=10 width=500> cre-
ates columns that are 160 pixels wide.

620 | Appendix H: Netscape Layout Extensions

Figure H-7 shows the effects of adding width="75%" to our column example, retain-
ing the default gutter width of 10 pixels.

If your columns include images or other fixed-width elements, be careful when you
reduce their size. Netscape 4 does not wrap text around images that extend beyond
the boundaries of a column. Instead, the image covers the adjacent columns, ruining
your document.

Always make sure that embedded elements in columns are small enough to fit within
your columns, even on fairly small browser displays.

The style and class attributes

Use the style attribute with the <multicol> tag to create an inline style for all the con-
tent inside the tag. The class attribute lets you label the section with a name that refers
to a predefined class of the <multicol> tag declared in some document-level or exter-
nally defined stylesheet. [Inline Styles: The style Attribute, 8.1.1] [Style Classes, 8.3]

Multiple Columns and Other Browsers
As we’ve noted, the <multicol> tag is supported only by Netscape versions 4 and ear-
lier. Fortunately, when other browsers encounter the <multicol> tag, they ignore it

Figure H-7. Changing the width of <multicol> columns (Netscape 4 only)

Layers | 621

and render the enclosed text as part of the normal text flow, usually with little conse-
quent disruption to the document.

The only problem is that the contents of the <multicol> tag flow up into the previous
flow, without an intervening break. Thus, you might consider preceding every
<multicol> tag with a <p> tag. Netscape 4 won’t mind, and other browsers at least per-
form a paragraph break before rendering your multicolumn text in a single column.

It is possible to emulate the <multicol> tag using tables, but the results are crude and
difficult to manage across multiple browsers. To do so, create a single-row table with
a cell for each column. Place an appropriate amount of the text flow in each cell to
achieve balanced columns. The difficulty, of course, is that the “appropriate
amount” varies wildly between browsers, making it almost impossible to create mul-
tiple columns that are attractive on several different browsers.

If you must have multiple columns and can tolerate your columns reverting to a sin-
gle column on incompatible browsers, we recommend that you use <multicol>.

Effective Multicolumn Layouts
We’ve offered advice on columns throughout these sections. Here is a quick recap of
our tips for creating effective column layouts:

• Use a small number of columns.

• Don’t use excessively wide gutters.

• Ensure that embedded elements such as images and tables fit in your columns on
most displays.

• Precede each <multicol> tag with a <p> tag to improve your document’s appear-
ance on other browsers.

• Avoid nesting <multicol> tags more than two deep.

Layers
Spacers and multiple columns are natural extensions to conventional HTML, exist-
ing within a document’s normal flow. With version 4, Netscape took HTML into an
entirely new dimension with layers. It transforms the single-element document
model into one containing many layered elements that are combined to form the
final document. Regrettably, layers are not supported by Netscape 6 or any version
of Internet Explorer.

Layers supply the layout artist with a critical element missing in standard HTML:
absolute positioning of content within the browser window. Layers let you define a
self-contained unit of HTML content that can be positioned anywhere in the browser
window, placed above or below other layers, and made to appear and disappear as
you desire. Document layouts that were impossible with conventional HTML are
trivial with layers.

622 | Appendix H: Netscape Layout Extensions

If you think of your document as a sheet of paper, layers are like sheets of clear plas-
tic placed on top of your document. For each layer, you define the content of the
layer, its position relative to the base document, and the order in which it is placed
on the document. Layers can be transparent or opaque, visible or hidden, providing
an endless combination of layout options.

The <layer> Tag (Antiquated)
Each HTML document content layer is defined with the <layer> tag. A layer can be
thought of as a miniature HTML document whose content is defined between the
<layer> and </layer> tags. Alternatively, the content of the layer can be retrieved
from another HTML document by using the src attribute with the <layer> tag.

Regardless of its origin, Netscape 4 formats a layer’s content exactly like a conven-
tional document, except that the result is contained within that separate layer, apart
from the rest of your document. You control the position and visibility of this layer
using the attributes of the <layer> tag.

Layers can be nested, too. Nested layers move with the containing layer and are visi-
ble only if the containing layer itself is visible.

The name attribute

If you plan on creating a layer and never referring to it, you needn’t give it a name.
However, if you plan to stack other layers relative to the current layer, as we demon-
strate later in this appendix, or to modify your layer using JavaScript, you’ll need to
name your layers using the name attribute. The value you give name is a text string,
whose first character must be a letter, not a number or symbol.

Once you name the layer, you can refer to it elsewhere in the document and change
it while the user interacts with your page. For example, this bit of HTML:

<layer name="warning" visibility=hide>
Warning! Your input parameters were not valid!
</layer>

<layer> (Antiquated)

Function Defines a layer of content within a document

Attributes above, background, below, bgcolor, class, clip, left, name, src,
style, top, visibility, width, z-index

End tag </layer>; never omitted

Contains body_content

Used in block

Layers | 623

creates a layer named warning that is initially hidden. If in the course of validating a
form using a JavaScript routine, you find an error and want to display the warning,
you would use this command:

warning.visibility = "show";

Netscape 4 then makes the layer visible to the user.

The left and top attributes

Without attributes, a layer gets placed in the document window as though it were
part of the normal document flow. Layers at the very beginning of a document get
put at the top of the Netscape 4 window; layers that are between conventional docu-
ment content get placed in line with that content.

The power of layers, however, is that you can place them anywhere in the docu-
ment. Use the top and left attributes for the <layer> tag to specify its absolute posi-
tion in the document display.

Both attributes accept an integer value equal to the number of pixels offset from the
top-left (0,0) edge of the document’s display space or, if nested inside another layer,
the containing layer’s display space. As with other document elements whose size or
position extends past the edge of the browser’s window, Netscape gives the user
scroll bars to access layered elements outside the current viewing area.

The following is a simple layer example that staggers three words diagonally down
the display—not something you can do easily, and certainly not with the same preci-
sion, in conventional HTML:

<layer left=10 top=10>
 Upper left!
</layer>
<layer left=50 top=50>
 Middle!
</layer>
<layer left=90 top=90>
 Lower right!
</layer>

Figure H-8 shows the result.

Figure H-8. Simple text positioning with the <layer> tag

624 | Appendix H: Netscape Layout Extensions

Admittedly, this example is a bit dull. Here’s a better one that creates a drop shadow
behind a heading:

<layer>
 <layer left=2 top=2>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
 <layer left=0 top=0>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
</layer>
<h1> </h1>
Early in the history of man, the kumquat played a vital role in the
formation of religious beliefs. Central to annual harvest celebrations
was the day upon which kumquats ripened. Likened to the sun (<i>
sol</i>), the golden fruit was taken (<i>stisus</i>) from the trees on
the day the sun stood highest in the sky. We carry this day forward
even today, as our summer <i>solstice</i>.

Figure H-9 shows the result. Figure H-10 demonstrates what happens with layers
when viewed with a browser other than Netscape 4.

We used a few tricks to create the drop-shadow effect for the example header.
Netscape 4 covers layers created earlier in the document with later layers. Hence, we
create the gray shadow first, followed by the actual heading, so that it appears on
top, above the shadow. We also enclosed these two layers in a separate containing
layer. This way, the shadow and header positions are relative to the containing layer,
not the document itself. The containing layer, lacking an explicit position, is placed
into the document flow as though it were normal content and winds up where a con-
ventional heading would appear in the document.

Normal content, however, still starts at the top of the document and could end up
behind the fancy heading in our example. To push content below our layered head-
ing, we include an empty heading (save for a nonbreaking space—) before
including our conventional document text.

Figure H-9. Creating drop-shadow effects with multiple layers (Netscape 4 only)

Layers | 625

This is important enough to repeat: normal document content following a <layer>

tag is positioned directly under the layer it follows. You can circumvent this effect
using an inline layer, described in “The <ilayer> Tag (Antiquated)” section later in
this chapter.

The above, below, and z-index attributes

Layers exist in three dimensions, occupying space on the page and stacked on top of
one another as well as on top of conventional document content. As we mentioned
earlier, layers normally are stacked in order of their appearance in the document: lay-
ers at the beginning get covered by later layers in the same display area.

You can control the stacking order of the layers with the above, below, and z-index

attributes for the <layer> tag. These attributes are mutually exclusive; use only one
per layer.

The value for the above or below attribute is the name of another layer in the current
document. Of course, that referenced layer must have a name attribute whose value is
the same name you use with the above or below attribute in the referring <layer> tag.
You also must have created the referenced layer earlier in the document; you cannot
refer to a layer that comes later.

In direct contradiction with what you might expect, Netscape 4 puts the current
layer below the above-named layer and above the below-named layer.* Oh, well. Note
that the layers must occupy the same display space for you to see any effects.

Figure H-10. Internet Explorer doesn’t support multiple layers

* One cannot help but imagine that the above and below attributes were implemented in the wee hours.

626 | Appendix H: Netscape Layout Extensions

Let’s use our drop-shadow layer example again to illustrate the above attribute:

<layer>
 <layer name=text left=0 top=0>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
 <layer name=shadow above=text left=2 top=2>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
</layer>

The above attribute in the layer named shadow tells Netscape 4 to position the
shadow layer so that the layer named text is above it. The effect is identical to
Figure H-9.

The above and below attributes can get confusing when you stack several layers. We
find it somewhat easier to use the z-index attribute for keeping track of which layers
go over which. With z-index, you specify the order in which Netscape stacks the lay-
ers: higher z-index value layers are put on top of lower z-index value layers.

For example, to create our drop shadow using the z-index attribute, we would use
the following:

<layer>
 <layer left=0 top=0 z-index=2>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
 <layer left=2 top=2 z-index=1>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
</layer>

Again, the effect is identical to Figure H-9. Normally, Netscape 4 would display the
second layer—the gray one in this case—on top of the first layer. But because we’ve
given the gray layer a lower z-index value, it is placed behind the first layer.

The z-index values need not be sequential, although they must be integers, so we
could have used the values 99 and 2, respectively, and gotten the same result in the
previous example. And you need not specify a z-index for all the layers that occupy
the same display space—you need specify it only for those that you want to raise or
lower in relation to other layers. However, be aware that the order of precedence
may get confusing if you don’t z-index all related layers.

For instance, what order of precedence by color would you predict when Netscape 4
renders the following sequence of layers?

<layer left=0 top=0 z-index=3>
 <h1>Introduction to Kumquat Lore</h1>
</layer>
<layer left=4 top=4>
 <h1>Introduction to Kumquat Lore</h1>
</layer>

Layers | 627

<layer left=8 top=8 z-index=2>
 <h1>Introduction to Kumquat Lore</h1>
</layer>

Give yourself a star if you said that the green header goes on top of the red header,
which goes on top of the blue header. Why? Because the red header is of lower prior-
ity than the green header based on order of appearance, and we forced the blue layer
below the red one by giving it a lower z-index value. Netscape 4 displays z-indexed
layers according to their given order and non-z-indexed layers according to their
order of appearance in the document. Precedence based on order of appearance also
applies for layers that have the same z-index value. If you nest layers, all the layers at
the same nesting level are ordered according to their z-index attributes. This group is
then ordered as a single layer among all the layers at the containing level. In short,
layers nested within a layer cannot be interleaved among layers at a different level.

For example, consider these nested layers with their content and end tags omitted for
clarity (indentation indicates nest level):

<layer name=a z-index=20>
 <layer name=a1 z-index=5>
 <layer name=a2 z-index=15>
<layer name=b z-index=30>
 <layer name=b1 z-index=10>
 <layer name=b2 z-index=25>
 <layer name=b3 z-index=20>
<layer name=c z-index=10>

Layers a, b, and c are at the same level, with layers a1 and a2 nested within a and b1,
b2, and b3 nested within b. Although the z-index numbers might, at first glance,
appear to cause Netscape 4 to interleave the various nested layers, the actual order-
ing of the layers, from bottom to top, is c, a, a1, a2, b, b1, b3, and b2.

If two layers are nested within the same layer and they have the same z-index value, the
layer defined later in the document is placed on top of the previously defined layer.*

The background and bgcolor attributes

As with the corresponding attributes for the <body> tag, you can define the back-
ground color and an image for a Netscape 4 layer with the bgcolor and background

attributes, respectively.† By default, the background of a layer is transparent, allow-
ing lower layers to show through.

The bgcolor attribute accepts a color name or RGB triple as its value, as defined in
Appendix G. If specified, Netscape sets the entire background of the layer to this

* This, of course, applies to layers inside the same containing nest only.

† Note that you can control the background color (as well as many other display features) of not just a single
tag but all <DEFANGED_layer> tags within your document using stylesheets. See section 5.3.1.8, “The style and
class attributes.”

628 | Appendix H: Netscape Layout Extensions

color, rendering the layer opaque. This attribute is handy for creating a colored box
behind text, as a highlighting or attention-getting mechanism. It does, however, hide
any layers below it, including conventional HTML content.

The background attribute accepts the URL of an image as its value. The image is tiled
to fill the area occupied by the layer. If portions of the image are transparent, those
portions of the layer are transparent, and underlying layers show through.

If you include both attributes, the background color shows through the transparent
spots in the background image. The whole layer is opaque.

The background attribute is useful for placing a texture behind text, but it fails miser-
ably when the goal is to render text in front of a fixed image. Because the size of a
layer is dictated by its contents, not the background image, using the image as the
background causes it to be clipped or tiled, depending on the size of the text.

To place text reliably on top of an image, use one layer nested within another:

<layer>

 <p>
 <layer top=75>
 <h2 align=center>And they lived happily ever after...</h2>
 </layer>
</layer>

Netscape 4 sets aside space for the entire image in the outer layer. The inner layer
occupies the same space, except that we shift it down 75 pixels to align the text bet-
ter over the image. Figure H-11 shows the result.

The visibility attribute

By default, layers usually are visible. You can change that by setting the visibility
attribute to show, hide, or inherit. As expected, show forces the layer to be seen, hide
hides it from view, and inherit explicitly declares that you want the layer to inherit

Figure H-11. Placing text over an image using layers (Netscape 4 only)

Layers | 629

its parent’s visibility. The default value for this attribute is inherit. Layers that are
not nested are considered to be children of the main document, which is always visi-
ble. Thus, non-nested layers lacking the visibility attribute are initially visible.

It makes little sense to hide layers unless you plan to reveal them later. In general,
you should use this attribute only when you include some JavaScript routines with
your document that reveal the hidden layers as a result of some user interaction.
[JavaScript Event Handlers, 12.3.3]

Layers that are hidden do not block layers below them from view. Instead, a hidden
layer can best be thought of as being transparent. One way to hide content in the
main document is to place an opaque layer over the content. To display the hidden
context, hide the opaque layer, revealing the content underneath.

The width attribute

Layers are only as big as necessary to contain their content. The initial width of a
layer is defined to be the distance from the point at which the layer is created in the
current text flow to the right margin. Netscape 4 then formats the layer’s contents to
that width and makes the height of the layer tall enough to contain all of the layer’s
contents. If the contents of the layer wind up smaller than the initial width, the
layer’s width is reduced to this smaller amount.

You can explicitly set the width of a layer using the width attribute. The value of this
attribute defines the width of the layer in pixels or as a percentage of the containing
layer. As expected, Netscape 4 then sets the height based upon the size of the layer’s
contents, wrapped to the specified width. If elements in the layer—such as images—
cannot be wrapped and instead extend past the right margin of the layer, only a por-
tion of the element is shown. The remainder is clipped by the edge of the layer and is
not shown. This is similar to the behavior of an image in the main document win-
dow. If the image extends beyond the edge of the browser window, only a portion of
the image is displayed. Unlike the browser window, however, layers cannot sport
scroll bars allowing the user to scroll around in the layer’s contents.

The src attribute

The contents of a layer are not restricted to what you type between its <layer> and </

layer> tags; you can also refer to and automatically load the contents of another doc-
ument into the layer with the src attribute. The value of the src attribute is the URL
of the document containing the layer’s content.

Note that the layer src’d document should not be a full-fledged HTML document.
In particular, it should not contain <body> or <head> tags, although other HTML con-
tent is allowed.

You can combine conventional layer content with content taken from another file by
using the src attribute and placing content within the <layer> tag. In this case, the

630 | Appendix H: Netscape Layout Extensions

content from the file is placed in the layer first, followed by any inline content within
the tag itself. If you choose to use the src attribute without supplying additional inline
content, you still must supply the closing </layer> tag to end the definition of the
layer.

The src attribute provides, for the first time, a source inclusion capability in HTML.
Previously, to insert content from one HTML document into another, you had to
rely on a server-based capability to read the other file and insert it into your docu-
ment at the correct location. Because layers are positioned, by default, at their defin-
ing point within the current flow, including another file in your document is simple:

...other content...

<layer src="boilerplate"></layer>...more content...

Because a layer is rendered as a separate HTML entity, the content of the included
file is not flowed into the containing text. Instead, it is as though the inserted text
were contained within a <div> tag or other block-level HTML element.

The clip attribute

Normally, users see the entire layer unless it is obscured by a covering layer. With
the clip attribute, you can mask off portions of a layer, revealing only a rectangular
portion within the layer. The area of the layer outside the visible area is made trans-
parent, allowing whatever is under the layer to show through.

The value of the clip attribute is two or four integer values, separated by commas,
defining pixel offsets into the layer corresponding to the left, top, right, and bottom
edges of the clip area. If only two values are supplied, they correspond to the right
and bottom edges of the visible area, and Netscape assumes the top and left values
are 0. Therefore, clip="75,100" is equivalent to clip="0,0,75,100".

The clip attribute is handy for hiding portions of a layer, or for creating fade and
wipe effects using JavaScript functions to change the clipping window over time.

The style and class attributes

Use the style attribute with the <layer> tag to create an inline style for all the con-
tent inside a layer. The class attribute lets you label the layer with a name that refers
to a predefined class of the <layer> tag declared in some document-level or exter-
nally defined stylesheet. Accordingly, you may choose to use a stylesheet rather than
individual and redundant bgcolor tag attributes to define a background color for all
your document layers or for a particular class of layers. [Inline Styles: The style
Attribute, 8.1.1] [Style Classes, 8.3]

The <ilayer> Tag (Antiquated)
While you control the position of a <layer> using top and left attribute coordinates
relative to the document’s entire display space, Netscape 4 provides a separate tag,

Layers | 631

<ilayer>, that lets you position individual layers with respect to the current flow of
content, much like an inline image.

An <ilayer> tag creates a layer that occupies space in the containing text flow. Subse-
quent content is placed after the space occupied by <ilayer>. This is in contrast to
the <layer> tag, which creates a layer above the containing text flow, allowing subse-
quent content to be placed under the layer just created.

The <ilayer> tag removes the need for an enclosing, attribute-free <layer> that serves
to put a nest of specially positioned layers inline with the content flow, much like we
did in most of the examples in the previous sections of this appendix. The attributes
of <ilayer> are the same as those for the <layer> tag.

The top and left attributes

The only attributes that distinguish the actions of the <ilayer> tag from its <layer>
sibling are top and left: Netscape 4 renders <ilayer> content directly in the contain-
ing text flow, offset by the top and left attribute values from the upper-left corner of
that inline position—not the document’s upper-left display corner, as with <layer>.
Netscape 4 also accepts negative values for the top and left attributes of the
<ilayer> tag, letting you shift the contents above and to the left of the current flow.

For example, to subscript, superscript, or shift words within the current line, you
could use:

This <ilayer top=4>word</ilayer> is shifted down, while
this <ilayer left=10>one</ilayer> is shifted over. With a negative
value, words can be moved <ilayer top=-4>up</ilayer> and to
the <ilayer left=-10>left</ilayer>.

Figure H-12 shows the resulting effects. Notice how the shifted words overlap and
obscure the surrounding text. Netscape 4 makes no effort to make room for the
shifted elements; they are simply placed in a different spot on the page.

<ilayer> (Antiquated)

Function Defines an inline layer of content within a text flow

Attributes above, background, below, bgcolor, class, clip, left, name, src,
style, top, visibility, width, z-index

End tag </ilayer>; never omitted

Contains body_content

Used in text

632 | Appendix H: Netscape Layout Extensions

Combining <layer> and <ilayer>

Anything you can create with a regular layer you can use within an inline layer. How-
ever, bear in mind that the top and left attribute offsets are indeed from the
<ilayer> content’s allotted position, not from the document display space. Accord-
ingly, use <ilayer> to position content inline with the conventional HTML docu-
ment flow, and use <layer> to position elements and content precisely in the
document display space.

Also (and fortunately), Netscape 4 does not distinguish between <ilayer> and
<layer> tags when it comes to order of appearance. You may declare that an <ilayer>

appear below some <layer> by using the name and above attributes:

<layer name=me>I'm on top</layer>
<ilayer above=me>I'm on the bottom</ilayer>

Similarly, you can reorder the appearance of both absolute and inline layers where
they overlap by assigning z-index attribute values to the various elements. Nesting
rules apply, too.

Figure H-12. Moving inline layers with respect to the adjacent text (Netscape 4 only)

633

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
+ (plus sign) in URL encoding, 314
< (less-than sign), 22
<!-- --> tag, 43, 503
<a> tag, 25, 176
hyperlink states, 248
linking external documents, 157
nesting restrictions, 500

<abbr> tag, 72
<acronym> tag, 72
<address> tag, 99
<applet> tag, 425
<area> tag, 29, 139, 193
 tag, 22, 78
<base> tag, 203, 409
<basefont> tag, 103
<bdo> tag, 55
<bgsound> tag, 151
<big> tag, 79
<blink> tag, 79
<body> tag, 37, 45, 51
color extensions, 143

 tag, 23, 83, 86, 615
vertical <spacer> vs., 613

<button> tag, 334
nesting restrictions, 500

<caption> tag, 31, 377
<center> tag, 92
<cite> tag, 21, 72
<code> tag, 21, 73
filenames, use with, 228

<col> tag, 385
<colgroup> tag, 385

<dd> tag, 225
 tag, 52
<dfn> tag, 21, 73
<dir> tag, 227
<div> tag, 23, 58
<dl> tag, 30, 223
<dt> tag, 30, 224
 tag, 21, 74
<embed> tag, 428
for audio, 153

<fieldset> tag, 347
 tag, 254
<form> tag, 31, 313
nesting restrictions, 500

<frame> tag, 33, 399
<frameset> tag, 33, 52, 394
<h#> tag, 23, 65
<head> tag, 37, 45, 47
<hr> tag, 24, 110
<html> tag, 18, 37, 44
<i> tag, 22, 79
 tag vs., 74

<iframe> tag, 404
<ilayer> tag, 630
 tag, 28, 124
custom image buttons (forms), 332
emulating spacers with, 615
video extensions, 141

<input> tag, 323
action buttons, 330
checkboxes (type=checkbox), 328
file-selection (type=file), 327
hidden fields (type=hidden), 334
masked text-entry (type=password), 326

634 | Index

<input> tag (continued)
radio buttons (type=radio), 329
text-entry (type=text), 325

<ins> tag, 52
<isindex> tag, 31, 50, 200
<kbd> tag, 21, 74
<label> tag, 346
nesting restrictions, 500

<legend> tag, 347
 tag, 30, 218
<link> tag, 181, 205, 235, 308, 441
web browser limitations, 238

<listing> tag, 94
<map> tag, 29, 139, 192
<marquee> tag, 153
<menu> tag, 228
<meta> tag, 50, 208, 449
<multicol> tag, 516, 616
<nextid> tag, 50, 210
<nobr> tag, 86, 88
centered content and, 93

<noembed> tag, 432
<noframes> tag, 402
<noscript> tag, 435
<object> tag, 50, 417
 tag, 30, 214
<optgroup> tag, 341
<option> tag, 339
<p> tag, 23, 41, 61
<param> tag, 424
<plaintext> tag, 95
<pre> tag, 24, 89
nesting restrictions, 500

<q> tag, 98
<s> tag, 80
<samp> tag, 21, 75
<script> tag, 50, 433
<select> tag, 338
<server> tag, 439
<small> tag, 80
<spacer> tag, 612
 tag, 306
<strike> tag, 80
 tag, 21, 75
<style> tag, 50, 232, 234, 309
@import at-rule, 235
comments in, 238
dir, lang, and title attributes, 233

<sub> tag, 80
<sup> tag, 80
<table> tag, 31, 361
<tbody> tag, 381

<td> tag, 32, 372
<textarea> tag, 336
<tfoot> tag, 380
<th> tag, 32, 372
<thead> tag, 379
<title> tag, 19, 48
<tr> tag, 32, 368
<tt> tag, 22, 80
<u> tag, 81
 tag, 30, 211
<var> tag, 21, 76
<wbr> tag, 88
centered content and, 93

<xmp> tag, 94
= (equals sign) for tag attributes, 38
~ (tilde) in URLs, 167

A
abbr attribute (<th> and <td>), 377
above attribute (<layer>), 625
absbottom, absmiddle values, 130
absolute font size, 105
absolute URLs, 25, 163
accept attribute (<input type=file>), 327
accept-charset attribute (<form>), 316
accesskey attribute
<a>, 183
<legend>, 348
form controls, 344

action attribute
<form>, 313
<isindex>, 202

action buttons (forms), 330
ActiveX technology, 416
addresses, 99
IP addresses, 4, 165
XML DTD, defining for, 488

adjacent selectors, 242
Advanced Research Projects Agency

(ARPA), 2
align attribute, 134
<applet>, 426
<caption>, 378
<div>, 58
<embed>, 429
<h#>, 66
<hr>, 114
<iframe>, 405
, 28, 128
<input type=image>, 332
<legend>, 348
<marquee>, 154

Index | 635

<object>, 421
<p>, 63
<spacer>, 614
<table>, 362
<th> and <td>, 373
<tr>, 369

alignment, 351
<center> tags, 92
form elements, 348, 351
frames, 405
headings, 66
horizontal rules, 114
image buttons (forms), 332
images, 28, 128, 133
layers, 623, 631
sections, 58
tables, 362, 366, 369, 373, 378
text, 63, 154, 268, 271
whitespace blocks, 614

alink attribute (<body>), 146
all value (style media), 233
alt attribute
<applet>, 427
<area>, 194
, 126

alternate value (marquee behavior), 154
ampersand (&)
entities, 22, 42, 439
in URLs, 318
in XHTML, 503

anchors, 25, 160
animation
frame-by-frame (GIF), 119
of text, 153

annotated lists, 30
anonymous FTP, 171
applets, 6, 27, 413
application/x-www-form-urlencoded

encoding, 314
archive attribute
<applet>, 427
<object>, 419

ARPA (Advanced Research Projects
Agency), 2

articles (newsgroups), identifiers for, 174
ASCII text file format, saving

HTML/XHTML documents in, 15
at-rules
@font-face, 259
@import, 235
@media, 236
@page, 303

attribute selectors, 243
supporting browsers, 243

attributes
deprecated, 108
for <body> tags, 51
HTML tags, 38, 535
images, enabling JavaScript

manipulation, 140
XHTML, 501, 502
XML, 477, 485, 486

audience, designing for, 509
audio, 150, 157
<bgsound> tags, 151
client-pull feature for, 451
mixing, 301
properties, 298

aural value (style media), 233
authoring tools for XHTML pages, 507
automation, document, 208
azimuth property, 302

B
background
audio, 150
colors, 144, 148, 150, 155, 262, 363, 375,

627
images, 144, 148, 149, 262, 263, 264,

265, 363, 376, 627
layers, 627
style properties for, 261

background attribute
<body>, 144, 148
<layer>, 627
<table>, 363
<th> and <td>, 376

background property, 266
background-attachment property, 263
background-color property, 262
background-image property, 262
background-position property, 264
background-repeat property, 265
backslash (\\\\), CSS2 escape characters

and, 293
base URLs, 25, 203
baseline descriptor, 261
bbox descriptor, 261
behavior attribute (<marquee>), 154
below attribute (<layer>), 625
bgcolor attribute
<body>, 144, 148
<layer>, 627
<marquee>, 155

636 | Index

bgcolor attribute (continued)
<table>, 363
<th> and <td>, 375
<tr>, 371

bgproperties attribute (<body>), 145
bibliographic citations, 72
binary files, 6
blank lines, 23
blind carbon copy (bcc) field, mail

messages, 170
blinking text, 79, 269
block items, 291
block quotes, 96
<blockquote> tags, 96
<q> tags, 98

blocks of whitespace, 614
body content, 18, 51
margins for, 147

boilerplate HTML documents, 510
uses of <ins> and tags in, 54

boldface text, 78, 257
border attribute
<embed>, 429
, 134
<input type=image>, 332
<object>, 421
<table>, 363, 365

border-collapse property, 289
bordercolor attribute
<frame>, 401
<table>, 364
<th> and <td>, 376
<tr>, 371

border-color property, 276
bordercolorlight, bordercolordark attributes
<table>, 364
<th> and <td>, 376
<tr>, 371

borders, 276
colors, 276
frame, 396, 401
image buttons (forms), 332
images, 134, 178
size, 277
style properties for, 276, 278
tables, 363, 371, 376

border-spacing property, 289
border-style property, 277
border-width property, 277
bottom value, 28
boundary string, 453
box style properties, 274

braille value (style media), 233
browser extensions, XHTML Version 1.1

and, 504
browsers, 3
mobile devices, constraints, 460

buffer space, 137
bugs, height/width attributes, 137
bulleted (unordered) lists, 211
bullet shape, 218
list marker style properties, 286
nesting, 220

buttons
form action buttons, 330
mouse, 332
radio buttons, 329

C
cap-height descriptor, 261
caption, table, 31
caption-side property, 290
carbon copy (cc) field, mail messages, 170
carriage returns, 23
Cascading Style Sheets, 34
case sensitivity, 166, 442
elements of style rules, 240
XHTML tags and attribute names, 41,

501
case, transforming text in documents, 271
CDATA sections, 234
JavaScript and CSS declarations, enclosing

within, 503
in XML DTDs, 479

cellpadding attribute (<table>), 364
cells, table, 364
cellspacing attribute (<table>), 364
cellular access, 458
high-speed, 459
lowspeed, 459
WiFi, 459

center attribute (), 133
center value (alignment), 130
centering, 93
centerline descriptor, 261
CGI (Common Gateway Interface) programs
author inability to create or manage, 321
storing, 313

char attribute
<th> and <td>, 376
<tr>, 371

character entities, 22, 42, 101, 162, 602
JavaScript, 439

Index | 637

characters
letter spacing, 267
reserved/unsafe in URLs, 162
special, 602
word spacing, 274

charoff attribute
<th> and <td>, 376
<tr>, 371

charset attribute
<a>, 182
<meta>, 209
<script>, 434

checkboxes, 328
circular bullets, 218
circular image map areas, 194
cite attribute
<blockquote>, 97
<ins> and , 53
<q>, 98

class attribute, 86, 535
<a>, 182
<address>, 101
<area>, 197
<blockquote>, 97
<body>, 148
<caption>, 379
<center>, 93
<div>, 60
<dl>, <dt>, and <dd>, 225
, 108
<form>, 319, 343
<frameset>, 398
<isindex>, 203
<layer>, 630
<map>, 193
<multicol>, 620
<object>, 421
<p>, 64, 67
<pre>, 92
<q>, 99
, , and , 213
content-based style tags, 77
form controls, 343
physical style tags, 81
table attributes, 368

classes, style, 245, 443
inheritance and, 251, 254

classid attribute, <object>, 418
classification style properties, 291
clear attribute (
), 84
clear images, 119
clear property, 279

clickable image maps, 189
client-pull documents, 448
clients, 5
client-side image maps, 29, 139, 191
example of, 198

clip attribute (<layer>), 630
clip property, 279
code attribute (<applet>), 427
codebase attribute (<applet>), 419
codetype attribute (<object>), 420
colon (:) and pseudoclasses, 248
color attribute
<basefont>, 103
, 107
<hr>, 114

color property, 267
color values, 607
colormaps, 609
colors, 143, 150, 607
<body> tag extensions, 143
background, 144, 148, 150, 155, 262, 627
border, 276
frame borders, 397, 401
graphics file formats and, 118
horizontal rules, 114
hyperlinks, 146, 248
JavaScript Style Sheets (JSS), specifying

values, 442
names, 608
performance considerations, 150
standard color map, 609
style properties for, 253, 261
tables, 363, 364, 371, 375
text, 107, 146, 267
transparent GIFs, 119

cols attribute
<col>, 394
<multicol>, 617
<table>, 365
<textarea>, 337

colspan attribute (<td> and <th>), 374
columns, 32
<multicol> tags, 616
frames, 394
multiline text-entry areas, 337
tables, 365, 374, 385
text layout in, 516, 616
whitespace between (gutter), 619

comma (,) in styles, 240
comments, 19, 43, 503
<comment> tags, 43
in <style> tags, 238
in XML DTDs, 477

638 | Index

Common Gateway Interface, 313
compact attribute
<dl>, 224
, 217
, 213

conditional sections, XML DTD, 487
content attribute (<meta>), 209, 450
content property, 293
open-quote and close-quote values, 294

content types, 157, 207
application/x-www-form-urlencoded, 314
file-selection controls and, 327
multipart/form-data, 314
multipart/mixed, 453
multipart/x-mixed-replace, 454
text/css, 233
text/plain, 316

content-based style tags, 21, 42, 71
table of, 77

Content-Disposition header, 315, 328
Content-Type header, 315, 328
contextual styles, 241, 444
controls attribute (), 142
controls, form, 336
conventions for HTML programming, 525
convergences devices, 458
converting HTML documents to

XHTML, 506
coordinates in image maps, 190
coords attribute
<a>, 183
<area>, 194

counter-increment property, 294
counter-reset property, 294
counters, 294
CSS (Cascading Style Sheets), 34, 230, 557
box properties, 274
cascading of effects, 237
classification properties, 291
color and background properties, 261
comments in, 238
CSS2 standard, 230
font properties, 254
how to use, 307
list properties, 285, 288
rectangular box model for, 274
style properties, 251
style syntax, 245
tagless styles (), 306
text properties, 267

CSS2 standard, 230, 310
@import and @media at-rules, 236
audio properties, 298
border shorthand properties, 278
box properties, 274
browser versions, supporting and

non-supporting, 238
classification properties, 291
counters, 294
escape entities, 293
font properties, 254
font-matching algorithm, 258
formatting model, 274
generated content properties, 292
list properties, 285
markers, creating, 297
media-specific style sheets, defining, 233
pagination control features for

printing, 303
pseudoclasses, 248
pseudoelements defined in, 244
selectors, 241, 242
style properties, 251
style syntax, 245
table properties, 289

cue properties, 301
custom bullets, 286
custom image buttons (forms), 332
cycling documents, 450

D
dashed borders, 277
data attribute (<object>), 420
data, exchanging with XML
connecting systems, 491
document exchange, 490

datetime attribute (<ins> and), 53
declare attribute (<object>), 421
declaring XML entities and elements, 475
defer attribute (<script>), 435
definition lists, 30, 222
using appropriately, 227

definitions-src descriptor, 261
delay
document refresh, 449
loading, 121
marquee movement, 156

deprecated attributes
align, 63, 134, 332, 362
background, <body>, 145
bgcolor, <body>, 144
border, , 134

Index | 639

class, for lists, 220
compact, for lists, 213, 217, 224
link, vlink, and alink, <body>, 146
name, <a>, 503
noshade, <hr>, 112
size, <hr>, 111
start, for lists, 216
style, for lists, 220
text, <body>, 146
type, 213, 216, 218
value, for lists, 219
version, <html> tags, 47
width, <hr>, 113

deprecated elements
HTML 4.01 standard, and, 565
XHTML and, 495, 504

deprecated tags
<applet>, 417, 425
<basefont>, 103
<center>, 92, 134
<dir>, 227
, 105
<isindex>, 50, 200
<menu>, 228
<s>, 80
, 307
<strike>, 80
<u>, 81
font-handling tags, 102
for audio support, 153

designing in HTML, 12
dir attribute, 77, 81, 535
<a>, 182
<address>, 101
<area>, 197
<bdo>, overriding with, 55
<blockquote>, 97
<center>, 93
<div>, 59
<dl>, <dt>, and <dd>, 225
, 108
<form>, 319
<head>, 47
<html>, 45
<isindex>, 203
<object>, 423
<p>, 63, 67
<pre>, 92
<q>, 98
<title>, 50
, , and , 214
form controls, 343
table tags, 367

direction attribute (<marquee>), 154
directory lists, 227
disabled attribute (form controls), 344
disc bullets, 218
display constraints, mobile devices, 461
display property, 291
displaying XML documents, 474
displays, form contents and, 350
documentation
<meta> tags for, 208
for form elements, 350
HTML tags quick reference, 535

document-level styles, 232, 441
advantages and disadvantages of

using, 309
document-related events, 438
documents, 456
as layers, 629
automation, 208
embedding, 156, 158
exchanging with XML applications, 490
HTML, 158
pathnames, 166
XHTML, 495

domains, 4, 5, 25
dotted borders, 277
double borders, 277
double quotation marks (”) in XHTML

attribute values, 502
downloading delay, 121
downloading images, 121
DTD for HTML, 44, 525, 583
HTML 4.01 standard, 565

DTD for XHTML
creating, 497
declaring, 496
XHTML 1.0 standard, 583

DTD for XML, 475, 494
comments, 477
conditional sections, 487
creating (example), 488
elements, 477, 480, 481
entities, 477, 478

dynamic documents, 447
client-pull, 448
server-push, 453

dynsrc attribute (), 141

E
elements, nesting, 499
elevation property, 302

640 | Index

email, mailto URL for, 170, 314
defining mail header fields, 170
sending form data via, 321

embedded links, 170
embedded objects, 156, 158
<applet> tags, 425
<embed> tags, 428
<noembed> tags, 432
<object> tags, 417
<param> tags, 424

embedded tags, 17
emphasis, tags for
, 78
<blink>, 79
<dfn>, 73
, 74
<i>, 79
, 75

empty elements in XHTML documents, 501
empty-cells property, 289
encoding, 233
characters, 602
file-selection controls and, 327

enctype attribute
<form>, 314
<input type=file>, 327

ending tags, 18, 39
omitting in HTML, 40
XHTML vs. HTML documents, 500

entities, 22, 42, 101, 602
JavaScript, 439
URL encodings, 162

entity and element declarations (XML), 475
equals sign (=) for tag attributes, 38
escape entities, CSS2 standard, 293
event attributes
<a>, 180
<address>, 101
<area> (client-side image maps), 196
<blockquote>, 97
<center>, 94
<div>, 60
<form>, 320
<h#>, 67
, 140
<input type=button> (push buttons), 333
<map>, 193
<p>, 64
<pre>, 92
<q>, 99
, 214
content-based tags, 77

form controls, 343
frames and, 397
objects and, 423
physical style tags, 81
table tags, 368

event handlers, JavaScript, 436
executable content, 413
applets, 413
JavaScript, 440
JavaScript style sheets, 440

explicit label associations (forms), 347
Extended Font Model, 103
extensions, HTML, 10
external style sheets, 234, 441
advantages and disadvantages of

using, 308
extranets, 2

F
face attribute
<basefont>, 103
, 107

family, font, 254
favorite_font_size() function, 442
file server, 169
File Transfer Protocol, 13
files
file URLs, 169
HTML, 158
listing in directory lists, 227
XHTML, 169

file-selection controls (forms), 327
fixed value (background image

position), 146
flashing text, 79, 269
float property, 280
floating elements, rules for margin

collapsing, 275
floating frames, 392
flood-filling images, 136
flowing text, 131
font property, 257
font-family property, 254
fonts
color, 107
descriptors, 259
font size, 79
heading tags to change, 69
HTML tags for, 102, 103, 105
JavaScript Style Sheets (JSS), tags

property, 442
style properties for, 254

Index | 641

font-size property, 255
font-style property, 257
font-variant property, 257
font-weight property, 257
footers
rules with, 116
table, 380

for attribute (<label>), 347
foreground colors, 267
format, 351
alignment, 351
encoding, 315
graphics formats, 117, 124
HTML documents, 20
indentation, 225
list items, 218
multimedia file formats, 152
paragraph rendering, 62
preformatted text, 89
styles, 230

forms, 31, 311
<button> tags, 334
example of, 320
input controls, 323, 325, 328, 329, 330,

334, 336, 338, 342, 346
layout of, 351, 519
mailto URL, with, 321
nested tables with, 520
programming, 318, 353
writing effectively, 349

FQDNs, 5
fragment identifiers, 167, 184
<a> tags as, 179
tables of contents, and, 184

frame attribute (<table>), 363
frameborder attribute
<frame>, 401

frame-by-frame animation, 119
frames, 32, 391
<frame> tags, 33, 399
<frameset> tags, 33, 52, 394
<noframes> tags, 402
alignment, 405
as hyperlink targets, 182, 197, 205, 318,

405, 522
borders, 396
contents of, 398
inline, 403
layout, 394
margins and borders, 401
opening multiple at one time, 523
scrolling, 401
tips and tricks, 521

Frameset DTD, 565, 583
framesets, 392
FTP (File Transfer Protocol)
ftp URLs, 171
obtaining browsers via, 13

fully qualified domain names, 5

G
general entities, XML, 478
generated content properties, 292
generic style classes, 247
GET method, 317, 354
GIF (Graphics Interchange Format), 118,

121
GIF animation, 119

gopher URLs, 175
grammar, elements, 481
nonterminals and terminals, 482
XML, 482, 483

grammar, HTML, 525
graphics, 27, 85
grooved borders, 277
grouping form elements, 347
grouping grammar rules, elements, 481
gutter attribute (<multicol>), 619

H
handheld value (style media), 233
hanging indents, 269
head of HTML documents, 18, 37, 45, 47
headers
rules with, 116
table, 32, 379
vertical spacers with, 613

headers attribute (<th> and <td>), 376
headings, 23, 65
allowed content, 69
images in, 69
side heads (tables), 518
straddle heads (tables), 517
text size and, 68

height attribute
<applet>, 428
<embed>, 429
<iframe>, 405
, 135
<marquee>, 155
<spacer>, 614
<table>, 366
<tr>, 374

height property, 281

642 | Index

helper applications, 6, 27
hexadecimal character equivalents, escape

characters in CSS2, 293
hexadecimal color values, 607
hexadecimal RGB triples, 253
hidden attribute (<embed>), 430
hidden form fields, 334
hidden text-entry fields, 326
hide value (layer visibility), 628
home pages, 6, 26, 166
horizontal, 612
margins, 137
rules, 24, 109, 111, 113, 114, 115, 116
whitespace, 612

hot keys for hyperlinks, 183
href attribute, 25
<a>, 177, 190
<area>, 195
<base>, 204
<link>, 206

hreflang attribute (<a>), 183
hspace attribute
<embed>, 429
, 137
<marquee>, 156

HTML, 8
creation of, 3
deprecated attributes, elements, and

tags, xviii
documents in, 8
DTD (Document Type Definition), 44,

525, 565, 583
extensions to, 10, 11, 12
grammar of, 525
limitations of, 494
object model, 414
standardizing with XML, 493
styles, 230
tags, 6
text editors for, 13, 15, 510, 511, 514
tips and tricks, 459, 509
Version 4.0, 379
Version 4.01, xix, 10
XHTML vs., 499

HTML attributes, 38
HTML documents, 5
boilerplates, 510
colors in, 143
columns, 516
content vs. appearance, 9
content, types of, 19
converting to XHMTL, 506

designing for your audience, 509
document automation, 208
document-level styles, 232, 309
document-related events, 438
dynamic, 447
editorial markup tags, 52
executable content, 413
forms, 31
frames, 391
headings in, 65
home pages, 6, 26, 166
images in, 116
linking to, 184
margins for body content, 147
myfirst.html (example), 16
pathnames, 166
refreshing automatically, 449
relationships between, 203
searchable, 31, 200
sectioning, 57, 115
structure of, 18, 35, 47
style sheets, 33
styles, 310
tables, 359
tables of contents, 184
titles of, 19, 48, 67
whitespace in, 36

HTML tags, 6, 17, 37, 38
attributes for, 38, 502
content-based style, 21, 42, 70, 71
deprecated, 108
empty, in XHTML format, 501
font handling, 102
for editorial markup, 52
grammar for, 527
nesting, 39
obsolete, 108
omitting, 40
physical style, 71
quick reference, 535
starting and ending tags, 18, 39
styles for, 230
tagless styles (), 306

HTTP (Hypertext Transfer Protocol), 6
Redirect header, 452
Refresh header, 449

http servers, 164
http URLs, 164
http-equiv attribute (<meta>), 209, 449
hyperlinks, 3, 24, 25, 159
colors for, 146
effective use of, 185

Index | 643

to external content, 158
image maps, clickable, 29, 138, 139, 189,

192, 193, 199
images and, 189
linking within documents, 184
to multiple frames, 523
navigating with Tab and hot keys, 183
relationships between, 180
states of, 248
targets for, 182, 197, 205, 318, 405, 522

Hypertext Markup Language, 6
Hypertext Transfer Protocol, 6

I
id attribute, 140, 535
<a>, 179
<address>, 101
<basefont>, 104
<blockquote>, 97
<center>, 93
<div>, 58, 59
<dl>, <dt>, and <dd>, 225
<form>, 319
<frameset>, 398
<isindex>, 203
<label>, 347
<map>, 193
<object>, 421
<p>, 64, 67
<q>, 99
, , and , 214
form controls, 342
for hyperlink targets, 184
for style classes, 247
table tags, 367
XHTML documents, 503

identifiers (IDs)
articles in newsgroups, 174
messages on news servers, 174

IE, 14
IETF (Internet Engineering Task Force), 8
ignored HTML tags, 41
image maps, 610
areas, 194, 196
clickable, 29, 138, 189, 192, 193, 199
client-side, 29, 139, 191, 198
coordinates, 190
HTML documents and, 199
performance, 191
server-side, 29, 190

images, 27, 116, 157
alignment, 128, 133
background, 144, 148, 149, 262, 263,

264, 265, 363, 376, 627
borders, 134, 178
clickable, 189
combining attributes for, 141
custom image buttons (forms), 332
download performance, 121
flowing text around, 84
graphics formats, 117, 124
in headings, 69
hyperlinks and, 189
as list item signifiers, 286
margins around, 137
preventing from scrolling, 145, 263
resizing, 136
reusing, 123
rules, 109
size, 135
text flow around, 84
text in place of, 126
when to use, 121
wrapping text around, 131

implicit label associations (forms), 347
imported external style sheets, 235, 308
linked vs., 237

inclusions, 414
indentation, 36
abusing <dt> for, 225
block quotes, 96
nested unordered lists, using for, 213
paragraphs, with <spacer>, 612
text-indent property for, 269

infinite value (marquee looping), 155
inherit value (layer visibility), 628
inheritance, styles and, 251, 254
inline
frames, 403
images, 28
items, 291
layers, 630
references, 187
styles, 231, 309, 441

input constraints, mobile devices, 461
inset borders, 277
interaction pseudoclasses, 248
interlacing, 118
internationalization
dir and lang attributes, 47
dir attribute, overriding with <bdo>, 55

644 | Index

Internet, 1
Internet Engineering Task Force (IETF), 8
Internet Explorer
<basefont> tags, and, 103
<bgsound> tags, 150
<comment> tag, 43
<q> tags and, 98
action attribute, 202
Active technology and, 416
animated text support, 153
audio features, 150
color attribute, 114
evolution of standards, and, xvii
Extended Font Model tags, and, 102
inline audio, and, 150
leftmargin attribute, 147
market dominance of, xvii
multimedia support, 27
notab attribute, 196
nowrap attribute, 59
obtaining, 14
palette attribute, 430
tags and line-breaking, 89
text, direction and justification, 45
topmargin attribute, 147
video extensions, 141

intranets, 2
IP (Internet protocol), 4
addresses, 165

ismap attribute (), 29, 138, 190
italic, 79, 257

J
JavaScript language, 33, 432
 attributes, 140
<noscript> tags, 435
<script> tags, 433
event handlers, 140, 436
frames and, 397
JavaScript pseudo-protocol, 172
JavaScript pseudo-URLs, 438
overriding hyperlink targets, 522
style sheet properties, 445
style sheets (JSS), 34, 440

JavaScript Style Sheets (see JSS)
JPEG format, 120, 124
JSS (JavaScript Style Sheets), 34, 233, 440
encoding of, 233
style sheet properties, 445

justification, 63
justify value (align attribute), 67

K
keyboard events, 438
keyboard input, tag for, 74
keyword property values, 251
keywords for documents, 208

L
label attribute
<optgroup>, 342
<option>, 341

labeling form elements, 346
lang attribute, 77, 81, 535
<a>, 182
<address>, 101
<area>, 197
<blockquote>, 97
<center>, 93
<div>, 59
<dl>, <dt>, and <dd>, 225
, 108
<form>, 319
<head>, 47
<html>, 46
<isindex>, 203
<object>, 423
<p>, 63, 67
<pre>, 92
<q>, 98
<title>, 50
, , and , 214
form controls, 343
table tags, 367
XHTML Version 1.1, absence from, 504

language attribute (<script>), 434
languages
computer, defining with

metalanguages, 473
pseudoclasses for, 249

layers, 621
<ilayer> tags, 630
<layer> tags, 622
alignment, 623, 631
visibility of, 628

left attribute
<ilayer>, 631
<layer>, 623

leftmargin attribute (<body>), 147
length, 113
length property values, 252
less-than sign (<), 22
letter-spacing property, 267

Index | 645

line breaks, 23, 83, 89, 615
allowing with <wbr>, 88
nowrap attribute and, 59
suppressing with <nobr>, 86
vertical <spacer>, 613

line-height property, 268
line-through text style, 269
link attribute (<body>), 146
linked external style sheets, 235, 308
imported vs., 237

links, 24
lists, 30, 211
definition lists, 222
directory lists, 227
of hyperlinks, 185
items of, 218, 291
menu lists, 228
nesting, 220, 222
ordered (numbered), 214
selection lists (forms), 338
style properties for, 285, 288
unordered (bulleted), 211
using appropriately, 226

list-style property, 287, 288
list-style-image property, 286
list-style-position property, 286
list-style-type property, 287
loading delay, 121
longdesc attribute
<frame>, 402
, 127

loop attribute
, 142
<marquee>, 155

looping
marquee text, 155
video, 142

lowsrc attribute (), 126
Lynx
content-based tags, and, 77
images, substituting text for, 127
text display limitations, 17

M
mailto URLs, 170, 314
defining mail header fields, 170
form data via, 321

maps, 189
standard color, 609

margin collapsing, 275
marginheight attribute (<frame>), 401

margins, 147
around CSS boxes, 274
around table cells, 364
body content, 147
frames, 401
images, 137
marquee areas, 156
style properties for, 281

marginwidth attribute (<frame>), 401
markers, 297
markup metalanguage, XML as, 473
masked text-entry fields, 326
mathline descriptor, 261
maxlength attribute
<input type=file>, 327
<input type=text>, 325

mayscript attribute (<applet>), 428
media attribute (<style>), 233
menu lists, 228
message IDs, news servers, 174
metalanguages, defining computer languages

with, 473
method attribute (<form>), 317
Microsoft Internet Explorer, 14
Microsoft Word 2000, creating HTML

documents with, 511
middle value, 28
MIME types, 157, 207
application/x-www-form-urlencoded, 314
file-selection controls and, 327
multipart/form-data, 314
multipart/mixed, 453
multipart/x-mixed-replace, 454
text/css, 233
text/plain, 316

missing HTML tags, 40
mix keyword, 301
mobile devices, 457
browsers, constraints, 460
convergence devices, 458
display constraints, 461
input constraints, 461
mobile web design, 465–471
network constraints, 461
PDAs, 458
phones, 458

mobile phones, 458
mobile web design
forms, 467
images, 469
layout, 468
links, 466

646 | Index

mobile web design (continued)
navigating, 466
presentation, 468

monitor, form contents and, 350
monospaced text
<code> tags, 73
<kbd> tags, 74
<plaintext> tags, 95
<tt> tags, 80
<var> tags, 76

Mosaic browser, 3
mouse-related events, 437
pseudoclasses for, 248

mouse-sensitive images, 189
movies, 141
MSIE, 14
multicolumn layout, 616
multiline text-entry areas, 336
multimedia, 19, 156
audio, 150
browser handling of, 27
client-pull feature for, 451
common file formats, 152
GIF animation, 119
images, 27
text animation, 153
video, extensions for, 141

multipart/form-data encoding, 314
multipart/mixed encoding, 453
multipart/x-mixed-replace encoding, 454
multiple attribute (<select>), 339
multiple-choice elements (forms), 338

N
n attribute (<nextid>), 210
name attribute
<a>, 179
<applet>, 427
<basefont>, 103
<div>, 58
<embed>, 430
<form>, 319
<frame>, 392, 400
, 140
<label>, 347
<layer>, 622
<map>, 193
<meta>, 208
<object>, 421
<param>, 425
form input elements, 324

XHTML documents, 503
XHTML Version 1.1, restrictions in, 504

name servers, 5
named form parameters, 318, 355
named frames, 405
namespaces, XHTML DTDs, 497
naming conventions for HTML, 526
navigating with hyperlinks, 26
Navigator, 4
NCSA (National Center for Supercomputing

Applications), 3
nesting
<frameset> tags, 398
<multicol> tags, 617
content-based style tags, 78
contextual style rules, 241
HTML tags, 39
language pseudoclasses and, 249
layers, 627
lists, 220
physical style tags, 83
tables, 520
XHTML documents, elements in, 499

Netscape, 4, 5
evolution of standards, and, xvii
plug-ins, 141, 158
tags and line-breaking, 89
text, direction and justification, 45

network constraints, mobile devices, 461
news URLs, 173
newsgroups, 173
nntp URLs, 174
nohref attribute (<area>), 195
nonterminals, 482
noresize attribute (<frame>), 400
noshade attribute (<hr>), 111
notab attribute
<map>, 195
<object>, 423
form controls, 343

nowrap attribute
<div>, 59
<table>, 366
<th> and <td>, 375
<tr>, 372

numbered (ordered) lists, 30, 214
list marker style properties, 286
nesting, 222
numbering style, 218
using appropriately, 227

Index | 647

O
object attribute (<applet>), 428
object model (HTML v4.0), 414
obsolete tags, 80
offset, 623
omitting HTML tags, 40
onAbort attribute, 140, 437
onBlur attribute, 437
onChange attribute, 437, 438
onClick attribute, 437, 535
onDblClick attribute, 437, 535
onError attribute, 140
onFocus attribute, 437
onKeyDown attribute, 438, 535
onKeyPress attribute, 438, 535
onKeyRelease attribute, 438
onKeyUp attribute, 535
onLoad attribute, 141, 437, 438
onMouseDown attribute, 437, 536
onMouseMove attribute, 437, 536
onMouseOut attribute, 196, 437, 536
onMouseOver attribute, 180, 196, 436, 437,

536
onMouseUp attribute, 437, 536
onReset attribute, 320, 437, 438
onSelect attribute, 437, 438
onSubmit attribute, 320, 437, 438
onUnload attribute, 437, 438
ordered (numbered) lists, 30, 214
list marker style properties, 286
nesting, 222
numbering style, 218
using appropriately, 227

orphans, 306
outset borders, 277
overflow property, 282
overlining, 269
overriding hyperlink targets, 522

P
padding, 364
padding properties, 282
page boxes, 303
size property, 303

page layout, 20, 351
alignment, 351
columns, 616
designing for your audience, 509
forms, 351, 519
frames, 394
HTML tags for, 83

layers, 621
multiple columns, 516
style sheets, 33
tables, 31
wrapping text, 131

page-break properties, 305
palette attribute (<embed>), 430
panose-1 descriptor, 261
paragraphs, 23, 61
indenting with <spacer>, 612

parameter entities, XML, 478
parameters, form, 318, 355
parsed and unparsed entities, XML, 477
password input fields, 326
pathnames, 25, 166
pause properties, 301
PCDATA, XML tags, 480, 483
PDAs, 458
percent sign (%)
for character encoding, 161
in URL encoding, 314

percentage property values, 252
performance
applets, 415
background images, 149
client-pull documents, 453
colors, 150
flood-filling, 136
image maps, 191
images and, 121
lowsrc attribute () for, 126
marquee movement, 156
server-push documents, 455
text, 122

physical style tags, 21, 71
summary of, 81
table of, 81

physical text wrapping, 337
pitch property, 300
pitch-range property, 300
play-during property, 301
plug-in accessories, 6, 27, 141, 158
pluginspage attribute (<embed>), 431
plus sign (+) in URL encoding, 314
polygonal image map area, 194
ports
ftp servers, 172
gopher servers, 176
nntp, 174
telnet, 175
web servers, 165

position properties, 283

648 | Index

positioning list item markers, 286
POST method, 317, 357
pound sign (#)
for entities, 22
for name anchors, 184
in URLs, 167

precedence of styles, 238
preformatted text, 24
<listing> tags, 94
<pre> tags, 89
<xmp> tags, 94

print formatting for HTML/XHTML
documents, 303

named pages, using, 305
pagination controlling, 305, 306
tables, 305
using multiple formats, 304

print value (style media), 233
private webs, 7
profile attribute (<head>), 48
programming forms, 353
parameters in URLs, 318

projection value (style media), 233
prompt attribute (<isindex>), 201
properties, style, 251
Cascading Style Sheets, 251, 252, 253
JavaScript Style Sheets, 445

property:value pairs, styles, 240
protocols, 25
pseudoclasses, style, 248
:active, 248
:first-child, 249
:focus, 248
:hover, 248
:lang, 250
:link, 248
:visited, 248
colon (:), 248
for user interaction, 248
hyperlink states, 248
nesting, languages, 249
for user interaction, 248
web browser support for, 250

pseudoelements for styles, 243
:after, 244
:before, 244
:first-letter, 244
:first-line, 244

punctuation conventions for HTML, 526
push buttons, 333

Q
query URLs, 202
QUERY_STRING variable, 355
question mark (?) in URLs, 161, 168
quick reference for HTML tags, 535
quotation marks (”)
for attribute values, 38, 502
in URLs, 161

quotes property, 294

R
radio buttons, 329
random URL generator, 452
readability, whitespace and, 38
readonly attribute (form controls), 344
rectangular image map area, 195
Redirect header, 452
redundant HTML tags, 41
references
to external content, 157
inline, 187
to multimedia elements, 19

Refresh header, 449
rel attribute
<a>, 180
<link>, 206

relationships
between HTML documents, 203
between hyperlinks, 180

relative font size, 105
relative frame sizes, 395
relative URLs, 25, 163
<base> tags, 203
advantages of using, 164

repeat keyword, 301
repetition grammar rules, elements, 481
Requests for Comments (RFCs), 8
reserved characters, 161
reset buttons, 331
resizing images, 136
reusing images, 123
rev attribute
<a>, 180
<link>, 206

RFCs (Requests for Comments), 8
RGB color values, 107, 253
richness property, 300
ridged borders, 277

Index | 649

rows attribute
<frameset>, 394
<textarea>, 337

rows, creating in tables, 368, 377
rowspan attribute (<th> and <td>), 375
ruby text, 504
rules, 24
rules attribute (<table>), 364

S
scheme attribute (<meta>), 210
schemes, URL, 160, 163
scope attribute (<th> and <td>), 376
screen value (style media), 233
scroll value (marquee behavior), 154
scrollamount attribute (<marquee>), 156
scrolldelay attribute (<marquee>), 156
scrolling
<marquee> tags and, 153
fixing images against, 145, 263
frames, 401

scrolling attribute (<frame>), 401
search parameter of URLs, 168
searchable documents, 31, 200
sections
document, 58, 115
performance and, 123
table, 379

security
ActiveX and, 416
mailto forms, problems with, 323

selected attribute (<option>), 340
selection lists, 338
selectors, 239
gopher URLs, 176
style rules, 240, 241, 242, 444

semicolon (;) in character entities, 22
sequence grammar rules, elements, 481
server-push documents, 448, 453
servers, 5
<isindex> tags and, 203
data to/from, 317
file servers, 169
form programming, 353
ftp servers, 172
gopher servers, 176
http servers, 164
nntp servers, 174
telnet servers, 175

server-side applications, 354
server-side image maps, 29, 190

SGML (Standard Generalized Markup
Language), 8

<!DOCTYPE> command in HTML
documents, 44

limitations of, 472
SGML DTD, 565
shadowing text, 270
shape attribute
<a>, 183
<area>, 194, 196

shapes attribute (<object>), 422
sharp sign, 22
show value (layer visibility), 628
side heads (tables), 518
size, 113
applets, 428
borders, 277
column width, 617
CSS boxes, 274, 281, 284
embedded objects, 429, 431
font size, 255
form entry controls, 349
frames, 394, 400, 405
horizontal rule, 113
image map areas, 194, 196
images, 135
layers, 629
line height, 268
marquee area, 155
selection lists, 339
table cells, 373
tables, 366
text, 68, 79, 80, 103, 105
text-entry fields, 325
whitespace blocks, 614

size attribute
<basefont>, 103
, 105
<hr>, 111
<input type=file>, 327
<input type=text>, 325
<multiple>, 339
<spacer>, 612

slash (/)
in ending tags, 18
in URLs, 161, 166

slide value (marquee behavior), 154
slope descriptor, 261
software, 15
for designers, 12
for writing HTML documents, 15
formatting code, 73

650 | Index

solid borders, 277
sound, 150
space, 137
span attribute
<col>, 387
<colgroup>, 385

speak property, 299
speak-header property, 290
special characters, 22, 42, 101, 161, 162, 602
in URLs, 161
JavaScript entities, 439
XHTML, handling in, 503

special processing directives, XML, 496
speech-rate property, 299
square brackets ([]), 243
square bullets, 218
src attribute
<bgsound>, 151
<embed>, 431
<frame>, 400
, 28, 125
<input type=image>, 332
<layer>, 629
<script>, 434

src descriptor, 259
stacking layers, 625
Standard Generalized Markup Language, 8
standardizing HTML, 7, 44, 525, 565, 583
XHTML standard, 493

standby attribute (<object>), 423
start attribute
, 142
, 216

starting tags, 18, 39
state, hyperlink, 248
stemv and stemh descriptors, 261
straddle heads (tables), 517
stress property, 300
Strict DTD, 565, 583
strike-through text style, 269
structural tags, 22
style attribute, 86, 231, 536
<a>, 182
<address>, 101
<area>, 197
<blockquote>, 97
<body>, 148
<caption>, 379
<center>, 93
<div>, 60
<dl>, <dt>, and <dd>, 225
, 108

<form>, 319, 343
<frameset>, 398
<isindex>, 203
<layer>, 630
, 220
<map>, 193
<multicol>, 620
<object>, 421
<p>, 64, 67
<pre>, 92
<q>, 99
, , and , 213
content-based style tags, 77
form controls, 343
physical style tags, 81
table attributes, 368

style, text, 21
styles, 230
box properties, 274
classes for, 245, 443
classification properties, 291
color and background properties, 261
contextual selectors, 241, 444
CSS properties for, 251
document-level, 232, 309, 441
external style sheets, 234, 308
font style properties, 254
how to use, 307
inline, 231, 441
JavaScript Stylesheets (JSS), 440, 445
list properties, 285
media-specific, 236
precedence, 238
property:value pairs, 240
pseudoclasses for, 248
pseudoelements for, 243
style sheets, 33, 34, 237, 474
tagless styles (), 306
text style properties, 267
web browser limitations, 234

subdomains, 4, 5
submit buttons, 331
subscripts and superscripts, 80
summary attribute (<table>), 367
systems, exchanging data with XML, 491

T
Tab key
navigating form controls, 343
navigating hyperlinks, 183
navigating objects, 423

Index | 651

tabindex attribute
<a>, 183
<map>, 195
<object>, 423
form controls, 343

table-layout property, 290
tables, 31, 359, 515, 616
alignment, 362, 366, 369
borders, 363, 371, 376
captions, 377
cells, 364, 372, 373
colors in, 363, 364, 371, 375
columns, 365, 374, 385
controlling page layout with, 389
example of basic structure, 360
headers and footers, 379
HTML v4.0 tags for, 379
nesting, 520
rows, 32, 368, 375
sectioning, 379
side heads, 518
size, 366
straddle heads, 517
wrapping text in cells, 366, 372, 375

tables of contents, 184
taborder attribute
<map>, 195
form controls, 343

tabs, 36
tagless styles (), 306
tags, 6
tags property (JavaScript), 442
target attribute
<a>, 182, 405, 522
<area>, 197
<base>, 205, 409
<form>, 318
special values for, 407

telnet URLs, 175
user and password, 175

templates for HTML documents, 510
terminals, 482
terms, definition lists, 224
text, 19
addresses, 99
alignment, 268, 271
animating, 153
appearance tags for, 20, 71
block quotes, 96
breaking lines, 89
color of, 107, 146
flowing around images, 84

form fields for, 325
headings, 65
inline references in, 187
instead of images, 122, 126
margins for body content, 147
monospaced, 73
multicolumn layout, 516, 616
multiline text-entry areas (forms), 336
paragraphs, 57
preformatted, 24
size of, 19
special characters, 22, 42, 101, 162, 439,

602
structural tags, 22
style properties for, 267
text/css encoding, 233
text/plain encoding, 316
text-only browsers, 5, 127
three-dimensional appearance, 270
whitespace, 42
wrapping, 83, 127

text attribute (<body>), 146
text editors, 13, 15
text size
<basefont> tags, 103
<big> tags, 79
 tags, 105
<small> tags, 80
Extended Font Model, 103
heading tags for, 68

text/css encoding, 233
text/plain encoding, 316
text-align property, 268
text-decoration property, 269
text-entry fields (forms), 325
text-shadow property, 270
texttop value, 130
text-transform property, 271
three-dimensional appearance, text, 270
Tidy utility for HTML-to-XHTML

conversions, 506
tilde (~) in URLs, 167
tiling with images, 265
title attribute, 536
<a>, 182
<applet>, 428
<area>, 197
<div>, 60
<dl>, <dt>, and <dd>, 225
<form>, 319
<frame>, 402
<frameset>, 398

652 | Index

title attribute (continued)
, 140
<isindex>, 203
<link>, 206
<map>, 193
<object>, 421
<p>, 64, 67
, , and , 214
form controls, 342
table tags, 367

titles
bibliographic, 72
choosing, 49
document, 19, 48, 67
forms, 319
frames, 402
hyperlinked documents, 182, 206
image map area, 197
sections, 60
table captions, 377

top attribute
<ilayer>, 631
<layer>, 623

top value, 28
topline descriptor, 261
topmargin attribute (<body>), 147
Transitional DTD, 565, 583
transparent GIFs, 119
troubleshooting background

images/colors, 149
tty value (style media), 233
tv value (style media), 233
type attribute
<a>, 183
<button>, 335
<embed>, 431
<input>, 314
, 218, 287
<link>, 207
<object>, 420
, 216
<param>, 425
<script>, 434
<spacer>, 612, 613, 614
<style>, 233
, 213

type in gopher URLs, 176
typecodes in ftp URLs, 172
typographic conventions for HTML, 526

U
underscoring, 81, 269
unicode-range descriptor, 260
uniform resource locators, 260
unique identifiers (IDs)
articles in newsgroups, 174
messages on news servers, 174

units attribute (<embed>), 431
units-per-em descriptor, 260
universal child selectors, 242
unnamed form parameters, 356
unordered lists, 30
bulleted, 211, 218, 220, 226, 286
directory lists, 227

unsafe characters in URLs, 161
URLs (uniform resource locators), 25, 160
absolute vs. relative, 163, 203
as style property values, 253
character encodings in, 161
file URLs, 169
form parameters in, 318, 355
ftp URLs, 171
generating randomly, 452
gopher URLs, 175
http URLs, 164
JavaScript pseudoprotocol, 172
javascript URLs, 438
mailto URLs, 170, 314, 321
news and nntp URLs, 173
query URLs, 202
telnet URLs, 175
XFrames, 412

usemap attribute
, 29, 138, 191
<object>, 422

Usenet news system, 173
user and password, telnet URLs, 175
user-interface design, 350
user-related event handlers, 436

V
valid XML documents, 476
valign attribute
<caption>, 378
<table>, 366
<th> and <td>, 373

value attribute
, 219
<option>, 340
<param>, 425

Index | 653

valuetype attribute (<param>), 425
version attribute (<html>), 46
vertical, 612
margins, 137
whitespace, 613

vertical-align property, 271
video, 141, 157
 extensions, 141
client-pull feature for, 451
inline, 141

virtual text wrapping, 337
visibility attribute (<layer>), 628
visibility property, 284
vlink attribute (<body>), 146
voice-family property, 300
volume property, 298
vspace attribute
<embed>, 429
, 137
<marquee>, 156

W
W3C (World Wide Web Consortium), 7
Web, 3
information on, 6
navigating with hyperlinks, 26

web browsers, 5
<link> tags and, 207
applet rendering, 426
character entities, rendering, 43
client-pull documents, 448
client-side image maps and, 199
executable content, 413
form limitations, 349
HTML documents, use in editing, 16
HTML tags, 40, 41
image borders, 134
image presentation, 125
images, rendering, 178
incompatible with embedded objects, 432
incompatible with executable

content, 423
incompatible with frames, 402
JavaScript, 432
leniency in data acceptance, 506
Mosaic browser, 3
Netscape Navigator, 4
obtaining, 13
styles, 33
text-only, 5, 127

web servers, 164
<server> tags, 439
server-push documents, 453

webs, private, 7
weight, font, 257
well-formed documents
XHTML and, 41
XML, 476, 499

whitespace, 611
 tags for, 615
<nobr> tags, 86
<spacer> tags, 612
around horizontal rules, 110
around table cells, 364
between columns (gutters), 619
blocks of, 612
frames and, 396
handling in block tags, 291
hanging indents, 269
HTML tags for, 83
indentation, 96
letter spacing, 267
line breaks, 36
line height, 268
margins, 137, 147, 156
paragraphs, 36
readability and, 38
tabs in preformatted text, 90
word spacing, 274

white-space property, 291
widows, 306
width attribute
<applet>, 428
<embed>, 429
<hr>, 113
<iframe>, 405
, 135
<layer>, 629
<marquee>, 155
<multicol>, 619
<pre>, 91
<spacer>, 614
<table>, 366
<th> and <td>, 373

width property, 284
widths descriptor, 261
WiFi, 459
windows, 32, 393
as hyperlink targets, 182, 197, 205, 318,

405, 522
tips and tricks, 521

654 | Index

word processors, 13
word wrap, 59
word-spacing property, 274
World Wide Web, 59
World Wide Web Consortium (W3C), 7
wrap attribute (<textarea>), 337
wrapping text
<multicol> and, 621
around images, 84, 131
in <textarea> entry areas, 337
nowrap attribute (<div>), 59
table cell contents, 366, 372, 375

writing HTML documents
applets, 415
dynamic documents, 448
editorial markup, 52
forms, how to use, 317, 349, 353, 519
hyperlinking effectively, 185
image maps and, 199
lists, how to use, 226, 285
server-push documents, 455
software for, 12, 15
styles, how to use, 307
tables, 382, 389, 515
tips and tricks, 459, 509
titles, choosing, 49
user-interface design, 350

WWW, 7

X
XFrames, 410
documents, 410
URLs, 412

x-height descriptor, 261
XHTML, 8, 493
authoring tools, 507
case-sensitivity in style rule elements, 240
deciding to use, 505
documents in, 495

DTDs, 494, 495
HTML conversion software, 506
HTML vs., 499
machine-generated content and, 507
tags, quick reference, 535
Version 1.0 and HTML 4.01, 10
Version 1.1, 12, 504, 505
well-formed documents and, 41
XML, using to define, 492

XHTML Basic
content-based tags, 463
core tags, 462
design, 464
document header, 464
forms, 464
images, 463
lists, 463
objects, 463
scripting, 463
stylesheets, 463
tables, 464
text structural tags, 462

XHTML documents
content, 9, 19
creating, 495, 496, 498
ending tags in, 40
nesting elements in, 499

XML (Extensible Markup Language), 472,
494

DTDs, 475
as markup metalanguage, 473
special processing directives, 496
uses for, 490, 491, 492

xmlns attribute, defining namespaces
with, 497

Z
z-index attribute (<layer>), 625
z-index property, 285

About the Authors

Chuck Musciano (cmusciano@aol.com) acquired a B.S. in computer science from
Georgia Tech in 1982. He spent 15 years in the employ of Harris Corporation, in
Melbourne, Florida, first as a compiler writer and crafter of tools and later as a
member of Harris’s Advanced Technology Group. His focus on Unix- and Internet-
based technology enabled him to support early web initiatives within Harris. After
various positions of increasing responsibility in the IT industry, he currently serves as
the Vice President of Information Services for Martin Marietta Materials in Raleigh,
North Carolina. Throughout his career he has written for various trade publications,
both in print and as an online columnist, including the “Webmaster” column for
SunWorld and the “Tag of the Week” column for WebReview. In his spare time, he
enjoys life in North Carolina with his wife Cindy, daughter Courtney, and son Cole.

Bill Kennedy (bkennedy@mobilerobots.com) is currently Chief Technology Officer
for MobileRobots, Inc., a developer and manufacturer of intelligent mobile robots
and other smart machines. How he came to chasing AI robots around is not
surprising, given his many roundabout careers. Bill has a Ph.D. in biochemistry and
biophysics from Loyola University of Chicago and did over 12 years of biomedical
research through the 1970s and early ’80s. Infected by the PC bug (32K Apple II;
really!), he created a software company that developed computer games and educa-
tional programs. Needing a real job with benefits, Bill also served as technical editor,
senior editor, and editor-in-chief for various International Data Group magazines,
including inCider, Sun Technology Journal, SunWorld, and A+ Publishing/Mac
Computing, among others, in the ’80s and ’90s. An avid user of the Internet since the
mid ’80s, Bill, with his wife Jeanne Dietsch, founded ActivMedia Research, the first
market-research firm ever to formally study businesses on the Web. Their first
report, published in 1995, contained data gathered by actually visiting each and
every business web site in existence back then, if you can imagine. Always ready to
embrace emerging technologies, Bill and his partners formed ActivMedia Robotics in
1996, which now, as MobileRobots Inc. (http://www.mobilerobots.com), sells more
intelligent mobile platforms to more artificial and machine-intelligent researchers
around the world than anyone else. And the company’s mobile-robotics navigation
technologies are quickly being adopted for commercial and industrial applications.
So, what’s next?

Colophon

The animal on the cover of HTML & XHTML: The Definitive Guide is a koala. The
koala is an Australian marsupial, the only member of the Phascolarctidae family.

When they are born, koalas are tiny, weighing approximately 0.5 grams. A young
koala stays in its mother’s pouch for approximately seven months. Unlike most
marsupials, the koala’s pouch opens near the rear, not near the head. Koalas have a
high mortality rate and face extinction in Australia due to epidemics in 1887–1889

and 1900–1903, and unrestrained hunting throughout the 20th century. They are a
protected species. Populations are rebuilding, but at present, they survive only in
eastern Australia.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe Myriad Condensed; and the code font is LucasFont’s TheSans Mono
Condensed.

	Table of Contents
	Preface
	Our Audience
	Text Conventions
	Versions and Semantics
	HTML Versus XHTML
	Deprecated Features
	A Definitive Guide

	Using Code Examples
	Safari® Enabled
	Comments and Questions
	Acknowledgments

	HTML, XHTML, and the World Wide Web
	1.1� The Internet
	1.1.1� In the Beginning
	1.1.2� HTML and the Web
	1.1.3� Golden Threads

	1.2� Talking the Internet Talk
	1.2.1� Clients, Servers, and Browsers
	1.2.2� The Flow of Information
	1.2.3� Beneath the Web
	1.2.4� Standards Organizations
	1.2.4.1� The World Wide Web Consortium
	1.2.4.2� The Internet Engineering Task Force

	1.3� HTML and XHTML: What They Are
	1.4� HTML and XHTML: What They Aren’t
	1.4.1� Content Versus Appearance

	1.5� Standards and Extensions
	1.5.1� Nonstandard Extensions
	1.5.2� Extensions: Pro and Con
	1.5.3� Avoiding Extensions
	1.5.4� Extensions Through Modules

	1.6� Tools for the Web Designer
	1.6.1� Essentials
	1.6.1.1� Text processor or WYSIWYG editor?
	1.6.1.2� Browser software

	1.6.2� An Extended Toolkit

	Quick Start
	2.1� Writing Tools
	2.2� A First HTML Document
	2.3� Embedded Tags
	2.3.1� Start and End Tags

	2.4� HTML Skeleton
	2.5� The Flesh on an HTML or XHTML Document
	2.5.1� Comments
	2.5.2� Text
	2.5.3� Multimedia

	2.6� Text
	2.6.1� Appearance of Text
	2.6.1.1� Content-based text styles
	2.6.1.2� Physical styles
	2.6.1.3� Special text characters

	2.6.2� Text Structures
	2.6.2.1� Divisions, paragraphs, and line breaks
	2.6.2.2� Headings
	2.6.2.3� Horizontal rules
	2.6.2.4� Preformatted text

	2.7� Hyperlinks
	2.7.1� URLs
	2.7.2� Anchors
	2.7.3� Hyperlink Names and Navigation
	2.7.4� Anchors Beyond

	2.8� Images Are Special
	2.8.1� Inline Images
	2.8.2� Image Maps

	2.9� Lists, Searchable Documents, and Forms
	2.9.1� Unordered, Ordered, and Definition Lists
	2.9.2� Searchable Documents and Forms

	2.10� Tables
	2.11� Frames
	2.12� Stylesheets and JavaScript
	2.13� Forging Ahead

	Anatomy of an HTML Document
	3.1� Appearances Can Deceive
	3.2� Structure of an HTML Document
	3.3� Tags and Attributes
	3.3.1� The Syntax of a Tag
	3.3.2� Sample Tags
	3.3.3� Starting and Ending Tags
	3.3.4� Proper and Improper Nesting
	3.3.5� Tags Without Ends
	3.3.6� Omitting Tags
	3.3.7� Ignored or Redundant Tags

	3.4� Well-Formed Documents and XHTML
	3.5� Document Content
	3.5.1� Advice Versus Control
	3.5.2� Character Entities
	3.5.3� Comments

	3.6� HTML/XHTML Document Elements
	3.6.1� The <html> Tag
	3.6.1.1� The dir attribute
	3.6.1.2� The lang attribute
	3.6.1.3� The version attribute

	3.7� The Document Header
	3.7.1� The <head> Tag
	3.7.1.1� The dir and lang attributes
	3.7.1.2� The profile attribute

	3.7.2� The <title> Tag
	3.7.2.1� What’s in a title?
	3.7.2.2� The dir and lang attributes

	3.7.3� Related Header Tags

	3.8� The Document Body
	3.8.1� The <body> Tag
	3.8.2� Frames

	3.9� Editorial Markup
	3.9.1� The <ins> and Tags
	3.9.1.1� The cite attribute
	3.9.1.2� The datetime attribute
	3.9.1.3� The class, dir, event, id, lang, style, title, and events attributes

	3.9.2� Using Editorial Markup

	3.10� The <bdo> Tag

	Text Basics
	4.1� Divisions and Paragraphs
	4.1.1� The <div> Tag
	4.1.1.1� The align attribute
	4.1.1.2� The nowrap attribute
	4.1.1.3� The dir and lang attributes
	4.1.1.4� The id attribute
	4.1.1.5� The title attribute
	4.1.1.6� The class and style attributes
	4.1.1.7� Event attributes

	4.1.2� The <p> Tag
	4.1.2.1� Paragraph rendering
	4.1.2.2� The align attribute
	4.1.2.3� The dir and lang attributes
	4.1.2.4� The class, id, style, and title attributes
	4.1.2.5� Event attributes
	4.1.2.6� Allowed paragraph content
	4.1.2.7� Allowed paragraph usage

	4.2� Headings
	4.2.1� Heading Tags
	4.2.1.1� The align attribute
	4.2.1.2� The dir and lang attributes
	4.2.1.3� The class, id, style, and title attributes
	4.2.1.4� Event attributes

	4.2.2� Appropriate Use of Headings
	4.2.3� Using Headings for Smaller Text
	4.2.4� Allowed Heading Content
	4.2.5� Allowed Heading Usage
	4.2.6� Adding Images to Headings

	4.3� Changing Text Appearance and Meaning
	4.3.1� Content-Based Styles
	4.3.2� Physical Styles

	4.4� Content-Based Style Tags
	4.4.1� The <abbr> Tag
	4.4.2� The <acronym> Tag
	4.4.3� The <cite> Tag
	4.4.4� The <code> Tag
	4.4.5� The <dfn> Tag
	4.4.6� The Tag
	4.4.7� The <kbd> Tag
	4.4.8� The <samp> Tag
	4.4.9� The Tag
	4.4.10� The <var> Tag
	4.4.11� The class, style, id, and title Attributes
	4.4.12� The dir and lang Attributes
	4.4.13� Event Attributes
	4.4.14� Summary of Content-Based Tags
	4.4.15� Allowed Content
	4.4.16� Allowed Usage
	4.4.17� Combining Content-Based Styles

	4.5� Physical Style Tags
	4.5.1� The Tag
	4.5.2� The <big> Tag
	4.5.3� The <blink> Tag (Obsolete Extension)
	4.5.4� The <i> Tag
	4.5.5� The <s> Tag (Deprecated)
	4.5.6� The <small> Tag
	4.5.7� The <strike> Tag (Deprecated)
	4.5.8� The <sub> Tag
	4.5.9� The <sup> Tag
	4.5.10� The <tt> Tag
	4.5.11� The <u> Tag (Deprecated)
	4.5.12� The dir and lang Attributes
	4.5.13� The class, style, id, and title Attributes
	4.5.14� Event Attributes
	4.5.15� Summary of Physical Style Tags
	4.5.16� Allowed Content
	4.5.17� Allowed Usage
	4.5.18� Combining Physical Styles

	4.6� Precise Spacing and Layout
	4.6.1� The
 Tag
	4.6.1.1� The clear attribute
	4.6.1.2� The class, id, style, and title attributes

	4.6.2� The <nobr> Tag (Extension)
	4.6.3� The <wbr> Tag (Extension)
	4.6.4� Better Line-Breaking Rules
	4.6.5� The <pre> Tag
	4.6.5.1� Allowable content
	4.6.5.2� The width attribute
	4.6.5.3� The dir and lang attributes
	4.6.5.4� The class, id, style, and title attributes
	4.6.5.5� Event attributes

	4.6.6� The <center> Tag (Deprecated)
	4.6.6.1� The dir and lang attributes
	4.6.6.2� The class, id, style, and title attributes
	4.6.6.3� Event attributes

	4.6.7� The <listing> Tag (Obsolete)
	4.6.8� The <xmp> Tag (Obsolete)
	4.6.9� The <plaintext> Tag (Obsolete)

	4.7� Block Quotes
	4.7.1� The <blockquote> Tag
	4.7.1.1� The cite attribute
	4.7.1.2� The dir and lang attributes
	4.7.1.3� The class, id, style, and title attributes
	4.7.1.4� Event attributes

	4.7.2� The <q> Tag
	4.7.2.1� The cite attribute
	4.7.2.2� The dir and lang attributes
	4.7.2.3� The class, id, style, and title attributes
	4.7.2.4� Event attributes

	4.8� Addresses
	4.8.1� The <address> Tag
	4.8.1.1� The dir and lang attributes
	4.8.1.2� The class, id, style, and title attributes
	4.8.1.3� Event attributes

	4.9� Special Character Encoding
	4.9.1� Special Characters
	4.9.2� Inserting Special Characters

	4.10� HTML’s Obsolete Expanded Font Handling
	4.10.1� The Extended Font Size Model
	4.10.2� The <basefont> Tag (Deprecated)
	4.10.3� The Tag (Deprecated)
	4.10.3.1� The size attribute
	4.10.3.2� The color attribute
	4.10.3.3� The face attribute
	4.10.3.4� The dir and lang attributes
	4.10.3.5� The class, id, style, and title attributes

	Rules, Images, and Multimedia
	5.1� Horizontal Rules
	5.1.1� The <hr> Tag
	5.1.1.1� The size attribute
	5.1.1.2� The noshade attribute
	5.1.1.3� The width attribute
	5.1.1.4� The align attribute
	5.1.1.5� The color attribute
	5.1.1.6� Combining rule attributes
	5.1.1.7� The class, dir, event, id, lang, style, and title attributes

	5.1.2� Using Rules to Divide Your Document
	5.1.3� Using Rules in Headers and Footers

	5.2� Inserting Images in Your Documents
	5.2.1� Understanding Image Formats
	5.2.1.1� GIF
	5.2.1.2� Interlacing, transparency, and animation
	5.2.1.3� JPEG
	5.2.1.4� PNG

	5.2.2� When to Use Images
	5.2.3� When to Use Text
	5.2.4� Speeding Image Downloads
	5.2.5� JPEG, PNG, or GIF?
	5.2.6� The Tag
	5.2.6.1� The src attribute
	5.2.6.2� The lowsrc attribute
	5.2.6.3� The alt and longdesc attributes
	5.2.6.4� The align attribute
	5.2.6.5� Wrapping text around images
	5.2.6.6� Centering an image
	5.2.6.7� Align and <center> are deprecated
	5.2.6.8� The border attribute
	5.2.6.9� Removing the image border
	5.2.6.10� The height and width attributes
	5.2.6.11� Resizing and flood-filling images
	5.2.6.12� Problems with height and width
	5.2.6.13� The hspace and vspace attributes
	5.2.6.14� The ismap and usemap attributes
	5.2.6.15� The class, dir, event, id, lang, style, and title attributes
	5.2.6.16� The name, onAbort, onError, onLoad, and other event attributes
	5.2.6.17� Combining attributes

	5.2.7� Video Extensions
	5.2.7.1� The dynsrc attribute
	5.2.7.2� The controls attribute
	5.2.7.3� The loop attribute
	5.2.7.4� The start attribute
	5.2.7.5� Combining movie attributes

	5.3� Document Colors and Background Images
	5.3.1� Additions and Extensions to the <body> Tag
	5.3.1.1� The bgcolor attribute
	5.3.1.2� The background attribute
	5.3.1.3� The bgproperties attribute
	5.3.1.4� The text attribute
	5.3.1.5� The link, vlink, and alink attributes
	5.3.1.6� The leftmargin attribute
	5.3.1.7� The topmargin attribute
	5.3.1.8� The style and class attributes
	5.3.1.9� Mixing and matching body attributes

	5.3.2� Extending a Warning
	5.3.2.1� Problems with background images
	5.3.2.2� Problems with background, text, and link colors
	5.3.2.3� And then again

	5.4� Background Audio
	5.4.1� The <bgsound> Tag
	5.4.1.1� The src attribute
	5.4.1.2� The loop attribute

	5.4.2� Alternative Audio Support

	5.5� Animated Text
	5.5.1� The <marquee> Tag
	5.5.1.1� The align attribute
	5.5.1.2� The behavior, direction, and loop attributes
	5.5.1.3� The bgcolor attribute
	5.5.1.4� The height and width attributes
	5.5.1.5� The hspace and vspace attributes
	5.5.1.6� The scrollamount and scrolldelay attributes

	5.6� Other Multimedia Content
	5.6.1� Embedded Versus Referenced Content
	5.6.2� Referencing Audio, Video, and Images
	5.6.3� Appropriate Linking Styles
	5.6.4� Embedding Other Document Types

	Links and Webs
	6.1� Hypertext Basics
	6.2� Referencing Documents: The URL
	6.2.1� Writing a URL
	6.2.1.1� Handling reserved and unsafe characters

	6.2.2� Absolute and Relative URLs
	6.2.2.1� Relative schemes and servers
	6.2.2.2� Relative document directories
	6.2.2.3� Using relative URLs

	6.2.3� The http URL
	6.2.3.1� The http server
	6.2.3.2� The http port
	6.2.3.3� The http path
	6.2.3.4� The http document fragment
	6.2.3.5� The http search parameter
	6.2.3.6� Sample http URLs

	6.2.4� The file URL
	6.2.4.1� The file server
	6.2.4.2� The file path
	6.2.4.3� Sample file URLs

	6.2.5� The mailto URL
	6.2.5.1� Defining mail header fields

	6.2.6� The ftp URL
	6.2.6.1� The ftp user and password
	6.2.6.2� The ftp server and port
	6.2.6.3� The ftp path and typecode
	6.2.6.4� Sample ftp URLs

	6.2.7� The javascript URL
	6.2.7.1� The javascript URL arguments

	6.2.8� The news URL
	6.2.8.1� Accessing entire newsgroups
	6.2.8.2� Accessing single messages

	6.2.9� The nntp URL
	6.2.9.1� The nntp server and port
	6.2.9.2� The nntp newsgroup and article
	6.2.9.3� Sample nntp URLs

	6.2.10� The telnet URL
	6.2.10.1� The Telnet user and password
	6.2.10.2� The Telnet server and port

	6.2.11� The gopher URL
	6.2.11.1� The gopher server and port
	6.2.11.2� The gopher path

	6.3� Creating Hyperlinks
	6.3.1� The <a> Tag
	6.3.1.1� Allowed content
	6.3.1.2� The href attribute
	6.3.1.3� The name and id attributes
	6.3.1.4� The event attributes
	6.3.1.5� The rel and rev attributes
	6.3.1.6� The style and class attributes
	6.3.1.7� The lang and dir attributes
	6.3.1.8� The target attribute
	6.3.1.9� The title attribute
	6.3.1.10� The charset, hreflang, and type attributes
	6.3.1.11� The coords and shape attributes
	6.3.1.12� The accesskey and tabindex attributes

	6.3.2� Linking to Other Documents
	6.3.3� Linking Within a Document

	6.4� Creating Effective Links
	6.4.1� Lists of Links
	6.4.2� Inline References
	6.4.3� Linking Dos and Don’ts
	6.4.4� Using Images and Links

	6.5� Mouse-Sensitive Images
	6.5.1� Server-Side Image Maps
	6.5.1.1� Server-side considerations

	6.5.2� Client-Side Image Maps
	6.5.3� The <map> Tag
	6.5.3.1� The name attribute
	6.5.3.2� The class, id, style, and title attributes
	6.5.3.3� The event attributes

	6.5.4� The <area> Tag
	6.5.4.1� The alt attribute
	6.5.4.2� The coords attribute
	6.5.4.3� The href attribute
	6.5.4.4� The nohref attribute
	6.5.4.5� The notab, taborder, and tabindex attributes
	6.5.4.6� The event attributes
	6.5.4.7� The shape attribute
	6.5.4.8� The target attribute
	6.5.4.9� The title attribute
	6.5.4.10� The class, dir, id, lang, and style attributes

	6.5.5� A Client-Side Image-Map Example
	6.5.6� Handling Other Browsers
	6.5.7� Effective Use of Mouse-Sensitive Images

	6.6� Creating Searchable Documents
	6.6.1� The <isindex> Tag (Deprecated)
	6.6.1.1� The prompt attribute
	6.6.1.2� The query URL
	6.6.1.3� The action attribute
	6.6.1.4� The class, dir, id, lang, style, and title attributes
	6.6.1.5� Server dependencies

	6.7� Relationships
	6.7.1� The <base> Header Element
	6.7.1.1� The href attribute
	6.7.1.2� The target attribute
	6.7.1.3� Using <base>

	6.7.2� The <link> Header Element
	6.7.2.1� The href attribute
	6.7.2.2� The rel and rev attributes
	6.7.2.3� The title attribute
	6.7.2.4� The type attribute
	6.7.2.5� How browsers might use <link>
	6.7.2.6� Other <link> attributes

	6.8� Supporting Document Automation
	6.8.1� The <meta> Header Element
	6.8.1.1� The name attribute
	6.8.1.2� The content attribute
	6.8.1.3� The http-equiv attribute
	6.8.1.4� The charset attribute
	6.8.1.5� The scheme attribute

	6.8.2� The <nextid> Header Element (Archaic)
	6.8.2.1� The n attribute

	Formatted Lists
	7.1� Unordered Lists
	7.1.1� The Tag
	7.1.1.1� The type attribute
	7.1.1.2� Compact unordered lists
	7.1.1.3� The style and class attributes
	7.1.1.4� The lang and dir attributes
	7.1.1.5� The id and title attributes
	7.1.1.6� The event attributes

	7.2� Ordered Lists
	7.2.1� The Tag
	7.2.1.1� The start attribute
	7.2.1.2� The type attribute
	7.2.1.3� Compact ordered lists
	7.2.1.4� The class, dir, id, lang, event, style, and title attributes

	7.3� The Tag
	7.3.1� Changing the Style and Sequence of Individual List Items
	7.3.1.1� The type attribute
	7.3.1.2� The value attribute
	7.3.1.3� The style and class attributes
	7.3.1.4� The class, dir, id, lang, event, style, and title attributes

	7.4� Nesting Lists
	7.4.1� Nested Unordered Lists
	7.4.2� Nested Ordered Lists

	7.5� Definition Lists
	7.5.1� The <dl> Tag
	7.5.1.1� More compact definition lists
	7.5.1.2� The class, dir, id, lang, style, title, and event attributes

	7.5.2� The <dt> Tag
	7.5.2.1� Formatting text with <dt>
	7.5.2.2� The class, dir, id, lang, style, title, and event attributes

	7.5.3� The <dd> Tag
	7.5.3.1� The class, dir, id, lang, style, title, and event attributes

	7.6� Appropriate List Usage
	7.7� Directory Lists
	7.7.1� The <dir> Tag (Deprecated)
	7.7.1.1� The <dir> attributes

	7.8� Menu Lists
	7.8.1� The <menu> Tag (Deprecated)

	Cascading Style Sheets
	8.1� The Elements of Styles
	8.1.1� Inline Styles: The style Attribute
	8.1.2� Document-Level Stylesheets
	8.1.2.1� The type attribute
	8.1.2.2� The media attribute
	8.1.2.3� The dir, lang, and title attributes

	8.1.3� Style-Free Browsers
	8.1.4� External Stylesheets
	8.1.4.1� Linked external stylesheets
	8.1.4.2� Imported external stylesheets

	8.1.5� Media-Specific Styles
	8.1.6� Linked Versus Imported Stylesheets
	8.1.7� Limitations of Current Browsers
	8.1.8� Style Comments
	8.1.9� Style Precedence

	8.2� Style Syntax
	8.2.1� The Basics
	8.2.2� Multiple Selectors
	8.2.3� Contextual Selectors
	8.2.4� Universal, Child, and Adjacent Selectors
	8.2.5� Attribute Selectors
	8.2.6� Pseudoelements

	8.3� Style Classes
	8.3.1� Regular Classes
	8.3.2� Generic Classes
	8.3.3� ID Classes
	8.3.4� Pseudoclasses
	8.3.4.1� Hyperlink pseudoclasses
	8.3.4.2� Interaction pseudoclasses
	8.3.4.3� Nesting and language pseudoclasses
	8.3.4.4� Browser support of pseudoclasses

	8.3.5� Mixing Classes
	8.3.6� Class Inheritance

	8.4� Style Properties
	8.4.1� Property Values
	8.4.1.1� Keyword property values
	8.4.1.2� Length property values
	8.4.1.3� Percentage property values
	8.4.1.4� URL property values
	8.4.1.5� Color property values
	8.4.1.6� Angle, time, and frequency property values

	8.4.2� Property Inheritance
	8.4.3� Font Properties
	8.4.3.1� The font-family property
	8.4.3.2� The font-size property
	8.4.3.3� The font-stretch property
	8.4.3.4� The font-size-adjust property
	8.4.3.5� The font-style property
	8.4.3.6� The font-variant property
	8.4.3.7� The font-weight property
	8.4.3.8� The font property

	8.4.4� Font Selection and Synthesis
	8.4.4.1� CSS2 font-matching steps
	8.4.4.2� Basic font descriptors
	8.4.4.3� The src descriptor
	8.4.4.4� Advanced font descriptors

	8.4.5� Color and Background Properties
	8.4.5.1� The background-color property
	8.4.5.2� The background-image property
	8.4.5.3� The background-attachment property
	8.4.5.4� The background-position property
	8.4.5.5� The background-repeat property
	8.4.5.6� The background property
	8.4.5.7� The color property

	8.4.6� Text Properties
	8.4.6.1� The letter-spacing property
	8.4.6.2� The line-height property
	8.4.6.3� The text-align property
	8.4.6.4� The text-decoration property
	8.4.6.5� The text-indent property
	8.4.6.6� The text-shadow property
	8.4.6.7� The text-transform property
	8.4.6.8� The vertical-align property
	8.4.6.9� The word-spacing property

	8.4.7� Box Properties
	8.4.7.1� The CSS2 formatting model
	8.4.7.2� The border properties
	8.4.7.3� The border-color property
	8.4.7.4� The border-width property
	8.4.7.5� The border-style property
	8.4.7.6� Borders in shorthand
	8.4.7.7� The clear property
	8.4.7.8� The clip property
	8.4.7.9� The float property
	8.4.7.10� The height property
	8.4.7.11� The margin properties
	8.4.7.12� The padding properties
	8.4.7.13� The overflow property
	8.4.7.14� The position properties
	8.4.7.15� The visibility property
	8.4.7.16� The width property
	8.4.7.17� The z-index property

	8.4.8� List Properties
	8.4.8.1� The list-style-image property
	8.4.8.2� The list-style-position property
	8.4.8.3� The list-style-type property
	8.4.8.4� The list-style property
	8.4.8.5� Using list properties effectively

	8.4.9� Table Properties
	8.4.9.1� The border-collapse, border-spacing, and empty-cells properties
	8.4.9.2� The caption-side property
	8.4.9.3� The speak-header property
	8.4.9.4� The table-layout property

	8.4.10� Classification Properties
	8.4.10.1� The display property
	8.4.10.2� The white-space property

	8.4.11� Generated Content Properties
	8.4.11.1� The :before and :after pseudoelements
	8.4.11.2� The content property
	8.4.11.3� Specifying quotation marks
	8.4.11.4� Creating counters
	8.4.11.5� Using counters in your documents
	8.4.11.6� Creating markers

	8.4.12� Audio Properties
	8.4.12.1� The volume property
	8.4.12.2� Speaking properties
	8.4.12.3� Voice characteristics
	8.4.12.4� Pause properties
	8.4.12.5� Cue properties
	8.4.12.6� Audio mixing
	8.4.12.7� Spatial positioning

	8.4.13� Paged Media
	8.4.13.1� Defining pages
	8.4.13.2� Left, right, and first pages
	8.4.13.3� Using named pages
	8.4.13.4� Controlling pagination
	8.4.13.5� Controlling widows and orphans

	8.5� Tagless Styles: The Tag
	8.6� Applying Styles to Documents
	8.6.1� To Style or Not to Style
	8.6.2� Which Type of Stylesheet, and When
	8.6.2.1� The pros and cons of external styles
	8.6.2.2� The pros and cons of document-level styles
	8.6.2.3� The pros and cons of inline styles

	Forms
	9.1� Form Fundamentals
	9.2� The <form> Tag
	9.2.1� The action Attribute
	9.2.2� The enctype Attribute
	9.2.2.1� The application/x-www-form-urlencoded encoding
	9.2.2.2� The multipart/form-data encoding
	9.2.2.3� The text/plain encoding

	9.2.3� The accept-charset Attribute
	9.2.4� The method Attribute
	9.2.4.1� POST or GET?
	9.2.4.2� Passing parameters explicitly

	9.2.5� The target Attribute
	9.2.6� The id, name, and title Attributes
	9.2.7� The class, style, lang, and dir Attributes
	9.2.8� The Event Attributes

	9.3� A Simple Form Example
	9.4� Using Email to Collect Form Data
	9.4.1� Problems with Email Forms

	9.5� The <input> Tag
	9.5.1� Text Fields in Forms
	9.5.1.1� Conventional text fields
	9.5.1.2� Masked text controls
	9.5.1.3� File-selection controls

	9.5.2� Checkboxes
	9.5.3� Radio Buttons
	9.5.4� Action Buttons
	9.5.4.1� Submission buttons
	9.5.4.2� Reset buttons
	9.5.4.3� Custom image buttons
	9.5.4.4� Push buttons
	9.5.4.5� Multiple buttons in a single form

	9.5.5� Hidden Fields

	9.6� The <button> Tag
	9.6.1� The <button> Button
	9.6.2� The type Attribute

	9.7� Multiline Text Areas
	9.7.1� The <textarea> Tag
	9.7.1.1� The rows and cols attributes
	9.7.1.2� The wrap attribute

	9.8� Multiple-Choice Elements
	9.8.1� The <select> Tag
	9.8.1.1� The multiple attribute
	9.8.1.2� The size attribute

	9.8.2� The <option> Tag
	9.8.2.1� The value attribute
	9.8.2.2� The selected attribute
	9.8.2.3� The label attribute

	9.8.3� The <optgroup> Tag
	9.8.3.1� The label attribute

	9.9� General Form-Control Attributes
	9.9.1� The id and title Attributes
	9.9.2� The event Attributes
	9.9.3� The style, class, lang, and dir Attributes
	9.9.4� The tabindex, taborder , and notab Attributes
	9.9.5� The accesskey Attribute
	9.9.6� The disabled and readonly Attributes

	9.10� Labeling and Grouping Form Elements
	9.10.1� The <label> Tag
	9.10.1.1� Implicit and explicit associations
	9.10.1.2� Other label attributes

	9.10.2� Forming a Group
	9.10.2.1� The <fieldset> tag
	9.10.2.2� The <legend> tag

	9.11� Creating Effective Forms
	9.11.1� Browser Constraints
	9.11.2� Handling Limited Displays
	9.11.3� User-Interface Considerations
	9.11.4� Creating Forms That Flow
	9.11.5� Good Form, Old Chap

	9.12� Forms Programming
	9.12.1� Returning Results
	9.12.2� Handling GET Forms
	9.12.2.1� Using named parameters with GET applications
	9.12.2.2� Using unnamed parameters with GET applications

	9.12.3� Handling POST Forms

	Tables
	10.1� The Standard Table Model
	10.1.1� Table Contents
	10.1.2� An Example Table
	10.1.3� Missing Features

	10.2� Basic Table Tags
	10.2.1� The <table> Tag
	10.2.1.1� The align attribute (deprecated)
	10.2.1.2� The bgcolor and background attributes
	10.2.1.3� The border attribute
	10.2.1.4� The frame and rules attributes
	10.2.1.5� The bordercolor, bordercolorlight, and bordercolordark attributes
	10.2.1.6� The cellspacing attribute
	10.2.1.7� The cellpadding attribute
	10.2.1.8� Combining the border, cellspacing, and cellpadding attributes
	10.2.1.9� The cols attribute
	10.2.1.10� The valign and nowrap attributes
	10.2.1.11� The width and height attributes
	10.2.1.12� The summary attribute
	10.2.1.13� The hspace and vspace attributes

	10.2.2� Common Table Attributes
	10.2.2.1� The id and title attributes
	10.2.2.2� The dir and lang attributes
	10.2.2.3� The class and style attributes
	10.2.2.4� The event attributes

	10.2.3� The <tr> Tag
	10.2.3.1� The align and valign attributes
	10.2.3.2� The char and charoff attributes
	10.2.3.3� The bgcolor and background attributes
	10.2.3.4� The bordercolor, bordercolorlight, and bordercolordark attributes
	10.2.3.5� The nowrap attribute

	10.2.4� The <th> and <td> Tags
	10.2.4.1� The align and valign attributes
	10.2.4.2� The width attribute
	10.2.4.3� The height attribute
	10.2.4.4� The colspan attribute
	10.2.4.5� The rowspan attribute
	10.2.4.6� Combining the colspan and rowspan attributes
	10.2.4.7� The nowrap attribute
	10.2.4.8� The bgcolor and background attributes
	10.2.4.9� The bordercolor, bordercolorlight, and bordercolordark attributes
	10.2.4.10� The char and charoff attributes
	10.2.4.11� The headers and scope attributes
	10.2.4.12� The abbr attribute
	10.2.4.13� The axis attribute

	10.2.5� The <caption> Tag
	10.2.5.1� The align and valign attributes
	10.2.5.2� The many other attributes

	10.3� Advanced Table Tags
	10.3.1� Defining Table Sections
	10.3.2� The <thead> Tag
	10.3.3� The <tfoot> Tag
	10.3.4� The <tbody> Tag
	10.3.5� Using Table Sections
	10.3.6� Defining Column Groups
	10.3.7� The <colgroup> Tag
	10.3.7.1� The span attribute
	10.3.7.2� When to span and col
	10.3.7.3� The other <colgroup> attributes

	10.3.8� The <col> tag
	10.3.8.1� The span attribute
	10.3.8.2� The other <col> attributes

	10.3.9� Using Column Groups

	10.4� Beyond Ordinary Tables

	Frames
	11.1� An Overview of Frames
	11.2� Frame Tags
	11.2.1� What’s in a Frame?

	11.3� Frame Layout
	11.3.1� The <frameset> Tag
	11.3.1.1� The rows and cols attributes
	11.3.1.2� The border, frameborder, framespacing, and bordercolor attributes
	11.3.1.3� Frames and JavaScript
	11.3.1.4� Other <frameset> attributes

	11.3.2� Nesting <frameset> Tags

	11.4� Frame Contents
	11.4.1� The <frame> Tag
	11.4.1.1� The src attribute
	11.4.1.2� The name and id attributes
	11.4.1.3� The noresize attribute
	11.4.1.4� The scrolling attribute
	11.4.1.5� The marginheight and marginwidth attributes
	11.4.1.6� The frameborder and bordercolor attributes
	11.4.1.7� The title and longdesc attributes

	11.5� The <noframes> Tag
	11.5.1� <noframes> Attributes

	11.6� Inline Frames
	11.6.1� The <iframe> Tag
	11.6.1.1� The align attribute
	11.6.1.2� The height and width attributes

	11.6.2� Using Inline Frames

	11.7� Named Frame or Window Targets
	11.7.1� The target Attribute for the <a> Tag
	11.7.2� Special Targets
	11.7.3� The <base> Default Target
	11.7.4� Traditional Link Behavior

	11.8� XFrames
	11.8.1� An XFrames Document
	11.8.2� XFrames URLs

	Executable Content
	12.1� Applets and Objects
	12.1.1� The Object Model
	12.1.1.1� The applet model
	12.1.1.2� The applet advantage
	12.1.1.3� Using applets correctly
	12.1.1.4� Writing applets

	12.2� Embedded Content
	12.2.1� The <object> Tag
	12.2.1.1� The classid attribute
	12.2.1.2� The codebase attribute
	12.2.1.3� The archive attribute
	12.2.1.4� The codetype attribute
	12.2.1.5� The data attribute
	12.2.1.6� The type attribute
	12.2.1.7� The align, class, border, height, hspace, style, vspace, and width attributes
	12.2.1.8� The declare attribute
	12.2.1.9� The id, name, and title attributes
	12.2.1.10� The shapes and usemap attributes
	12.2.1.11� The standby attribute
	12.2.1.12� The tabindex and notab attributes
	12.2.1.13� The dir and lang attributes
	12.2.1.14� Object event handling
	12.2.1.15� Supporting incompatible browsers

	12.2.2� The <param> Tag
	12.2.2.1� The id, name, and value attributes
	12.2.2.2� The type and valuetype attributes

	12.2.3� The <applet> Tag (Deprecated)
	12.2.3.1� Applet rendering
	12.2.3.2� The align attribute
	12.2.3.3� The alt attribute
	12.2.3.4� The archive attribute
	12.2.3.5� The code and codebase attributes
	12.2.3.6� The name attribute
	12.2.3.7� The height, hspace, vspace, and width attributes
	12.2.3.8� The mayscript attribute
	12.2.3.9� The title attribute
	12.2.3.10� The object attribute

	12.2.4� The <embed> Tag (Extension)
	12.2.4.1� The align, border, height, hspace, vspace, and width attributes
	12.2.4.2� The hidden attribute
	12.2.4.3� The name attribute
	12.2.4.4� The palette attribute
	12.2.4.5� The pluginspage attribute
	12.2.4.6� The src attribute
	12.2.4.7� The type attribute
	12.2.4.8� The units attribute

	12.2.5� The <noembed> Tag (Extension)

	12.3� JavaScript
	12.3.1� The <script> Tag
	12.3.1.1� The language and type attributes
	12.3.1.2� The src and charset attributes
	12.3.1.3� The defer attribute

	12.3.2� The <noscript> Tag
	12.3.3� JavaScript Event Handlers
	12.3.3.1� Standard event handler attributes
	12.3.3.2� The mouse-related events
	12.3.3.3� The keyboard events
	12.3.3.4� Document events

	12.3.4� javascript URLs
	12.3.5� JavaScript Entities
	12.3.6� The <server> Tag

	12.4� JavaScript Stylesheets (Antiquated)
	12.4.1� JavaScript Stylesheet Syntax
	12.4.1.1� External, document-level, and inline JSS
	12.4.1.2� JSS values
	12.4.1.3� Defining styles for tags
	12.4.1.4� Defining style classes
	12.4.1.5� Using contextual styles

	12.4.2� JavaScript Stylesheet Properties

	Dynamic Documents
	13.1� An Overview of Dynamic Documents
	13.1.1� Another Word of Caution

	13.2� Client-Pull Documents
	13.2.1� Uniquely Refreshing
	13.2.2� The Refresh Header Contents
	13.2.2.1� Refreshing the same document
	13.2.2.2� Refreshing with a different document
	13.2.2.3� Cycling between documents

	13.2.3� Pulling Non-HTML Content
	13.2.4� Combining Refresh with Other HTTP Header Fields
	13.2.4.1� A random URL generator

	13.2.5� Performance Considerations

	13.3� Server-Push Documents
	13.3.1� The Multipart/Mixed Media Type
	13.3.2� The Multipart/X-Mixed-Replace Media Type
	13.3.3� Exploiting Multipart Documents
	13.3.3.1� Efficiency considerations

	13.3.4� Creating a Server-Push Document
	13.3.4.1� Server-push example application for NCSA and Apache httpd

	Mobile Devices
	14.1� The Mobile Web
	14.1.1� Devices
	14.1.1.1� Mobile phones
	14.1.1.2� PDAs
	14.1.1.3� Convergence devices

	14.1.2� Cellular Access
	14.1.2.1� Low speed
	14.1.2.2� High-speed cellular access
	14.1.2.3� WiFi

	14.2� Device Considerations
	14.2.1� Browser Constraints
	14.2.2� Input Constraints
	14.2.3� Network Constraints
	14.2.4� Display Constraints

	14.3� XHTML Basic
	14.3.1� Supported Tags
	14.3.1.1� Basic content
	14.3.1.2� Images, objects, and scripting
	14.3.1.3� Lists
	14.3.1.4� Forms
	14.3.1.5� Tables
	14.3.1.6� Document header

	14.3.2� Design Versus Intent

	14.4� Effective Mobile Web Design
	14.4.1� Understand Your User
	14.4.2� Links and Navigation
	14.4.3� Forms
	14.4.4� Layout and Presentation
	14.4.4.1� Stylesheets
	14.4.4.2� Text fonts
	14.4.4.3� Margins and spacing

	14.4.5� Images
	14.4.6� General Advice

	XML
	15.1� Languages and Metalanguages
	15.1.1� Creation Versus Display
	15.1.2� A Little History

	15.2� Documents and DTDs
	15.3� Understanding XML DTDs
	15.3.1� Comments
	15.3.2� Entities
	15.3.3� Entity Declarations
	15.3.4� Elements

	15.4� Element Grammar
	15.4.1� Sequence, Choice, Grouping, and Repetition
	15.4.2� Multiple Grammar Rules
	15.4.3� XML Element Grammar
	15.4.4� Mixed Element Content
	15.4.5� Empty Elements

	15.5� Element Attributes
	15.5.1� Attribute Values
	15.5.2� Required and Default Attributes

	15.6� Conditional Sections
	15.7� Building an XML DTD
	15.7.1� An XML Address DTD
	15.7.2� Using the Address DTD

	15.8� Using XML
	15.8.1� Creating Your Own Markup Language
	15.8.2� Document Exchange
	15.8.3� Connecting Systems
	15.8.4� Standardizing HTML

	XHTML
	16.1� Why XHTML?
	16.1.1� XHTML Document Type Definitions

	16.2� Creating XHTML Documents
	16.2.1� Declaring Document Types
	16.2.2� Understanding Namespaces
	16.2.3� A Minimal XHTML Document

	16.3� HTML Versus XHTML
	16.3.1� Correctly Nested Elements
	16.3.2� End Tags
	16.3.3� Handling Empty Elements
	16.3.4� Case Sensitivity
	16.3.5� Quoted Attribute Values
	16.3.6� Explicit Attribute Values
	16.3.7� Handling Special Characters
	16.3.8� The id and name Attributes

	16.4� XHTML 1.1
	16.4.1� Differences in XHTML 1.1

	16.5� Should You Use XHTML?
	16.5.1� The Dusty Deck Problem
	16.5.2� Automatic Conversion
	16.5.3� Lenient Browsers and Lazy Authors
	16.5.4� Time, Money, and Standards
	16.5.5� Man Versus Machine
	16.5.6� What to Do?

	Tips, Tricks, and Hacks
	17.1� Top of the Tips
	17.1.1� Design for Your Audience
	17.1.2� Consistent Documents

	17.2� Cleaning Up After Your HTML Editor
	17.2.1� Where Did My Document Go?
	17.2.2� When and Why to Edit the Editor
	17.2.3� Use the Best

	17.3� Tricks with Tables
	17.3.1� Multicolumn Pages
	17.3.1.1� Basic multicolumn layout
	17.3.1.2� Straddle heads

	17.3.2� Side Heads
	17.3.3� Better Forms Layout
	17.3.3.1� Basic forms layout
	17.3.3.2� Building forms with nested tables

	17.4� Tricks with Windows and Frames
	17.4.1� Targeting Windows
	17.4.2� Overriding Others’ Targets
	17.4.3� Multiple Frames in One Link

	HTML Grammar
	Grammatical Conventions
	Typographic and Naming Conventions
	Punctuation Conventions
	Alternation
	Repetition
	Optional elements

	More Details
	Predefined Nonterminals

	The Grammar

	HTML/XHTML Tag Quick Reference
	Core Attributes
	HTML Quick Reference

	Cascading Style Sheet Properties Quick�Reference
	The HTML 4.01 DTD
	The XHTML 1.0 DTD
	Character Entities
	Color Names and Values
	Color Values
	Color Names
	The Standard Color Map

	Netscape Layout Extensions
	Creating Whitespace
	The <spacer> Tag (Antiquated)
	Creating horizontal space
	Creating vertical space
	Creating blocks of space

	Mimicking the <spacer> Tag

	Multicolumn Layout
	The <multicol> Tag (Antiquated)
	The cols attribute
	The gutter attribute
	The width attribute
	The style and class attributes

	Multiple Columns and Other Browsers
	Effective Multicolumn Layouts

	Layers
	The <layer> Tag (Antiquated)
	The name attribute
	The left and top attributes
	The above, below, and z-index attributes
	The background and bgcolor attributes
	The visibility attribute
	The width attribute
	The src attribute
	The clip attribute
	The style and class attributes

	The <ilayer> Tag (Antiquated)
	The top and left attributes
	Combining <layer> and <ilayer>

	Index

