

Creating a Web Site
Second Edition

The book that
should have been

in the box®

THE MISSING MANUAL

Creating a Web Site

THE
MISSING
MANUAL®

Second Edition

Matthew MacDonald

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Creating a Web Site: The Missing Manual
by Matthew MacDonald

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Printing History:

October 2005: First Edition.
December 2008: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, the O’Reilly logo, and “The book that should have been
in the box” are registered trademarks of O’Reilly Media, Inc. Creating a Web Site: The Missing Manual, The
Missing Manual logo, Pogue Press, and the Pogue Press logo are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-52097-7

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

v

Table of Contents

The Missing Credits ... xiii

Introduction... 1

Part One: Welcome to the Web

Chapter 1: Preparing for the Web... 9
Introducing the World Wide Web ...9

Browsers ... 10
Web Servers ... 13

Planning a Web Site ... 14
Types of Sites .. 14
Understanding Your Audience ... 17
The Lifespan of Your Site .. 18
Practice Good Design .. 19

The Ingredients of a Web Site .. 20

Chapter 2: Creating Your First Page.. 23
The Anatomy of a Web Page .. 24

Cracking Open an XHTML Document ... 24
Creating Your Own XHTML Files ... 27
The Document Type Definition .. 30

XHTML Tags .. 32
What’s in a Tag ... 32
Understanding Elements .. 33
Nesting Elements ... 34

vi Creating a Web Site: The Missing Manual

The XHTML Document ... 35
The Basic Skeleton ... 36
Adding Content .. 38
Structuring Text .. 39
Where Are All the Pictures? .. 42
The 10 Most Important Elements (and a Few More) ... 45
Checking Your Pages for Errors ... 48

Chapter 3: Putting Your Page on the Web..53
How Web Hosting Works .. 53

Understanding the URL ... 54
How Browsers Analyze a URL .. 55

Domain Names ... 57
Getting the Right Name ... 57
Searching for a Name ... 59
Registering Your Name ... 60
Free Domain Names .. 65

Getting Web Space ... 67
The Big Picture ... 67
Assessing Your Needs ... 68
Choosing Your Host ... 72
Free Web Hosts .. 77

Transferring Files .. 78
Browser-Based Uploading .. 78
FTP ... 80

Chapter 4: Power Tools ..83
Choosing Your Tools .. 84

Types of Web Page Editors ... 85
Finding a Free Web Page Editor .. 86
Professional XHTML Editors ... 90

Working with Your XHTML Editor .. 91
Starting Out ... 91
Multiple Views .. 93
Creating a Web Page in Code View ... 93
Creating a Web Page in WYSIWYG View .. 96
Managing a Web Site .. 99

Part Two: Building Better Web Pages

Chapter 5: XHTML Text Elements .. 109
Understanding Text and the Web .. 109

Logical Structure vs. Physical Formatting ... 110
CSS (Cascading Style Sheets) ... 111

Table of Contents vii

XHTML Elements for Basic Text .. 113
Paragraphs .. 114
Line Breaks ... 116
Headings ... 118
Horizontal Lines ... 119
Preformatted Text .. 119
Quotes ... 121
Divisions and Spans .. 122

XHTML Elements for Lists ... 123
Ordered Lists .. 124
Unordered Lists .. 126
Definition Lists .. 127
Nesting Lists .. 128

Inline Formatting .. 129
Italics, Bold, and Underline .. 129
Emphasis and Strong .. 130
Subscript, Superscript, and Strikethrough .. 131
Teletype ... 132
Special Characters ... 132
Non-English Languages .. 134

Chapter 6: Style Sheets .. 137
Style Sheet Basics ... 138

The Three Types of Styles ... 138
Browser Support for CSS .. 140
The Anatomy of a Rule ... 140
Applying a Style Sheet .. 142
The Cascade ... 147
Inheritance .. 148

Colors ... 150
Specifying a Color .. 151
Finding the Right Color ... 152

Fonts .. 153
Specifying a Font ... 155
Finding the Right Font ... 157
Font Sizes .. 158

Text Alignment and Spacing ... 163
Alignment .. 164
Spacing .. 165
White Space .. 166

Borders .. 167
Basic Borders .. 168
Making Better Borders .. 168
Using Borders to Separate Sections .. 170

viii Creating a Web Site: The Missing Manual

Class Selectors .. 171
Creating Class Rules .. 171
Saving Work with the <div> Element .. 175
More Generic Class Rules ... 176
Creating a Style Sheet for Your Entire Web Site .. 177

Chapter 7: Adding Graphics... 179
Understanding Images .. 179

The Element ... 180
Alternate Text ... 181
Picture Size .. 182
File Formats for Graphics ... 184
Putting Pictures on Colored Backgrounds .. 188

Images and Styles ... 190
Inline Images in Text .. 191
Borders .. 191
Wrapping Text Around an Image .. 192
Adding Captions ... 196
Background Images ... 198

Techniques with Graphics ... 201
Graphical Text ... 201
Backgrounds for Other Elements .. 203
Graphical Bullets in a List ... 204

Finding Free Art .. 205

Chapter 8: Linking Pages ...207
Understanding the Anchor .. 207

Internal and External Links ... 208
Relative Links and Folders .. 212
Linking to Other Types of Content .. 216

Image Links and Image Maps ... 217
Adding Bookmarks ... 221
When Good Links Go Bad ... 222

Site Management ... 223
Link Checkers ... 225
Using Redirects ... 227

Chapter 9: Page Layout Tools ..229
The Challenge of Screen Space .. 230

Testing Different Page Sizes ... 232
Tables ... 233

The Anatomy of a Table .. 233
Formatting Table Borders ... 236
Cell Spans .. 237
Sizing and Aligning Tables .. 239
Organizing a Page with Tables ... 243

Table of Contents ix

Style-Based Layout ... 247
Structuring Pages with the <div> Element ... 249
Even Better Selectors ... 249
Floating Boxes .. 251
Absolute Positioning .. 253
Layering .. 255
Combining Absolute and Relative Positioning ... 258

Chapter 10: Multipart Pages .. 261
Understanding Multipart Pages ... 262
Server-Side Includes .. 263
Frame Basics ... 266

Creating a Frames Page .. 267
Putting Documents in a Frameset ... 271
Targeting Frames ... 274

Building Better Frames Pages ... 276
Frame Borders and Resizing .. 276
Scrolling .. 278
Handling Browsers That Don’t Support Frames .. 280
Better URLs for Framesets .. 281
Nested Framesets .. 282
Another Way to Nest Frames ... 284

Page Templates .. 287
Understanding Page Templates ... 288
Creating a New Page Template ... 288
The Anatomy of a Page Template ... 290
Using a Page Template ... 293

Part Three: Connecting With Your Audience

Chapter 11: Attracting Visitors .. 301
Your Web Site Promotion Plan .. 301
Spreading the Word .. 303

Reciprocal Links ... 303
Web Rings ... 305
Shameless Self-Promotion ... 306
Return Visitors .. 307

Adding Meta Elements .. 309
The Description Meta Element .. 310
The Keyword Meta Element ... 311

Directories and Search Engines ... 312
Directories ... 312
Search Engines ... 316

x Creating a Web Site: The Missing Manual

Tracking Visitors ... 323
Understanding Google Analytics ... 324
Signing Up for Google Analytics .. 326
Examining your Web Traffic ... 327

Chapter 12: Letting Visitors Talk to You (and Each Other)..................335
Transforming a Site into a Community ... 335
Helping Visitors Email You .. 337

Mailto Links ... 337
XHTML Forms ... 339

Adding Forums and Groups to Your Site .. 348
About Google Groups ... 350
Creating a Group ... 350
Participating in a Group .. 355
Managing Your Group ... 356

Chapter 13: Making Money with Your Site .. 361
Money-Making the Web Way ... 362
Google AdSense ... 363

Signing Up for AdSense .. 365
Creating an Ad .. 366
Placing Ads in Your Web Pages ... 373
Google-Powered Searches .. 376

Amazon Associates .. 380
Signing Up As an Associate .. 381
Generating Associate Links ... 382

PayPal Merchant Tools .. 387
Signing Up with PayPal ... 388
Accepting Payments .. 390
Building a Shopping Cart .. 395
Withdrawing Your Money .. 398

Part Four: Web Site Frills

Chapter 14: JavaScript: Adding Interactivity ..403
Understanding JavaScript .. 403

Server-Side and Client-Side Programming ... 404
Scripting Languages ... 405

JavaScript 101 ... 406
The <script> Element .. 406
Variables .. 410
Functions ... 414
External Script Files .. 418

Table of Contents xi

Dynamic XHTML ... 420
XHTML Objects ... 420
Events .. 426
Image Rollovers ... 429
Collapsible Text .. 431
An Interactive Form ... 434

Scripts on the Web ... 437
Finding a Cool Script ... 439

Chapter 15: Fancy Buttons and Menus ...443
Creating Fancy Buttons ... 443

Generating Button Pictures .. 445
Building a Rollover Button .. 451
Creating Rollover Buttons in Dreamweaver and
Expression Web ... 458

Creating Fancy Menus ... 459
Do-It-Yourself Collapsible Menus .. 460
Third-Party Menus ... 464

Chapter 16: Audio and Video .. 471
Understanding Multimedia ... 472

Linking, Embedding, and Hosting ... 472
Types of Multimedia Files ... 473

Background Music ... 476
The <embed> Element ... 476
Sound Effects .. 481

Flash MP3 Players .. 483
The E-Phonic Player ... 483
Flashtrak Loops .. 489

Video Clips .. 491
Preparing Video ... 491
Linking to and Embedding Video .. 493
Uploading Your Videos to YouTube .. 494

Part Five: Blogs

Chapter 17: Blogs..505
Understanding Blogs ... 506

Syndication ... 508
Blog Hosting and Software ... 510

Getting Started with Blogger .. 512
Creating a Blog ... 512
Creating Formatted Posts ... 517

xii Creating a Web Site: The Missing Manual

Managing a Blog ... 518
Tweaking a Few Common Settings ... 521
Configuring Your Blogger Profile ... 523
Templates .. 523
Moderating Comments ... 531
Hosting Your Blog on Your Web Site .. 533

Part Six: Appendixes

Appendix A: XHTML Quick Reference ..539

Appendix B: Useful Web Sites ...563

Index .. 571

xiii

Creating a Web Site: The Missing Manual, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Missing Credits

About the Author
Matthew MacDonald is an author and programmer extraordi-
naire. His books include Excel 2007: The Missing Manual, Access
2007: The Missing Manual, and over a dozen books about pro-
gramming with the Microsoft .NET Framework. He’s also the
author of Your Brain: The Missing Manual, a quirky exploration
into the odd and wondrous world of your squishy gray matter.
In a dimly remembered past life, he studied English literature

and theoretical physics.

About the Creative Team
Peter McKie (editor) is an editor at Missing Manuals. Having developed several
failed Web sites prior to editing this book, he now sees where he went wrong. He
lives in New York City where he hikes, kayaks, and canoes in the Hudson High-
lands. A fan of old buildings, he’s volunteered at Open House New York (www.
ohny.org), a nonprofit that opens normally closed historic buildings to New York-
ers for free one weekend each year. Email: pmckie@gmail.com.

Nellie McKesson (production editor) lives in Jamaica Plain, Mass., and spends her
spare time making t-shirts (mattsaundersbynellie.etsy.com) and playing music with
her band Dr. & Mrs. Van Der Trampp (http://myspace.com/drmrsvandertrampp).
Email: nellie@oreilly.com.

Alison O’Byrne (copy editor) has been a professional freelance editor for over six
years. She lives with her family in Dublin, Ireland. Email: alison@alhaus.com. Web
site: www.alhaus.com.

Ron Strauss (indexer) is a full-time freelance indexer specializing in IT. When not
working, he moonlights as a concert violist and alternative medicine health con-
sultant. Email: rstrauss@mchsi.com.

Tony Ruscoe (technical reviewer) is a web developer living in Sheffield, England.
His first computer programs were written in Sinclair BASIC on his ZX Spectrum
in the mid-1980s. He's been developing Web sites and Web applications using a
variety of programming technologies and techniques since 1997. He currently
maintains his personal Web site (http://ruscoe.net) and a site dedicated to research-
ing his surname (http://ruscoe.name).

http://www.ohny.org
http://www.ohny.org
mailto:pmckie@gmail.com
mailto:nellie@oreilly.com
mailto:alison@alhaus.com
http://www.alhaus.com
mailto:rstrauss@mchsi.com
http://ruscoe.net
http://ruscoe.name

Creating a Web Site: The Missing Manual, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xiv Creating a Web Site: The Missing Manual

Megan Sorensen (technical reviewer) is an office manager working for a local com-
munity hospital. She lives with her husband and daughter in Santa Rosa, California.
In her spare time she enjoys traveling, reading, and spending time with her family.
Email: briannmegan@gmail.com.

Acknowledgments
No author could complete a book without a small army of helpful individuals. I’m
deeply indebted to the whole Missing Manual team, especially my editor Peter
McKie, who kept me on track with relatively gentle prodding, Dawn Frausto, who
helped coordinate the entire process, and technical reviewers Tony Ruscoe and
Megan Sorensen, who caught obscure mistakes and offered valuable suggestions. I
also owe a hearty thanks to those who left their mark on the first edition of this
book, including Sarah Milstein, Peter Meyers, and technical reviewers Jim Goode-
nough, Rhea Howard, and Mark Levitt. And, as always, I’m also deeply indebted to
numerous others who’ve toiled behind the scenes indexing pages, drawing figures,
and proofreading the final copy.

Finally, I’d never write any book without the support of my parents Nora and Paul,
my extended parents Razia and Hamid, and my wife Faria. (And I’d write many
more without the challenges of my two lovable daughters, Maya and Brenna.)
Thanks everyone!

—Matthew MacDonald

The Missing Manual Series
Missing Manuals are witty, superbly written guides to computer products that
don’t come with printed manuals (which is just about all of them). Each book fea-
tures a handcrafted index; cross-references to specific pages (not just chapters);
and RepKover, a detached-spine binding that lets the book lie perfectly flat with-
out the assistance of weights or cinder blocks.

Recent and upcoming titles include:

Access 2007: The Missing Manual by Matthew MacDonald

AppleScript: The Missing Manual by Adam Goldstein

AppleWorks 6: The Missing Manual by Jim Elferdink and David Reynolds

CSS: The Missing Manual by David Sawyer McFarland

Creating Web Sites: The Missing Manual by Matthew MacDonald

David Pogue’s Digital Photography: The Missing Manual by David Pogue

Dreamweaver 8: The Missing Manual by David Sawyer McFarland

Dreamweaver CS3: The Missing Manual by David Sawyer McFarland

mailto:briannmegan@gmail.com

Creating a Web Site: The Missing Manual, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

The Missing Credits xv

Dreamweaver CS4: The Missing Manual by David Sawyer McFarland

eBay: The Missing Manual by Nancy Conner

Excel 2003: The Missing Manual by Matthew MacDonald

Excel 2007: The Missing Manual by Matthew MacDonald

Facebook: The Missing Manual by E.A. Vander Veer

FileMaker Pro 8: The Missing Manual by Geoff Coffey and Susan Prosser

FileMaker Pro 9: The Missing Manual by Geoff Coffey and Susan Prosser

Flash 8: The Missing Manual by E.A. Vander Veer

Flash CS3: The Missing Manual by E.A. Vander Veer and Chris Grover

Flash CS4: The Missing Manual by Chris Grover with E.A. Vander Veer

FrontPage 2003: The Missing Manual by Jessica Mantaro

Google Apps: The Missing Manual by Nancy Conner

The Internet: The Missing Manual by David Pogue and J.D. Biersdorfer

iMovie 6 & iDVD: The Missing Manual by David Pogue

iMovie ’08 & iDVD: The Missing Manual by David Pogue

iPhone: The Missing Manual by David Pogue

iPhoto ’08: The Missing Manual by David Pogue

iPod: The Missing Manual, Sixth Edition by J.D. Biersdorfer

JavaScript: The Missing Manual by David Sawyer McFarland

Mac OS X: The Missing Manual, Tiger Edition by David Pogue

Mac OS X: The Missing Manual, Leopard Edition by David Pogue

Microsoft Project 2007: The Missing Manual by Bonnie Biafore

Office 2004 for Macintosh: The Missing Manual by Mark H. Walker and Franklin
Tessler

Office 2007: The Missing Manual by Chris Grover, Matthew MacDonald, and E.A.
Vander Veer

Office 2008 for Macintosh: The Missing Manual by Jim Elferdink

PCs: The Missing Manual by Andy Rathbone

Photoshop Elements 7: The Missing Manual by Barbara Brundage

Photoshop Elements 6 for Mac: The Missing Manual by Barbara Brundage

PowerPoint 2007: The Missing Manual by E.A. Vander Veer

Creating a Web Site: The Missing Manual, eMatter Edition
Copyright © 2008 O’Reilly & Associates, Inc. All rights reserved.

xvi Creating a Web Site: The Missing Manual

QuickBase: The Missing Manual by Nancy Conner

QuickBooks 2008: The Missing Manual by Bonnie Biafore

Quicken 2008: The Missing Manual by Bonnie Biafore

Quicken 2009: The Missing Manual by Bonnie Biafore

QuickBooks 2009: The Missing Manual by Bonnie Biafore

Switching to the Mac: The Missing Manual, Tiger Edition by David Pogue and Adam
Goldstein

Switching to the Mac: The Missing Manual, Leopard Edition by David Pogue

Wikipedia: The Missing Manual by John Broughton

Windows XP Home Edition: The Missing Manual, Second Edition by David Pogue

Windows XP Pro: The Missing Manual, Second Edition by David Pogue, Craig
Zacker, and Linda Zacker

Windows Vista: The Missing Manual by David Pogue

Windows Vista for Starters: The Missing Manual by David Pogue

Word 2007: The Missing Manual by Chris Grover

Your Brain: The Missing Manual by Matthew MacDonald

1

Introduction

These days, it’s all but impossible to find someone who hasn’t heard of the Inter-
net. Companies create Web sites before they make business plans. Ordinary people
build obsessively detailed pages describing their celebrity-themed swizzle-stick col-
lections. And political activists attack their opponents with gossip, pictures, and
embarrassing videos. The Internet has even changed our language: google and blog
are now verbs, for example, and social networking has nothing to do with face-
to-face encounters.

Everyone wants their own piece of Web real estate. Unfortunately, building a Web
site isn’t as easy as it should be. Even though people have been building sites for
years, Web site development has only become more complicated. That’s because
Web programmers have been busy creating new technologies and introducing new
standards that add features, solve problems, and iron out earlier quirks. If you
want to create a fresh, cutting-edge Web site (instead of one that looks as hokey as
a 1960s yearbook portrait), you need to understand these different ingredients and
how they fit together.

That’s where this book comes in. Bookstore shelves are full of Web site design
books written years ago. They don’t cover the current techniques your site needs to
distinguish itself, make money, and show up in search results. This book corrects
those mistakes—it includes all the advice and guidance you need to build a mod-
ern Web site. With this book by your side, you’ll learn how to:

• Create Web pages. XHTML (Extensible HyperText Markup Language) is the
modern language of the Web, and the latest stage in the evolution of HTML. It’s
surprisingly easy to use but maddeningly inflexible—violate its strict syntax
rules at your own peril. In this book, you’ll learn how to write first-rate
XHTML pages and get the most out of the language.

2 Creating a Web Site: The Missing Manual

Introduction

• Make pages look beautiful using CSS (Cascading Style Sheets). CSS picks up
where XHTML leaves off, adding formatting muscle that can transform the
drabbest of sites into a family of coordinated pages that look like they were pro-
fessionally designed. Best of all, once you understand the right way to use CSS,
you’ll be able to apply a new look to your entire site by tweaking just a single
file.

• Put your Web site online. The world’s greatest Web site isn’t much good if no
one sees it. That’s why you’ll learn how to choose the best Web hosting com-
pany, pick a domain name (like www.HotToTrotHorses.com), and get your master-
piece online. Don’t panic—there are plenty of cheap Web hosting companies
ready to show off your site for pennies a day.

• Attract visitors. You’ll learn how to make sure people can find your site using
popular search engines and how to build an online community that encourages
repeat visits with discussion boards.

• Get rich (or at least earn some spare change). The Web’s a lynchpin of retail
commerce, but even ordinary people can make money selling products (using
convenient services like PayPal) or displaying ads (with Google). You’ll learn
how to get in on the action.

• Pile on the frills. Every Web site worth its salt boasts a few cool tricks. You’ll
learn how to dazzle visitors with cool buttons, slick menus, and other flashy ele-
ments, courtesy of JavaScript and Dynamic XHTML. You’ll even learn how to
(shudder) serenade visitors with background music.

What You Need to Get Started
This book assumes that you don’t have anything more than a reasonably up-
to-date computer and raw ambition. Although there are dozens of high-powered
Web editing programs that can help you build a Web site, you don’t need one to
use this book. In fact, if you use a Web editor before you understand how Web
sites work, you’re liable to create more problems than you solve. That’s because, as
helpful as these programs are, they shield you from learning the principles of good
site design—principles that can mean the difference between an attractive, easy-
to-maintain Web creation and a disorganized design nightmare.

Once you master the basics, you’re welcome to use a fancy Web-page editor like
Microsoft Expression Web or Adobe Dreamweaver. You’ll not only learn how
these two leading programs work, you’ll discover a few great free alternatives (in
Chapter 4).

Note: Under no circumstances do you need to know anything about complex Web programming tech-
nologies like Java or ASP.NET. You also don’t need to know anything about databases or XML. These top-
ics are fascinating, but insanely difficult to implement without some solid programming experience. In this
book, you’ll learn how to create the best possible Web site without becoming a programmer. (You will,
however, learn just enough about JavaScript to use many of the free samples you can find online.)

Introduction 3

Introduction

About This Book
No one owns the Web. As a result, no one is responsible for teaching you how to
use it or how to build an online home for yourself. That’s where this book comes
in. If the Web did have an instruction manual—one that painstakingly details the
basic ingredients, time-saving tricks, and impressive embellishments every site
needs—this would be it.

Note: This book periodically recommends other books covering topics that are too specialized or diverse
for a manual about creating Web sites. Careful readers may notice that not every one of these titles is pub-
lished by Missing Manual parent O’Reilly Media. While we’re happy to mention other Missing Manuals
and books in the O’Reilly family, if there’s a great book out there that doesn’t happen to be published by
O’Reilly, we’ll still let you know about it.

Macintosh and Windows
One of the best things about the World Wide Web is that it truly is worldwide: Wher-
ever you live, from Aruba to Zambia, the Web eagerly awaits your company. The
same goes for whatever kind of computer you’re using to develop your site. From an
early-model Windows PC to the latest and greatest Mac, you can implement the tac-
tics, tools, and tricks described in this book with pretty much whatever kind of com-
puter you have. (Of course, a few programs favor one operating system over another,
but you’ll hear about these differences whenever they come up.) The good news is that
this book is usable and suitable for owners of computers of all stripes.

About the Outline
This book is divided into five parts, each with several chapters:

• Part One: Welcome to the Web. In this part of the book, you’ll start planning
your Web site (Chapter 1). You’ll learn the basics behind XHTML, the lan-
guage of the Web (Chapter 2); and you’ll put your page online with a reputable
hosting company (Chapter 3). Finally, you’ll look at how you can simplify your
life by using Web-page editing software (Chapter 4).

• Part Two: Building Better Web Pages. This section shows you how to add
essentials to your pages, like pictures, links, and tables. You’ll learn your way
around the CSS standard, which lets you specify fancy colors, fonts, and bor-
ders (Chapter 6). You’ll master slick layouts (Chapters 9 and 10), and create an
entire Web site made of linked pages.

• Part Three: Connecting With Your Audience. The third part of the book
explains how to get your site noticed by search engines like Google
(Chapter 11), and how to foster a community by making your site interactive
with features like discussion boards (Chapter 12). Finally, you’ll learn how to
get on the path to Web riches by displaying ads or selling your own products
(Chapter 13).

4 Creating a Web Site: The Missing Manual

Introduction

• Part Four: Web Site Frills. Now that you can create a professional, working
Web site, why not deck it out with fancy features like glowing buttons and pop-
out menus? You won’t learn the brain-bending details of how to become a Java-
Script programmer, but you’ll learn enough to find great scripts online and to
use them in your own creations. You’ll also dabble with homemade movie clips
and add an MP3 music player right inside an ordinary Web page.

• Part Five: Blogs. In this brief section, you’ll take a look at blogs (short for Web logs)
and the free software that helps you create them. Blogs are a type of Web page
that consists of regular, dated postings—like an online journal. In recent years,
blogs have become a self-publishing phenomenon and a great place to rant,
rave, and spill company gossip.

At the end of this book, you’ll find two appendixes. The first gives you a quick ref-
erence for XHTML. It explains the essential XHTML elements and points you to
more detailed discussions in the various chapters of this book. The second appen-
dix lists a pile of useful links culled from the chapters in this book, which can help
you learn more, get free stuff (like pictures, Web software, and handy examples),
and sign up for services (like Google’s ad program and PayPal’s shopping cart
tools). Don’t worry—you don’t need to type these Web links into your browser by
hand. It’s all waiting for you on the Missing CD page for this book at www.
missingmanuals.com.

About ➝ These ➝ Arrows
Throughout this book, you’ll find sentences like this one: “To open a new win-
dow, choose File ➝ New ➝ Window.” That’s shorthand for a much longer instruc-
tion that directs you to open three menus in sequence, like this: “Open the File
menu by clicking File in the menu bar. In the File menu, click New to open a sec-
ond menu. In that menu, click Window to complete the process.” Figure I-1 shows
a closer look.

Downloadable Examples
This book includes a number of examples of Web page designs. Most of them are
available for your downloading pleasure at www.missingmanuals.com (click the
Missing CD page link, and then the link for this book; the files are organized by
chapter). Playing with these files is a great way to learn more.

About MissingManuals.com
At www.missingmanuals.com, you’ll find articles, tips, and updates to Creating a
Web Site: The Missing Manual. In fact, we invite and encourage you to submit such
corrections and updates yourself. In an effort to keep the book as up to date and
accurate as possible, each time we print more copies of this book, we’ll make any
confirmed corrections you’ve suggested. We’ll also note such changes on the Web

http://www.missingmanuals.com
http://www.missingmanuals.com
http://www.missingmanuals.com
http://www.missingmanuals.com

Introduction 5

Introduction

site, so that you can mark important corrections into your own copy of the book, if
you like. (Go to http://missingmanuals.com/feedback, choose the book’s name from
the pop-up menu, and then click Go to see the changes.)

Also on our Feedback page, you can get expert answers to questions that come to
you while reading this book, write a book review, and find groups for folks who
share your interest in creating Web sites.

While you’re there, sign up for our free monthly email newsletter. Click the “Sign
Up for Our Newsletter” link in the left-hand column. You’ll find out what’s hap-
pening in Missing Manual land, meet the authors and editors, see bonus video and
book excerpts, and so on.

We’d love to hear your suggestions for new books in the Missing Manual line.
There’s a place for that on MissingManuals.com, too. And while you’re online, you
can also register this book at www.oreilly.com (you can jump directly to the regis-
tration page by going here: http://tinyurl.com/yo82k3). Registering means that we
can send you updates about this book, and you’ll be eligible for special offers like
discounts on future editions of Creating a Web Site: The Missing Manual.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, it means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-Books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current infor-
mation. Try it free at http://safari.oreilly.com.

Figure I-1:
In this book, arrow notations help simplify folder
and menu instructions. For example, “Choose File
➝ New ➝ Window” is a more compact way of
saying “From the File menu, choose New; from the
submenu that appears, choose Window,” as
shown here.

http://missingmanuals.com/feedback
http://www.oreilly.com
http://tinyurl.com/yo82k3
http://safari.oreilly.com

1
I.Part One:
Welcome to the Web

Chapter 1: Preparing for the Web

Chapter 2: Creating Your First Page

Chapter 3: Putting Your Page on the Web

Chapter 4: Power Tools

9

Chapter 1chapter

1

Preparing for the Web

The Web’s an exciting place. Every day, it processes millions of financial transac-
tions, serves up late-breaking news and scandalous celebrity gossip, and provides a
thriving meeting place for every type of community, from political anarchists to
reality-show fans.

Since you’re reading this book, you’ve probably decided to move in and join the
Web. Congratulations! Just as you undertake some basic planning before you find
a home in the real world, you also need to prepare before you make the move to
your new online neighborhood. In this chapter, you’ll get a good look at the Web
and what it takes to establish your own site. You’ll also learn how the Web works
behind the scenes, and what ingredients you need to build your site.

Introducing the World Wide Web
Although it doesn’t show its age, the Internet is older than you might think. The
computer visionaries who created the Internet began developing the idea in the
early 1960s. In 1969, the first transmission over the Internet took place, between a
computer at the University of California at Los Angeles and one at the Stanford
Research Institute. As far as pioneering moments go, it wasn’t much to brag
about—the computer crashed when it reached the G in the word “LOGIN.” Still,
the revolution was underway.

The early Internet was mostly traveled by academic and government types. It
flourished as a tool for research and collaboration, letting scientists everywhere
share information. In 1993 the first Web browser hit the scene. In the following
years, the Internet was colonized by new types of people, including book shoppers,
news junkies, hobbyists, and a lot of lonely computer programmers.

10 Creating a Web Site: The Missing Manual

Introducing the
World Wide Web

Tip: History buffs can follow the saga of the early Internet in much more detail at www.isoc.org/internet/
history and www.walthowe.com/navnet/history.html.

Of course, the early Internet doesn’t have much in common with today’s Internet.
In 1969, the Internet community consisted of four computers, all of which were
beastly, complex machines that no one but a government lab or academic institu-
tion could love (or afford). In 1981, there were still fewer than 200 mainframe
computers on the Internet, and most of the people using them were computer
experts or scientists going about their day-to-day work. Today, well over one hun-
dred million Web sites—and many more Web enthusiasts—are online. It’s no
wonder you’re getting so much junk email.

Browsers
As you no doubt know, a Web browser is a piece of software that lets you navigate
to and display Web pages. Without browsers, the Web would still exist, but you
wouldn’t be able to turn on your computer and take a look at it.

A browser is surprisingly simple—in fact, the bulk of its work consists of two tasks.
First, it requests Web pages, which happens when you type in a Web site address
(like www.google.com) or click a link in a Web page. The browser sends that
request to a far-off computer called a Web server. A server is typically much more
powerful than a home computer because it needs to handle multiple browser
requests at the same time. The Web server heeds the request and sends back the
contents of the desired Web page.

When the browser gets those contents, it puts its second skill into action and ren-
ders, or draws, the Web page. Technically, this means the browser converts the
plain text it receives from the server into a display document based on formatting
instructions embedded in the plain-text page. The end result is a graphically rich
page with different typefaces, colors, and links. Figure 1-1 shows the process.

FREQUENTLY ASKED QUESTION

The Web vs. the Internet
Is there a difference between the Web and the Internet?

Newscasters, politicians, and regular people often use these
terms interchangeably. Technically, however, the concepts
are different—and confusing them is likely to put computer
techies and other self-respecting nerds on edge.

The Internet is a network of connected computers that
spans the globe. These computers are connected together
to share information, but there are a number of ways to do

that, including emailing, instant messaging, transferring
files through FTP (short for File Transfer Protocol), and
downloading pirated Hollywood blockbusters through
peer-to-peer programs (which of course you don’t do). The
World Wide Web is one of the many ways to exchange
information across the Internet. And how does this infor-
mation get exchanged? You guessed it—people use special
programs called Web browsers to visit Web sites and Web
pages spread across the globe.

http://www.isoc.org/internet/history
http://www.isoc.org/internet/history
http://www.walthowe.com/navnet/history.html
http://www.google.com

Chapter 1: Preparing for the Web 11

Introducing the
World Wide Web

Choosing your Web browser

Depending on your personality type, choosing a Web browser is either a) a bore or
b) an important expression of your character, individuality, and overall computer
savvy. If you fall into the latter camp, you’ve probably already settled on a favorite
browser. But if you’re searching for something a little different, or you’re curious
to see what else is out there, the following quick overview sums up your options.

Even if you’re not interested in changing your browser, it’s a good idea to be famil-
iar with the most common options out there. That’s because when you design your
Web site, you’ll need to prepare for a wide audience of people with different
browsers. To make sure your nifty graphics don’t turn funky when viewed by other
people, it’s a good idea to test your own site on other computers, using other
screen sizes, and with other Web browsers. At a bare minimum, all Web authors
need a copy of Internet Explorer and Firefox, by far the most commonly used
browsers today, so you can see what your hard work will look like to 95 percent of
the world.

The following list describes the most popular browsers:

• Internet Explorer is the world’s most used (and sometimes most reviled) Web
browser. For better or worse, Internet Explorer sets the standard that other
browsers need to follow. The clear advantage of using Internet Explorer (IE for
short) is that you’ll never run into a Web page you can’t read—with a market
share of near 80 percent, IE is simply too successful to ignore. The downside is
that the developers at Microsoft have grown complacent, which means you’re
not likely to see dramatic innovations in future versions of IE. Success can also
attract a little too much interest—if you use IE, unethical marketers have a
bull’s eye on your computer with the latest spyware (see the box on page 13).

To download an updated version of Internet Explorer on a Windows computer,
visit www.microsoft.com/windows/ie.

Figure 1-1:
A Web browser is designed
to do two things really
well—contact remote
computers to ask for Web
pages, and then display
those pages in a graphical
window. Technically,
browsers are client-side
programs, which means
they run on your humble
personal computer. The
server-side part of the
equation takes place on a
Web server, where your
Web page content is
actually stored.

Your
computer

Web
server

You type
http://www.CrazyCoolSite.com

into the address bar of your browser
1

Your browser requests http://www.CrazyCoolSite.com2
The web server returns an HTML document 3

Your browser renders the document,
displaying it for you to see4

http://www.microsoft.com/windows/ie

12 Creating a Web Site: The Missing Manual

Introducing the
World Wide Web

Note: Although Microsoft experimented with a Mac version of Internet Explorer for years, they finally put
it out to pasture when Apple created a built-in browser named Safari. That means Mac owners will need to
borrow a friend’s PC to see what their pages look like in Internet Explorer. On their own computers, they’ll
probably use Safari or Firefox. For an extensive list of Web browsers for Mac computers, including those
that work with the older OS 9 operating system, see http://darrel.knutson.com/mac/www/browsers.html.

• Firefox is the modern response to Internet Explorer—it’s a Web browser that’s
lean, secure, and more than a little hip. Firefox pioneered several innovative fea-
tures long before Internet Explorer caught up, including tabbed browsing
(allowing visitors to view multiple Web pages in different window “tabs”) and
pop-up blocking (to stop those annoying pop-up ads). Firefox is still ahead of
the game with their incredibly flexible add-on system, which lets other people
develop tiny programs that enhance Firefox with extra features, like a Web mail
notifier and thumbnails of the sites listed on a Google search results page. Fire-
fox currently enjoys a cult following among computer geeks and a growing
number of disillusioned Internet Explorer veterans. Best of all, Firefox is kept
rigorously up-to-date by an army of volunteer programmers, including many
who designed the original Netscape browser.

Give Firefox a go at www.mozilla.org/products/firefox.

• Safari is an Apple-designed browser that comes with current versions of the
Mac OS X operating system. It’s quick, elegant, and sports a set of useful fea-
tures, like spell checking when you fill out online forms. Although Apple origi-
nally developed Safari for the exclusive use of Mac computers, they created a
Windows incarnation in 2007. However, Safari is still far more popular on Mac
computers.

Go on Safari at www.apple.com/safari.

• Opera is a slimmed down, easy-to-install browser that has existed for well over
a decade, serving as an antidote to the bloated size and pointless frills of Inter-
net Explorer. For years, Opera was held back by an unfortunate detail—if you
wanted an ad-free version, you needed to pay. Today, Opera is available for free
and is ad-free, too, just like the other browsers on this list. It has a small but
loyal following, but runs a distant fourth in Web browser standings.

Check out Opera at www.opera.com.

• Google Chrome is the new kid on the block. At the time of this writing, the
Google-built browser hadn’t officially been released, but it’s freely available to
techno-nerds and other curious people. And although this newcomer is still
short on a few features, it’s already made significant strides toward its ultimate
goal—becoming a sleek, lightweight browser that runs JavaScript (the snippets
of code that power interactive Web pages) with blistering speed.

Experiment with Google Chrome at www.google.com/chrome.

http://darrel.knutson.com/mac/www/browsers.html
http://www.mozilla.org/products/firefox
http://www.apple.com/safari
http://www.opera.com
http://www.google.com/chrome

Chapter 1: Preparing for the Web 13

Introducing the
World Wide Web

• Netscape Navigator is one of the first Web pioneers, and was once a formidable
challenger to Internet Explorer. But in early 2008, its developers finally pulled
the plug. Although it’s still the choice of a few nostalgic Web veterans, most
former Netscape fans have moved on to Firefox.

To get antique versions of Netscape, go to http://browser.netscape.com/releases.

Tip: For current browser usage statistics, which estimate what percentage of people use each major
browser, check out http://en.wikipedia.org/wiki/Usage_share_of_web_browsers. Browser usage statistics
vary depending on what sites you examine and how you count the visitors, but at the time of this writing
one reasonable estimate was: Internet Explorer (78%), Firefox (16%), Safari (3%), Opera (0.8%), and
Netscape (0.06%). Just as important are browser trends, which show Firefox and Safari steadily creeping
up in popularity at Internet Explorer’s expense.

Along with the browsers listed above, there are some specialty niche browsers. One
of these is Lynx, one of the earliest Web browsers and one that’s changed the least.
Lynx is an entirely text-based browser that’s perfectly suited for terminals that don’t
support graphics. (You can sometimes find these beasts lurking about computer labs
in universities and colleges.) Lynx also supports the visually impaired, who can use it
in conjunction with a device that reads the text of a Web page aloud.

Web Servers
On the other end of the line, a Web server receives browser requests and sends
back the correct Web page. For a busy Web site, this basic task can require a lot of
work. As a result, Web servers tend to be industrial-strength computers. Even
though the average Windows PC with the right setup can host a Web site, it’s

TROUBLESHOOTING MOMENT

Spyware: When Good Browsers Go Bad
Even though a Web browser is deceptively simple, many
browsers are bloated up with plug-ins and extra frills, and
some are even infected with (shudder) spyware. Spyware
is among the most hideous forms of computer software
you’ll encounter. Essentially, a spyware program is an
unwanted plug-in that attaches itself, leech-like, to your
browser or operating system without your permission. It
then harasses you with advertisements, or just bogs down
your computer with unnecessary operations (like recording
your surfing habits and sending them to a Big-Brother-like
marketing company). Spyware thrives like a weed, particu-
larly on the Windows operating system.

Spyware is notoriously difficult to remove. If you see the
telltale signs—a sudden slowdown in Web access, Web
page requests that get redirected to the wrong place, or
pop-up ads that materialize out of nowhere, even when
you aren’t using your Web browser—you should have your
computer checked out. The best remedy is a spyware
removal tool that scans for delinquent programs and
removes them, much like a virus scanner. Good bets
include Spybot Search & Destroy (www.safer-networking.
org), Microsoft’s Windows Defender (www.microsoft.com/
defender), which is included with Windows Vista and avail-
able to download for Windows XP fans, and Lavasoft’s Ad-
Aware (www.lavasoftusa.com/software/adaware).

http://www.safer-networking.org
http://www.safer-networking.org
http://www.microsoft.com/defender
http://www.microsoft.com/defender
http://www.lavasoftusa.com/software/adaware
http://browser.netscape.com/releases
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers

14 Creating a Web Site: The Missing Manual

Planning a Web Site

rarely worth the effort (see the box on this page). Instead, most people get another
company to give them a little space on an existing Web server, usually for a
monthly fee. In other words, you need to rent some space on the Web.

Often, you can rent this space from the same company you use for Internet access,
or it may already be included with your Internet connection package for free.
Alternatively, you can turn to a dedicated Web hosting company. Either way,
you’re going to take the Web sites you build and copy them to some far-off computer
that will make sure your talents can be enjoyed by a worldwide audience.

In Chapter 3, you’ll learn more about how a Web browser navigates the Web to
find a specific Web page. But for now, keep focusing on the big picture so you can
start planning your first Web site.

Planning a Web Site
The last thing you need before you experience the joy of performing your first few
Web creation tricks is to be buried under an avalanche of theory. However, every
new Web site author can save time and effort by doing a little bit of planning
before diving in to create a complete Web site. In the following sections, you’ll
consider some quick guidelines to get you on the right path.

Types of Sites
You don’t have much chance of creating a successful Web site if you haven’t
decided what it’s for. Some people have a very specific goal in mind (like getting
hired for a job or promoting a book), while others are just planning to unleash

FREQUENTLY ASKED QUESTION

Becoming a Web Host
Can I run a Web server?

In theory, you definitely can. The Web was designed to be
an open community, and no one is out to stop you. But in
practice, it’s not at all easy—no matter how many computer-
savvy relatives you may have.

Several monumental challenges prevent all but the most
ambitious people from running their own Web servers. The
first is that you need to have a reliable computer that runs
24 hours a day. That computer also needs to run special
Web hosting software that’s able to serve up Web pages
when browsers request them.

The next problem is that your computer requires a special
type of connection to the Internet, called a fixed IP address.

The IP address is a number that identifies your computer on
the Web. (IP stands for Internet Protocol, which is the
super-successful standard that lays down the rules that gov-
ern how different devices communicate on a network.)

In order to have your computer run a Web site and make
sure others can find it, you need to make sure your IP
address is fixed—in other words, you need to lock it down
so it’s not constantly changing. Most ISPs (Internet Service
Providers) randomly assign new IP addresses as they’re
needed and change them at a whim, which means most
people can’t use their computers to host a permanent Web
site—at least not without special software. If you’re still inter-
ested, you can call your ISP to ask if they provide a fixed IP
address service, and at what cost.

Chapter 1: Preparing for the Web 15

Planning a Web Site

their self-expression. Either way, take a look at the following list to get a handle on
the different types of Web sites you might want to create:

• Personal sites are all about you. As the world gets more Web-savvy, it seems
everyone is building online homes. Whether it’s to share pictures of Junior with
the relatives, chronicle a trip to Kuala Lumpur, or just post your latest thoughts
and obsessions, it’s no longer unusual to have a personal Web site. In fact,
everyone from tweens to grandmothers is jumping in.

If your plan is to create a personal Web site, think about what its format should
be, and how you’ll use it. Do you want to post regularly updated news tidbits in
chronological format (in which case you might be interested in creating a blog,
as covered in the bullet below)? Perhaps you want to create something more
ambitious, like an online picture album or a site featuring your family’s history.
Either way, you should decide what you want your site to focus on before you
start slapping pages together.

• Blogs (Figure 1-2) are personal Web sites organized like an online diary. The typi-
cal blog (short for Web logs) provides a list of entries in reverse chronological
order, which means that whenever you visit the site, you see the latest news at the
top of the page. These blogs are a great way to while away the hours and keep in
touch with friends in far-off places. But before you choose this type of site, make
sure you have plenty of free time. Nothing says “dead site” like a blog that hasn’t
been updated in eight months. By contrast, personal Web sites that aren’t in a
date-specific format can linger on quite happily without regular updates.

Figure 1-2:
Blogs are a great way to
keep in touch, letting you
share pictures and day-
to-day reflections with an
unlimited audience. If
blogs satisfy your Web
needs, you might not
need to learn XHTML or
add anything else to your
Web site. Instead, skip
straight to Chapter 17 to
learn about the blogging
services that make it
easy.

16 Creating a Web Site: The Missing Manual

Planning a Web Site

If you just want to create a blog with minimum fuss, you can sacrifice your
independence and join the masses on a Web site that offers free blog hosting,
like Blogger (www.blogger.com). Alternatively, you can set out to create and host
a blog on your own Web site. Either way, you’ll probably create your blog
entries using a specialized tool that dodges the complexities of Web page writ-
ing. If this sounds like your cup of tea, skip straight to Chapter 17.

Tip: Blogs aren’t just for your personal life. They’ve become tremendously popular with computer geeks
and IT workers as a way to share information and chat about a variety of topics, computer-related or
otherwise. For example, Microsoft programmers and Google engineers use them to announce new prod-
ucts, discuss sought-after features, and generally muse about the future.

• Résumé sites can be powerful career-building tools. Rather than photocopy a
suitcase full of paper résumés, why not send emails and distribute business
cards that point to your online résumé? Best of all, with a little planning you can
add more details to your résumé Web site, like links to companies where you’ve
worked, online portfolio samples, and even background music playing “YMCA”
(which is definitely not recommended).

• Topical sites focus on a particular subject that interests you. If you’re more
interested in building a Web site about your favorite music, art, books, food,
political movement, or American Idol contestants than you are in talking about
your own life, then a topical Web site is for you.

Before you set out to create a topical Web site, consider whether other people
with a similar interest will be interested in visiting your site, and take a look at
existing sites on the topic. The best topical Web sites invite others with the same
interest to join in. (If your Web site is really successful, you might want to use
the techniques in Chapter 12 to let visitors talk to you and each other.) The
worst Web sites present the same dozen links you can find anywhere else.
Remember, the Web is drowning in information. The last thing it needs is
another Pamela Anderson Fan Emporium.

• Event sites aren’t designed to weather the years—instead, they revolve around a
specific event. A common example is a wedding Web site. The event hosts cre-
ate it to provide directions, background information, links to gift registries, and
a few romantic photos. When the wedding is over, the Web site disappears—or
morphs into something different (like a personal Web site chronicling the honey-
moon). Other events that might be treated in a similar way include family
reunions, costume parties, or do-it-yourself protest marches.

• Promotion sites are ideal when you want to show off your personally produced
CD or hot-off-the-presses book. They’re geared to get the word out about a spe-
cific item, whether it’s handmade pottery or your own software. Sometimes,
these Web sites evolve into small-business sites, where you actually sell your
wares (see the “Small business” bullet on the next page).

http://www.blogger.com

Chapter 1: Preparing for the Web 17

Planning a Web Site

• Small business (or e-commerce) sites show off the most successful use of the
Web—selling everything from portable music players to prescription drugs.
E-commerce sites are so widespread that it’s hard to believe that when the Web
was first created, making a buck was far from anyone’s mind.

Creating a full-blown e-commerce site like Amazon.com or eBay is far beyond
the abilities of a single person. These sites need the support of complex pro-
grams and computer-genius-level programming languages. But if you’ve come
to the Web to make money, don’t give up hope! Innovative companies like PayPal
and Yahoo provide subscription services that can help you build shopping-
cart-style Web sites and accept credit card payments. You can also host Google
ads to rake in some cash. You’ll learn about these great tricks in Chapter 13.

Understanding Your Audience
Once you pinpoint your Web site’s raison d'être, you should have a better idea
about who your visitors will be. Knowing and understanding your audience is cru-
cial to making your Web site effective. (And don’t even try to suggest you’re creating
a site just for yourself—if you were, there’s no reason to put it on the Internet at
all!)

Not only do you need to understand your audience, you also need to understand
that audience’s computer capabilities. Good Web designers avoid using fancy frills
unless everyone can experience them. Nothing’s more disappointing to a visitor
than getting to a site rich with graphics, only to find that they can’t enjoy them
because their PC’s underpowered. To avoid these letdowns and reach as many peo-
ple as possible, you need to keep your visitors’ computer capabilities in mind as
you build and improve your pages.

Unfortunately, there’s no single set of specifications you can use to develop your
site, because everyone has a slightly different setup. The best strategy is to stick to
widely accepted Web standards (a strategy you’ll begin to explore in Chapter 2,
when you meet XHTML) and try out your site on different computers (which can
be time-consuming). Finally, to minimize the risk of incompatibilities, watch out
for these common problem areas:

• Computer monitors aren’t all created equal. Some computers use a smaller
screen resolution (number of pixels), so they can’t show as much content as oth-
ers. If you create the perfect Web site for your wide-screen monitor, you might
find that it’s unbearably cramped (or even worse, partly amputated) on another
screen.

• Non-standard fonts are another headache. Imagine you create a Web page for a
rent-a-clown service using a font named FunnyKidzScript. When you check
your page out on another computer that doesn’t have that font, your text will
revert to an automatic, no-frills typeface. At best, it’s not what you intended; at
worst, it’s indecipherable.

18 Creating a Web Site: The Missing Manual

Planning a Web Site

• Large pictures are another trap that’s easy to fall into if you’re testing your site
on a speedy computer with a fast Internet connection. When dial-up visitors try
to see your work, they’ll be stuck waiting for the goods, and might just give up.
Fortunately, there’s a lot you can do to slim down your graphics (which you’ll
learn in Chapter 7).

• Plug-ins, media players, and browser-specific features enliven your pages with
animations, movies, and interactive features, but you need to treat them with
caution. In the world of the Web, anything that limits how many visitors can
enjoy your work is a danger. Steer clear of cutting-edge features that aren’t
widely supported.

The creators of the most popular Web sites have carefully considered all these
issues. For example, think about the number of people whose computers won’t let
them buy a book on Amazon, make a bid on eBay, or conduct a search on Google.
(Are you thinking of a number that’s close to 0?)

It’s been widely remarked that the average Web designer goes through three stages
of maturity: 1) “I’m just learning, so I’ll keep it simple;” 2) “I’m a Web guru, and
I’ll prove it by piling on the features;” 3) “I’ve been burned by browser compatibil-
ity problems, so I’ll keep it simple.”

The Lifespan of Your Site
The Web is a constantly changing place. Today’s Web isn’t the same as last
year’s—or even the Web of 15 seconds ago.

Here are two valuable truths about Web site lifetimes:

• The best Web sites are constantly improving. Their creators add support for
new browser features, tweak their looks to match new style trends, and—most
important of all—constantly add new content.

• When a Web site stops changing, it’s on life support. Many great Web sites
have crumbled through neglect.

Think about your favorite sites. Odds are, they change daily. A good Web site isn’t
one you consult once and then leave behind. It’s a site you can bookmark, and
then return to periodically. In a sense, a Web site is like a television channel. If you
aren’t adding new information, your site’s showing reruns.

This problem poses a significant challenge. Making a Web site is hard enough, and
keeping it up to date is even more challenging. Here are a few tips that can help
you out:

• Think in stages. When you put your first Web site online, it won’t be complete.
Instead, think of it as version 1, and start planning a few changes for the next
version. Bit by bit, and stage by stage, you can add everything you want your
site to have.

Chapter 1: Preparing for the Web 19

Planning a Web Site

• Select the parts you can modify regularly, and leave the rest alone. There’s no
way you can review and revise an entire Web site every week. Instead, your best
strategy is to identify sections you want to change regularly. On a personal site,
for example, you might put news on a separate page, and update just that page.
On a small-business Web site, you might concentrate on the home page so you
can advertise new products and upcoming specials.

• Design a Web site that’s easy to change. This is the hardest principle to follow,
because it requires not only planning, but a dash of hard-won experience. As
you become a more experienced Web maven, you’ll learn how to simplify your
life by making your pages easier to update. One method is to start out by sepa-
rating information into several pages, so you can add new content without
needing to reorganize everything. Another technique is to use style sheets to
separate page formatting from your content (see Chapter 6). That way, you can
easily insert new material without having to reformat the content from scratch
to make sure it matches the rest of your page.

Practice Good Design
Every year, hundreds of Web sites “win” awards for being abjectly awful. Some-
times, they have spinning globes and hot pink text on a lime green background.
Other times, they have clunky navigation systems and grotesque flashing back-
grounds. But no matter what the design sins, Web sites that are bad—hideously
bad—are strangely common.

Maybe it’s because creating a Web site really isn’t that hard. Or maybe it’s because
we all have an impulse to play with color, texture, and sound, and sometimes new-
fangled Web tools encourage our ugliest instincts. For a glimpse at some of the all-
too-familiar mistakes, go to www.angelfire.com/super/badwebs (see Figure 1-3).
You can also visit www.worstoftheweb.com, which profiles new offenders every
month.

This book won’t teach you to become a professional Web designer. However, it
will guide you in the time-honored art of Not Making Bad Web Sites. Throughout
this book, you’ll find helpful tips, suggestions, and warnings about usability and
design. Look specifically for the “Design Time” boxes. In the meantime, here are a
few general principles that can help make sure you never wind up on a worst-of-
the-Web list (unless you absolutely want to).

• Keep it simple (and don’t annoy your visitors). You can cram a lot of frills and
goodies into a Web page. But unless they serve a purpose, just say no. You’ll
find that exercising restraint can make a few fancy touches seem witty and
sophisticated. Adding a lot of fancy touches, on the other hand, can make your
site seem heady and delusional. If you pare down the tricks, you’ll make sure
that your graphical glitz doesn’t overshadow your site’s content, and your visi-
tors aren’t driven away in annoyance.

http://www.angelfire.com/super/badwebs
http://www.worstoftheweb.com

20 Creating a Web Site: The Missing Manual

The Ingredients of a
Web Site

• Be consistent. No matter how logical you think your Web site is, the majority of
visitors probably won’t think the same way. To cut down on the confusion,
from one page to another, use similar organization, similar headings, similar
graphics and links, a single navigation bar, and so on. These touches help make
visitors feel right at home.

• Know your audience. Every type of Web site has its own unwritten conven-
tions. You don’t need to follow the same design in an e-commerce store as you
do in a promotional page for an experimental electric harmonic band. To help
decide what is and isn’t suitable, check out lots of other sites that deal with the
same sort of material as yours.

The Ingredients of a Web Site
The trickiest part of building a Web site is coordination. To get it right, you not
only need the right tools, you also need to coordinate with other companies to get
your Web site onto the World Wide Web and (optionally) to give it a catchy
address like www.StylinViolins.com. In this section, you’ll create a quick Web shop-
ping list that maps out what you need—and tells you where you’ll learn about it in
the rest of this book.

• Web pages. Every Web site is made up of individual pages. To create a basic
Web page, you need to understand XHTML (Extensible HyperText Markup
Language), the modern language of the Web. You’ll create your first Web page
in the next chapter.

Figure 1-3:
Here’s a Web site that
gets it all wrong—
deliberately. With a
combination of scrolling
titles, a crazily blinking
background, and
unreadable text,
www.angelfire.com/
super/badwebs does a
good job of
demonstrating everything
you should avoid in your
own Web pages.

http://www.angelfire.com/super/badwebs

Chapter 1: Preparing for the Web 21

The Ingredients of a
Web Site

• Web space. Creating Web pages is fun, but to let other people take a look at
them, you need to put them on a Web server. In Chapter 3, you’ll consider your
options for getting your first Web page online, either through a fee-based ser-
vice or a free alternative.

• A domain name. There’s a world of difference between the Web site address
www.inetConnections.com/Users/~jMallone012/web and www.JackieMallone.com.
You can get your own personalized domain name, if it’s available. It’s not free,
but the cost is pretty small, about $10 or $15 per year. If you want to put your
Web site address on a business card or a brochure for a small business, there’s
really no better choice than your own domain name. In Chapter 3, you’ll learn
how to buy one.

Note: The domain name is the first part of a Web address, which identifies the Web server that’s storing
and serving up your site. In the URL www.ebay.com/help/index.html, the domain name is www.ebay.com.
You’ll learn much more about domain names and URLs (short for Universal Resource Locator), and how
they work, in Chapter 3.

• Web design tools. Creating Web pages from scratch is a great way to learn a
new skill, but it’s far too slow and painful to create a complete Web site that
way. To get to the next level, you need to step up to a professional Web design
tool. If you have a commercial program like Dreamweaver, you’re in good
hands. Even if you don’t, there are many good free and shareware products that
can help you out. Chapter 4 explains your options and helps you get started.

• Hyperlinks. On its own, a single Web page can only do so much. The real magic
begins when you bind multiple pages together using links. Chapter 8 intro-
duces the versatile hyperlink, which lets visitors move around your site.

• Indispensable extras. Once you master the basics of Web pages and Web sites,
there’s more ground to conquer. You can get your site listed in a search engine
(Chapter 11), establish your own community forum (Chapter 12), and sell items
(Chapter 13). Still hungry for more? Why not animate your page with a sprinkling
of JavaScript code (Chapter 14), create eye-catching buttons (Chapter 15), and add
audio and video (Chapter 16)? All these features take you beyond ordinary XHTML
and put you on the road to becoming a genuine Web expert.

http://www.ebay.com/help/index.html
http://www.ebay.com

23

Chapter 2chapter

2

Creating Your First
Page

Web pages are the basic unit of a Web site, and every Web site is a collection of one
or more pages. The ideal Web page contains enough information to fill the width
of a browser window, but not so much that readers need to scroll from morning
until lunchtime to get to the page’s end. In other words, the ideal page strikes a
balance—it avoids the lonely feeling caused by too much white space, and the
stress induced by an avalanche of information.

The best way to get a handle on what a Web page should hold is to look at your
favorite sites. A news site like www.nytimes.com displays every news article on a
separate page (and subdivides longer stories into several pages). At an e-commerce
shop like www.amazon.com, every product has its own page. Similarly, a personal
Web site like www.MyUndyingLoveForPigTrotters.com may be divided into sepa-
rate Web pages with titles like “About Me,” “Vacation Photos,” “Résumé,” and
“Top Secret Recipes for Pig Parts.”

For now, don’t worry too much about how to divide your Web site into pages—
that’s a task you’ll revisit in Chapter 8 when you start linking pages together.
Instead, your first goal is to understand how a basic page works and how to create
one of your own. In this chapter, you’ll get a chance to build that first page. On the
way, you’ll learn the essential details of the most important standard in Web site
design: XHTML.

http://www.nytimes.com
http://www.amazon.com

24 Creating a Web Site: The Missing Manual

The Anatomy of a
Web Page

The Anatomy of a Web Page
Web pages are written in HTML (HyperText Markup Language) or the closely
related XHTML (Extensible HyperText Markup Language) standard. Essentially,
HTML is the original language of the Web, while XHTML is the modernized ver-
sion. It doesn’t matter whether your Web page contains a series of text-only blog
entries, a dozen pictures of your pet lemur, or a heavily formatted screenplay—
odds are that, if you’re looking at it in a browser, it’s an HTML or XHTML page.

Note: In this book, you’ll focus all your attention on XHTML, which is the latest and greatest Web markup
language. However, most of what you’ll learn applies equally well to the older HTML standard. For more
information about how the two stack up, see the box on page 25.

XHTML plays a key role in Web pages—it tells a Web browser how to display the
contents of a page. Although plenty of computer programs can format text (take
Microsoft Word, for instance), it’s almost impossible to find a single standard that
every type of computer, operating system, and Web-enabled device supports.
XHTML fills the gap by supplying information that any browser can interpret.
These formatting details include special instructions (called tags) that tell a
browser when to start a paragraph, italicize a word, or display a picture. To create
your own Web pages, you need to learn to use this family of tags.

XHTML is such an important standard that you’ll spend a good portion of this
book digging through most of its features, frills, and shortcomings. Every Web
page you build along the way will be a bona fide XHTML document.

Note: The XHTML standard doesn’t have anything to do with the way a Web browser accesses a page on
the Web. Instead, HTTP (HyperText Transport Protocol) is the low-level communication system that lets
two computers exchange data over the Internet. If you were to apply the analogy of a phone conversa-
tion, the telephone line is HTTP, and the juicy tidbits of gossip you’re exchanging with Aunt Martha are the
XHTML documents.

Cracking Open an XHTML Document
On the inside, an XHTML page is actually nothing more than a plain-vanilla text
file. That means that every Web page consists entirely of letters, numbers, and a
few special characters (like spaces, punctuation, and everything else you can spot
on your keyboard). This file is quite different from what you’d find if you cracked
open a typical binary file on your computer. A binary file contains genuine com-
puter language—a series of 0s and 1s. If another program is foolish enough to try
and convert this binary information into text, you end up with gibberish.

To understand the difference between a text file and a binary file, take a look at
Figure 2-1, which examines a traditional Word document under the microscope.
Compare that with what you see in Figure 2-2, which dissects an XHTML docu-
ment with the same content.

Chapter 2: Creating Your First Page 25

The Anatomy of a
Web Page

To take a look at an XHTML document, all you need is an ordinary text editor, like
Notepad, which is included on all Windows computers. To run Notepad, click the
Start button, and then select All Programs ➝ Accessories ➝ Notepad (in Windows
Vista) or Programs ➝ Accessories ➝ Notepad (in every other version of Win-
dows). Choose File ➝ Open, and then begin hunting around for the XHTML file
you want. On the Mac, try TextEdit, which you can find at Applications ➝ TextEdit.
Choose File ➝ Open, and then find the XHTML file. If you downloaded the com-
panion content for this book (all of which you can find on the Missing CD page at
www.missingmanuals.com), try opening the popsicles.htm file, which is shown in
Figure 2-2.

Unfortunately, most text editors don’t let you open a Web page directly from the
Internet. To do that, they’d need to be able to send a request over the Internet to a
Web server, which is a job best left to a Web browser. However, most browsers do

FREQUENTLY ASKED QUESTION

Why XHTML Beats HTML
Lots of people still use HTML. Why should I bother with its
grown-up cousin, XHTML?

It’s true that you can create equally snazzy pages using ordi-
nary HTML. However, three good reasons to step up to
XHTML are:

• XHTML prevents you from developing nasty
habits. HTML is a relatively lax standard that lets
you make a variety of mistakes and be generally
sloppy. XHTML isn’t nearly as forgiving—it forces you
to polish your pages and do things right the first
time. (Incidentally, most browsers won’t catch your
XHTML mistakes. For that, you need an XHTML vali-
dation tool, like the online page checker described
on page 49.)

• XHTML helps you avoid browser compatibility
issues. When processing HTML pages, some brows-
ers place a greater emphasis on backward compati-
bility than on standards compliance. For example,
when Internet Explorer encounters an HTML page, it
attempts to behave the same way earlier versions
did 10 years ago, quirks and all. This ensures that
really old Web pages will still display correctly, even
if they rely on ancient browser bugs that have long

since been fixed. Unfortunately, different browsers
have different idiosyncrasies, so they won’t always
display an HTML document in the same way. On the
other hand, when browsers process an XHTML page,
they follow the rules to the letter. This ensures that
Web pages look the same (or as close as possible)
on all browsers. That’s why using the more rigorous
XHTML standard is the way to go.

• XHTML helps you fit in with your trendy Web
designer friends. Web design might not be a pop-
ularity contest, but it never hurts to speak the same
language as your peers. That way, you have a better
chance of learning from other people’s pages and
getting help when you run into trouble.

XHTML also has a number of benefits that appeal more to
programmers than to Web site designers. For example,
because XHTML is more consistent, it makes life easier for
Web search engines and other types of automated tools
that need to examine Web content. XHTML also makes it
easier to design scaled-down Web browsers on specialized
platforms, like cellphones, pocket computers, and even
kitchen appliances.

http://www.missingmanuals.com

26 Creating a Web Site: The Missing Manual

The Anatomy of a
Web Page

give you the chance to look at the raw XHTML for a Web page. Here’s what you
need to do:

1. Open your preferred browser.

2. Navigate to the Web page you want to examine.

3. In your browser, look for a menu command that lets you view the source con-
tent of the Web page. In Internet Explorer (or Opera), select View ➝ Source. In
Firefox and Netscape, use View ➝ Page Source. In Safari, View ➝ View Source
does the trick. Isn’t diversity a wonderful thing?

Once you make your selection, a new window appears showing you the XHTML
used to create the Web page. This window may represent a built-in text viewer
that’s included with your browser, or it may just be Notepad or TextEdit. Either
way, you’ll see the raw XHTML.

Figure 2-1:
Your PC stores Word and most other
documents as binary files (consisting of just
0s and 1s).

Top: Even if your document looks relatively
simple in Word, it doesn’t look nearly as
pretty when you bypass Word and open
the file in an ordinary text editor like
Notepad or TextEdit (bottom).

Bottom: Text editors usually convert a file’s
string of 0s and 1s into a meaningless
stream of intimidating gibberish. The actual
text is there somewhere, but it’s buried in
computer gobbledygook.

Chapter 2: Creating Your First Page 27

The Anatomy of a
Web Page

Tip: Firefox has a handy feature that lets you home in on part of the XHTML in a complex page. Just
select the text you’re interested in on the Web page, right-click it, and then choose View Selection Source.

Most Web pages are considerably more complex than the popsicles.htm example
shown in Figure 2-2, so you need to wade through many more XHTML tags. But
once you acclimate yourself to the jumble of information, you’ll have an extremely
useful way to peer under the covers of any Web page. In fact, professional Web
developers often use this trick to check out the work of their competitors.

Creating Your Own XHTML Files
Here’s one of the best-kept secrets of Web page writing: You don’t need a live Web
site to start creating your own Web pages. That’s because you can easily build and
test Web pages using only your own computer. In fact, you don’t even need an
Internet connection.

Figure 2-2:
You store XHTML documents as ordinary
text.

Top: The Word document in rewritten as an
XHTML document and displayed in a Web
browser.

Bottom: When you display an XHTML file in
a text editor, you can easily spot all the text
from the original document, along with a
few extra pieces of information inside angle
brackets (< >). These are XHTML tags.

28 Creating a Web Site: The Missing Manual

The Anatomy of a
Web Page

The basic approach is simple:

1. Fire up your favorite text editor.

2. Start writing XHTML content.

Of course, this part is a little tricky because you haven’t explored the XHTML
standard yet. Hang on—help is on the way in the following sections.

3. When you finish your Web page, save the document (a simple File ➝ Save usu-
ally does it).

By convention, XHTML documents typically have the file extension .htm or
.html (which they inherit from the original HTML standard). For example, a
typical XHTML file name is LimeGreenPyjamas.html. Strictly speaking, these
extensions aren’t necessary, because browsers are perfectly happy displaying
Web pages with any file extension. You’re free to choose any file extension you
want for your Web pages. The only rule is that the file has to contain valid

POWER USERS’ CLINIC

Going Beyond XHTML
The creators of HTML designed it perfectly for putting
research papers and other unchanging documents on the
Web. They didn’t envision a world of Internet auctions,
e-commerce shops, or browser-based games. To add all
these features to the modern Web browsing experience,
crafty people have supplemented XHTML with some tricky
workarounds. And although it’s more than a little confusing
to consider all the ways you can extend XHTML, doing so is
the best way to really understand what’s possible on your
own Web site.

Here’s an overview of the two most common ways to go
beyond XHTML:

• Embedded programs. Most modern browsers sup-
port Java applets, small programs than run inside
your Web browser and display information in a win-
dow inside a Web page. (To try one out and play
some head-scratching Java Checkers against a com-
puter opponent, go to http://thinks.com/java/
checkers/checkers.htm.) Internet Explorer can also
host special tools called ActiveX controls. Both Java
applets and ActiveX controls are miniature pro-
grams that you can use in a Web page (if a browser
supports them), but neither is written in XHTML.

• Browser plug-ins. Browsers are designed to deal
with XHTML, and they don’t recognize other types of
content. For example, browsers don’t have the abil-
ity to interpret an Adobe PDF document, which is a
specialized type of file that preserves the formatting
of documents. However, depending on how your
browser is configured, you may find that when you
click a hyperlink that points to a PDF file, a PDF
reader launches. The automatic launch happens if
you installed a plug-in from Adobe that runs the
Acrobat software (which displays PDF files). Another
example of a common plug-in is Adobe Flash, which
shows animations on a Web page. If you go to a
page that includes a Flash animation and you don’t
have the plug-in, you’ll be asked if you want to
download it. (You’ll use Flash to put a slick music
player in your Web page in Chapter 16. In the
meantime, check out www.ferryhalim.com/orisinal
to play some of the best free Flash games around.)

Unfortunately, there’s no surefire way to tell what exten-
sions are at work on a particular page. In time, you’ll learn
to spot many of the telltale signs, because each type of con-
tent looks distinctly different.

http://thinks.com/java/checkers/checkers.htm
http://thinks.com/java/checkers/checkers.htm
http://www.ferryhalim.com/orisinal

Chapter 2: Creating Your First Page 29

The Anatomy of a
Web Page

XHTML content. However, using the .htm or .html file extensions is still a good
idea; not only does it save confusion, it also helps your PC recognize that the file
contains a Web page. For example, when you double-click a file with the .htm
or .html extension, your PC automatically opens it in your Web browser.

For the record, there’s no difference between .htm and .html—which one you
use is just a matter of preference.

Note: It’s also important to use the .htm or .html extension if you plan to upload your files to a Web
server so other people can view them (which, of course, you do). Prickly Web servers may refuse to hand
out pages that have nonstandard file extensions.

4. To take a look at your work, open the file in a Web browser.

If you use the extension .htm or .html, it’s usually as easy as double-clicking the
file. If not, you may need to type in the full file path in your Web browser’s
address bar, as shown in Figure 2-3.

Remember, when you compose your XHTML document in a text editor, you
won’t be able to see the formatted document. All you’ll see is the plain text and
the XHTML formatting instructions.

Tip: If you change and save the file after you open it in your Web browser, you can take a look at your
recent changes by hitting the browser’s Refresh button.

Figure 2-3:
A browser’s address bar
identifies where the
current Web page is
really located. If you see
http://, it comes from a
Web server on the
Internet (top). If you’re
looking at a Web page
on your own computer,
you’ll just see an
ordinary file path
(middle, showing a
Windows file location in
Internet Explorer), or
you’ll see a URL that
starts with the prefix
“file:///” (bottom,
showing a Mac file
location in Safari). Local
addresses depend on the
browser and operating
system you’re using.

30 Creating a Web Site: The Missing Manual

The Anatomy of a
Web Page

The Document Type Definition
As you’ve already learned, Web browsers recognize two markup languages: old-
school HTML and today’s XHTML. When a browser examines a Web page, it needs
to determine which language you wrote it in. To tell the browser what standard your
page uses, you place something called a document type definition (DTD) at the very
beginning of the page (see Figure 2-4). A DTD is also known as a doctype.

The doctype is cryptic code that looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

This doctype specifies that the Web page uses the strict version of the XHTML 1.0
standard. This is the most common XHTML choice, and it’s the doctype you’ll see
in most of the examples in this book.

Alternatively, you can use a watered-down version of XHTML 1.0 called transitional.
Transitional XHTML lets you use some HTML formatting features that are being
phased out in XHTML. The word transitional hints at the fact that this HTML sup-
port is only temporary. Later versions of XHTML won’t give you this option.

Here’s the doctype for transitional XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The best time to use transitional XHTML is when you’re converting an old HTML
page to XHTML, and you haven’t yet met all the requirements of strict XHTML.
Otherwise, strict XHTML is a better standard, because it keeps you on the high
road of Web design. And don’t worry about missing features. Serious Web design-
ers don’t need the cheap formatting hacks that HTML used—instead, they use a
more powerful and better-organized style sheet standard, discussed in Chapter 6.

Figure 2-4:
The document type definition (DTD) is the
first piece of information you’ll see in an
XHTML file. It tells the browser what markup
standard you used to write the page. If a
Web page doesn’t include a doctype, the
browser assumes it contains HTML content
rather than XHTML.

Chapter 2: Creating Your First Page 31

The Anatomy of a
Web Page

Tip: When looking at someone else’s Web page, the doctype is the only reliable way for you to figure
out if the page is written in HTML or XHTML.

At this point, you might wonder what happens if you create a Web page without a
doctype. In this situation, the browser assumes you wrote your page in HTML.
And because XHTML is really just a stricter form of HTML, the browser still dis-
plays your document successfully. However, all is not well. In many browsers,
you’ll also enter the dreaded quirks mode. For example, a missing doctype causes
Internet Explorer to process your page in a way that’s consistent with previous ver-
sions of Internet Explorer, but not with other browsers. As a result, the page looks
subtly but annoyingly inconsistent on different browsers, often with differently
sized text, inconsistent margins and borders, and improperly positioned content.

Tip: XHTML 1.0 strict and XHTML 1.0 transitional are the most commonly used types of XHTML, so you’ll
want to keep these two doctypes handy. The easiest option is to copy one from an existing Web page, and
then paste it into any new Web pages you create.

UP TO SPEED

The Many Flavors of XHTML
XHTML 1.0 strict and XHTML 1.0 transitional aren’t the only
options for creating XHTML documents. Here are some
other types of XHTML:

• XHTML 1.0 Frameset. This standard supports
frames, a feature that lets you bring more than one
Web page together in a single browser window.
You’ll learn how to use frames in Chapter 10.

• XHTML 1.1. This standard is a modest upgrade to
XHTML, which removes the transitional and frameset
options and improves the handling of East Asian lan-
guages. However, XHTML 1.1 is rarely used because
of an obscure issue with the way Web servers trans-
mit information. Essentially, when a Web server
responds to a browser request, it tells the browser
what type of information it’s sending. When send-
ing an HTML or XHTML 1.0 document, it tells the
browser that the content type is text/html. When
sending an XHTML 1.1 document, it tells the
browser that the content is application/xhtml+xml.
Unfortunately, even the latest versions of Internet
Explorer don’t support the application/xhtml+xml
content type. Workarounds exist, but they’re ugly.

• XHTML Basic 1.1. This standard defines a more
limited version of XHTML 1.1 that’s intended for less
powerful Web devices (like mobile phones).

• XHTML 2 and X/HTML 5. These standards are
locked in a duel to decide how XHTML will evolve. In
one corner is the official XHTML 2 standard, which
has been under development for more than 5 years.
When it’s finished, it will define a revised, stream-
lined version of XHTML that finally breaks compati-
bility with HTML. However, this radical new direction
makes the software companies that build browsers
nervous. They’re also worried that XHTML 2 is more
about documents than interactive Web programs. In
response, they’ve started working on a revised ver-
sion of XHTML that keeps closer compatibility with
previous versions of XHTML and HTML. This com-
peting standard is named X/HTML 5, because it
builds on the last version of HTML, which is HTML 4.

To learn more about these other XHTML-based standards,
check out the overview at http://en.wikipedia.org/wiki/
XHTML.

http://en.wikipedia.org/wiki/XHTML
http://en.wikipedia.org/wiki/XHTML

32 Creating a Web Site: The Missing Manual

XHTML Tags

XHTML Tags
Now that you know how to peer into existing XHTML files and create your own,
the next step is to understand what goes inside the average XHTML file. It all
revolves around a single concept—tags.

XHTML tags are formatting instructions that tell a browser how to transform ordi-
nary text into something that’s visually appealing. If you were to take all the tags
out of an XHTML document, the resulting Web page would consist of nothing
more than plain, unformatted text.

What’s in a Tag
You can recognize a tag by looking for angle brackets, two special characters that
look like this: < >. To create a tag, you type XHTML code between the brackets.
This code is for the browser’s eyes only; Web visitors never see it (unless they use
the View ➝ Source trick to peek at the XHTML). Essentially, the code is an instruc-
tion that conveys information to the browser about how to format the text that
follows.

For example, one simple tag is the tag, which stands for “bold” (tag names are
always lowercase). When a browser encounters this tag, it switches on boldface for-
matting, which affects all the text that follows. Here’s an example:

This text isn't bold. This text is bold.

This isn’t quite good enough for XHTML, though. The tag is known as a start
tag, which means it switches on some effect (in this case, bold lettering). To satisfy
the rules of XHTML, though, every start tag needs a matching end tag that switches
off the effect later in the document.

End tags are easy to recognize. They look the same as the start tag, except that they
begin with a forward slash. They look like this </ instead of like this <. So the end
tag for bold formatting is . Here’s an example:

This isn't bold. Pay attention! Now we're back to normal.

Which the browser displays as:

This isn’t bold. Pay attention! Now we’re back to normal.

This example shows another important principle in how browsers work. They
always process tags in order, based on where they show up in your text. To get the
bold formatting in the right place, you need to make sure you position the
and tags appropriately.

As you can see, the browser has a fairly simple job. It scans through an XHTML
document, looking for tags and switching on and off various formatting settings. It
takes everything else (everything that isn’t a tag) and displays it in the Web
browser window.

Chapter 2: Creating Your First Page 33

XHTML Tags

Note: Adding tags to plain-vanilla text is known as marking up a document, and the tags themselves are
known as XHTML markup. When you look at raw XHTML, you may be interested in looking at the content
(the text that’s nestled between the tags), or the markup (the XHTML tags themselves).

Understanding Elements
As you’ve seen, tags come in pairs. When you use a start tag (like for bold),
you have to also include an end tag (like). This combination of start and end
tags and the text in between them makes up an XHTML element.

Here’s the basic idea: elements are containers (see Figure 2-5). You place some
content (like text) inside that container. For example, when you use the and
 tags, you create a container that applies bold formatting to the text in
between. You place text inside the container to make that text appear boldfaced. As
you create your Web pages, you’ll wrap different pieces of text in different contain-
ers that do different things. If you think about elements this way, you’ll never forget
to include the end tag.

Note: When someone refers to the element, it means the whole shebang—start tag, end tag, and the
content inside. When someone refers to a tag, it simply means the instruction that starts the element.

Of course, life wouldn’t be much fun (and computer books wouldn’t be nearly as
thick) without exceptions. When you get right down to it, there are really two types
of elements:

• Container elements. The container element is, by far, the most common type.
Container elements apply formatting to the content nestled between the start
and end tags.

• Standalone elements. Some tags don’t come in pairs. These standalone ele-
ments don’t turn formatting on or off. Instead, they insert something into a
page, like an image. One example is the
 element, which inserts a line
break in a page. Standalone elements include a slash character before the clos-
ing >, sort of like an opening and closing tag all rolled into one. This syntax is
handy because it clearly indicates that you have a standalone element on your
hands. Standalone elements are often called empty elements because there’s no
way to put any text inside them.

Figure 2-6 puts the two types of elements in perspective.

Figure 2-5:
To get bold text, you need to start out with the
correct container. It’s the familiar element.

Pay attention!

Start tag turns bold
formatting on

End tag turns bold
formatting offContent

An element

34 Creating a Web Site: The Missing Manual

XHTML Tags

Nesting Elements
In the previous example, you saw how to apply a simple element for bold for-
matting. Between the and tags, you put text that you wanted to make
bold. However, text isn’t the only thing you can put between a start and end tag.
You can also nest one element inside another. In fact, nesting elements is one of the
basic building-block techniques of Web pages. Nesting lets you apply more
detailed formatting instructions to text (for example it lets you create bold, itali-
cized text) by piling all the elements you need in the same place. Nesting is also
required for more complicated structures (like bulleted lists).

To see nesting in action, you need another element to work with. For the next
example, consider both the familiar element and the <i> element, which itali-
cizes text.

The question is, what happens if you want to make a piece of text bold and itali-
cized? XHTML doesn’t include a single element for this purpose, so you need to
combine the two. Here’s an example:

This <i>word</i> has italic and bold formatting.

When the browser chews through this scrap of XHTML, it produces text that looks
like this:

This word has italic and bold formatting.

Incidentally, it doesn’t matter if you reverse the order of the <i> and tags. The
following XHTML produces exactly the same result.

This <i>word</i> has italic and bold formatting.

Figure 2-6:
Top: This snippet of XHTML shows both a container
element and a standalone element.

Bottom: The browser shows the resulting Web page.Just do it.
Just say no.

This container element
bolds a word

This stand-alone element
inserts a line break

Chapter 2: Creating Your First Page 35

The XHTML
Document

However, you should always make sure that you close tags in the reverse order
from which you opened them. In other words, if you apply italic formatting and
then bold formatting, you should always switch off bold formatting first, and then
italic formatting. Here’s an example that breaks this rule:

This <i>word</i> has italic and bold formatting.

Finally, it’s worth noting that XHTML gives you many more complex ways to nest
elements. For example, you can nest one element inside another, and then nest
another element inside that one, and so on, indefinitely.

Note: If you’re a graphic-design type, you’re probably itching to get your hands on more powerful for-
matting elements to change alignment, spacing, and fonts. Unfortunately, in the Web world you can’t
always control everything you want. Chapter 5 has the lowdown, and Chapter 6 introduces the best solu-
tion, style sheets.

The XHTML Document
So far, you’ve been considering XHTML snippets—portions of a complete
XHTML document. In this section, you’ll learn how to put it all together and create
your first genuine Web page.

FREQUENTLY ASKED QUESTION

Telling a Browser to Ignore a Tag
What if I really do want the text “” to appear on my
Web page?

The tag system works great until you actually want to use
an angle bracket (< or >) in your text. Then you’re in a tricky
position.

For example, imagine you want to write the following bit of
text as proof of your remarkable insight:

The expression 5 < 2 is clearly false,
because 5 is bigger than 2.

When a browser reaches the less than (<) symbol, it
becomes utterly bewildered. Its first instinct is to assume
you’re starting a tag, and the text following “2 is clearly
false…” is part of a long tag name. Obviously, this isn’t
what you intended, and it’s certain to confuse the browser.

To solve this problem, you need to replace angle brackets
with the corresponding XHTML character entity. Character
entities always begin with an ampersand (&) and end with
a semicolon (;). The character entity for the less than sym-
bol is < because the lt stands for “less than.” Similarly,
> is the character entity for the greater than symbol.

Here’s the corrected example:

The expression 5 < 2 is clearly false,
because 5 is bigger than 2.

In your text editor, this doesn’t look like what you want.
However, when the browser displays this document, it
automatically changes the < into a < character, without
confusing it with a tag. You’ll learn more about character
entities on page 132.

36 Creating a Web Site: The Missing Manual

The XHTML
Document

The Basic Skeleton
To create a true XHTML document, you start out with three container elements:
<html>, <head>, and <body>. These three elements work together to describe the
basic structure of your page.

<html>
This element wraps everything (other than the doctype) in your Web page.

<head>
This element designates the header portion of your document. The header
can include some optional information about your Web page, including the
required title (which your browser displays in its title bar), optional search
keywords, and an optional style sheet (which you’ll learn about in
Chapter 6).

<body>
This element holds the meat of your Web page, including the actual content
you want to display to the world.

There’s only one right way to combine these three elements. Here’s the correct
arrangement of elements, with the doctype at the beginning of the page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

...

</head>

<body>

...

</body>

</html>

Every Web page uses this basic framework. The ellipsis (…) shows where you
insert additional information. The spaces between the lines aren’t required—
they’re just there to help you see the element structure more easily.

You’ll notice that the <html> start tag has an extra piece of information wedged
inside of it. This is a known as the XHTML namespace, and it, like the doctype, is
another non-negotiable part of the XHTML standard.

Once you have the XHTML skeleton in place, you need to add two more container
elements to the mix. Every Web page requires a <title> element, which goes in the
header section. Next, you need to create a container for text in the body section. One
all-purpose text container is the <p> element, which represents a paragraph.

Chapter 2: Creating Your First Page 37

The XHTML
Document

Here’s a closer look at the elements you need to add:

<title>
This element sets the title for your Web page. The title plays several roles.
First, Web browsers display the title of the current Web page at the top of the
window. Second, when a Web visitor bookmarks your page, the browser uses
the title to label the bookmark in your Bookmark (or Favorites) menu.
Third, when your page turns up in a Web search, the search engine usually
displays this title as the first line in the search results, followed by a snippet
of content from the page.

<p>
This indicates a paragraph. Web browsers don’t indent paragraphs, but they
do add a little space between consecutive paragraphs to keep them separated.

Here’s the Web page with these two new ingredients:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Everything I Know About Web Design</title>

</head>

<body>

<p></p>

</body>

</html>

If you open this document in a Web browser, you’ll find that the page is still
empty, but now the title appears (as shown in Figure 2-7).

Figure 2-7:
When a browser displays a
Web page, it shows the
page’s title at the top of the
window, with a little bit of
extra text tacked on the end.
If your browser uses tabbed
browsing (as Internet
Explorer does, shown here),
the title also appears in the
tab.

The title

38 Creating a Web Site: The Missing Manual

The XHTML
Document

As it stands right now, this XHTML document is a good template for future pages. The
basic structure is in place—you simply need to change the title and add some text.

Adding Content
You’re finally ready to transform this XHTML skeleton into a real document by
adding content. This detail is the most important, and it’s the task you’ll work on
through most of this book.

For example, let’s say you’re writing a simple résumé page. Here’s a very basic first
go at it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Hire Me!</title>

</head>

<body>

<p>I am Lee Park. Hire me for your company, because my work is off the

hizzle.</p>

</body>

</html>

This example highlights the modifications to the basic XHTML structure—a
changed title and a single line of text. It uses a single element inside the para-
graph, just to dress up the page a little. Before you go any further, you may want to
try creating this sample file in your own text editor (using the process you learned
on page 25) and opening it in your favorite Web browser (see Figure 2-8).

You’re now ready to build on this example by trying out all the XHTML tricks
described in the following sections. Next up, you’ll give Lee Park a better résumé.

Figure 2-8:
Welcome to the Web. This page doesn’t have much
in the way of XHTML goodies (and it probably won’t
get Lee hired), but it does represent one of the
simplest possible XHTML pages you can create.

Chapter 2: Creating Your First Page 39

The XHTML
Document

Tip: Even if you have high-powered XHTML editing software like Dreamweaver, don’t use it yet. To get
started learning XHTML, it’s best that you do it by hand so you understand every detail that’s going into
your Web page. Later on, when you’ve mastered the basics and are ready to create more sophisticated
Web pages, you’ll probably want to switch to other tools, as discussed in Chapter 4.

Structuring Text
As you start to create more detailed Web pages, you’ll quickly discover that build-
ing a Web page isn’t as straightforward as, say, creating a page in Microsoft Word.
For example, you may decide to enhance the résumé page by creating a list of
skills. Here’s a reasonable first try:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Hire Me!</title>

</head>

<body>

<p>I am Lee Park. Hire me for your company, because my work is off the

hizzle.

My skills include:

*Fast typing (nearly 12 words/minute).

*Extraordinary pencil sharpening.

*Inventive excuse making.

*Negotiating with officers of the peace.</p>

</body>

</html>

The trouble appears when you open this seemingly innocent document in your
Web browser (Figure 2-9).

The problem is that XHTML ignores extra white space. That includes tabs, line
breaks, and extra spaces (anything more than one consecutive space). The first
time this happens, you’ll probably stare at your screen dumbfounded and wonder
why Web browsers are designed this way. But it actually makes sense when you
consider that XHTML needs to work as a universal standard.

Say you were to customize your hypothetical Web page (like the one shown in
Figure 2-10) with the perfect spacing, indenting, and line width for your computer
monitor. The problem is, it may not look as good on someone else’s monitor.

40 Creating a Web Site: The Missing Manual

The XHTML
Document

For example, some of the text may scroll off the right side of the page, making it
difficult to read. And different monitors are only part of the problem—today’s
Web pages need to work on different types of devices. Lee Park’s future boss might
view Parks’ résumé on anything from the latest laptop to a fixed-width terminal to
a Web-enabled cellphone.

To deal with this range of display options, XHTML uses elements to define the struc-
ture of your document. Instead of telling the browser, “Here’s where you go to the next
line and here’s where you add four extra spaces,” XHTML tells the browser, “Here are
two complete paragraphs and here’s a bulleted list.” It’s then up to the browser to dis-
play the page according to the instructions contained in your XHTML.

To correct the résumé example, you need to use more paragraph elements and two
new container elements:

Indicates the start of an unordered list. A list is the perfect way to detail Lee’s
skills.

Indicates an individual item in a bulleted list. Your browser indents each list
item and, for sentences that go beyond a single line, properly indents subse-
quent lines so they align under the first. In addition, it precedes each list item
with a bullet (•). You can only use the element inside a list element like
. In other words, every list item needs to be a part of a list.

Here’s the corrected Web page (shown in Figure 2-10), with the structural elements
highlighted in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Hire Me!</title>

</head>

Figure 2-9:
XHTML disregards line breaks and consecutive
spaces, so what appears as neatly organized text in
your XHTML file can turn into a jumble of text when
you display it in a browser.

Chapter 2: Creating Your First Page 41

The XHTML
Document

<body>

<p>I am Lee Park. Hire me for your company, because my work is off the

hizzle.</p>

<p>My skills include:</p>

Fast typing (nearly 12 words/minute).

Extraordinary pencil sharpening.

Inventive excuse making.

Negotiating with officers of the peace.

</body>

</html>

You can turn a browser’s habit of ignoring line breaks to your advantage. To help
make your XHTML documents more readable, add line breaks and spaces wher-
ever you want. Web experts often use indentation to make the structure of nested
elements easier to understand. In the résumé example, you can already see this
trick in action. Notice how the list items (the lines starting with the element)
are indented. This has no effect on the browser, but it makes it easier for you to see
the structure of the XHTML document, and to gauge how a browser will render it.

Figure 2-11 analyzes the XHTML document using a tree model. The tree model is a
handy way to get familiar with the anatomy of a Web page, because it shows the
page’s overall structure at a glance. However, as your Web pages get more compli-
cated, they’ll probably become too complex for a tree model diagram to be useful.

Figure 2-10:
With the right elements (as shown in the code earlier
on this page), the browser understands the structure
of your XHTML document, and knows how to display
it.

42 Creating a Web Site: The Missing Manual

The XHTML
Document

If you’re a masochist, you don’t need to use any spaces. The previous example is
exactly equivalent to the following much-less-readable XHTML document that
omits white space entirely:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"><html xmlns="http://www.

w3.org/1999/xhtml"><html ="http://www.w3.org/1999/xhtml"><head><title>Hire

Me!</title></head><body><p>I am Lee Park. Hire me for your company, because

my work is off the hizzle.</p><p>My skills include:</p>Fast

typing (nearly 12 words/minute). Extraordinary pencil sharpening.</

li>Inventive excuse making. Negotiating with officers of the

peace.</body></html>

Of course, it’s nearly impossible for a human to write XHTML like this without
making a mistake.

Where Are All the Pictures?
Whether it’s a stock chart, a logo for your underground garage band, or a doc-
tored photo of your favorite celebrity, the Web would be a pretty drab place with-
out pictures. So far, you’ve seen how to put text into an XHTML document, but
what happens when you need an image?

Although it may seem surprising, you can’t store a picture inside an XHTML file.
There are plenty of good reasons why you wouldn’t want to anyway—your Web
page files would become really large, it would be hard to modify your pictures or
do other things with them, and you’d have a fiendish time editing your pages in a
text editor because the image data would make a mess. The solution is to store
your pictures as separate files, and then link them to your XHTML document. This
way, your browser pulls up the pictures and positions them exactly where you
want them on your Web page.

Figure 2-11:
Here’s another way to look at the
XHTML you’ve created. The tree
model shows you how you’ve
nested XHTML elements. By
following the arrows, you can see
that the top-level <html> element
contains <head> and <body>
elements. Inside the <head>
element you have the <title>
element, and inside the <body>
element are two paragraphs and
a bulleted list with four items. If
you stare at the tree model long
enough, you’ll understand why
XHTML calls all these elements
“container elements.”

<html>

<head> <body>

<title> <p> <p>

 Hire me! I am Lee
Park. Hire

me...

My skills
include:

Fast
typing...

Chapter 2: Creating Your First Page 43

The XHTML
Document

The linking tool that performs this trick is the element (short for “image”).
The element points to an image file, which the browser retrieves and inserts
into the page. You can put the image file in the same folder as your Web page
(which is the easiest option) or you can put it on a completely different Web site.

Although you’ll learn everything you ever wanted to know about Web graphics in
Chapter 7, it’s worth considering a simple example right now. To try this out, you
need a Web-ready image handy. (The most commonly supported image file types
are JPEG, GIF, and PNG.) If you downloaded this book’s companion content
(from the Missing CD page at www.missingmanuals.com), you can use the sample
picture leepark.jpg. Assuming you put this file in the same folder as your Web page
file, you can display the image with the following image element:

Like the
 element discussed earlier, the element is a standalone ele-
ment with no content. For that reason, it has a forward slash before its closing
angle bracket. However, there’s an obvious difference between the
 element
and the element. Although is a standalone element, it isn’t self-
sufficient. In order for the element to mean anything, you need to supply two
more pieces of information: the name of the image file, and some alternate text,

GEM IN THE ROUGH

Have Something to Hide?
When you’re working with a complex Web page, you may
want to temporarily remove an element or a section of con-
tent. This is a handy trick when you have a page that doesn’t
quite work right, and you want to try and find out which ele-
ments are causing the problem. One way to do this is with
the good ol’ fashioned cut-and-paste feature in your text
editor. Cut the section you think may be troublesome, save
the file, and then load it up in your browser. If the section
is innocent, paste it back in place, and then re-save the file.
Repeat this process until you find the culprit.

However, XHTML gives you a simpler solution—comments.
With comments, you can leave the entire page intact. When
you “comment out” a section of the page, XHTML ignores it.

You create an XHTML comment using the character
sequence <!-- to mark the start of the comment, and the
character sequence --> to mark the end. Your browser will
ignore everything in between these two markers, whether
it’s content or tags. The comment markers can appear on

the same line, or you can use them to hide an entire section
of your XHTML document. However, don’t try to nest one
comment inside another, as that won’t work.

Here’s an example that hides two list items. When you open
this document in your Web browser, the list will show only
the last two items (“Inventive excuse making” and “Negoti-
ating with officers of the peace”).

<!-- Fast typing (nearly 12 words/
minute).

Extraordinary pencil sharpening.
-->
Inventive excuse making.
Negotiating with officers of the
peace.

When you want to return the list to its original glory, just
remove the comment markers.

http://www.missingmanuals.com

44 Creating a Web Site: The Missing Manual

The XHTML
Document

which is used in cases where your browser can’t download or display the picture
(see page 181). To incorporate this extra information into the image element,
XHTML uses attributes. Attributes are extra pieces of information that appear after
an element name, but before the closing > character.

The example includes two attributes, separated by a space. Each attribute
has two parts—a name (which tells the browser what the attribute does) and a
value (a variable piece of information you supply). The name of the first
attribute is src, which is shorthand for “source”; it tells the browser where to get
the image you want. In this example, the value of the src attribute is leepark.jpg,
which is the name of the file with Lee Park’s headshot.

The name of the second attribute is alt, which is shorthand for “alternate
text”; it tells a browser that you want it to show text if it can’t display the image. Its
value is the text you want to display, which is “Lee Park Portrait” in this case.

Once you’ve unraveled the image element, you’re ready to use it in an XHTML
document. Just place it inside an existing paragraph, wherever it makes sense.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Hire Me!</title>

</head>

<body>

<p>I am Lee Park. Hire me for your company, because my work is off the

hizzle.

</p>

<p>My skills include:</p>

 Fast typing (nearly 12 words/minute).

 Extraordinary pencil sharpening.

 Inventive excuse making.

 Negotiating with officers of the peace.

</body>

</html>

Figure 2-12 shows exactly where the picture is displayed.

Chapter 2: Creating Your First Page 45

The XHTML
Document

Note: You’ll learn many more tricks for Web graphics, including how to change their size and wrap text
around them, in Chapter 7.

The 10 Most Important Elements (and a Few More)
You’ve now reached the point where you can create a basic XHTML document,
and you’re well on your way to XHTML mastery with several elements under your
belt. You know the fundamentals—all that’s left is to expand your knowledge by
learning how to use more elements.

XHTML has a relatively small set of elements. In fact, there are just over 60 in all.
You’ll most likely use fewer than 25 on a regular basis.

Note: You can’t define your own elements and use them in an XHTML document because Web browsers
won’t know how to interpret them.

Figure 2-12:
Here’s a Web page that embeds a picture, thanks to
the linking power of the image element (shown on
page 44). To display this document, a Web browser
performs a separate request to retrieve the image
file. As a result, your browser may display the text of
the Web page before it downloads the graphic,
depending on your connection speed.

46 Creating a Web Site: The Missing Manual

The XHTML
Document

Some elements, like the <p> element that formats a paragraph, are important for
setting out the overall structure of a page. These are called block-level elements. You
can place block-level elements directly inside the <body> section of your Web
page or, sometimes, inside another block-level element. Table 2-1 provides a quick
overview of some of the most fundamental block-level elements, several of which
you’ve already seen. It also points out which of these are container elements and
which are standalone elements. (As you learned on page 33, container elements
require start and end tags, but standalone elements get by with just a single tag.)

Other elements are designed to deal with smaller structural details—for example,
snippets of bold or italicized text, line breaks, links that lead to other Web pages,
and images. These elements are called inline elements. You can’t put inline ele-
ments directly inside the <body> section. Instead, they have to be nested inside a
block-level element. Table 2-2 lists the most useful inline elements.

Table 2-1. Basic block-level elements.

Element Name Type of Element Description

<p> Paragraph Container As your high school English teacher
probably told you, the paragraph is the
basic unit for organizing text. When you
use more than one paragraph element in
a row, a browser inserts a certain
amount of space between the two para-
graphs—just a bit more than a full blank
line. Full details appear in Chapter 5.

<h1>,<h2>,
<h3>,<h4>,
<h5>,<h6>

Heading Container Heading elements are a good way to add
structure to your Web page and make
titles stand out. They display text in large,
boldfaced letters. The lower the number,
the larger the text, so <h1> produces the
largest heading. By the time you get to
<h5>, the heading has dwindled to the
same size as normal-sized text, and
<h6>, although bold, is actually smaller
than normal text.

<hr> Horizontal
Line

Standalone A horizontal line can help you separate
one section of your Web page from
another. The line automatically matches
the width of the browser window. (Or, if
you put the line inside another element,
like a cell in a table, it takes on the width
of its container.)

, Unordered
List, List Item

Container These elements let you build basic bul-
leted lists. The browser automatically
puts individual list items on separate
lines and indents each one. For a quick
change of pace, you can substitute
with to get an automatically num-
bered list instead of a bulleted list (ol
stands for “ordered list”).

Chapter 2: Creating Your First Page 47

The XHTML
Document

To make the sample résumé look really respectable, use a few tricks from Table 2-1
and Table 2-2. Figure 2-13 shows this revised version of the Web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Hire Me!</title>

</head>

<body>

 <h1>Hire Me!</h1>

 <p>I am Lee Park. Hire me for your company, because my work is off the

hizzle. As proof of my staggering computer skills and monumental work

ethic, please enjoy this electronic resume.</p>

 <h2>Indispensable Skills</h2>

 <p>My skills include:</p>

 Fast typing (nearly 12 words/minute).

 Extraordinary pencil sharpening.

 Inventive excuse making.

 Negotiating with officers of the peace.

Table 2-2. Basic inline elements

Element Name Type Description

, <i> Bold and Italic Container These two elements apply character
styling—either bold or italic text. Some
people use the more descriptive
and (for emphasis) elements,
instead. They do exactly the same thing.

 Line Break Standalone Sometimes, all you want is text separated
by simple line breaks, not separate para-
graphs. This keeps subsequent lines of text
closer together than when you use a para-
graph. You’ll learn more about text layout
in Chapter 5.

 Image Standalone To display an image inside a Web page, use
this element. Make sure you specify the src
attribute to indicate the file name of the pic-
ture you want the browser to show.

<a> Anchor Container The anchor element is the starting point for
creating hyperlinks that let Web site visitors
jump from one page to another. You’ll
learn about this indispensable element in
Chapter 8.

48 Creating a Web Site: The Missing Manual

The XHTML
Document

 <p>And I also know XHTML!</p>

 <h2>Previous Work Experience</h2>

 <p>I have had a long and illustrious career in a variety of trades. Here

are

 some highlights:</p>

 2005-2008 - Worked as a typist at <i>Flying Fingers</i>

 2008-2009 - Performed cutting-edge Web design at <i>Riverdale

 Farm</i>

 2009-2010 - Starred in Chapter 2 of <i>Creating Web Pages: The

 Missing Manual</i>

 <hr />

</body>

</html>

Checking Your Pages for Errors
Even a Web designer with the best intentions can run afoul of the strict rules of
XHTML. Although browsers really should catch these mistakes, virtually none of them
do. Instead, they do their best to ignore mistakes and display flawed documents.

At first glance, this seems like a great design—after all, it smoothes over any minor
slip-ups you might make. But there’s a dark side to tolerating mistakes. In particu-
lar, this behavior makes it all too easy for serious errors to lurk undetected in your
Web pages. What’s a serious error? A problem that’s harmless when you view the
page in your favorite browser, but makes an embarrassing appearance when some-
one views the page in another browser; a mistake that goes undetected until you
edit the code, exposing the mistake the next time your browser displays the page;
or a problem that has no effect on page display but prevents an automated tool
(like a search engine) from reading the page.

Fortunately, there’s an easy way to catch problems like these. You can use a valida-
tion tool that reads through your Web page and checks to see if it meets the strict
rules of XHTML. Validators can catch a number of problems that you’ve seen in
this chapter, including:

• Missing mandatory elements (for example, the <title> element)

• A start tag without a matching end tag

• Incorrectly nested tags

• Incorrect capitalization (for example, instead of)

Chapter 2: Creating Your First Page 49

The XHTML
Document

• Tags with missing attributes (for example, an element without the src
attribute)

• Elements or content in the wrong place (for example, text that’s placed directly
in the <body> section)

If you use a professional Web design tool like Dreamweaver, you can use its built-
in error checker (Chapter 4 has the details). If you create pages by hand in a text
editor, you can use a free online validation tool.

You can choose from plenty of validation tools, but most only validate pages that
are already online. The validator at www.validome.org (shown in Figure 2-14) is a
bit better—it lets you validate an online page or upload an XHTML document
straight from your hard drive.

Figure 2-13:
Here’s a look at an XHTML
document that adds a little
more style in the form of
more headings, lists, and a
horizontal line.

http://www.validome.org

50 Creating a Web Site: The Missing Manual

The XHTML
Document

To validate a page at www.validome.org, follow these steps:

1. Go to www.validome.org.

2. Click the Upload option to choose to validate a file from your computer.

On the other hand, if you want to validate a file that’s already online, choose the
URL option, enter a Web page address (like http://www.MySloppySite.com/
FlawedPage.html), and then jump to step 5.

3. Click the Browse button.

An Open dialog box appears.

4. Browse to the location of your XHTML file, select it, and then click Open.

The file name appears in the text box, as shown in Figure 2-14.

At this point, you can set other options, but you probably won’t. It’s best to
leave the Doctype set to “auto detect”—that way, the validator will use the doc-
type specified in your Web page. Similarly, use “auto detect” for the Charsets
option unless you have an XHTML page that’s written in another language and
the validator has trouble determining the correct character set.

5. Click the Validate button.

Clicking the Validate button sends your XHTML page to the Validome Web
server and, after a brief delay, the report appears. You’ll see whether your docu-
ment passed the validation check and, if it failed, what errors the validator
detected (see Figure 2-15).

Figure 2-14:
The Web site www.
validome.org gives you
two options for validating
XHTML. You can fill in the
address of another Web
page, or you can click the
Browse button to call up
an XHTML file on your
own computer.

http://www.validome.org
http://www.validome.org
http://www.validome.org
http://www.MySloppySite.com/FlawedPage.html
http://www.MySloppySite.com/FlawedPage.html

Chapter 2: Creating Your First Page 51

The XHTML
Document

Figure 2-15:
The validator has
discovered three errors in
this file that stem from
two mistakes. First, the
page is missing the
mandatory <header>
section. Second, it
contains text that’s
placed directly in the
<body> section, rather
than in a block-level
element (like a
paragraph). Incidentally,
this file is still close
enough to correct that
most browsers will
display it correctly,
without warning you
about the sloppy XHTML
inside.

53

Chapter 3chapter

3

Putting Your Page on
the Web

In the previous chapter you learned the basics of XHTML by creating a simple
one-page résumé. There’s a lot more you can do to perfect that page, but before
going any further it’s worth taking a look at one of the most important pieces of
the Web puzzle—getting your pages online.

In this chapter, you start by taking a closer look at how Web servers work. Once
you’re armed with these high-tech nerd credentials, you’ll be ready to search for
your own Web host—the company that will let you park your site on its Web
server. All you need to do is figure out your requirements, see which hosts offer
what you need, and start comparison shopping.

How Web Hosting Works
As you learned in Chapter 1, the Web isn’t stored on any single computer, and no
company owns it. Instead, the individual pieces (Web sites) are scattered across
millions of computers (Web servers). Only a subtle illusion makes all these Web
sites seem to be part of a single environment. In reality, the Internet is just a set of
standards that let independent computers talk to each other.

So how does your favorite browser navigate this tangled network of computers to
find just the Web page you want? It’s all in what’s known as the URL (Uniform
Resource Locator)—which is simply the Web site address you type into your
browser, like www.google.com.

54 Creating a Web Site: The Missing Manual

How Web Hosting
Works

Understanding the URL
A URL consists of several pieces. Some of them are optional, because a browser or
Web server can fill them in automatically. Others are required. Figure 3-1 dissects the
URL http://www.SellMyJunkForMillions.com/Buyers/listings.htm.

Web addresses pack a lot of information into a single line of text, including:

• The protocol indicates your chosen method of transmission—in other words,
how your browser should communicate with the Web server. Web sites always
use HTTP (HyperText Transport Protocol), which means the protocol portion
of a URL is always http:// or https://. (The latter establishes a super-secure con-
nection over HTTP that encrypts sensitive information you type in, like credit
card numbers or passwords.) In most browsers, you can get away without typ-
ing in this part of the URL. For example, when you type www.google.com, your
browser automatically converts it to the full URL, http://www.google.com.

Note: Although http:// is the way to go when browsing the Web, depending on your browser, you may
also use other protocols for other tasks. Common examples include ftp:// (File Transfer Protocol) for
uploading and downloading files and file:/// for retrieving a file directly from your own computer’s hard
drive.

• The domain name identifies the Web server that hosts the site you want to see.
By convention, server names usually start with www to identify them as World
Wide Web servers. In addition, as you’ll discover later in this chapter, friendly-
seeming domain names like www.google.com or www.Microsoft.com are really
just stand-ins for what your browser really needs to locate a server—namely, its
numeric address.

• The path identifies the folder where the Web server stores the specific Web page
you’re looking for. This part of the URL can have as many levels as needed. For
example, the path /MyFiles/Sales/2009/ refers to a MyFiles folder that contains a
Sales folder that, in turn, contains a folder named 2009. Windows fans, take
note—the slashes in the path portion of a URL are ordinary forward slashes,
not the backward slashes used in Windows file paths (like c:\MyFiles\Current).
This convention matches the file paths used by Unix-based computers, which
were the first machines to host Web sites. It’s also the convention used in mod-
ern Macintosh operating systems (OS X and later).

Figure 3-1:
The average URL consists of four
pieces. The first part (the protocol)
identifies the Web standards the page
follows. The second part (the domain)
identifies what Web server you’re
accessing. The third and fourth parts
indicate the page’s path and file on the
Web server.

http:// www.SellMyJunkForMillions.com /Buyers/ listings.html

Protocol Path

Domain File

Chapter 3: Putting Your Page on the Web 55

How Web Hosting
Works

Note: Many browsers are smart enough to correct the common mistake of typing in the wrong type of
slash. However, you shouldn’t rely on this happening because similar laziness can break the Web pages
you create. For example, if you use the element to link to an image (as shown on page 44) and
use the wrong type of slash, your picture won’t appear.

• The file name is the last part of the path and it identifies the specific Web page
you’re requesting. Often, you can recognize it by the file extension .htm or .html,
both of which stand for HTML, the forefather of XHTML.

Tip: Web pages often end with .htm or .html, but they don’t need to. For example, if you look at a URL
and see the strange extension .blackpudding, odds are you’re still looking at an HTML or XHTML docu-
ment. In most cases, browsers ignore an extension as long as the file contains information that a browser
can interpret. However, just to keep yourself sane, this is one convention you shouldn’t break.

• The bookmark (not be confused with the Web browser feature of the same
name) is an optional part of a URL that identifies a specific position within a
Web page. You can recognize a bookmark because it always starts with the
number-sign character (#) and appears after a file name. For example, the URL
http://www.LousyDeals.com/index.html#New includes the bookmark #New.
When you click the URL, it takes you to the section of the index.html page
where the page creator has placed the New bookmark. You’ll learn how to place
bookmarks on page 221.

• The query string is an optional part of a URL that some Web sites use to send
extra information from one Web page to another. You can identify the query
string because it starts with a question mark (?) and appears after a file name.
To see a query string in action, go to www.google.com and perform a search for
“pet platypus.” When you click the Search button, you’re directed to a URL like
http://www.google.ca/search?hl=en&q=pet+platypus&meta=. This URL is a little
tricky to analyze, but if you search for the question mark in the URL you’ll dis-
cover that you’re on a page named “search.” The information to the right of the
question mark indicates that you’re executing an English-language search for
pages that match both the “pet” and “platypus” keywords. When you request
this URL, a specialized Google Web program analyzes this query string to deter-
mine what type of search it needs to perform.

Note: You won’t use the query string in your own Web pages, because it’s designed for heavy-duty Web
programs like the one that powers Google. However, by understanding the query string, you get a bit of
insight into how other Web sites work.

How Browsers Analyze a URL
Clearly, a URL packs a lot of information in one place. But how does a browser
actually use the URL to fetch the Web page you want? To understand this, it helps
to take a peek behind the scenes (see Figure 3-2).

http://www.google.com

56 Creating a Web Site: The Missing Manual

How Web Hosting
Works

The following list of steps shows a breakdown of what a browser does when you
type http://www.SellMyJunkForMillions.com/Buyers/listings.htm into the address bar,
and then press Enter:

1. First, the browser needs to figure out what Web server to contact. It does this
by extracting the domain name from the URL.

In this example, the domain name is www.SellMyJunkForMillions.com.

2. To find the Web server named www.SellMyJunkForMillions.com, the browser
needs to convert the domain name into a computer-friendly number called the
IP address.

Every computer on the Web—from Web servers to your PC—has its own
unique IP address. To find the IP address for a Web server, the browser looks
up the Web server’s domain name in a giant catalog called the DNS (Domain
Name Service).

An IP address looks like a set of four numbers separated by periods (or, in
techie speak, dots). For example, the www.SellMyJunkForMillions.com Web site
may have the IP address 17.202.99.125.

Note: The DNS catalog isn’t stored on your computer, so your browser actually needs to grab this infor-
mation from the Internet. You can see the advantage of this approach. Under ordinary circumstances, a
company’s domain name will never change, because that’s what customers use and remember. But an IP
address may change, because a company could move its Web site from one server to another, for exam-
ple. As long as the company remembers to update the DNS, this won’t cause any disruption. Fortunately,
you won’t need to worry about managing the DNS yourself, because the company that hosts your site
automatically handles it for you.

Figure 3-2:
A simple Web request
usually involves a bevy of
computers contacting
each other in the order
indicated above. The first
computer (the DNS server,
number 2) gives you the
all-important IP address,
letting you track down the
second computer (the
Web server, number 5),
which gets you the Web
page you want.

Your
computer

DNS
server

The browser looks up the IP address
for the domain. It's 17.202.99.1252

The browser sends the request to the IP address3

The browser determines that the
page you want is on

www.SellMyJunkForMillions.com
1

Web
server

The web
server looks

for a file
named

listings.htm
in a folder

named Buyers

4

The web server returns the listings.htm page5

Chapter 3: Putting Your Page on the Web 57

Domain Names

3. The browser sends the page request to the Web server’s now-retrieved IP
address.

The actual route the message takes is difficult to predict. It may cross through a
number of other Web servers on the way.

4. When the server receives the request, it looks at the path and file name in the
URL.

In this case, the Web server sees that the request is for a file named listings.htm
in a folder named Buyers. It looks up that file, and then sends it back to the Web
browser. If the file doesn’t exist, it sends back an error message instead.

5. Once the browser gets the XHTML page it’s been waiting for (listings.htm), it
displays that page for your viewing pleasure.

The URL http://www.SellMyJunkForMillions.com/Buyers/listings.htm is a typical
example. However, in the wild, you’ll sometimes come across URLs that seem a lot
simpler. For instance, consider http://www.amazon.com. It clearly specifies the
domain name (www.amazon.com), but it doesn’t include any information about
the path or file name. So what’s a Web browser to do?

When your URL doesn’t include a file name, the browser just sends the request as
is, and lets the Web server decide what to do. The Web server sees that you aren’t
requesting a specific file, and so it sends you the site’s default Web page, which is
often named index.htm or index.html. (However, a Web administrator can config-
ure any Web page as the default.)

Now that you understand how URLs work, you’re ready to integrate your own pages
into the fabric of the Web. The first task is getting yourself a good domain name.

Domain Names
Shakespeare may have famously written “What’s in a name? That which we call a
rose/By any other name would smell as sweet.” But he may not see things the same
way if he had to type www.thesweetsmellingredflowerwiththorns.biz into his browser
instead of www.rose.com. Short, snappy domain names attract attention and are
easy to remember. Today, cheap personalized domain addresses are within the
reach of every Web site creator. If you decide to get one of your own, it’s worth
taking the time to get it right.

Note: Valid domain names include only letters, numbers, and dashes.

Getting the Right Name
You’ll find that most short, clever word combinations are no longer available as
domain names. Even if they aren’t in use, domain squatters—individuals who buy and
hold popular names in hopes of selling them to desperate high bidders later—have
long since laid claim to common names. Give up on www.worldsbestchocolate.com—
it’s gone. However, you may find success with names that are a little longer or

58 Creating a Web Site: The Missing Manual

Domain Names

more specific (www.worldsbestmilkchocolate.com), use locations or the names of
people (www.bestvermontchocolate.com or www.anniesbestchocolate.com), or intro-
duce made-up words (www.chocolatech.com). All these domain names are avail-
able at the time of this writing.

There’s no exact science to choosing a good domain name, but there’s plenty of
anecdotal evidence on names that don’t work. Here are some mistakes to avoid:

• Dashes. It may be tempting to get exactly the domain name you want by add-
ing extra characters, like dashes, between words. For example, you have no
chance at getting www.popularbusiness.com, but www.popular-business.com is
still there for the taking. Don’t do it. For some reason, dashes seem to confuse
everyone. People are likely to leave them out, confuse them with underscores,
or have trouble finding the dash key on the keyboard.

• Phrases that look confusing in lowercase. Domain names aren’t case-sensitive,
and when you type a domain name into a browser, the browser converts every-
thing to lowercase. The problem is that some phrases can blend together in low-
ercase, particularly if you have words that start with vowels. Take a look at what
happens when the documentation company Prose Xact puts their business
name into a lowercase domain name: www.prosexact.com. You get the picture.

Tip: Even though domain names don’t distinguish case, that doesn’t stop businesses from using capital
letters in business cards, promotions, and marketing material to make the domain name more readable.
Whether customers type www.google.com or wWw.gOOgLE.cOm into their browsers, they get to the
same site.

POWER USERS’ CLINIC

Internet vs. Intranet
As you already know, the Internet is a huge network of
computers that spans the globe. An intranet is a lot
smaller—it’s a network inside a specific company, organiza-
tion, or home that joins together a much smaller number of
computers. In fact, an intranet could have as few as two
computers.

An intranet makes sense anytime you need to have a Web
site that’s only available to a small number of people in one
location. For example, a company can use an intranet Web
site to share marketing bulletins (or the latest office gossip).
In your own home, you could use an intranet to let your
housemates browse your Web creations from multiple
computers. The only limitation is that a Web site on an
intranet is only accessible to the computers on that net-
work. Other Web visitors won’t be able to see it.

Setting up a Web site for an intranet is easier than setting
one up for the Internet because you don’t need to register
a domain name. Instead, you can use the network com-
puter name. For example, if your computer has the network
name “SuperServer,” you could access a Web page with a
URL like http://SuperServer/MySite/MyPage.htm.

To set up your own intranet, you need to start by setting up
a local network, and then you need to make sure you have
some Web hosting software. These tasks are outside the
scope of this book, but if you’re eager to give this do-it-
yourself project a try, you’ll need to start by setting up a
home network. Check out Home Networking: The Missing
Manual for complete instructions.

Chapter 3: Putting Your Page on the Web 59

Domain Names

• Names that don’t match your business. It’s a classic business mistake. You set
up a flower shop in New York called Roses are Red. Unfortunately, the domain
www.rosesarered.com is already taken so you go for the next best choice, www.
newyorkflorist.com. Huh? What you’ve actually done is create two separate
names, and a somewhat schizophrenic identity for your business. To avoid
these problems, if you’re starting a new business, try to choose your business
name and your domain name at the same time so they match. If you already
have a business name, settle on a URL that has an extra word or two, like www.
rosesareredflorist.com. This name may not be as snappy as www.newyorkflorist.
com, but it avoids the inevitable confusion of creating a whole new identity.

• Settling for .org. The last few letters of the domain (the part after the last period)
is called the top-level domain. Everyone wants a .com address for their business,
and as a result they’re the hardest domain name to get. Of course, there are other
top-level domains like .net, .org, .biz, and so on. The problem is, every Web visi-
tor expects a .com. If you have the domain name www.SuperShop.biz, odds are
someone will type in www.SuperShop.com while trying to find your site. That
mistake can easily lead your fans to a competitor (or to a vastly inferior Web
site). In other words, it’s sometimes worth taking a second-choice name to get
your first choice of a top-level domain (a .com).

Note: The top-level domain .org was originally intended for non-profit organizations. It’s now available
for anyone to use and abuse. However, if you’re setting up a non-profit of your own, the .org domain may
make more sense than .com and be almost as recognizable.

Domain name searches are an essential bit of prep work. Experiment—try to come
up with as many variations and unusual name combinations as possible. Aim to
record at least a dozen available name possibilities, so you can give yourself lots of
choice. Once you’ve compiled the list, why not make a few late-night phone calls
to pester friends and relatives for their first reactions?

In the time that’s passed since the first edition of this book, it’s become even
harder to get a decent domain name. In the past, your only competition was other
people planning to set up a Web site and unscrupulous domain name resellers
looking to buy a hot name and flip it to someone for a big profit. But now, nefari-
ous people buy just about any domain name at the drop of a hat, build a fly-
by-night Web page filled with ads, and wait a few months to see if any unsuspect-
ing Web traffic stumbles their way (this practice is called domain tasting). It’s still
possible to cook up a decent domain name, but you’ll need a dash of compromise
and all the creativity you’ve got.

Searching for a Name
Once you identify a few domain name ideas, it’s time to start checking domain
name availability. You can do this even if you haven’t chosen a Web hosting com-
pany. In fact, the Web abounds with tools that let you check whether a domain
name is available.

60 Creating a Web Site: The Missing Manual

Domain Names

Just about every Web hosting company provides its own version of a domain name
search tool. Figure 3-3 shows an example from www.domaindirect.com.

When you perform a search and find an available domain name, the Web hosting
company gives you the option to buy the name. But don’t do anything yet, because
you still need to find the best Web hosting company.

Tip: You may think you could see if a domain is free just by typing it into your Web browser. But this
method of checking takes more time, and it doesn’t give you a definitive result. Someone can buy a
domain name without setting up a Web site, so even if you can’t find a Web site using your browser, the
domain may not be available.

Registering Your Name
After you find an available name, you probably want to wait to register it until
you’re ready to sign up for a Web hosting plan, too (which you’ll read about in the
next section). That’s because most Web hosting companies offer free or dis-
counted domain name registration when you rent space from them. In addition,
doing both at once is the easiest way to set up your domain name, because the pro-
cess automatically establishes a relationship between your domain name and your
Web site.

However, there are cases where you may want to register a domain name sepa-
rately from your Web hosting package. Here are some examples:

• You don’t actually want to create a Web site right now, but you do want to reg-
ister a name so no one else can grab it (a tactic known as domain parking).
Sometime in the future, you may develop a Web site that uses that name.

FREQUENTLY ASKED QUESTION

International Domain Names
Some domain names end with a country code. Should I get
one?

A .com address is a Web site creator’s best friend. Other
top-level domains (.net, .org, .biz, and so on), generally
aren’t worth the trouble. However, there is one exception:
regional domain names. If you can’t get the .com you need,
it just might make sense to go with a country-specific top-
level domain like .us (USA) or .ca (Canada).

For example, if you’re offering piano lessons in England,
www.pianolessons.co.uk isn’t a bad choice. But if you’re
planning to sell products to an international audience,

www.HotRetroRecords.co.uk is likely to frighten away oth-
erwise interested buyers, who may assume it’s too much
trouble to deal with a British seller.

There are special rules about who can register country-
specific names. Due to these restrictions, many Web host-
ing companies can’t sell certain country-specific domains.
To search for domain names with a specific country code,
use Google to find the right registrar. For example, to find a
registrar for Australian domains, search for “Australian
domain names.”

http://www.domaindirect.com

Chapter 3: Putting Your Page on the Web 61

Domain Names

• You already have Web space, possibly through your ISP (Internet Service Pro-
vider). All you need to make your Web site seem more professional is to get a
personalized domain name. This option can get a little tricky, and you may
need to use a procedure called domain forwarding (which you’ll read about in a
moment).

• Your Web hosting company can’t register the type of domain you want. This
can happen if you need a domain name with a country-specific top-level
domain.

Figure 3-3:
Top: Using this free domain search tool, you can
see if the domain name you want is available.
Notice that you don’t have to type in the www.
at the start of the domain name, because the
form’s taken care of that for you (at the left of
the box).

Bottom: The results aren’t good. Your first
choice, www.freecheese.com is gone. All that’s
left are the less-catchy www.freecheese.biz and
country-specific domains. You can click the
“Click Here for More Results” link to have the
search tool display related domains that are
available (in this case, you’d find that www.
allfreecheese.com and www.bestfreecheese.com
are available).

62 Creating a Web Site: The Missing Manual

Domain Names

If you don’t fall into one of these special categories, skip ahead to the section “Getting
Web Space” (page 67) to start searching for the right Web host. Otherwise, keep read-
ing for more details about registering and managing a domain name on its own.

Note: All Web hosting companies let you register more than one domain for the same Web site. That
means you can register both www.FancyPants.com and www.FancyPants.org, and have both these
addresses point to the same Web site. Of course, you’ll need to pay an extra domain name registration fee.

Domain parking

Domain parking (Figure 3-4) means you’ve registered a domain name but haven’t
yet purchased any other services, like renting Web storage space.

Most people use domain parking to put a domain name away on reserve. In the
increasingly crowded world of the Web, many people use it to protect their own
names (for example, www.samanthamalone.com). Domain parking is also useful if
you want to secure several potential business names you may use in the future.

Tip: If you do reserve a domain name, it’s a good idea to do your research, and pick a company that
you’d also like to use to host your Web site. You can switch domain names from one Web hosting firm to
another, but it’s a bit of a pain. Contact the Web host you’re working with for specific instructions on how
to pull this off.

The real appeal of domain parking is that it’s cheap. You pay a nominal domain-
name registration fee (as little as $5/year) and you get to keep the name for as long
as you’re willing to pay for it.

Domain forwarding

Domain forwarding lets you combine a personalized domain name with Web space
you already have. For example, you may have free Web space through your ISP, your
school, your job, from a free Web hosting service, or from a crazy uncle with a Web

Figure 3-4:
Domain parking (left)
and domain forwarding
(center) are two scaled-
down alternatives to
buying a complete Web
hosting package. This
registrar offers both
these options, along with
a full Web hosting
package (right).

Chapter 3: Putting Your Page on the Web 63

Domain Names

server in his basement. In these situations, you can save some money because you
don’t need to pay a company to host your Web site. However, you don’t get to pick
your domain name. For example, if you have Web space on an ISP, you might be
stuck with a URL like http://member.magicisp.com/members/personalwebspace/
~henryj420/home, which clearly isn’t as catchy as www.HenryTheFriendly.com.

But take heart. Even if you get free Web hosting, you can still give your Web site a
snappy URL. The trick is to buy the URL separately and use domain forwarding to
point your brand-new URL to your existing Web site. In the previous example, for
instance, you could buy the domain name www.HenryTheFriendly.com and use
domain forwarding to point www.HenryTheFriendly.com to your Web space on
http://member.magicisp.com.

Tip: Even if the URL from your ISP isn’t as bad as in the example above, it’s still a good idea to buy your
own domain name. Here’s why: If you use an ISP-provided URL and your ISP changes its configuration or
you switch from one ISP to another, your Web visitors won’t be able to find your site anymore. But if you
use your own URL and domain forwarding, you simply need to update your domain-name settings to
reflect your ISP’s new configuration or your new ISP, All the while, your custom domain name keeps work-
ing. No one will even notice the change.

First you need to register a domain name that comes with forwarding as an
included service (see Figure 3-4). Then you can log in and set the forwarding set-
tings (see Figure 3-5).

Figure 3-5:
Here, a domain
forwarding service sends
visitors who type in www.
HenryTheFriendly.com to
a much more awkward
URL where the Web site
is actually located
(bottom box). Usually,
Web hosts implement
domain forwarding in
such a way that the
browser address bar
displays the original
domain name even
though the host sends
visitors to a different site.

64 Creating a Web Site: The Missing Manual

Domain Names

With domain forwarding, many Web hosting firms give you the added ability to
forward subdomains. Subdomains look like your domain name, but instead of
starting with www they start with another word or phrase that you choose. For
example, if you get a forwarding account for www.PremiumPencils.com, you could
create a subdomain named help.PremiumPencils.com that goes to a customer sup-
port page or resume.PremiumPencils.com that gives visitors quick access to your
electronic résumé (see Figure 3-6).

Domain forwarding can come in handy in other scenarios. Say you have an
account with a hosting company and you want to use it to create several separate
sites (like a personal site, a business site, a site for someone else in your family, and
so on). Conceptually, it’s easy—you just need to place each Web site in a separate
folder. However, this tactic can muck up your URLs. If you have the business
domain name www.PremiumPencils.com and you want to create a personal site for
your upcoming marriage, you’re stuck with something like www.PremiumPencils.
com/WeddingForDebbie. A low-cost alternative is to buy a single Web hosting
account and several domain names (like www.PremiumPencils.com and www.
DebbiesWedding.com) with domain forwarding. Then set up domain forwarding,

Figure 3-6:
Thanks to subdomains, you can provide easy
access to several different pages on your site, or
even to several different Web sites. All you need
to do is forward each domain to a different URL,
as shown here with the subdomains resume.
prosetech.com and help.prosetech.com.

Chapter 3: Putting Your Page on the Web 65

Domain Names

directing each domain name to the appropriate subfolder. Presto—your wedding
guests will never know they’re going to a subfolder on PremiumPencils.com, and
they’ll never be asked to stock up on office stationery, either.

Free Domain Names
As you no doubt know, the Web is a great place for frugal shoppers. Not only can
you score a great deal on a sporty iPod and a used sofa bed, you can also pick up a
Web domain name for the princely sum of zero dollars. The trick is to register at a
free subdomain service.

As you learned on page 34, subdomains are extensions that let you build on an
existing domain name. A free subdomain service might own a domain like www.
net.tc and let you register a subdomain like www.acebusiness.net.tc. Sure, the end
portion of the domain (.net.tc) is a little awkward, but hey—it’s free. Even better,
it’s much easier to get popular words in a subdomain than it is in a standalone
domain name. For example, don’t bother trying to scoop up www.chocolates.com
or the .net, .org, .biz, .us, .ca versions of the name, as they’re all taken. But if you
head over to popular subdomain service www.smartdots.com (Figure 3-8), you can
still register www.chocolates.net.tc without opening your wallet.

FREQUENTLY ASKED QUESTION

A Host Here, a Domain There
Can I buy my domain name and Web space from different
companies, and still make them work together?

The best approach is to get both from the same company, but
that’s not always possible. Maybe you bought your domain
name before you set up your Web site and you don’t want to
pay the cost of transferring the domain. Or maybe you have a
country-specific domain name (like www.CunningPets.co.uk)
that your Web hosting company can’t register.

To make this multiple-company tango work, you need
some technical support from your Web hosting company.
Contact their help desk and let them know what you plan
to do. They can give you specific instructions, and they’ll
configure their name servers (more on what those are in a
moment) to have the right information for your domain.

The next task is to change the registration information for
your domain. Here are the steps you need to follow:

1. Find out the name of the domain name servers
(DNS servers) at your Web hosting company. These
are the computers that convert domain names into
numeric IP addresses (page 56). The technical sup-
port staff can give you this information.

2. Go to the company where you registered the
domain name and update your domain registration
settings. Change the name server setting to match
the name servers you found out about in step 1 (as
shown in Figure 3-7).

Due to the way DNS servers work, the change can take 24
hours or more to take effect.

When you make this change, you’re essentially saying that
your Web hosting company is now responsible for giving
out the IP address of your Web site. When someone types
your domain name into a browser, the browser will contact
the name server at your Web hosting company to get the IP
address. From that point on, it’s smooth sailing.

Once you modify your domain name registration, you still
have the same two bills to pay. You’ll pay your hosting fees
to the Web hosting company and the yearly domain name
registration fee to the company where you registered your
domain name.

http://www.net.tc
http://www.net.tc
http://www.smartdots.com
http://www.chocolates.net.tc

66 Creating a Web Site: The Missing Manual

Domain Names

Figure 3-7:
Here, the Web site owner has registered his domain
with www.domaindirect.com but hosts his content
through www.brinkster.com. To make this work, he
transfers control of his domain name to the name
servers ns1.brinkster.com and ns2.brinkster.com.

Figure 3-8:
At smartdots, you can
register a free
subdomain and point it
to your real Web site.
You can choose from
several domain name
roots, including the
standard .net.tc, other
domain names that
suggest specific countries
(like .us.tc and .uk.tc),
and other domain names
that suggest certain types
of content (like .pro.tc,
.shop.tc, and .edu.tc).

http://www.domaindirect.com
http://www.domaindirect.com
http://www.brinkster.com
http://www.brinkster.com

Chapter 3: Putting Your Page on the Web 67

Getting Web Space

Getting Web Space
All you need to achieve Web superstardom is a domain name and a small amount
of space on a Web server. There’s no one-size-fits-all solution when it comes to
finding a Web host. Instead, you choose the right hosting company based on your
budget, what you want your Web site to be able to do, and your own capricious
whims (let’s face it—some Web hosting companies just have way cooler names
than others).

Finding the right Web host can take a bit of searching, and it may require making a
few phone calls or some browsing around the Web. Before you start tapping away,
it helps to take a look at the big picture.

The Big Picture
Nowadays, Web hosting packages come in three main flavors:

• Simplified Web site creation. In this case, the Web hosting company offers spe-
cial software that promises to help you create a Web site in two or three easy
steps. These tools range from terrible to awful (see Figure 3-9). After all, if
you’re content to create the same cookie-cutter Web site as everyone else, you
probably aren’t interested in learning XHTML, and you wouldn’t have picked
up this book. Instead, go for standard Web site hosting and unleash your inner
Web artiste.

Note: There’s one case where simplified Web site creation makes sense—if all you want to do is create a
blog (a personal site that consists of short, chronological postings about anything that interests you).
Chapter 17 shows how you can create a blog on your own Web site, or how you can set one up at a free
blogging host so you don’t need to buy a domain name or pay for Web space.

• Standard Web site hosting. Here, you’re given a slot of space on a Web server
to manage as you see fit. You create your Web pages on your own computer,
and then copy these files to the server so others can view them. This type of
Web hosting is all you need to use this book.

• Web program hosting. This option makes sense if you’re a programmer at
heart, and you need a Web server that can run Web programs. Web programs
do quite a few nifty tricks—they can perform complex calculations, read vast
amounts of information from a database, and spit out made-to-measure
XHTML on the fly. However, creating a Web program is far from easy. In this
book, you’ll focus on creating ordinary Web sites and using third-party services
when you need more complex features, like an e-commerce shopping cart. That
means Web program hosting is overkill.

Web hosting packages usually charge a monthly fee. For basic Web hosting, this fee
starts at the reasonable sum of $5 to $10 per month. Of course, it can escalate
quickly, depending on what features you want.

68 Creating a Web Site: The Missing Manual

Getting Web Space

Assessing Your Needs
Before you decide on a Web host, ask yourself one important question—what fea-
tures do you need? Web hosts are quick to swamp their ads and Web sites with
techie jargon, but they don’t tell you which services are truly useful. Here’s a quick
overview that describes what Web hosts sell and what you need to know about
each offering. If you’d like to keep track of which features you need, there’s a Web
host checklist you can fill out on page 70, or you can download it from the Missing
CD page at www.missingmanuals.com.

• Web space is how much server space you’re renting to store your Web site.
Although XHTML pages are extremely small, you may need more space to fit in
images or files you want others to download, like a video of your wedding. A
modest site can easily survive with 20 MB (megabytes) of space, unless you’re
stuffing it full of pictures or videos. Most Web hosts throw in much more,
knowing you’ll probably never use it.

Figure 3-9:
Page-design wizards give you a
quick and easy way to make
mediocre pages. This tool-
generated example (on the AOL
Hometown site), includes plain
formatting and an ad banner you
can’t remove. Another major
limitation is the page-creation
software. Although it’s quite good
for a browser-based program, it’s
still slow and awkward, and lacks
most of the features and
conveniences you’ll get if you use
full-fledged Web design software,
which you’ll learn about in
Chapter 4.

http://www.missingmanuals.com

Chapter 3: Putting Your Page on the Web 69

Getting Web Space

Note: For the numerically challenged, a gigabyte (GB) is the same as 1,024 megabytes (MB). To put that
in perspective, today’s hard drives can have 500 GB of space or more, enough room for tens of thou-
sands of Web sites.

• Bandwidth (or Web traffic, as it’s sometimes called) is the maximum amount of
information you can deliver to anyone who visits your site in a month. Usually,
you can make do with the lowest bandwidth your hosting company offers (with
1 GB being more than enough). For more information, see the box on page 71.

• A domain name is a custom Web site address, as in www.HenryTheFriendly.com.
If you decide to get a personalized domain name, you don’t necessarily need to
get it from the same company that hosts your Web site. However, it does make
life easier, and hosting companies often throw in one or more domain names at
a discounted price when you sign up for a Web hosting plan.

• Email addresses. Odds are, you already have some of these. But you may want
an email address that matches your Web site address, especially if you’re paying
for a customized domain name. For example, if you own www.HenryThe-
Friendly.com, you’d probably like to use an email address like Hank@HenryThe-
Friendly.com. Web hosting companies give you different options here—some
may just forward the email to your everyday email address (which you’d need
to supply them), while better packages give you a dedicated email inbox with
plenty of space for receiving and storing messages.

• Upload-ability. How easy it is to transfer files to your Web server is another
important detail. As you saw in the previous chapter, you can perfect your Web
pages on your own computer before you upload them. But once your Web site
is ready for prime time, you need a convenient way to copy all the files to your
Web server. For greatest convenience, look for Web hosts that offer support for
something called FTP (File Transfer Protocol), which lets you easily copy a
number of files at once (for details, see page 80). Some Web hosts may also pro-
vide integration with popular Web design tools like Dreamweaver, letting you
upload pages without leaving your Web editing program.

• Server-side scripts are miniature programs that can run on your Web site. They
use one of a variety of programming frameworks, which have catchy acronyms
like CGI, JSP, PHP, and ASP.NET. Although these features are powerful, they
usually require programmer credentials. Occasionally, you might find a ready-
made script that can perform a helpful task, like emailing you the information
your Web visitors supply (page 347). But for the most part, server-side scripts
and other types of Web server programming are beyond the scope of this book.

70 Creating a Web Site: The Missing Manual

Getting Web Space

Note: Although this book doesn’t cover server-side programs in depth, you’ll learn about client-side scripts
in Chapter 14; they run right inside Web site visitors’ browsers, and are much more limited in ability than
server-side scripts. Client-side scripts are commonly used for special effects like animated buttons. The nice
thing about them is that even programming novices can drop a simple script into their Web pages and enjoy
the benefits. But you don’t need to worry about any of this right now, because unlike server-side scripts, cli-
ent-side scripts don’t require any special support from your Web hosting company.

• Frills. In an effort to woo you to their side, Web hosting companies often pack
in a slew of frills. For example, sometimes they’ll boast about their amazing,
quick-and-easy Web site creation tools. Translation: they’ll let you use a clumsy
piece of software on their Web site to build yours. You’ll end up with a cookie-
cutter result and not much opportunity to express yourself. Steer clear of these
pointless features. More usefully, a Web hosting company can provide Web site
statistics—detailed information about how many visitors are flocking to your
site on a daily or monthly basis. (In Chapter 11, you’ll find out about a free visi-
tor tracking tool that runs circles around what most Web hosts provide.)

A Web Host Checklist

� Web space. 20 MB is acceptable if you’re getting free Web space from your ISP.
If you’re paying a monthly fee for Web space, you’ll almost certainly get hun-
dreds of megabytes or more. This is far more than you’ll ever be able to use,
even if you want to include photos, audio, or other large files. Many Web hosts
offer gigabytes of space, knowing that almost no one has the time to upload that
much information.

� Bandwidth. You don’t need much. 1 GB works for most text-centric Web sites,
but look for 5 GB or more if you want to provide large files or are expecting to
create a popular Web destination. See the box on page 71 for tips that can help
you estimate your bandwidth requirements.

� Domain name. This is your identity—www.You.com. Ideally, your Web host
will throw in the domain name for free.

� Email addresses. These go with the domain name. Look for at least one POP
mailbox. It’s better to have five or more, because it lets you give separate email
addresses to family members, or use them for different purposes. Also look for
Web-based access to your email.

Note: POP stands for Post Office Protocol, an email standard your computer uses to communicate with
an email server. When you have a POP email account, you’re able to use desktop email programs like
Microsoft Outlook and Thunderbird.

� FTP access. This lets you easily upload your files.

Chapter 3: Putting Your Page on the Web 71

Getting Web Space

� Tech support. The best companies provide 24-hour tech support, ideally
through a toll-free number or a live chat feature that lets you ask a tech support
person questions using your browser.

� Server-side scripts. Although Web server programming is too complex for most
ordinary people, this feature gives you some room to grow. If your Web site
supports a server-side programming technology (like CGI, ASP, or ASP.NET),
you could conceivably take someone else’s script and use it in your Web pages
to carry out an advanced task, like collecting visitor information with a form
(page 339).

POWER USERS’ CLINIC

The Riddle of Bandwidth
Most Web hosting companies set their pricing, at least in
part, on your Web space and bandwidth needs. This can be
a problem, because the average Web site creator has no
idea how to calculate these numbers. It’s even harder to
come up with realistic estimates.

Fortunately, you can save a lot of time and effort by under-
standing one dirty little secret: for the average personal or
small-business Web site, you don’t need much disk space
or bandwidth. You can probably take the smallest amounts
on offer from any Web hosting company and live quite hap-
pily. The only real exception is if your Web site is ridicu-
lously popular, if you’re showcasing a huge catalog of
digital photos, or if you want to store extremely large files
and let visitors download them.

If you still insist on calculating bandwidth, here’s how it
works. Let’s say you’ve got a Web site with 100 relatively
modest pages that are each about 50 KB (kilobytes) in size,
including graphics. Right away, you can calculate your Web
space requirement—it’s 50 KB × 100, or about 5 MB.

To calculate the bandwidth, you need to make estimates
about how many people will visit your site, and how much
content they’ll request over each visit. Suppose your site is
doing well, and receives about 30 visitors in a day. Say an
average visitor browses through 10 pages before leaving. In
a day, your bandwidth usage is 30 visitors × 10 pages × 50
KB, or 15 MB. Over a 30-day month, that’s 450 MB, still less
than half of the 1 GB bare minimum that most Web hosting
companies offer.

So why do Web hosting companies focus on Web space
and bandwidth numbers? It’s partly to satisfy large custom-
ers who really do have greater requirements, but it’s also to
confuse everyone else into buying more than they need.

Here’s another scenario: you create a Web site and add
links that let visitors download MP3 files of your under-
ground all-percussion garage band. You give them a choice
of three songs, each of which is a 4 MB MP3 file. Now the
equation changes. Assuming your site gets a steady stream
of 10 visitors a day, and assuming each visitor downloads
all three songs, you’ve hit a bandwidth of 10 visitors × 3
songs × 4 MB, or 120 MB. Now your monthly bandwidth
usage tops 3 GB. You’re probably still in the clear, because
many Web hosting companies offer 7 or 10 GB in their
starter packages, but you’ll want to pay more attention to
the bandwidth number.

If bandwidth is important for you, you need to know what
will happen if you surpass your bandwidth limit in a month.
Some Web hosting companies cut your Web site off
entirely (or just show your visitors an explanatory page say-
ing the site is temporarily inactive). Others tack on extra
fees. So ask.

72 Creating a Web Site: The Missing Manual

Getting Web Space

� FrontPage extensions. If you create your Web site with Expression Web (the
successor to FrontPage), you can use FrontPage server extensions to get a few
extra frills. For example, FrontPage server extensions include server-side scripts
that count the number of visitors to a certain page and let visitors upload files
to the Web server.

Choosing Your Host
Now that you have your requirements in mind, it’s time to start shopping for a
Web host. The following sections take you through your options.

Your ISP (Internet Service Provider)

As you may have already realized, your ISP—the company that provides your
access to the Internet—may have its own Web hosting services. In fact, these ser-
vices are sometimes included in your subscription price, meaning you may already
have a dedicated amount of Web space that you don’t even know about. If you’re
in this situation, congratulations—you don’t need to take any extra steps. If you’re
unsure, a quick call to your ISP will fill you in. Make sure you ask for “personal
Web space,” as many ISPs also provide large-scale Web hosting packages for a
monthly fee.

Note: In some cases, your ISP may provide Web hosting that you decide not to use. For example, they
may not give you enough space, or they may force you to use their limited Web site creation software
(which is a definite drag). In these cases, you’ll want to use one of the other Web hosting solutions
described later.

Obviously, ISPs differ in whether or not they provide Web space. You’re more
likely to get a small amount of Web space if you have a high-speed broadband con-
nection (cable or DSL) rather than a dial-up account. The space is always far
smaller than what you receive from a Web hosting company, and it almost never
includes a personal domain name (although you can purchase one separately).

Before continuing any further, it might be worth it to make a quick call to your ISP
or visit their Web site to see if they provide Web hosting services.

Web hosting companies

Technically, any company that provides Web space is a Web host, but there’s a
class of companies that specialize in Web hosting and don’t do anything else. You
can find these companies all over the Internet, or in computer magazines. The dis-
advantage is that Web hosting companies always charge by the month. You won’t
get anything for free.

The sad truth is that it’s almost impossible to research Web hosting companies
online, because the Web is swamped with more advertisements for Web hosting
than for cut-rate pharmaceuticals. Fortunately, there are many good choices.

Chapter 3: Putting Your Page on the Web 73

Getting Web Space

Table 3-1 lists just a few good ones to get you started. If you’re curious, be sure to
check out these Web sites and start comparison shopping.

It’s quite difficult to find honest Web host reviews on the Web. Most Web sites
that claim to review and rank Web hosts are simply advertising a few companies
that pay for a recommendation. Popular computer magazines like PC World and
PC Magazine haven’t reviewed Web hosts in years, because a thorough analysis of
even a fraction of the Web hosts that exist would require a massive amount of
manpower. Their old reviews aren’t much help either, because the quality of a Web
hosting company can change quickly.

However, the Web isn’t completely useless in your Web host hunt. You can get
information about Web hosting companies from a Web discussion board where
people like you chat with more experienced Web hosters. One of the best is
WebHostingTalk, which you’ll find at http://tinyurl.com/5zffwp. The WebHosting-
Talk discussion board is particularly useful if you’ve narrowed your options down
to just a few companies, and you’d like to ask a question or hear about other peo-
ple’s experiences. If you want to continue with still more research, check out www.
consumersearch.com/www/internet/web-hosting/review.html, which does a respect-
able job of pointing out more discussion boards and a few Web sites with general
Web hosting advice.

As you consider different Web hosting companies, you need to sort through a diz-
zying array of options on different Web sites. In the following sections, you’ll learn
how to dig through the marketing haze and find the important information on the
Web sites of two Web hosting companies.

A Web host walkthrough (#1)

Figure 3-10 shows how you can assess the home page for the popular Web hosting
company Aplus.Net. The company offers dedicated servers, standard Web host-
ing, domain name registration, and Web design services. All four options are
designed to help you get online, but the Web hosting option is what you’re really
looking for.

Table 3-1. A few of the Internet’s many Web hosting firms

Name URL

Brinkster www.brinkster.com

DreamHost www.dreamhost.com

GoDaddy www.godaddy.com

HostGo www.hostgo.com

Insider Hosting www.insiderhosting.com

Pair Networks www.pair.com

Sonic.net www.sonic.net

http://www.brinkster.com
http://www.dreamhost.com
http://www.godaddy.com
http://www.hostgo.com
http://www.insiderhosting.com
http://www.pair.com
http://www.sonic.net
http://tinyurl.com/5zffwp
http://www.consumersearch.com/www/internet/web-hosting/review.html
http://www.consumersearch.com/www/internet/web-hosting/review.html

74 Creating a Web Site: The Missing Manual

Getting Web Space

UP TO SPEED

Taming Long URLs with TinyURL
Keen eyes will notice that the URL mentioned above, the
one that leads you to the WebHostingTalk forum, starts with
the seemingly unrelated domain name tinyurl.com. That’s
because WebHostingTalk forum’s URL has deliberately
been shortened using TinyURL, a Web site that provides a
free URL redirection service. TinyURL is a handy tool you
can use whenever you come across a URL that’s so imprac-
tically long or convoluted that you’d ordinarily have no
chance of jotting it down, typing it in, or shouting it over the
phone.

Here’s how to use TinyURL. First, copy your awkwardly long
URL. Then, head to the Web site http://tinyurl.com, type or
paste the URL into the text box on the front page, and click
Make TinyURL. You’ll be rewarded with a much shorter URL
that starts with http://tinyurl.com. In the previous example,
TinyURL changed the ridiculously convoluted URL http://
www.webhostingtalk.com/forumdisplay.php?s=aa8768ad
a1bc5ddbd96e0578584cffce&f=1 to http://tinyurl.com/5zffwp.

Although this new URL doesn’t mean anything, it’s a heck
of a lot shorter. Best of all, the tiny URL works just as well as
the original one—type it into any browser and you’ll get to
the WebHostingTalk forum.

So how does this system work? When you type in a tiny
URL, your browser takes you to the TinyURL Web site.
TinyURL keeps a long list of all the whacked-out URLs peo-
ple have given it as well as the new, shorter URLs it issues
in their place. When you request a page, it looks up the tiny
URL in that list, finds the original, long URL, and redirects
your browser to the site you really want. But here’s the neat
part—the whole process unfolds so quickly that you’d have
no idea it’s taking place if you hadn’t read this box.

Figure 3-10:
There’s a lot of
information packed into
this page. Click the Web
Hosting heading to find
out about the hosting
plans that Aplus offers
(Figure 3-11). In the top-
right corner of the page,
you’ll find toll-free
numbers and a Chat
Now button. Click this,
and a chat window
appears where you can
type your question to an
Aplus technician and get
an immediate answer. If
you’re serious about
signing up with Aplus, it’s
a good idea to give both
these options a try so you
can evaluate its technical
support.

http://tinyurl.com
http://tinyurl.com
http://www.webhostingtalk.com/forumdisplay.php?s=aa8768ada1bc5ddbd96e0578584cffce&f=1
http://www.webhostingtalk.com/forumdisplay.php?s=aa8768ada1bc5ddbd96e0578584cffce&f=1
http://www.webhostingtalk.com/forumdisplay.php?s=aa8768ada1bc5ddbd96e0578584cffce&f=1
http://tinyurl.com/5zffwp

Chapter 3: Putting Your Page on the Web 75

Getting Web Space

The dedicated server option is a premium form of Web hosting. It means that your
Web site runs on its own server, a separate computer that doesn’t host anyone
else’s site. This is primarily of interest to large business customers with high-powered
sites that chew up computer resources. Most personal and small-business Web
sites run on shared servers without any noticeable slowdown.

The domain name registration option is for people planning to reserve a name for
future use. You’ll get one as part of your Web hosting package when you sign up.
And the Web design option is mainly of interest to XHTML-phobes. It lets you pay
a Web design team to craft all the XHTML pages and graphics for your Web site.
But where’s the fun in that?

The choices don’t end there. Figure 3-11 shows you the range of Web hosting plans
you can choose from. As with most Web hosts, you can do perfectly well with the
cheapest plan that Aplus provides. But there’s another wrinkle—not only can you
choose the type of plan, you can also pick the type of operating system used on the
server where your Web site lives. Unless you’re a programmer planning to create soft-
ware that runs on the server, there’s no reason to care what type of operating system
runs on the server. Assuming the hosting company does its job and distributes the Web
sites they host over multiple computers, your site will be just as fast and reliable on any
operating system. Think about it this way: When was the last time you asked yourself
what operating system runs eBay (Windows) or Amazon (Linux)?

Figure 3-11:
At the end of your
search, you’ve
discovered that the
cheapest option is
currently $6/month for a
500 MB Web site with 40
GB of bandwidth. A free
domain and 50 email
addresses are thrown in
for good measure, along
with FTP support. The
Supported Languages
and Databases section
has information that’s
tailored to computer
programmers—if you’re
going code-free, you
don’t need to worry
about it. Scroll down for
the sign-up links.

76 Creating a Web Site: The Missing Manual

Getting Web Space

A Web host walkthrough (#2)

Overall, the Aplus.Net search turned up a solid offer at a fair price. Discerning
Web shoppers may be hoping to save a few dollars or get a little more space.

Figure 3-12 shows another Web hosting company—Brinkster. Brinkster’s target
audience includes personal Web site creators, small businesses, and developers,
rather than large institutional customers. As a result, you just may find a better
deal for your Web site.

Now that you’ve taken a tour of two Web hosting company’s sites, you’re ready to
evaluate some more. Or, if you’re really impatient, you can set up your site using
one of the hosting companies you’ve seen. It doesn’t take anything more than a
couple of mouse clicks, and you’ll be online in only a few hours.

Tip: If your Web host is letting you down, don’t panic. It’s not too hard to switch hosts. The key thing to
remember is when you change hosts, you’re essentially abandoning one Web server and setting up shop on
another. It’s up to you to copy your Web pages to the new Web server—no one will do it for you. As long as
you have a copy of your Web site on your personal computer (which you always should), this part is easy. If
you’re still a little skeptical of the company you choose, look for a 30-day, money-back guarantee.

Figure 3-12:
The Brinkster homepage
gets straight to the point
with three basic
packages. The Rookie
package is a good bet for
new Web builders. At $4/
month, it has space for a
gargantuan 200 GB Web
site, a huge helping of
bandwidth (2000 GB),
and a free domain name
and email addresses, too.
Scroll over to the top-
right corner (not shown
here) to find a technical
support phone number
and live chat link.

Chapter 3: Putting Your Page on the Web 77

Getting Web Space

Free Web Hosts
Not yet swayed by any of the hundreds of Web hosting companies on the Web? Not
tempted by the offer of a little Web space from your ISP? If you’re hoping to save a
monthly fee at all cost, there is a solution, but it may not be worth the aggravation.

The Web has a significant number of free Web hosts. Free hosts are companies that
give you a small parcel of Web space without charging anything. Sometimes it’s
because they hope to get you to upgrade to a cost-based service if you outgrow the
strict limitations of the free package. Other times, they may just be interested in
advertising revenue. That’s because some free Web hosts force you to include an
obnoxious ad banner at the top your Web pages.

Before you sign up for a free host, familiarize yourself with some of the headaches
you can face:

• Ad banners. The worst free Web hosts force you to display their advertisements
on your pages. If you’d like to crowd out your content with obnoxious credit
card commercials, this is the way to go. Otherwise, move on to somewhere new.
It’s finally possible to find free Web hosts that don’t impose the Curse of the
Blinking Banner Ad, so don’t settle for one that does.

• Unreliability. Free Web hosts may experience more down time, which means
your Web site may periodically disappear from the Web. Or the Web servers
the host uses may be bogged down by poor maintenance or other people’s Web
sites, causing your site to slow to a crawl.

• Unpredictability. Free Web hosts aren’t the most stable companies. It’s not
unheard of for a Web host to go out of business, taking your site with it and
forcing you to look for a new Web home in a hurry. Similarly, free hosts can
change their requirements overnight, sometimes shifting from an ad-free Web
haven to a blinking banner extravaganza without warning.

• Usage limits. Some free Web hosts force you to agree to a policy that limits the
type of content you can put on your site. For example, you may be forbidden
from running a business, selling ad space, or uploading certain types of files
(like music, movies, or large downloads).

• Limited tech support. Many professional Web site operators say that what
makes a good Web host isn’t a huge expanse of free space or a ginormous band-
width limit—it’s the ability to get another human being on the phone at any
hour to solve unexpected problems. Free Web hosts can’t afford to hire a pla-
toon of techies for customer service, so you’ll be forced to wait for help—if you
get it at all.

• Awkward uploads. Many free Web hosts lack support for easy FTP uploading
(page 80). Without this convenience, you’ll be forced to use a time-consuming
upload page.

78 Creating a Web Site: The Missing Manual

Transferring Files

Despite all these possible problems, many thrifty wallet-watchers swear by their free
Web hosts (and the $0/month price tag). If you have the time to experiment, and
your business doesn’t need rock-solid reliability and an immediate Web presence,
you might want to try out a few. Check out www.free-webhosts.com/user_reviews.php
for a huge catalog of free Web hosts, which painstakingly details the space they give
you and the conditions they impose. You’ll also find thousands of user reviews.
However, keep in mind that some free Web hosts may pad the rankings with their
own reviews, and any free Web host can suddenly change its offerings.

Tip: One thing that you don’t get with a free Web host is a custom domain name. Although you can buy
your domain name from another company and use domain name forwarding (page 62) for a few dollars
a year, you can avoid any expense by opting for a subdomain from a free subdomain service, as explained
on page 65.

Transferring Files
Once you sign up for Web hosting, you’re ready to transfer some files to your Web
space. To perform this test, you can use Lee Park’s résumé from the previous chap-
ter (which you can download from the Missing CD page at www.missingmanuals.
com). The final version has the filename resume5.htm.

Browser-Based Uploading
Browser-based uploading is fairly easy, but it’s not always convenient. The idea is
that you go to a special Web page on your host’s site where you specify the files on
your hard drive that you want to transfer to the server. Many hosting companies
provide both browser-based and FTP-based uploading. If you’re using a budget
plan or a free Web host, you may not have the FTP option at all. To perform
browser-based uploading, follow these steps:

1. Go to your Web hosting company’s site.

2. Log in to your account with the user name and password you created when
you signed up.

Usually you’ll find a login box somewhere on the first page.

3. Browse through the icons until you find the page for managing files.

Each Web hosting provider has its own slightly different site layout. Figure 3-13
shows what things look like at Brinkster.

4. Specify the files you want to upload. You need to specify each file individually,
by clicking the Browse button next to the text box.

For the résumé example to work properly, make sure you upload both the
resume5.htm file and the linked picture, leepark.jpg, to the same place on your
Web site.

http://www.free-webhosts.com/user_reviews.php
http://www.missingmanuals.com
http://www.missingmanuals.com

Chapter 3: Putting Your Page on the Web 79

Transferring Files

5. Log out when you finish.

Now you can test your work by entering your domain name followed by the Web
page name. For example, if you uploaded the résumé example to your Web site
www.supersavvyworker.com, try requesting www.supersavvyworker.com/resume5.
htm in your browser. You don’t need to wait—once you upload the file to your
Web server, it’s available almost instantly to any browser that requests it.

Figure 3-13:
Every Web hosting provider’s site looks a little
different, but you’ll eventually find a set of text boxes
that let you upload pages. These text boxes always
work the same way. First you click the Browse
button (top image), which shows an Open File
dialog box (middle). Then you browse to the file you
want, select it, and click Open. If you have several
files to upload at once, repeat this process using
different text boxes. When you’ve chosen all the files
you want (or just run out of text boxes), click OK,
and then wait until the files are copied and you get
a confirmation message (bottom).

80 Creating a Web Site: The Missing Manual

Transferring Files

Unfortunately, the possibilities for mistakes with browser-based uploading are
endless. The most common error occurs when you have a large number of files to
copy at once. Not only is it time-consuming to pick out each one, it’s all too easy
to forget something. Other headaches include trying to upload files to different
folders, or needing to rename or delete files after you’ve uploaded them.

FTP
Ideally, your Web hosting company will provide FTP access. FTP access lets you
transfer groups of files from your computer to the Web server (or vice versa) in
much the same way that you copy files from one folder to another in Windows
Explorer or the Mac’s Finder.

Before you can upload files using FTP, you need the address for the FTP server, as
well as a user name and password. These are usually the same as the user name and
password of your Web hosting account, but not always.

To upload files using FTP, you can use a standalone FTP program. However, in
these modern times you probably don’t need to. Windows includes its own built-
in FTP browser that handles the task comfortably. Here’s how it works:

1. Open Windows Explorer.

There are many ways to open Windows Explorer, which lives in a slightly differ-
ent part of the Start menu depending on your version of Windows. One
approach that always works is to right-click the Start button, and then choose
Explore.

2. Type the FTP address into the Windows Explorer address bar. Make sure the
URL starts with ftp://.

In other words, if you’re trying to visit ftp.myhost.com, enter the URL ftp://ftp.
myhost.com, not http://ftp.myhost.com, which incorrectly sends your computer
off looking for Web pages.

3. The next step is to enter your login information (see Figure 3-14).

Once you log in, you’ll see the folders and files on the Web server, which you
can copy, delete, rename, and move in much the same way you work with your
local folders and files. Seeing as you haven’t uploaded anything yet, the folder
may be empty, or it may contain a generic index.htm file that shows an “under
construction” message if someone happens to browse to it.

4. The next step is to copy your files to the Web server. The easiest way to do this
is to drag the files from another open window, and then drop them in the FTP
window.

Figure 3-15 shows the steps you need to upload the résumé example.

Chapter 3: Putting Your Page on the Web 81

Transferring Files

Figure 3-14:
When you first enter the
FTP site address,
Windows Explorer will
probably try to log you in
anonymously and fail. It
may then prompt you for
your user ID and
password (as shown
here), or it may just
show you an error
message. If you get an
error message, click OK,
and then select File ➝
Login As from the menu.
If you turn on the “Save
password” checkbox
(circled), you don’t need
to repeat this process on
subsequent visits.

Figure 3-15:
To get Lee Park onto the
Web, start by opening a
window in your file
system using Windows
Explorer. Then browse to
the appropriate folder on
your computer. When
you find the resume5.
htm and leepark.jpg files
you downloaded earlier,
select them, and then
drag them into the FTP
window to start the
uploading process.

82 Creating a Web Site: The Missing Manual

Transferring Files

Tip: Drag-and-drop isn’t the only way to transfer files. You can use all the familiar Windows shortcuts,
including the Cut, Copy, and Paste commands in the Edit menu, and the Ctrl+C (copy) and Ctrl+V (paste)
keyboard shortcuts.

If you’re working on a Mac, you need to use a standalone FTP program. Fortu-
nately, you’ve got loads of free options, including the super-easy-to-use Rbrowser
(available at www.rbrowser.com). Things work pretty much the same way they do
for your Windows brethren. First, fire up Rbrowser. You’ll be asked to log in (Fig-
ure 3-16). Once that’s out of the way, you can transfer your files by dragging them
from a folder on your Mac to the Rbrowser window.

Figure 3-16:
To log in to Rbrowser, you need to supply the name of the
FTP server (in the Host/URL box), and your user name and
password. Don’t worry about setting an initial path—you can
always browse to the right subfolder on your Web site once
you make the connection. Finally, click Connect to seal the
deal.

http://www.rbrowser.com

83

Chapter 4chapter

4

Power Tools

In Chapter 2, you built your first XHTML page with nothing but a text editor and
a lot of nerve. This is how all Web-page whiz kids begin their careers. To really
understand XHTML (and to establish your XHTML street cred), you need to start
from scratch.

However, very few Web authors stick with plain text editors or use them to create
anything other than simple test pages. That’s because the average XHTML page is
filled with tedious detail. If you have to write every paragraph, line break, and for-
matting tag by hand, you’ll probably make a mistake somewhere along the way.
Even if you don’t err, it’s hard to visualize a finished page when you spend all day
staring at angle brackets. This is especially true when you tackle more complex
pages, like those that introduce graphics or use multicolumn layouts.

There’s a definite downside to outgrowing Notepad or TextEdit—namely, it can
get expensive. Professional Web design tools can cost hundreds of dollars. At one
point, software companies planned to include basic Web editors as a standard part
of operating systems like Windows and Mac OS. In fact, some older versions of
Windows shipped with a scaled-down Web editor called FrontPage Express, and
Mac OS includes a severely truncated editor called iWeb, which limits you to
ready-made templates and doesn’t let you touch a line of XHTML. But if you want
a full-featured Web page editor—one that catches your errors, helps you remem-
ber important XHTML elements, and lets you manage an entire site—you have to
find one on your own. Fortunately, there are free alternatives for even the most
cash-strapped Web designer.

84 Creating a Web Site: The Missing Manual

Choosing Your
Tools

In this chapter, you’ll learn how Web page editors work and how to evaluate them to
find the one that’s right for you. You’ll also tour some of the better free and share-
ware offerings currently out there. Most Web page editors are surprisingly similar, so
this chapter helps you get started with your tool of choice, whether that’s Adobe
Dreamweaver, Microsoft Expression Web, or a nifty piece of freeware.

Choosing Your Tools
Tools like Notepad and TextEdit aren’t all that bad for starting out. They keep
page development simple, and they don’t mess with your XHTML (as a word-
processing program would). Seeing the result of your work is just a browser refresh
away. So why are you destined to outgrow your favorite text editor? For a number
of reasons, including:

• Nobody’s perfect. With a text editor, it’s just a matter of time before you make
a mistake, like typing instead of . Unfortunately, you might not real-
ize your mistake even when you view your page in a browser. Remember, some
browsers compensate for some types of mistakes, while others don’t. A good
Web page editor can highlight faulty XHTML and help you correct it.

• Edit-Save-Refresh. Repeat 1,000 times. Text editors are convenient for small
pages. But what if you’re trying to size a picture perfectly, or line up a table col-
umn? You need to jump back and forth between your text editor and your Web
browser, saving and refreshing your page each time. This process can literally
take hours. With a good Web page editor, you get conveniences like drag-
and-drop editing to fine-tune your pages—make a few adjustments, and your
editor tweaks your XHTML appropriately. Editors also have a preview mode
that lets you immediately see the effect of your XHTML edits on a Web page,
with no browser required.

• Help, I’m drowning in XHTML! One of the nicest little frills in a Web page edi-
tor is color-coded XHTML. Color-coding makes those pesky tags stand out
against a sea of text. Without this feature, you’d be cross-eyed in hours.

• Just type . To create a bulleted list, of course. You haven’t
forgotten already, have you? The truth is, most Web authors don’t memorize
every XHTML element there is. With a Web editor, you don’t need to. If you
forget something, there’s usually a help link or a menu command to compen-
sate. Without a tool to guide you, you’re on your own.

Of course, using a graphical Web page editor has its own risks. That’s why you
started out with a simple text editor, and why you’ll spend a good portion of this
book learning more about XHTML. If you don’t understand XHTML properly,
you can fall into a number of traps.

Chapter 4: Power Tools 85

Choosing Your
Tools

For example, you might use a slick Web page editor to apply fancy fonts to your
text. Imagine your surprise when you look at that page on a PC that doesn’t have
those fonts installed. Your page reverts to an ugly or illegible typeface. (Chapter 6
has more about this problem.) Similarly, your editor can unwittingly lead you to
insert elements that aren’t supported by all browsers, or graphics that won’t dis-
play properly on other computers. Finally, even with the best editor, you’ll spend a
significant amount of time looking at raw XHTML to see exactly what’s going on,
clean up a mess, or copy and paste useful bits to other pages.

Note: Web page editors are often called HTML editors. However, this is just a quirk of history, and virtu-
ally all Web page editors can build impeccable XHTML documents.

Types of Web Page Editors
Web page editors come in many flavors, but they all tend to fall into one of three
categories:

• Text-based editors require you to work with the text and tags of raw XHTML.
The difference between an ordinary text editor (like Notepad) and a text-based
XHTML editor is convenience. Unlike Notepad or TextEdit, text-based
XHTML editors usually include buttons to quickly insert common XHTML ele-
ments or element combinations, and a one-click way to save your file and open
it in a separate browser window. Essentially, text-based XHTML editors are text
editors with some useful Web-editing features stapled on top.

• Split window editors also make you write XHTML by hand. The difference is
that a separate window shows the results of your work as you type. In other
words, you get a live preview, which means you don’t need to keep stopping to
see what you’ve accomplished.

• WYSIWYG (What You See Is What You Get) editors work more like word proces-
sors. That means you don’t need to write XHTML tags. Instead, you type in some
text, format it, and insert pictures just as you would in a word-processing pro-
gram. Behind the scenes, the WYSIWYG editor generates your XHTML markup.

Any of these editors makes a good replacement for a simple text editor. The type
you choose depends mainly on how many features you want, how you prefer to
work, and how much money you’re willing to shell out. The best Web-editing pro-
grams blur the lines between these different types of editor, giving you the free-
dom to switch back and forth between XHTML and WYSIWYG views.

It’s important to understand that no matter what type of Web page editor you use,
you still need to know a fair bit about XHTML to get the results you want. Even if
you have a WYSIWYG editor, you’ll almost always want to fine-tune your markup
by hand. Understanding XHTML’s quirks lets you determine what you can and
can’t do—and what strategies you need to follow to get the most sophisticated
results. Even in a WYSIWYG editor, you’ll inevitably look at the XHTML under-
belly of your Web pages.

86 Creating a Web Site: The Missing Manual

Choosing Your
Tools

Finding a Free Web Page Editor
Unless you’re one of the lucky few who already has a copy of a cutting-edge Web
page editor like Expression Web or Dreamweaver, you’re probably wondering how
you can find a good piece of software for as little money as possible. After all, the
Web’s all about getting goodies for free. While you can’t find an industrial-
strength Dreamweaver clone for free, you can get a good basic editor without
opening your wallet. Here’s how:

• If you like to do your own research (always a good idea) and you don’t mind
installing several dozen programs on your computer until you find what you
like, head to a top shareware site like www.download.com. To dig up some con-
tenders, search for “HTML editor.” (Even though most Web page editors turn
out top-notch XHTML, they still go by their old description as HTML editors.)

Note: Shareware, as you no doubt already know, is software that’s free to try, play with, and pass along
to friends. If you like it, you’re politely asked to pay for it (or not-so-politely locked out when the trial
period ends). Freeware is software that has no cost at all—if you like it, it’s yours! Usually, you won’t get
niceties like technical support. Some freeware is supported by donations. To make sure your shareware is
virus- and spyware-free, download it from a reputable source like www.download.com.

FREQUENTLY ASKED QUESTION

Save As HTML
My word-processing/page layout/spreadsheet program
has a feature for saving documents as Web pages. Should
I use it?

Over the last decade, the Internet has become the hottest
marketing buzzword around. Every computer program
imaginable is desperate to boast about new Web features.
For example, virtually every modern word processor has a
feature for exporting your documents to HTML. Don’t use it.

HTML export features don’t work very well. Often, the prob-
lem is that the program takes a document designed for one
medium (usually print) and tries to wedge it into another
(the Web). But word processor documents just don’t look
like Web pages—they tend to have larger margins, fancier
fonts, more text, more generous spacing around that text,
no links, and a radically different layout.

Another problem is the fact that HTML export features often
create wildly complex markup. You end up with an ungainly
Web page that’s nearly impossible to edit because it’s
choked with formatting details. (Dreamweaver even has a
tool that aims to help you with the clean up. It’s in the menu
under Commands ➝ Clean Up Word HTML.) And if you
want to convert one of these pages into stricter, cleaner
XHTML, you need to do it by hand.

The lesson? If you can, steer clear of the Save as HTML com-
mand. You’re better off copying and pasting the contents of
your document into an XHTML file as plain text, and then
formatting it with XHTML tags on your own.

http://www.download.com
http://www.download.com

Chapter 4: Power Tools 87

Choosing Your
Tools

• You can also browse a comprehensive list of Web page editors on Wikipedia at
http://en.wikipedia.org/wiki/Comparison_of_HTML_editors. This list is notewor-
thy for the surprisingly thorough information it provides. For example, it
details the price of each editor and the operating systems that editor supports.
Most importantly, it points out which are free.

You’ll quickly find out that there’s a sea of free editors out there. Many have awk-
ward and clunky button and menu arrangements. Some have outright errors.
Finding one that’s right for you might take a little time.

The following sections describe four worthwhile editors that don’t cost a penny.

Nvu

Nvu (pronounced “n-view,” as in “new view”) is a nifty, lightweight editor that’s
supremely easy to use. Best of all, Nvu comes in a version for all three major oper-
ating systems: Windows, Mac, and Linux.

Nvu’s creators used pieces of the Mozilla browser, godfather to the increasingly
popular Firefox browser, when they developed this editor. Nvu’s an open source
project, which means that you can not only download and copy it for free, but you
can, if you’re a programmer type, browse through the source code and submit
improvements. As a Web-head, you’re most likely to fall in love with Nvu’s multi-
ple views, which let you make changes in either a text-only XHTML view or a slick
WYSIWYG view that previews your pages (see Figure 4-1).

Nvu’s key drawback is that its developers stopped working on it in 2006. Although
Internet rumor has it that they’re working on a replacement, nothing’s on horizon
right now, so don’t expect bug fixes or enhancements. Confusingly, the developers
named Nvu’s last patched-up version KompoZer. You can download it at www.
kompozer.net.

Amaya

Amaya is a Web page editor with real history. It’s been around for more than a
decade, with regular releases and updates continuing to this day. It helps that the
World Wide Web Consortium, the heavyweight international standards organiza-
tion that helped standardize the Web, has adopted Amaya. Like Nvu, Amaya sup-
ports the big three operating systems, which is a rare asset—most free Web page
editors, including the two you’ll learn about next, are for Windows PCs only.
Amaya’s options for viewing Web pages do Nvu one better (see Figure 4-2).

However, Amaya isn’t as polished as a professional Web page editor, and finding
the command you want in its cluttered menu and toolbars is often a chore. Still,
for a free editor, it’s hard to describe Amaya as anything other than a barn burner
of a bargain. To give Amaya a whirl, go to www.w3.org/Amaya.

http://en.wikipedia.org/wiki/Comparison_of_HTML_editors
http://www.kompozer.net
http://www.kompozer.net
http://www.w3.org/Amaya

88 Creating a Web Site: The Missing Manual

Choosing Your
Tools

HTML-Kit

HTML-Kit (www.html-kit.com) is a slightly eccentric Windows Web page editor
with a screen layout that only Bill Gates’ mother could love. On the plus side,
HTML-Kit is 100 percent free, relatively reliable, and ridiculously customizable.

Unlike Nvu and Amaya, HTML-Kit doesn’t provide a WYSIWYG editing mode.
Instead, it has a split-preview editor, which means you can see a live preview of

Figure 4-1:
Top: Instead of having to work with raw
XHTML, Nvu’s Normal view lets you format text
just as you would in a word processor. To
switch from one view to another, use the tabs at
the bottom of the window (circled).

Middle: To fine-tune your XHTML markup,
switch to the Source view. Nvu give you handy
line numbers for reference, and color-codes
your XHTML elements.

Bottom: Need something in between? The
XHTML Tags view lets you edit formatted text,
but displays your document’s tags in floating
yellow boxes. That way, if you find something
amiss, you can switch to the Source view to
clean it up.

http://www.html-kit.com

Chapter 4: Power Tools 89

Choosing Your
Tools

your XHTML document as you code it. For more HTML-Kit fun, check out the
wide array of HTML-Kit plug-ins at www.html-kit.com, as long as you’re not
scared off by perplexing names like avwEncodeEmail and hkMakeOptionsList (see
the Web site for slightly more helpful descriptions). One interesting plug-in is the
XHTML reference found at www.chami.com/html-kit/plugins/info/hkh_w3c_offline.
Once you install it, this plug-in gives you technical help on any XHTML element
in HTML-Kit. Just put your cursor on an element (click it with your mouse or
navigate to it with the arrow keys), and then press F1.

CoffeeCup Free HTML Editor

CoffeeCup Free HTML Editor is a scaled-down version of the full-blown Win-
dows product of the same name (minus the word “Free”). The full version has
both a text-only mode and a WYSIWYG mode, but the free version switches off
the WYSIWYG mode. Get your copy at www.coffeecup.com/free-editor.

Figure 4-2:
Top: Open a Web page in Amaya,
and you start in Design view.

Bottom: It’s not immediately
obvious, but if you select Views ➝
Show Source from the menu bar,
Amaya displays this split window
view, which lets you jump back
and forth between Design view
and your XHTML markup. Best of
all, you can make changes in
either window. And if you have a
widescreen monitor, you don’t
need to stick with this top and
bottom stacking—instead, choose
Views ➝ Split View Vertically to
put the two views side-by-side.

http://www.html-kit.com
http://www.chami.com/html-kit/plugins/info/hkh_w3c_offline
http://www.coffeecup.com/free-editor

90 Creating a Web Site: The Missing Manual

Choosing Your
Tools

Professional XHTML Editors
Fed up with settling for a low-powered Web page editor and an editing environment
that seems like it was designed by M. C. Escher? If you’re ready to move on to a profes-
sional Web design package, take heart—your choice is surprisingly simple. That’s
because there are really only two top-tier Web page editors on the market today.

• Adobe Dreamweaver is the favorite of graphic designers and hard-core XHTML
experts. It’s packed with features and gives you fine-grained control of every
XHTML ingredient.

• Microsoft Expression Web is a powerhouse revamp of the long-running Web
editor Microsoft FrontPage. Start typing, and you’ll immediately see why
Expression Web is popular with XHTML novices. Its WYSIWYG mode is so
seamless that it’s hard to tell you aren’t using a word processor. Features like
automatic spell check duplicate what you find in Microsoft Word.

Note: Confusingly, Microsoft Expression Web has a distant cousin with most of the same features. It’s
named, in true long-winded Microsoft style, Microsoft Office SharePoint Designer. Like Expression Web,
SharePoint Designer inherits the inner plumbing of the now-obsolete FrontPage. Unlike Expression Web, it
has some optional features that work with Microsoft SharePoint, a Web-based program that big busi-
nesses use to share office documents and help employees collaborate. If you’re buying a Microsoft Web
page editor on your own dime, you’ll almost certainly stick with Expression Web. But if you already have
access to SharePoint Designer (say, through the company you work for), feel free to substitute it instead.

One of the reasons these products are so much better than their competitors is that
they include a lot of tools you’re sure to need once you start designing Web pages.
For example, both let you create style sheets (an advanced feature you’ll learn
about in Chapter 6), resize images and drag them around your Web pages, and
manage an entire Web site. Expression Web even includes a tool for generating
fancy buttons. Another reason is that they’re just so darned easy to use. Even
though both come packed with sophisticated features, editing a simple XHTML
file couldn’t be easier.

In the past, Dreamweaver had a reputation for being complicated enough to scare
away XHTML newbies. On the other hand, FrontPage (the predecessor to Expres-
sion Web) was known for being easy to use but possessed of a few bad habits—like
inserting unnecessary elements into your code or relying on frills that worked only if
your Web server supported the FrontPage server extensions. However, recent ver-
sions of both programs tackle these weaknesses. Now, Dreamweaver is virtually as
easy to use as Expression Web, and Expression Web is almost as mature and well-
rounded as Dreamweaver. In fact, common tasks in these two programs are surpris-
ingly similar. The bottom line? You can’t go wrong with either.

If you’re still itching to be convinced, try a free 30-day trial of either product. Go
to www.microsoft.com/Expression/try-it to get a free trial version of Expression
Web, or to www.adobe.com/products/dreamweaver to download a working Dream-
weaver demo. And, for an in-depth exploration of every Dreamweaver feature,
check out Dreamweaver CS4: The Missing Manual.

http://www.microsoft.com/Expression/try-it
http://www.adobe.com/products/dreamweaver

Chapter 4: Power Tools 91

Working with Your
XHTML Editor

Working with Your XHTML Editor
Once you choose a Web page editor, take it for a spin. In this section, you’ll learn
how to create a sample XHTML document and get it online, all without leaving the
comfort of your editor.

Software companies have spent the last decade copying features from their com-
petitors and as a result, common tasks in Expression Web, Dreamweaver, and
many free Web page editors are startlingly similar. That means that no matter
which program you use, the following sections will teach you the basics. Once
you’re comfortable with your editor, you can move on to the rest of the book and
learn more about how XHTML works.

Note: Although future chapters won’t lead you step by step through any of these Web page editors, look
for boxes and tips that point out occasional shortcuts, tricks, and techniques for your favorite editor. The
one exception is the keenly important page template feature that both Dreamweaver and Expression Web
provide—you’ll explore that in Chapter 10.

Starting Out
Here’s what you need to do to get started with your editor of choice:

1. Your first step is to launch the program by double-clicking the appropriate
desktop icon or making a quick trip to the Start menu (in Windows PCs) or
Finder ➝ Applications (for Mac OS).

Your Web page editor appears.

UP TO SPEED

Mid-Level XHTML Editors
A few years ago, there were a number of mid-level Web
page editors in hot competition. Today, most have died out.
The mid-level Web page editors that remain often aren’t
worth the expense. Instead, your best bet is to save up for
one of the two leading-edge Web page editors—Adobe
Dreamweaver or Microsoft Expression Web. Of the two,
Expression Web is the more affordable (hovering around
$250), while Dreamweaver commands a higher price
because of its historical position as the tool-of-choice for
professional Web developers (it’s about $400). You may be
able to find academic (or “student and teacher”) editions of
both programs at specialty retailers, like college campus
computer stores. These editions are scaled down but still

powerful, and they have a much lower price tag. You’ll
need to prove you’re a student or starving academic to get
in on the action.

Another option is to find a retailer that still offers copies of
a slightly out-of-date version of Dreamweaver or Expression
Web. For example, Amazon sellers often offer FrontPage
2003, which is the well-rounded predecessor to Expression
Web, for little more than $100. Its core features work in
much the same way as Expression Web, and you can get a
lower-priced Expression Web upgrade when you decide to
move on. However, there’s a good case to be made for
sticking with a free Web page editor until you’re ready to
move up to a more full-featured program.

92 Creating a Web Site: The Missing Manual

Working with Your
XHTML Editor

2. Some editors, including Nvu and Amaya, start you off with a tip of the day. If
so, close this window to get to the main program.

You may also need to remove a few more distractions. Dreamweaver clutters
your view with a pile of panels. Although these panels provide quick access to
advanced features, you might want to shunt them out of the way when you’re
first getting started (see Figure 4-3). In Expression Web, you’ll see similar pan-
els latched onto either side of the main window. To close them, click the X in
the top-right corner of each one. (You can get the panel back later by clicking it
in the View of Task Panes menu.)

Figure 4-3:
Top: Dreamweaver is packed with
features, many of which sit at your
fingertips in specialized panels, which
latch on to the right side and bottom of
the main window. In this figure, you
see the view that appears
automatically when you open
Dreamweaver. Until you learn the
basics, you might find it helpful to push
this clutter out of the way by clicking
the arrows circled here. You can also
hide all panels at once by choosing
View ➝ Hide Panels. (Choose View ➝
Show Panels when you’re
psychologically ready for them to
return.)

Bottom: In this figure, the panels are
hidden, giving you more room to work
with in the main window.

Chapter 4: Power Tools 93

Working with Your
XHTML Editor

3. Now, choose File ➝ Open, and then navigate to one of the XHTML file sam-
ples you worked on in Chapter 2 (also available on the Missing CD page at
www.missingmanuals.com).

This step is easy—opening a document in a Web page editor is exactly the same
as opening a document in any other self-respecting program.

Multiple Views
As you’ve already learned, you can look at an XHTML document in several ways,
depending on whether you want the convenience of a word processor-like layout
or the complete control of working directly with XHTML markup. Most Web page
editors give you a choice and let you switch rapidly from one to the other. To
switch views, you need to find a small series of buttons, usually displayed just
above or just below the document you’re working on. Figure 4-4 helps you spot
these buttons. One exception is Amaya—it lacks these handy buttons, and forces
you to travel to the Views menu to make the switch.

Most Web page editors start you out in a WYSIWYG view that shows formatted
XHTML—in other words, an approximation of what a page will look like in a Web
browser. When you switch to the XHTML code view, you see the real story—the
familiar text-only display of color-coded tags and text. These views are the two sta-
ples of XHTML editing. However, the most useful choice just might be the split
view, which shows both views at once. Most commonly, you’ll use this view so you
can edit XHTML tags and preview the results as you type. However, you can also
work the other way, editing the WYSYWIG preview and seeing what XHTML tags
your editor inserts, a great way to learn XHTML.

Some Web page editors give you interesting hybrid views. For example, Nvu has an
HTML Tags view, which shows a formatted preview window with the correspond-
ing XHTML elements floating in yellow boxes. To see what that looks like, flip
back to Figure 4-1. In Amaya, you have two more specialized views. You can get an
overview of the structure of your entire page using Views ➝ Show Structure (see
Figure 4-5), and you can review all the links to other Web pages (you’ll learn how
to link pages in Chapter 8) using Views ➝ Show Links.

Creating a Web Page in Code View
The best way to understand how your Web page editor works is to create a new
XHTML document. Begin by working in the code view, and try to replicate one of
the resumes you developed in Chapter 2 (the one on page 40 is ideal).

Launch your program and follow these steps:

1. Start by choosing File ➝ New to create a new Web page.

Some Web page editors start you out with a new, blank page, in which case you
can skip the rest of these instructions. But most open some sort of New Docu-
ment window that lets you choose the type of file you want to create.

http://www.missingmanuals.com

94 Creating a Web Site: The Missing Manual

Working with Your
XHTML Editor

2. Choose the type of page you want to create.

Many Web editors give you a number of ready-made page designs you can use
to get started. For example, in Dreamweaver and Expression Web, you can cre-
ate Web pages with a variety of multicolumn layouts (more on that in
Chapter 9). You’re best off to avoid these until you’ve learned enough to create
your own unique designs. For now, start with a blank, plain-vanilla XHTML
page. In Dreamweaver, choose Blank Page. In Expression Web, choose the General
group, and then pick HTML.

Figure 4-4:
They may give them different names or put them
in a different order, but most Web page editors
use similar buttons to let you switch views,
including Expression Web (top), Dreamweaver
(middle), and Nvu (bottom).

Chapter 4: Power Tools 95

Working with Your
XHTML Editor

Note: Even though virtually all Web page editors create ironclad XHTML markup, they often describe
your Web pages as HTML documents. Don’t be confused. In their view, HTML is a catch-all term that
includes both old-style HTML and modern-day XHTML.

Many Web page editors also let you choose a doctype (page 30) for your new
Web page. In Dreamweaver, you can make your selection from the DocType list
in the New Document window. In Amaya, you use the similar Document Pro-
file list in the New XHTML Document window. In Expression Web, you need
to take an extra step—first, click the Page Editor Options link in the New win-
dow, and then find the Document Type Declaration list in the Page Editor
Options window. Don’t worry if you can’t find the option you need in your
Web editor, because you can always edit the doctype by hand after you create
the page.

3. Create the document.

To make your selections official and actually create the document, click the
Create or OK button (depending on the program).

A blank document appears, showing a bare XHTML skeleton. In the XHTML
code view, you see the basic <html>, <head>, and <body> elements.

Figure 4-5:
Many Web page editors
are packed full of
valuable extras. In
Amaya, the Views ➝
Show Structure
command gives you an
outline of all the
elements in your page.
Click any element in the
side panel to jump to the
corresponding place in
your Web page.

96 Creating a Web Site: The Missing Manual

Working with Your
XHTML Editor

Make sure you’re in XHTML Code view so you have complete control over the
XHTML markup. Enter all the tags and text content for the résumé from begin-
ning to end, just as though you were using Notepad or TextEdit. (You can pop
back to Chapter 2 for a refresher on XHTML code-writing basics.) Along the way,
you’ll notice a few shortcuts. For example, when you start to type a tag in Expres-
sion Web or Dreamweaver, a drop-down menu appears with suggestions. You can
choose a valid XHTML tag from the list, or just keep typing. Also, when you add
the start tag for a container element (like <h1> for a heading), many Web editors
automatically insert the end tag (like </h1>) so you won’t forget it.

Creating a Web Page in WYSIWYG View
Creating and formatting a page in WYSIWYG view is a more interesting chal-
lenge, because you need to know where to find the various formatting options in
your editor. Dreamweaver and Expression Web help you out by packing a fair bit
of XHTML smarts right into their toolbars. To add an element in the WYSIWYG
view, you first select the piece of text you want to format, and then click the appro-
priate toolbar button. You can then switch to the XHTML code view to verify that
you got the result you expected. For example, to make text bold, select it and look
for a toolbar button with the letter B. Clicking this button does the following
behind the scenes (in your actual XHTML markup): inserts the tag just before
your selection and the tag just after it.

Figure 4-6 shows you the most useful toolbar buttons in Nvu. But no matter what
Web page editor you use, you need to spend a fair bit of time wandering through
its toolbars and menus to find the most convenient way to get things done.

Figure 4-6:
Nvu gives you one-stop
shopping for lots of
XHTML goodies. But
remember, there’s a
difference between
finding a feature on a
toolbar and really
knowing how to use it. If
you want to know the
tricks and traps you’ll
run into when using
images, fonts, and
tables, you need to keep
reading.

Save the document
and open a preview in
your computer's main

Web browser

Insert a hyperlink
to another page
(see Chapter 8)

Insert an image
using an tag

(see Chapter 7)
Create a table

(see Chapter 9)

Insert text boxes,
buttons, and
other widgets

(see Chapter 12)

Use a style that's
defined in a

style sheet (see
Chapter 6)

Apply a text or
heading tag (like
<p> or <h1>)

Give text a
background color
(see Chapter 6)

Shrink or enlarge
your text

Use bold, italic,
and underline

formatting

Insert numbered
and bulleted lists

Change text
alignment

(see Chapter 6)

Close the
currently open

file

Apply fancy fonts
(see Chapter 6)

Chapter 4: Power Tools 97

Working with Your
XHTML Editor

Tip: It’s up to you whether you want to write your Web pages in XHTML view or using the WYSIWYG pre-
view mode. The WYSIWYG view is always quicker and more convenient at first, but it can leave you with a
lot of XHTML to check and review, adding to future complications.

To practice your WYSIWYG editing, re-create one of the example pages from
Chapter 2 (the mini-résumé you see on page 44 works best here). Instead of enter-
ing the tags by hand, however, enter the text and format it using the toolbar and
menu options in your editor.

Create a new document as described above, and then follow these steps:

1. Switch to WYSIWYG design view, and then type the title “Hire Me!”

The text appears at regular size.

2. Select the text, and then find a toolbar or menu option that converts your text
to a heading by adding the <h1> and </h1> tags.

To mark up the text, you need to get a bit more intimate with your Web page
editor and its menu and toolbar options.

In Expression Web, the quickest approach to apply a level-1 heading is to select
Heading 1 from the drop-down Style list. In Dreamweaver, you have several
worthwhile choices. You can use the shortcut key combination (Ctrl+1) for
instant gratification; you can use the toolbar (as shown in Figure 4-7); or you
can use the Properties window (choose Window ➝ Properties if it isn’t visible).
In Amaya, you need to click the T1 icon in the toolbar-like panel that appears
on the right side of the window. In Nvu, your only option is to choose Format ➝

Paragraph ➝ Heading 1, because this element didn’t make it into Nvu’s toolbar.

Figure 4-7:
The Dreamweaver
toolbar is actually
several toolbars in one,
organized by tabs. To
see the buttons you
want, click the
appropriate tab. The
Text tab (shown here)
has buttons to apply
bold and italic
formatting, set different
heading levels, and
create numbered and
unnumbered lists.

The toolbar

Click here to hide the
toolbar or pop

it back into view Other tabs
The currently
selected tab

98 Creating a Web Site: The Missing Manual

Working with Your
XHTML Editor

3. Hit the Enter key to move to the next paragraph.

Your typeface reverts to normal, and you can begin typing the rest of the docu-
ment. Your next challenge is creating the bulleted list. Expression Web, Dream-
weaver, Nvu, and Amaya all have a button for bulleted lists in the toolbar, if you
can ferret it out.

It’s easy to lose yourself in a thicket of tags. To make it easier to orient yourself,
Expression Web, Dreamweaver, Nvu, and Amaya all include a quick element
selector bar at the top or bottom of your document (Figure 4-8).

4. For a change of pace, try inserting a picture.

Nvu provides easy access with an Image button in the toolbar. Expression Web
and Dreamweaver have similar buttons, but it’s easier to head straight to the
menu (choose Insert ➝ Picture ➝ From File in Expression Web or Insert ➝

Image in Dreamweaver and Amaya).

Note: For this test, you should put the picture in the same directory as your Web page. Otherwise, some
editors may add an element that’s linked to a specific location on your hard drive. This is a prob-
lem, because Web visitors can’t access your hard drive, and so they won’t see the picture. To double-
check that everything’s in order, look at the element in XHTML view, and make sure the src
attribute doesn’t start with file:///. If it does, edit it by hand so that the src attribute just has the file name,
like the element you used in Chapter 2 (page 42).

Figure 4-8:
The element selector
(circled) is handy if you
need to edit your XHTML.
Once you scroll to the
XHTML you want to edit in
the page, double-check the
element selector to confirm
you’re at the right spot. The
selector lists all the elements
in action at your current
location. In this example,
the cursor is positioned
inside a element (for
bold formatting), which
itself is placed inside a <p>
(paragraph) element, which
is nested inside the <body>
element that wraps the
content of the complete
XHTML document. You can
quickly select any one of
these elements by clicking it
in the bar.

Chapter 4: Power Tools 99

Working with Your
XHTML Editor

5. When you’re prompted to pick an image file, browse to the leepark.jpg sample,
and then select it. (You can download this image from the Missing CD page at
www.missingmanuals.com.)

The program adds the appropriate element to your XHTML code. Once
you insert the picture, you’ll really start to appreciate the benefits of the WYSI-
WYG view. In all the Web page editors covered here, you can drag the picture
to move it or drag the picture’s borders to resize it.

Managing a Web Site
Most Web page editors don’t limit you to working on a single Web page at a time.
Expression Web, Dreamweaver, Nvu, and Amaya all give you the ability to load
more than one document simultaneously and switch among them using tabs at the
top of the document window (see Figure 4-9). This is particularly handy if you
need to make the same change to a whole batch of pages, or if you want to cut a bit
of content from one page and paste it into another.

Along with the ability to edit more than one Web page at once, many editors also
let you manage your entire Web site. The following sections describe the process
for Expression Web and Dreamweaver. In both cases, your first step is to define
your site’s folders and files so your editor knows just which documents make up
your site.

Note: A Web site is simply a collection of one or more Web pages, along with any related files (like pic-
tures). It’s often useful to manage all these files together in a Web page editor. In some programs, creat-
ing a Web site also gets you access to advanced features, like templates, link checking, and Web site
uploading.

Figure 4-9:
With tabbed editing,
your Web page editor
creates a new tab each
time you open a file. You
can switch from one
page to another by
clicking the tabs in the
tab strip, which usually
sits above the top of the
page (and underneath
the editor’s menus and
toolbars). Here, Amaya
has three Web pages
open at once. To close a
document, click the X on
the right side of the tab.

http://www.missingmanuals.com

100 Creating a Web Site: The Missing Manual

Working with Your
XHTML Editor

Defining a site in Expression Web

To create a Web site in Expression Web, follow these steps:

1. Select File ➝ Open Site.

The Open Site dialog box appears. It looks like an ordinary Open File dialog
box, except for one difference—it doesn’t display a list of files. Instead, you see
only folders.

2. Browse to the folder you want to open, select it, and then click Open. You can
download the Chapter 2 folder from the Missing CD page (www.
missingmanuals.com) to get a ready-made folder and set of files (the résumé
files you worked on earlier).

A Web Site tab appears with a list of all the files in your Web site (see
Figure 4-10).

3. Add the Expression Web metadata folders. To do so, choose Site ➝ Site Set-
tings, choose “Manage the Web site using hidden metadata files,” and then
click OK.

Many of Expression Web’s site-management features require tracking informa-
tion, which Expression Web stores in hidden subfolders. However, Expression
Web doesn’t create these folders automatically (unlike its predecessor,
FrontPage). You need to opt in to get the program to generate them.

The word metadata means “data about data.” In other words, the metadata
folders store data about the data in your Web site. If you’re curious, you can see
these subfolders in Windows Explorer—they have names like _private, _vti_cnf,
and _vti_pvt. (Web trivia: The VTI acronym stands for Vermeer Technologies
Inc.—the company that originally created FrontPage and sold it to Microsoft.)

Figure 4-10:
When you access a folder in
a Web site (here, it’s a folder
named C:\Creating Web
Sites\Chapter 2), Expression
Web adds a tab that
displays all the files in that
folder. You can do basic file
management here—for
example, right-click a file to
pop open a menu with
options for renaming or
deleting it. You can also
double-click a page to open
it for editing. At the bottom
of the Web Site tab you’ll
see buttons that let you
publish your Web site, run a
report, or check your links.

http://www.missingmanuals.com)
http://www.missingmanuals.com)

Chapter 4: Power Tools 101

Working with Your
XHTML Editor

These folders have several purposes. First, they keep track of what files you’ve
uploaded to your Web server. That makes it incredible easy for you to update a
Web site with Expression Web, because it transfers only changed files to your
server, not the entire site. The folders also track information about your site’s
pages and resources, which helps with handy features like link checking (page
223) and templates (page 287).

Tip: Treat the metadata folders as a bit of behind-the-scenes plumbing. You need to have them for cer-
tain features, but once you create them you don’t need to think about them again.

Uploading a site in Expression Web

One of Expression Web’s most popular features is its support for updating a Web
site without requiring a separate FTP program to transfer the files to your server.
Before you can take advantage of this support, you need to follow the steps
described above to tell Expression Web that your folder of Web pages represents a
complete Web site. Then, you can update your site by following these steps:

1. Choose File ➝ Publish Site.

The first time you try to publish your site, Expression Web displays a Remote
Web Site Properties dialog box. You use this window to set your FTP connec-
tion options, like the name of your FTP server (see Figure 4-11).

Figure 4-11:
Your Web hosting company should tell you the exact
choices to make in the Remote Web Site Properties
dialog box. Typically, you need the name of your FTP
server, the directory (folder name) that belongs to your
Web site on the server, and your FTP account name and
password. You only need to complete this form once. If
you’re successful, Expression Web uses this information
the next time you publish your Web site (though you’ll
have to type in your password each time).

102 Creating a Web Site: The Missing Manual

Working with Your
XHTML Editor

2. Fill in the information about how you want Expression Web to connect to
your Web server, and then click OK.

You can also set some advanced options using the Publishing tab of this dialog
box. Most usefully, you can set whether Expression Web uploads only changed
or new pages (the standard setting), or always uploads everything in your copy
of the site (the one stored on your PC).

3. At this point, Expression Web may prompt you for a user name and password
so it can access your FTP server. Enter the information, and then click OK.

Expression Web stores your user name for future use, but it’s up to you to
remember your password and supply it each time you connect.

Once you’re connected, Expression Web shows you a side-by-side file list that
compares the contents of the Web site stored on your PC with that located on
the server.

4. To bring your Web server up to date, select the “Local to remote” option, and
then click the Publish Web Site button. This starts the publishing process (see
Figure 4-12).

The “Remote to local” option is handy if a file on your Web server is more
recent than the copy on your own computer. This might happen if you edit the
same Web site on more than one computer. The Synchronize option is like the
“Remote to local” and “Local to remote” operations rolled into one. It exam-
ines each file and makes sure it updates any old versions on either your com-
puter or the Web server.

Figure 4-12:
When you publish a Web
site, Expression Web
scans your files and
copies only the ones
you’ve added or
changed since the last
time you published the
site. A progress indicator
(circled) identifies the file
being copied and
estimates how long the
operation will take.

Chapter 4: Power Tools 103

Working with Your
XHTML Editor

Defining a site in Dreamweaver

Dreamweaver gives you two different ways to work with a Web site. The simplest is
to use the Files panel to look at the files in any folder on your computer (see
Figure 4-13).

Although using the Files panel is convenient, it’s also limiting. The problem is that
Dreamweaver doesn’t have any way to tell what folders and files make up your
Web site. To support Web site uploading and a few other tools, you may want to
define a folder as a Web site. To do this, follow these steps:

1. Click the Manage Sites link in the Files panel, or just select Site ➝ Manage Sites.

Dreamweaver displays the Manage Sites dialog box, which lists all the Web sites
you’ve configured so far. Initially, this list is empty.

2. To define a new Web site, click the New button, and then choose Site.

Dreamweaver walks you through a Site Definition wizard that asks you several
questions.

3. Enter a descriptive Web site name, and then click Next.

The site name is just the name you use to keep track of your site. This name will
also appear in the Files panel.

4. Choose “No, I do not want to use a server technology”, and then click Next.

A server technology is the framework on a Web server that runs complex Web
programs like database searches. Because you aren’t creating a full-blown pro-
gram that runs on a Web server (you’re creating ordinary XHTML files), you
don’t need this support.

Figure 4-13:
You can browse all the
files on your site without
leaving Dreamweaver by
using the Files panel.

104 Creating a Web Site: The Missing Manual

Working with Your
XHTML Editor

5. Choose “Edit local copies directly on my machine”.

Some Web servers let you modify pages directly on the server. Even if you have
this specialized support, it’s always better to work with the files on your PC, and
then upload them to the server. This gives you several advantages. First, you
won’t derail your Web site if you make a minor mistake. Second, you have a
valuable backup if anything happens to your Web server. And third, you have
the ability to experiment with changes and different designs that may take days
to finish, without affecting the live version of your site.

6. In the “Where on your computer do you want to store your files?” text box,
type in the full file path for your Web site folder (usually something like C:\
Creating Web Sites\Chapter 2), and then click Next.

If you aren’t sure where your Web site folder is, you can click the folder icon
next to the text box to browse for it.

7. The next step asks how you want to connect to your Web server. Fill in your
connection information, and then click Next.

The option you choose depends on the support offered by your Web hosting
company, but FTP is a common choice (see Figure 4-14). Depending on what
option you choose, you have to supply a number of extra settings.

Figure 4-14:
In the “Sharing files” step of the
Site Definition wizard, you
choose how you want to transfer
your files to the remote Web
server that stores your Web site
files. Usually, you send your files
to a Web server using a
communication method like FTP.
However, if the Web server is
part of a company network, you
might be able to transfer your
files just by copying them to the
right folder on the network.

Chapter 4: Power Tools 105

Working with Your
XHTML Editor

8. Choose “Do not allow check in and check out”, and then click Next.

Check in and check out features let you collaborate with a group of coworkers so
you can each edit different parts of a Web site simultaneously. For information
about this and other advanced Dreamweaver features, check out Dreamweaver
CS4: The Missing Manual.

9. The last step summarizes the information you entered. Click Done.

You return to the Manage Sites dialog box.

10. Click Done.

You return to the Dreamweaver main window.

Uploading a site in Dreamweaver

Once you define your Web site, you’ll see it in the Files panel, and you can browse
your remote Web server for files, or transfer files back and forth from your PC to
the server. Dreamweaver doesn’t make things quite as intuitive as Expression Web,
but it’s still pretty convenient.

To transfer files from your local computer to your server, you use an operation
that FTP jargon calls a put. It works like this:

1. In the Files panel, choose your Web site from the drop-down menu at the top left.

2. Now, choose “Local view” from the drop-down menu at the top right.

The Files panel shows a list of the files on your computer (see Figure 4-15).

3. Select the files you want to transfer to the Web server.

You can select multiple files by holding down Ctrl while you click each file’s
icon.

Figure 4-15:
This example shows the
local view of the Lee
Park site. The local view
lists all the files in the
Web site folder on your
computer. Using the
icons in this window, you
can quickly transfer files
to and from the remote
server.

Show local files
(as opposed to
files on the Web
server).

Expand this
window (so it fills
up the whole
Dreamweaver
window). Click
again to collapse
it back.

Web site
files and
subfolders

Web site name

Disconnect

Connect Get Put

106 Creating a Web Site: The Missing Manual

Working with Your
XHTML Editor

4. Once you select the files, click the Put arrow (the blue arrow icon pointing up),
or right-click the files, and then choose Put from the drop-down menu.

Dreamweaver asks if you want to copy dependent files.

5. Choose Yes if you want to copy linked files. For example, if you’re uploading a
page that uses elements to display graphics, you should click Yes to
make sure Dreamweaver also uploads the graphics. If you don’t have any
dependent files, your choice has no effect.

Dreamweaver connects to your Web server and transfers the files.

To perform the reverse trick and transfer files from your Web server to your PC,
you use a get operation. Follow these steps:

1. In the Files panel, choose your Web site from the drop-down menu at the top left.

2. Next, choose “Remote view” from the drop-down menu at the top right.

Dreamweaver doesn’t automatically display the list of files on your Web server,
because getting that list could take a little time. So you need to specifically ask
Dreamweaver for an updated view of the files on the server, which you’ll learn
to do in the next step.

3. Click the refresh button, which looks like a circular arrow icon.

Dreamweaver connects to the Web server, retrieves the list of files on your site,
and displays it.

4. Select the files you want to transfer to your computer.

You can select multiple files by holding down Ctrl while you click each file’s
name.

5. Once you select the files, click the Get arrow (the green arrow icon pointing
down), or right-click the files, and then choose Get from the drop-down menu.

Dreamweaver asks if you want to copy dependent files.

6. Choose Yes if you want to copy linked files. For example, if you’re download-
ing a page that uses elements to display graphics, click Yes to make sure
Dreamweaver also downloads the graphics. If your page doesn’t have any
dependent files, your choice has no effect.

Dreamweaver connects to your Web server and copies the files to the folder on
your computer that contains your Web site.

Tip: Once you’re comfortable with transferring small batches of files, you can try out the Synchronize
button. It works like the Web site publishing feature in Expression Web. When you click it, Dreamweaver
examines the Web page files on your PC, determines which ones you’ve updated, and transfers just those
to the Web server.

2
II.Part Two:
Building Better
Web Pages

Chapter 5: XHTML Text Elements

Chapter 6: Style Sheets

Chapter 7: Adding Graphics

Chapter 8: Linking Pages

Chapter 9: Page Layout Tools

Chapter 10: Multipart Pages

109

Chapter 5chapter

5

XHTML Text Elements

Getting text into a Web page is easy—you just open up an XHTML file, drop in
your content, and add the occasional formatting tag. Unfortunately, getting text to
look exactly the way you want it to is a completely different story.

One of the first things you’ll notice when you start working on a Web site is how
little control you have over your pages’ final appearance. No matter how carefully
you code your XHTML, you’re at the mercy of your viewers’ Web browsers and a
dozen other details beyond your control. Under these conditions, writing a perfect
page feels like trying to compose a 90-minute symphony with a triangle and a pair
of castanets.

Faced with these limitations, what’s an enterprising Web developer to do? The first
step is to figure out just how much control you do have—to learn the XHTML
commands you can use to structure your text into headings, paragraphs, lists, and
more. That’s the task you’ll tackle in this chapter. The second step—which you
won’t dive into until the next chapter—is to use style sheets, powerful page-formatting
instructions that let you change the appearance of individual Web pages or even
your entire Web site.

Understanding Text and the Web
Sooner or later, every Web site creator discovers that designing for the Web is very
different from designing something that’s going to be printed. Before you can
unleash your inner Web-page graphic designer, you need to clear a few conceptual
hurdles.

110 Creating a Web Site: The Missing Manual

Understanding Text
and the Web

Consider the difference between an XHTML page and a page created in a word
processor. Word processing programs show you exactly how a document will look
before you print it—you know how large your headlines will be, what font they’re
in, where your text wraps from one line to the next, and so on. If you see some-
thing you don’t like, you change it using menus and formatting commands. Your
word processor, in other words, gives you absolute control over every detail of
your page.

The Web is a more freewheeling place. When you create an XHTML document,
you have no idea how that Web page will appear on someone else’s PC. That per-
son may have set their browser to not show images, or they may display large type
instead of standard-size characters, or they may have shrunk their browser win-
dow and tucked it away into a corner of their desktop. And visitors who access
your site with a smartphone will get yet another—and completely different—view.
In short, you can’t control display details on the Web the way you can in print. But
you can supply all the information a Web browser needs to present your pages
properly. You do this by structuring your pages so that Web browsers treat your
page elements consistently, regardless of your visitors’ browser settings.

Note: XHTML is designed to avoid compatibility problems by giving you less control. Instead of letting
you place every piece of content in an exact position on a page, XHTML forces you to use elements to
shape the basic structure of your work (for example, to indicate paragraphs, headings, and lists). It’s up to
a Web browser to decide how to display these details on any given computer. In other words, XHTML is a
compromise that sacrifices control for the sake of simplicity, flexibility, and compatibility.

Logical Structure vs. Physical Formatting
Before you start creating your Web pages with XHTML markup, you should
understand one other concept—the difference between structuring a document
(dividing its content into discrete components like headings, paragraphs, lists, and
so on) and formatting a document (making those components look pretty by
applying italics, changing the text size, adding color, and so on). Novice Web mas-
ters who don’t understand this difference often end up formatting when they
should be structuring, which leads to messy and difficult-to-maintain XHTML
pages.

XHTML distinguishes between document structure and document formatting
using two types of elements:

• Logical elements (sometimes called idiomatic elements) define the individual
components that make up your Web page. They identify what in a page is a
heading, a paragraph, a list, and so on. In other words, they tell you about the
structure of your page. Logical elements don’t, however, define the format of
these components—what the components will look like once they’re onscreen.

Chapter 5: XHTML Text Elements 111

Understanding Text
and the Web

• Physical elements (sometimes called typographic elements) are all about format-
ting. Examples of physical elements include elements that apply italics, bold-
face, underlining, and different fonts to text. Physical elements don’t tell you
anything about the way your page is structured; instead, they tell browsers how
to format the content in those pages.

You’re already familiar with logical elements—you used them to organize the
résumé document in Chapter 2, where logical elements defined the resume’s head-
ing, paragraphs, and bulleted list.

Chapter 2 also introduced physical elements. When you use physical elements, you
specify the exact formatting you want your text to follow—in other words, you
micromanage your Web page’s appearance. It’s like telling a browser: “Listen up.
Put this word in italics, and put that phrase in bold face.” Two of the most popu-
lar physical elements are the (for bold) and <i> (for italics) elements.

Note: This book focuses on XHTML elements that are most widespread today. That means you’ll learn
about the most popular logical and physical elements, which makes it easier to carry on a conversation
with other Web-heads.

Logical elements have ruled the markup roost since XHTML was invented. The
creators of XHTML imagined a world where document writers didn’t have to has-
sle with formatting content, particularly because different browsers would present
the same document in different ways, depending on the capabilities of the reader’s
PC. Even better, logical elements let external programs analyze a page’s XHTML.
For example, someone could create an automated search program that scanned
Web pages and extracted just the top-level headings to produce a barebones out-
line of the page. Or a program could browse Amazon.com to find only book
reviews. Or one could create a junk-mail list by reading <address> elements. A
comparable program that came across a Web page filled with nothing but physical
elements wouldn’t produce results nearly as interesting. After all, who cares how
much of eBay’s text is in boldface?

Note: The vision of a Web where elements indicate what a page contains (prices, size information, email
addresses, and so on) rather than how it looks is called the semantic Web. According to the visionaries
who first built the Internet, the semantic Web could usher in a golden age of information access and
super-smart searching. Many of the same gurus are still at work planning the semantic Web. For a pre-
view of the possible future, go to http://logicerror.com/semanticWeb.

CSS (Cascading Style Sheets)
All of this discussion about page structure raises a good question—if, in develop-
ing the “cleanest” pages possible, you’re supposed to use elements just to set out
the structure of your pages, what’s left to make those pages look good? The
XHTML powers-that-be could create more XHTML elements just for formatting,

http://logicerror.com/semanticWeb

112 Creating a Web Site: The Missing Manual

Understanding Text
and the Web

but that would force page creators to do more work, make XHTML more compli-
cated, and choke the average Web page in a swamp of messy details about mar-
gins, colors, and alignment. Even worse, because every page would include both
content and formatting instructions, it would be onerously hard to change the
look of a site.

For example, say you want to give all your headings hot pink lettering. If XHTML
had an element to specify text color, you’d need to include that element every time
you placed a heading on a page. Now imagine that you later decide to go with a
more refined dark purple heading. To change your Web site, you’d have to open
and edit each and every one of your XHTML pages that had a heading. Consider
how much easier life would be if you could link your headings to a formatting
instruction in a central reference page. With this kind of setup, you could change
the color of the headings across your entire site by simply changing the formatting
instruction for headings in that central reference page.

That’s the solution that XHTML experts finally hit on. They separated a document’s
structure—the elements that create headings, paragraphs, lists, and so on—from the
formatting instructions, and placed each part in a separate file. Here’s how it works.
First of all, you create standard XHTML documents just like the ones you learned to
create in Chapter 2. These documents include the same elements for headings, para-
graphs, and lists that you learned about earlier. That’s good news—it means you
don’t need to change your approach or throw out the basic elements you’ve already
mastered.

Next, you create a separate document using a standard called CSS (Cascading Style
Sheets). This separate document is called a style sheet, and it defines how browsers
format the different elements in your XHTML document. For example, a style
sheet might contain instructions like “make every heading bright red” or “give all
paragraphs a 15-pixel left-hand margin.”

There are many benefits to the style sheet system. First of all, you can reuse the
same style sheet for all your Web pages. Because getting your formatting right can
be a long and tedious chore, this is a major timesaver. Once you perfect your Web
site’s look and feel, you link your pages to this style sheet and they all take on that
design (see Figure 5-1). Even better, when you’re ready for a new look, you don’t
need to mess with your XHTML documents—just tweak your style sheet and every
linked page gets an instant facelift.

Note: XHTML inherits a few formatting features from the original HTML standard, but these features
aren’t as powerful as style sheets, and they’re a lot messier. Now that you’re thinking with style sheets in
mind, you’re ready to steer clear of those headaches and concentrate on becoming comfortable with the
staples of the XHTML diet—the elements for structuring text.

Chapter 5: XHTML Text Elements 113

XHTML Elements for
Basic Text

XHTML Elements for Basic Text
As you learned in Chapter 2, there are two things you need to know about every
new element you meet. To use the element correctly, without violating the rules of
XHTML, you need to answer these two questions:

• Is it a container element or a standalone element?

• Is it a block element or an inline element?

The first question tells you something about the syntax you use when you add an
element to a document. Container elements (like the element that boldfaces
text) require a start tag and an end tag, with the content sandwiched in between.
Standalone elements (like the element that inserts an image into a page)
use a single, all-in-one tag. If standalone elements need additional information,
like the location of an image file, you supply it using attributes.

The second question tells you something about where you can place an element.
Block elements (like the <p> element) go inside the main <body> element or
within other block elements. When you start building the overall structure of your
Web page, you always begin with block elements. Inline elements (like the
element) have to go inside block elements. Inline elements don’t make sense when
they’re on their own, floating free of any container.

Tip: To quickly check if an element is a container or standalone element, and to see if it’s a block or
inline element, check the XHTML reference in Appendix A.

Figure 5-1:
Left: This page is plain
text, but ready for style
sheets. It’s been carefully
separated into logical
sections.

Right: With the
application of a style
sheet, the page’s
formatting and layout
change dramatically.
You’ll see an example of
this in Chapter 9 (page
253).

114 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

Block elements also have an effect on the spacing of your content. Essentially, each
block element defines a chunk of content. When you end a block element, your
browser automatically adds a line break and a little extra space before the next bit
of content.

For example, consider this fragment of XHTML:

<h1>Bread and Water</h1><p>This economical snack is really

all you need to sustain life.</p>

This snippet has a title in large, bold letters followed immediately by a paragraph
of ordinary text. You might expect to see both parts (the heading and the ordinary
text) on the same line. However, the <h1> element is a block element. When you
close it, the browser does a little housecleaning, and adds a line break and some
extra space. The paragraph text starts on a new line, as you can see in Figure 5-2.

Tip: Block elements are nice because they make it easy to format a document. For example, the spaces
that exist between block elements help ensure that one section of text doesn’t run into another. However,
there’s also a clear downside. In some cases, you won’t be happy with the automatic spacing between
block elements. For example, for dense, information-laden pages, the standard spacing looks far too gen-
erous. To tighten up your text and shrink the spaces in between block elements, use style sheets to
change the margin settings of your elements (page 163).

Now that you’ve learned about the basic types of elements, it’s time to take a look
through your element toolkit.

Paragraphs
You’ve already seen the basic paragraph element, <p>. It’s a block element that
defines a paragraph of text.

<p>It was the best of times, it was the worst of times...</p>

As you’ve no doubt noticed by now in your travels across the Internet, XHTML
paragraphs aren’t indented as they are in print media. That’s just the way of the
Web, although you can change this with style sheets (page 163). Figure 5-3 shows
an example of paragraph elements in action.

Figure 5-2:
XHTML separates block elements by a distance
of approximately one and a half lines (in this
figure, that’s the space between “Bread and
Water” and the sentence below it).

Chapter 5: XHTML Text Elements 115

XHTML Elements for
Basic Text

You should get into the habit of thinking of the text in your Web pages as a series
of paragraphs. In other words, before you type in any text, add the <p> and </p>
tags to serve as a container. Most of the time, paragraphs are the first level of struc-
ture you add to a page.

Web browsers don’t pay attention to hard returns (the line breaks you create when
you hit the Enter key). That means you can space your text out over several lines as
you type it in, and the browser still wraps it to fit the window. Technically, brows-
ers treat line breaks (like the one you see at the end of this line) as a single space,
and if it finds more than one space in a row, it ignores the extra ones. If you want
to insert a real break between your lines, check out the next section.

Figure 5-3:
When you put several
paragraphs in a row,
each paragraph is
separated with a space
of about one and a half
lines. However, browsers
ignore empty paragraph
elements completely,
and don’t add any extra
space for them.

These extra
paragraph

elements don’t
create any extra

line breaks

UP TO SPEED

Getting More Space
The way that browsers ignore spaces can be exasperating.
What if you really do want to add several spaces in a row?
The trick is the nonbreaking space— —which is a spe-
cial XHTML character entity (see page 132) that forces
browsers to insert a space.

When a browser sees this entity, it interprets it as a space
that it can’t ignore. So if you create a paragraph like this:

• <p>Hello Bye</p>

You end up with this text:

• Hello Bye

Many Web editors automatically add nonbreaking spaces
when you press the space key in Design view, which is why
those spaces don’t disappear. But try not to use nonbreak-
ing spaces more than you need to. (If you really want
indented paragraphs, you’ll get a better solution with style
sheets, which you’ll learn about in Chapter 6.) And never,
ever use spaces to try and align columns of text—that always
ends badly, with the browser scrambling your attempts.
Instead, use the layout features described in Chapter 9.

116 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

Line Breaks
Sometimes you want to start a new line of text, but you don’t want to use a para-
graph element because browsers add extra space between paragraphs. This is the
case, for example, when you want to include a business address on your site and
you want it to appear in the standard single-spaced three-line format. In situations
like this, the standalone line break element
 comes in handy.

Line breaks are exceedingly simple—they tell a browser to move to the start of the
following line (see Figure 5-4). They’re inline elements, so you need to use them
inside a block element, like a paragraph:

<p>This paragraph appears

on two lines</p>

Figure 5-4:
The line break element
 is great for
separating addresses. If you want to skip down
several lines, you can use a series of

elements in a row (but it’s a better idea to use
empty paragraphs, as described in the box on
page 117).

Chapter 5: XHTML Text Elements 117

XHTML Elements for
Basic Text

Don’t overuse line breaks. Remember, when you resize a browser window, the
browser reformats your text to fit the available space. If you try to perfect your
paragraphs with line breaks, you’ll end up with pages that look bizarre at different
browser window sizes. A good rule of thumb is to avoid line breaks in ordinary
paragraphs. Instead, use them to force breaks in addresses, outlines, poems, and
other types of text whose spacing you want to tightly control. Don’t use them for
bulleted or numbered lists, either—you’ll learn about elements designed just for
these lists on page 123.

In some cases, you want to prevent a line break, like when you want to keep the
longish name of a company or a product on a single line. The solution is to use the
nonbreaking space code (which looks like) instead of just hitting the space
bar. The browser still displays a space when it gets to the code, but it won’t
wrap the words on either side of it (see Figure 5-5).

Figure 5-5:
Paragraphs 2 and 3 in this figure show how the
code affects line breaks. Paragraph 3 is actually coded
as Microsoft Office 2007. As a result, the
browser won’t split this term.

HOW’D THEY DO THAT?

The Mystery of Empty Paragraphs
In Web authoring tools like Dreamweaver and Expression
Web, if you’re in Design view and you press Enter, the pro-
gram creates a new paragraph. This seems a little counter-
intuitive, as you’ve seen that browsers normally ignore line
breaks (see Figure 5-5).

The trick is that when you hit the Enter key, both programs
insert a paragraph that contains a nonbreaking space.
Here’s what that creation looks like:

<p> </p>

This paragraph is still empty, but the browser won’t ignore
it because it includes the code. Therefore, the
browser gives it the same space as a single-line paragraph
and bumps down the content underneath.

Incidentally, Dreamweaver and Expression Web do let you
use more ordinary
 line break elements instead of
empty paragraphs, even in Design view. To do this, press
Shift+Enter instead of Enter.

118 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

Headings
Headings are section titles—for example, the word “Headings” just above this
paragraph. Browsers display them in boldface at various sizes. The size depends on
the heading level. XHTML supports six heading levels, starting at <h1> (the big-
gest) and dwindling down to <h6> (the smallest). Both <h5> and <h6> are actu-
ally smaller than regularly sized text, and Web developers don’t use them too
often. Figure 5-6 shows all the heading levels you can use.

Headings aren’t just useful for formatting—they also help define the hierarchy of
your document. Big headings identify important topics, while smaller ones denote
lesser issues related to that larger topic. To make sure your document makes sense,
start with the largest headings (level 1) and work your way down. For instance,
don’t jump straight to a level-3 heading just because you like the way it looks.

Note: It’s probably occurred to you that if everyone uses the same heading levels in the same order, the
Web will become as bland as a bagel in a chain supermarket. Don’t panic—it’s not as bad as it seems.
When you add style sheets into the mix, you’ll see that you can completely change the look of any and
every heading you use. So for now, stick to using the right levels in the correct order.

Figure 5-6:
Many Web page editors let
you apply headings with a
single click. In Expression
Web, you can find a drop-
down list that lets you
choose whether to make the
currently selected text a
paragraph or one of the
various headings, as shown
here. In Dreamweaver, you
can use the handy buttons
in the Text tab of the Insert
toolbar.

Chapter 5: XHTML Text Elements 119

XHTML Elements for
Basic Text

Horizontal Lines
Paragraphs and line breaks aren’t the only way to separate sections of text. Another
neat trick is the standalone <hr> element, which translates to “horizontal rule.” A
horizontal rule element adds a line that stretches from one side of its container to
the other, separating everything above and below it.

Tip: Usually, you’ll position a horizontal break between paragraphs, which means it will stretch from one
side of a page to the other. However, you can also put a horizontal rule in a smaller container, like a single
cell in a table, in which case it won’t turn out nearly as big.

Horizontal rules are block elements, so you can stick them in between paragraphs
(see Figure 5-7).

Preformatted Text
Preformatted text is a unique concept in XHTML that breaks the rules you’ve read
about so far. As you’ve seen, Web browsers ignore multiple spaces and flow your
text to fit the width of a browser window. Although you can change this to a cer-
tain extent by using line breaks and nonbreaking spaces, some types of content are
still hard to deal with.

Figure 5-7:
In this example, two paragraphs have
an <hr> element between them. The
<hr> element inserts the solid line
you see.

120 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

For example, imagine you want to display a bit of poetry. Using nonbreaking
spaces to align the text is time-consuming and makes your XHTML markup diffi-
cult to read. The <pre> element gives you a better option. It tells your browser to
re-create the text just as you entered it, including every space and line break, and it
displays these details on-screen. Additionally, the browser puts all that text into a
monospaced font (typically Courier). Figure 5-8 shows an example.

Note: In a monospaced font, every letter occupies the same amount of space. XHTML documents and
books like this one use proportional fonts, where letters like W and M are much wider than l and i. Mono-
spaced fonts are useful in preformatted text, because it lets you line up rows of text exactly. However, it
doesn’t look as polished.

Figure 5-8:
There’s no mystery as to how this e. e.
cummings poem will turn out. Because it’s
in a <pre> block, you get the exact spacing
and line breaks that appear in your XHTML
file. The <pre> element also works well for
blocks of programming code.

Chapter 5: XHTML Text Elements 121

XHTML Elements for
Basic Text

Quotes
It may be a rare Web page that spouts literary quotes, but the architects of XHTML
created a block element named <blockquote> especially for long quotations.
When you use this element, your browser indents text on the left and right edges.

Here’s an example:

<p>Some words of wisdom from "A Tale of Two Cities":</p>

<blockquote>

<p>It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was
the epoch of incredulity, it was the season of Light, it was the season of
Darkness, it was the spring of hope, it was the winter of despair, we had
everything before us, we had nothing before us, we were all going direct to
Heaven, we were all going direct the other way—in short, the period was so
far like the present period, that some of its noisiest authorities insisted
on its being received, for good or for evil, in the superlative degree of
comparison only.</p>

</blockquote>

<p>It's amazing what you can fit into one sentence.</p>

Figure 5-9 shows how this appears in the browser.

Figure 5-9:
Here, the <blockquote> element indents
the middle paragraph.

122 Creating a Web Site: The Missing Manual

XHTML Elements for
Basic Text

Occasionally, people use the <blockquote> element purely for its formatting
capability—they like the way it sets off text. Of course, this compromises the spirit
of the element, and you’d be better off to use style sheets to achieve a similar effect.
However, it’s a fairly common technique, so it’s more or less accepted.

The <blockquote> element is a block element, which means it always appears
separately from other block elements, like paragraphs and headings. The
<blockquote> has one further restriction—it can hold only other block elements,
which means you need to put your content into paragraphs rather than simply
type it in between the blockquote start and end tags.

If, instead of using a quote that runs a paragraph or longer, you want to include a
simple one-line quote, XHTML’s got you covered. It defines an inline element for
short quotes that you can nest inside a block element. It’s the <q> element, which
stands for quotation:

<p>As Charles Dickens once wrote, <q>It was the best of times, it was the
worst of times</q>.</p>

Some browsers, like Firefox, add quotation marks around the text in a <q> ele-
ment. Other browsers, like Internet Explorer, do nothing. If you want your quota-
tion to stand out from the text around it in every browser, you might want to add
some different formatting, like italics. You can do this by applying a style sheet rule
(see Chapter 6).

And if you’re dreaming of the semantic Web (see the box on page 111), you can
add a URL that points to the source of your quote (assuming it’s on the Web)
using the cite attribute:

<p>As Charles Dickens once wrote, <q cite="http://www.literature.org/
authors/dickens-charles/two-cities">It was the best of times, it was the
worst of times</q>.</p>

Looking at this example, you might expect your browser to provide some sort of
feature that takes you to the referenced Web site (for example, when you click the
paragraph). But it doesn’t. If you want your text to link to a reference, you need to
investigate the anchor element in Chapter 8.

In fact, the information in the cite attribute won’t appear on your page at all. It is
available to programs that analyze your Web page—for example, automated pro-
grams that scan pages and compile a list of references, or a search engine that uses
this information to provide better search results. But most of the time, the refer-
ence has little benefit, except that it stores an extra piece of information that you,
the Web site creator, might need later to double-check your sources.

Divisions and Spans
The last block element you’ll learn about—<div>—is one of the least interesting,
at least at first glance. That’s because, on its own, it doesn’t actually do anything.

Chapter 5: XHTML Text Elements 123

XHTML Elements for
Lists

You use <div> to group together one or more block elements. That means you
could group together several paragraphs, or a paragraph and a heading, and so on.
Here’s an example:

<div>

 <h1>...</h1>

 <p>...</p>

 <p>...</p>

</div>

<p>...</p>

Given the fact that <div> doesn’t do anything, you’re probably wondering why it
exists. In turns out that the lowly <div> tag becomes a lot more interesting when
you combine it with style sheets. That’s because you can apply formatting com-
mands directly to a <div> element. For example, if a <div> element contains three
paragraphs, you can format all three paragraphs at once simply by formatting the
<div> element.

The <div> element has an important relative—the element. Like its
cousin, the element doesn’t do anything on its own, but when you place it
inside a block element and define its attributes in a style sheet, you can use it to
format just a portion of a paragraph, which is very handy. Here’s an example:

<p>In this paragraph, some of the text is wrapped in a span element. That
gives you the ability to format it in some fancy way later on.
</p>

You’ll put the <div> and elements to good use in later chapters.

XHTML Elements for Lists
Once you master XHTML’s basic text elements, it’s time to move on to XHTML’s
other set of elements for organizing text—list elements. XHTML lets you create
three types of list:

• Ordered lists give each item in a list a sequential number (as in 1, 2, 3). They’re
handy when sequence is important, like when you list a series of steps that tell
your relatives how to drive to your house.

• Unordered lists are also known as bulleted lists, because a bullet appears before
each item in the list. To some degree, you can control what the bullet looks like.
You’re reading a bulleted list right now.

• Definition lists are handy for displaying terms followed by definitions or
descriptions. For example, the dictionary is one huge definition list. In a defini-
tion list on a Web page, your browser left-aligns the terms and indents the defi-
nitions underneath them.

In the following sections you’ll learn how to create all three types of list.

124 Creating a Web Site: The Missing Manual

XHTML Elements for
Lists

Ordered Lists
In an ordered list, XHTML numbers each item consecutively, starting at some
value (usually 1). The neat part about ordered lists in XHTML is that you don’t
need to supply the numbers. Instead, the browser automatically adds the appropri-
ate number next to each list item (sort of like the autonumber feature in Microsoft
Word). This is handy for two reasons. First, it lets you insert and remove list items
without screwing up your numbering. Second, XHTML carefully aligns the num-
bers and list items, which isn’t as easy if you do it on your own.

To create an ordered list, use , a block element (stands for “ordered
list”). Then, inside the element, you place an element for each item in
the list (stands for “list item”).

For example, here’s an ordered lists with three items:

<p>To wake up in the morning:</p>

 Rub eyes.

 Assume erect position.

 Turn on light.

DESIGN TIME

Webifying Your Text
As you learned earlier in this chapter, text on the Web isn’t
like text in print. But sometimes it’s hard to shake old habits.
Here are some unwritten rules that can help make sure
you’re making good use of text in your Web pages:

• Split your text into small sections. Web pages
(and the viewers who read them) don’t take kindly
to long paragraphs.

• Create short pages. If a page is longer than two
screenfuls, split it into two pages. Not only does this
make your pages easier to read, it gives you more
Web pages, which helps with the next point.

• Divide your content into several pages. The next
step is to link these pages together (see Chapter 8).
This gives readers the flexibility to choose what they
want to read, and in what order.

• Put your most important information in the
first screenful. This technique is called designing
above the fold. The basic idea is to make sure
there’s something eye-catching or interesting for vis-
itors to read without having to scroll down. (In the
same way, well-designed newspapers give news-
stand visitors something interesting to read without
them having to flip over the folded broadsheet,
hence the term “above the fold”.)

• Proofread, proofread, proofread. Typos and bad
grammar shatter your site’s veneer of professional-
ism and Web-coolness.

• Don’t go wild with formatting until you under-
stand style sheets. If you break this rule, you’ll
leave a big mess that you’ll only need to clean up
later on.

Chapter 5: XHTML Text Elements 125

XHTML Elements for
Lists

In a browser, you’d see this:

To wake up in the morning:

1.Rub eyes.

2.Assume erect position.

3.Turn on light.

XHTML inserts some space between the paragraph preceding the list and the list
itself, as with all block elements. Next, it gives each list item a number.

Ordered lists get more interesting when you mix in the start and type attributes.
The start attribute lets you start the list at a value other than 1. Here’s an example
that starts the counting at 5:

<p>To wake up in the morning:</p>

<ol start="5">

...

This list will include the numbers 5, 6, and 7. Unfortunately, there’s no way to
count backward, or to automatically continue counting from a previous list else-
where on a page.

You aren’t limited to numbers in your ordered list, either. The type attribute lets
you choose the style of numbering. You can use sequential letters and roman
numerals, as described in Table 5-1. Figure 5-10 shows a few examples.

Strict XHTML forbids both the type and start attributes. If you want to use these
attributes, you need to stick an XHTML transitional doctype at the top of your
Web page. Another option is to switch to styles (using CSS, the standard you’ll
pick up in Chapter 6). This is a partial solution, because CSS provides an alterna-
tive for the type attribute but not for the start attribute. When you use CSS, you
can keep the XHTML strict doctype. Just remove the style attribute and replace it
with the list-style-type CSS property (explained in Chapter 6).

Table 5-1. Types of ordered lists

type Attribute Description Example

1 Numbers 1, 2, 3, 4…

a Lowercase letters a, b, c, d…

A Uppercase letters A, B, C, D…

i Lowercase roman numerals i, ii, iii, iv…

I Uppercase roman numerals I, II, III, IV…

126 Creating a Web Site: The Missing Manual

XHTML Elements for
Lists

Unordered Lists
Unordered lists are similar to ordered lists except that they aren’t consecutively
numbered or lettered. The outer element is , and you wrap each item inside
an element. The browser indents each item in the list, and automatically
draws the bullets.

The most interesting frill that comes with unordered lists is the type attribute,
which lets you change the style of bullet. You can use disc (a black dot, which is
automatic), circle (an empty circle), or square (a filled-in square). Figure 5-11
shows the different styles.

Once again, the type attribute is only suitable for XHTML 1.0 transitional—if
you’re going strict, you need to switch to the list-style-type style property.

Tip: Most Web page editors have handy links for quickly creating the different types of lists. In Dream-
weaver, look for the “ul” and “ol” icons in the Text tab of the Insert toolbar.

Figure 5-10:
The type attribute in action. For example, the code to start off
the first list would be: <ol type="I">.

Chapter 5: XHTML Text Elements 127

XHTML Elements for
Lists

Definition Lists
Definition lists are perfect for creating your own online glossary. Each list item
actually has two parts—a term (which the browser doesn’t indent) and a defini-
tion (which the browser indents underneath the term).

Definition lists use a slightly different tagging system than ordered and unordered
lists. First, you wrap the whole list in a dictionary list element (<dl>). Then you
wrap each term in a <dt> element (dictionary term), and each definition in a
<dd> element (dictionary definition).

Here’s an example:

<dl>

<dt>eat</dt>

<dd>To perform successively (and successfully) the functions of mastication,

humectation, and deglutition.</dd>

<dt>eavesdrop</dt>

<dd>Secretly to overhear a catalogue of the crimes and vices of another or

yourself.</dd>

<dt>economy</dt>

<dd>Purchasing the barrel of whiskey that you do not need for the price of

the cow that you cannot afford.</dd>

</dl>

In a browser you’d see this:

eat
To perform successively (and successfully) the functions of mastication,
humectation, and deglutition.

Figure 5-11:
Three flavors of the same list.

128 Creating a Web Site: The Missing Manual

XHTML Elements for
Lists

eavesdrop
Secretly to overhear a catalogue of the crimes and vices of another or yourself.

economy
Purchasing the barrel of whiskey that you do not need for the price of the
cow that you cannot afford.

Nesting Lists
Lists work well on their own, but you can get even fancier by placing one complete
list inside another. This technique is called nesting lists, and it lets you build multi-
layered outlines and detailed sequences of instructions.

To nest a list, declare a new list inside an element in an existing list. For exam-
ple, the following daily to-do list has three levels:

 Monday

 Plan schedule for week

 Complete Project X

 <ul style="square">

 Preliminary Interview

 Wild Hypothesis

 Final Report

 Abuse underlings

 Tuesday

 Revise schedule

 Procrastinate (time permitting). If necessary, put off

 procrastination until another day.

 Wednesday

 ...

Tip: When using nested lists, it’s a good idea to use indents in your XHTML document so you can see
the different levels at a glance. Otherwise, you’ll find it difficult to determine where each list item belongs.

In a nested list, the different list styles really start to become useful for distinguish-
ing each level. Figure 5-12 shows the result of this example.

Chapter 5: XHTML Text Elements 129

Inline Formatting

Inline Formatting
As you learned earlier in this chapter, it’s best not to format XHTML too heavily.
To get maximum control and make it easy to update your Web site’s look later on,
you should head straight to style sheets (as described in the next chapter). How-
ever, a few basic formatting elements are truly useful. You’re certain to come
across them, and you’ll probably want to use them in your own pages. These ele-
ments are all inline elements, so you use them inside a block element, like a para-
graph, a heading, or a list.

Italics, Bold, and Underline
You’ve already seen the elements for bold () and italic (<i>) formatting in
Chapter 2. They’re staples in XHTML, letting you quickly format snippets of text.

Figure 5-12:
In a nested list, browsers indent each subsequent list.
Although you aren’t limited in the number of levels you can
use, you’ll eventually run out of room and force your text up
against the right side of the page.

130 Creating a Web Site: The Missing Manual

Inline Formatting

XHTML also has a <u> element for underlining text, but you can only use it in
XHTML 1.0 transitional (page 30). Here’s an example that uses all three ele-
ments—<i> for italics, for bold, and <u> for underline:

<p

Stop! The mattress label says <u>do not remove under penalty

of law</u> and you <i>don't</i> want to mess with mattress companies.

</p>

A browser displays it like this:

Stop! The mattress label says do not remove under penalty of law and you don’t
want to mess with mattress companies.

If you keep your pages clean with XHTML 1.0 strict, you can’t use the <u> element.
However, you can get exactly the same effect using text decorations in a style sheet.
Page 155 shows you how.

Emphasis and Strong
The element (for emphasized text) is the logical-element equivalent of the
physical element <i>. These two elements have the same effect—they both itali-
cize text. Philosophically, the element is a better choice, because it’s more
generic. When you use , you’re simply indicating that you want to empha-
size a piece of text, but you aren’t saying how to emphasize it. Later on, you can use
a style sheet to define just how browsers should emphasize it. Possibilities include
making it a different color, a different font, or a different size. If you don’t use a
style sheet, the text inside the element is set in italics, just as with the <i>
element.

Note: Technically, you can use style sheets to redefine the <i> element in the same way. However, it
seems confusing to have the <i> element do anything except apply italics. After all, that’s its name.

The element is the logical-element equivalent of the physical element
. If you aren’t using style sheets, this simply applies bold formatting to a piece
of text. Overall, Web developers more commonly use the <i> and elements
over and , but XHTML experts prefer the latter because they’re
more flexible.

Here’s the previous example rewritten to use the and elements:

<p>

Stop! The mattress label says <u>do not remove under penalty

of law</u> and you don't want to mess with mattress companies.

</p>

There’s no logical-element equivalent for the <u> underline element, although
you can always use one of the generic elements discussed earlier, like in
conjunction with the text-decoration style property (see page 155).

Chapter 5: XHTML Text Elements 131

Inline Formatting

Subscript, Superscript, and Strikethrough
You can use the <sub> element for subscript—text that’s smaller and placed at the
bottom of the current line. The <sup> element is for superscript—smaller text at
the top of the current line. Finally, wrapping text in a <strike> element tells a
browser to cross it out, but you can use it only in XHTML 1.0 transitional.
Figure 5-13 shows an example of all three.

Web designers who want to stay on the right side of XHTML law can still create
crossed-out text. One alternative is to use the rare element (which is meant
to represent deleted text in a revised document). However, you can’t trust that all
browsers will format the same way, and you really shouldn’t use it for any-
thing other than highlighting changes. A better approach is to use a style rule that
applies the right text decoration, as explained on page 155.

Figure 5-13:
Strikeout, superscript, and subscript tags in
action.

132 Creating a Web Site: The Missing Manual

Inline Formatting

Teletype
Text within a <tt> element appears in a fixed-width (monospaced) font, such as
Courier. Programmers sometimes use it for snippets of code in a paragraph.

<p>To solve your problem, use the <tt>Fizzle()</tt> function.</p>

Which shows up like this:

To solve your problem, use the Fizzle() function.

Teletype text (or typewriter text) looks exactly like the text in a <pre> block (see
page 119), but you should place <tt> text inside another block element. Unlike
preformatted text, browsers ignore spaces and line breaks in <tt> text, as they do
in every other XHTML element.

Special Characters
Not all characters are available directly on your keyboard. For example, what if you
want to add a copyright symbol (©), a paragraph mark (¶), or an accented e (é)?
Good news: XHTML supports them all, along with about 250 relatives, including
mathematical symbols and Icelandic letters. To add them, however, you need to
use some sleight of hand. The trick is to use XHTML character entities—special
codes that browsers recognize as requests for unusual characters. Table 5-2 has
some common options, with a sprinkling of accent characters.

Table 5-2. Common special characters

Character Name of Character What to Type

© Copyright ©

® Registered trademark ®

¢ Cent sign ¢

£ Pound sterling £

¥ Yen sign ¥

Euro sign € (but € is
better supported)

˚ Degree sign °

± Plus or minus ±

÷ Division sign ÷

× Multiply sign ×

µ Micro sign µ

Fraction one-fourth ¼

Fraction one-half ½

Fraction three-fourths ¾

¶ Paragraph sign ¶

§ Section sign §

Chapter 5: XHTML Text Elements 133

Inline Formatting

Tip: The euro symbol is a relative newcomer to XHTML. Although you can use the character entity €
you’ll have the best support using the numeric code € because it works with older browsers.

XHTML character entities aren’t just for non-English letters and exotic symbols.
You also need them to deal with characters that have a special meaning according
to the XHTML standard—namely angle brackets (< >) and the ampersand (&).
You shouldn’t enter these characters directly into a Web page because the browser
will assume you’re trying to give it a super-special instruction. Instead, you need to
replace these characters with their equivalent character entity, as shown in
Table 5-3.

Strictly speaking, you don’t need all these entities all of the time. For example, it’s
safe to insert ordinary quotation marks by typing them in from your keyboard—
just don’t put them inside attribute names. Similarly, browsers are usually intelli-
gent enough to handle the ampersand (&) character appropriately, but it’s better
style to use the & code, so that there’s no chance a browser will confuse the
ampersand with another character entity. Finally, the character entities for the
angle brackets are absolutely, utterly necessary.

« Left angle quote, guillemot left «

» Right angle quote, guillemot right »

¡ Inverted exclamation ¡

¿ Inverted question mark ¿

æ Small ae diphthong (ligature) æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut mark ë

ö Small o, dieresis or umlaut mark ö

É Capital E, acute accent É

Table 5-3. XHTML character entities

Character Name of Character What To Type

< Left angle bracket <

> Right angle bracket >

& Ampersand &

“ Double quotation mark "

Table 5-2. Common special characters (continued)

Character Name of Character What to Type

134 Creating a Web Site: The Missing Manual

Inline Formatting

Here’s some flawed text that won’t display correctly:

I love the greater than (>) and less than (<) symbols. Problem is, when I
type them my browser thinks I’m trying to use a tag.

And here’s the corrected version, with XHTML character entities. When a browser
processes and displays this text, it replaces the entities with the characters you
really want.

I love the greater than (>) and less than (<) symbols. Problem is,
when I type them my browser thinks I’m trying to use a tag.

Most Web design tools insert the correct character entities as you type, as long as
you’re in Design view and not Code view.

Tip: To get a more comprehensive list of special characters and see how they look in your browser,
check out www.webmonkey.com/reference/Special_Characters.

Non-English Languages
Although character entities work perfectly well, they can be a bit clumsy if you
need to rely on them all the time. For example, consider the famous French phrase
“We were given speech to hide our thoughts,” shown here:

La parole nous a été donnée pour déguiser notre pensée.

Here’s what it looks like with character entities replacing all the accented characters:

La parole nous a été donnée pour déguiser notre
pensée.

French speakers would be unlikely to put up with this for long. Fortunately, there’s
a solution called Unicode encoding. Essentially, Unicode is a system that converts
characters into the bytes that computers understand and can properly render. By
using Unicode encoding, you can create accented characters just as easily as if they
were keys on your keyboard.

So how does it work? First, you need a way to get the accented characters into your
Web page. Here are some options:

• Type it in. Many non-English speakers will have the benefit of keyboards that
include accented characters.

• Use a utility. In Windows, you can run a little utility called charmap (short for
Character Map) that lets you pick from a range of special characters and copy
your selected character to the clipboard so it’s ready for pasting into another pro-
gram. To run charmap, click Start ➝ Run, type in charmap, and then hit Enter (in
Windows Vista, click Start, and then type charmap into the search box).

http://www.webmonkey.com/reference/Special_Characters

Chapter 5: XHTML Text Elements 135

Inline Formatting

• Use your Web page editor. Some Web page editors include their own built-in
symbol pickers. In Expression Web, choose Insert ➝ Symbol (see Figure 5-14). In
Dreamweaver, you can use Insert ➝ HTML ➝ Special Characters ➝ Other, but
this process only inserts character entities, not Unicode characters. Though the
end result is the same, your XHTML markup will still include a clutter of codes.

When using Unicode encoding, you need to make sure you save your Web page cor-
rectly. This won’t be a problem if you use a professional Web page editor, which is
smart enough to get it right the first time. But Unicode can trip up text editors. For
example, in Windows Notepad, you need to choose File ➝ Save As, and then pick
UTF-8 from the Encoding list (see Figure 5-15). For the Mac’s TextEdit, select Format
➝ Make Plain Text, go to Preferences ➝ Open and Save ➝ Plain Text File Encoding ➝

Saving Files, and then select Unicode (UTF-8) from the drop-down list. Every time you
re-save your file thereafter, Notepad and TextEdit will encode it correctly.

Figure 5-14:
Choose Insert ➝ Symbol to
see Expression Web’s
comprehensive list of special
characters. When you pick
one, Expression Web inserts
the actual character,
Unicode-style, not the
cryptic character entity.

Figure 5-15:
UTF-8 is a slimmed down version
of Unicode that saves space for
normal characters. It’s the
overwhelming standard of the
Web. However, you need to
explicitly tell Notepad to use UTF-8
encoding when you save a Web
page that includes special
characters like accented letters.

137

Chapter 6chapter

6

Style Sheets

Last chapter, you learned XHTML’s dirty little secret—it doesn’t have much for-
matting muscle. If you want your Web pages to look sharp, you need to add style
sheets into the mix.

A style sheet is a document filled with formatting rules. Browsers read these rules
and apply them when they display Web pages. For example, a style sheet rule
might say, “Make all the headings on this site bold and fuchsia, and draw a box
around each one.”

There are several reasons why you want to put formatting instructions in a style
sheet instead of embedding them in a Web page. The most obvious is reuse. For
example, thanks to style sheets, you can create a single rule to format level-3 head-
ings, and every level-3 heading on every Web page on your site will reflect that
rule. The second reason is that style sheets help you write tidy, readable, and man-
ageable XHTML files. Because style sheets handle all your site’s formatting, your
XHTML document doesn’t need to. All it needs to do is organize your pages into
logical sections. (For a recap of the difference between structuring and formatting
a Web page, refer to page 110.) And finally, style sheets give you more extensive
formatting choices than those in XHTML alone. Using style sheets, you can con-
trol colors, borders, margins, alignment, and (to a limited degree) fonts.

You’ll use style sheets throughout this book. In this chapter, you’ll learn the basics
of style sheets, and see how you can use them to create a variety of visual effects.

138 Creating a Web Site: The Missing Manual

Style Sheet Basics

Style Sheet Basics
Style sheets use a standard that’s officially known as CSS (Cascading Style Sheets).
CSS is a system for defining style rules. These rules change the appearance of the ele-
ments in a Web page, tweaking details like color, font, size, borders, and placement.

When you use CSS in a Web page, a browser reads both the page’s XHTML file
and the style sheet rules. It then uses those rules to format the page. Figure 6-1
shows the process.

This system gives Web weavers the best of both worlds—a rich way to format
pages and a way to avoid mucking up your XHTML document beyond recogni-
tion. In an ideal world, the XHTML document describes only the structure of your
Web page (what’s a header, what’s a paragraph, what’s a list, and so on), and the
style sheet formats that Web page to give it its hot look.

The Three Types of Styles
Before you learn how to write CSS rules, you first have to think about where you’re
going to place those instructions. CSS gives you three ways to apply style sheets to
a Web page:

• An external style sheet is one that’s stored in a separate file. This is the most pow-
erful approach, because it completely separates formatting rules from your
XHTML pages. It also gives you an easy way to apply the same rules to many pages.

• An internal style sheet is embedded inside an XHTML document (it goes right
inside the <head> section). You still have the benefit of separating the style
information from the XHTML, and if you really want, you can cut and paste
the embedded style sheet from one page to another (although it gets difficult to

Figure 6-1:
When you go to a Web page
that uses a style sheet, the
following things happen. 1)
Your browser requests the
XHTML page from a Web
server. 2) The browser finds
an instruction in the XHTML
page indicating that the
page uses a style sheet. The
browser then grabs that style
sheet with a separate
request. 3) The browser
chews through the XHTML in
the Web page, and uses the
rules in the style sheet to
adjust the page’s
appearance.

Your
computer

Web
server

Get the page

2 Get the linked style sheet

1

resume.htm

resume.css

Render the page and apply the style sheet3

Chapter 6: Style Sheets 139

Style Sheet Basics

keep all those copies synchronized if you make changes later on). You use an
internal style sheet if you want to give someone a complete Web page in a sin-
gle file—for example, if you email someone your home page. You might also
use an internal style sheet if you know that you aren’t going to use any of its
style rules on another page.

• An inline style is a way to insert style sheet language directly inside the start tag
of an XHTML element. At first glance, this sounds suspicious. You already
learned that it’s a bad idea to embed formatting instructions inside a Web page,
because formatting details tend to be long and unwieldy. That’s true, but you
might occasionally use the inline style approach to apply one-time formatting
in a hurry. It’s not all that clean or structured, but it does work.

These choices give you the flexibility to either follow the CSS philosophy whole-
heartedly (with external style sheets), or to use the occasional compromise (with
internal style sheets or inline styles). Because style sheet language is always the
same, even if you use a “lazier” approach like internal style sheets, you can always
cut-and-paste your way to an external style sheet when you’re ready to get more
structured.

UP TO SPEED

The “Other Way” to Format a Web Page
Style sheets aren’t the only way to format a Web page—
they’re just the most capable tool. You’ve also got a few for-
matting options built right into the XHTML elements you
learned about in Chapter 5. For example, you can change a
page’s background color or center text without touching a
style sheet. For the most part, this book doesn’t use these for-
matting options, for several good reasons:

• They’re patchy and incomplete. Many style fea-
tures, like paragraph indenting and borders, are
missing—there are no XHTML formatting elements to
achieve these effects. Even worse, the model isn’t
consistent—for example, you might be able to line
up text in one type of element, but not the text con-
tained in another type of element. This makes the
model difficult to learn and remember.

• They work only in XHTML 1.0 transitional. As
you learned earlier (page 30), transitional XHTML

includes features that the official rulemakers of the
XHTML standard—that’d be the good people who
work at World Wide Web Consortium (W3C)—
consider obsolete. If you use these old-school for-
matting features, your hard-core Web designer
friends won’t sit with you at restaurants.

• They don’t let you easily reuse formatting
changes. So after you reformat one page, you need
to start all over again to fix the next page. And so on,
and so on, and so on.

• Why learn something you don’t need? Consider-
ing that style sheets have so much power and flexibil-
ity, and now that virtually every browser around—old
and new—supports style sheets, it doesn’t make sense
to waste time with something you’ll only outgrow.

140 Creating a Web Site: The Missing Manual

Style Sheet Basics

Browser Support for CSS
Before you embrace style sheets, you need to make sure they work on all the
browsers your site visitors use. That’s not as easy to figure out as it should be. The
first problem is that there’s actually more than one version of the CSS standard—
there’s the original CSS1, the slightly improved CSS2, the corrected CSS2.1, and
the still-developing CSS3. But the real problem is that browsers don’t necessarily
support the entire CSS standard no matter what version it is. And when they do,
they don’t always support it in exactly the same way. The discrepancies range from
minor to troubling. As a result, in this book you’ll focus on CSS1 and CSS2 prop-
erties known to be well-supported on all the major browsers (see below). You’ll
steer clear of CSS3, which is still too new to be useful. That said, don’t forget to test
your pages in a variety of browsers to be sure they look right.

As a basic rule of thumb, you can count on good all-around CSS1 support in
Netscape Navigator 6, Internet Explorer 5, Opera 3.6, and any version of Firefox,
Safari, or Google Chrome. In later versions of these browsers, CSS support gets
more consistent and more comprehensive, with added features from CSS2 and
even CSS3.

People who’ve used the Web for a few years may still remember an earlier genera-
tion of browsers, namely Netscape 4.x and Internet Explorer 4.x. Both of these
browsers are unreliable when it comes to the fancier features of CSS. However,
you’re unlikely to run into them outside of a museum. If you’re in doubt, take a
look at some recent statistics to see which browsers people use online (page 13).

If you’re still concerned about whether a specific browser version supports a spe-
cific CSS feature, see the box on page below.

The Anatomy of a Rule
Style sheets contain just one thing: rules. Each rule is a formatting instruction that
applies to a part of your Web page. A style sheet can contain a single rule, or it can
hold dozens (or even hundreds) of them.

FREQUENTLY ASKED QUESTION

A Browser Compatibility Reference
How can I tell if a particular browser supports a CSS feature?

If you’re a hard-core Web maven, you may be interested in
one of the Web browser compatibility charts for CSS avail-
able on the Web. Two good resources are www.webdevout.
net/browser-support-css and www.quirksmode.org/css/
contents.html. These charts specify which browsers support
which CSS features.

But chart-reader beware: These tables include many rarely
used or new and poorly supported features. For example,
you probably don’t care that virtually no browser supports
the pitch-range property, used in conjunction with text-
reading devices. Unfortunately, the CSS charts can cause
panic in those who don’t know the standards. However,
they can be handy if you need to check out support for a
potentially risky feature.

http://www.webdevout.net/browser-support-css
http://www.webdevout.net/browser-support-css
http://www.quirksmode.org/css/contents.html
http://www.quirksmode.org/css/contents.html

Chapter 6: Style Sheets 141

Style Sheet Basics

Here’s a simple rule that tells a browser to display all <h1> headings in blue:

h1 { color: blue }

CSS rules don’t look like anything you’ve seen in XHTML markup, but you’ll have
no trouble with them once you realize that three ingredients make up every rule:
selectors, properties, and values. Here’s the format that every rule follows:

selector { property: value }

And here’s what each part means:

• The selector identifies the type of content you want to format. A browser then
hunts down all the parts of a Web page that match the selector. For now, you’ll
concentrate on selectors that match every occurrence of a specific page ele-
ment, like a heading. But later in this chapter (page 171), you’ll learn to create
more sophisticated selectors that act only on specific sections of your page.

• The property identifies the type of formatting you want to apply. Here’s where
you choose whether you want to change colors, fonts, alignment, or something
else.

• The value sets a value for the property defined above. This is where you bring it
all home. For example, if your property is color, the value could be light blue or
a queasy green.

Of course, it’s rarely enough to format just one property. Usually, you want to for-
mat several properties at the same time. You can do this with style sheets by creating
a rule like this:

h1 { text-align: center;

 color: black; }

This example changes the color of and centers the text inside an <h1> element.
That’s why style rules use the funny curly braces { and }—so you can put as many
formatting instructions inside them as you want. You separate one property from
the next using a semicolon (;). It’s up to you whether to include a semicolon at the
end of the last property. Although it’s not necessary, Web-heads often do so to
make it easy to add another property onto the end of a rule when needed.

Note: As in an XHTML file, CSS files let you use spacing and line breaks pretty much wherever you want.
However, people often put each formatting instruction on a separate line (as in the example above) to
make style sheets easy to read.

Conversely, you might want to create a single formatting instruction that affects
several different elements. For example, imagine you want to make sure that the
first three heading levels, h1 to h3, all have blue letters. Rather than writing three
separate rules, you can create a selector that includes all three elements, separated
by commas. Here’s an example:

h1, h2, h3 { color: blue }

142 Creating a Web Site: The Missing Manual

Style Sheet Basics

Believe it or not, selectors, properties, and values are the essence of CSS. Once you
understand these three ingredients, you’re on your way to style sheet expertise.

Here are a few side effects of the style sheet system that you might not yet realize:

• A single rule can format a whole bunch of XHTML. When you implement a
rule for the kind of selectors listed above (called type selectors), that rule applies
to every one of those elements. So when you specify blue h1 headings as in the
example above, every h1 element in your page becomes blue.

• It’s up to you to decide how much of your content you want to format. You can
fine-tune every XHTML element on your Web page, or you can write rules that
affect only a single element, using the techniques you’ll find at the end of this
chapter (page 171).

• You can create two different rules for the same element. For example, you could
create a rule that changes the font of every heading level (<h1>, <h2>, <h3>,
and so on), and then add another rule that changes the color of just <h1> ele-
ments. Just make sure you don’t try to set the same property multiple times
with conflicting values, or the results will be difficult to predict.

• Some elements have built-in style rules. For example, browsers always display
text that appears in a element as boldfaced, even when the style sheet
doesn’t include a rule to do so. Similarly, browsers display text in an <h1>
heading in a large font, with no style sheet rule necessary. But you can override
any or all of these built-in rules using custom style rules. For example, you
could explicitly set the font size of an <h1> heading so that it appears smaller
than normal text. Similarly, you can take the underline off of a link, make the
 element italicize text instead of bolding it, and so on.

Don’t worry about memorizing the kind of properties and values you can specify.
Later in this chapter, after you see how style sheets work, you’ll get acquainted with
all the formatting instructions you can use.

Applying a Style Sheet
Now it’s time to see style sheets in action. Before you go any further, dig up the
resume.htm file you worked on in Chapter 2 (it’s also available from the Missing
CD page at www.missingmanuals.com). You’ll use it to test out a new style sheet.
Follow these steps:

1. First, create the style sheet. You do this by creating a new file in any text editor,
like Notepad or TextEdit.

Creating a style sheet is no different from creating an XHTML page—it’s all
text. Many XHTML editors have built-in support for style sheets (see the box
on page 145 for more information).

http://www.missingmanuals.com

Chapter 6: Style Sheets 143

Style Sheet Basics

2. Type the following rule into your style sheet:

h1 { color: fuchsia }

This rule instructs your browser to display all <h1> elements in bright fuchsia
lettering.

3. Save the style sheet with the name resume.css.

Like an XHTML document, a style sheet can have just about any file name.
However, as a matter of convention, style sheets almost always use the exten-
sion .css. For this example, make sure you save the style sheet in the same folder
as your XHTML page.

4. Next, open the resume.htm file.

If you don’t have the resume.htm file handy, you can test this style sheet with
any XHTML file that has at least one <h1> element.

5. Add the <link> element to your XHTML file.

The <link> element points your browser to the style sheet you wrote for your
pages. You have to place the <link> element in the <head> section of your
XHTML page. Here’s the revised <head> section of resume.htm with the <link>
element added:

<head>

<link rel="stylesheet" type="text/css" href="resume.css" />

 <title>Hire Me!</title>

</head>

The link element includes three details. The rel attribute indicates that the link
points to a style sheet. The type attribute describes how you encoded the docu-
ment. You should copy both these attributes exactly as shown above, as they
never change. The href attribute is the important bit—it identifies the location
of your style sheet (“href” stands for hypertext reference). Assuming you put
your style sheet in the same folder as your XHTML file, all you need to supply is
the file name. (If you put these two files in different folders, you need to specify
the location of the .css file using the file path notation system you’ll learn about
on page 171.)

6. Save the XHTML file, and open it in a browser.

Here’s what happens. Your browser begins processing the XHTML document
and finds the <link> element, which tells it to find an associated style sheet and
apply all its rules. The browser then reads the first (and only, in this case) rule
in the style sheet. To apply this rule, it starts by analyzing the selector, which
targets all <h1> elements. Then it finds all the <h1> elements on the XHTML
page and applies the fuchsia formatting.

144 Creating a Web Site: The Missing Manual

Style Sheet Basics

The style sheet in this example isn’t terribly impressive. In fact, it probably seems
like a lot of work to simply get a pink heading. However, once you’ve got this basic
model in place, you can quickly take advantage of it. For example, you could edit
the style sheet to change the font of your resume.htm headings. Or, you could add
rules to format other parts of the document. Simply save the new style sheet, and
then refresh the Web page to see the effect of the changed or added rules.

To see this at work, change the resume.css style sheet so that it has these rules:

body {

 font-family: Verdana,Arial,sans-serif;

 font-size: 83%;

}

h1 {

 border-style: double;

 color: fuchsia;

 text-align: center;

}

h2 {

 color: fuchsia;

 margin-bottom: 0px;

 font-size: 100%;

}

li {

 font-style: italic;

}

p {

 margin-top: 2px;

}

These rules change the font for the entire document (through the <body> element
rule), tweak the two heading levels, italicize the list items, and shave off some of the
spacing between paragraphs. Although you won’t recognize all these rules at first,
the overall model (content in the Web page, formatting in the style sheet) is the
same as in the earlier resume example. Figure 6-2 shows the result.

Internal style sheets

The resume.css example demonstrates an external style sheet. External style sheets
are everybody’s favorite way to use CSS because they let you link a single lovingly
crafted style sheet to as many Web pages as you want. However, sometimes you’re
not working on an entire Web site, and you’d be happy with a solution that’s a lit-
tle less ambitious.

Chapter 6: Style Sheets 145

Style Sheet Basics

Figure 6-2:
Left: By now, you can
recognize a plain-vanilla
Web page.

Right: A style sheet
revamps the entire page.

GEM IN THE ROUGH

Creating Style Sheets with Web Page Editors
Some Web Page editors, like Dreamweaver and Expression
Web, have handy features for editing style sheets. To try
them out, start by opening an existing style sheet or creat-
ing a new one. To create a style sheet in Expression Web,
choose File ➝ New ➝ CSS. To create a style sheet in
Dreamweaver, choose File ➝ New, pick CSS in the Page
Type list, and then click Create.

So far, you won’t see anything to get excited about. But life
gets interesting when you start to edit your style sheet. As you
type, your Web page editor pops up a list of possible style
properties and values (see Figure 6-3). If you dig deeper,
you’ll find that both Web editors have windows that let you
build styles by pointing and clicking, as well as convenient
shortcuts for applying styles to your Web page elements.

Figure 6-3:
As you edit a style sheet
in Dreamweaver, it pops
up lists of possible style
properties (left) and
property values. If you’re
dealing with colors, you
even get this handy color
picker (right), which
translates colors codes in
your style sheet into the
actual color and displays
the results. It’s a great
help for foggy memories,
and saves more than a
few keystrokes.

146 Creating a Web Site: The Missing Manual

Style Sheet Basics

An internal style sheet is one that, rather than being linked, is embedded in the
<head> area of your Web page. Yes, it bulks up your pages and forces you to give
each page a separate style sheet. But sometimes the convenience of having just one
file that contains your page and its style rules makes this approach worthwhile.

To change the earlier example so that it uses an internal style sheet, remove the
<link> element from your XHTML markup and add the style rules in a <style>
element inside the <head> section of the page, as shown here:

<head>

 <title>Hire Me!</title>

<style type="text/css">

 h1 { color: fuchsia }

 </style>

</head>

Inline styles

If you want to avoid writing a style sheet altogether, you can use yet another
approach. Inline styles let you insert the property and value portion of a style sheet
rule right into the start tag for an XHTML element. You don’t need to specify the
selector because browsers understand that you want to format only the element
where you add the rule.

Here’s how you use an inline style to format a single heading:

<h1 style="color: fuchsia">Hire Me!</h1>

The rule above affects only the h1 element where you added it; any other <h1>
headings in the page are unchanged.

Unlike internal and external style sheets, inline styles don’t require the type="text/css"
attribute, which tells browsers that you’re using CSS as your style language. For the
most part, this missing detail is harmless, because every browser ever created
assumes you’re using CSS. However, to meet the strict rules of XHTML, you really
should specify your choice of style language by adding the following <meta> ele-
ment to the <head> section of your Web page:

<meta http-equiv="Content-Style-Type" content="text/css" />

You can pop this element into place right after the <title> element.

Inline styles may seem appealing at first, because they’re clear and straightforward.
You define the formatting information exactly where you want to use it. But if you
try to format a whole Web page this way, you’ll realize why Web developers go
easy on this technique. Quite simply, the average CSS formatting rule is long. If
you need to put it alongside your content and copy it each time you use the ele-
ment, you quickly end up with a Web page that’s mangled beyond all recognition.
For example, consider a more complex heading that needs several style rules:

<h1 style="border-style: double; color: fuchsia; text-align: center">Hire

Me!</h1>

Chapter 6: Style Sheets 147

Style Sheet Basics

Even if this happens only once in a document, it’s already becoming a loose and
baggy monstrosity. So try to avoid inline styles if you can.

The Cascade
By now, you might be wondering what the “cascading” part of “cascading style
sheets” means. It refers to the way browsers decide which rules take precedence
when you’ve got multiple sets of rules.

For example, if an external style sheet indicates that <h1> headings should have
blue letters, and then you apply bold formatting with an inline style, you’ll end up
with the sum of both changes: a blue-lettered, bold-faced heading. It’s not as clear
what happens if the rules conflict, however. For example, if one rule specifies blue
text while another mandates red, which color setting wins?

To determine the answer, you need to consult the following list to find out which
rule has highest priority. This list indicates the steps a browser follows when apply-
ing styles. The steps toward the bottom are the most powerful: the browser imple-
ments them after it applies the steps at the top, and they override any earlier
formatting.

1. Browser’s standard settings

2. External style sheet

3. Internal style sheet (inside the <head> element)

4. Inline style (inside an XHTML element)

So, if an external style sheet conflicts with an internal style sheet, the internal style
sheet wins.

WORD TO THE WISE

Boosting Style Sheet Speed
External style sheets are more efficient on Web sites
because of the way browsers use caching. Caching is a per-
formance-improving technique where browsers store a
copy of some downloaded information on your computer
so they don’t need to download it again.

When a browser loads a Web page that links to a style
sheet, it makes a separate request for that style sheet, as
shown back in Figure 6-1. However, if the browser loads
another page that uses the same style sheet, it’s intelligent
enough to realize that it already has the right .css file on
hand. As a result, it doesn’t make the request. Instead, it
uses the cached copy of the style sheet, which makes the

Web page load a little bit faster. (Of course, browsers only
cache things for so long. If you go to the same site tomor-
row, the browser will have to re-request the style sheet.)

If you embed the style sheet in each of your Web pages, the
browser always downloads the full page with the duplicate
copy of the style sheet. It has no way of knowing that you’re
using the same set of rules over and over again. Although
this probably won’t make a huge difference in page-down-
load time, it could start to add up for a Web site with lots of
pages. Speed is just one more reason Web veterans prefer
external style sheets.

148 Creating a Web Site: The Missing Manual

Style Sheet Basics

Based on this, you might think that you can use this cascading behavior to your
advantage by defining general rules in external style sheets, and then overriding
them with the occasional exception using inline styles. In fact, you can, but there’s
a much better option. Rather than format individual elements with inline style
properties, you can use class selectors to format specific parts of a page (see page
171 for details), as you’ll see later in this chapter.

Note: The “cascading” in cascading style sheets is a little misleading, because in most cases you won’t
use more than one type of style sheet (for the simple reason that it can quickly get confusing). Most Web
artistes favor external style sheets primarily and exclusively.

Inheritance
Along with the idea of cascading styles, there’s another closely related concept—
style inheritance. To understand style inheritance, you need to remember that in
XHTML documents, one element can contain other elements. Remember the
unordered list element ()? It contained list item elements (). Similarly, a
<p> paragraph element can contain character formatting elements like and
<i>, and the <body> element contains the whole document.

Thanks to inheritance, when you apply formatting instructions to an element that
contains other elements, that formatting rule applies to every one of those other ele-
ments. For example, if you set a <body> element to the font Verdana (as in the
résumé style sheet shown earlier), every element inside that <body> element,
including all the headings, paragraphs, lists, and so on, gets the Verdana font.

Note: Elements inherit most, but not all, style properties. For example, elements never inherit margin
settings from another element. Look for the “Can Be Inherited” column in each table in this chapter to see
whether a property setting can be passed from one element to another through inheritance.

However, there’s a trick. Sometimes, formatting rules may overlap. In such a case,
the most specific rule—that is, the one hierarchically closest to the element—wins.
For example, settings you specify for an <h1> element will override settings you
specified for a <body> element for all level-1 headings. Or consider this style sheet:

body {

 color: black;

 text-align: center;

}

ul {

 color: fuschia;

 font-style: italic;

}

Chapter 6: Style Sheets 149

Style Sheet Basics

li {

 color: red;

 font-weight: bold;

}

These rules overlap. In a typical document (see Figure 6-4) you put an (list
item) inside a list element like , which in turn exists inside the <body> ele-
ment. In this case, the text for each item in the list will be red, because the rule
overrides the and <body> rules that kick in first.

Crafty style sheet designers can use this behavior to their advantage. For example,
you might apply a font to the <body> element so that everything in your Web
page—headings, paragraph text, lists, and so on—has the same font. Then, you
can judiciously override this font for a few elements by applying element-specific
formatting rules.

Figure 6-4:
When rules collide, the most specific
element wins. In this example, that means
your browser will display these list items in
red, because the rule for the element
overrides the inherited properties from the
 and <body> elements. However,
elements retain the style of an inherited
rule if it doesn’t conflict with another rule.
In this example, that means the
element gets italics and center alignment
through inheritance.

150 Creating a Web Site: The Missing Manual

Colors

Tip: Although you probably won’t see cascading styles in action very often, you’ll almost certainly use
style inheritance.

Now that you’ve learned how style sheets work, you’re ready to start with the hard
part—learning about the dozens of different formatting properties you can change.
The following sections group the key style properties into categories.

Note: In this chapter, you won’t learn about every CSS property. For example, there are some properties
that apply primarily to pictures and layout. You’ll learn about those properties in later chapters.

Colors
It isn’t difficult to inject some color into your Web pages. Style sheet rules have
two color-related properties, listed in Table 6-1. You’ll learn about the types of val-
ues you can use when setting colors (color names, color codes, and RGB values) in
the following sections.

The color property is easy to understand—it’s the color of your text. The background-
color property is a little more unusual.

If you apply a background color to the <body> element of a Web page, the whole
page adopts that color, as you might expect. However, if you specify a background
color for an individual element, like a heading, the results are a bit stranger. That’s
because CSS treats each element as though it’s enclosed in an invisible rectangle.
When you apply a background color to an element, CSS applies that color to just
that rectangle.

Table 6-1. Color properties

Property Description Common Values
Can Be
Inherited?

color The color of the text. This
is a handy way to make
headings or emphasized
text stand out.

A color name, color code,
or RGB color value.

Yes

background-color The color behind the text,
for just that element.

A color name, color code,
or RGB color value. You
can also use the word
“transparent”.

Noa

a The background-color style property doesn’t use inheritance (page 148). This means that if you give the
<body> section of a page a blue background color and you place a heading on the page, the heading
doesn’t inherit the blue background. However, there’s a trick. If you don’t explicitly assign a back-
ground color to an element, its color is transparent. This means the color of the containing element
shows through, which has the same effect as inheritance. So the heading in this example still ends up
with the appearance of a blue background.

Chapter 6: Style Sheets 151

Colors

For example, the following style sheet applies different background colors to the
page, headings, paragraphs, and any bold text:

body {

 background-color: yellow;

}

h1 {

 color: white;

 background-color: blue;

}

p {

 background-color: lime;

}

b {

 background-color: white;

}

Figure 6-5 shows the result.

Specifying a Color
The trick to using color is finding the code that indicates the exact shade of electric
blue you love. You can go about this in several ways. First of all, you can indicate
your color choice with a plain English name, as you’ve seen in the examples so far.
Unfortunately, this system only works with a small set of 16 colors (aqua, black, blue,
fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yel-
low). Some browsers accept other names, but none of these names are guaranteed to
be widely supported, so it’s best to use another approach. CSS gives you two more
options: hexadecimal color values and RGB (or red-green-blue) values.

Figure 6-5:
If you apply a background color to an
element like <h1>, it colors just that line.
If you use it on an inline element like
or , it affects only the words in
that element. Both results look odd—it’s a
little like someone went wild with a
highlighter. A better choice is to apply a
background color to the whole page by
specifying it in the <body> element, or to
tint just a large box-like portion of the
page, using a container element like
<div>.

152 Creating a Web Site: The Missing Manual

Colors

Hexadecimal color values

With hexadecimal color values you use a strange-looking code that starts with a
number sign (#). Technically, hexadecimal color values are made up of three num-
bers that represent the amount of red, green, and blue that go into creating a color.
(You can create any color by combining various amounts of these three primary
colors.) However, the hexadecimal color value combines these three ingredients
into an arcane code that’s perfectly understandable to computers, but utterly
baroque to normal people.

You’ll find hexadecimal color notation kicking around the Web a lot, because it’s
the original format for specifying colors under HTML. However, it’s about as intu-
itive as reading the 0s and 1s that power your computer.

Here’s an example:

body {

 background-color: #E0E0E0

}

Even a computer nerd can’t tell that #E0E0E0 applies a light gray background. To
figure out the code you need for your favorite color, check out the “Finding the
Right Color” section further down this page.

RGB color values

The other approach to specifying color values is to use RGB values. According to
this more logical approach, you simply specify how much red, green, and blue you
want to “mix in” to create your final color. Each component takes a number from
0 to 255. For example, a color that’s composed of red, green, and blue, each set to
255, appears white; on the other hand, all those values set to 0 generates black.

Here’s an example of a nice lime color:

body {

 background-color: rgb(177,255,20)

}

Finding the Right Color
Style sheets can handle absolutely any color you can imagine. But how do you find
the color code for the perfect shade of sunset orange (or dead salmon) you need?

Sadly, there’s no way this black-and-white book can show you your choices. But
there are a lot of excellent color-picking programs online. For example, try www.
colorpicker.com, where all you need to do is click a picture to preview the color you
want (and to see its hexadecimal code). Or try www.colorschemer.com/online.html,
where you can find groups of colors that complement each other, which is helpful

http://www.colorpicker.com
http://www.colorpicker.com
http://www.colorschemer.com/online.html

Chapter 6: Style Sheets 153

Fonts

for creating Web sites that look professionally designed. If you use a Web design
tool like Expression Web or Dreamweaver, you have an even easier choice—the
program’s built-in color-picking smarts, as shown back in Figure 6-3.

Note: The RGB system lets you pick any of 16.7 million colors, which means that no color-picking Web
site will actually show you every single possible RGB color code (if they do, make sure you don’t hit the
Print button; even with 10 colors per line, you’d wind up with thousands of pages). Instead, most sites
limit you to a representative sampling of colors. This works, because many colors are so similar that
they’re nearly impossible to distinguish by eye.

The RGB color standard is also alive and well in many computer programs. For
example, if you see a color you love in a professional graphics program like Photo-
shop (or even in a not-so-professional graphics program, like Windows Paint),
odds are there’s a way to get the red, green, and blue values for that color. This
gives you a great way to match the text in your Web page with a color in a picture.
Now that’s a trick that will please even the strictest interior designer.

Fonts
Using the CSS font properties, you can choose a font family, font weight (its bold-
ness setting), and font size (see Table 6-2). Be prepared, however, for a bit of Web-
style uncertainty, as this is one case where life isn’t as easy as it seems.

FREQUENTLY ASKED QUESTION

Web-Safe Colors
Will the colors I pick show up on other computers?

Decades ago, when color became the latest fad in Web
pages, the computing world was very different. The average
PC couldn’t handle a wide variety of colors. Many comput-
ers could display a relatively small set of 256 colors, and
had to deal with other colors by dithering, a dubious pro-
cess that combines little dots of several colors to simulate a
different color, leading to an unattractive speckled effect. To
avoid dithering, Web designers came up with a standard
called Web-safe colors, which identifies 216 colors that any
PC can reliably replicate. Even better, they look almost
exactly the same on every computer.

But the world has changed, and you’d be hard pressed to
find a computer that can’t display at least 65,000 colors (a
standard called 16-bit color, or high color). Most support a

staggering 16.7 million colors (a standard called 24-bit
color, or true color). In fact, even very small devices (like
cell phones and palmtop computers) support every color a
Web designer will ever need.

So here’s the bottom line: in the 21st century, it’s safe for
Web designers to finally forget about Web-safe colors.
However, it’s still a good idea to check out your Web pages
and color preferences on a variety of computers. That’s
because different monitors don’t always reproduce the col-
ors exactly—some tend to tint colors unexpectedly, and
Windows computers tend to produce darker colors than
their Macintosh counterparts (even when using the same
monitor). Pick colors carefully, because a color combina-
tion that looks great on your PC can look nauseating (or
worse, be illegible) on someone else’s.

154 Creating a Web Site: The Missing Manual

Fonts

DESIGN TIME

Making Color Look Good
Nothing beats black text on a white background for creating
crisp, clean, easy-to-read Web pages with real presence.
This black-and-white combination also works best for pages
that have a lot of colorful pictures. It’s no accident that
almost every top Web site, from news sites (www.cnn.com)
to search engines (www.google.com) to e-commerce
shops (www.amazon.com) and auction houses (www.
ebay.com), use the winning combination of black on white.

But what if you’re just too colorful a person to leave your
Web page in plain black and white? The best advice is to fol-
low the golden rule of color: use restraint. Unless you’re
creating a sixties revival site or a Led Zeppelin tribute page,
you don’t want your pages to run wild with color. Here are
some ways to inject a splash of color without letting it take
over your Web page:

• Go monochrome. That means use black, white,
and one other dark color. Use the new color to
emphasize an important design element, like sub-
headings in an article. For example, the Time maga-
zine Web site once used its trademark red for
headlines (although now it favors a sleeker black-
and-white combination).

• Use lightly shaded backgrounds. Sometimes, a
faint wash of color in the background is all you need
to perk up a site. For example, a gentle tan or gold
can suggest elegance or sophistication (see the Har-
vard library site at http://lib.harvard.edu). Or light
pinks and yellows can get shoppers ready to buy
sleepwear and other feminine accoutrements at
Victoria’s Secret (www.victoriassecret.com).

• Use color in a box. Web designers frequently use
shaded boxes to highlight important areas of a Web
page (see Wikipedia at http://en.wikipedia.org).
You’ll learn how to create boxes later in this chapter.

• Be careful about using white text. White text on
a black or dark blue background can be striking—and
strikingly hard to read. The rule of thumb is to avoid
it unless you’re trying to make your Web site seem
futuristic, alternative, or gloomy. (And even if you do
fall into one of these categories, you might still get a
stronger effect with a white background and a few
well-chosen graphics with splashy electric colors.)

Table 6-2. Font properties

Property Description Common Values
Can Be
Inherited?

font-family A list of font names. The
browser scans through the list
until it finds a font that’s on
your visitor’s PC. If doesn’t find
a supported font, it uses the
standard font it always uses.

A font name (like Verdana,
Times, or Arial) or a generic
font-family name: serif, sans-
serif, monospace.

Yes

font-size Sets the size of the font. A specific size, or one of these
values: xx-small, x-small, small,
medium, large, x-large, xx-
large, smaller, larger.

Yes

font-weight Sets the weight of the font
(how bold it appears).

normal, bold, bolder, lighter Yes

font-style Lets you apply italic
formatting.

normal, italic Yes

http://www.cnn.com
http://www.google.com
http://www.amazon.com
http://www.ebay.com
http://www.ebay.com
http://lib.harvard.edu
http://www.victoriassecret.com
http://en.wikipedia.org

Chapter 6: Style Sheets 155

Fonts

Although most CSS font properties are straightforward, the font-family property
has a nasty surprise—it doesn’t always work. The inescapable problem you face is
that no two computers have the same set of fonts installed, so the fonts you use to
design your Web page won’t necessarily be the fonts your visitors have installed on
their PCs. A simple way to solve this problem is to create browsers that automati-
cally download fonts they don’t have, but this would be a Web nightmare. First,
automatic downloads could swamp the average computer’s hard drive with thou-
sands of (potentially low-quality) fonts. Second, it would infuriate the software
companies who sell fonts. (Fonts aren’t free, and so wantonly copying them from
one computer to another isn’t kosher.)

There may be practical solutions to these problems, but, unfortunately, browser
companies and the people who set Web standards have never agreed on any. As a
result, any font settings you specify are just recommendations. If a PC doesn’t have
the font you request, the browser reverts to the standard font it uses whenever it’s
on a site that doesn’t have special font instructions.

Given that caveat, you’re probably wondering why you should bother configuring
font choices at all. Well, here’s one bit of good news. Instead of requesting a font
and blindly hoping that it’s available to a browser, you can create a list of font pref-
erences. That way, the browser tries to match your first choice and, if it fails, your
second choice, and so on. At the end of this list, you should use one of the few
standard fonts that almost all PCs support in some variation. You’ll see this tech-
nique at work in the next section.

Specifying a Font
To select a font, you use the font-family attribute. Here’s an example that changes
the font of an entire page:

body {

 font-family: Arial;

}

font-variant Lets you apply small caps,
which turns lowercase letters
into smaller capitals (LIKE THIS).

normal, small-caps Yes

text-
decoration

Applies a few miscellaneous
text changes, like underlining
and strikeout. Technically
speaking, these aren’t part of
the font (the browser adds
these).

none, underline, overline, line-
through

Yes

text-
transform

Transforms text so that it’s all
capitals or all lowercase.

none, uppercase, lowercase Yes

Table 6-2. Font properties (continued)

Property Description Common Values
Can Be
Inherited?

156 Creating a Web Site: The Missing Manual

Fonts

Arial is a sans-serif font found on just about every modern PC, including those
running Windows, Mac OS, Unix, and Linux operating systems. (See Figure 6-6
for more about the difference between serif and sans-serif fonts.)

To be safe, when you create a font list, always end it with a generic font-family
name. Every PC supports generic fonts under the font-family names serif, sans-
serif, and monospace.

Here’s the modified rule:

body {

 font-family: Arial, sans-serif;

}

DESIGN TIME

Graphical Text
The only guaranteed cure for font woes is graphical text.
With graphical text, you don’t type your content into an
XHTML file. Instead, you perfect it in a drawing program,
save it as a picture, and then display the picture of that text
on your page using the element.

Graphical text is clearly unsuitable for large amounts of text.
First of all, it’s an image and images require more bytes of
storage space than text, so it bloats the size of your Web
page horribly. It’s also much less flexible. For example,
graphical text can’t adjust itself to fit the width of a browser
window or take into account your visitors’ browser prefer-
ence settings. There’s also no way for a visitor to search an
image for specific words (or for a Web search engine to fig-
ure out what’s on your site).

However, graphical text is commonly used for Web page
menus, buttons, and headings, where these issues aren’t
nearly as important. Sometimes, graphical text isn’t obvi-
ous. For example, you may never have noticed that the sec-
tion headings on your favorite online newspaper are
actually images. To figure out if a Web site uses graphical
text or the real deal, try to select the text with your mouse.
If you can’t, the text is really a picture.

You’ll learn how to use graphics (including graphical text)
in Chapter 7.

Figure 6-6:
Serif fonts use adornments, or serifs, that make them
easier to read in print. This book uses a serif font, for
example. If you look closely at the letter “S” in the body
text, you’ll see tiny curlicues in the top-right and bottom-
left corners. On the other hand, sans-serif fonts have a
spare, streamlined look. They can make pages seem less
bookish, less formal, more modern, and colder.

Chapter 6: Style Sheets 157

Fonts

At this point, you might be tempted to get a little creative with this rule by adding
support for a less common sans-serif format. Here’s an example:

body {

 font-family: Eras, Arial, sans-serif;

}

If Eras is relatively similar to Arial, this technique might not be a problem. But if
it’s significantly different, it’s a bad idea.

The first problem is that by using a nonstandard font, you’re creating a Web page
whose appearance may vary dramatically depending on the fonts installed on your
visitor’s PC. Whenever pages vary, it becomes more difficult to really tweak them
to perfection because you don’t know exactly how they’ll appear elsewhere. Differ-
ent fonts take up different amounts of space, and if text grows or shrinks, the lay-
out of other elements (like pictures) changes, too. Besides, is it really that pleasant
to read KidzzFunScript or SnoopDawg font for long periods of time?

A more insidious problem happens if a visitor’s computer has a font with the same
name that looks completely different. Even worse, browsers may access an online
database of fonts to try and find a similar font that’s already installed. This
approach can quickly get ugly. At worst, either of these problems can lead to illegi-
ble text.

Tip: Most Web page editors won’t warn you when you apply a nonstandard font, so be on your guard. If
your font isn’t one of a small set of widely distributed Web fonts (more on those in a moment), you
shouldn’t use it.

Finding the Right Font
To make sure your Web page displays correctly, you should use a standard font
that’s widely available. But just what are these standard fonts? Unfortunately, Web
experts aren’t always in consensus.

If you want to be really conservative, you won’t go wrong with any of these fonts:

• Times

• Arial

• Helvetica

• Courier

Of course, all these fonts are insanely boring. If you want to take more risk, you
can use one of the following fonts, found on almost all Windows and Mac com-
puters (but not necessarily on other operating systems, like Unix):

• Verdana

• Georgia

• Tahoma

158 Creating a Web Site: The Missing Manual

Fonts

• Comic Sans MS

• Arial Black

• Impact

To compare these different fonts, see Figure 6-7.

Verdana, Georgia, and Tahoma can all help give your Web pages a more up-to-
date look. However, the characters in Verdana and Tahoma start off a bit large, so
you usually need to ratchet them down a notch in size (a technique described in
the next section).

For a good discussion of fonts, the platforms that reliably support them, and the
pros and cons of each font family (some fonts look nice onscreen, for example, but
they generate lousy printouts) see http://web.mit.edu/jmorzins/www/fonts.html and
www.upsdell.com/BrowserNews/res_fontsamp.htm.

Font Sizes
Once you sort out the thorny issue of choosing a font, you may also want to
change its size. It’s important that you select a text size that’s readable and looks
good. Resist the urge to shrink or enlarge text to suit your personal preferences.
Instead, aim to match the standard text size you see on other popular Web sites.

Despite what you might expect, you don’t have complete control over the size of
the fonts on your Web pages. Most site visitors use browsers that let them scale
font sizes up or down, either to fit more text on-screen or, more commonly, to
make text easy to read on a high-resolution monitor. In Internet Explorer and
Firefox, you find these options in the View ➝ Text Size menu.

Figure 6-7:
Have you spotted these fonts
at large on the Web?

http://web.mit.edu/jmorzins/www/fonts.html
http://www.upsdell.com/BrowserNews/res_fontsamp.htm

Chapter 6: Style Sheets 159

Fonts

A browser’s font-size settings don’t completely override the size you’ve set in your
Web page, however. Instead, they tweak it up or down. For example, if you choose
to use a large font size on your Web page (which corresponds to a setting of about
15 points in a word processor) and a visitor using Internet Explorer selects View ➝

Text Size ➝ Larger, the text size grows about 20 percent, to 18 points.

The fact that your visitors have this kind of control is another reason you shouldn’t
use particularly small or large fonts on your pages. When you combine them with
browser preferences, a size that’s a little on the large size could become gargan-
tuan, and text that’s slightly small could turn unreadable. The best defense for
these problems is to test your Web page with different browsers and different font
size preferences.

As you’ll discover in the following sections, you can set font sizes in several ways.

Keyword sizing

The simplest way to specify the size of your text is to use one of the size values
listed previously in Table 6-2. For example, to create a really big heading and
ridiculously small text, you can use these two rules:

body {

 font-size: xx-small;

}

h1 {

 font-size: xx-large;

}

These size keywords are often called absolute sizes, because they apply an exact size
to text. Exactly what size, you ask? Well, that’s where it gets a bit complicated.
These size details aren’t set in stone—different browsers are free to interpret them
in different ways. The basic rule of thumb is that the font size medium corre-
sponds to a browser’s standard text size, which is the size it uses (12 points) if a
Web site doesn’t specify a text size. Every time you go up a level, you add about 20
percent in size. (For math geeks, that means that every time you go down a level,
you lose about 17 percent.)

The standard font size for most browsers is 12 points (although text at this size
typically appears smaller on Macs than on Windows PCs). That means large text
measures approximately 15 points, x-large text is 18 points, and xx-large text is 27
points.

Figure 6-8 shows the basic sizes you can choose from.

Note: When using size keywords, make sure your Web page specifies an XHTML doctype. If you don’t,
Internet Explorer renders your page in the dreaded “quirks” mode, which makes your text one size larger
than it should be. As a result, your page won’t look the same in Internet Explorer as it does in other brows-
ers, like Firefox.

160 Creating a Web Site: The Missing Manual

Fonts

Percentage sizing

Another font-size option is to use percentage sizes instead of size keywords. For
example, if you want to make sure your text appears normal size, use this rule:

body {

 font-size: 100%;

}

And if you want to make your text smaller, use something like this:

body {

 font-family: Verdana,Arial,sans-serif;

 font-size: 83%;

}

This displays text at 83 percent of its standard size. It doesn’t matter whether the
standard size is considered small (Internet Explorer) or medium (most other brows-
ers). This particular example creates nicely readable text with the Verdana font.

It’s just as easy to upsize text:

h1 {

 font-size: 120%;

}

Figure 6-8:
There are seven standard
text sizes, ranging from
xx-large to xx-small. You
can dictate font sizes,
too, by specifying a pixel
measurement.

Chapter 6: Style Sheets 161

Fonts

But keep in mind that 100 percent always refers to the standard size of normal
paragraph text, not the standard size of the element you’re styling, like an h1 head-
ing. So if you create a heading with text sized at 120 percent, your heading is going
to be only a little bigger than normal paragraph text, which is actually quite a bit
smaller than the normal size of an <h1> heading.

Using percentage sizes is the safest, most reliable way to size text. Not only does it
provide consistent results across all browsers, it also works in conjunction with the
browser size preferences described earlier.

Relative sizing

Another approach for setting font size is to use one of two relative size values—
“larger” or “smaller”. This is a bit confusing, because as you learned in the last sec-
tion, absolute sizes are already relative—they’re all based on the browser setting for
standard text.

The difference is that relative size settings are influenced by the font of the element
that contains them. The easiest way to understand how this works is to consider
the following style sheet, which has two rules:

body {

 font-size: xx-small;

}

b {

 font-size: larger;

}

The first rule applies an absolute xx-small size to the whole page. If your page
includes a element, the text inside inherits the xx-small size (see page 148 for a
recap of inheritance), and then the second style rule steps it up one notch, to x-small.

Now consider what happens if you edit the body text style above to use a larger
font, like this:

body {

 font-size: x-small;

}

Now all bold text will be one level up from x-small, which is small.

The only limit to the two relative sizes is that they can step up or down only one
level. However, you can get around this limitation by using font numbers. For
example, a size of +2 is a relative size that increments a font two levels. Here’s an
example:

body {

 font-size: x-small;

}

162 Creating a Web Site: The Missing Manual

Fonts

b {

 font-size: +2;

}

Now the bold text becomes medium text, because medium is two levels up from
x-small.

Relative sizes are a little trickier to get used to than absolute sizes. You’re most
likely to use them if you have a style sheet with a lot of different sizes. For exam-
ple, you might use a relative size for bold text if you want to make sure bold text is
always a little bit bigger than the text around it. If you were to use an absolute size
instead, the bold text would appear large in relation to small-sized paragraph text,
but it wouldn’t stand out in a large-sized heading.

Note: When you use absolute or relative sizes, you create flexible pages. If a visitor ratchets up the text
size using his browser’s preferences, the browser resizes all your other fonts proportionately.

Pixel sizing

Most of the time, you should rely on absolute and relative sizing for text. How-
ever, if you want to have more control, you can customize your font size precisely
by specifying a pixel size. Pixel sizes can range wildly, with 12 pixels and 14 pixels
being about normal for body text. To specify a pixel size, use the number immedi-
ately followed by the letters px, as shown here:

body {

 font-size: 11px;

}

h1 {

 font-size: 24px;

}

Note: Don’t put a space between the number and the letters “px”. If you do, your rule may work in Internet
Explorer but it will thoroughly confuse other browsers.

As always, you need to test, refine, and retest your font choice to get the sizes right.
Some fonts look bigger than others, and require smaller sizes. Other fonts work
well at larger sizes, but become less legible as you scale them down in size.

Web purists avoid using exact sizes because they’re horribly inflexible in Internet
Explorer. For example, if a near-sighted visitor has upped the text size settings in
Internet Explorer, this adjustment won’t have any effect on a page that uses pixel
sizing. (For some reason, other browsers don’t suffer from this problem—they’re
able to resize pages even if you use pixel sizes.) As a result, using pixel sizes is a
quick shortcut to inconsistent results. By using them, you could inadvertently lock
out certain audiences or create pages that visitors find difficult to read or navigate
on certain types of browsers. It just goes to show that in the Web world there’s a
price to be paid for getting complete control over formatting.

Chapter 6: Style Sheets 163

Text Alignment and
Spacing

Text Alignment and Spacing
CSS includes a great many properties for controlling how text appears on a Web
page. If you’ve ever wondered how to indent paragraphs, space out lines, or center
a title, these are the tools you need.

Table 6-3 has the details on all your alignment options.

For example, if you want to create a page that has indented paragraphs (as a novel
or newspaper does), use this style sheet rule:

p {

 text-indent: 20px

}

In the following sections, you’ll see examples that use the alignment and margin
properties.

Table 6-3. Alignment and spacing properties

Property Description Common Values
Can Be
Inherited?

text-align Lines text up on one or both
edges of a page.

left, right, center, justify Yes

text-indent Indents the first line of text
(typically in a paragraph).

A pixel value (indicating the
amount to indent) or percent-
age of the width of the con-
taining element.

Yes

margin Sets the spacing added around
the outside of a block element
(page 113). You can also use
the similar properties margin-
bottom, margin-left, margin-
right, and margin-top to
change the margin on just one
side.

A pixel value or percentage
indicating the amount of
space to add around the
element.

No

padding Sets the spacing added around
the inside of a block element.
Has the same effect as margin,
unless you have an element
with a border or background
color.

A pixel value or percentage
indicating the amount of
space to add around the
element.

No

word-spacing Sets the space between words. A pixel value or percentage. Yes

letter-spacing Sets the space between letters. A pixel value or percentage. Yes

line-height Sets the space between lines. A pixel value or percentage.
You can also use a multiple
(for example, use 2 for
double-spacing).

Yes

white-space Tells the browser how to deal
with spaces in your text.

normal, pre, nowrap Yes

164 Creating a Web Site: The Missing Manual

Text Alignment and
Spacing

Alignment
Ordinarily, all text in a Web page lines up on the left side of the browser window.
Using the text-align property, you can center text, line it up on the right edge, or
justify it. Figure 6-9 shows your options.

The most interesting alignment choice is full justification, which formats text so
that it appears flush with both the left and right margins of a page, like the text in
this book. You specify full justification with the justify setting. Originally, printers
preferred full justification because it crams more words onto each page, reducing a
book’s page count and, therefore, its printing cost. These days, it’s a way of life.
Many people feel that text with full justification looks neater and cleaner than text
with a ragged edge, even though tests show plain, unjustified text is easier to read.

Justification doesn’t work as well in the Web world as in print. A key problem is a
lack of word-splitting rules, which split long words into syllables, hyphenate them,
and extend them over two lines. Browsers use a relatively simplistic method to jus-
tify text. Essentially, they add words to a line one at a time, until no more words
can fit, at which point they add extra spacing between the words to pad the line to
its full length. By comparison, the best page layout systems for print analyze an
entire paragraph and find the optimum justification strategy that best satisfies
every line. In problematic cases, a skilled typesetter may need to step in and adjust
the line breaking manually. Compared to this approach, Web browsers are irre-
deemably primitive, as you can see in Figure 6-10.

Figure 6-9:
This page shows common types of text
alignment.

Chapter 6: Style Sheets 165

Text Alignment and
Spacing

Spacing
To adjust the spacing around any element, use the margin property. For example,
here’s a rule that adds a fixed spacing of 8 pixels to all sides of a paragraph:

p {

 margin: 8px;

}

This particular rule doesn’t have much effect, because 8 pixels is the standard mar-
gin that Web browsers apply around block elements on all sides. The 8-pixel mar-
gin ensures a basic bit of breathing space. However, if you want to create dense
pages of information, this space allowance can be a bit too generous. Therefore,
many Web site developers look for ways to slim down the margins a little bit.

One common trick is to close the gap between headings and the text that follows
them. Here’s an example that puts this into action using inline styles:

<h2 style="margin-bottom: 0px">This heading has no bottom margin</h2>

<p style="margin-top: 0px">This paragraph has no top margin.</p>

You’ll notice that this style rule uses the more targeted margin-top and margin-bottom
properties to home in on just one margin. You can also use margin-left and margin-
right to set side margins. Figure 6-11 compares some different margin choices.

If you’re daring, you can even use negative margins. Taken to its extreme, this can
cause two elements to overlap. However, a better approach for overlapping ele-
ments is absolute positioning, a style trick you’ll pick up on page 253.

Note: Unlike most other CSS properties, margin settings are never inherited. That means if you change
the margins of one element, other elements inside that element aren’t affected.

Figure 6-10:
If you decide to use full justification on a Web page,
make sure you use fairly wide paragraphs. Otherwise,
you’ll quickly wind up with gaps and rivers of white
space. Few Web sites use justification.

166 Creating a Web Site: The Missing Manual

Text Alignment and
Spacing

White Space
As you learned in earlier chapters, XHTML has a quirky way of dealing with
spaces. If you put several blank spaces in a row, XHTML treats that first space as a
single space character, and ignores the others. That makes it easy for you to write
clear XHTML markup because you can add spaces wherever you like without wor-
rying about it affecting your Web page.

You’ve already learned about two ways to change how browsers deal with spaces:
the character entity (page 117) and the <pre> element (page 119). You can
replace both of these workarounds with the white-space style sheet property.

First, consider the character entity. It has two purposes—it lets you insert
spaces that a browser won’t ignore, and it prevents the browser from wrapping a
line in the middle of a company name or some other important term. Here’s an
example of the latter technique:

<p>You can trust the discretion of

Hush Hush Private Plumbers</p>

This works (the page displays the text Hush Hush Private Plumbers and doesn’t
wrap the company name to a second line), but it makes the markup hard to read.
Here’s the style-sheet equivalent with the white-space property set to nowrap:

<p>You can trust the discretion of

Hush Hush Private Plumbers</p>

Figure 6-11:
When you want to change the spacing
between page elements like headers and
paragraphs, you need to consider both
the element above and the element
below. For example, if you stack two
paragraphs on top of each other, two
factors come into play—the bottom
margin of the top paragraph, and the top
margin of the bottom paragraph.
Browsers use the larger of these two
values. That means there’s no point in
shrinking the top margin of the bottom
element unless you also shrink the
bottom margin of the top element. On
the other hand, if you want more space,
you only need to increase the margin of
one of the two elements.

Chapter 6: Style Sheets 167

Borders

To make this trick work, your XHTML needs to wrap the company name in a con-
tainer that applies the formatting. The element (page 123) is a good
choice, because it doesn’t apply any formatting except what you explicitly add.

Now, consider the <pre> element, which tells a browser to pay attention to every
space in the content inside. On page 119, you saw how you could use the <pre>
element to give the correct spacing to an e. e. cummings poem. You can get the
same effect by setting the white-space property of an element (say, a <div>, ,
or <p> element) to pre:

<p style="white-space: pre">Your browser won't ignore these

 s p a c e s .</p>

When you use the pre value for the white-space property, the browser displays all
spaces, tabs, and hard returns (the line breaks you create when you hit the Enter
key). But unlike the <pre> element, the pre value of the white-space property
doesn’t change the text font. If you want to use a fixed-width font like Courier to
space your letters and spaces proportionally, you need to add a font-family prop-
erty (page 154).

Borders
The last group of style sheet properties you’ll learn about in this chapter lets you
add borders to your Web page (Figure 6-12). Borders are a great way to separate
small pieces or entire blocks of content.

Figure 6-12:
Left: The basic border
styles look a bit old-
fashioned in today’s
sleek Web.

Right: Shrink these
borders down to one or
two pixels, and they
blend in much better.

168 Creating a Web Site: The Missing Manual

Borders

Table 6-4 lists the three key border properties.

Basic Borders
The first choice you make when you create a border is the style you want it to have.
You can use a dashed or dotted line, a groove or a ridge, or just a normal thin hair-
line (which often looks best). Here’s a rule that creates a dashed border:

p {

 border-style: dashed;

}

To make a border look respectable, you need to reduce the border width. The stan-
dard border width is almost always too clunky. You should reduce it to one or two
pixels, depending on the border style:

p {

 border-style: dashed;

 border-width: 2px;

}

You can also use properties like border-top-style and border-left-width to set differ-
ent styles, width, and colors for every side of your element. Using many properties
at once can occasionally create an unusual effect, but you usually don’t need to get
this detailed. Instead, check out the border optimization tips in the next section.

Making Better Borders
In Figure 6-12 the actual borders look fine, but they’re too close to the text inside
the boxes formed by the borderlines, as well as by the edges of the page.

To make a border stand out, consider using the border property in conjunction
with three other properties:

• background-color (page 151) applies a background color to your element.
When used in conjunction with a border, it makes your element look like a
floating box, much like a sidebar in a magazine article.

Table 6-4. Border properties

Property Description Common Values
Can Be
Inherited?

border-width Sets the thickness of the bor-
der line. Usually, you’ll want
to pare this down.

A pixel width. No

border-style Browsers have eight built-in
border styles. The border
style determines what the
border looks like.

none, dotted, dashed, solid,
double, groove, ridge, inset,
outset

No

border-color The color of the border. A color name, hexadecimal
color code, or RGB value (see
page 151).

No

Chapter 6: Style Sheets 169

Borders

• margin (page 163) lets you set the spacing between your border box and the rest
of your page. Increase the margin so that your boxes aren’t crowded up against
the rest of the page’s content or the sides of a browser window.

• padding works like the margin property, but it sets spacing inside your element,
between the edges of the box and the actual content within it. Increase the pad-
ding so that there’s a good amount of space between a border and your box
text. Figure 6-13 shows the difference between margin and padding.

Here’s an example of a paragraph that looks like a shaded box:

p {

 background-color: #FDF5E6;

 margin: 20px;

 padding: 20px;

 border-style: solid;

 border-width: 1px;

}

Figure 6-13 shows how the margin, padding, and background-color properties
change an ordinary paragraph into a shaded box.

Figure 6-13:
Usually, you can’t tell the
difference between
margins and padding,
because you can’t see
the edges of the element.
For example, a <p>
element displays a
paragraph in an invisible
box, but you won’t see its
sides. When you add a
border, this changes.

Left: These boxes have
some extra margin
spacing, but no
additional padding.

Right: The result is much
better when you increase
both the margin and
padding. For added
effect, throw in a light
background color (like
the solid border box
shown here).

The margins
around a

paragraph

The padding
inside a

paragraph

170 Creating a Web Site: The Missing Manual

Borders

Using Borders to Separate Sections
In Chapter 5 (page 119), you learned about the unremarkable <hr> element,
which gives you a quick and easy way to separate one section of text from another
with a horizontal line. With style sheets, you get several more ways to create attrac-
tive separators.

The first line of attack is to style the <hr> element itself. You can use the width
property to shrink the separator horizontally. You specify width in terms of the
percentage of a line’s full span. For example, here’s a half-width line centered on a
page:

hr {

 width: 50%;

}

You can also thicken the line by using the height property and supplying a thick-
ness in pixels. Here’s a thick line:

hr {

 height: 5px;

}

For a variety of more interesting effects, you can bring borders into the mix. For
example, here’s a rule that thickens the horizontal line, applies the double border
style, and adopts a modern light gray color:

hr {

 height: 3px;

 border-top-width: 3px;

 border-top-style: double;

 border-top-color: #D8D8D8;

}

This gives you a quick way to revitalize all your separators. However, if you aren’t
already using the <hr> element, you don’t need to start now.

Another option is to bind the horizontal line to another element, like a heading.
For example, the following <h1> element adds a grooved line at the top of a head-
ing. The margin property sets the space between the line and previous element,
while the padding sets the space between the line and the heading text:

h1 {

 margin-top: 30px;

 margin-bottom: 20px;

 padding-top: 10px;

 border-top-width: 2px;

 border-top-style: groove;

}

Figure 6-14 shows both of these examples.

Chapter 6: Style Sheets 171

Class Selectors

Class Selectors
So far, you’ve seen how formatting rules apply to every occurrence of a specific
XHTML element (except when you use an inline style). The selectors in these uni-
versal styles are known as type selectors.

Type selectors are powerful, but not that flexible. Sometimes you need a little more
flexibility to modify subsections or small portions of an XHTML document. Fortu-
nately, style sheets have the perfect solution with class selectors.

Class selectors are one of the most practical style sheet tricks around. They let you
separate your rules from your elements, and use them wherever you please. The
basic idea is that you carve your Web page content into conceptual groups, or
classes. Once you take this step, you can apply different formatting rules to each
class. The trick is to choose where you want to use each class in your Web page.
For example, you might have two identical <h1> headings, but assign them to
unique classes so you can format each heading differently.

For a more detailed example, consider the page shown in Figure 6-15. In the fol-
lowing sections, you’ll work with this example to apply class-based style rules.

Creating Class Rules
To use classes, you begin by mentally dividing your page into different kinds of
content. In this case, it makes sense to create a specialized class for book reviews
and an author byline.

Figure 6-14:
This document includes (from top to
bottom), a customized <hr> line, a
normal <hr> separator, and an <h1>
heading with a top border.

172 Creating a Web Site: The Missing Manual

Class Selectors

To create a class-specific rule, you use a two-part name, like this:

p.review {

 ...

}

The first part of the name indicates the element that the rule applies to—in this
case, the paragraph element. The second part (the part after the period) is the class
name. You can choose whatever class name you want, as long as you stick to let-
ters, digits, and dashes, and make sure that the first character is always a letter.

The point of the class name is to provide a succinct description of the type of con-
tent you want to format. In this example, the class name is review, because you’re
going to apply this style to all the paragraphs that are book reviews.

Tip: Good class names describe the function of the class rather than its appearance. For example,
WarningNote is a good class name, while BoldRedArialBox isn’t. The problem with the latter is that it
won’t make sense if you decide to change the formatting of your warning note box (for example, giving it
red lettering).

Figure 6-15:
In the average XHTML
document, you have a
sea of similar elements—
even a complex page
often boils down to just
headings and paragraph
elements. This page has
a general introduction
followed by a series of
book reviews. The
general introduction, the
author credits, and the
book summaries are all
marked up with <p>
elements, but they
shouldn’t have the same
formatting because they
represent different types
of content. A better
approach is to format the
different types of content
(title, author, and
description) in different
ways.

Chapter 6: Style Sheets 173

Class Selectors

So how does a browser know when to apply a rule that uses a class selector? It
turns out that browsers never apply class rules automatically. You have to add the
class names in your XHTML file to the element you want formatted. Here’s an
example that applies the review class to a paragraph:

<p class="review">The actual review would go right here.</p>

As long as the class name in the element matches a class name in the style sheet,
the browser applies the formatting. If the browser can’t find a style with a match-
ing class name, nothing happens.

Note: Class rules work in addition to any other rules. For example, if you create a rule for the <p> ele-
ment, that rule applies to all paragraphs, including those that are part of a specialized class. However, if
the class rule conflicts with any other rules, the class rule wins.

Here’s the complete style sheet you might use to format the book review page:

/* Set the font for the whole page. */

body {

 font-family: Georgia,serif;

}

/* Set some standard margins for paragraphs. */

p

{

 margin-top: 2px;

 margin-bottom: 6px;

}

/* Format the heading with a background color. */

h1 {

 background-color: #FDF5E6;

 padding: 20px;

 text-align: center;

}

/* Make the bylines small and italicized. */

p.byline {

 font-size: 65%;

 font-style: italic;

 border-bottom-style: outset;

 border-bottom-width: 1px;

 margin-bottom: 5px;

 margin-top: 0px;

}

174 Creating a Web Site: The Missing Manual

Class Selectors

/* Make book reviews a little smaller, and justified. */

p.review {

 font-size: 83%;

 text-align: justify;

}

/* Make the review headings blue. */

h2.review {

 font-size: 100%;

 color: blue;

 margin-bottom: 0px;

}

This style sheet includes three type selector rules. The first formats the <body> ele-
ment, thereby applying the same font to the whole Web page. The second gives
every <p> element the same margins, and the third changes the alignment and
background color of <h1> headings. Next, the style sheet defines two new para-
graph classes—one for the author byline, and one for the review text. Lastly, the
sheet creates a class for the review headings.

This example also introduces another feature—CSS comments. CSS comments
don’t look like XHTML comments. They always start with the characters /* and
end with the characters */. Comments let you document what each class repre-
sents. Without comments, it’s all too easy to forget what each style rule does in a
complicated style sheet.

And here’s the XHTML markup that uses the classes defined in the above style sheet.
(To save space, most of the text is left out, but the essential structure is there.)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <link rel="stylesheet" href="PessimistReviews1.css"

 type="text/css" />

 <title>The Pessimist</title>

</head>

<body>

 <h1>The Pessimist's Review Site</h1>

 <p>...</p>

 <p>...</p>

 <h2 class="review">How To Lose Friends and Fail in Life</h2>

 <p class="byline">Chris Chu</p>

 <p class="review">...</p>

Chapter 6: Style Sheets 175

Class Selectors

 <h2 class="review">Europe 2009: Great Places to Miss</h2>

 <p class="byline">Antonio Cervantes</p>

 <p class="review">...</p>

</body>

</html>

Figure 6-16 shows the result.

Note: Creating style sheets is an art and takes a fair bit of practice. To make the best use of them, you
need to become comfortable with class rules. Not only do class rules give you complete flexibility, they
also help you think in a more logical, structured way about your Web pages.

Saving Work with the <div> Element
It can get tedious applying the class attribute to every element you want to format in
your Web page. Fortunately, there’s a great shortcut, courtesy of the <div> element.

You may remember the <div> element from the previous chapter (page 122). It’s a
block element that lets you group together arbitrary sections of your Web page.

Figure 6-16:
Class rules let you format
different parts of a
document differently,
even if they use the same
element (like the ever-
common <p> element).

176 Creating a Web Site: The Missing Manual

Class Selectors

You can group as many elements with the <div> element as you want, including
headings, paragraphs, lists, and more.

Thanks to style sheet inheritance (page 148), if you apply a class name to a <div>
element, inheritance automatically applies the defined style to all the nested ele-
ments. That means you can change this:

<p class="review">...</p>

<p class="review">...</p>

<p class="review">...</p>

To this:

<div class="review">

 <p>...</p>

 <p>...</p>

 <p>...</p>

</div>

Essentially, when you format this <div> element, all the paragraphs inside of it
inherit that format. And although there are some style properties (like margin and
padding) that don’t support inheritance, most do. Figure 6-17 shows this example.

The <div> element is a great way to save loads of time. Web experts use it regularly.

More Generic Class Rules
You can also create a rule that has a class name but doesn’t specify a type of ele-
ment. All you need to do is leave the first part of the selector (the portion before
the period) blank. Here’s an example:

.emphasize {

 color: red;

 font-weight: bolder;

}

The great thing about a rule like this is that you can use it with any element, so
long as you use the right class name. In other words, you can use it to format para-
graphs, headings, lists, and more with bold, red lettering. The class name in this
example reflects its more general-purpose use. Instead of indicating the type of
content, it indicates the type of formatting.

Most Web designers use both element-specific class rules, and more generic class
rules that don’t specify an element. Although you could stick exclusively with
generic rules, if you know that you’ll use a certain set of formatting options only
with a specific type of element, it’s good to clearly indicate this fact with an
element-specific class rule. That way, you won’t forget the purpose of the rule
when you edit your style sheet later on.

Chapter 6: Style Sheets 177

Class Selectors

Note: There are still a few more advanced types of selectors you haven’t considered yet. For example,
you can use selectors that target certain types of elements when they appear inside another, specific ele-
ment. Selectors like these are useful when you start using your style sheet mojo to create sophisticated
page layouts, and you’ll learn about them in Chapter 9.

Creating a Style Sheet for Your Entire Web Site
Class rules aren’t just useful for separating different types of content. They’re also
handy if you want to define rules for your entire site in a single style sheet.

In a typical Web site, you’ll have pages or groups of pages you want to format dif-
ferently. For example, you might have a page with your résumé, several pages
chronicling your trip to Guadeloupe, and another group of pages that make up an
online photo gallery. Rather than create three style sheets, you can create a single
style sheet that handles everything. The trick is to use different class names for each

Figure 6-17:
In this example, the
XHTML markup wraps
each review in a <div>
element. The <div>
element applies a
background color and
some borders, separating
the reviews from the rest
of the page. Techniques
like these can help
organize dense pages
with lots of information.

178 Creating a Web Site: The Missing Manual

Class Selectors

section. In other words, you’ll create a résumé class, a trip diary class, and a photo
gallery class. Here’s a basic outline of this approach:

/* Used for the resume pages. */

p.resume { ... }

h1.resume { ... }

h2.resume { ... }

...

/* Used for the trip diary pages. */

p.trip { ... }

h1.trip { ... }

h2.trip { ... }

...

/* Used for the online photo gallery. */

p.gallery { ... }

h1.gallery { ... }

h2.gallery { ... }

...

Obviously, each page will use only a few of these rules. However, it’s often easier to
maintain your site when you keep your styles together in one place.

179

Chapter 7chapter

7

Adding Graphics

It’s safe to say that the creators of the Internet never imagined it would look the
way it does today—thick with pictures, ads, and animated graphics. They designed
a meeting place for leading academic minds; we ended up with something closer to
a Sri Lankan bazaar. But no one’s complaining, because the Web would be an
awfully drab place without graphics.

In this chapter, you’ll master the art of Web images. You’ll learn how to add
graphics to a Web page and to position them perfectly. You’ll also consider what it
takes to prepare pictures for the Web—or to find good alternatives online.

Understanding Images
To understand how images work on the Web, you need to know two things:

• They don’t reside in your XHTML files. Instead, you store each one as a separate
file.

• To display pictures on a page, you use the element in your XHTML
document.

You’ll use images throughout your site, even in spots where you might think ordi-
nary text would work just fine (see Figure 7-1).

Tip: If you can’t tell whether a piece of content on a page is a graphic, try right-clicking it. If it’s an image,
browsers like Internet Explorer and Firefox give you a Save Picture As option in a pop-up menu.

180 Creating a Web Site: The Missing Manual

Understanding
Images

The Element
Pictures appear on your Web pages courtesy of the element, which tells a
browser where to find them. For example, here’s an element that displays
the file named photo01.jpg:

Pictures are standalone elements (page 33), which means you don’t need to
include separate start and end tags in the element. Instead, you include the slash (/)
character at the end of the tag, just before the closing angle bracket.

Pictures are also inline elements (page 46), which means you put them inside other
block elements, like paragraphs:

<p></p>

When a browser reads this element, it sends out a request for the photo01.jpg
file. Once it retrieves it, the browser inserts the file into the Web page where you
put the element. If the image file is large or the Internet connection is slow,
you might actually see this two-stage process take place, because smaller page com-
ponents, like text, will appear before the image does.

Figure 7-1:
It’s easy to underestimate how
many graphics sit on an
average page. Besides just
ordinary pictures, adornments
like bullets, logos, text
headings, and colorful borders
are most likely graphics.

Advertisement
banners are

pictures
Logos are
pictures

The headline and article
text isn't a picture, but these

green headings are (including
the white text inside them)

These links look like
text, but they're

individual pictures

Chapter 7: Adding Graphics 181

Understanding
Images

Tip: You’ll usually want to organize your site’s many files by putting images in a subfolder of the folder
that holds your Web pages. You’ll learn how to do this in Chapter 8.

Although it may seem surprising, the element is the only piece of XHTML you
need to display a picture. But to get the results you want, you need to understand a
few more issues, including how to use alternate text, modify the size of your images,
choose a file format, and align your images with other content on a page.

Alternate Text
Although a browser can display an element as long as it has a src attribute,
the rules of XHTML demand a little more. Technically, you also need to provide
an alt attribute, which represents the alternate text a browser displays if it can’t dis-
play the image itself. Here’s an example:

<img src="photo01.jpg"

 alt="There's no picture, so all you get is this alternate text." />

Alternate text proves useful not only in the above circumstance, but in several
other cases as well, like when:

• A browser doesn’t support images (this is understandably rare these days).

• A Web visitor switches off his browser’s ability to display pictures to save time
(this isn’t terribly common today, either).

• A browser requests a picture, but can’t find it. (Perhaps you forgot to copy it to
your Web server?)

• The visitor is viewing-impaired and uses a screen-reading program (a program
that “speaks” text, including the words in an alt tag).

• A search engine (like Google) analyzes a page and all its content so it can index
the content in a search catalog.

The last two reasons are the most important. Web experts always use meaningful
text when they write alt descriptions to ensure that screen readers and search
engines interpret the corresponding pictures correctly.

These days, many sites use alternate text for a completely different purpose—as a
pop-up message that appears when you move your mouse over a picture (see
Figure 7-2). The message might caption the picture rather than describe it, or it
might be a humorous remark.

This behavior is a little controversial, because it defeats the true purpose of alter-
nate text. If you want non-descriptive pop-up text like that shown in Figure 7-2,
there’s a better solution: the title attribute. After all, XHTML’s creators designed
the title attribute exclusively for this purpose. Here’s an example:

<img src="bullhero.jpg" alt="A flying bull-headed superhero."

 title="A flying bull-headed superhero." />

182 Creating a Web Site: The Missing Manual

Understanding
Images

If you specify a title attribute, browsers use it as the pop-up text. But if you don’t
specify one, different browsers react differently. Internet Explorer uses the alt text
instead. Firefox uses the correct approach, and doesn’t show any pop-up text at all.

Picture Size
When you start thinking about the size of your images, remember that the word
size has two possible meanings: it can refer to the dimensions of the picture (how
much screen space it takes up on a Web page), or it can signify the picture’s file
size (the number of bytes required to store it). To Web page creators, both mea-
sures are important.

Picture dimensions are noteworthy because they determine how much screen real
estate an image occupies. Web graphics are measured in units called pixels. A pixel
represents one tiny dot on a PC screen (see the discussion on page 232). Fixed
units like inches and centimeters aren’t useful in the Web world because you never
know how large your visitor’s monitor is, and therefore how many pixels it can
cram in. (Page 230 has a detailed discussion of screen size and how to design your
pages to satisfy the largest number of potential viewers.)

File size is also important because it determines how long it takes to send a picture
over the Internet to a browser. Large pictures can slow down a Web site signifi-
cantly, especially if you have multiple pictures on a page and your visitor is strug-
gling with a slow Internet connection. If you’re not careful, impatient people
might give up and go somewhere else. (To understand file size and how you can
control it, you need to understand the different image file formats Web browsers
use, a topic discussed in the next section.)

Figure 7-2:
Left: For this
element to work, you
have to put the file it
points to in the same
folder as the Web page.
Otherwise, you’ll see the
dreaded broken image
link icon.

Middle: The alternate
text helps a bit—use it to
explain what your visitor
should have seen.

Right: In many browsers,
if you don’t specify a
title, the alternate text
becomes pop-up text if
the picture appears,
which can be confusing.

Chapter 7: Adding Graphics 183

Understanding
Images

Interestingly, the element lets you resize a picture through its optional
height and width attributes. Consider this element:

<img src="photo01.jpg" alt="An explicitly sized picture" width="100"

height="150" />

In this line of code, you give the picture a width of 100 pixels and a height of 150 pix-
els. If this doesn’t match the real dimensions of your source picture, browsers stretch
and otherwise mangle the image until it fits the size you set (see Figure 7-3).

Note: Approach height and width attributes with extreme caution. Sometimes, novice Web authors use
them to make thumbnails, small versions of large pictures. But using the height and width attributes to
scale down a large picture comes with a performance penalty—namely, the browser still needs to down-
load the original, larger image, even though it displays it at a smaller size. On the other hand, if you create
thumbnails in a graphics editor like Photoshop, you can save them with smaller file sizes, ensuring that
your pages download much speedier.

Many Web page designers leave out image height and width attributes. However,
experienced Web developers sometimes add them using the same dimensions as the
actual picture. As odd as this sounds, there are a couple of good reasons to do so.

Figure 7-3:
Never use the height and
width attributes to resize a
picture, because the results
are almost always
unsatisfying. Enlarged pictures
are jagged, shrunken pictures
are blurry, and if you change
the ratio of height to width (as
with the top-right and bottom
images shown here), browsers
squash pictures out of their
normal proportions.

184 Creating a Web Site: The Missing Manual

Understanding
Images

First, when you include image size attributes, browsers know how large a picture is
and can start laying out a page even as the graphic downloads (see Figure 7-2, left).
On the other hand, if you don’t include the height and width attributes, the
browser won’t know the dimensions of the picture until it’s fully downloaded, at
which point it has to rearrange the content. This is potentially distracting if your
visitors have slow connections and they’ve already started reading the page.

The second reason to use size attributes is because they control the size of the pic-
ture box. If a browser can’t download an unsized image for some reason, it dis-
plays a picture box just big enough to show a tiny error icon and any alternate text.
In a complex Web page, that might mess up the alignment of other parts of your
page.

So should you use the height and width attributes? It’s up to you, but they’re prob-
ably more trouble than they’re worth for the average Web site. If you use them,
you need to make sure to update them if you change the size of your picture,
which quickly gets tedious.

Note: Many XHTML editors, like Expression Web, automatically add the height and width attributes when
you insert a picture.

File Formats for Graphics
Browsers can’t display every type of image. In fact, they’re limited to just a few
image formats, including:

• GIF (pronounced “jif” or “gif”) format is suitable for graphics with a very small
number of colors (like simple logos or clip art). It gives terrible results if you
use it to display photos.

• JPEG (pronounced “jay-peg”) format is suitable for photos that can tolerate
some loss of quality. (As you’ll learn in a moment, the JPEG format shrinks
down, or compresses, an image’s file size so that it downloads more quickly.)
JPEG doesn’t work well if your picture contains text or line art.

• PNG (pronounced “ping”) format is suitable for all kinds of images, but old
browsers don’t support it, and it doesn’t always compress as well as JPEG.

All of these formats are known as bitmap or raster graphics, because they represent
pictures as a grid of dots. Browsers don’t support vector graphics, which represent
pictures as mathematically rendered shapes.

Raster graphics generally have much larger file sizes than vector graphics. For that
reason, Web designers spend a lot of time worrying about compression—reducing
the amount of disk space an image takes up. Web page graphics use two types of
compression: lossy, which compresses files to a greater degree than its alternative
but also reduces image quality; and lossless, which preserves image quality but
doesn’t compress as much. For full details, see the box on page 187. Table 7-1 gives
you a quick overview of the different image formats.

Chapter 7: Adding Graphics 185

Understanding
Images

Tip: Some browsers give you a few more options, but you’re better off steering away from them to
ensure widest browser compatibility. For example, Internet Explorer supports bitmaps (image files that end
with the .bmp file name extension). Don’t ever use them—not only will they confuse other browsers,
they’re also ridiculously large because they don’t support compression.

You’ll probably end up using different file formats throughout your site, depend-
ing on what kind of image you want to display (photo, illustration, graphical text,
and so on). Each format occupies its own niche (see Figure 7-4). The following
sections help you decide when to use each format.

Table 7-1. Image file formats for the Web

Format
Type of
Compression Maximum Colors Best Suited For:

GIF Lossless 8-bit color (256 colors) Logos, graphical text, and
diagrams with line art

JPEG Lossy 24-bit (16.7 million colors) Photos

PNG-8 Lossless 8-bit color (256 colors) Rarely used, since it’s similar
to GIF but with less browser
support

PNG-24 Lossless 24-bit (16.7 million colors) Images that would normally
be GIF files, but need more
colors

Figure 7-4:
JPEGs and GIFs are the two most commonly used
image file formats on the Web. You’ll notice that GIFs
produce clearer text, while JPEGs do a much better
job of handling continuous bands of color. GIFs
simulate extra colors through dithering, a process
that mixes different colored dots to simulate a solid
color. The results are unmistakably unprofessional.
(You may not be able to see the reduced text quality
in this black-and-white screen capture, but if you
take a look at the downloadable samples for this
chapter, you’ll see the difference up close.)

186 Creating a Web Site: The Missing Manual

Understanding
Images

Compression

In Web graphics, space is a key concern. You may have tons of storage space on
your Web server, but large files take more time to send across the Internet, which
means your visitors will experience some frustrating, toe-tapping seconds before
your page appears. To make a graphics-heavy Web site run smoothly—and these
days, what Web site doesn’t have lots of graphics?—you need to pare down the size
of your pictures.

Of course, it’s not quite that simple. JPEGs give you the best compression, but they
throw out some image detail in the process (see the box on page 187). As you com-
press a JPEG image, you introduce various problems collectively known as com-
pression artifacts. The most common artifacts are blocky regions of an image, halos
around edges, and a general blurriness. Some pictures exhibit these flaws more
than others, depending on the image’s amount of detail.

Tip: Most graphics programs let you choose how much you compress a picture, and many even let you
preview the result before you save anything.

Figure 7-5 shows the effect of compression settings on a small section of a picture
of a church.

FREQUENTLY ASKED QUESTION

Typical File Sizes for Images
How much disk space does a typical picture occupy?

There’s no single answer to this question, because it
depends on several factors, including the dimensions of the
picture, the file format you use, the amount of compression
you apply, and how well the picture responds to compres-
sion techniques. However, here are a few basic things to
keep in mind.

The file size of a typical Web site logo is vanishingly small.
Amazon’s small logo (about 150 × 50 pixels) has a file size
of a paltry 2 kilobytes (KB), less than the size of most other
site logos. Google’s signature logo banner clocks in nearly
as tiny, at 10 KB. Both are GIF files.

A picture can take up much more disk space. A small news
picture in an article on the New York Times Web site rarely
uses more than 20 KB. A typical eBayer includes a picture
of her product that’s 30 KB to 150 KB. At this size, the pic-
ture usually takes up a larger portion of your browser win-
dow. However, that’s nothing compared to the size the

picture would be if you weren’t using compression. For
example, even a low-end 1-megapixel camera can take a
raw, uncompressed picture of about 3,000 KB. In a Web
page, you might compress this to 300 KB or less by using
the JPEG file format with a lower quality level.

Of course, the important number is how long it takes a Web
visitor to download a page that has a picture in it. Obvi-
ously, this depends on the speed of the visitor’s Internet
connection—a broadband connection won’t blink while
grabbing a huge graphic, while someone with a dial-up
modem can only get about 5 KB each second, meaning it
takes about 20 seconds to see all of a 100 KB eBay photo.
In Internet time, 20 seconds is a lifetime.

The best advice for keeping your pictures small is to crop
them to the right dimensions, use the right image format,
and try lowering the quality level of JPEGs to get better
compression.

Chapter 7: Adding Graphics 187

Understanding
Images

Figure 7-5:
Compression can work—
up to a point. In this
example, cutting the
quality factor from 100
percent to 75 percent
shaves the file size of the
picture to one-third
without compromising its
appearance. Reducing the
quality further doesn’t
save much more disk
space, and introduces a
raft of compression
artifacts. Note that the file
sizes listed are for the
whole picture, which is
much bigger than the
small portion shown here.

UP TO SPEED

How Compression Works in JPEG, GIF, and PNG Files
All three of the common Web image formats use compres-
sion to shrink picture information. However, the type of
compression you get with each format differs significantly.

The GIF and PNG formats support lossless compression,
which means there’s no loss of any information from your
picture. Lossless compression uses a variety of techniques
to perform its space-shrinking magic—for example, it might
find a repeating pattern in the file, and replace each occur-
rence of it with a short abbreviation. When the browser
decompresses your file, it gets all the original image data
back.

The JPEG format uses lossy compression, which means that
some information about your picture is discarded, or lost.
As a result, your picture’s quality diminishes, and there’s no
way to get it back to its original tip-top shape. However, the
JPEG format is crafty, and it tries to trick your eye by dis-
carding information that doesn’t harm the picture that
much. For example, it might convert slightly different colors
to the same color, or replace fine details with smoothed-out
blobs, because the human eye isn’t that sensitive to small
changes in color and shape. Usually, the overall result is a
picture that looks softer and (depending how much com-
pression you use) more blurry. On the other hand, the size-
shrinking results you get with lossy compression are more
dramatic than those offered by lossless compression.

100% Quality, 984 KB 75% Quality, 298 KB

50% Quality, 247 KB 15% Quality, 231 KB

188 Creating a Web Site: The Missing Manual

Understanding
Images

Choosing the right image format

It’s important to learn which format to use for a given task. To help you decide,
walk through the following series of questions.

Is your picture a hefty photo or does it have fine gradations of color?

YES: JPEG is the best choice for cutting large, finely detailed pictures down to
size. Depending on the graphics program you use, you may be able to choose
how much compression you want to apply.

Does your picture have sharp edges, text, or does it contain clip art images? Does it use
256 colors or less?

YES: GIF is your format—it compresses pictures without creating blurred edges
around text and shapes (the way JPEG files often do). However, keep a watch
on your file size, because GIFs don’t compress as well as JPEGs.

Does your picture have sharp edges and need more than 256 colors?

YES: PNG is the best answer here. It supports full color, gives you lossless compres-
sion, and you don’t lose any detail. However, there are two caveats. First, old brows-
ers don’t support some PNG features (like semi-transparency). Second, PNG files
can sometimes end up being bigger than they should be. The problem is that even
though PNG offers good compression, not all graphics programs take advantage of
it. So check your file sizes to make sure you aren’t getting a raw deal.

Does your picture include a transparent area?

YES: Use GIF. Although PNG supports transparency (and even goes further,
with support for partially transparent areas), support for this feature is sketchy
in many browsers. But think twice before you use transparency—the next sec-
tion explains the problems you’ll face.

Putting Pictures on Colored Backgrounds
Graphics editing programs always store image files as rectangles, even when the
image itself isn’t rectangular. For example, if you create a smiley face graphic, your
editing program saves that round illustration on a white, rectangular background.

If your page background is white as well, this doesn’t pose a problem because the image
background blends in with the rest of your page. But if your page has a different back-
ground color (page 150), you’ll run into the graphical clunkiness shown in Figure 7-6.

Web designers came up with two solutions to this problem. One nifty idea is to use
transparency, a feature that GIF graphics support (as do PNG graphics, but not all
browsers support PNG transparency). The basic idea is that your graphic contains
transparent pixels—pixels that don’t have any color at all. When a browser comes
across these, it doesn’t paint anything. Instead, it lets the background of the page
show through. To make part of an image see-through, you define a transparent
color using your graphics program. In the example above, for instance, you’d set
the white background of your smiley face graphic as the transparent color.

Chapter 7: Adding Graphics 189

Understanding
Images

UP TO SPEED

Graphics Programs
It’s up to you to choose the format for your image files.
Most good graphics programs (like Macromedia Fireworks
and Adobe Photoshop) save your documents in a special-
ized file format that lets you perform advanced editing pro-
cedures. Photoshop, for example, saves files in the .psd
format. When you’re ready to put your picture on a Web
page, you save a copy of the .psd file in a different format,
one specially designed for the Web, like JPEG or GIF. Usu-
ally, you do so by choosing File ➝ Save As from the pro-
gram’s menu (although sometimes it’s something a little
different, like File ➝ Export or File ➝ Save For Web).

As a rule of thumb, you always need at least two versions
of every picture you create—a copy in the original format
your graphics program uses, and a copy in the GIF, JPEG,
or PNG format you use on your Web site. You need to keep
the original file so you can make changes whenever neces-
sary, and to make sure the image quality for future versions
of the picture are as high as possible.

Once you choose your Web format, your graphics program
gives you a number of other options that let you customize
details like the compression level. At higher compression
levels, your image file is smaller but of lower quality. Some
really simple image editors (like the Paint program that
ships with Windows) don’t let you tweak these settings, so
you’re stuck with the program’s built-in settings.

Graphics programs usually come in two basic flavors—
image editors, which let you retouch pictures and apply
funky effects to graphics, and drawing programs, which let
you create your own illustrations by assembling shapes and
text. Adobe Photoshop (and its lower-priced, less powerful
sibling, Photoshop Elements), Corel PHOTO-PAINT, and
Corel Paint Shop Pro are well-known image editors. Adobe
Illustrator, CorelDRAW, and Macromedia FreeHand are
popular drawing programs. Which type of tool you use
depends on what you’re trying to do. If you’re editing pic-
tures of the office party to cut out an embarrassing
moment, an image editor makes sense. If you’re creating a
logo for your newly launched cookie company, you need a
drawing program.

If you don’t have the luxury of getting a professional graph-
ics program, you can hunt for one on a shareware site like
www.download.com. Two popular free image editors are
GIMP (www.gimp.org), which supports all the major oper-
ating systems, and Paint.NET (www.getpaint.net), which is
Windows only.

Figure 7-6:
Left: With a non-white
background, the white
box around your picture
is glaringly obvious.

Right: But when you
place the picture on a
page with a white
background, the smiley
face blends right in.

http://www.download.com
http://www.gimp.org
http://www.getpaint.net

190 Creating a Web Site: The Missing Manual

Images and Styles

Although transparency seems like a handy way to make sure your image always has
the correct background, in practice, it rarely looks good. The problem you usually
see is a jagged edge where the colored pixels of your picture end and the Web page
background begins (see Figure 7-7).

The best solution is to use the correct background color when you create your Web
graphic. In other words, when you draw your smiley-face image, give it the same
background color as your Web page. Your graphics program can then perform
anti-aliasing, a technology that smoothes an image’s jagged edges to make them
look nice. That way, the image edges blend in well with the background, and when
you display the image on your Web page, it fits right in.

The only limitation with this approach is its lack of flexibility. If you change your
Web page color, you need to edit all your graphics. Sadly, this is the price of creat-
ing polished Web graphics.

Images and Styles
The element supports a few optional attributes you can use to control an
image’s alignment and borders. But in the modern world, these attributes are
obsolete, and you won’t use them in this book. Instead, you’ll learn the best way to
position images—with style sheet rules.

The following sections describe your image-alignment options, and help you prac-
tice some of the style sheet smarts you picked up last chapter.

Figure 7-7:
The picture at the bottom of this page uses
transparency, but the result—a jagged edge around the
smiley face—is less than stellar. To smooth this edge,
graphics programs use a sophisticated technique called
anti-aliasing, which blends the picture color with the
background color. Web browsers can’t perform this feat,
so the edges they make aren’t nearly as smooth.

Chapter 7: Adding Graphics 191

Images and Styles

Inline Images in Text
If you don’t take any extra steps, a browser inserts every image right into the flow
of XHTML text. It lines up the bottom of a graphic with the baseline of the text
that surrounds it, as shown in Figure 7-8. (The baseline is the imaginary line on
which a line of text sits.)

You can change the vertical alignment of text using the vertical-align property.
Specify a value of top, middle, or bottom, depending on whether you want to line
the picture up with the top, middle, or bottom of the line of text.

Here’s an example of an inline style that uses the vertical-align property to line a
picture up with the top of the line of text.

This technique is worthwhile if you’re trying to line up a very small picture, like a
fancy bullet. But it doesn’t work very well with large images. That’s because no
matter which vertical-align option you choose, only one line of text can appear
alongside the picture (as you can see in Figure 7-8). If you want to create floating
pictures with wrapped text, see page 192.

Borders
In Chapter 6, you considered style properties that let you add and modify borders
around boxes of text. It should come as no surprise that you can use these borders
just as easily around images.

Figure 7-8:
Usually, you don’t want a
picture inside an ordinary
line of text (unless it’s a
very small emoticon, like
the kind of symbols used
in instant message
programs). You can use
paragraphs, line breaks,
or tables to do a better
job of separating images
from your text.

192 Creating a Web Site: The Missing Manual

Images and Styles

For example, here’s a style that applies a thin, grooved border to all sides of an
image:

img.BorderedImage {

 border-style: groove;

 border-width: 3px;

}

As with all style sheet rules, you need to place the rule in an internal style sheet in
the current Web page or in an external style sheet that your page uses (see page 138
for a discussion of the difference).

Notice that you give the style in this example a class name (BorderedImage). That’s
because you don’t want your browser to apply the style to every picture. Instead,
you want to choose when to apply it using the class attribute:

Figure 7-9 shows the basic border styles. Remember, you can change the thickness
of any border to get a very different look.

Wrapping Text Around an Image
Using inline images is the simplest way to add pictures to your pages, but they have
a downside: they pop up in the middle of text. To prevent this from happening,
you can separate your pictures and text using paragraph elements (<p>), line

Figure 7-9:
This example shows several inline images
in a row, separated from one another
with a single space. Each image in this
example is the same, but sports a
different border. The browser fits all the
pictures it can on the same line, but when
it reaches the right edge of the browser
window, it wraps to the next line. If you
resize the window, you’ll see the
arrangement of pictures change.

Chapter 7: Adding Graphics 193

Images and Styles

breaks (
), horizontal rules (<hr>), and other divisions. You might decide,
for example, to put a picture between two paragraphs of text, like this:

<p>This paragraph is before the picture.</p>

<p></p>

<p>This paragraph is after the picture.</p>

Inline images are locked into place. They never move anywhere you don’t expect.

Sometimes, however, you want a different effect. Instead of separating images and
text, you want to put them alongside each other. For example, you may want your
text to wrap around one side of a picture.

Images that have text wrapped on one side or the other are called floating images,
because they float next to an expanse of text (see Figure 7-10). You create floating
images using a CSS property named float. You set the value of the float property to
either left or right, which lines up the image on either the left or right edge of the
text.

img.FloatLeft {

 float: left;

}

Notice that this example uses a class name. You probably don’t want every image
on your Web page to float, so it’s always a good idea to use a class name. Here’s an
 using the above class, followed by some text:

<p>

 If you place a floating image at the beginning of a paragraph,

 it floats in the top-left corner, with the text wrapped along

 the right edge.

</p>

When you set the float attribute, it makes sense to adjust the image’s margin set-
tings at the same time, so you have a little breathing room between your image and
the surrounding text:

img.FloatLeft {

 float: left;

 margin: 10px;

}

Figure 7-10 shows several floating images.

Tip: To get floating text to work the way you want, always put the element just before the text that
should wrap around the image.

194 Creating a Web Site: The Missing Manual

Images and Styles

Wrapping text can get a little tricky, because the results you get depend on the
width of the browser window. For example, you might think your text is long
enough to wrap around a graphic, but in a wide window that might take up just a
few short lines, letting the rest of the page’s content bump into your floating
graphic, which isn’t what you want (see Figure 7-11). To prevent this from hap-
pening, you can put your images in different containers, which is like having dif-
ferent cells in a table. Alternatively, you can manually stop your browser from
wrapping text at any point using the clear property in a line break (
) element:

<br style="clear: both;" />

Place this line at the end of the wrapped paragraph, like so:

<p>

 Here is a paragraph with a floating image.

 <br style="clear: both;" />

</p>

Figure 7-10:
Remember, all image files are really rectangles that include the surrounding
white space (see Figure 7-6). As a result, the browser wraps text around the
borders of these invisible squares.

Chapter 7: Adding Graphics 195

Images and Styles

<p>

 This should be a separate paragraph with another

 floating picture.

</p>

The clear property in a
 element tells your browser to stop wrapping text,
ensuring that the next paragraph starts after the floating picture (see Figure 7-11).

Based on these examples, you might think that the float property sends a picture to
the left or right side of a page, but that’s not exactly what happens. Remember, in
CSS, XHTML treats each element on a page as a container. When you create a
floating image, the image actually goes to the left or right side of its container. In
the previous examples, this means that the image goes to the left or right side of a
paragraph, because the containing element is a paragraph.

In the example above, the paragraph took up the full width of the page. But that
doesn’t have to be the case. You can use style rules to put a paragraph into a pad-
ded note box to get a completely different effect.

To try this out, you need to wrap the image and the paragraph in a <div> element,
like this:

<div class="Box">

 <p>

 But Wait! A tip box can interrupt the discussion

 to let you know just how good mixed veggies can taste.

 Of course, this tip box is really just an ordinary paragraph with

 the right border and margin style properties.

 </p>

</div>

Figure 7-11:
Left: Without the clear
property, you’re in
danger of having your
floating images run into
each other if a browser
window is wider than
you expect.

Right: The clear property
lets you turn off
wrapping at a specific
point in your document.
However, you’ll still end
up with some extra
empty space.

196 Creating a Web Site: The Missing Manual

Images and Styles

 You can then apply a fancy border to the <div> element through a style rule:

div.Box {

 margin-top: 20px;

 margin-bottom: 10px;

 margin-left: 70px;

 margin-right: 70px;

 padding: 5px;

 border-style: dotted;

 border-width: 2px

}

Figure 7-12 shows the result.

Adding Captions
Another nice touch is to caption your pictures above or below an image. You can do
this easily with inline images—just put a line of text immediately above or after the
picture, separated by a line break. It’s not so easy with a floating image, however. In
this case, you need to have your image and the caption float in the same way.

Figure 7-12:
With crafty use of styles,
you can lay out your
pictures with the same
flexibility you get when
using styles to manipulate
text.

Chapter 7: Adding Graphics 197

Images and Styles

As it happens, the solution is quite easy. You simply take the FloatLeft style rule
shown earlier and change the name from img.FloatLeft to .FloatLeft so you can use
the rule with any element:

.FloatLeft {

 float: left;

 margin: 10px;

}

Next, you wrap the element and your text into a element. You can
then make the entire element float, by using the FloatLeft style rule:

 <i>The bark of a plane tree</i>

Figure 7-13 shows the result.

Figure 7-13:
Use styles to create captions for floating pictures.

198 Creating a Web Site: The Missing Manual

Images and Styles

Note: The reason you use a element in this example instead of a <div> element is because you
can put a element inside other block elements, like a paragraph. In other words, by using a
element, you can easily put your floating picture-and-caption container inside one of your paragraphs.

Background Images
CSS makes it possible to use an image as a page background, which is a particu-
larly handy way to create “themed” Web sites. For example, you could use light
parchment paper as a background if you’re developing a literary site. A Buffy fan
site might put a dark cemetery image to good use. Some people find the effect a lit-
tle distracting, but it’s worth considering if you want to add a really dramatic touch
and you can restrain yourself from going overboard.

Tip: Background images can make your Web site seem tacky. Be wary of using them for a résumé page
or a professional business site. On the other hand, if you want to go a little kitschy, have fun!

Web designers almost always choose to tile background images, which means the
browser copies a small picture over and over again until the image fills the win-
dow (see Figure 7-14). You can’t use a single image to fill a browser window
because you have no way of knowing how wide and tall to make it, given people’s
variable browser settings. Even if you did have visitors’ exact screen measure-
ments, you’d need to create an image so ridiculously large that it would take an
impractically long time to download.

To create a tiled background, use the background-image style property. Your
first step is to apply this property to the <body> element, so that you tile the
whole page. Next, you need to provide the file name of the image using the form
url('filename'), as shown here:

body {

 background-image: url('stones.jpg');

}

This takes the image stones.jpg and tiles it across a page to create your background.

Keep these points in mind when you create a tiled background:

• Make your background light, so the text displayed on top of it remains legible.
(If you really have to go dark, you can use white, bold text so that it stands out.
But don’t do this unless you’re creating a Web site for a trendy new band or
you’re opening a gothic clothing store.)

• Set the page’s background color to match the image. For example, if you have a
dark background picture with white text, make the background color black.
That way, if a browser can’t download the background image, visitors can still
see the text.

• Use small tiles to reduce the amount of time your visitors need to wait before
they can see the page.

Chapter 7: Adding Graphics 199

Images and Styles

• If your tiled image has an irregular pattern, make sure the edges line up. The left
edge should continue the right edge, and the top edge should continue the bot-
tom edge. Otherwise, when the browser tiles your image, you’ll see lines where
it stitches the tiles together.

Tip: The Web is full of common background images, like stars, blue skies and clouds, fabric and stone
textures, fires, dizzying geometric patterns, borders, and much more. You can find these by searching
Google for “backgrounds,” or head straight to top sites like www.grsites.com/textures (with over 5,000
backgrounds indexed by dominant color), www.backgroundcity.com, and www.backgroundsarchive.com.

Background “watermarks”

Most Web sites tile a picture to create a background image, but that’s not your
only option. You can also take a single image and place it at a specific position on
your page. Think, for example, of a spy site whose background image faintly reads
“Top Secret and Confidential.”

Figure 7-14:
Left: A small tile graphic with a stony pattern.

Right: Using style sheets, you can tile this graphic
over the whole page. In a good tiled image, the
edges line up to create the illusion of a seamless
larger picture.

http://www.grsites.com/textures
http://www.backgroundcity.com
http://www.backgroundsarchive.com

200 Creating a Web Site: The Missing Manual

Images and Styles

An inconspicuous single-image background like this is called a watermark. (The
name stems from the process used to place a translucent logo on paper saturated
with water.) To make a good watermark, use a background picture that’s pale and
unobtrusive.

To add a watermark to your page, use the same background-image property you
learned about above. But you need to add a few more style properties to the mix
(see Table 7-2). First, you have to use the background-repeat property to turn off
tiling. At the same time, it makes sense to use the background-position property to
align your picture to a side of the page or to its center.

Here’s an example that places a picture in the center of a Web page:

body {

 background-image: url('smiley.jpg');

 background-repeat: no-repeat;

 background-position: center;

}

Note: The center of your document isn’t necessarily the center of your browser window. If you position
your image in the center of a long Web page, you won’t see it until you scroll down.

Table 7-2. Background image properties

Property Description Common Values
Can Be
Inherited

background-image The image file you want to
use as your page back-
ground.

A URL pointing to the
image file, as in
url('mypig. jpg').

Noa

a Background pictures aren’t inherited (see page 148). However, if you don’t explicitly assign a back-
ground color to an element, it’s given a transparent background, which means the background of the
containing element will show through.

background-repeat Whether or not you tile the
image to fill the page; you
can turn off tiling altogether,
or turn it off in one dimen-
sion (so that images tile ver-
tically but not horizontally,
for example).

repeat, repeat-x,
repeat-y, no-repeat

No

background-position Where you want to place the
image. Use this only if you
aren’t tiling the image.

top left, top center, top
right, center left,
center, center right,
bottom left,
bottom center,
bottom right

No

background-
attachment

Whether you want to fix the
image (or tiles) in place
when the page is scrolled.

scroll, fixed No

Chapter 7: Adding Graphics 201

Techniques with
Graphics

You can also turn off an image’s ability to scroll along with the rest of a page to get
the rather odd effect of an image that’s fixed in place (see Figure 7-15). For exam-
ple, use this style to create a background image that sits squarely in the center of a
window:

body {

 background-image: url('smiley.gif');

 background-repeat: no-repeat;

 background-position: center;

 background-attachment: fixed;

}

Techniques with Graphics
Now that you’ve mastered the element, it’s time to learn a few tricks of the
trade. In the following sections, you’ll tour three common techniques that Web
developers everywhere use to create more polished pages.

Graphical Text
In Chapter 6, you learned that using exotic fonts on Web pages can be risky, since
you don’t know which typefaces your visitors has. Although there’s no way to get
around this problem when you’ve got large blocks of text, enterprising Web artistes
commonly put text for headings, buttons, and logos into picture files. That way,
they get complete control of what the text looks like.

Figure 7-15:
This staring smiley face
remains perpetually in the
center of the window, even
when you scroll up or down.
It’s a little creepy.

202 Creating a Web Site: The Missing Manual

Techniques with
Graphics

Here’s a high-level look at what you do to create small pictures with text:

1. Fire up your favorite image editor or drawing program.

Figure 7-16 shows an example with Adobe Illustrator.

2. Use a background color that matches your Web page.

In some programs, the easiest way to fill a section with color is to draw a shape
(like a rectangle), and then give it the proper fill color.

3. Choose your font, and then type the text over the background color.

4. Cut your image down to size.

Ideally, you want to make the image as small as possible without clipping off
any text.

Figure 7-16:
Top: The final touches being made to a single-word
heading in Adobe Illustrator.

Bottom: The final picture as it appears on a Web page.
The process of creating graphical text can be tedious,
especially if you have a lot of headings to generate. But
it’s the only reliable way to bring funky fonts to the Web.

Chapter 7: Adding Graphics 203

Techniques with
Graphics

5. Save your picture.

GIF is the best format choice, but you’ll need PNG if the image has more than
256 colors. Don’t use JPEG, or your text will have blurred edges.

Note: Web designers often turn graphical text into clickable buttons that take you from one page to
another. You’ll learn more about links in Chapter 8, and you’ll find out how to make fancy graphical but-
tons in Chapter 15.

Backgrounds for Other Elements
You don’t need to apply a background to a whole page. Instead, you can bind a
background to a single paragraph or, more usefully, to a <div> element, creating
the same effect as a sidebar in a magazine. Usually, you want to add a border
around this element to separate it from the rest of your Web page. You might also
need to change the color of the foreground text so it’s legible (for example, white
shows up better than black on dark backgrounds).

Here’s an example of a background image you can use with any container element:

.pie {

 background-image: url('pie.jpg');

 margin-top: 20px;

 margin-bottom: 10px;

 margin-left: 70px;

 margin-right: 70px;

 padding: 10px;

 border-style: double;

 border-width: 3px;

 color: white;

 background-color: black;

 font-size: large;

 font-weight: bold;

 font-family: Verdana,sans-serif;

}

This style specifies a background image, sets the margins and borders, and chooses
background and foreground colors to match.

Here’s a <div> element that uses this style:

<div class="pie">

 <p>Hungry for some pie?</p>

</div>

Figure 7-17 shows the result.

204 Creating a Web Site: The Missing Manual

Techniques with
Graphics

Graphical Bullets in a List
In Chapter 5, you learned how to use the element to create a bulleted list.
However, you were limited to a small set of predefined bullet styles. If you look
around the Web, you’ll see more interesting examples of bulleted lists, including
some that use tiny pictures as custom bullets.

You can add custom bullets by hand using the element, but there’s an eas-
ier option. You can use the list-style-image property to set a bullet image. Here’s an
example that uses a picture named 3Dball.gif:

ul {

 list-style-image: url('3Dball.gif');

}

Figure 7-17:
Top: Using background images in small
boxes is surprisingly slick.

Bottom: A particularly neat feature is
the way the picture grows when you
resize the page, thanks to tiling.

Chapter 7: Adding Graphics 205

Finding Free Art

Once you create this style rule and put it in your style sheet, your browser auto-
matically applies it to an ordinary bulleted list like this one:

 Are hard to miss

 Help compensate for feelings of inadequacy

 Look so darned cool

 Remind people of boring PowerPoint presentations

Figure 7-18 shows the result.

Finding Free Art
The Web is awash in graphics. In fact, finding a Web page that isn’t chock full of
images is about as unusual as spotting Bill Gates in a dollar store. But how do you
generate all the pictures you need for a graphically rich site? Do you really need to
spend hours in a drawing program fine-tuning every picture you want? The answer
depends on exactly what type of pictures you need, of course, but you’ll be happy
to hear that the Web is a great resource for ready-to-use pictures.

It’s not hard to locate pictures on the Web. In fact, you can even use a handy Goo-
gle tool to search for graphics on a specific subject (type http://images.google.com
into your browser and search away). Unfortunately, finding an image usually isn’t
good enough. To use it without worrying about a nefarious lawyer tracking you
down, you also need the rights to use the picture. If you get lucky, a Web site
owner might grant you permission to use a graphic after you send a quick email.
But that’s the exception rather than the rule.

Figure 7-18:
Graphical bullets range from simple
arrows and check boxes to
extravagant three-dimensional
spotted balls, like those shown here.

http://images.google.com

206 Creating a Web Site: The Missing Manual

Finding Free Art

Fortunately, photo enthusiasts have set up community sites where they post their
pictures for the world to see—and on some of these sites, you can search for and
reuse anything you want, for free. One of the most remarkable is Stock.XCHNG
(pronounced “stock exchange,” after stock photography, the name for the vast cata-
logues of reusable pictures that graphic designers collect). To visit Stock.XCHNG,
go to http://sxc.hu. Figure 7-19 shows a Stock.XCHNG search in progress.

If you can’t find the picture you want at Stock.XCHNG, you may never find it—at
least not without going to a commercial site, like iStockPhoto (www.istockphoto.
com), Fotolia (www.fotolia.com), or Dreamstime (www.dreamstime.com), all of
which charge a few dollars for royalty-free images. But if you’d like to look at some
other no-pay alternatives, check out the article on finding free photographs at
www.masternewmedia.org/where_to_find_free_images_and_visuals.

Tip: A lot of so-called “free” clip art sites are choked with ads and subscription demands. However, if you
have a copy of Microsoft Office, you can download free clip art straight from the Office Online Web site.
You’ll need to open this clip art with a graphics program, and then save it in a Web image format (like
JPEG or GIF), but it’s a small price to pay for access to a large, free clip art connection. Head to http://
office.microsoft.com/clipart to start searching.

Figure 7-19:
Stock.XCHNG offers a
searchable catalogue of
well over 100,000 photos
on every subject. Every
day, eager photo
enthusiasts upload their
sometimes-striking work,
including some of the
images used in this
book. In this figure, a
search for “paris food”
results in some
interesting culinary
treats.

Type your
search

keywords

Here's a
thumbnail
preview of

the full
picture

Click here to
see other

pictures by this
photographer

This is the size
of the full
picture in

pixels. You'll
probably want
to shrink it in

a drawing
program.

You can also
browse

by category

Sort by number of
downloads or user rating
to find popular pictures

http://sxc.hu
http://www.istockphoto.com
http://www.istockphoto.com
http://www.fotolia.com
http://www.dreamstime.com
http://www.masternewmedia.org/where_to_find_free_images_and_visuals
http://office.microsoft.com/clipart
http://office.microsoft.com/clipart

207

Chapter 8chapter

8

Linking Pages

So far in this book, you’ve worked on individual Web pages. While creating a sin-
gle page is a crucial first step in building a Web site, sooner or later you’ll want to
wire several pages together so a Web trekker can easily jump from one to the next.
After all, linking is what the Web’s all about.

It’s astoundingly easy to create links—officially called hyperlinks—between pages.
In fact, all it takes is a single new element: the anchor element. Once you master
this bit of XHTML lingo, you’re ready to start organizing your pages into separate
folders and transforming your humble collection of standalone documents into a
full-fledged site.

Understanding the Anchor
In XHTML, you use the anchor element, <a>, to create a link. When a visitor
clicks that link, the browser loads another page.

The anchor element is a straightforward container element. It looks like this:

<a>...

You put the content that a visitor clicks inside the anchor element:

<a>Click Me

The problem with the above link is that it doesn’t point anywhere. To turn it into a
fully functioning link, you need to supply the URL of the destination page using an

208 Creating a Web Site: The Missing Manual

Understanding the
Anchor

href attribute (which stands for hypertext reference). For example, if you want a link
to take a reader to a page named LinkedPage.htm, you create this link:

Click Me

For this link to work, the LinkedPage.htm file has to reside in the same folder as the
Web page that contains the link. You’ll learn how to better organize your site by
sorting pages into different subfolders on page 212.

Tip: To create a link to a page in Expression Web, select the text you want to make clickable, and then hit
Ctrl+K. Browse to the correct page, and Expression Web creates the link. To pull off the same trick in
Dreamweaver, select the text and press Ctrl+L.

The anchor tag is an inline element (page 46)—it fits inside any other block ele-
ment. That means that it’s completely acceptable to make a link out of just a few
words in an otherwise ordinary paragraph, like this:

<p>

 When you're alone and life is making you lonely

 You can always go downtown

</p>

Figure 8-1 shows this link example in action.

Internal and External Links
Links can shuffle you from one page to another within the same Web site, or they
can transport you to a completely different site on a far-off server. You use a differ-
ent type of link in each case:

• Internal links point to other pages on your Web site. They can also point to
other types of resources on your site, as you’ll see below.

• External links point to pages (or resources) on other Web sites.

For example, say you have two files on your site, a biography page and an address
page. If you want visitors to go from your bio page (MyBio.htm) to your address

Figure 8-1:
If you don’t take any other steps to customize an anchor
element, its text appears in a browser with the familiar
underline and blue lettering. When you move your mouse
over a hyperlink, your mouse pointer turns into a hand. You
can’t tell by looking at a link whether it works or not—if the
link points to a non-existing page, you’ll get an error only
after you click it.

Chapter 8: Linking Pages 209

Understanding the
Anchor

page (ContactMe.htm), you create an internal link. Whether you store both files in
the same folder or in different folders, they’re part of the same Web site on the
same Web server, so an internal link’s the way to go.

On the other hand, if you want visitors to go from your Favorite Books page
(FavBooks.htm) to a page on Amazon.com (www.amazon.com), you need an exter-
nal link. Clicking an external link transports the reader out of your Web site and
on to a new site, located elsewhere on the Web.

HOW’D THEY DO THAT

Changing Link Colors with Style Sheets
Virtually everyone born since the year 1900 instinctively
understands that blue underlined text is there to be clicked.
But what if blue links are at odds with the overall look of
your site? Thanks to style sheets, you don’t need to play by
the rules.

Based on what you learned about CSS in Chapter 6, you
can quickly build a style sheet rule that changes the text
color of all the link-producing anchor tags on your site.
Here’s an example:

a {
 color: fuchsia;
}

But watch out: making this change creates two problems.
First, custom link colors change the way links work. Ordi-
narily, when you click a link, it turns purplish red to show
that you’ve visited the page. Custom links, however, never
change color—they retain their hue even after you click
them. Web visitors who depend on the blue-to-red
reminder may not appreciate your artistic flair. Second, if
you apply a rule to all anchor tags, that rule will affect any
bookmarks in your page. Ordinarily, bookmarks are invisi-
ble page markers (see page 221), but if you change the
anchor color, your bookmarked text will also change color.
This probably isn’t the behavior you want.

A better way to create colorful links is to use another style
sheet trick: pseudo-selectors. Pseudo-selectors are special-
ized versions of the selectors you learned about earlier.
They rely on details that a browser tracks behind the
scenes. For example, ordinary selectors apply rules indis-
criminately to a given element, like an anchor tag. But
pseudo-selectors apply rules to elements that meet certain
criteria, in this case to links that are either clicked or unclicked.

Pseudo-selectors are a mid-range CSS feature, which
means they don’t work on very old browsers like Internet
Explorer 4 and Netscape 4.

Four pseudo-selectors help you format links. They are :link
(for links that point to virgin ground), :visited (for links a
reader has already visited), :active (the color a link turns as
a reader clicks it, before releasing the mouse button),
and :hover (the color a link turns when a reader moves the
mouse over it). As you can see, pseudo-selectors always
start with a colon (:).

Here’s a style rule that uses pseudo-selectors to create a
misleading page—one where visited links are blue and
unvisited links are red:

a:link {
 color: red;
}
a:visited {
 color: blue;
}

If you want to apply these rules to some, but not all, your
links, you can use a class name with the pseudo-selector
rule:

a.BackwardLink:link {
 color: red;
}
a.BackwardLink:visited {
 color: blue;
}

Now an anchor element needs to specify the class name to
display your new style, as shown here:

...

http://www.amazon.com

210 Creating a Web Site: The Missing Manual

Understanding the
Anchor

When you create an internal link, you should always use a relative URL, which tells
browsers the location of the target page relative to the current folder. In other
words, it gives your browser instructions on how to find the new folder by telling it
to move down into or up from the current folder. (Moving down into a folder
means moving from the current folder into a subfolder. Moving up from a folder is
the reverse—you travel from a subfolder up into the parent folder, the one that
contains the current subfolder.)

All the examples you’ve seen so far use relative URLs. For example, imagine you go
to this page:

http://www.GothicGardenCenter.com/Sales/Products.htm

Say the text on the Products.htm page includes a sentence with this relative link to
Flowers.htm:

Would you like to learn more about our purple

hydrangeas?

If you click this link, your browser automatically assumes that you stored Flowers.
htm in the same location as Products.htm, and, behind the scenes, it fills in the rest
of the URL. That means the browser actually requests this page:

http://www.GothicGardenCenter.com/Sales/Flowers.htm

XHTML gives you another linking option, called an absolute URL, which defines a
URL in its entirety, including the domain name, folder, and page. If you convert
the URL above to an absolute URL, it looks like this:

Would you like to learn more about our purple <a href=

"http://www.GothicGardenCenter.com/Sales/Flowers.htm">hydrangeas?

So which approach should you use? Deciding is easy. There are exactly two rules to
keep in mind:

• If you’re creating an external link, you have to use an absolute URL. In this situa-
tion, a relative URL just won’t work. For example, imagine you want to link to the
page home.html on Amazon’s Web site. If you create a relative link, the browser
assumes that home.html refers to a file of that name on your Web site. Clicking the
link won’t take your visitors where you want them to go (and may not take them
anywhere at all, if you don’t have a file named home.html on your site).

• If you’re creating an internal link, you really, really should use a relative URL.
Technically, either type of link works for internal pages. But relative URLs have
several advantages. First, they’re shorter and make your XHTML more read-
able and easier to maintain. More importantly, relative links are flexible. You
can rearrange your Web site, put all your files into a different folder, or even
change your site’s domain name without breaking relative links.

One of the nicest parts about relative links is that you can test them on your own
computer and they’ll work the exact same way as they would online. For example,
imagine you’ve developed the site www.GothicGardenCenter.com on your PC and

Chapter 8: Linking Pages 211

Understanding the
Anchor

you store it inside the folder C:\MyWebSite (that’d be Macintosh HD/MyWebSite,
in Macintosh-ese). If you click the relative link that leads from the Products.htm
page to the Flowers.htm page, the browser looks for the target page in the C:\
MyWebSite (Macintosh HD/MyWebSite) folder.

Once you polish your work to perfection, you upload the site to your Web server,
which has the domain name www.GothicGardenCenter.com. Because you used rela-
tive links, you don’t need to change anything. When you click a link, the browser
requests the corresponding page in www.GothicGardenCenter.com. If you decide to
buy a new, shorter domain name like www.GGC.com and move your Web site
there, the links still keep on working.

Note: Internet Explorer has a security quirk that appears when you test pages with external links. If you
load a page from your hard drive, and then click a link that points somewhere out on the big bad Web,
Internet Explorer opens a completely new window to display the target page. That’s because the security
rules that govern Web pages on your hard drive are looser than those that restrict Web pages on the Inter-
net, so Internet Explorer doesn’t dare let them near each other. This quirk disappears once you upload
your pages to the Web.

FREQUENTLY ASKED QUESTION

Navigating and Frames
How do I create a link that opens a page in a new browser
window?

When visitors click external links, you might not want to let
them get away from your site that easily. Web developers
use a common trick that opens external pages in separate
browser windows (or in a new tab, depending on the
browser’s settings). This way, your site remains open in the
visitor’s original window, ensuring the visitor won’t forget
about you.

To make this work, you need to set another attribute in the
anchor element—the target. Here’s how:

Click Me

The target attribute names the frame where a browser should
display the destination page (you’ll learn more about frames
in Chapter 10). The value _blank indicates that the link
should load the page in a new, empty browser window.

Before you start adding the target attribute to all your
anchors, it’s important to recognize two drawbacks with this
technique:

• It breaks strict validation. The target attribute isn’t
allowed in XHTML 1.0 strict. If you want to use it,
you should change your doctype to XHTML 1.0 tran-
sitional (page 30). Other, clumsier workarounds are
possible—for example, Web designers sometimes
use JavaScript (see Chapter 14) to open a new win-
dow when visitors click a link. The target feature may
also reappear in a future version of CSS.

• It may not always work. Some vigilant pop-up
blockers intercept this type of link and prevent the
new window from appearing altogether. (Pop-up
blockers are standalone programs or browser fea-
tures designed to prevent annoying pop-up ads
from appearing.) Internet Explorer 6 (and later)
includes its own pop-up blocker, but its standard set-
tings allow links that use the target="_blank"
attribute.

Some people love the new-window feature, while others
think it’s an immensely annoying and disruptive act of Web
site intervention. If you use it, apply it sparingly on the occa-
sional link.

http://www.GGC.com

212 Creating a Web Site: The Missing Manual

Understanding the
Anchor

Relative Links and Folders
So far, all the relative link examples you’ve seen have assumed that both the source
page (the one that contains the link) and the target page (the destination you arrive
at when you click the link) are in the same folder. There’s no reason to be quite
this strict. In fact, your Web site will be a whole lot better organized if you store
groups of related pages in separate folders.

Consider the Web site shown in Figure 8-2.

Note: The root folder is the starting point of your Web site—it contains all your other site files and fold-
ers. Most sites include a page with the name index.htm or index.html in the root folder. This is known as
the default page. If a browser sends a request to your Web site domain without supplying a file name, the
Web server sends back the default page. For example, requesting www.TripToRemember.com automati-
cally returns the default page www.TripToRemember.com/index.htm.

This site uses a variety of relative links. For example, imagine you need to create a
link from the index.htm page to the contact.htm page. Both pages are in the same
folder, so all you need is a relative link:

About Me

You can also create more interesting links that move from one folder to another,
which you’ll learn how to do in the following sections.

Figure 8-2:
This diagram maps out the structure of a very small
Web site featuring photos taken on a trip. The root
folder contains a style sheet used across the entire site
(styles.css) and two XHTML pages. Two subfolders,
Trip2005 and Trip2009, contain additional pages. The
Trip2009 folder holds thumbnail images of pictures
taken on one of the trips. For each thumbnail, there’s a
corresponding full-size picture in the Photos subfolder.

The root folder

Trip2009 Trip2005

antarctica.htm
china.htm

thumb01.jpg
thumb02.jpg
thumb03.jpg
thumb04.jpg

idaho.htm

Photos

pic01.jpg
pic02.jpg
pic03.jpg
pic04.jpg

contact.htm
index.htm

me.jpg
styles.css

http://www.TripToRemember.com
http://www.TripToRemember.com/index.htm

Chapter 8: Linking Pages 213

Understanding the
Anchor

Tip: If you’d like to try out this sample Web site, you’ll find all the site’s files on the Missing CD page at
www.missingmanuals.com. Thanks to the magic of relative links, all the links will work no matter where on
your computer (PC or Mac) you save the files, so long as you keep the same subfolders.

Moving down into a subfolder

Say you want to create a relative link that jumps from an index.htm page to a page
called antarctica.htm, which you’ve put in a folder named Trip2009. When you
write the relative link that points to antarctica.htm, you need to include the name
of the Trip2009 subfolder, like this:

See pictures from Antarctica

This link gives the browser two instructions—first to go into the subfolder
Trip2009, and then to get the page antarctica.htm. In the link, you separate the
folder name (“Trip2009”) and the file name (“antarctica.htm”) with a slash char-
acter (/). Figure 8-3 shows both sides of this equation.

Interestingly, you can use relative paths in other XHTML elements, too, like the
<style> element and the element. For example, imagine you want to dis-
play the picture photo01.jpg on the page index.htm. This picture is two subfolders
away, in a folder called Photos, which is inside Trip2009. But that doesn’t stop you
from pointing to it in your element:

Using this technique, you can dig even deeper into subfolders of subfolders of sub-
folders. All you need to do is add the folder name and a slash character for each
subfolder, in order.

But remember, relative links are always relative to the current page. If you want to
display the same picture, photo01.jpg, in the antarctica.htm page, the ele-
ment above won’t work, because the antarctica.htm page is actually in the Trip2009
folder. (Take a look back at Figure 8-2 if you need a visual reminder of the site
structure.) From the Trip2009 folder, you only need to go down one level, so you
need this link:

By now, you’ve probably realized that the important detail lies not in how many
folders you have on your site, but in how you organize the subfolders. Remember,
a relative link always starts out from the current folder, and works it way up or
down to the folder holding the target page.

Tip: Once you start using subfolders, you shouldn’t change any of their names or move them around.
That said, many Web page editors (like Expression Web) are crafty enough to help you out if you do make
these changes. When you rearrange pages or rename folders inside these programs, they adjust your rela-
tive links. It’s yet another reason to think about getting a full-featured Web page editor.

http://www.missingmanuals.com

214 Creating a Web Site: The Missing Manual

Understanding the
Anchor

Moving up into a parent folder

The next challenge you’ll face is going up a folder level. To do this, use the character
sequence ../ (two periods and a slash). For example, to add a link in the antarctica.
htm page that brings the reader back to the index.htm page, you’d write a link that
looks like this:

Go back

And as you’ve probably guessed by now, you can use this command twice in a row
to jump up two levels. For example, if you have a page in the Photos folder that
leads to the home page, you need this link to get back there:

Go back

Figure 8-3:
Using a relative link, you can jump from the main index.htm
page (top) to a page with picture thumbnails (bottom). Each
picture is itself a link—visitors click it to see a larger-sized version
of the photo.

Chapter 8: Linking Pages 215

Understanding the
Anchor

For a more interesting feat, you can combine both of these tricks to create a rela-
tive link that travels up one or more levels, and then travels down a different path.
For example, you need this sort of link to jump from the antarctica.htm page in the
Trip2009 folder to the idaho.htm page in the Trip2005 folder:

See what happened in Idaho

This link moves up one level to the root folder, and then back down one level to
the Trip2005 folder. You follow the same process when you browse folders to find
files on your computer.

Moving to the root folder

The only problem with the relative links you’ve seen so far is that they’re difficult
to maintain if you ever reorganize your Web site. For example, imagine you have a
Web page in the root directory of your site. Say you want to feature an image on
that page that’s stored in the images subfolder. You use this link:

But then, a little later on, you decide your Web page really belongs in another
spot—a subfolder named Plant—so you move it there. The problem is that this
relative link now points to plant/images/flower.gif, which doesn’t exist—the Images
folder isn’t a subfolder in Plants, it’s a subfolder in your site’s root folder. As a
result, your browser displays a broken link icon.

There are a few possible workarounds. In programs like Expression Web, when
you drag a file to a new location, the XHTML editor updates all the relative links
automatically, saving you the hassle. Another approach is to try to keep related
files in the same folder, so you always move them as a unit. However, there’s a
third approach, called root-relative links.

So far, the relative links you’ve seen have been document-relative, because you
specify the location of the target page relative to the current document. Root-relative
links point to a target page relative to your Web site’s root folder.

Root-relative links always start with the slash (/) character (which indicates the
root folder). Here’s the element for flower.gif with a root-relative link:

The remarkable thing about this link is that it works no matter where you put the
Web page that contains it. For example, if you copy this page to the Plant sub-
folder, the link still works, because the first slash tells your browser to start at the
root folder.

The only trick to using root-relative folders is that you need to keep the real root of
your Web site in mind. When using a root-relative link, the browser follows a sim-
ple procedure to figure out where to go. First, it strips all the path and file name
information out of the current page address, so that only the domain name is left.

216 Creating a Web Site: The Missing Manual

Understanding the
Anchor

Then it adds the root-relative link to the end of the domain name. So if the link to
flower.gif appears on this page:

http://www.jumboplants.com/horticulture/plants/annuals.htm

The browser strips away the /horticulture/plants/annuals.htm portion, adds the rel-
ative link you supplied in the src attribute (/images/flower.gif), and looks for the
picture here:

http://www.jumboplants.com/images/flower.gif

This makes perfect sense. But consider what happens if you don’t have your own
domain name. In this case, your pages are probably stuck in a subfolder on
another Web server. Here’s an example:

http://www.superISP.com/~user9212/horticulture/plants/annuals.htm

In this case, the domain name part of the URL is http://www.superISP.com, but for all
practical purposes, the root of your Web site is your personal folder, ~user9212. That
means you need to add this detail into all your root-relative links. So to get the result
you want with the flower.gif picture, you need to use this messier root-relative link:

Now the browser keeps just the domain name part of the URL (http://www.
superISP.com) and adds the relative part of the path, starting with your personal
folder (/~user9212).

Linking to Other Types of Content
Most of the links you write will point to bona fide XHTML Web pages. But that’s
not your only option. You can link directly to other types of files as well. The only
catch is that it’s up to the browser to decide what to do when someone clicks a link
that points to a different type of file.

Here are some common examples:

• You can link to a JPEG, GIF, or PNG image file (page 184). When visitors click
a link like this, the browser displays the image in a browser window without any
other content. Web sites often use this approach to let visitors take a close-up
look at large graphics. For example, the Trip2009 Web site in the previous sec-
tion has a page chock full of small image thumbnails. Click one of those, and
the full-size image appears.

• You can link to a specialized type of file, like a PDF file, a Microsoft Office doc-
ument, or an audio file (like a WAV or an MP3 file). When you use this tech-
nique, you’re taking a bit of a risk. These links rely on a browser having a plug-
in that recognizes the file type, or on your visitors having a suitable program
installed on his PC. If the computer doesn’t have the right software, the only
thing your visitors will be able to do is download the file (see the next point),
where it will sit like an inert binary blob. However, if a browser has the right
plug-in, a small miracle happens. The PDF, Office, or audio file opens up right
inside the browser window, as though it were a Web page!

http://www.superISP.com

Chapter 8: Linking Pages 217

Image Links and
Image Maps

• You can link to a file you want others to download. If a link points to a file of a
specialized type and the browser doesn’t have the proper plug-in, visitors get a
choice: They can ignore the content altogether, open it using another program
on their computer, or save it on their PC. This is a handy way to distribute large
files (like a ZIP file featuring your personal philosophy of planetary motion).

• You can create a link that starts a new email message. It’s easy to build a link
that fires up your visitors’ favorite email program and helps them send a mes-
sage to you. Page 337 has all the details.

Image Links and Image Maps
It’s worth pointing out that you can also turn images into links. The trick is to put
an element inside an anchor element (<a>), like this:

XHTML adds a thick blue border to pictures to indicate they’re clickable. Usually,
you want to turn this clunky-looking border off using the style sheet border prop-
erties described on page 167. When a visitor hovers her cursor over a linked pic-
ture, the cursor changes to a hand.

UP TO SPEED

The Rules for URLs
The rules for correctly writing a URL in an anchor element
are fairly strict, and there are a few common mistakes that
creep into even the best Web pages. Here are some point-
ers to help you avoid these headaches:

• When you create an absolute URL, you have to start
it with its protocol (usually http://). You don’t need
to follow this rule when typing a URL into a browser,
however. For example, if you type www.google.com,
most browsers are intelligent enough to assume the
http:// part. However, in an XHTML document, it’s
mandatory.

• Don’t mix up the backslash (\) and the ordinary for-
ward slash (/). Windows uses the backslash in file
paths (like C:\Windows\win.ini). In the Web world,
the forward slash separates subfolders (as in http://
www.ebay.com/Help/index.html). Once again, many
browsers tolerate backslash confusion, but the same
mistake in an anchor element breaks your links.

• Don’t ever use file paths instead of a URL. It’s possi-
ble to create a URL that points to a file on your com-
puter using the file protocol (as in file:///C:/Temp/
myPage.htm). However, this link won’t work on any-
one else’s computer, because they won’t have the
same file on their hard drive. Sometimes, design tools
like Expression Web may insert one of these so-called
local URLs (for example, if you drag and drop a pic-
ture file into your Web page). Be vigilant—check all
your links to make sure this doesn’t happen.

• Don’t use spaces or special characters in your file or
folder names, even if these special characters are
allowed. For example, it’s perfectly acceptable to put
a space in a file name (like My Photos.htm), but in
order to request this page, the browser needs to
translate the space into a special character code
(My%20Photos.htm). To prevent this confusion,
steer clear of anything that isn’t a number, letter,
dash (–), or underscore (_).

http://www.google.com

218 Creating a Web Site: The Missing Manual

Image Links and
Image Maps

In some cases, you might want to create distinct clickable regions, called hotspots,
inside a picture. For example, consider Figure 8-4.

To add a hotspot to a picture, you start by creating an image map using the <map>
element. This part’s easy—all you do is choose a unique name for your image map
so you can refer to it later on:

<map id="FaceMap" name="FaceMap">

</map>

Note: If you noticed that the <map> element uses two attributes that duplicate the same information (id
and name), you’re correct. Although in theory just the id attribute should do the trick, you need to keep
the name attribute there to ensure compatibility with a wide range of browsers.

Then you need to define each hotspot, which you do inside the <map> element,
between its start and end tags. You can add as many hotspots as you want, although
they shouldn’t overlap. (If they do, the one that’s defined first takes precedence.)

To define each hotspot in an image, you add an <area> element. The area element
identifies three important details: the target page a visitor goes to after clicking the
hotspot (the href attribute), the shape of the hotspot (the shape attribute), and the
exact dimensions of the shape (the cords attribute). Much like an image, the <area>
element requires an alt attribute with some alternate text that describes the image
map to search engines and ancient text-only browsers.

Here’s a sample <area> element:

<area href="MyPage.htm" shape="rect" coords="5,5,95,195" alt="A clickable

rectangle" />

Figure 8-4:
Left: An ordinary picture,
courtesy of the
element.

Right: An irregularly
shaped region inside the
mouth becomes a
hotspot—a clickable
region that takes visitors
to another page. In this
example, you can see the
hotspot because it’s
being edited in
Expression Web.
Ordinarily, you can’t see
hotspots when you look
at a picture in a Web
browser.

Chapter 8: Linking Pages 219

Image Links and
Image Maps

This hotspot defines a rectangular region. When visitors click it, they go to
MyPage.htm.

The shape attribute supports three types of shape, each of which corresponds to a
different value for the attribute. You can use circles (circle), rectangles (rect), and
multi-edged shapes (poly). Once you choose your shape, you need to supply the
coordinates, which are a bit trickier to interpret. To understand hotspot coordi-
nates, you first need to understand how browsers measure pictures (see
Figure 8-5).

You enter image map coordinates as a list of numbers separated by commas. For a
circle, list the coordinates in this order: center point (x-coordinate), center point
(y-coordinate), radius. For any other shape, supply the corners in order as a series
of x-y coordinates, like this: x1, y1, x2, y2, and so on. For a polygon, you supply
every point. For a rectangle, you only need two points—the top-left corner, and
the bottom-right corner.

You define the rectangle mentioned earlier by these two points: (5, 5) at the top-
left and (95, 195) at the bottom right. You define the more complex polygon that
represents the mouth region in Figure 8-4 like this:

<area href="MyPage.htm" shape="poly" alt="Smiling Mouth"

coords="38, 122, 76, 132, 116, 110, 102, 198, 65, 197" />

In other words, your browser creates this shape by drawing lines between these five
points: (38, 122), (76, 132), (116, 110), (102, 198), and (65, 197).

Tip: Getting coordinates correct is tricky. Many Web page editors, like Expression Web and Dream-
weaver, have built-in hotspot editors that let you create an image map by dragging shapes over your pic-
ture, which is a lot easier than trying to guess the correct values. To use this tool in Dreamweaver, select a
picture, and then look for the three hotspot icons (circle, square, and polygon) in the Properties panel. In
Expression Web, you use similar icons in the Picture toolbar. If the Picture toolbar isn’t visible, right-click
the picture, and then select Show Pictures Toolbar.

Figure 8-5:
Browsers designate the top-left corner in a picture as point (0, 0). As you move down
the picture, the y-coordinate (the second number) gets bigger. For example, the
point (0, 100) is at the left edge of the picture, 100 pixels from the top. As you move
to the right, the x-coordinate gets bigger. That means the point (100, 0) is at the top
of a picture, 100 pixels from the left edge.

Point (0,0)

Point
(50,150)x 50

y 150

220 Creating a Web Site: The Missing Manual

Image Links and
Image Maps

Once you perfect all your hotspots, there’s one step left: to apply the hotspots to
the image by adding the usemap attribute to your element. The usemap
attribute is the same as the name of the image map, but it starts with the number-
sign character (#), which tells browsers that you’ve defined an image map for the
picture on the current page:

Here’s the complete XHTML for the mouth hotspot example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Image Map</title>

 <style type="text/css">

 img {

 border-style: none;

 }

 </style>

</head>

<body>

 <p>Click inside his mouth...</p>

 <p>

 <map id="FaceMap" name="FaceMap">

 <area href="http://edcp.org/factsheets/handfoot.html" shape="poly"

 coords="38, 122, 76, 132, 116, 110, 102, 198, 65, 197" alt="Smiling

Mouth" />

 </map>

 </p>

</body>

</html>

The hotspots you create are invisible (unless you draw lines on your picture to
indicate where they are). When visitors hover over them, their mouse pointers
change to a hand. Clicking a hotspot has the same effect as clicking an ordinary
<a> link—visitors get transported to a new page.

Note: It’s tempting to use image maps to create links in all kinds of graphics, including buttons you may
custom-design in an image editor. Hold off for a bit. Sophisticated Web sites like yours can go many steps
further with menus and buttons, but to implement these nifty tricks you need the JavaScript know-how
you’ll learn in Chapters 14 and 15.

Chapter 8: Linking Pages 221

Adding Bookmarks

Adding Bookmarks
Most links lead from one page to another. When you make the jump to a new page,
the browser plunks you down at the very top of the page. But you can also create
links to specific parts of a page. This is particularly useful if you create long, scrolling
pages and you want to direct your visitors’ attention to a particular passage.

You can create links to another position on the current page (see Figure 8-6), or to
a specific place in another Web page. The place you send your reader is technically
called a fragment.

Creating a link that points to a fragment is a two-step process. First, you need to
identify that fragment. Imagine you want to send a visitor to the third level-3
heading in a Web page named sales.htm. To make this work, you need to embed a
marker just before that level-3 heading. XHTML calls this marker a bookmark.

To create a bookmark, you use the <a> anchor element, but with a twist: You
don’t supply an href attribute, because bookmarks don’t actually lead anywhere—
they simply identify fragments. What you do supply is a name attribute, which
gives your bookmark a descriptive name. It’s up to you whether you put any text
inside an anchor—technically you don’t need to, but most people find it easier to
lock a bookmark to a specific word or title on the target page.

Figure 8-6:
FAQ (frequently asked
questions) pages are one
of the best examples of
bookmarks at work.
Often, an entire FAQ is
one long page, with a
series of bookmark links
at the top that let you
jump to just the topic
you’re interested in. You
could break a FAQ into
separate pages, but
readers wouldn’t be able
to scan through the
whole list of questions in
order, and they wouldn’t
have a way to print the
entire document at once.

222 Creating a Web Site: The Missing Manual

When Good Links
Go Bad

Here’s an example:

...

<h3>Pet Canaries</h3>

<p>Pet canary sales have plummeted in the developed world, due in large part

to currency fluctuations and other macroeconomic forces.</p>

...

In this example, you create a bookmark named Canaries that drops visitors at the
heading “Pet Canaries.”

Once you create a bookmark, you can write a URL that points to it. The trick is to
add the bookmark information to the end of the URL. To do this, you add the
number-sign symbol (#), followed by the bookmark name.

For example, to send a reader to a bookmark named Canaries in the sales.htm
page, here’s the link you use:

Learn about recent developments in canary

sales.

When you click this link, the browser heads to the sales.htm page and scrolls down
the page until it encounters the Canaries bookmark, The browser then displays, at
the very top of the browser window, the text that starts with the heading “Pet
Canaries.”

Tip: If your bookmark is near the bottom of a page, a browser might not be able to scroll the bookmark
all the way to the top of its window. Instead, the bookmarked section will appear somewhere in the mid-
dle of the browser window. This happens because the browser hits the bottom of the page, and can’t
scroll down any further. If you think there’s some potential for confusion (perhaps because you have sev-
eral bookmarked sections close to each other at the bottom of a page), you can add a few
 ele-
ments at the end of your document, which lets the browser scroll down farther.

Sometimes you want to create a link that points to a bookmark in your current
page. In this case, you don’t need to specify a page name at all. Just start with the
number sign, followed by the bookmark name:

Jump to the canary section.

Using bookmarks effectively is an art. Resist the urge to overcrowd your pages with
links that direct readers to relatively small sections of content. Only use book-
marks to tame large pages that take several screenfuls of scrolling.

When Good Links Go Bad
Now that you’ve learned all the ways to build links, it’s a good time to consider
what can go wrong. Links that go to pages on the same site can break when you
rename or move files or folders. Links to other Web sites are particularly fragile—
they can break at any time, without warning. You won’t know that anything’s gone
wrong until you click the link and get a “Page Not Found” error message.

Chapter 8: Linking Pages 223

When Good Links
Go Bad

Broken links are so common that Web developers have coined a term to describe
how Web sites gradually lose their linking abilities: link rot. Sadly, you can upload a
perfectly working Web site today and return a few months later to find that many
of its external links have died off. They point to Web sites that no longer exist, have
moved, or been rearranged.

Link rot is an insidious problem because it reduces visitor confidence in your site.
They see a page that promises to lead them to other interesting resources, but when
they click one of the links, they’re disappointed. Experienced visitors won’t stay long
at a site that’s suffering from an advanced case of link rot—they’ll assume you
haven’t updated your site in a while and move on to a snazzier site somewhere else.

So how can you reduce the problem of broken links? First, you should rigorously
test all your internal links—the ones that point to pages within your own site.
Check for minor errors that can stop a link from working, and travel every path at
least once. Leading Web page editors include built-in tools that automate this
drudgery.

External links pose a different challenge. You can’t create iron-clad external links,
because link destinations are beyond your control and can change at any time. You
could reduce the number of external links you include in your Web site to mini-
mize the problem, but that isn’t a very satisfying solution. Part of the beauty of the
Web is the way a single click can take you from a comprehensive rock discography
to a memorabilia site with hand-painted Elvis office supplies. As long as you want
to connect your Web site to the rest of the world, you need to include external
links. A better solution is to test your Web site regularly with a link validator,
which walks through every one of your pages and checks each link to make sure it
still leads somewhere.

In the following sections, you’ll take a quick look at Web site management and link
validators.

Site Management
Dreamweaver, Expression Web, and many other Web page editors include site
management tools that let you see your entire Web site at a glance. In most cases,
you need to specifically define a site to take advantage of these features (a process
described on page 99). Once you do, you get a bird’s eye view of everything it holds
(see Figure 8-7).

In many ways, looking at the contents of your Web site folders isn’t as interesting
as studying the web of links that bind your pages together. Many Web page editors
give you the ability to get an at-a-glance look at where all your links lead (see
Figure 8-8).

224 Creating a Web Site: The Missing Manual

When Good Links
Go Bad

Figure 8-7:
In Expression Web, you
can open an individual
page for editing using
File ➝ Open, or an entire
Web site using File ➝
Open Site (just choose
the top-level folder of
your Web site). You can
then rearrange and
rename files in the Folder
List and Expression Web
will automatically update
any related links.

Figure 8-8:
In Expression Web,
choose Tools ➝
Hyperlinks, and you’ll see
this view, which shows
you how the currently
selected page fits into
your Web site. In this
example, the current
page is antarctica.htm.
Arrows pointing away
from antarctica.htm
represent links on that
page that lead to other
pages. Arrows pointing to
antarctica.htm represent
links in other pages that
lead to antarctica.htm. If
you click one of the plus
(+) boxes next to another
page, you’ll see all the
links for that page, too.

Chapter 8: Linking Pages 225

When Good Links
Go Bad

Note: Expression Web’s hyperlink viewer is one of the features that requires hidden metadata folders
(page 100). If you open the hyperlink viewer and select a file but don’t see any links, you probably haven’t
added the metadata folders yet. To get them, choose Site ➝ Site Settings, turn on the “Manage the Web
site using hidden metadata files” setting, and then click OK.

Link Checkers
A link checker is an automated tool that scans through one or more of your Web
pages. It tests each link it finds by trying to retrieve the target page (the page a link
points to). Depending on the tool and the type of validation you’re doing, link
checkers might only scan internal links, or they might branch out to follow every
link in every page until they’ve tested every link on your site.

Programs like Expression Web and Dreamweaver include sophisticated link check-
ers, and they’re great for digging through your site and finding problems. In
Dreamweaver, use the command Site ➝ Check Links Sitewide to check links.
In Expression Web, you can use a similar feature by choosing Site ➝ Reports ➝

Problems ➝ Hyperlinks.

The link checkers built into these Web page editors work on the copy of your Web
site stored on your PC. That’s the best way to keep watch for errors as you’re
developing your site, but it’s no help once your site’s out in the wild. For example,
it won’t catch mistakes like a link to a file on your hard drive or to a file you forgot
to upload to the Web server.

To get the final word on your Web site’s links, you might want to try a free online
link checker. The World Wide Web Consortium provides a solid choice at http://
validator.w3.org/checklink. To start your free online link check, follow these steps:

1. Go to http://validator.w3.org/checklink.

This takes you to the W3C Link Checker utility.

2. In the text box, enter the full URL of the page you want to check.

If your Web site has a default page like index.htm, you can type in just the
domain name without explicitly supplying a file name.

3. Choose the options you want to apply (Figure 8-9).

Select “Summary only” if you want the checker to omit the detailed list of steps
it takes as it examines each page. It’s best to leave this option turned off so you
can better understand exactly what pages the link checker examines.

Select “Hide redirects” if you want the checker to ignore instructions that
would redirect it to another page (page 227). Usually, redirects indicate that
your link still works, but also that you should updated it to point to a new page.

The “Don’t send the Accept-header” option prevents a link checker from telling a
Web site its language preferences. This setting only matters if you’re creating a
multilingual Web site, which is beyond the scope of this book.

http://validator.w3.org/checklink
http://validator.w3.org/checklink
http://validator.w3.org/checklink

226 Creating a Web Site: The Missing Manual

When Good Links
Go Bad

The “Check linked documents recursively” option validates links using recur-
sion. If you don’t use this option, the validator simply checks every link in the
page you specify, and makes sure it points to a live Web page. If you use recur-
sion, the validator checks all the links in the current page, and then follows each
internal link on your site. For example, if you have a link that points to a page
named info.htm, the link checker first verifies that info.htm exists. Then it finds
all the internal links in info.htm and starts testing them. In fact, if info.htm links
to yet another internal page (like contact.htm), the link checker branches out to
that page and starts checking its links as well. The link checker is smart enough
to avoid checking the same page twice, so it doesn’t waste time checking links it
has already validated.

Note: Link checkers don’t use recursion on external links. That means that if you start your link checker
on the home page of your Web site, it follows the links to get to every other page on your site, but won’t
go any further. Still, recursion’s a great way to drill through all the links in your site in one go.

If you want to limit recursion (perhaps because you have a lot of pages and you
don’t need to check them all), you can supply a “recursion depth,” which speci-
fies the maximum number of levels the checker digs down. For example, with a
recursion depth of 1, the checker follows only the first set of links it encounters.
If you don’t supply a recursion depth, the checker checks everything.

Figure 8-9:
When you use a link checker,
you choose the Web page
you want to check, and
whether or not you want to
use recursion, as in this
example. (For the inside
scoop on what recursion is
and how it works, see the
description in step 3 on the
previous page.) Then click
Check to get started.

Chapter 8: Linking Pages 227

When Good Links
Go Bad

4. Select “Save options in a cookie” if you want your browser to remember the
link-checker settings you specify.

If you use this option, the next time you use the link checker, your browser fills
in the checkboxes using your previous settings.

5. Click “Check to start checking links.”

The link checker shows a report that lists each link it checks (Figure 8-10). It
updates this report as it works. If you use recursion, you’ll see the link checker
branch out from one page to another. The report adds a separate section for
each page.

Using Redirects
To be a good Web citizen, you need to respect people who link to your site. That
means that once you create your site and it becomes popular, try to avoid tinker-
ing with page and folder names. Making a minor change could disrupt someone
else’s link, making it difficult for return visitors to get back to your site.

Figure 8-10:
The link checker’s final
report shows a list of
links found in anchors
and images. The checker
highlights links that lead
to dead ends in red, and
flags those that may
need attention in yellow.
One example of potential
problem links are
redirected links. Although
they still work, they may
be out of date and might
not last for long.

228 Creating a Web Site: The Missing Manual

When Good Links
Go Bad

Some Web experts handle this problem using redirects. When they rearrange their sites,
they keep all the old files, removing the content from them and replacing the old pages
with a redirect—a special instruction that tells browsers to automatically navigate to a
new page. The advantages of redirects are twofold: they prevent broken links, and they
don’t lock you into the old structure of your site if you decide to make a change.

To create a redirect, you need to add a special <meta> element to the <head> por-
tion of your Web page. This element indicates the new destination using an abso-
lute URL, and lists the number of seconds a browser should wait before
performing the redirect. Here’s an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta http-equiv="REFRESH"

 content="10; URL=http://www.mysite.com/homepage.htm" />

 <title>Redirect</title>

</head>

<body>

 <h1>The page you want has moved</h1>

 <p>

 Please update your bookmarks. The new home page is

 http://www.mysite.com/homepage.htm.

 </p>

 <p>

 You should be redirected to the new site in 10 seconds. Click

 here to visit the new page immediately.

 </p>

</body>

</html>

To adapt this page for your own purposes, change the number of seconds (cur-
rently at 10) and the redirect URL. When a browser loads this page, it shows the
temporary page for the indicated number of seconds, and then automatically
requests the new page.

Redirect pages really serve two purposes. They keep your pages working when you
change your site’s structure, and they inform Web visitors that the link is obsolete.
That’s where the time delay comes in—it provides a few seconds to notify visitors
that they’re entering the site the wrong way. Many sites keep their redirect pages
around for a relatively short amount of time (for example, a year), after which they
remove the page altogether.

229

Chapter 9chapter

9

Page Layout Tools

When engineers first created HTML, they focused on delivering basic informa-
tion: the score in yesterday’s ball game, the price of coffee beans in Colombia, the
dance steps for the Electric Slide. As strange as it seems, no one thought layout
tools were that important. Fortunately, a few pioneering Web designers recog-
nized the problem and set out to rescue the Web from the scientists who invented
it. These Web-heads invented a number of clever workarounds that gave the
HTML universe a much-needed blast of pizzazz.

The best known of these tactics is the invisible table. Using an invisible table, you
can align content, pictures, and headings within an invisible grid. It’s impossible to
overstate how important invisible tables were in the early days of the Web—they
almost single-handedly saved Web fans from a world of drab, plain-text pages. But
now that styles are on the scene, invisible tables are starting to outgrow their use-
fulness. Although Web sites still use them, many Web developers find they’re just
too awkward to manage.

Today, invisible-table-based layout is slowly but surely giving way to style-based
layout. Style-based layouts use CSS positioning rules to place panels, columns, and
pictures in specific spots on a Web page. When you use style-based layouts, your
XHTML markup is easier to understand, and you have less trouble replicating
your design across multiple pages. With a little planning, you can even create pages
that you can completely rearrange without touching a line of XHTML—all you
need to do is modify a linked style sheet. (See Chapter 6 for all the details on how
to get started working with style sheets.)

230 Creating a Web Site: The Missing Manual

The Challenge of
Screen Space

In this chapter, you’ll learn how to use both table-based and style-based layouts.
But first, you need to take a step back, consider the challenges that await you, and
learn why layout on the Web isn’t as straightforward as you might expect.

Note: Overall, style-based layout is the most elegant, and neatly structured, approach to page design—it’s
the wave of the future. You can still find examples of table-based layout, thanks to its compatibility with
old browsers and its usefulness in a few special scenarios where style-based design is unnaturally difficult.
And you can’t ignore tables altogether—you still need them for laying out dense grids of information.

The Challenge of Screen Space
When you design a page for print, you take into account the physical size of your
final document. You’d use much larger text on a poster than on a business card,
for example. But in the world of the Web, this system breaks down, because users
can set their monitors to all kinds of screen resolutions, and resize their browser
windows to all sorts of different dimensions. These details affect how much screen
real estate your Web pages have to work with. The higher the resolution and the
bigger a browser window, the more of your content fits on-screen. This raises a
dilemma—how do you make sure your pages look their best when you don’t know
your visitors’ screen settings?

Web designers use two basic layout strategies to deal with this issue:

• Go for flexibility with proportional sizing. With proportional sizing, your lay-
out expands or shrinks to fit the available space in a browser window. For
example, if you create a proportionally sized Web page with a fixed menu bar
and a variable content area, the menu bar always stays at the same width, while
the content area grows or contracts to fit the browser window, no matter how
big or small that window gets. If you’re in doubt, proportional sizing is the way
to go, because it ensures that your Web pages will conform to any size browser
window.

• Pick a reasonable fixed size. Sometimes, too much flexibility can cause its own
problems. For example, if you shrink a proportionally sized page to extremely
small dimensions, some page elements might get bumped into odd positions. If
you have a complex layout with lots of graphics and floating elements, the result
can be a bit of a mess. On the other hand, extremely large windows can cause
their own problems. For example, if you stretch a proportionally size page to fit
the full width of a widescreen monitor, you might end up with extremely long
lines of text that are hard to read. The solution is to use fixed-width pages that
look good at a range of browser settings.

Generally, proportional sizing is the safest approach to page design. After all, if your
Web site looks less than perfect in a browser window that’s extremely small or
extremely big, you can count on a visitor to resize it to something more reasonable.

Chapter 9: Page Layout Tools 231

The Challenge of
Screen Space

That said, there are plenty of professional sites that use fixed sizes, including news-
papers like the New York Times (www.nytimes.com)—see Figure 9-1. If you opt for
the fixed-width solution, you need to figure out what that width should be. Of
course, you have no way of knowing the two most important factors affecting that
decision—the size of a visitor’s browser window and his screen resolution. The fact
is, you’ll probably never know the browser window setting, but you can take
advantage of anecdotal evidence for screen resolution. Nearly half of all people use
larger 1024 × 768 displays, and most of the rest (nearly 40%) use higher resolu-
tions—often widescreen resolutions like 1280 × 800. For this reason, your Web
page should look brilliant at a width of about 1,000 pixels. This is the roughly the
amount of browser real estate your page gets when a visitor uses a resolution of
1024 × 768 and sets his browser window to fill the whole screen. If you go with a
fixed layout, follow this 1,000-pixel guideline and make sure all your content fits
comfortably at this size, with no scrolling required. The New York Times article
(Figure 9-1) provides a good model.

In this chapter, you’ll learn how to put both of these layout strategies to work.

Figure 9-1:
Top: To read this article without
scrolling, you need a window
that’s about 600 pixels wide,
which is a comfortable fit for an
800 × 600–pixel monitor.

Bottom: Widen the window to
about 1,000 pixels and you see
frills like videos, ads, a search box,
and a list of popular articles. If you
make the window any wider, all
you see is blank space on the right
side. Almost all news sites use this
kind of page design to deal with
variable window sizes.

http://www.nytimes.com

232 Creating a Web Site: The Missing Manual

The Challenge of
Screen Space

Testing Different Page Sizes
No matter which layout strategy you choose, you should test your pages at a vari-
ety of browser sizes to make sure your visitors see the best side of your work.

Fortunately, many Web page editors let you open pages in a range of browser win-
dow sizes. For example, in Expression Web you can choose File ➝ Preview in
Browser, which has options for common window sizes. And some Web browsers
have add-ons that do the same thing. For example, Firefox fans can use the Web
Developer toolbar (http://addons.mozilla.org/en-US/firefox/addon/60), which adds
a menu packed full of handy Web design tools, including an option to quickly
change the size of the browser window.

This raises an obvious question—at what window sizes should you test your pages?
Web research companies estimate that just under 10% of all people use cramped
800 × 600 resolution computer monitors. That means these people can’t make their
browser any wider than 800 pixels, so you should make sure your pages look
acceptable at this width. In other words, maybe folks whose monitors are set to
800 × 600 resolution will have to scroll a bit (up or down, or left or right) to see
your page, but for the most part they’ll be able to see everything you want them to,
so long as they size the browser window to fill up the whole screen.

Note: Remember, people with large monitors won’t necessarily size their browser window to fill up the
entire screen. After all, it’s hard to read really long lines of text.) For that reason, 1,000 pixels is a good
assumption for the average width of a browser window.

Now it’s time to put your two layout options into practice creating content-rich
pages using table-based and style-based layouts.

UP TO SPEED

Understanding Resolution
A resolution of 1024 × 768 means that a monitor displays a
grid of pixels that’s 1,024 pixels wide and 768 pixels high. A
pixel is the smallest unit of measurement on a monitor, and
is otherwise known as a “dot.” In other words, a resolution
of 1024 × 768 gives programs 786,432 pixels to play with,
while a mediocre 800 x 600 resolution offers only 480,000
pixels. Clearly, higher resolutions can display a lot more
content.

It’s important to realize screen resolution isn’t directly
related to the size of your monitor. In other words, a 17-
inch monitor can have a higher resolution (and show more
information) than a 19-inch monitor. However, it makes
sense for larger monitors to use higher resolutions. That’s

because, on a small monitor, high resolutions look
cramped and text can be hard to read.

To get some perspective, you might want to figure out what
screen resolution you’re using—or even change it. To do so
in Windows Vista, right-click the desktop, choose Personal-
ize, click Display Settings, and then adjust the resolution
using the handy slider. In earlier versions of Windows, you
can find the same settings when you right-click the desktop
and select Properties ➝ Settings. In Mac OS X, click System
Preferences ➝ Displays, and select from the list of resolu-
tions.

http://addons.mozilla.org/en-US/firefox/addon/60

Chapter 9: Page Layout Tools 233

Tables

Tables
A table is a grid of cells built of rows and columns. Originally, designers used tables
to (predictably) display tables of information. But crafty Web developers quickly
discovered that invisible tables offered a perfect way to lay out content in a variety
of new ways (see Figure 9-2).

In the following sections, you’ll explore how to create tables using XHTML.

The Anatomy of a Table
You can whip up a table with just a few new XHTML elements:

• <table> wraps the whole shebang. It’s the starting point for every table.

• <tr> represents a single table row. Every table element (<table>) contains a
series of one or more <tr> elements.

Figure 9-2:
Top: This detailed census
information from 1790 makes
perfect sense in an ordinary table.

Bottom: A combination of invisible
tables (technically, tables with no
borders) gives you all the
underpinning you need for this
headache-inspiring, multi-
columned newspaper view.

234 Creating a Web Site: The Missing Manual

Tables

• <td> represents a table cell (it stands for table data). For each cell you want in a
row, you add one <td> element. You put the text (or numbers, or ele-
ments, or pretty much any XHTML you like) that you want to appear in that
cell inside the <td> element. If you put text in the cell, it gets displayed in the
same font as ordinary body text.

• <th> is an optional table element you use when you want to define a column
heading. You can use a <th> element instead of a <td> element any time,
although it usually makes the most sense in the first row of a table. Browsers
format the text inside the <th> element in almost the same way as text in a
<td> element, except that they automatically boldface and center the text
(unless you apply different formatting rules with a style sheet).

Note: There are a few other table-specific elements, but they’ve fallen by the wayside. These elements,
which designers no longer need or that browsers don’t universally support, include <thead>, <tbody>,
<tfoot>, and <caption> elements.

Figure 9-3 shows a table at its simplest. Here’s a portion of the XHTML used to
create that table:

<table>

 <tr>

 <th>Rank</th>

 <th>Name</th>

 <th>Population</th>

 </tr>

 <tr>

 <td>1</td>

 <td>Rome</td>

 <td>450,000</td>

 </tr>

 <tr>

 <td>2</td>

 <td>Luoyang (Honan), China</td>

 <td>420,000</td>

 </tr>

 <tr>

 <td>3</td>

 <td>Seleucia (on the Tigris), Iraq</td>

 <td>250,000</td>

 </tr>

 ...

</table>

Chapter 9: Page Layout Tools 235

Tables

The markup for this table uses indented table elements to help you see the struc-
ture of the table. Indenting table elements like this is always a good idea, as it helps
you spot mismatched tags. In this example, the only content in the <td> elements
is ordinary text. But you can put other XHTML elements in cells, too, including
hyperlinks (the <a> element) and images (the element).

Tip: You might be able to avoid writing tables by hand, as most Web design tools include their own table
editors that let you point and click your way to success. These table-creation features are similar to those
you find in a word processor.

Figure 9-3:
Top: This basic table doesn’t have any
borders thanks to a style sheet rule, but
you’ll still spot the signature sign that you’re
looking at a table: text lined up neatly in
rows and columns.

Bottom: This behind-the-scenes look at the
XHTML powering the table above shows the
<table>, <tr>, <th>, and <td> elements for
the first three rows.

<td>

2 Luoyang (Honan),
China 420,000

...

<td> <td>

<tr>

<td>

1 Rome 450,000

<td> <td>

<tr>

<th>

Rank Name Population

<th> <th>

<tr>

<tr>

<table>

236 Creating a Web Site: The Missing Manual

Tables

Formatting Table Borders
Traditional tables have borders around each cell. You can adjust those table bor-
ders using the border attribute. It specifies the width (in pixels) of the line that
browsers add around each cell and around the table as a whole. Here’s an example:

<table border="1">

 ...

</table>

Although you can choose the border’s line thickness, you can’t control its style. Most
browsers outline a table using a solid black line with a raised edge (see Figure 9-4).

Don’t feel limited by these automatic borders. If you don’t like them, there’s a
work-around: style sheets. The basic trick is to create a borderless table, and then
apply a border to some combination of the <tr>, <td>, <th>, and <table> ele-
ments. You can find style sheet border properties described on page 167.

The following style sheet rules set a thin blue border around every cell, and a thick
blue border around the table itself:

table {

 border-width: 3px;

 border-style: solid;

 border-color: blue;

}

td, th {

 border-width: 1px;

 border-style: solid;

 border-color: blue;

}

Figure 9-4 shows the result.

Figure 9-4:
Left: A standard XHTML
table border with a
thickness of 1 pixel.

Right: A custom border
using style rules.

Chapter 9: Page Layout Tools 237

Tables

Tip: Borders aren’t the only style sheet feature you can apply to table cells. You can also change a cell’s
text font and text alignment (page 153), its padding and margins (page 163), and the colors it uses (page
151). You can even set a background image for an individual cell or the whole table using the back-
ground-image property (page 198). And if you want to apply style rules to individual cells (rather than to
the table as a whole), you just need to use class names (page 171).

There’s one hiccup to watch for when you create tables with borders. If the table
includes empty cells, they’ll appear “collapsed,” which means they won’t get any
borders at all (see Figure 9-5).

To prevent cells from collapsing, add a single non-breaking space to them:

<td> </td>

The browser won’t display this space, but it will ensure that your borders stay put.

Cell Spans
Tables support spanning, a feature that lets a single cell stretch out over several col-
umns or rows. Think of spanning as XHTML’s version of the Merge Cells feature
in Microsoft Word and Excel.

Spanned cells let you tweak your tables in all kinds of funky ways. You can, for
example, specify a column span to stretch a cell over two or more columns. Just add
a colspan attribute to the <td> element you want to extend, and specify the total
number of columns you want to skip.

Figure 9-5:
If you don’t include a non-breaking
space, you’ll lose the borders around
empty cells.

The
missing
cell

238 Creating a Web Site: The Missing Manual

Tables

Here’s an example that stretches a cell over two columns, so that the cell ends up
occupying the space of two full cells:

<table>

 <tr>

 <td>Column 1</td>

 <td>Column 2</td>

 <td>Column 3</td>

 <td>Column 4</td>

 </tr>

 <tr>

 <td> </td>

 <td colspan="2">Look out, this cell spans two columns!</td>

 <td> </td>

 </tr>

 ...

</table>

Figure 9-6 shows this trick in action.

To make sure your table doesn’t get mangled, you need to keep track of the total
number of columns you have to work with in each row. In the previous example,
the first row starts off by defining four basic columns:

<tr>

 <td>Column 1</td>

 <td>Column 2</td>

 <td>Column 3</td>

 <td>Column 4</td>

</tr>

In the next row, the second column extends over the third column, thanks to col-
umn spanning (see the markup below). As a result, the third <td> element actually

Figure 9-6:
A table with row
spanning and column
spanning run amok.

Chapter 9: Page Layout Tools 239

Tables

represents the fourth column. That means you need only three <td> elements to
fill up the full width of the table:

<tr>

 <!-- This fills column 1 -->

 <td> </td>

 <!-- This fills columns 2 and 3 -->

 <td colspan="2">Look out, this cell spans two columns!</td>

 <!-- This fills column 4 -->

 <td> </td>

</tr>

This same principle applies to row spanning and the rowspan attribute. In the fol-
lowing example, the first cell in the row leaks through to the second row:

<tr>

 <td rowspan="2">This cell spans two rows.</td>

 <td> </td>

 <td> </td>

 <td> </td>

</tr>

In the next row, the cell from above already occupies the first cell, so the first <td>
element you declare actually applies to the second column. All in all, therefore, this
row needs only three <td> elements:

<tr>

 <td> </td>

 <td> </td>

 <td> </td>

</tr>

If you miscount and add too many cells to a row, you end up with an extra column at
the end of your table.

Tip: Many Web page editors let you create spans by joining cells. In Dreamweaver and Expression Web,
select a group of cells, right-click them, and then select Merge Cells.

Sizing and Aligning Tables
If you don’t explicitly set the size of a table, it gets as wide as necessary to display all
its columns, and each column grows just wide enough to fit the longest line of text
(or to accommodate any other content you’ve added, like a picture by adding an
 element). However, there’s one additional rule—the table can’t grow wider
than the browser window. Once a table reaches the full width of the current window,
the browser starts wrapping the text inside each column, so that the table grows
taller as you pile in more content.

240 Creating a Web Site: The Missing Manual

Tables

Tip: Need more space inside your table? Style rules can make it easy. To add more space between the
cell content and its borders, increase the padding property for the <td> and <tr> elements. To add more
space between the cell borders and any adjacent cells, up the margin width for the <td> and <tr> ele-
ments. Page 163 has more on adjusting these dimensions.

In most cases, you want to explicitly set the width of your table and its individual
columns. When you do so, the table respects these dimensions and wraps text to
accommodate those widths. Once again, style sheets provide the best approach. All
you do is set height and width properties, as explained in the next section.

Sizing a table

You have two choices when you specify table dimensions:

• Relative sizing sizes a table in sync with the dimensions of a browser window.
You supply the percentage of the window you want the table to fill.

• Absolute sizing uses pixel measurements to set the exact size of a table.

The following style sheet rule ensures that this table always occupies the full width
of a browser window:

table {

 width: 100%;

}

A browser sizes this table in relation to the size of the browser window.

This rule limits the table to half the width of the current window:

table {

 width: 50%;

}

Either way, the table dynamically resizes as you resize the browser window.

Note: In the examples you’ve seen so far, all the tables have been plopped directly into the <body> sec-
tion of a page. This is a common design, but it’s not the only possibility—alternatively, you can put a table
inside some other container element. If you use a relative width for this table, its width is proportional to
the size of its container. So if you set the table width to 50%, it takes half the width of its container, no
matter how big or how small it is. To try this out, put your table in a cell inside another table (a trick
described on page 247) or in a <div> element that uses a fixed width (page 253).

If you use exact pixel widths, the table dimensions never change. For example, the
following rule creates a table that’s a generous 500 pixels wide:

table.Cities {

 width: 500px;

}

Chapter 9: Page Layout Tools 241

Tables

Because you create this table with a specific width, you should only use it for con-
tent that justifies that width. To prevent your browser from applying this style to
every table it encounters (because the table’s size may not suit every type of con-
tent), you give it a class name, like Cities in the example above. To display this spe-
cific table, you cite the table class in your XHTML document:

<table class="Cities">

 ...

</table>

In addition to specifying the width of a table, you can also set its height. Usually,
you set the height using an absolute size, as shown here:

table.Cities {

 height: 500px;

}

That’s because, if you set a table height as a percentage of a browser window, it cre-
ates a strange (and rarely seen) effect—the table grows taller and shorter as you
lengthen or shorten your browser window.

There’s one important caveat to table sizing. Although you can make a table as
large as you want (even if it stretches beyond the borders of a browser window),
you don’t have the same ability to shrink a table. If you specify a table size that’s
smaller than the minimum size the table needs to display your content, the table
appears at this minimum size (see Figure 9-7).

Figure 9-7:
In this example, the XHTML called for a
table width of 1 pixel. But the browser
doesn’t shrink the table down that far
because the content influences the table’s
minimum size. In this table, the city name
Anuradhapura is the longest un-splittable
value, so the browser uses that name to
determine the width of the column. If you
really want to ratchet the size down another
notch, try shrinking the text by applying a
smaller font size.

242 Creating a Web Site: The Missing Manual

Tables

Sizing a column

Now that you know how to size a table, you probably want to know what your
browser does if a table has more than enough space for its content. Once a table
reaches its minimum size (just large enough to fit all its data), your browser dis-
tributes any extra space proportionately, so that every column width increases by
the same amount.

Of course, this isn’t necessarily what you want. You might want to create a wide
descriptive column paired with a narrow column of densely packed text. Or you
might want to set columns to a specific size so that all your pages look uniform,
even if the content differs.

To set a column’s size, you use the width property in conjunction with the <td>
and <th> elements. Once again, you can do this proportionately, using a percent-
age, or exactly, using a pixel width. However, proportional sizing has a slightly dif-
ferent effect when you use it with columns. Earlier, when you used a percentage
value for table width, you sized the entire table relative to the width of the page. In
that example, you had a table width of 50%, which means the table occupied 50
percent of the full width of the page. But when you use a percentage value to set a
column width, you’re defining the percentage of the table width that the column
should occupy. So when you set a column width of 50%, the column takes up 50
percent of the table.

When you size columns, you need to create a style rule for each one, giving it a
unique class name (page 171). That’s because each column is potentially a differ-
ent width—you can’t just write a single style rule that applies to every column,
unless you want them all to have exactly the same width.

The following style rules set different widths for each column of the table you saw
in Figure 9-7.

th.Rank {

 width: 10%;

}

th.Name {

 width: 80%;

}

th.Population {

 width: 10%;

}

In this example, the class names match the column titles, which makes it easy to
keep track of which rule applies to which column.

Tip: When you use percentage widths for columns, you don’t need to specify values for all three col-
umns. If you leave one out, the browser sizes that column to fill the rest of the space in the table. If you
do decide to include widths for each column (as in the previous example), make sure they add up to 100
percent to avoid confusion. Otherwise, the browser will override one of your settings, and you won’t know
how your table will actually appear.

Chapter 9: Page Layout Tools 243

Tables

For these rules to take effect, you need to apply them to the corresponding cells:

<table class="Cities">

 <tr>

 <th class="Rank">Rank</th>

 <th class="Name">Name</th>

 <th class="Population">Population</th>

 </tr>

 <tr>

 <td>1</td>

 <td>Rome</td>

 <td>450,000</td>

 </tr>

 ...

</table>

Notice that you specify widths only for the column elements in the first row (the
ones that contain the cell headers in this example). You could apply the rule to
every row, but there’s really no point. When the browser builds a table, it scans the
whole table structure to determine the required size, based on the cell content and
any explicit width settings. If you apply a different width to more than one cell in
the same column, the browser simply uses the largest value.

Tip: It’s a good idea to size your table by applying style rules to the first row. This makes your XHTML
more readable, because it’s immediately obvious what the dimensions of your table are.

Sizing a row

You can size a row just as easily as you size a column. The best approach is to use
the height property in the <tr> attribute, as shown here:

tr.TallRow {

 height: 100px;

}

Once again, XHTML lets you use either percentages or pixel values. When you
resize a row, you affect every cell in every column of that row. However, you’re free
to make each row in the table a different height, using the techniques just
described.

Organizing a Page with Tables
So far, the tables you’ve seen have been fairly typical grids of information. But on
many Web sites, tables play another role—they organize pages into separate
regions of content.

One of the most common Web site designs is to divide a page into two or three
columns. The column on the left typically holds navigation buttons or other links.

244 Creating a Web Site: The Missing Manual

Tables

The column in the middle takes up the most space and includes the main content
for the page. The column on the right, if present, displays additional information,
like an advertisement or another set of links. Figure 9-8 shows how it all breaks
down.

To make this design work, you need to consider several details:

• Vertical text alignment. Ordinarily, browsers position row content in the cen-
ter of the row, between the top and bottom edge. This isn’t what you want in
tall rows, and it’s a particularly bad choice for any row that’s more than a
screenful high. For example, if you have a set of navigation links in the left-most
column and that column extends below the bottom of the screen, your verti-
cally centered links could fall below the bottom of the screen, too. To ensure
this doesn’t happen, you want to have your browser put the content in each cell
at the top of the table, so it sits at the top of your page, immediately visible.

• Borders. If you decide to use borders, you’ll want them only on some edges to
emphasize the separation of content. You won’t want them around every cell or
around the entire table. In many cases, you’ll do away with borders altogether and
use different background colors or images to separate the sections of a page.

• Sizing. Typically, you set a specific width for the left and right side panels. The
middle panel needs to command the most space. If you leave its width unspeci-
fied, it can grow as visitors enlarge their browser windows or as they switch to
widescreen monitors.

Figure 9-9 gives you a taste of what a finished page that uses a table to lay out the
page might look like. You can see the entire page with the downloadable content
for this chapter (go to www.missingmanuals.com, and then click the Missing CD
link).

The table in this example is relatively simple because you keep and maintain all its
formatting and sizing details separately, in a style sheet. Therefore, all you need to

Figure 9-8:
A simple table with one
row and three columns is
all you need to define the
overall structure of this
Web page. All your
content can fit into a single
large row. Most visitors
won’t realize there’s a
table here at all.

Ordinary content (like a header box)

A 1x3
table

Side panel
(Left)

Side panel
(Right)Main content

http://www.missingmanuals.com

Chapter 9: Page Layout Tools 245

Tables

do is create an ordinary table with one row and three columns. You then map each
column to a different style using a class name:

<table>

 <tr>

 <td class="Left">

 Relative Sizing

 Absolute Sizing

 Contact Me

 </td>

 <td class="Middle">

 I spent the day in utter agony, wondering how

 to create a table with an expandable middle...

 </td>

Figure 9-9:
Top: A relatively easy-to-make table
creates this attractive page layout.

Bottom: When you shrink the size of
the browser window, the side panels
remain the same size; only the middle
panel changes.

246 Creating a Web Site: The Missing Manual

Tables

 <td class="Right">

 Donate to my untraceable Swiss Bank account

 now!

 </td>

 </tr>

</table>

The style sheet rules start by specifying a font for the whole document:

body {

 font-family: Trebuchet MS, serif;

}

Next, you size the table to fill the browser window:

table {

 width: 100%;

}

Then you give every cell some standard settings for text alignment, font size, and
padding (to provide a little extra space between the column border and the text):

td {

 font-size: x-small;

 padding: 15px;

 vertical-align: top;

}

Finally, you set the widths and borders with column-specific rules. Here are the
two rules that give the side panels fixed, 100-pixel widths:

td.Left {

 width: 100px;

}

td.Right {

 width: 100px;

 font-weight: bold;

}

Next up is the style sheet rule for the middle column. Unlike the side columns, the
middle column doesn’t have an explicit width. Instead, the browser sizes it to fit
whatever space remains. This style sheet rule also gives the middle column left and
right borders to separate it from the side panels:

td.Middle {

 border-left-width: 1px;

 border-right-width: 1px;

 border-top-width: 0px;

 border-bottom-width: 0px;

 border-style: solid;

 border-color: blue;

}

Chapter 9: Page Layout Tools 247

Style-Based Layout

There’s one last detail you might want to change in the above style sheet. This
example uses proportional sizing for the table, which lets the middle panel grow
and shrink as visitors resize their browser window. Although this is the most flexi-
ble option, in dense, graphics-rich Web sites where you’ve precisely positioned
text, images, sidebars, and other content, you may need absolute sizing to preserve
your carefully crafted layout. (For more about this issue, see page 230.)

You can convert the above example to use absolute sizing by changing the style
rule that applies to the <table> element, as shown here:

table {

 width: 600px;

}

This sets the table width at 600 pixels. The left and right panels are still 100 pixels
wide, so the middle column gets whatever’s left—in this case, 400 pixels (based on
a total width of 600 pixels, minus 100 pixels for each panel). Figure 9-10 shows the
difference.

Style-Based Layout
Although the table-based approach to page layout seems perfect at first, it has a few
frustrating quirks. One of the most daunting is that once you perfect your table-
based layout, you need to painstakingly copy the exact table structure to every

POWER USERS’ CLINIC

Nested Tables
In sophisticated Web sites, the show doesn’t end with a sin-
gle table. Instead, site creators put tables inside other
tables, which they then put inside yet more tables. For
example, you might create a basic three-column setup
using one table, and then divide the right column into a
series of distinct ads using a second table. When you put
one table inside another like this, you create a nested table.

Building nested tables is easy, although it can be a little dif-
ficult to keep track of everything. The trick is to define a
table inside one of the cells in an existing table. For exam-
ple, if you have this table with three columns:

<table>
 <tr>
 <td class="Left">...</td>
 <td class="Middle">...</td>
 <td class="Right">...</td>
 </tr>
</table>

You can slide a table right into the <td> tags for the third
column:

<table>
 <tr>
 <td class="Left">...</td>
 <td class="Middle">...</td>
 <td class="Right">
 <table>
 <tr>...</tr>
 <tr>...</tr>
 </table>
 </td>
 </tr>
</table>

Resizing all the parts of these two tables can get confusing.
It’s easiest to size the nested table using a relative width of
100 percent. That way, the nested table expands or shrinks
based on the width of the column it’s in.

248 Creating a Web Site: The Missing Manual

Style-Based Layout

other page on your site. That’s tedious work, and tables are notorious for going
haywire if a single tag goes missing. Even worse, what happens once you copy your
table-based layout into a hundred different pages and then decide you want to
improve it with a minor change?

In the early, lawless days of the Web, tables went unchallenged. But once styles
appeared, leading Web designers began to explore new layout options. For most
Web-heads, style-based layout takes a little bit longer to grasp, but causes fewer
long-term headaches. Here are some of its benefits:

• The XHTML is cleaner and easier to read.

• Ideally, you store all the style information in a separate style sheet, which means
you can apply it to multiple pages with little effort.

• When you modify the style sheet, you reconfigure the layout of every linked
page in one (immensely gratifying) step.

Figure 9-10:
Absolute sizing maintains the integrity
of your layout as you resize the
browser window. The tradeoff is that
visitors might be forced to scroll from
side to side to see everything (bottom),
which is sure to exasperate them.
Another side effect of absolute sizing
affects visitors with high-resolution
monitors. The page might appear
barren because of all the empty white
space they’ll see in the browser
window.

Chapter 9: Page Layout Tools 249

Style-Based Layout

You’ve already taken your first tentative steps toward style-sheet nirvana by learning
about style-based layout for boxed text and floating images in Chapter 7. You can
apply that same idea to full pages. But before you go any further, it’s a good idea to
consider a few more style sheet features that make style-based layouts possible.

Structuring Pages with the <div> Element
Before you start placing elements in specific positions on a page, you need a way to
bundle related content into a single, neat package. In the table-based layout exam-
ples above, that package was the table cell. When you use style-based table layout,
that package is the <div> element—the all-purpose container described on page
122.

Imagine you want to create a box that has several links on the left side of your
page. Positioning each link in that column is as much fun as peeling grapes. By
using the <div> element, you can group everything together:

<div class="Menu">

 Home Page

 Buy Our Products

 File a Lawsuit

 ...

</div>

Whenever you create a <div> element, you should choose a class name that
describes the type of content it contains (like Menu, Header, AdBar, and so on).
Later on, you can create a style rule that positions this <div> element and sets its
font, colors, and borders.

Remember, a <div> element doesn’t have any built-in formatting. In fact, on its
own, it doesn’t do anything at all. The magic happens when you combine your
<div> element with a style sheet rule.

Even Better Selectors
In Chapter 6, you learned about different selectors, the part of a style sheet rule that
identifies what you want to format, such as a paragraph, heading, or list item. The
most common type of selectors are type selectors, which format every occurrence
of a specific XHTML element, and class selectors, which format every element that
uses the same class name. As it turns out, you can target content even more specifi-
cally in a couple of ways.

Contextual selectors

A contextual selector is stricter than an ordinary type selector. Whereas a type selec-
tor matches an element, a contextual selector matches an element inside another
element. To understand the difference, take a look at this type selector:

b {

 color: red;

}

250 Creating a Web Site: The Missing Manual

Style-Based Layout

This selector formats all bold text in red. But what if you want to work only on
bold text that appears inside a bulleted list? You can do that using the following
contextual type selector, which finds unordered list elements () and then
hunts for bold elements inside of them. If it finds any, it makes the bold text red:

ul b {

 color: red;

}

To create a contextual type selector, you simply put a space between the two elements.

Contextual selectors are useful, but thinking through the different possibilities for
combining elements can get a little dizzying. You’ll see the real benefit of a contex-
tual selector when you use one to match a specific type of element inside a specific
type of class.

For example, imagine you want to change the look of all the links in the menu
panel above. The menu panel is a <div> element with the class name Menu. Here’s
the rule you need:

div.Menu a {

 color: red;

}

The first part of this selector finds all the <div> elements in your page. The second
part limits those matches to <div> elements with the class name Menu—which is
exactly one. The third and final part of the selector locates the <a> elements inside
the menu panel. The end result is that every anchor in the menu panel will have
red lettering, while the anchors in the rest of the page are left alone.

This technique is a wildly popular way to define different formatting rules for dif-
ferent sections of a page. It also makes a particularly nice fit with the CSS-based
layout techniques you’ll learn about next.

id selectors

There’s one other type of selector you need to know about: the id selector. It’s a lot
like the class selectors you’ve used until now. Like a class selector, the id selector
lets you pick a descriptive name for your rule. But instead of separating the ele-
ment and descriptive names with a period (.), you separate the element name from
the id name with a number-sign character (#), as shown here:

div#Menu {

 border-width: 2px;

 border-style: solid;

}

This example defines a rule named Menu that applies only to <div> elements.

Chapter 9: Page Layout Tools 251

Style-Based Layout

As with class rules, browsers don’t apply id rules unless you specifically tell them to
in your XHTML. However, instead of switching on the rules with a class attribute,
you do so with the id attribute.

For example, here’s a <div> element that uses the Menu style:

<div id="Menu">...</div>

At this point, you’re probably wondering what the point of all this is—after all, the
id selector seems almost exactly the same as the class selector. The only difference
you’ve seen so far is in the name of the attribute that links an element to a style
rule (it’s id instead of class) and the number sign.

But there’s one more restriction: You can assign an id element to only one element
in a page. In other words, if you define an id selector to format a menu, you can
use the menu id selector only once in that page. This restriction doesn’t apply to
classes, which you can use as many times as you like.

Web designers like the id selector because it’s clearer than a class selector. By their
very nature, id selectors can refer to one and only one element on a page. For
example, if a page has a menu id selector, or a navigation bar id selector, the
designer knows that there’s only one menu or navigation bar on that page. The id
attribute clearly communicates this fact. Of course, the reason you need to under-
stand id attributes is because you frequently see them in the wild (for example,
you’ll find them in the www.csszengarden.com examples shown later in
Figure 9-13). Now that you know they’re just a version of class attributes, you
won’t have any trouble understanding how they work.

Incidentally, you can use id selectors in all the same ways as other selectors. That
means you can combine id selectors with other selectors using a comma (,) or you
can create contextual selectors like the one shown here, which acts only on anchors
inside a <div> menu:

div#Menu a {

 color: red;

}

Floating Boxes
Most of the example pages in previous chapters used relative positioning to place objects
on a page, which is the original XHTML model. When you use relative positioning,
your browser orders page elements based on where they appear in an XHTML docu-
ment. If you have one <div> element followed by another in your XHTML markup,
the browser positions the second <div> element below the first one.

To get richer layouts—for example, to create any of the pages you see in
Figure 9-11—you need more flexibility in positioning content. One option is a
floating layout, which you used to make pictures float in Chapter 7. A floating lay-
out works just as readily with <div> elements as it did with those elements,
with one exception—you need to supply a width for the <div> element.

http://www.csszengarden.com

252 Creating a Web Site: The Missing Manual

Style-Based Layout

Note: When you float an image, browsers automatically make the floating box as wide as the image.
When you float a <div> element with text inside, it’s up to you to choose how wide you want it.

Here’s an example that defines a box that floats on the right side of some text:

.Float {

 float: right;

 width: 150px;

 background-color: red;

 border-width: 2px;

 border-style: solid;

 border-color: black;

 padding: 10px;

 margin: 8px;

 font-weight: bold;

 color: white;

}

With floating content, text outside the floating content wraps around the edges of
it (see Figure 9-11).

Figure 9-11:
Here are three examples
of floating layouts.

Top: A standard floating
box.

Bottom, left: You can
stack more than one
floating box at a time.
Your browser adds each
new box to the left of the
one before it.

Bottom, right: Add the
clear: both style sheet
property (page 194) to
force the second floating
box to appear under the
first.

Chapter 9: Page Layout Tools 253

Style-Based Layout

Absolute Positioning
Style sheets also let you place elements at fixed locations on a page, with no wrap-
ping involved. This is handy when you want to create multi-columned pages (see
Figure 9-12).

To use absolute positioning, set the position property of your <div> element to
absolute. Then, set the location of your <div> element using a combination of the
top, left, right, and bottom properties.

The following style rule defines a panel that’s 150 pixels wide and positioned along
the left side of a page. The left edge of the box is 10 pixels from the edge of the
browser window, and the top edge of the box is 70 pixels from the top of the
browser window:

.LeftPanel {

 position: absolute;

 top: 70px;

 left: 10px;

 width: 150px;

}

It’s just as easy to create a fixed panel on the right side of a page. Just use the top
and right position properties to place the box relative to the right edge of the
browser window:

.RightPanel {

 position: absolute;

 top: 70px;

 right: 10px;

 width: 150px;

}

The final step is to define the content section that sits between these two panels.
You can’t use absolute positioning for this, because you don’t know how large the
browser window will be. Fortunately, you don’t need to—all you need to do is
specify how far from the left and right edges of the browser window the center
panel should sit. For example, the left panel you defined above measures 150 pix-
els wide and sits 10 pixels from the left edge of the browser window. That means
your center panel needs a left margin of 160 pixels (150+10). It needs to accommo-
date the right panel in the same way. It’s customary to tack on extra pixel to each
margin to make sure your panels don’t overlap, making the final style sheet rule:

.CenterPanel {

 margin-left: 161px;

 margin-right: 161px;

}

254 Creating a Web Site: The Missing Manual

Style-Based Layout

Once you define the sections of your page, you can insert content into them using
<div> elements. Because your style sheet places <div> elements precisely on a
page, it doesn’t matter how you order the <div> elements in your XHTML docu-
ment. For example, you might want to define the content for your left and right
panels, and then your center panel. The point is, the order in which you lay down
your <div> elements in your XHTML markup doesn’t matter. Here’s an example:

<div class="LeftPanel">

 <h1>Links</h1>

 Page 1

 Page 2

 ...

</div>

<div class="RightPanel">

 <h1>Contact Us</h1>

 ...

</div>

<div class="CenterPanel">

 Styles are remarkably powerful. All you need to do is position

 a few <div> elements, and your content flows...

</div>

Figure 9-12 shows the results.

The remarkable part about this example is that your XHTML document is free of
messy formatting details. Instead, it’s a small miracle of clarity, with content
divided into several easy-to-understand sections. If you created the same layout
using invisible tables, your XHTML document would be cluttered with table ele-
ments, making it more difficult to interpret. And if you save your styles into an
external style sheet (page 138), you can start building a second page using the same
layout without spending any time puzzling out the correct formatting.

To use style-based layouts, begin by planning each page as a collection of separate
regions. Then put each region into a <div> element with a unique class name, even
if you don’t intend to apply style sheet rules for these sections yet. Finally, write the
style sheet rules that position and format each <div> element. This is the most
time-consuming part of your markup to write, but it’s time well spent—you can
tweak your formatting rules at any time without disturbing your content.
Figure 9-13 shows a Web site that takes this concept to the extreme.

Chapter 9: Page Layout Tools 255

Style-Based Layout

Layering
It may have occurred to you that you need to position elements carefully when you
use absolute positioning to make sure you don’t overlap one element with another.
Interestingly, advanced Web pages sometimes deliberately overlap elements to cre-
ate dramatic effects. For example, you might create a logo by overlapping two
words, or create a heading by partially overlapping a picture. These tricks use over-
lapping layers.

When you use overlapping layers, you need to tell your browser which element
goes on top. You do this through a simple number called the z-index. Browsers put
elements with a high z-index in front of elements with a lower z-index.

Figure 9-12:
Top: This page uses a three-panel style sheet layout,
with a few more refinements (like fine-tuned borders,
fonts, and background colors).

Bottom: Another variation of the same design sets the
height of the side panels to 90 percent, so they
always fill up a browser window.

256 Creating a Web Site: The Missing Manual

Style-Based Layout

For example, here are two elements positioned absolutely so that they overlap:

.Back {

 z-index: 0;

 position: absolute;

 top: 10px;

 left: 10px;

 width: 150px;

 height: 100px;

 background-color: orange;

 border-style: dotted;

 border-width: 1px;

}

.Front {

 z-index: 1;

 position: absolute;

 top: 50px;

 left: 50px;

 width: 230px;

 height: 180px;

 font: xx-large;

 border-style: dotted;

 border-width: 1px;

}

Figure 9-13:
One page, dozens of
different looks. The Web
site www.csszengarden.
com shows the holy grail
of style-based formatting:
a page you can
thoroughly reformat and
rearrange just by editing
or switching the style
sheet it uses. Best of all,
you can download the
XHTML for this page and
dozens of sample style
sheets to try it out for
yourself.

http://www.csszengarden.com
http://www.csszengarden.com

Chapter 9: Page Layout Tools 257

Style-Based Layout

The first class (Back) defines an orange background square. The second class (Front)
defines a large font for text. You set the elements’ z-indexes so that the browser
superimposes the Front box (which has a z-index of 1) over the Back box (which has
a z-index of 0). In the example above, the XHTML code adds a dotted border around
both elements to make it easier to see how the boxes overlap on a page.

Note: The actual value of a z-index isn’t important, the only important characteristic is how it compares
to other z-indexes. For example, if you have two elements with z-indexes of 48 and 100, you’ll get the
same effect as two elements with z-indexes of 0 and 1—the second element overlaps the first. If two or
more elements have the same z-index, the one that’s first in the XHTML gets shoved underneath those
that come later.

In your XHTML, you need to create both boxes with <div> elements. It also
makes sense to supply some text for the Front box:

<div class="Back">

</div>

<div class="Front">

 This text is on top.

</div>

Load this page in a browser and you’ll see a block of text that stretches over part of
the orange box and out into empty space (see Figure 9-14, left).

You can reverse the z-index to change the example:

.Back {

 z-index: 1;

 ...

}

Figure 9-14:
Left: The colored box has
the lower z-index.

Right: The colored box
has the higher z-index,
and obscures the text.

258 Creating a Web Site: The Missing Manual

Style-Based Layout

.Front {

 z-index: 0;

 ...

}

Combining Absolute and Relative Positioning
Style sheet experts know that they don’t need to stick to just absolute or relative
positioning—they can get the best of both worlds with a little careful planning.

To understand how this technique works, you need to know the following style-
sheet secret: When you use absolute positioning, your browser interprets the coor-
dinates relative to the container. As you saw in several examples earlier, when you
put a <div> element in the <body> section of a page, your browser positions that
element in relation to the page. Set the <div> element’s left coordinate to 10 pix-
els, and your browser positions the element 10 pixels from the left edge of the page.
But here’s a nifty experiment—try placing the same <div> element inside another
element, like a table cell. Now your browser positions the <div> element 10 pixels
from the left edge of the table cell, no matter where you place that table cell on the
page. It’s as if the <div> element exists in its own private world—and that’s the
world of the container it’s in, not the world of the main page.

So how can you use this understanding to your advantage? One technique is to use
absolute positioning to create a special effect, like text superimposed on a photo.
To try this out, create a page with several <div> elements. But don’t use absolute
positioning—instead, let these <div> elements fit themselves into the page one
after the other, the normal Web way. In the first and last <div> elements, add
ordinary content (text, pictures, and whatever else you like). But in the middle
<div> element, let loose with absolute positioning.

Figure 9-15 shows an example. Here, the first <div> element holds an ordinary
paragraph, as does the third <div> element. But the middle <div> element uses
absolute positioning to add white text over the picture of a tombstone.

Here’s the content of the page:

<div>

 <p>Here is some ordinary content. Whatever you put here

 bumps the grave stone box further down the page.</p>

</div>

<div class="GraveContainer">

 <p class="GraveText">Fatal error.
Please reboot.</p>

</div>

<div>

 <p>Here is some more ordinary content.</p>

</div>

Chapter 9: Page Layout Tools 259

Style-Based Layout

The middle <div> element uses three style rules to apply all the style properties
this example needs. The GraveImage and GraveText rules turn on the absolute
positioning:

img.GraveImage {

 position: absolute;

 left: 10px;

}

p.GraveText {

 position: absolute;

 top: 150px;

 left: 120px;

 color: white;

 font-size: x-large;

 font-weight: bold;

 text-align: center;

}

Figure 9-15:
In this page, the middle section uses absolute
positioning to place text over a picture. The
neat part is that the rest of page is perfectly
normal, and even if you shrink the browser
window (thereby bumping the picture down
the page), the text and picture stay locked
together.

260 Creating a Web Site: The Missing Manual

Style-Based Layout

The GraveContainer rule sizes the <div> element. Ordinarily, a <div> element
enlarges itself to fit its contents. But when you use absolute positioning, the <div>
element no longer knows how big it should be, and it shrinks itself down to noth-
ing. Here’s the rule that gives the <div> element the correct height, and ensures
that the subsequent content in the page (the third <div> element with the final
paragraph) appears in the right place:

div.GraveContainer {

 height: 250px;

}

As a general rule, you should use relative positioning to make sure a page’s layout
is as flexible and adaptable as possible. But as you see in this example, it’s perfectly
reasonable to use a <div> element to section off smaller regions that use absolute
positioning—in fact, doing so gives you the chance to add some nifty effects.

DESIGN TIME

Become a Style Sheet Expert
Style sheets are one of the hottest topics in Web develop-
ment today. The Web buzzes with discussion groups,
articles, and tutorials that show you how to create slick
style-powered designs. If you want to become a style aficio-
nado, there’s still quite a bit to learn, including the ins and
outs of browser quirks, workarounds for style sheet limita-
tions, and innovative ways to combine graphics and text.
Here are a few of the best resources:

• Style sheet basics. Is your style sheet expertise a
little wobbly? Brush up with the tutorials at www.
w3schools.com/css. And check to make sure you
aren’t making any mistakes by using the CSS valida-
tor at http://jigsaw.w3.org/css-validator.

• Style sheet examples (the barebones). See some
of the basic style sheet designs (like two- and three-
column layouts) at the Layout Reservoir (www.
bluerobot.com/web/layouts) and Glish (http://glish.
com/css), along with handy links to other good
online resources.

• Style sheet examples (full-featured). See the
dozens of different ways you can format the same
XHTML document. This small miracle of CSS design
(see Figure 9-13) is at www.csszengarden.com.
There’s even a book tie-in named The Zen of CSS
Design (Peachpit Press) that discusses some of the
more exotic examples.

• Advanced style sheet resources. Planning to
become a cutting-edge Web designer? Check out the
legendary books by Eric Meyer, like Eric Meyer on
CSS (New Riders Press), and stop by the Web site at
www.westciv.com/style_master/house.

http://www.w3schools.com/css
http://www.w3schools.com/css
http://jigsaw.w3.org/css-validator
http://www.bluerobot.com/web/layouts
http://www.bluerobot.com/web/layouts
http://glish.com/css
http://glish.com/css
http://www.csszengarden.com
http://www.westciv.com/style_master/house

261

Chapter 10chapter

10

Multipart Pages

As you start to build bigger and more elaborate Web sites, you’ll no doubt dis-
cover one of the royal pains of Web site design: getting a common ingredient to
appear on every page.

For example, you might decide to add a menu of links that lets visitors jump from
one section of your site to another. You can place these links in a table or a <div>
element (two techniques shown in Chapter 9) to get them in the right position on
a page, but either way there’s a problem—you need to do a fair bit of copying and
pasting to display the menu on every page of your site. If you’re not careful, one
page can end up with a slightly different version of the same menu. And when you
decide to make a change to the menu, you’ll face the nightmare of updating every
one of your pages. Web creators who try this approach don’t get out much on the
weekend.

There’s no simple solution to this problem, but crafty Web designers can use a
variety of techniques to get around it:

• Server-side includes. A server-side include is a command that injects the con-
tents of one XHTML file inside another. This lets you carefully separate a block
of XHTML content (for example, a menu) and reuse it in multiple pages. How-
ever, there’s a significant caveat—the XHTML standard doesn’t support server-
side includes on its own, so you can use this feature only if you have the right
type of Web server.

262 Creating a Web Site: The Missing Manual

Understanding
Multipart Pages

• Frames. Frames are a sometimes-controversial XHTML feature that let you dis-
play more than one Web page in the same browser window. Although frames
work well and have been used for years, they’re distinctly unpopular today
thanks to a variety of minor quirks (discussed on page 267).

• Page templates. Some high-powered Web page editors (namely, Expression
Web and Dreamweaver) include a page template feature. You begin by creating
a template that defines the structure of your Web pages and includes the repeat-
ing content you want to appear on every page (like a menu or a header). Then
you use that template to create all your site pages. Here’s the neat part: when
you update the template, your Web page editor automatically updates all the
pages that use that template.

In this chapter, you’ll see how you can use these techniques to tame large Web
sites, and you’ll consider their risks and rewards.

Understanding Multipart Pages
By this point, you’ve amassed a solid toolkit of tactics and tricks for building Web
pages. You learned to polish your pages with modern fonts and colors, gussy them
up with a trendy layout, and add images and links to the mix. However, as you apply
these techniques to a complete Web site, you’ll run into some new challenges.

One of the first hurdles you face when you go from one Web page to a dozen or
more is how to make them all consistent. Consistent formatting is relatively easy—
as long as you carefully plan the structure of your Web site and use an external
style sheet (see Chapter 6), you can apply a common look and feel to as many
pages as you want.

But style sheets have their limits. They can’t help you if you need to have the same
content in more than one page. That’s a problem, because modern Web sites have
specific elements that repeat on every page, like a header and a set of navigation
buttons (see Figure 10-1).

So how do Web designers create multipart pages? For large sites, individually past-
ing the same bit of XHTML into every page just isn’t an option—it would be a
management disaster. But popular Web sites don’t seem to have a problem deal-
ing with repeated content. No matter what product you view on Amazon, for
example, you see the familiar tabbed search bar at the top. No matter what vaca-
tion you check out in Expedia, you keep the same set of navigation tabs. That’s
because Amazon and Expedia, like almost all of the Web’s hugest and most popu-
lar sites, are actually Web applications. When you request a page from one of these
sites, a custom-tuned piece of software creates the right XHTML page on the fly.

For example, when you view a product on Amazon, a Web application reads the
product information out of a gargantuan database, transforms it into an XHTML
page, and tops it off with the latest version of the search bar. Your browser dis-
plays the end result as a single page. This technique avoids the hassle of maintaining
the same content (in this case, the search bar) in thousands of different files.

Chapter 10: Multipart Pages 263

Server-Side Includes

Although Web applications offer an elegant solution for creating multipart pages,
it’s a dead end for the casual Web-head. To build and maintain a Web application
of your own, you’d need top-shelf programming skills and a team of IT experts to
help you out. So unless you’re ready to start a new career as a hard-core code
jockey, you need to compromise.

Note: Don’t rush off to pick up a degree in computer science just yet. Programming is a completely dif-
ferent cup of tea than writing XHTML. Unless you have a lot of time to spare for removing cryptic errors
from computer code (a process known as debugging) and even more time to put them there in the first
place (politely known as programming), you’re better off using the techniques described in this chapter.

Server-Side Includes
Even though you can’t write a Web application on your own, you can borrow a few
tricks from the Web applications model—if your Web host supports them. The
simplest example is a technology called server-side includes (SSIs), which is a
scaled-down version of the XHTML-assembling trick used on sites like Amazon
and Expedia.

Essentially, a server-side include is an instruction that tells a Web server to insert
the contents of one XHTML file into another. For example, imagine you want to
use the same menu on several pages. You would begin by saving the menu as a sep-
arate file, which you could name menu.htm. Here are its contents:

<h1>Menu</h1>

Page 1

Page 2

Page 3

The End

Figure 10-1:
Every page on www.
expedia.com is a
multipart page. Each
one stitches together
several pieces of
information, including
navigation tabs (which
are always the same, no
matter where you go on
the site) and content
(which varies from page
to page). This sort of
design crops up on sites
throughout the Web.

Repeated
Header

Repeated
Navigation

Links

http://www.expedia.com
http://www.expedia.com

264 Creating a Web Site: The Missing Manual

Server-Side Includes

Notice that menu.htm isn’t a complete XHTML document. It lacks elements like
<html>, <head>, and <body>. That’s because menu.htm is a building block that
you’ll embed inside other, full-fledged XHTML pages.

Now you’re ready to use the menu in a Web page. To do that, you add a special-
ized include command to the page where you want the menu to appear. Here’s
what it looks like:

<!--#include file="menu.htm" -->

The include command disguises itself as an XHTML comment (page 43) using the <!-
- characters at the beginning and the --> characters at the end. But its core tells the
real story. The number sign (#) indicates that this command is actually an instruction
for the Web server, and the file attribute points to the file you want to use.

Here’s the include command at work in a complete Web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Server-Side Include Test</title>

 <link rel="stylesheet" href="styles.css" type="text/css" />

</head>

<body>

 <div class="Header">

 <h1>Templates Rule!</h1>

 </div>

 <div class="MenuPanel">

 <!--#include file="menu.htm" -->

 </div>

 <div class="Content">

 <p>This is the welcome page. Just above this text is the handy menu

 for this site.</p>

 </div>

</body>

</html>

When you request this page, the Web server scans through it, looking for instruc-
tions. When it finds the include command, it retrieves the specified file and inserts
its contents into that position on the page. It then sends the final, processed file to
you. In the current example, that means your Web browser receives a Web page
that actually looks like this (see Figure 10-2):

Chapter 10: Multipart Pages 265

Server-Side Includes

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Server-Side Include Test</title>

 <link rel="stylesheet" href="styles.css" type="text/css" />

</head>

<body>

 <div class="Header">

 <h1>Welcome to a Multipart Page</h1>

 </div>

 <div class="MenuPanel">

 <h1>Menu</h1>

 Page 1

 Page 2

 Page 3

 The End

 </div>

 <div class="ContentPanel">

 <p>This is the welcome page. Just to the left of this text is the

 handy menu for this site.</p>

 </div>

</body>

</html>

The advantage to this technique is obvious. You can add the include command to
as many Web pages as you want, and still keep just one copy of your menu. That
lets you edit your menu easily, and ensures that all your pages have the same ver-
sion of the menu.

If this discussion sounds a bit too good to be true—well, it is. You may face a num-
ber of complications:

• Web server support. Not all Web servers support server-side includes. To get
the lowdown, contact your Web hosting company.

• Page types. For a server-side include to work, the Web server has to process
your page and search for include instructions every time a browser requests a
page. That happens automatically, but only if you use the right page type. You
can’t give your pages the .htm or .html extensions; instead, you need to use .shtm
or .shtml (on an Apache Web server), or .asp or .aspx (on a Microsoft IIS Web
server). Once again, contact your Web hosting company for details.

266 Creating a Web Site: The Missing Manual

Frame Basics

• Design difficulties. Server-side includes only come into effect when there’s a
Web server at work. If you open a Web page that’s stored on your hard drive,
your browser ignores the include instruction and you won’t see the menu at all.
That makes it difficult to test your site without uploading it to a live Web server.
Dreamweaver gives you partial relief—if you open a Web page that uses server-
side includes, you’ll see the contents of the included files in Dreamweaver’s
design window while you edit the page.

If you know your Web host supports server-side includes and you aren’t fazed by
the design difficulties, why not give them a whirl? And if they still don’t suit you,
you have two other compromises to consider: frames (up next) and page tem-
plates (at the end of this chapter).

Note: Because the include command masquerades as an XHTML comment, it won’t cause a problem if
you put pages with include instructions on a Web server that doesn’t support server-side includes. The
server simply ignores the SSIs.

Frame Basics
Frames work by carving a browser window into two or more regions, or frames.
Once you split a window this way, you can display a different Web page in each
frame.

There are two obvious differences between frames and server-side includes. First,
frames do their work in a browser, not on a Web server. That means they don’t
need any special Web server support. Second, frames bring together distinct Web
pages, not just chunks of XHTML content. Each frame holds a complete XHTML
document you can look at either in a frame, alongside other pages, or on its own.

Figure 10-2:
Although this page looks
normal enough, it takes
some magic to make it
work. Just before the
Web server sends this
page to your browser, it
reads the menu links
from a separate file and
inserts them into the
page.

Welcome.shtm

Menu.htm

Chapter 10: Multipart Pages 267

Frame Basics

Creating a Frames Page
The first step in using frames is to create a frameset document, which are the
instructions that define the number and location of the frames you want in a
browser window, and what page should appear in each one of those frames.

A frameset page is a special type of XHTML document. Like all XHTML docu-
ments, it starts with a doctype. But frameset pages use a specialized doctype you
haven’t seen yet:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

FREQUENTLY ASKED QUESTION

The Frames Controversy
Are there reasons to avoid frames?

The Web developer community has been steadily moving
away from frames for several years. Although they’re still alive
and well in small- and medium-sized Web sites, you’re unlikely
to see them turn up in a large-scale site like eBay or Amazon.

Some of the reasons that frames have a bad reputation are
historical—for example, ancient browsers didn’t support them
that well, and Web newbies used them in all the wrong ways.
However, frames also have a few quirks of their own.

Here are the reasons that top-level Web professionals look
like they’ve just bit into a lemon when you tell them you’re
thinking about using frames:

• Search engine confusion. In a frames page, each
frame displays a separate XHTML file. This has the
potential to confuse search engines, because they
examine each of these files separately. That means
they might have trouble interpreting what one file is
about because related content sits in a separate file,
which is meant to be displayed by its side. Or the
search engine might index just one file from a frames
page instead of the entire frameset. In this case, peo-
ple who follow the search engine link will wind up
seeing this content page without the frames or any of
the other, related files. These idiosyncrasies aren’t the
end of the world, but they aren’t ideal.

• Frame abuse. Some Stone Age Web developers
used frames to keep part of their Web site visible
when a visitor clicked on an external link. The effect
is like an ad bar that never goes away. This leech-like
use of frames is universally despised and almost
completely expunged from today’s Internet.

• Accessibility and Compatibility. While frames will
probably never disappear from the Web com-
pletely, designers are slowly phasing them out
because they cause problems for people with dis-
abilities (who often use screen-reading devices) and
people who do their browsing with small Web-
enabled devices (like cellphones). XHTML 1.0 transi-
tional supports frames, but XHTML 1.0 strict and
XHTML 1.1 don’t.

• Less-effective URLs. You can’t bookmark a frames
page anywhere but at the initial page. As you navi-
gate through a site that uses framed pages, the con-
tent within the frames changes, but the URL
doesn’t—it still reflects the frameset page. Therefore,
there’s no way to supply visitors or friends with a
URL that goes straight to a page of interest—they
need to go to the main frameset page and click their
way through. You’ll learn more about this issue on
page 281.

268 Creating a Web Site: The Missing Manual

Frame Basics

After the doctype, the frameset page uses the standard <html> element. It includes
a <head> section, where you define a title for the page, but it doesn’t continue
with the familiar <body> element, where you usually put the content of a page.
Instead, it introduces a new ingredient: a <frameset> element that divides the page
into separate frames:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>A Sample Frames Page</title>

</head>

<frameset>...</frameset>

</html>

The information inside your <frameset> element is the heart of your frameset
page. It tells a browser how to split the window into separate columns or rows,
with each column or row becoming a distinct frame. The <frameset> element also
sets the size of each frame.

If you split the window into columns, you have to define the width of each using
the cols attribute. You can set the width as a percentage of the total window space,
or as a fixed number of pixels. Here’s an example that splits a page into two equal
columns:

<frameset cols="50%,50%">

 ...

</frameset>

If you carve the window into rows, you use the rows attribute. Here’s an example
that creates three rows using a percentage value to set their relative sizes, with the
middle one being the largest:

<frameset rows="25%,50%,25%">

 ...

</frameset>

Figure 10-3 shows what this example looks like in a browser.

In addition to percentage values, you can define the size of each column or row
using an exact pixel size. Here’s a three-column page where the left and right col-
umns are always 100 pixels wide:

<frameset cols="100,*,100">

 ...

</frameset>

Chapter 10: Multipart Pages 269

Frame Basics

This example introduces another nifty trick—using the asterisk (*). It tells your
browser to make that frame occupy any remaining space on a Web page. For
example, if this browser window is 800 pixels wide, you have two 100-pixel col-
umns on the flanks and a 600-pixel column in the leftover space. Figure 10-4
shows what this looks like.

Note: If you specify fixed pixel sizes for every row or column, the browser gives them the requested size
and then checks to see if there’s more space left over in the window. If so, the browser expands all your
frames proportionately. This probably isn’t the effect you want, so it’s a good idea to use the asterisk to
give all the extra space to a specific frame.

As you probably figured out by now, frames always occupy rectangular regions of a
browser window. There’s no way to create frames with fancy shapes. That doesn’t
mean you can’t create the illusion of a shaped frame, however. All you do is use the
background-image property discussed in Chapter 7 (page 198) to show some sort
of shaped or curved picture as the background for one of the pages in your
frameset. Figure 10-5 shows an example.

Figure 10-3:
These browser windows use the same
frameset, with a 25/50/25 percent split
among the frames. Because the
frameset page specifies frame sizes
using a percent value (rather than an
exact pixel size), the browser resizes all
the frames proportionately when a
visitor stretches the browser window.

25% 50% 25%

25% 50% 25%

270 Creating a Web Site: The Missing Manual

Frame Basics

Figure 10-4:
In this example, the frameset has a fixed
100-pixel frame on either side, and a
middle frame that gets the remaining
space. When a visitor resizes the
browser window, only the middle frame
widens.

Figure 10-5:
You can create the
illusion of a curved
frame by adding a
cleverly designed
background image, as
shown here.

100 px (175 px) 100 px

100 px (375 px) 100 px

Actual
frame

border

Chapter 10: Multipart Pages 271

Frame Basics

Putting Documents in a Frameset
Splitting a window into frames is a good first step, but to see some actual content
on your pages, you need to identify the source of the content you want to put in
each frame.

To define a frame source, you add one <frame> element for each column or row
your frameset includes. You add these elements inside the <frameset> element,
keeping the same order you used to list the columns (left to right) or rows (top to
bottom).

Here’s the basic skeleton of a page with two frames:

<frameset cols="30%,*">

 <frame />

 <frame />

</frameset>

To link a Web page to a frame, you set various attributes of the <frame> element.
The most important are src (which is the file name of the Web page you want to
display in that frame) and name (which gives the frame a descriptive title so you
can use it later in your links). Here’s a typical example of a complete frameset page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>A Sample Frames Page</title>

</head>

<frameset cols="30%,*">

 <frame name="Menu" src="menu.htm" />

 <frame name="Main" src="welcome.htm" />

</frameset>

</html>

In this case, it’s likely you’ll always put the Menu frame on the left (that is, as the
first frame listed) to display the navigation links in menu.htm page. On the other
hand, you’ll use the Main frame on the right (the second frame listed) to show all
kinds of content. Initially, the Main frame displays a welcome page, but that will
change as a reader clicks links and moves through your site. That’s why the frame
name and the XHTML file name don’t match.

Tip: When you supply the source for a frame, you follow all the same rules you do when identifying the
source for an image or hyperlink. That means you include just the file name if the file is in the same folder
as the current page, or you can use a relative or absolute path (see page 210).

To try out this example, save the frameset page using the file name index.htm.

272 Creating a Web Site: The Missing Manual

Frame Basics

Tip: Many Web servers treat index.htm as the entry point of your Web site. That means they send it to the
browser automatically if they receive a request that doesn’t specify a page. See page 57 for more information.

Next, create the menu.htm and welcome.htm pages. All the menu.htm page needs is
a simple list of links, as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title></title>

</head>

<body>

 <p>

 Welcome

 Page 1

 Page 2

 Page 3

 </p>

</body>

</html>

When a browser displays frames, it displays the title of the frameset page at the top
of the browser window, ignoring the titles of the pages that appear within the
frames. That means that the titles in the menu.htm and welcome.htm pages never
appear. You still need to include <title> elements, however, because they’re a
required part of XHTML. Additionally, this title information sometimes appears in
search engine listings.

Note: In the examples in this chapter, the <title> element is left blank if it won’t appear in a browser.
That way, you can quickly sort out which titles are most important.

The welcome.htm page shows some straightforward content:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title></title>

</head>

<body>

Chapter 10: Multipart Pages 273

Frame Basics

 <h1>Welcome</h1>

 <p>This simple welcome page shows how two frames can be joined in happy

 matrimony. On the left is a menu with a set of links.

 Over here on the right, there's a heading and an ordinary paragraph,

 which makes up a content page.</p>

</body>

</html>

As always, you could use styles to make these two pieces look a lot more impres-
sive (see Chapter 6 for more on styles). However, these pages are enough to give
you an idea of how this frames business works. Assuming that all the pages are in
the same folder, you’ll see a single integrated window when you request index.htm
(see Figure 10-6).

Figure 10-6:
To display the frameset
page index.htm, the
browser needs to request
two separate pages. The
browser then displays
these documents in
different frames in the
same window.

274 Creating a Web Site: The Missing Manual

Frame Basics

Note: High-powered Web page editors like Expression Web and Dreamweaver provide tools that make it
easier to work with frames. For example, you can edit all the pages that belong to a frameset in one window.

Targeting Frames
There’s actually a small but important flaw in the frameset shown in the previous
example. When you click one of the navigation links, the target page of the link
opens in the frame where the link appears (see Figure 10-7).

To correct this problem, you need to change your links so that they explicitly tell
the browser to open a target page in the Main frame. To take care of this, you add
the target attribute to the <a> element, and supply the name of the target frame.

Here’s how you rewrite the menu.htm page to target your links:

Welcome

Page 1

Page 2

Page 3

Figure 10-8 shows the corrected behavior.

There’s one other change you need to make. XHTML strict doesn’t support the
target attribute, so you need to make sure your Web page uses the doctype for
XHTML 1.0 transitional (page 30).

Rather than add the target attribute to every link in your page, it would be nice if
there were a way to automatically assign a target frame to every one of those links.
Fortunately, XHTML makes this easy with the <base> element. Using the <base>
element, you can rewrite the menu page as follows.

Figure 10-7:
Here’s what happens when you click the Page
1 link on the left-hand frame shown in Figure
10-6. The target page (page1.htm) appears,
but it’s in the frame where the menu bar used
to be. Now you’re stuck, with no navigation
controls to move around.

Chapter 10: Multipart Pages 275

Frame Basics

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <base target="Main" />

 <title></title>

</head>

<body>

 <p>

 Welcome

 Page 1

 Page 2

 Page 3

 </p>

</body>

</html>

In all, XHTML defines four target names. You can use these names instead of the
name of an actual frame, either in individual links or with the <base> element. For
example, you can use the _blank target to open a new page in a pop-up window, as
shown here:

Welcome

Table 10-1 lists XHTML’s target names.

Figure 10-8:
Once you add the target attribute to the <a>
element, the menu links send pages to the
Main frame on the right, keeping the menu
links visible at all times.

276 Creating a Web Site: The Missing Manual

Building Better
Frames Pages

Building Better Frames Pages
So far, you’ve learned enough about frames to create a Web site that sports a
never-changing navigation bar (like the one shown in Figure 10-8). In this section,
you’ll learn about a few refinements that help you make sure your frames look
respectable, as well as a way to create more complex site structures using nested
frames.

Frame Borders and Resizing
When you create a basic frameset, browsers add a thick gray bar between each
frame. Web visitors can drag this bar to resize your frames at will, potentially
scrambling your content (see Figure 10-9).

Table 10-1. Reserved target names

Name Description

_top Opens the target page in the “top” level of a window. That means the browser
clears away your frameset to make room for the new document. It’s equivalent to
typing the URL of the target page into the browser’s address box.

_parent Opens the target page in the frameset that contains the current frame. In the
examples you’ve seen so far, you’ve used only one frameset, making this name
equivalent to the _top target. But if you start using nested frames (page 282) the
_parent target comes in handy.

_self Opens the target in the current frame. This is the standard behavior, unless you
change it using the <base> element.

_blank Opens the target in a brand-new pop-up window. You should use this technique
sparingly, because it can quickly litter the unsuspecting visitor’s monitor with a
confusing mess of extra windows.

Figure 10-9:
Resizable frames give your Web visitors too
much control.

Resize bar

Chapter 10: Multipart Pages 277

Building Better
Frames Pages

Although you may find resizable frames occasionally useful, few Web sites use
them. Most lock frames in place with the noresize attribute. That way, you decide
what the page looks like—and stays like. You need to apply the noresize attribute to
each <frame> element, like so:

<frame noresize="noresize" ... />

Many Web pages go even further and hide the ugly gray bar altogether by adding a
frameborder attribute to each <frame> element. You need to add a number to the
frameborder attribute that represents the width of the bar (in pixels). Set this num-
ber to 0 and the border disappears, so the page blends into one seamless whole:

<frame noresize="noresize" frameborder="0" ... />

Here’s a cleaned-up version of the frameset shown earlier (Figure 10-10 shows the
result):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>A Sample Frames Page</title>

</head>

<frameset cols="30%,*">

 <frame name="Menu" src="menu.htm" frameborder="0" noresize="noresize" />

 <frame name="Main" src="welcome.htm" frameborder="0" noresize="noresize" />

</frameset>

</html>

Figure 10-10:
This frameset page might as
well be an ordinary Web
page—the only indication that
there are two pages involved
is that each page uses a
different background color.
You could change this so they
blend together completely, or
you could use styles to add a
fancier border.

278 Creating a Web Site: The Missing Manual

Building Better
Frames Pages

Scrolling
Frames have one unmistakable feature—the scroll bar. When the content of one
page grows larger than the size of its frame, scrollbars appear. But what makes this
scrolling feature different from that in an ordinary Web page is the fact that you
can scroll each frame independently, as shown in Figure 10-11.

Note: The fact that you don’t see independently scrolling page sections is one way you can tell that a
Web site like Amazon isn’t designed using frames. When you scroll a page on the Amazon Web site,
everything—content, menu, and header sections—scrolls as part of the same page.

Figure 10-11:
Frames support independent scrolling.
That means that when you scroll down to
see a lengthy content page, other frames
(like the navigation controls circled in this
example) remain locked in place.

Chapter 10: Multipart Pages 279

Building Better
Frames Pages

To prevent confusion, it’s a good idea to keep as little text as possible in non-
content frames (like menu panels) so your page doesn’t display more than one set
of scrollbars, which can confuse the hardiest Web fan.

Alternatively, you can change the scrolling behavior of a frame using the scrolling
attribute. The standard setting, auto (which you get automatically if you don’t
include the scrolling attribute), shows scrollbars only when your page needs them.
Your other options are no (to never show scrollbars, and prevent scrolling) or yes
(to always show them).

Here’s an example that turns off scrolling for the menu frame:

<frame name="Menu" src="menu.htm" noresize="noresize" scrolling="no" />

Figure 10-12 shows the difference.

Note: Resist the temptation to turn off scrolling, because visitors might need it if their browser window is
very small. Ideally, you should test your Web site at the minimum expected browser window size (see
page 230 for a discussion about screen resolution and page layout) and ensure that, at this size, only the
main content page needs a scrollbar. The only time you may want to turn off scrolling is when you show a
small frame for a navigation bar or a page banner.

Figure 10-12:
Top: If the browser window is small enough,
you’ll see two sets of scrollbars, one for each
frame that can’t accommodate its content.

Bottom: When you turn off scrolling in a
frame, no scrollbars appear, even if that
means some content gets chopped off or
becomes completely inaccessible.

280 Creating a Web Site: The Missing Manual

Building Better
Frames Pages

Handling Browsers That Don’t Support Frames
Occasionally, you might find a browser that doesn’t support frames. Here are some
examples when you can’t count on frame support:

• The browser is really old. This is incredibly rare today. (Netscape’s supported
frames since version 2.) For that reason, you can ignore this concern.

• It’s a mobile browser, like those used on small devices like smartphones. Of
course, if you want to support these devices, you need to design your site with
these small screens and limited display powers in mind.

• The Web visitor is viewing-impaired and uses a text-to-speech program (which
“speaks” the text on a Web page). To make the page accessible to screen read-
ers, use the <noframes> technique described below.

Framesets have a built-in mechanism to accommodate these situations. You put a
<noframes> element inside the <frameset> element. Inside the <noframes> ele-
ment, you add content that appears if a browser doesn’t support frames.

For example, consider the two-frame example you’ve been reading about through-
out this chapter. It uses frames to display a menu alongside a content page. At a
bare minimum, browsers that don’t support frames should still be able to read the
content pages one at a time, in an ordinary browser window. The easiest way to
serve up these individual pages is to provide an ordinary link to the menu.htm file,
as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>A 3-Part Frames Page</title>

</head>

<frameset rows="80,*">

 <frame frameborder="0" name="Header" src="header.htm" />

 <frameset cols="100,*">

 <frame frameborder="0" name="Menu" src="menu.htm" />

 <frame frameborder="0" name="Main" src="welcome.htm" />

 </frameset>

 <noframes>

 <body>

 <h1>Your Browser Does Not Support Frames</h1>

Chapter 10: Multipart Pages 281

Building Better
Frames Pages

 <p>

 Click here to go to the menu.

 </p>

 </body>

 </noframes>

</frameset>

</html>

Notice that the <noframes> section picks up where the rest of the XHTML docu-
ment leaves off—with the <body> element that defines the start of the XHTML
content.

Now, when you look at the page in a browser that lacks frames support, you’ll see a
warning message and a link to the menu. You can click through to the menu, and
then continue to each content page. The solution isn’t perfect (for example, to
move from a content page back to the menu, you need to click your browser’s
Back button), but it does provide a rudimentary way to use your site’s menu as a
way to link to other pages. An alternate approach is to copy the full menu content
directly into the <noframes> section, so you don’t need to click an extra link.

Tip: It’s also a good idea to add content to the <noframes> section so any search engine that stumbles
across your page can find out more about the page, increasing the likelihood that the engine will cata-
logue and search the rest of your site. Chapter 11 discusses search engines and how they find your Web
site in more detail (page 316).

Better URLs for Framesets
There’s no law against requesting a frameset page. You can type its URL into your
browser window or link to it in the same way you link to any page. But frameset
pages are a lot less flexible than ordinary Web pages, because they combine several
pages into one URL. To understand the problem they can create, consider this
example.

When you head to a frameset page (say, index.htm), your browser requests the ini-
tial page for each frame. For example, the browser might request navbar.htm to get
a menu and start.htm to display a start page. When you start clicking links in the
navigation bar, the browser performs the nifty little trick you saw earlier—it keeps
the same frame layout, but loads new Web pages into one of the frames. For exam-
ple, if you click Contact Us, the link might swap the start.htm page for contact.htm.

But here’s the problem: The URL in the browser window never changes. No mat-
ter what page you’re looking at, the URL still reflects the name of the initial
frameset page (index.htm). That means that there’s no way to bookmark individ-
ual site pages so you can directly request, say, the frameset with the contact.htm
page displayed. Instead, you have to type index.htm into your browser, which takes
you to the initial set of frames (with start.htm displayed), and then click your way
through to contact.htm.

282 Creating a Web Site: The Missing Manual

Building Better
Frames Pages

Note: The limitation discussed in this section actually doesn’t apply to the Favorites feature in Internet
Explorer. That’s because IE is crafty enough to store information about what page it should load into each
frame, so it can restore the exact arrangement of frames. However, this limitation does apply to other
browsers like Firefox. More significantly, it applies if you need to type the URL in by hand, send it in an
email message, or provide a link from another Web site.

You might think you could solve this problem by requesting contact.htm directly. But
that would get you the contact.htm page only, not the frameset page. As a result, you
wouldn’t see the content in other frames, like the ever-so-important navigation bar.

One way around this problem is to create extra frameset pages. For example, if you
want a way to get back to the contact.htm page, you could create a frameset page
named contact_frames.htm. This frameset page would use the exact same frameset
as index.htm, with one minor difference. Instead of loading the start.htm page ini-
tially, it would load the contact.htm page. If you want to point someone to the
Contact Us page, just use contact_frames.htm. Think of it as a back door that gives
visitors direct access to the pages on your site. The only problem with this
approach is that you need to create a lot of extra frameset pages—as much as one
for every page of content. If you decide to change your layout later on, you’re stuck
with a lot of updating.

Note: A more advanced approach is to add JavaScript code to each page. The idea is that each content
page should check to see if it’s part of a frameset page when a browser displays it. If it isn’t, the content
page should send the reader back to the frameset page, with specific instructions about what frames to
load. If you want to experiment with this more complex approach, work through the JavaScript section in
Chapter 14, and then read the solution at http://javascript.about.com/library/blframe.htm.

Nested Framesets
As you get more comfortable with frames, you may begin to plan more ambitious
layouts. Sooner or later, you’ll want to divide and subdivide your browser window
with wild abandon. The good news is that this isn’t that difficult to do—you sim-
ply need to nest one set of frames inside another.

Imagine you want to divide a page into two rows, and put the header information
in the top row. Then, you want to subdivide the remaining content into two col-
umns, featuring a menu in one and a content page in the other. Figure 10-13
shows the result of this kind of slicing and dicing.

In such a case, you need two framesets. The outer frameset defines the two rows,
and the inner one splits one of those rows into two columns. Here’s the complete
markup for the page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

http://javascript.about.com/library/blframe.htm

Chapter 10: Multipart Pages 283

Building Better
Frames Pages

<head>

 <title>A 3-Part Frames Page</title>

</head>

<frameset rows="80,*">

 <frame name="Header" src="header.htm" frameborder="0" />

 <frameset cols="100,*">

 <frame name="Menu" src="menu.htm" noresize="noresize" frameborder="0" />

 <frame name="Main" src="welcome.htm" noresize="noresize"

 frameborder="0" />

 </frameset>

</frameset>

</html>

The only challenge in writing nested framesets is determining the correct order for
dividing your page. If you reverse the nesting in this example (so you split the win-
dow into columns first, and then into rows), you’ll end up with a very different
result:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>A 3-Part Frames Page</title>

</head>

<frameset cols="100,*">

 <frame name="Menu" src="menu.htm" noresize="noresize" frameborder="0" />

 <frameset rows="80,*">

Figure 10-13:
This page uses three frames. The Header
frame is always 80 pixels high and the Menu
frame is always 100 pixels wide. The main
content page (where it says “Welcome”)
expands to fill whatever space is left over.

284 Creating a Web Site: The Missing Manual

Building Better
Frames Pages

 <frame name="Header" src="header.htm" frameborder="0" />

 <frame name="Main" src="welcome.htm" noresize="noresize"

 frameborder="0" />

 </frameset>

</frameset>

</html>

Figure 10-14 shows this reorganized version.

Another Way to Nest Frames
You’ll run into one limitation if you define all your frames in a single page. To
understand what it is, it helps to consider a new example.

Figure 10-15 shows a page divided into a typical layout of three frames: a header at
the top, a topic panel at the left, and a content region on the right. However, the
way you use these frames differs from previous examples. If you click one of the
topic links on the left, you jump to a different portion of the current page. If you
click one of the header links at the top, you navigate to a whole new page with a
different set of topics.

Tip: Topic links are a great way to break down large pages and make them easier to navigate on the
Web. Add these links to your pages by using bookmarks (as described on page 221).

The problem that this example presents is that every time a reader clicks a new link
in the header, you need to replace both of the frames underneath. That’s because
you need to load a new content page and a new list of topic links. Unfortunately, if
you implement this design using a single frameset, that isn’t possible. Every time
you click a link in the header, you can change only a single frame.

Figure 10-14:
Here, the same frames as shown in Figure 10-
13 end up in different places. The browser
begins by splitting the page vertically into two
columns, and then splits the second column
into two rows.

Chapter 10: Multipart Pages 285

Building Better
Frames Pages

The workaround is to create more than one frameset page. The first frameset is
index.htm, which defines the overall structure of the site. It simply splits the page
into a Header frame and another frame underneath, as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>An Advanced Nested Frames Example</title>

</head>

<frameset rows="94,*">

 <frame name="Header" scrolling="no" src="header.htm"

 noresize="noresize" frameborder="0" />

 <frame name="Main" src="welcome_frame.htm" frameborder="0" />

</frameset>

</html>

The trick here is that the frame underneath points to another frameset document,
named welcome_frame.htm. The welcome_frame.htm file then splits the page with
frames again, this time into two columns:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

Figure 10-15:
In this page, the main navigation links
(Welcome, Page 1, and so on) are all
a part of the header panel on the
top. The panel on the left shows
something new: topic links that let
the reader quickly jump from one part
of the current page to another (using
the bookmark feature you learned
about on page 221). While the header
menu never changes, the topic links
change for every page on the site.

286 Creating a Web Site: The Missing Manual

Building Better
Frames Pages

<head>

 <title></title>

</head>

<frameset cols="150,*">

 <frame name="TopicLinks" src="welcome_topics.htm" scrolling="no" />

 <frame name="Content" src="welcome.htm" />

</frameset>

</html>

The frame on the left, TopicLinks, holds the topic links. The frame on the right,
Content, holds the actual text for your site (see Figure 10-16).

For this model to work, you need to create a frameset page for every content page.
That’s the messy bit. For example, when a reader clicks the Page 1 link, the browser
replaces the bottom frame with the page1_frame.htm page. Here’s the link you’d
put in the header.htm document:

Page 1

The page1_frame.htm document looks exactly the same as welcome_frame.htm,
because it defines the same two column frames, in exactly the same positions. The
only difference is that the source changes to point to a new topic page and a new
content page, as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

Figure 10-16:
When you request the
index.htm page in a
browser, the browser
creates the first two
frames (Header and
Main), and then loads
the header.htm and
welcome_frame.htm files.
The welcome_frame.htm
file splits the bottom
portion of the window
into two more frames
(showing welcome_
topics.htm and welcome.
htm). The result is just
like a nested frame set,
but it gives you more
control over navigation.

Frame: Header
Page: header.htm

Frame: Main
Page: welcome_

frame.htm

Frame: TopicLinks
Page: welcome_topics.htm

Frame: Content
Page: welcome.htm

Chapter 10: Multipart Pages 287

Page Templates

<head>

 <title></title>

</head>

<frameset cols="150,*">

 <frame name="TopicLinks" src="page1_topics.htm" scrolling="no" />

 <frame name="Content" src="page1.htm" />

</frameset>

</html>

That’s all you need to make this example work. As you can see, by creating more
than one frameset, you buy yourself oodles more flexibility. However, this
approach requires some extra effort. To use this solution, you need a frameset
page, a topic page, and a content page for each link in your header. Sadly, there’s
no way to dodge this work.

Page Templates
Web designers often need to put the same content on a whole batch of pages. So
far, you’ve seen two ways to approach this challenge: server-side includes and
frames. Both approaches have their weaknesses, but for many small-scale Web cre-
ators, these problems don’t matter. That’s because the alternative (making a sepa-
rate copy of the repeated content on each page) is a surefire way to fry the last few
neurons of your overworked brain.

However, Web designers who own one of the two premiere Web design tools—
Microsoft Expression Web or Adobe Dreamweaver—have one more option. They
can create a page template that sets out the structure of their site pages, and then
reuse that template relentlessly. The technique is similar to server-side includes,
but instead of having a Web server do the work, you’re giving the task to your Web
page editing program. That means you don’t need to worry about mistakes or Web
server compatibility. You also don’t need to mess around with frame borders,
scroll bars, or the target attribute. For all these reasons, page templates might just
be the perfect compromise for small- or medium-sized Web sites.

Before you get started with page templates, it’s time to face a few drawbacks:

• More time. Every time you change a page template, your Web design tool needs
to update all the pages that use the template. For this reason, page templates
aren’t a great idea for huge Web sites, because the updating process takes too
long.

• More fragile. As you’ll see, the page template system is based on a few secret
comments you bury in your XHTML pages. Unfortunately, it’s all too easy to
accidentally delete or move one of these comments and break the link between
a page and its template. When using page templates, you need to edit your
pages with extra caution.

288 Creating a Web Site: The Missing Manual

Page Templates

• Nonstandard. Page templates work differently in Expression Web and Dream-
weaver. If you use page templates to craft the perfect Web site in Expression
Web, you can’t switch your site over to Dreamweaver—at least not without a
painstaking conversion process that you have to carry out by hand.

If you’re willing to put up with these shortcomings to create true multipart pages,
keep reading.

Understanding Page Templates
The page template system in Expression Web and Dreamweaver is surprisingly
similar. Here are the ground rules:

• You begin by creating a page template. Oddly enough, the page template in
both programs uses a file extension of .dwt. In Dreamweaver, that stands for
Dreamweaver Web Template. In Expression Web, it’s short for Dynamic Web
Template.

• The page template is an ordinary XHTML page you use as the basis for every
other page on your site. The content you put inside the template becomes fixed
content—it’s passed along to every page that uses the template, where it’s
unchangeable. If you pop a menu bar into the page template, every page gets
that exact menu bar. No page can modify it.

• Along with fixed, unchangeable content, the page template includes editable
regions—places where you insert each page’s unique content. To create one of
these editable regions, you use specialized XHTML comments. Although the
comments look similar in Expression Web and Dreamweaver, they aren’t
exactly the same, so you can’t reuse a page template from one program with the
other.

• Once you perfect your page template, you can create the individual site pages
that use it. These pages acquire all the fixed content from the page template and
supply new content for each editable section in the page. The specialized com-
ments always remain in place. They let your Web page editor update the page
when the template changes.

To really understand how Dynamic Web Templates work, you need to see them in
the context of a complete page. Figure 10-17 shows a suitable candidate—a simple
multipart page that shares a header and menu. It closely resembles the server-side
include example you saw at the beginning of this chapter (page 263).

In the following sections, you’ll build the page template for the example shown in
Figure 10-18, and create the four pages that use it.

Creating a New Page Template
Although you can turn any existing page into a page template, it’s often easiest to
let your Web page editor start you out with an example.

Chapter 10: Multipart Pages 289

Page Templates

Here’s how you do that in Dreamweaver:

1. Before getting started, make sure you define your Web site, as described on
page 103.

Dreamweaver always puts page templates in a Templates subfolder inside your
Web site folder. If you don’t define a Web site, you’ll still be able to create a
page template, but you won’t be able to apply it to other pages, which makes it
relatively useless.

Figure 10-17:
With page templates, your Web page editor
fuses together a page template with the new
content for each page.

Figure 10-18:
Every page on this Web site
needs the same header and
menu.

290 Creating a Web Site: The Missing Manual

Page Templates

2. Choose File ➝ New.

The New Document window appears.

3. On the left, choose Blank Page. In the Page Type list, choose HTML Template.

In the Layout list, keep the standard option of <none>. You can use other lay-
outs, but this example assumes you’re creating the entire template from scratch.

This is also a good time to pick the doctype you want from the DocType list, so
you don’t need to change it by hand after you create the template.

4. Click Create.

This creates a new page template, with the bare minimum markup. In the fol-
lowing sections, you’ll learn how to customize it.

After you finish perfecting your template, choose File ➝ Save As Template. Pick
the defined Web site where you want to store your template from the Site lists,
and then click Save to make it official.

Here’s how you can do the same thing in Expression Web:

1. Before getting started, make sure you create Expression Web’s hidden meta-
data folders (page 100).

Expression Web uses these folders to store details about the Web pages in your
site. For example, it keeps track of all the pages that use a given template, which
lets it update these pages when you change the template.

2. Choose File ➝ New.

The New window appears.

3. In the first list, choose Page. In the second list, choose Dynamic Web Template.

At this point, you can click the Page Editor Options link to set additional
options, including the automatic doctype.

4. Click OK.

You start out with a page template named something like Untitled_1.dwt. When
you save it (by choosing File ➝ Save) you can pick a better name.

You now have a brand-new page template. Currently, it’s little more than a basic
XHTML skeleton. To turn it into something useful, you need to understand a bit
more about how page templates work.

The Anatomy of a Page Template
Page templates are completely ordinary XHTML pages. The magic happens
through specialized comments. Although these look like ordinary XHTML com-
ments (page 43), they actually carve the page into separate, editable regions.

Chapter 10: Multipart Pages 291

Page Templates

As you already learned, the content in your page template is fixed. When you cre-
ate a new page that uses that template, you can’t change the fixed content. The
comments in the template identify editable sections where you can insert new con-
tent. These comments come in pairs, so the first one defines the start of an edit-
able region, while the second one demarcates its end. Here’s a comment pair in a
Dreamweaver template:

<!-- TemplateBeginEditable name="body" -->

...

<!-- TemplateEndEditable -->

And here’s the same thing in an Expression Web template:

<!-- #BeginEditable "body" -->

...

<!-- #EndEditable -->

There are two things to notice here. First, comments begin with the standard com-
ment indicator <!--followed by a specific command (like TemplateBeginEditable or
#BeginEditable). That’s how your Web page editor recognizes that the comment is
actually a template instruction. Second, you can see that the comments give your
editable region a name. In both these examples, the region is named “body”.

Tip: Because templates use comments, they’re a bit fragile. Seemingly minor changes, like deleting one
of the comments in a pair, changing a section name, or rearranging comments in the wrong order, can
cause problems. At worst, your Web page editor will become so confused that updating the template will
cause it to erase part of your page. To avoid issues like these, always make a backup of your Web site
before you begin editing it, especially when page templates are involved.

Now that you understand the comment system, you can create a page template for
the page shown in Figure 10-18. In this example, the header and navigation bar are
fixed, unchangeable elements. The content region is the portion that appears
under the header and just to the right of the menu bar.

Here’s the Dreamweaver version of the page template:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <!-- TemplateBeginEditable name="title" -->

 <title></title>

 <!-- TemplateEndEditable -->

 <link rel="stylesheet" href="styles.css" type="text/css" />

</head>

292 Creating a Web Site: The Missing Manual

Page Templates

<body>

 <div class="Header">

 <h1>Templates Rule!</h1>

 </div>

 <div class="MenuPanel">

 <h1>Menu</h1>

 <p>

 Page 1

 Page 2

 Page 3

 The End

 </p>

 </div>

 <!-- TemplateBeginEditable name="content" -->

 <div class="ContentPanel">

 </div>

 <!-- TemplateEndEditable -->

</body>

</html>

And here’s the Expression Web equivalent:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <!-- #BeginEditable "title" -->

 <title></title>

 <!-- #EndEditable -->

 <link rel="stylesheet" href="styles.css" type="text/css" />

</head>

<body>

 <div class="Header">

 <h1>Templates Rule!</h1>

 </div>

 <div class="MenuPanel">

 <h1>Menu</h1>

Chapter 10: Multipart Pages 293

Page Templates

 <p>

 Page 1

 Page 2

 Page 3

 The End

 </p>

 </div>

 <!-- #BeginEditable "content" -->

 <div class="ContentPanel">

 </div>

 <!-- #EndEditable -->

</body>

</html>

Notice that there are actually two editable regions in this example. One is for the
content that will appear to the right of the menu panel. The other is for the title
that appears at the top of the browser window. Thanks to this detail, you don’t
have to give all your pages the same title.

You’ll also notice that both editable regions include some content (like the tags for
the <title> element or a <div> element). When you create a page that uses this
template, you start out with these elements in your editable regions. However,
you’re free to change or replace them with something completely different.

Using a Page Template
Once you finish your template, you’re ready to put it into action. The process is
similar in both programs. Here’s how it goes down in Dreamweaver:

1. Choose File ➝ New.

The New Document window appears.

2. On the left of the New Document window, choose Page From Template. Then,
in the Site list, choose your Web site.

You’ll see a list of all the templates in the Templates folder of your Web site.

3. Select the template you want, and then click Create.

Make sure you keep the “Update page when template changes” checkbox
selected. This way, when you change your template, Dreamweaver updates all
the pages that use the template.

And here’s the same task in Expression Web:

1. Choose File ➝ New.

The New window appears.

294 Creating a Web Site: The Missing Manual

Page Templates

2. In the first list, choose General. In the second list, choose “Create from
Dynamic Web Template”. Then click OK.

The Attach Dynamic Web Template window appears.

3. Browse to the .dwt file you created in the previous section, select it, and then
click Open.

In your new page, you’ll see the combined markup, including the fixed content
and the editable regions. However, you won’t be able to change the fixed content.
Dreamweaver displays the XHTML for the fixed content in light gray. Expression
Web highlights it with a yellow background. Either way, the editable content
regions clearly stand out from the fixed content. And both programs make it even
more distinct in Design view, as shown in Figure 10-19.

To create the page shown in Figure 10-18, you simply add a title and a couple of
paragraphs of text in the editable content region. Here’s the finished page in
Dreamweaver, with the new additions highlighted:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<!-- InstanceBegin template="/Templates/PageTemplate.dwt"

codeOutsideHTMLIsLocked="false" -->

Figure 10-19:
In Design view, both
programs identify editable
regions by drawing a box
around them and
displaying the name of the
region in a tiny label at the
top. You can click an
editable region to type in
content, but you can’t click
anywhere else on the page.

Chapter 10: Multipart Pages 295

Page Templates

<head>

 <!-- InstanceBeginEditable name="title" -->

 <title>Page Templates</title>

 <!-- InstanceEndEditable -->

 <link rel="stylesheet" href="styles.css" type="text/css" />

</head>

<body>

 <div class="Header">

 <h1>Templates Rule!</h1>

 </div>

 <div class="MenuPanel">

 <h1>Menu</h1>

 <p>

 Page 1

 Page 2

 Page 3

 The End

 </p>

 </div>

 <!-- InstanceBeginEditable name="content" -->

 <div class="ContentPanel">

 <p> This Web site has four pages. They all share the same layout,

 the same header (top), and the same navigation menu (left).</p>

 ...

 </div>

 <!-- InstanceEndEditable -->

</body>

<!-- InstanceEnd --></html>

When you use a template to build individual pages in Dreamweaver, your new
page gets comments that are slightly different from those in the original page. For
example, Dreamweaver replaces the TemplateBeginEditable instruction with an
InstanceBeginEditable command.

In Expression Web, the new page gets exactly the same comments as the original
template, as shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

296 Creating a Web Site: The Missing Manual

Page Templates

<!-- #BeginTemplate "PageTemplate.dwt" -->

<head>

 <!-- #BeginEditable "title" -->

 <title>Page Templates</title>

 <!-- #EndEditable -->

 <link rel="stylesheet" href="styles.css" type="text/css" />

</head>

<body>

 <div class="Header">

 <h1>Templates Rule!</h1>

 </div>

 <div class="MenuPanel">

 <h1>Menu</h1>

 <p>

 Page 1

 Page 2

 Page 3

 The End

 </p>

 </div>

 <!-- #BeginEditable "content" -->

 <div class="ContentPanel">

 <p> This Web site has four pages. They all share the same layout,

 the same header (top), and the same navigation menu (left).</p>

 ...

 </div>

 <!-- #EndEditable -->

</body>

<!-- #EndTemplate -->

</html>

This example shows just a single page. You see the real advantages when you cre-
ate dozens of pages based on a template. In every case, to create a new page, you
need do nothing more than set a title and add a bit of content.

But you’ll see the biggest benefit when you change the original page template. For
example, imagine you modify your original template to use a spiffy new graphic
for its header:

<div class="Header">

</div>

Chapter 10: Multipart Pages 297

Page Templates

Once you save your changes, your Web page editor asks if you want to apply the
changes to all the linked pages in the current Web site. Say yes and the editor
quickly and quietly opens all the pages that use the template and updates them
with the new content. The result is an instant facelift for all the pages on your site
(see Figure 10-20).

Tip: Although this chapter gives you a solid overview of the page template system, you may need to con-
sider other subtleties. For example, you may make changes to a page template so dramatic that the edited
template becomes incompatible with the pages that currently use it. Or, you might want to rewire an exist-
ing page to use a different template. To learn about the finer points of page templates, consult a dedi-
cated resource for your Web editor of choice. Dreamweaver fans can pick up a copy of Dreamweaver
CS4: The Missing Manual. Expression Web-ers can check out a free e-book dedicated to the topic of tem-
plates at http://any-expression.com/expression-web/ebooks/expression-web-dwt-ebook.htm.

Figure 10-20:
This header graphic really
makes your Web pages stand
out. But the best part is that
you never cracked open
page1.htm to add this graphic.
Instead, your Web page editor
did the updating for you.

http://any-expression.com/expression-web/ebooks/expression-web-dwt-ebook.htm

3
III.Part Three:
Connecting
With Your Audience

Chapter 11: Attracting Visitors

Chapter 12: Letting Visitors Talk to You (and Each Other)

Chapter 13: Making Money with Your Site

301

Chapter 11chapter

11

Attracting Visitors

Over the past 10 chapters, you’ve polished your Web designing mettle and learned
how to build a variety of sleek pages. Now it’s time to shift to an entirely different
role and become a Web site promoter.

The best Web site in the world won’t do you much good if it’s sitting out there all
by its lonesome self. For your site to flourish, you need to find the best way to
attract visitors—and keep them flocking back for more. In this chapter, you’ll
learn some valuable tricks for promoting your site. You’ll also see how search
engines work, how to make sure they regularly index your site, and how to work
your way up the rankings of search results. Lastly, you’ll learn to gauge the success
of your site with visitor tracking, and you’ll use a powerful free service called Google
Analytics to learn some of your visitors’ deepest secrets (like where they live, what
browsers they use, and which of your Web pages they find absolutely unbearable).
Before you know it, you’ll be more popular than chocolate ice cream.

Your Web Site Promotion Plan
Before you plunge into the world of Web site promotion, you need a plan. So grab
a pencil and plenty of paper, and get ready to jot down your ideas for global Web
site domination (fiendish cackling is optional).

302 Creating a Web Site: The Missing Manual

Your Web Site
Promotion Plan

Although all Webmasters have their own tactics, it’s generally agreed that the best
way to market a Web site is to follow these steps:

1. Build a truly great Web site.

If you start promoting your site before there’s anything to see, you’re wasting
your effort (and probably burning a few bridges). Nothing says “never come
back” like an empty Web site with an “under construction” message.

2. See step 1.

If in doubt, keep polishing and perfecting your site. Fancy graphics aren’t the key
concern here—the most important detail is whether you have some genuinely
useful content. Ask yourself—if you were browsing the Web, would you stop to
take a look at this site? Make sure you’ve taken the time to add the kinds of add-
on features that will keep visitors coming back. One great option: include a dis-
cussion forum (see the next chapter for more details on how to do so).

3. Share links with friends and like-minded sites.

This step is all about building community. Contrary to what you might expect,
this sort of small-scale, word-of-mouth promotion might bring more traffic to
your site than high-powered search engines like Google.

4. Perfect your site’s meta elements.

Meta elements contain hidden words that convey important information about
your site’s content, like a site description. Search engines use them as one way
to determine what your Web site’s all about.

5. Submit your Web site to Internet directories.

Like search engines, directories help visitors find Web sites. The difference
between directories and search engines is that directories are generally smaller
catalogs put together by humans, rather than huge sprawling text indexes
amassed by computers.

6. Submit your Web site to Internet search engines.

Now you’re ready for the big time. Once you submit your Web site to Web
heavyweights like Google and Yahoo, it officially enters the public eye. How-
ever, it takes time to climb up the rankings and get spotted.

7. Figure out what happened.

To assess the successes and failures of your strategy, you need to measure some
vital statistics—how many people visit your site, how long they’re staying, and
how many visitors come back for more. To take stock, you need to crack open
tools like hit counters and server logs.

Throughout this chapter, you’ll tackle these steps, get some new ideas, and build
up a collection of promotion strategies.

Chapter 11: Attracting Visitors 303

Spreading the Word

Spreading the Word
Some of the most effective promotion you can do doesn’t involve any high-tech
XHTML wonkery, but instead amounts to variations on the theme of good old-
fashioned advertising.

The first step is to find other Web sites like yours. If you create a topic-oriented
site—your musings on, say, golf, fine jewelry, or jeweled golf clubs—similar sites
make up your virtual neighborhood. They’re part of a larger online community to
which you now belong. So why not introduce yourself? Strike up a reciprocal link
relationship (see the next section).

On the other hand, if you’re creating a business site, similar sites are, obviously,
your competitors. As a result, you’re unlikely to share links. However, it’s a great
idea to Google your competition. You’ll probably find service sites—business
directories, news sites, content sites, and so on—that link to these competitors.
Once you find these service sites, you can publicize your site there as well.

Reciprocal Links
A reciprocal link is a link-trading agreement. The concept is simple. You find a
Web site with similar content and strike a bargain: Link to my site, and I’ll link to
yours. Reciprocal links are an important thread in the underlying fabric of the
Web. If you’re not sure where to start searching for potential link buddies, pay a
visit to Google and use the link: operator (as explained in Figure 11-1) to see who’s
linking to sites similar to yours. (You can get an even more powerful link viewer as
part of the Google Webmaster Tools, described on page 319.)

Reciprocal links only work if there’s a logical connection between the two sites. For
example, if you create the Web site www.ChocolateSculptures.com, it probably
makes sense to exchange links with www.101ChocolateRecipes.com. But www.Homer-
SimpsonForPresident.com is a far stretch, no matter how much traffic it gets.

Topic isn’t the only consideration in link exchanges. You should also look for sites
that feel professional. If a similarly themed site is choked with ads, barren of con-
tent, formatted with fuchsia text on a black background, and was last updated circa
1998, keep looking.

Once you find a site you want to exchange links with, dig around on the site for the
Webmaster’s email address. Send a message explaining that you love www.
101ChocolateRecipes.com, and plan to link to it from your site, www.ChocolateSculp-
tures.com. Then, gently suggest that you think your Web site would be of great
interest to www.101ChocolateRecipes.com readers.

Tip: Reciprocal linking can require a little finesse. It’s best to look for sites that complement yours, but
don’t necessarily compete with it. You’ll also have more luck if you approach Web peers, sites of similar
quality or with a similar amount of traffic to yours.

http://www.101ChocolateRecipes.com

304 Creating a Web Site: The Missing Manual

Spreading the Word

Once you enter into a link agreement—even if it’s just an informal exchange of
emails—remember to keep your end of the deal. Don’t remove the link from your
site without letting the other Webmaster know about the change. It’s also a good
idea to keep checking on the other site to make sure your link remains prominent.
If it disappears, don’t fly into an Othellian rage—just send a polite email asking
where it went or why it disappeared.

Reciprocal links are also a good way to start working your way up search engine
rankings (see page 318). That’s because one of the criteria Google takes into
account when it determines how to order the results of a Web search is how many
other sites link to yours. The more popular you are, the more likely you’ll climb up
the list.

Note: There are some companies that sell reciprocal link services. The basic idea is that they try to pair
up different Web sites (for a fee) in a link-sharing agreement. Don’t fall for it. Your traffic might increase,
but the visitors you get won’t really be interested in the content of your site, and they won’t hang around
for long.

Figure 11-1:
Google has a little-known
but valuable search
keyword that identifies
sites that link to your site
(or anyone else’s for that
matter). It’s the link:
operator. If you type in
link:www.disneylandparis.
com, for example, you
see all the sites that link
to EuroDisney’s home
page. You can use any
URL you want (for
example, try
link:www.disneylandparis
.com/uk/introduction.htm
to find out who’s linking
to the English-language
intro page).

Chapter 11: Attracting Visitors 305

Spreading the Word

Web Rings
A Web ring is similar to a reciprocal link, but instead of sharing a link between two
partners, it binds a group of Web sites together.

For example, imagine you create a brilliant new site featuring reality TV trivia. To
get more exposure, you can join a Web ring dedicated to reality TV. You agree to
put a block of XHTML on your site that advertises the ring and lets your visitors
go to other sites in it. As payback, you become another stop within the ring (see
Figure 11-2). Web rings are almost exclusively the province of topic-based sites.

Sadly, the majority of Web rings consist of gaudy, amateurish Web disasters. Pair
up with these nightmares and your site will be deemed guilty by association. How-
ever, with a little research, you may find a higher-quality ring. Maybe. To search
for one, use Google (enter the topic followed by the words “Web ring”).

Note: The biggest disadvantage to Web rings is that they usually require you to add a fairly ugly set of
links to your page. Before you sign up, carefully evaluate whether the extra traffic is worth it, and travel to
all the other sites in the ring to see if they’re of similar quality. If you’re in a ring with low-quality sites, it
can hurt your reputation.

Figure 11-2:
Many Web ring sites
don’t list the formal
address of all the
member sites. Instead,
visitors move from one
site to the next using
previous and next links.
This sequence of sites
makes up the “ring.”

Web ring links

306 Creating a Web Site: The Missing Manual

Spreading the Word

Shameless Self-Promotion
To get your Web site listed on many of the Web’s most popular sites, you need to
fork over some cold, hard cash. However, some of the best advertising doesn’t cost
anything. The trick is to look for sites where you can promote and contribute at
the same time.

For example, if you create the Web site www.HotComputerTricks.com, why not
answer a few questions on a computing newsgroup or discussion board? It’s con-
sidered tactless to openly promote your site, but there’s nothing wrong with dis-
pensing some handy advice and following it up with a signature that includes your
URL.

Here’s an example of how you can answer a poster’s question and put in a good
word for yourself at the same time:

Jim,

The problem is that most hard drives will fail when submerged in water. Hence, your
fishing computer idea won’t work.

Sasha Mednick

www.HotComputerTricks.com

An answer posting is much better than sending an email directly to the original
poster because on a popular site hundreds of computer aficionados with the same
question will read your posting. If even a few decide to check out your site, you’ve
made great progress.

If you’re very careful, you might even get away with something that’s a little more
explicit:

Jim,

The problem is that most hard drives will fail when submerged in water. Hence, your
fishing computer idea won’t work. However, you might want to check out my
homemade hard-drive vacuum enclosure (www.HotComputerTricks.com), which I
developed to solve the same problem.

Sasha Mednick

www.HotComputerTricks.com

Warning: This maneuver requires a very light touch. The rule of thumb is that your message should be
well-intentioned. Only direct someone to your site if there really is something specific there that addresses
the question.

Chapter 11: Attracting Visitors 307

Spreading the Word

Some sites let you post tips, reviews, or articles. If that’s the case, you can use a
variation of the technique above. Remember, dispense useful advice, and then fol-
low it up with a byline at the end of your message. For example, if you submit a
free article that describes how to create your groundbreaking vacuum enclosure,
end it with this:

Sasha Mednick is a computer genius who runs the first-rate computing Web
site www.HotComputerTricks.com.

Promotion always works best if you believe in your product. So make sure there’s
some relevant high-quality content on your site before you boast about it. Don’t
ever send someone to your site based on some content you plan to add (someday).

Tip: If you’re a business trying to promote a product, you’ll get further if you recruit other people to help
you spread the word. One excellent idea is to look for influential bloggers—people who create Web sites
with the personal posting format you’ll learn about in Chapter 17. For example, if you’re trying to sell a
new type of fluffy toddler towel pajamas, hunt down popular people with blogs about parenting. Then,
offer them some free pajamas if they’ll offer their thoughts in a blog review. This sort of word-of-mouth
promotion can be dramatically more successful in the wide-reaching communities of the Web than it is in
the ordinary offline world.

Return Visitors
Attracting fresh faces is a critical part of Web site promotion, but novice Webmas-
ters often forget something equally important—return visitors. For a Web site to
become truly popular, it needs to attract visitors who return again and again. Many
a Web site creator would do better to spend less time trying to attract new visitors
and more time trying to keep the current flock.

If you’re a marketer, you know that a customer who comes back to the same store
three or four times is a lot more likely to make a purchase than someone who’s
there on a first visit. These regulars are also more likely to get excited and recruit
their friends to come and take a look. This infectious enthusiasm can lead more
and more people to your Web site’s virtual doorstep. The phenomenon is so com-
mon it has a name: the traffic virus.

Note: Return visitors are the ultimate measuring stick of Web site success. If you can’t interest someone
enough to come back again, your Web site’s just not fulfilling its destiny.

So how does your Web site become a favorite stopping point for Web travelers?
The old Internet adage says it all—content is king. Your site needs to be chock full
of fascinating must-read information. Just as important, this information needs to
change regularly and noticeably. If you update information once a month, your
Web site barely has a pulse. But if you update it two or more times a week, you’re
ready to flourish.

308 Creating a Web Site: The Missing Manual

Spreading the Word

Never underestimate the importance of regular updates. It takes weeks and months
of up-to-date information to create a return visitor. However, one dry spell—say,
three months without changing anything more than the color of your buttons—
doesn’t just stop attracting newcomers, it can kill off your current roster of return
visitors. That’s because savvy visitors immediately realize when a Web site’s gone
stale. They have much the same sensation you feel when you pull out a once-
attractive pastry from the fridge and find it’s as hard as igneous rock. You know
what happens next—it’s time to toss the pastry away, clear out the Web site book-
marks, and move on.

Tip: Signs of a stale site include old-fashioned formatting, broken links, and references to old events (like
a Spice Girls CD release party or a technical analysis of why Florida condos are an ironclad investment).

The other way to encourage return visitors is to build a community. Discussion
forums, promotional events, and newsletters are like glue. They encourage visitors
to feel like they’re participating in your site and sharing your Web space. If you get
this right, hordes of visitors will move in and never want to leave. You’ll learn spe-
cific techniques for community-building in the next chapter.

GEM IN THE ROUGH

Favorite Icons
One of your first challenges in promoting your site is getting
visitors to add your site to their browser bookmarks. How-
ever, that’s not enough to guarantee a return visit. Your
Web site also needs to be fascinating enough to beckon
from the bookmark menu, tempting visitors to come back.
If you’re a typical Web traveler, you regularly visit only
about five percent of the sites you bookmark.

One way to make your site stand out from the crowd is to
change the icon that appears in visitors’ bookmarks or
favorites menu (an icon technically called a favicon). This
technique is browser-specific, but it works reliably in most
versions of Internet Explorer, Firefox, and Safari. The illus-
tration in this box shows the favicons for Google and
Amazon.

To create a favicon, add an icon file to the top-level folder
of your Web site, and make sure you name it favicon.ico.
The best approach is to use a dedicated icon editor,
because it lets you create both a 16-pixel × 16-pixel icon and

a larger 32-pixel × 32-pixel icon in the same file. Browsers
use the smaller icon in their bookmark menus, and Win-
dows PCs display the larger version when visitors drag the
favicon to their desktop (Macs don’t support the desktop-
icon feature). If you don’t have an icon editor, just create a
bitmap (a .bmp file) that’s exactly 16 pixels wide and 16 pix-
els high. To get an icon editor, visit a shareware site like
www.download.com.

http://www.download.com

Chapter 11: Attracting Visitors 309

Adding Meta
Elements

Adding Meta Elements
Meta elements give you a way to add descriptive information to your Web pages,
which is important because some Web search engines rely on these elements to
help visitors find your site. Figure 11-3 explains how it all works.

Note: Fun fact for etymologists and geeks alike: the term “meta element” means “elements about,” as in
“elements that provide information about your Web page.”

You put all meta elements in the <head> section of a page. Here’s a sample meta
element that assigns a description to a Web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <meta name="description"

 content="Noodletastic offers custom noodle dishes made to order." />

 <title>Noodletastic</title>

</head>

<body>...</body>

</html>

Figure 11-3:
Ever wondered where
the information you see
in search listings comes
from? The underlined
link in the above
example (“Sugar Beat”)
is the title of the Web
page the search engine
found. The search
engine pulled the site’s
description (shown
underneath the title)
directly from the page’s
hidden description meta
element.

Page title

Meta tag
description

Search keywords

310 Creating a Web Site: The Missing Manual

Adding Meta
Elements

All meta elements look more or less the same. The element name is <meta>, the
name attribute indicates the type of meta element it is, and the content attribute
supplies the relevant information.

Meta elements don’t show up when your page appears in a browser. They’re
intended for programs, like browsers and Web search engines (see the box below),
that read your XHTML markup from top to bottom.

In theory, there’s no limit to the types of information you can put inside a meta
element. For example, some Web page editing programs insert meta elements that
say its software built your pages (don’t worry; once you understand meta ele-
ments, you’ll recognize this harmless fingerprint and you can easily remove it).
Another Web page might use a meta element to record the name of the Web
designers who created it, or the last time you updated the page.

Some meta elements are more important than others, because search engines heed
them. In the following sections, you’ll learn about two of these: the description and
keywords meta elements. These details, in conjunction with the <title> element, con-
stitute the basic information that a search engine needs to gather about your page.

The Description Meta Element
The description of your page is probably the easiest meta element to come up with.
You simply write a few sentences that distill the content of your site into a few
plain phrases. Here’s an example:

<meta name="description" content="Sugar Beat Music for Children offers age-

appropriate music classes for children 4 months to 5 years old." />

UP TO SPEED

How Web Search Engines Work
A Web search engine like Google has three pieces. The first
is an automated program that roams the Web, download-
ing everything it finds. This program (often known by more
picturesque names like spider, robot, or crawler) eventually
stumbles across your Web site and copies its contents.

The second piece is an indexer that chews through Web
pages and extracts a bunch of meaningful information,
including a Web page’s title, description, and keywords.
The indexer also records a great deal of more esoteric data.
For example, a search engine like Google keeps track of the
words that crop up the most often on a page, what other
sites link to your page, and so on. The indexer inserts all this
digested information into a giant catalog (technically, a
database).

The final piece of the search engine is the part you’re proba-
bly most familiar with—the front-end, or search page. You
enter the keywords you’re hunting for, and the search engine
scans its catalog looking for suitable pages. Different engines
have different ways of ranking pages, but the basic idea is
that the search engine attempts to make sure the most rele-
vant and popular pages turn up early in the search results. A
search engine like Google doesn’t rank Web sites individu-
ally. That is, there’s no such thing as the world’s most popular
Web page (in the eyes of Google). Instead, Google ranks
pages in terms of how they stack up against whatever search
keywords a visitor enters. That means that a slightly different
search (say, “green tea health” instead of just “green tea”)
could get you a completely different set of results.

Chapter 11: Attracting Visitors 311

Adding Meta
Elements

Although you can stuff a lot of information into your description, it’s a good idea
to limit it to a couple of focused sentences that total no more than around 50
words. Some search engines home in on the description text, while others rely
more heavily on the text in the page. Even if your description appears on a search
results page, readers see only the first part of it, followed by an ellipsis (…) where it
gets cut off.

Tip: The description meta element gives search engines some key information. You should include it in
every page you create.

The Keyword Meta Element
Your keyword meta element should contain a list of about 25 words or phrases
that represent your Web site. Separate each word in the list by a comma. Here’s an
example:

<meta name="keywords" content="sugarbeat, sugar, beat, music, children,

musical, classes, movement, babies, infants, kids, child, creative" />

The keyword list is a great place to add important terms (like “horseback riding”),
alternate spellings (“horse back riding”), synonyms or related words (“equestrian”),
and even common misspellings (“ecquestrian”). Keywords aren’t case-sensitive.

Unfortunately, there’s a huge caveat. Most search engines don’t use the keyword
list any longer. That’s because it was notorious for abuses (many a Web master
stuffed his keyword list full of hundreds of words, some only tangentially related to
what was actually on the site). Search engines like Google take a more direct
approach—they look at all the words in your Web page, and pay special attention

DESIGN TIME

The Importance of Titles and Image Text
A search engine draws information from many parts of
your page, not just the meta elements. To make sure your
pages are search-engine-ready, you should check to make
sure you use the <title> element in all your pages, and that
you use alternate text with all your images.

Alternate image text is the text a browser displays if it can’t
retrieve an image. You specify this text using the alt
attribute in the element (see page 181). Search
engines pay attention to the alternate text—for example,
Google, uses it as the basis for its image-searching tool
(http://images.google.com). If you don’t have alt text,
Google has to guess what the picture is about by looking at
nearby text, which is less reliable.

The <title> element also plays several important roles. You
already know that it determines the text your browser dis-
plays in the title bar of the browser window. It also helps
identify your Web page in a listing of search results (see
Figure 11-3, shown earlier). Finally, the <title> element
contains the text that appears in the bookmarks menu if a
visitor bookmarks your page. Keep that in mind, and refrain
from adding long slogans. “Ketchup Crusaders—Because
ketchup isn’t just for making food tasty” is about the longest
you can stretch a title, and even that’s iffy. On the other
hand, remember not to omit essential information. The title
“Welcome” or “Untitled 1” (a favorite in Expression Web)
isn’t very helpful.

http://images.google.com

312 Creating a Web Site: The Missing Manual

Directories and
Search Engines

to words that appear more often, appear in headings, and so on. Most Web experts
argue that the keyword list has outlived its usefulness, and many don’t bother add-
ing it to their pages at all.

Directories and Search Engines
Now that you’re well on your way to perfecting and popularizing your site, it’s time
to start looking at the second level of Internet promotion—search engines. Getting
your Web site into the most important search engine catalogs is a key step in publi-
cizing it. Working your way up the rankings so Web searchers are likely to find you
takes more work, and monopolizes the late-night hours of many a Webmaster.

Directories
Directories are searchable site listings with a difference: humans, not programs, cre-
ate them. That means a small army of workers painstakingly puts together a collec-
tion of sites, neatly sorted into categories. The advantage of directories is that
they’re well-organized. A couple of clicks can get you a complete list of California
regional newspapers, for example. The unquestioned disadvantage is that directo-
ries are dramatically smaller than full-text search catalogs. That means directories
aren’t very useful for those in search of a piece of elusive information that doesn’t
easily fall into a category, like a list of the English language’s most commonly mis-
spelled words. Over the years, as the Web’s ballooned in size, directories have
become increasingly specialized, and full-text search tools like Google and Yahoo
have become the most common way that people hunt for information.

FREQUENTLY ASKED QUESTION

Keyword Tricks
Can I make my Web site more popular by adding hidden
keywords?

There are quite a few unwholesome tricks that crafty Web
weavers use to game the search engine system (or at least
try). For example, they might add a huge number of key-
words, but hide the text so it isn’t visible on the page (white
text on a white background is one oddball option, but there
are other style-sheet tricks). Another technique is to create
pages that aren’t really a part of your Web site, but that you
store on your server. You can fill these pages with repeating
keyword text. To implement this trick, you use a little Java-
Script code to make sure real people who accidentally
arrive at the page are directed to the entry point of your
Web site, while search engines get to feast on the keywords
(JavaScript is discussed in Chapter 14).

As seductive as some of these tricks may seem to lonely
Web sites (and their owners), the best advice is to avoid
them altogether. The first problem is that they pose a new
set of headaches and technical challenges, which can waste
hours of your day. But more significantly, search engines
learn about these tricks almost as fast as Web developers
invent them. If a search engine catches you using these
tricks, it may ban your site completely, relegating it to the
dustbin of the Web.

If you’re still tempted, keep this in mind: Many of these
tricks just don’t work. In the early days of the Web, primitive
search engines gave a site more weight based on the num-
ber of times a keyword cropped up, but modern search
engines like Google use much more sophisticated page-
ranking systems. A huge load of keywords probably won’t
move you up the search list one iota.

Chapter 11: Attracting Visitors 313

Directories and
Search Engines

So, given that directories are just the unattractive cousins of full-text search
engines, why do you need to worry about them? Two reasons. First, some Web vis-
itors still use directories, even if they don’t use them as often as they do full-text
search engines. Second, some search engines (including Google) pay attention to
directory listings, and tend to rank sites higher if they turn up in certain directo-
ries. Getting into the right directories can help you start to move up the results list
in a full-text search. And just like college, getting into a directory requires that you
submit an application, which you’ll learn about next.

The Open Directory Project

The most important directory to submit your site to is the Open Directory Project
(ODP) at http://dmoz.org. The ODP is a huge, long-standing Web site directory
staffed entirely by thousands of volunteer editors who review submissions in
countless categories. The ODP isn’t the most popular Web directory (that honor
currently goes to the Yahoo directory), but other search engines use it behind the
scenes. In fact, Google bases its own directory service (http://directory.google.com)
on the ODP.

Before submitting to the ODP, take the time to make sure you do it right. An
incorrect submission could result in your Web site not getting listed at all. You can
find a complete description of the rules at http://dmoz.org/add.html, but here are
the key requirements:

• Don’t submit your site more than once.

• Don’t submit your site to more than one category.

• Don’t submit more than one page or section of your site (unless you have a
really good reason, like the separate sections are notably different).

• Don’t submit sites that contain “illegal” content. By the OPD’s definition, this is
more accurately described as unsavory content, like pornography, libelous con-
tent, or material that advocates illegal activity—you know who you are.

• Clean up any broken links, outdated information, or any other red flags that
might suggest to an editor that your site isn’t here for the long term.

• When you submit your site, describe it carefully and accurately. Don’t promote
it. In other words “Ketchup Masters is a manufacturer of gourmet ketchup” is
acceptable. “Ketchup Masters is the best food-oriented site on the Web—the
Louisville Times says you can’t miss it!” isn’t.

• Don’t submit an incomplete site. Your “under construction” page won’t get
listed.

The next step is to spend some time at the http://dmoz.org site, until you find the
single best category for your site (see Figure 11-4).

http://dmoz.org
http://directory.google.com
http://dmoz.org/add.html
http://dmoz.org

314 Creating a Web Site: The Missing Manual

Directories and
Search Engines

Once you do so, click the “suggest URL” link at the top of the page and fill out the
submission form (see Figure 11-5). The form asks for your URL, the title of your
site, a brief description, and your email address.

Note: If you have some free time on your hands, you can offer to help edit a site category—just click the
“become an editor” link. And even if you don’t have editorial aspirations, why not check out the editor
guidelines at http://dmoz.org/guidelines to get a better idea of what’s going on in the mind of ODP edi-
tors, and how they evaluate your site submission?

Figure 11-4:
Top: When you first get
to the ODP site, you see
a group of general, top-
level categories.

Bottom: As you click your
way deeper into the topic
hierarchies, you’ll
eventually find a specific
subcategory that would
make a good home for
your site. Here’s the Arts
➝ Visual Arts ➝ Native
and Tribal category.
There are several
subcategories (like Asia,
with 22 sites). Categories
with an @ after their
names link to a related
categories in a different
place in the topic
hierarchy.

Search for
a site topic

The hierarchy
for the current

category

Subcategories
in this category.
The number in
brackets is the

number of sites
they contain.

A related
category

elsewhere in
the directory

Add your site
to this category

Get an overview of
this category (Native

and Tribal) and
see if you fit in.

http://dmoz.org/guidelines

Chapter 11: Attracting Visitors 315

Directories and
Search Engines

Once you submit your site, there’s nothing to do but wait (and submit your site to
the other directories and search engines discussed in this chapter). If two or three
weeks pass without your site appearing in the listing and you haven’t received an
email describing any problems with it, try submitting your site again. If that still
doesn’t work, it’s time to contact the category editor. Write a polite email asking
why your site wasn’t added to the listings, and include the date of your submis-
sion(s) and the name, URL, and description of your site. You can find the email
address for the category editor at the very bottom of the category page (see
Figure 11-6).

The Yahoo directory

ODP is a great starting point, but it isn’t the only directory on the block. The other
heavyweight is the Yahoo directory (http://dir.yahoo.com). Unfortunately, getting
your site into the Yahoo directory takes considerably more work.

First, there’s the issue of cost. If you’ve created a non-commercial site, you can
probably get in free, but it may take persistence, emails, multiple submissions, and
a bit of luck. If you’ve created a commercial site (one whose primary purpose is to
make money) and you want to register it in the U.S. Yahoo directory, you need to
pay an annual fee of several hundred dollars. And in the ultimate case of adding
insult to injury, you won’t get your money back if Yahoo rejects your site.

Figure 11-5:
Here’s a portion of the
ODP submission form for
a new site. Read all the
instructions carefully, fill
in the boxes, and then
click the inviting Submit
button at the bottom of
the page (not shown
here).

http://www.yahoo.com

316 Creating a Web Site: The Missing Manual

Directories and
Search Engines

To get started, you can review Yahoo’s official submission guidelines at http://help.
yahoo.com/l/us/yahoo/directory/suggest/listings-03.html. However, you’ll be much
happier with the unofficial write-up at www.apromotionguide.com/yahoo.html,
which discusses your free and for-fee options, and explains what the cryptic rejec-
tion emails Yahoo sends out really mean. And if you have a commercial Web site,
or you just don’t want to suffer through the slow and unreliable free registration
process, you’ll need to use the Yahoo Directory Submit service (formerly called
Yahoo Express), which is described at https://ecom.yahoo.com/dir/submit/intro.

Once you’re done with directories (or just ready to move on), it’s time to take a
look at full-text search engines.

Search Engines
For most people, search engines are the one and only tool for finding information
on the Web. If you want the average person to find your site, you need to make
sure it’s in the most popular search engine catalogs, and turns up as one of the
results in relevant searches. This task is harder than it seems, because the Web is
full of millions of sites jockeying for position. To get noticed, you need to spend
time developing your site and enhancing its visibility. You also need to understand
how search engines rank pages (see the box below for an example).

Figure 11-6:
Click the editor’s name
(“sprice”) to find out
who he is, what
categories he manages,
and how you can email
him.

The editor for this category

http://help.yahoo.com/l/us/yahoo/directory/suggest/listings-03.html
http://help.yahoo.com/l/us/yahoo/directory/suggest/listings-03.html
http://www.apromotionguide.com/yahoo.html
https://ecom.yahoo.com/dir/submit/intro

Chapter 11: Attracting Visitors 317

Directories and
Search Engines

The undisputed king of Web search engines is Google (www.google.com). Not only
is it far and away the Web’s most popular search engine, it also powers other
search engines (usually without being credited). Google performs an amazing
amount of work—every day it chews through hundreds of millions of search
requests.

Tip: For more information about search engines, including who’s on top and who owns who, check out
www.searchengineland.com.

It’s not too difficult to get Google to notice your site. By the time your site’s about
a month old, Google will probably have stumbled across it at least once, usually by
following a link from another site or from the ODP. As described in the box above,
Google takes outside links into consideration when sizing up a site, so the more
sites that link to you, the more likely you are to turn up in someone’s search
results.

If you’re impatient or you think Google’s passing you by, you can introduce yourself
directly using the submission form at www.google.com/addurl (see Figure 11-7).
Most popular search engines include a submission form like this. Just make sure
you keep track of where you’ve submitted, so you don’t inadvertently submit your
site to the same search engine more than once.

Figure 11-7:
You can safely skip the
comments section on this
page but make sure to
include the http:// prefix
at the start of your Web
page’s URL.

http://www.google.com
http://www.searchengineland.com
http://www.google.com/addurl

318 Creating a Web Site: The Missing Manual

Directories and
Search Engines

Rising up in the rankings

You’ll soon discover that it’s not difficult to get into Google’s index. But you might
find it exceedingly hard to get noticed. For example, suppose you’ve submitted the
site www.SamMenzesHomemadePasta.com. To see if you’re in Google, try an
extremely specific search that targets just your site, like “Sam Menzes Homemade
Pasta.” This should definitely lead to your doorstep. Now, try searching for just
“Homemade Pasta.” Odds are, you won’t turn up in the top 10, or even the top 100.

So how do you create a site that the casual searcher’s likely to find? There’s no easy
answer. Just remember that the secret to getting a good search ranking is having a
good PageRank, and getting a good PageRank is all about connections. To stand
out, your Web site needs to share links with other leading sites in your category.

If you want to delve into the nitty-gritty of search engine optimization (known to
Webmasters as SEO), consider becoming a regular reader of www.webmasterworld.
com and www.searchengineland.com. You’ll find articles and forums where Web-
masters discuss the good, bad, and downright seedy tricks you can try to get
noticed.

Tip: It’s possible to get too obsessed with search engine rankings. Here’s a good rule of thumb—don’t
spend more time trying to improve your search engine ranking than you do improving your Web site. In
the long term, the only way to gain real popularity is to become one of the best sites on the block.

UP TO SPEED

How Google’s PageRank Works
Google uses a rating system called PageRank to size up dif-
ferent Web pages. Google doesn’t use PageRank to find
search results; instead, it uses it to order them. When you
execute a search with Google, it pulls out all the sites that
match your search keywords. Then it orders the results
according to the PageRank of each page.

The basic idea behind the PageRank system is that the value
of your Web site is determined by the community of other
Web sites that link to it. There are a few golden rules:

• The more sites that link to you, the better.

• A link from a more popular site (a site with a high
PageRank) is more valuable than a link from a less
popular site.

• The more links a site has, the less each link is worth.
In other words, if someone links to your site and just

a handful of other sites, that link is valuable. If some-
one links to your site and hundreds of other sites,
the link’s value is diluted.

Although Google regularly fine-tunes its secret PageRank
recipe, Web experts spend hours trying to deconstruct it.
For some fascinating reading, you can learn more about
how PageRank works (loosely) at www.akamarketing.com/
google-ranking-tips.html and www.markhorrell.com/seo/
pagerank.html. Google co-founders Sergey Brin and Larry
Page describe the original formulation of PageRank in an
academic paper by at http://infolab.stanford.edu/
~backrub/google.html.

For way more information about Google and its internal
workings, check out Google: The Missing Manual.

http://www.akamarketing.com/google-ranking-tips.html
http://www.akamarketing.com/google-ranking-tips.html
http://www.markhorrell.com/seo/pagerank.html
http://www.markhorrell.com/seo/pagerank.html
http://infolab.stanford.edu/~backrub/google.html
http://infolab.stanford.edu/~backrub/google.html
http://www.webmasterworld.com
http://www.webmasterworld.com
http://www.searchengineland.com

Chapter 11: Attracting Visitors 319

Directories and
Search Engines

The Google Webmaster Tools

If you’re feeling a bit in the dark about how your Web site rates with Google, you’ll
be happy to know that Google has a service that can help you out. It’s called the
Google Webmaster Tools, and you can sign up your site for free at www.google.
com/webmasters/tools.

Note: Before you can actually use the Google Webmaster Tools, you need to prove you own the site. To
do this, Google asks you to upload a small file (a task that only a site owner can perform). Once Google
finishes verifying your site, you can remove this file.

The Google Webmaster Tools let you look at your Web site through the eyes of
Google. It divides its features into several sections. When you sign up, here’s what
you see:

• Overview. This section tells you whether Google has visited your site, and
whether it’s successfully added your site to its index. You’ll also find links to
help documents that explain how Google sizes up a Web site and how you can
climb the rankings.

• Diagnostics. This section warns you about any problems Google has encoun-
tered, like incorrect metadata (page 309) or pages that it couldn’t access (and
therefore couldn’t index).

• Statistics. This section provides information about the searches that lead Goo-
glers from the search engine to your Web site. For example, you might find out
that people reach your pet food site after searching for “san francisco doggie
treats.” You can get even more detailed statistics using the Google Analytics
tracking service described on page 324.

• Links. This section is most notable for its external link viewer, which shows you
what Web sites link to yours. It’s like a super-powered version of the link:
search operator that you learned about on page 304.

• Sitemaps. This section helps you build a sitemap—a special file that describes
the structure of your site and the files in it. You can submit your sitemap to
Google and other search engines so they know what to index. This is particu-
larly useful if you have pages that Google might ordinarily miss, like standalone
pages (those not linked to other pages).

• Tools. This section lets you tweak a few miscellaneous Google settings (for
example, how often it examines your site for new content). It also lets you cre-
ate and analyze robots.txt files, which you can use to hide a portion of your site
from nosy search engines, as explained on page 321.

Most serious Web designers eventually check out their Web sites with the Google
Webmaster Tools. If nothing else, you can use it to make sure everything is run-
ning smoothly—in other words, that Google can access your site, that its auto-
mated search robots return frequently to check for new content, and that the
robots review all the pages you have to offer.

http://www.google.com/webmasters/tools
http://www.google.com/webmasters/tools

320 Creating a Web Site: The Missing Manual

Directories and
Search Engines

Google AdWords

As a Web-head, you’ve no doubt seen several lifetimes’ worth of flashing mes-
sages, gaudy banners, and invasive pop-ups, all trying to sell you some hideously
awful products. It probably comes as no surprise to learn that these types of ads
aren’t the way to promote your site—in fact, they’re more likely to alienate people
than entice them. However, there are respectable paid placements that can get your
site in front of the right readers, at the right time, and with the right amount of
tact. One of the best is AdWords (http://adwords.google.com), Google’s insanely
flexible advertising system.

The idea behind AdWords is that you create text ads that Google shows alongside
its regular search results (see Figure 11-8). The neat part is that Google doesn’t
show the ads indiscriminately. Instead, you choose the search keywords you want
your ad associated with.

The nice (and slightly confusing) part about AdWords is that you bid for the key-
words you want to use. For example, you might tell Google you’re willing to pay 25
cents for the keyword “food.” Google takes this into consideration with everyone
else’s bids, and displays the higher bidders’ ads more often. But Google isn’t out to
rip anyone off, and it charges you only the going rate for your keyword, regardless
of how much you told Google you’re willing to pay. And Google doesn’t charge
you anything to simply display your ad on a search results page. It charges you
only when someone clicks on your ad to get to your site.

Figure 11-8:
To see AdWords in
action, try searching for a
name brand like
Microsoft. You’ll see a
section clearly marked
Sponsored Links on the
right side of the search
results, or just above the
search results in a yellow
shaded box.

http://adwords.google.com

Chapter 11: Attracting Visitors 321

Directories and
Search Engines

By this point, you might be getting a little nervous. Given the fact that Google han-
dles hundreds of millions of searches a day, isn’t it possible for a measly one-cent
bid to quickly put you and your site into bankruptcy? Fortunately, Google’s got the
solution for this, too. You just tell Google how much you’re willing to pay per day.
Once you hit your limit, Google stops showing your ad.

Interestingly, the bid amount isn’t the only factor that determines how often your
ad appears. Popularity is also important. If Google shows your ad over and over
again and it never gets a click, Google realizes that your ad just isn’t working, and
lets you know that with an automatic email message. It may then start showing
your ad significantly less often, or stop showing it altogether, until you improve it.

AdWords can be competitive. To have a chance against all the AdWords sharks,
you need to know how much a click is worth to your site. For example, if you sell
monogrammed socks, you need to know what percentage of visitors actually buy
something (the conversion rate) and how much they’re likely to spend. A typical
cost-per-click hovers around 75 cents, but there’s a wide range. At last measure,
the word free topped the cost-per-click charts at $2.26, while the keyword combi-
nation llama care could be had for a song—a mere 5 cents. (And in recent history,
law firms have bid “mesothelioma”—an asbestos-related cancer that could become
the basis of a class-action lawsuit—up close to $100.) Before you sign up with
AdWords, it’s a good idea to conduct some serious research to find out the recent
prices of the keywords you want to use.

Note: You can learn more about AdWords from Google: The Missing Manual, which includes a whole
chapter on it, or on Google’s AdWords site (http://adwords.google.com). For a change of pace, go to
www.iterature.com/adwords for a story about an artist’s attempt to use AdWords to distribute poetry, and
why it failed.

Hiding from search engines

In rare situations, you might create a page that you don’t want to turn up in a
search result. The most common reason is because you’ve posted some informa-
tion that you want to share with only a few friends, like the latest Amazon e-coupons.
If Google indexes your site, thousands of visitors could come your way, sucking up
your bandwidth for the rest of the month. Another reason may be that you’re post-
ing something semi-private that you don’t want other people to stumble across,
like a story about how you stole a dozen staplers from your boss. If you fall into the
latter category, be very cautious. Keeping search engines away is the least of your
problems—once a site’s on the Web, it will be discovered. And once it’s discov-
ered, it won’t ever go away (see the box on page 323).

But you can do at least one thing to minimize your site’s visibility or, possibly,
keep it off search engines altogether. To understand how this procedure works,
recall that search engines do their work in several stages. In the first stage, a robot
program crawls across the Web, downloading sites. You can tell this robot to not
index your site, or to ignore a portion of it, in several ways (not all search engines
respect these rules, but most—including Google—do).

http://adwords.google.com
http://www.iterature.com/adwords

322 Creating a Web Site: The Missing Manual

Directories and
Search Engines

To keep a robot away from a single page, add the robots meta element to the page.
Use the content value noindex, as shown here:

<meta name="robots" content="noindex" />

Remember, like all meta elements, you place this one in the <head> section of
your XHTML document.

Alternatively, you can use nofollow to tell robots to index the current page, but not
to follow any of its links:

<meta name="robots" content="nofollow" />

If you want to block larger portions of your site, you’re better off creating a spe-
cialized file called robots.txt, and placing it in the top-level folder of your site. The
robot will check this file before it goes any further. The content inside the robots.txt
file sets the rules.

If you want to stop a robot from indexing any part of your site, add this to the
robots.txt file:

User-Agent: *

Disallow: /

The User-Agent part identifies the type of robot you’re addressing, and an asterisk
represents all robots. The Disallow part indicates what part of the Web site is off
limits; a single forward slash represent the whole site.

To rope off just the Photos subfolder on your site, use this (making sure to match
the capitalization of the folder name exactly):

User-Agent: *

Disallow: /Photos

To stop a robot from indexing certain types of content (like images), use this:

User-Agent: *

Disallow: /*.gif

Disallow: /*.jpeg

As this example shows, you can put as many Disallow rules as you want in the
robots.txt file, one after the other.

Remember, the robots.txt file is just a set of guidelines for search engine robots, it’s
not a form of access control. In other words, it’s similar to posting a “No Flyers”
sign on your mailbox—it works only as long as advertisers choose to heed it.

Tip: You can learn much more about robots, including how to tell when they visit your site and how to
restrict the robots coming from specific search engines, at www.robotstxt.org.

http://www.robotstxt.org

Chapter 11: Attracting Visitors 323

Tracking Visitors

Tracking Visitors
As a Web site owner, you’ll try a lot of different tactics to promote your site. Natu-
rally, some will work while others won’t—and you need to keep the good strate-
gies and prune those that fail. To do this successfully, you need a way to assess how
your Web site is performing.

Almost every Web hosting company (except free Web hosts) gives you some way
to track the number of visitors to your site (see Figure 11-9). Ask your hosting
company how to use these tools. Usually, you need to log on to a “control panel”
or “my account” section of your Web host’s site. You’ll see a variety of options
there—look for an icon labeled “site counters” or “Web traffic.”

With more high-end hosting services, you often have more options for viewing
your site’s traffic statistics. Some hosts provide the raw Web server logs, which store
detailed, blow-by-blow information about every one of your visitors. This infor-
mation includes the time a visitor came, their IP addresses (page 56), their browser
type, what site referred them to you, whether they ran into an error, what pages

UP TO SPEED

Web Permanence
You’ve probably heard a lot of talk about the ever-changing
nature of the Web. Maybe you’re worried that the links you
create today will lead to dead sites or missing pages tomor-
row. Well, there’s actually a much different issue taking
shape—old site copies that just won’t go away.

Once you put your work on the Web, you’ve lost control of
it forever. The corollary to this sobering thought is: Always
make sure you aren’t posting something that’s illegal,
infringes on copyright, is personally embarrassing, or could
get you fired. Because once you put this material out on the
Web, it may never go away.

For example, imagine you accidentally reveal your com-
pany’s trade secret for carrot-flavored chewing gum. A few
weeks later, an excited customer links to your site. You real-
ize your mistake, and pull the pages off your Web server.
But have you really contained the problem?

Assuming the Google robot has visited your site recently
(which is more than likely), Google now has a copy of your
old Web site. Even worse, people can get this cached
(saved) copy from Google if they know about the cache

keyword. For example, if the offending page’s URL is www.
GumLover.com/newProduct.htm, a savvy Googler can get
the old copy of your page using the search “cache:www.
GumLover.com/newProduct.htm.” (Less savvy visitors
might still stumble onto a cached page by clicking the
Cached link that appears after each search result in Goo-
gle’s listings.) Believe it or not, this trick’s been used before
to get accidentally leaked information, ranging from gossip
to software license keys.

You can try to get your page out of Google’s cache as
quickly as possible using the remove URL feature at www.
google.com/webmasters/tools/removals. But even if this
works, you’re probably starting to see the problem—there’s
no way to know how many search engines have made cop-
ies of your work. Interested people who notice that you
pulled down information will hit these search engines and
copy the details to their own sites, making it pretty near
impossible to eliminate the lingering traces of your mistake.
There are even catalogs dedicated to preserving old Web
sites for posterity (see the Wayback Machine at www.
archive.org).

http://www.google.com/webmasters/tools/removals
http://www.google.com/webmasters/tools/removals
http://www.archive.org
http://www.archive.org

324 Creating a Web Site: The Missing Manual

Tracking Visitors

they ignored, what pages they loved, and so on. To make sense of this informa-
tion, you need to feed it into a high-powered program that performs log analysis.
These programs are often complex and expensive. An equally powerful but much
more convenient approach is to use the Google Analytics tracking service,
described next.

Understanding Google Analytics
In 2005, Google purchased Urchin, one of the premium Web tracking companies.
They transformed it into Google Analytics and abolished its hefty $500/month price
tag, making it free for everyone. Today, Google Analytics just might be the best
way to see what’s happening on any Web site, whether you’re building a three-
page site about dancing hamsters or a massive compendium of movie reviews.

Google Analytics is refreshingly simple. Unlike other log analysis tools, it doesn’t
ask you to provide server logs or other low-level information. Instead, it tracks all
the information you need on its own. It stores this information indefinitely, and
lets you analyze it any time with a range of snazzy Web reports.

To use Google Analytics, you need to add a small snippet of JavaScript code to
every Web page you want to track (usually, that’s every page on your site). Once
you get the JavaScript code in place, everything works seamlessly. When a visitor
heads to a page on your site, the browser sends a record of the request to Google’s
army of monster Web servers, which store it for later analysis. The visitor doesn’t
see the Google Analytics stuff. Figure 11-10 shows you how it works.

Figure 11-9:
This Brinkster Page View
Summary shows the
number of hits (page
requests) received on a
given day. The chart
below this summary (not
shown) shows the total
amount of bytes of
information downloaded
from your site. It’s
important to realize that
a “hit” is defined as a
request for any page. If a
single visitor travels
around your Web site,
requesting several pages,
they generate several
hits. To find out how
many unique visitors you
have, you need to use a
separate log analysis
program, described
below.

Chapter 11: Attracting Visitors 325

Tracking Visitors

Note: Remember, JavaScript is a type of mini-program that runs inside a browser. Virtually every Web
browser in existence supports it. Chapter 14 provides a JavaScript introduction.

Using this system, Google Analytics collects two kinds of information:

• Information about your visitors’ browsers and computers. Whenever a
browser requests a page, it supplies a basic set of information. This information
includes the type of browser it is, the features it supports, and the IP address of
the computer it connects through (an IP address is a numeric code that
uniquely identifies a computer on the Internet). These details don’t include the
information you really want—for example, there’s no way to find out personal
details like names or addresses. However, Google uses other browser informa-
tion to infer additional details. For example, using the IP address, it can make
an educated guess about your visitor’s geographic location.

• Visitor tracking. Thanks to its sophisticated tracking system, Google Analytics
can determine more interesting information about a visitor’s patterns. Ordi-
narily, if a visitor requests two separate Web pages from the same site, there’s
no way to establish whether those requests came from the same person. How-
ever, Google uses a cookie (a small packet of data stored on a visitor’s com-
puter) to uniquely identify each visitor. As a result, when visitors click links and
move from page to page, Google can determine their navigation path, the
amount of time they spend on each page, and whether they return later.

Google Analytics wouldn’t be nearly as useful if it were up to you to make sense of
all this information. But as you’ll see, Google not only tracks these details, it pro-
vides reports that help you figure out what the data really means. You generate the
reports using a handy Web screen menu, and you can print them out or download
the data and use it in another program, like Excel, to do further analysis.

Figure 11-10:
The best part about Google Analytics is that you don’t
need to keep track of any information on your own.

326 Creating a Web Site: The Missing Manual

Tracking Visitors

Signing Up for Google Analytics
Signing up for Google Analytics is easy:

1. Head over to www.google.com/analytics and click the Sign Up Now link.

Google Analytics is one of many services you can access with a single Google
account. That means you can use the same account you use for services like
Gmail (Google’s Web-based mail service), Google Groups (Chapter 12), Goo-
gle AdSense (Chapter 13), and Blogger (Chapter 17). If you don’t have a Goo-
gle account, you’ll be prompted to create one by providing your email address
and password.

2. Fill in the information about your Web site.

Here’s the information you need to supply:

The URL for the Web site you want track (for example, www.supermagicalpotatoes.
co.uk). A Google Analytics account can track as many Web sites as you like, but
for now start with just one.

Your time zone. This lets Google Analytics synchronize its clock with yours.

3. Click Finish.

When you finish the sign-in process, Google gives you a box with the Java-
Script code you need to start tracking visits (see Figure 11-11). The next section
tells you how to add that code to your pages.

Figure 11-11:
The Google Analytics
code is lean and concise,
requiring just a few lines.
That’s because it links to
a file on Google’s Web
servers to get the real
tracking code. Select all
the code displayed, and
then copy it to your
clipboard (you do this in
most browsers by right-
clicking the selected text,
and then choosing Copy).

http://www.google.com/analytics

Chapter 11: Attracting Visitors 327

Tracking Visitors

4. Click Finish to complete the process.

Google sends you to the main management page for Google Analytics.

5. Add the tracking code to your Web pages.

When you add Google’s script code to a page, put it at the very end of the
<body> section, just before the closing </body> tag. Here’s an example of
where it fits in a typical Web page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Welcome</title>

</head>

<body>

 ...

 <!-- Put the analytics code here. -->

</body>

</html>

Tip: For best results, copy the tracking code to every Web page in your site. The only exception is for
frames-based sites. If you have one, don’t copy the tracking code to the pages used for navigation bars,
headers, and other non-content regions. There’s generally no point in recording requests for these ele-
ments, because your site displays them automatically.

6. Upload the new version of your Web pages.

Once you change all your pages, make sure to upload them to your Web server.
Only then can Google Analytics start tracking visits. The tracking features won’t
work when you run the pages from your own computer’s hard drive.

Now, it’s a waiting game. Within 24 hours, Google Analytics has enough informa-
tion about recent visitors to provide its detailed reports.

Examining your Web Traffic
As a registered Google Analytics user, you can log in to read reports and make sure
everything’s running smoothly. If you haven’t already done so, now’s the time to
head to www.google.com/analytics.

When you first log in, you see the Analytics Settings page shown in Figure 11-12.
Using this page, you can add new Web sites you want to track or configure exist-
ing ones. You can also get a little guidance from a list of help topics that appears on
the side.

http://www.google.com/analytics

328 Creating a Web Site: The Missing Manual

Tracking Visitors

To determine whether your Web site’s tracking code is working, check the Status
column in the Website Profiles list. Here’s how to interpret the different status val-
ues your site might have:

• Receiving Data indicates that all’s well. Your visitors are going from page to
page under the watchful eye of Google Analytics.

• Waiting For Data indicates that Google’s JavaScript code is running on your
pages, but the information isn’t available for reporting yet. Usually, you see this
for the first 6 to 12 hours after you register a new site.

• Tracking Data Not Installed indicates that Google isn’t collecting any informa-
tion. This could be because you need to wait for visitors to hit your site, or it
could suggest you haven’t inserted the correct JavaScript tracking code.

If you see Receiving Data, congratulations—you’re reports are ready and waiting.
Click the View Reports link next to your Web site to continue on to the Dash-
board (Figure 11-13).

The information that appears in the Dashboard can be a little overwhelming. To
give you a better sense of what’s going on, the following sections break down the
key points, one chart at a time.

Graph of Visits

The graph of visits at the top of the page (Figure 11-14) shows the day-by-day pop-
ularity of your site over the last month. This count doesn’t say anything about how
many pages the average visitor browsed, or how long visitors lingered. It simply

Figure 11-12:
This sample account
tracks two Web sites, but
only one is successfully
collecting data. You can
use the View Reports link
to start reviewing reports,
the Edit link to change
the information you
supplied for your Web
site, and the Delete link
to remove your profile
altogether.

Chapter 11: Attracting Visitors 329

Tracking Visitors

records how many different people visited your site. Using this chart, you can get a
quick sense of the overall uptrend or downtrend of your Web traffic, and you can
see if it rises on certain days of the week or around specific dates.

With a few clicks, you can change this chart to show pageviews, the count of how
many Web pages all your visitors viewed. For example, if an eager shopper visits
your Banana Painting e-commerce store, checks out several enticing products, and
completes a purchase, Google Analytics might record close to a dozen pageviews
but only a single visit. The number of pageviews is always equal to or greater than
the number of visits—after all, each visit includes at least one pageview. To see
pageviews, click the down arrow next to the word Visits in the top-left corner of
the chart, and then choose Pageviews from the list of options.

Tip: Remember, you can look at the data Google Analytics collects over a different range of dates using
the date box in the top-left corner of the Dashboard, as identified in Figure 11-13.

Figure 11-13:
The Dashboard displays
a number of basic
charts that detail your
Web site’s vital signs.
The menu on the left lets
you browse to a variety
of different, more
specialized reports.

Change the date
range (right now
the reports show
one month of
Web traffic)

Switch between
a daily, weekly,
or monthly graph

View
different
reports

Figure 11-14:
To get the specific value
for a data point, hover
over it with your mouse.
For example, this chart
clearly indicates a
modest 36 pageviews on
September 29. To see all
the data points, click the
Show All button in the
bottom right-hand corner
of the chart.

330 Creating a Web Site: The Missing Manual

Tracking Visitors

Site Usage

The Site Usage section (Figure 11-15) is crammed with key statistics. Details
include:

• The total number of visits in the selected date range (initially, it’s the month
leading up to the current day).

• The total number of pageviews.

• The average number of pages that a visitor reads before leaving your site.

• The bounce rate. A bounce occurs when a visitor views only one page—in other
words, they get to your site through a specific page, and then depart without
browsing any further. A bounce rate of 11% tells you that 11% percent of your
visitors leave immediately after they arrive. Bounces are keenly important to
Web masters because they indicate potential lost visitors. If you can identify
what’s causing a big bounce, you can capture a few more visitors.

• The average time a visitor spends on your site before browsing elsewhere.

• The percentage of new visits. For example, a rate of 75% indicates that 25% of
your traffic is repeat business, and 75% are new visitors. Both types of visitor
are important to keep your Web site healthy.

Note: There are some types of repeat visitors that Google won’t correctly identify. For example, if a
repeat visitor uses a different computer, a different browser, or logs into their computer with a different
user name, they’ll appear to be a new visitor. For these reasons, the number of repeat visitors may be
slightly underreported.

Map Overlay

The Map Overlay section gives a fascinating look at where your visitors are located
on the globe. Google Analytics divides the map into countries, and colors them
different shades of green—the darker the color, the more popular your Web site in
that country.

Figure 11-15:
The Site Usage numbers
are the most important
indicator of your site’s
Web health. You can click
any of these stats to see
a separate report with
more detail.

Chapter 11: Attracting Visitors 331

Tracking Visitors

The Map Overlay gets even more interesting if you use the City view shown in
Figure 11-16. To use the City view, click the “view report” link under the Map
Overlay on the Dashboard. A new page appears with a larger version of the map
and a detailed breakdown in a table underneath. Look for the Detail Level box at
the top of the table, and then change the selection in this box from Country/Territory
to City.

Traffic Sources Overview

The Traffic Sources Overview is a pie chart identifying how visitors get to your site.
It has three slices:

• Referring Sites. This slice counts visitors that arrive through Web sites that link
to yours.

Figure 11-16:
The City view adds a
small circle next to every
location where a visitor
resides, using larger
circles for areas that
funneled a particularly
large amount of traffic
your way. To see the
city-by-city details, hover
your mouse over
individual data points.
Here, 18 visits in the last
month were from
browsers in Moscow. The
table below adds a few
more details—for
example, Moscow visitors
viewed an average of 2.
89 pages in each visit
(slightly lower than
usual), spent an average
of just over a minute
browsing, and accounted
for a surprisingly high
83% of new visitors.

332 Creating a Web Site: The Missing Manual

Tracking Visitors

• Direct Traffic. This slice counts visitors that type your URL directly into a
browser or use a bookmark to make a return visit.

• Search Engines. This slice counts visitors who come to your site through a
search in Google or other search engine.

Figure 11-17 shows a closer look.

The Traffic Sources Overview provides a good high-level look at what’s going on.
To get more details, click the “view report” link underneath, or use the Traffic
Sources menu on the left. You can then explore tables that break down the Refer-
ring Sites and Search Engines slices. For the Referring Sites slice, you see exactly
which Web sites send you traffic, which is a great tool for quickly identifying your
most successful Web partnerships. For the Search Engines slice, you can review the
search keywords that lead to your site, which lets you determine what your visitors
are looking for (and possibly diagnose why they left unhappy).

FREQUENTLY ASKED QUESTION

Does Google Really Know Where I Live?
How accurate is the location data Google supplies?

Being able to determine the location of your visitors is a
powerful tool. After all, if you know your Graceland Vaca-
tion site is absurdly popular in Japan, you might consider
accepting payments in Yen, translating a few pages, or add-
ing some new pictures. But Google’s geographic locating
service isn’t perfect. In fact, there are two weaknesses:

• The location service is based on a visitor’s ISP (Inter-
net Service Provider), not the actual visitor herself. In
many cases, the ISP is located in a different area
than the visitor’s own computer.

• ISPs economize by pooling their traffic together and
dumping it onto the Internet at a central location.
This means that even if your visitor and her Web
server are in a specific city, the computer that con-
nects these visitors to the Internet might be some-
where else.

As a general rule of thumb, the geographic information that
Google uses is likely to be close to reality, but not exact. It’s
highly likely that the country is correct, but the specific city
may not match that of your actual visitor.

Figure 11-17:
Over the past month, 81% of visitors came from referring sites, while
18 percent came directly to this site (by typing in its URL). Less than
1 percent found their way through a search engine, which suggests
you might want to consider investing more time in search engine
optimization (page 318).

Chapter 11: Attracting Visitors 333

Tracking Visitors

Content Overview

As every Web master knows, all pages aren’t created equal. Some might command
tremendous interest while others languish ignored. The Content Overview section
lists top-performing pages (Figure 11-18).

However, it’s not enough to simply determine which pages your visitors view the
most. Some pages are extra important because of their ability to attract visitors.
For example, the page of Member Photos on your International Nudist site might
attract large volumes of visitors who then stick around to check out your personal-
ized coffee cups, clothing, and memorabilia. A good reporting tool also shows you
where visitors enter your site, so you know what pages are the attention-getters that
lure traffic. Almost as important are the pages that mark the end of a visit. They
may indicate a problem, like a page that’s extremely large, doesn’t work correctly
in some browsers, or just plain irritates people. To get this sort of detailed infor-
mation in Google Analytics, click the “view report” button in the bottom of the
Content Overview section, or use the Content menu on the left side of the page.

Note: There are many more reports you can explore in Google Analytics, and many more ways to slice
and dice its results to come up with conclusions about your Web traffic. In fact, entire books have been
written about the fine art of analyzing Web site performance. However, the five charts explained above get
you started with great insight into how your Web site is doing.

Figure 11-18:
In this site, BooksNET.htm is the clear winner of the Most
Popular Page award, with 32 percent of the total Web site
traffic.

335

Chapter 12chapter

12

Letting Visitors Talk to
You (and Each Other)

The Web is the crowded home of several million people, so when you put your
Web site online, it doesn’t just drop into a vacuum. Instead, it takes center stage in
front of an audience that’s always interested, often opinionated, and occasionally
irritable.

For your site to really fit in with the rest of the Web, you need to interact with your
visitors. The idea of dialogue—back-and-forth communication between peers—is
hard-wired into the Internet’s DNA. Heated discussion flows over all sorts of dif-
ferent channels, and includes insightful postings on discussion groups, scathing
reviews on Amazon, shout-outs on Web site guestbooks, daily blog entries, email
notes, instant messages, chat rooms, and much more. Online discussions never
stop—they just billow across the globe like giant clouds of hot air.

In this chapter, you’ll learn to connect with your audience using basic tools like
your email inbox, and to incorporate the often-rollicking world of Web-based
groups and discussion forums into your site.

Transforming a Site into a Community
The Web sites you’ve created so far are lonely affairs. Visitors can come and look
around, but there isn’t any way for them to really participate. If the Web were a
one-way medium, like cable television or newspapers, this wouldn’t be a problem.
But the Internet is all about community, which means you need to let your visitors
react, respond, and (occasionally) harass you.

336 Creating a Web Site: The Missing Manual

Transforming a Site
into a Community

How do you start transforming your Web site into a Web community? The first
trick is to change your perspective, so that you plan your Web site as a meeting
place instead of just a place to vent your (admittedly brilliant) thoughts. Here are a
few tips to help you get in the right frame of mind:

• Clearly define the purpose of your site. For example, the description “www.
BronteRevival.com is dedicated to bringing Charlotte Bronte fans together to
discuss and promote her work” is more community-oriented than “www.
BronteRevival.com contains information and criticism of Charlotte Bronte’s
work.” The first sentence describes what the site aims to do, while the second
reflects what it contains, thereby limiting its scope. Once you define a single-
sentence description, you can use it in your description meta element (page
310) or in a mission statement on your home page.

• Build gathering places. No one wants to hang around a collection of links and
static text. Jazz up your site with discussion forums or chat boards, where your
visitors can kick up their heels. You’ll learn how to get these bits in place later in
this chapter.

• Give your visitors different roles. Successful community sites recognize different
levels of contribution. At one extreme, the right people can grow into leader-
ship roles and even coordinate events, newsletters, discussion groups, or por-
tions of your site. At the other extreme are visitors who are happiest lurking in
the background, watching what others do. There are different ways to recognize
individual contributions—some sites use a personal feedback rating system that
adds gold stars (or some other sort of icon) next to a person’s name. Another
approach is to give certain visitors more power, like the ability to manage mem-
bers in a Google group (page 357).

UP TO SPEED

Talking the Talk
Community is so important to the Web that ubergeeks have
their own catchy jargon to describe the process of people
meeting up online. Here are some popular terms so you
won’t feel left out of the discussion:

• A netizen is an active, responsible citizen of the
Internet—someone who takes Web community as
seriously as life in the real world.

• Flaming is a blistering exchange of insults on a pub-
lic forum. If you post your personal theory about
how an alien race created the human species on a
discussion group about evolution, you’re sure to be
flamed.

• Trolling is the act of enticing people to flame you,
either to make them look ridiculous or just for sport.
For example, if you ask for donations for your
“Michael Moore for President” campaign on a Web
site for young Republicans, you’re trolling.

• Blogging is the practice of posting regular, dated
entries on a special kind of Web site (called a blog—
short for “Web log”). Blogs can contain anything
from detailed technical articles to rambling, random
thoughts. Often, bloggers let other people add com-
ments to their blog entries, which lets blogs become
another forum for community interaction. You’ll
learn about blogs in Chapter 17.

Chapter 12: Letting Visitors Talk to You (and Each Other) 337

Helping Visitors
Email You

• Advertise new content before and after you add it. To get visitors coming back
again and again, you need lots of new content. But new content on its own isn’t
enough—you need to build up visitors’ expectation of new content so they know
enough to return, and you need to clearly highlight the new material so they can
find it once they do. To help this work smoothly, try adding links on your first page
that lead to newly added content, along with a quick line or two about upcoming
content you plan to add and concrete information about when it’ll be there.

• Introduce regular events. It’s hard to force yourself to update your site regularly—
and even when you do, visitors have no way of knowing when there’s some-
thing that makes a return visit worthwhile. Why not help everyone keep track of
what’s going on by promoting regular events (like a news section you update
weekly or a promotional drawing that happens on a set date)?

• Create feedback loops. It’s a law of the Web—good sites keep getting better,
while bad sites magnify their mistakes. To help your site get on the right track,
make sure there’s a way for visitors to tell you what they like. Then, spend the
bulk of your time strengthening what works and tossing out what doesn’t.

Now that you have your Web site good-citizenship philosophy straight, it’s time to
learn how to build the ingredients every Web community needs.

Helping Visitors Email You
The first step in audience participation is letting your visitors email you. This is a
small-scale interaction, because it’s exclusively between two people (you and one
visitor) and the conversation is private. Later on in this chapter you’ll learn how to
expand the discussion to include a whole gaggle of Web browsers.

Mailto Links
Unlike the standard-issue hyperlinks you learned about back in Chapter 8, there’s
one special type of link you haven’t seen yet—the mailto link. When you click a
mailto link, your browser starts your email program and begins creating a mes-
sage. It’s still up to you to actually send the message, but the mailto link can get the
process started with a boilerplate subject line and body text.

POWER USERS’ CLINIC

Planning for the Future
The techniques you learn about in this chapter will help you
start and manage a small Web community. However, keep-
ing up with all the tools you need to use takes effort, and as
your site starts to grow, you might not have the time to
manage mailing lists by hand or keep track of your visitors.

All large communities on the Web are supported with some
type of nifty software that can manage these tasks. Only a

small fraction of Web site creators build their own software.
Most buy an existing program.

You won’t learn about full-fledged community software in
this chapter (aside from some free solutions for setting up
forums). However, you can take your search online to hunt
down professional software.

338 Creating a Web Site: The Missing Manual

Helping Visitors
Email You

Note: The mailto link is a great way to get feedback from others, but for it to work, visitors have to have
an email program installed and configured on their PC. Alternatively, if your visitors use Firefox they can
get by with an email add-on (see page 12) that supports a Web-based email service like Gmail.

To create a mailto link, you specify a path that starts with the word mailto, fol-
lowed by a colon (:) and your email address. Here’s an example:

Email Me

Most browsers also let you supply text for the message’s subject line and body.
When someone clicks the mailto link, the new message loads this information,
ready for sending (or editing).

To supply the subject line and body text, you have to use a slightly wonky syntax
that follows these rules:

• Put a question mark after the email address.

• To declare the subject line, add subject= followed by the subject text.

• If you want to define some body text, add the character sequence & after
your subject text, and then type body= followed by the body text.

• Replace characters that could cause problems with specialized codes. Letters,
numbers, and the period are all fine, but most other punctuation isn’t. For
example, you have to replace every space in the subject and body text with the
character sequence %20. This gets quite tedious and makes your message hard
to read after you compose it, but this step ensures that the mailto link works in
every browser. The easiest way to prepare your message text is to visit a page
like http://meyerweb.com/eric/tools/dencoder, which adds the code for you. Sim-
ply enter your message text into the provided text box, and then click Encode to
replace potentially problematic codes with the appropriate ones.

Confused? The easiest way to grasp these rules is to take a look at a couple of
examples. First, here’s a mailto link that includes the subject text “Automatic
Email”:

Email Me

And here’s a link that includes both subject text and body text:

<a href=

"mailto:me@myplace.com?subject=Automatic%20Email&body=

 I%20love%20your%20site.">Email Me

http://meyerweb.com/eric/tools/dencoder

Chapter 12: Letting Visitors Talk to You (and Each Other) 339

Helping Visitors
Email You

When you click this link, you’ll probably see some sort of warning message
informing you that the Web page is about to open your email program and asking
your permission (the exact message depends on your browser and operating sys-
tem). If you agree, you see an email form pop up, like the one shown in
Figure 12-1.

XHTML Forms
XHTML forms is a corner of the XHTML standard you haven’t explored yet. It
defines elements you can use to create graphical components that go into forms,
like text boxes, buttons, checkboxes, and lists. Visitors interact with these compo-
nents, which are commonly called controls, to answer questions and provide infor-
mation. Figure 12-2 shows an example of an XHTML form in action.

Note: XHTML forms are also known as HTML forms, because they were first introduced as an add-on for
HTML. The XHTML version has relatively few changes—it’s just tweaked up with the stricter syntax rules of
XHTML, which forbid improperly nested elements, require lowercase tag names, and so on.

XHTML forms are an indispensable technology for many Web sites, but you prob-
ably won’t get much mileage out of them. That’s because they’re best suited for
high-powered Web applications, not the smaller-scale Web sites you’re creating.

For example, consider the account creation form shown in Figure 12-2. Once a vis-
itor fills out all the details and clicks the Submit button at the bottom of the page,
the browser does something special—it collects this information and patches it
together into one long piece of text. Then it sends the information back to the
server. That’s where the Web application comes in. It examines the submitted data,

Figure 12-1:
When you click a mailto link, your browser
creates an email message (as shown here). It
fills in the recipient, subject, and body according
to information in the link, although whoever’s
clicked the link can change these details (or
close the window without clicking Send). The
actual email window differs depending on the
email program installed on the Web visitor’s
computer. This example shows the message
window from Microsoft Outlook.

340 Creating a Web Site: The Missing Manual

Helping Visitors
Email You

chews through it, and then carries out some sort of action. This action might involve
storing the information in a database or sending back another page with different
XHTML (for example, an error message if the application detects a problem).

Forms are the basic building block of highly dynamic Web sites, but if you’re not a
Web programmer, you probably won’t use forms all that often. Even so, there’s still a
way to use them to collect information. You can configure the forms on your site to
email you. In other words, when someone clicks the Submit button on your form,
the form won’t send the collected data to a Web application—it sends you the infor-
mation in an email message. If you use this technique, you’ll need to sift through the
emails yourself (which can be a major chore if you get hundreds of messages a day),
but you’ll have a valuable channel for visitor feedback.

Form basics

Every XHTML form starts out with a <form> element. The <form> element is a
container element (page 33), and everything inside is automatically deemed to be
part of your form.

<form>

 ...

</form>

Figure 12-2:
Before Microsoft will
grant you a Hotmail
account, you need to
submit some seriously
detailed information. The
text boxes, lists, and
buttons you use are all
part of an XHTML form.

Chapter 12: Letting Visitors Talk to You (and Each Other) 341

Helping Visitors
Email You

Form elements are also block elements (page 113), which means you put them
directly in the <body> section of a page. When you create a form, your browser
adds a little bit of space and starts you off on a new line.

What goes inside your form element? You can put ordinary XHTML content (like
paragraphs of text) inside or outside a form element—it really doesn’t matter. But
you should always put form controls (those graphical components like buttons,
text boxes, and lists) inside a form element. Otherwise, you won’t have any way to
capture the information a visitor enters into the form.

To create controls, you use yet another set of XHTML elements. Here’s the weird
part—most form controls use the exact same element. That element is named
<input>, and it represents information you want to get from the visitor. You
choose the type of input control by using a type attribute. For example, to create a
checkbox, you use the checkbox type:

<input type="checkbox" />

To create a text box (where a visitor types in whatever text he wants), you use the
text attribute:

<input type="text" />

POWER USERS’ CLINIC

Becoming a Programmer
Want to unleash forms throughout your site and become a
hard-core programmer? It’s not easy going, but it can open
up a lot of options for a stylin’ site. The first task is to choose
the programming framework you want to use. Here are
some options:

• JavaScript is a simplified way to program for the
Web. On its own, it’s not enough to power most
professional Web sites, because it runs only inside a
browser (not on a Web server). But it’s a good way
to start out with a kind of programmer’s training
wheels. You get a basic introduction to JavaScript in
Chapter 14, and you’ll create a JavaScript-powered
form on page 434.

• CGI (Common Gateway Interface) is the favorite of
Internet traditionalists. It’s a thorny but widely
adopted standard that’s been around since the dawn

of the Internet. CGI isn’t for the faint of heart,
because it requires jargon-filled languages like C and
Perl. If you aren’t familiar with these languages, you
might still be able to download a CGI script file from
the Web and get it working for you. Head over to
www.cgi101.com/book to dip a toe into CGI.

• ASP (Active Server Pages) and ASP.NET (a newer and
far more ambitious version) are Microsoft technolo-
gies that are a good fit for people familiar with friendly
programming languages like Visual Basic. You can
learn some ASP basics at www.w3schools.com/asp, or
tackle the more complex but much more capable
ASP.NET at www.w3schools.com/aspnet, with which
you can build everything from a joke-a-day message
to industrial-strength e-commerce shops.

http://www.cgi101.com/book
http://www.w3schools.com/asp
http://www.w3schools.com/aspnet

342 Creating a Web Site: The Missing Manual

Helping Visitors
Email You

To create a complete form, you mix and match <input> elements with ordinary
XHTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>A Form-idable Test</title>

</head>

<body>

 <form>

 <p>

 First Name: <input type="text" />

 Last Name: <input type="text" />

 Email Address: <input type="text" />

 <input type="checkbox" />Add me to your mailing list

 </p>

 </form>

</body>

</html>

Figure 12-3 shows the page this creates.

Figure 12-3:
This very basic XHTML form brings together four
controls: three text boxes and one checkbox. Everything
else is just ordinary XHTML content. To make the page
look nicer (and align it more neatly), you can use all the
tricks you learned in previous chapters, including tables
and styles. But one thing’s still missing: a way for your
visitor to actually send you the form’s info. You’ll learn
how to fix that shortcoming below.

Chapter 12: Letting Visitors Talk to You (and Each Other) 343

Helping Visitors
Email You

Every <input> element also supports a value attribute, which you usually use to set
the initial state of a control. For example, if you want to put some text inside a text
box when a page first appears, you could use this markup:

<input type="text" value="Enter the first name here" />

Checkboxes are a little different. You can start them off so that they’re turned on
by adding the checked="checked" attribute, as shown here:

<input type="checkbox" checked="checked" />

Not all controls use the <input> element. In fact, there are two notable excep-
tions. You use the <textarea> element to grab large amounts of text that span
more than one line (don’t ask why XHTML uses a new element for this purpose—
it’s largely for historical reasons). You use the <select> element to create a list from
which a visitor selects items. Table 12-1 lists all of the most common controls.

Table 12-1. XHTML form controls

Control XHTML Element Description

Single-line Text Box <input type="text" />
<input type="password" />

Shows a text box where visitors can
type in text. If you use the password
type, the browser won’t display the
text. Instead, visitors see an asterisk
(*) or a bullet (•) in place of each let-
ter as they type in their password,
hiding it from prying eyes.

Multi-line Text Box <textarea>...</textarea> Shows a large text box that can fit
multiple lines of text.

Checkbox <input type="checkbox" /> Shows a checkbox you can turn on
or off.

Option Button <input type="radio" /> Shows a radio button (a circle you
can turn on or off). Usually, you have
a group of radio buttons next to each
other, in which case the visitor can
select only one.

Button <input type="submit" />
<input type="image" />
<input type="reset" />
<input type="button" />

Shows the standard clickable button.
A submit button always gathers up
the form data and sends it to its desti-
nation. An image button does the
same thing, but lets you display a
clickable picture instead of the stan-
dard text-on-a-button. A reset button
clears the visitor’s selections and text
from all the input controls. A “button”
button doesn’t do anything unless
you add some JavaScript code
(Chapter 14).

List <select>...</select> Shows a list where your visitor can
select one or more items. You add an
<option> element for each item in
the list.

344 Creating a Web Site: The Missing Manual

Helping Visitors
Email You

Mailing a form

Right now, the only problem with the form in Figure 12-3 is that it doesn’t actu-
ally do anything. You need a way for the form to send its data to you. To do that,
you need to take two steps. First, you need to add a Submit button so a visitor can
signal that he’s completed the form. Use the value attribute to set the text that
appears inside this button.

<input type="submit" value="OK" />

Next, you modify the <form> element so that it uses a mailto link to mail the
form’s data to an address you specify:

<form action="mailto:myaccount@HelloThere.com"

 method="post" enctype="text/plain" >

Note: Using mailto in a form is a riskier proposition than using it in a link. Depending on the browser
and email program your Web visitors use, it might not work. And when it does work, it’s more than likely
to irritate your visitors with one or more warning messages. For better results, build a form you love, and
then try mailing it with a server script or using a free form service, as described on page 348.

Finally, you need a way to uniquely identify each control. Otherwise, you won’t be
able to identify the type of information (first name, last name, and so on) your vis-
itor typed in. The solution is to give each control a name with the name attribute.

Here’s the revised form:

<form action="mailto:myaccount@HelloThere.com"

 method="post" enctype="text/plain">

 <p>

 First Name: <input type="text" name="FirstName" />

 Last Name: <input type="text" name="LastName" />

 Email Address: <input type="text" name="Email" />

 <input type="checkbox" checked="checked" name="MailCheck" />

 Add me to your mailing list

 <input type="submit" value="OK" />

 </p>

</form>

Now, say a visitor fills out the form with the information shown in Figure 12-4.

Chapter 12: Letting Visitors Talk to You (and Each Other) 345

Helping Visitors
Email You

When she clicks OK, the form puts the information in an email message and sends
it to you. Here’s the content of the email you receive:

FirstName=Margaret

LastName=Chu

Email=mchu@myplace.com

MailCheck=on

All this email contains is a list of name-value pairs. The name (on the left side of the
equal sign) identifies the control. The value (on the right side) indicates the value your
visitor supplied. As you can see, it could take a lot of work to read all these emails and
record these details if you have a popular Web site. A nicer, but far more complex,
approach is to have some sort of program that understands this type of message, and
uses the information in it to carry out a desired set of actions automatically.

Tip: When a visitor submits a form, you might want to display a confirmation message or send her to a
follow-up Web page. You do this by reacting to the form’s onsubmit event using JavaScript, which will
make a lot more sense once you tackle Chapter 14. For now, check out this example that redirects a visi-
tor to a page named thanks.htm after she submits a form. You can use this code in your form—just mod-
ify the page name.

<form action="mailto:myaccount@HelloThere.com" method="post"
 enctype="text/plain" onsubmit="location.href='thanks.htm'">

Creating a more complex form

In the previous example, you learned to collect information with text boxes and
check boxes. But as you saw in Table 12-1, there’s a whole toolkit of form controls
waiting for you to crack open. In the following example, you’ll learn about two
new ingredients, which let you create a set of radio buttons and a drop-down list
(see Figure 12-5).

Figure 12-4:
A form with some visitor-supplied information.

mchu@myplace.com

346 Creating a Web Site: The Missing Manual

Helping Visitors
Email You

First up are the two radio buttons that allow the form-filler to choose the plan
type. To create them, you need two instances of the radio type of <input> ele-
ment. Here’s the XHTML that makes it happen:

<input type="radio" name="Plan" value="Full" checked="checked" />Full

<input type="radio" name="Plan" value="Part" />Partial

The trick is to make sure you give every radio button in a related group the same
name. That way, your browser knows they belong together, and when a visitor
clicks one option, the others remain unselected. You also need to give every radio
button a unique value. That’s how you tell, when you receive the form results,
which option the visitor selected. For example, if someone clicks the Full option,
and then clicks the button to submit the form, this is the line you see in the
emailed data:

Plan=Full

To add a selectable drop-down menu, use the <select> element to create the list
(and choose a name for it), and then add an <option> element to define each item
in the list (and give it a unique value). Here’s the XHTML:

<select name="PromoSource">

 <option value="Ad">Google Ad</option>

 <option value="Search">Google Search</option>

 <option value="Psychic">Uncanny Psychic Intuition</option>

 <option value="Luck">Bad Luck</option>

</select>

Figure 12-5:
This form aligns its controls neatly, and features a
radio button selection and a drop-down menu.

Chapter 12: Letting Visitors Talk to You (and Each Other) 347

Helping Visitors
Email You

Now, if someone selects the first option, the email message contains this line:

PromoSource=Ad

Note: You can switch your menu from its drop-down appearance to a large list box using the size
attribute. For example, if you write <select size="3"> you create a scrollable list box of three items at once.
If you want to allow multiple selections, add the attribute multiple="multiple". Now, a visitor can select
several items at once by holding down the Ctrl key (or c, if she’s using a Mac). For more low-level form
details, check out www.w3schools.com/html/html_forms.asp.

The last interesting detail about the form shown in Figure 12-5 is that it uses tables
and styles to neaten up its appearance. Various style rules set the fonts and sizes of
the different controls. (See the downloadable content for this chapter—available
from the Missing CD page at www.missingmanuals.com—to take a look at the
details.) Additionally, style rules put each item inside a separate table row so they
all line up neatly. The table has two columns. The leftmost column holds the infor-
mation prompts, and the rightmost column has the control.

Here’s the first part of the table structure:

<table>

 <tr>

 <td>First Name:</td>

 <td><input type="text" name="FirstName" /></td>

 </tr>

 <tr>

 <td>Last Name:</td>

 <td><input type="text" name="LastName" /></td>

 </tr>

 <tr>

 <td>Email Address:</td>

 <td><input type="text" name="Email" /></td>

 </tr>

 ...

</table>

The table technique is a handy way to rein in sprawling forms.

More reliable forms with server scripts

Now that you’ve mastered the XHTML forms standard, you’re ready to improve
the slightly wonky submission method of the previous examples. Instead of using
mailto forms, you can use a more reliable server script.

A server script is a miniature program that runs on a Web server. It’s not a full
Web application like those that power Web sites like Amazon and eBay. Instead, it
consists of a few brief processing instructions embedded in your Web page along-
side your XHTML, or stored in a separate file on your site. For example, for the

http://www.w3schools.com/html/html_forms.asp
http://www.missingmanuals.com

348 Creating a Web Site: The Missing Manual

Adding Forums and
Groups to Your Site

email form submission example above, you can add a script that uses the Web
server to send the email message. This server script approach has numerous advan-
tages—for example, it works even if your visitor doesn’t have an email program
installed, and it hides your email address so spammers can’t find it by looking at
the XHTML for your Web page.

Adding a server script is easy. In most cases, you can keep your Web form the way
it is, and just add a block of code in the right place. The problem is that different
Web hosts support different scripting languages, and some might lock down cer-
tain features. So what’s an ordinary Web weaver to do?

• Ready-made scripts. First, check with your Web host. Search its online help (or
ask a support person) for a server script that can email a form. If you find one,
it’ll have instructions on how to paste the code into your Web page. If this
approach turns up an answer, your work is done.

• Scripts on the Web. If you can’t find a ready-made script, check with your Web
host again—this time to find out if they support a server scripting language, and
what that language is. Then you can use Google to hunt down a suitable script.
For example, the tool at www.tele-pro.co.uk/scripts/contact_form creates scripts for
popular scripting languages including ASP, PHP, and Perl. All you need to do is
enter the names of all your input controls, pick a scripting language, and then
click Finish. You’ll get a new script to upload to your Web site, and you’ll need to
modify the action attribute of your <form> element to match. For example, if you
create a script for ASP, you have to upload a file named contact.asp, and then set
action="contact.asp" on your <form> element. This tells your Web server to run
the contact.asp code when a visitor submits the form. Fortunately, you don’t need
to write that code yourself, or even understand how it works.

• Form submission services. Finally, if your Web host doesn’t support server
scripts, or you just don’t want to wrestle with headaches a programmer would
normally handle, you can use a free form submission service. Essentially, this ser-
vice runs your form on its Web servers, but emails you the data. Good form
submission services are free, but the companies that provide them usually offer
more feature-filled counterparts that come with a price tag. You can find decent
options at www.emailmeform.com and www.response-o-matic.com.

Adding Forums and Groups to Your Site
In the early days of the Internet, Web sites weren’t at the heart of the action.
Instead, the most interesting and lively interactions took place on a mammoth col-
lection of online bulletin boards called Usenet. Sadly, Usenet fell into decline as the
Web grew, spam became pervasive, and slick graphical sites became the norm.
More recently, Google bought the collection of Usenet groups, which is experiencing
a small renaissance as a part of Google Groups (see http://groups.google.com).

http://www.tele-pro.co.uk/scripts/contact_form
http://www.emailmeform.com
http://www.response-o-matic.com
http://groups.google.com

Chapter 12: Letting Visitors Talk to You (and Each Other) 349

Adding Forums and
Groups to Your Site

Although Usenet isn’t ever going to recapture the limelight, different types of dis-
cussion forums are still ragingly popular. But instead of subject-based, administrator-
moderated groups controlled by a single organization, forums crop up as a bonus
feature on all sorts of Web sites. Here are some examples:

• Technology vendors large and small use them to provide community support
and spread information. For example, Microsoft veterans and newbies exchange
Microsoft Office tips on the boards at www.microsoft.com/office/community/
en-us/flyoutoverview.mspx.

• Topic sites use them to host rollicking discussions. For example, you can tear
reality TV to shreds on the popular http://survivorsucks.yuku.com or register
your Microsoft Office frustration at www.officefrustration.com.

• Individuals use them to provide technical support and get feedback. For exam-
ple, popular computer book author Jesse Liberty helps readers with questions
about his technical books at http://forums.delphiforums.com/JLTechSupport.

One of the best parts about forums is that they drive themselves. Once you get the
right ingredients in place, a forum can succeed without you having to intervene.
Think of forums as a dinner party that you host, and all you need to do is get the
conversation started before making a polite retreat. And if you use forums to
answer technical questions, you can reduce your workload immensely. For exam-
ple, on many forums the emphasis is on customers or experts helping each other.
That means forum members share information, advice, and answers, and you only
need to step in to clear up a long-running debate.

Although discussion forums are wildly popular, they come in many flavors. All the
examples in the previous list run on different software. Some of it’s free, other
options cost money, and still others are developed by hand by Web site program-
mers and aren’t for sale to the public.

To create your own groups, you have a few choices. You could purchase an expensive
product, install it on your own in-house Web server, and have complete control
over everything: what your discussion pages look like, who gets to post messages
(or not), and so on. This approach makes sense for a gargantuan company like
American Express, but it doesn’t fit the bill for a small- to medium-sized site.
Instead, you’ll probably want to use an online service provided by another com-
pany. In this scenario, you link to the other company’s Web server, which hosts the
forum. The only catch? Usually, most companies that provide discussion forums
sell advertising space. That means that as you read messages in the group, you’re
likely to see some ads on the sidelines.

In the following sections, you’ll learn to create a forum with one of the most capable
discussion forum tools around, Google Groups.

http://www.microsoft.com/office/community/en-us/flyoutoverview.mspx
http://www.microsoft.com/office/community/en-us/flyoutoverview.mspx
http://survivorsucks.yuku.com
http://www.officefrustration.com
http://forums.delphiforums.com/JLTechSupport

350 Creating a Web Site: The Missing Manual

Adding Forums and
Groups to Your Site

About Google Groups
Google Groups is a thriving community of discussion forums. Although it hasn’t
been around as long as some other forum hosts, it includes a collection of useful
features that rivals any of its competitors. And, of course, it’s all free.

Here are some important details about Google Groups:

• When you create a group, you get a unique, easy-to-remember URL. That’s the
group address, and it never changes (unless you update it yourself).

• Group members can search through group postings with some of the best
search tools on the planet. For bragging rights, nothing rivals the catalog of
searchable Usenet content that Google has acquired, which ranges back to 1981.

• The group creator (you) controls who can and can’t post. If the group gets
busy, you can give other members some or all of your management powers.

• Google manages the registration process itself. That means you don’t need to
manually add and remove group members (although you can, if you like).

• Each group member can choose whether to read group messages online, or
receive them in regular emails that Google sends automatically.

• Google’s page layout is a frazzled Web browser’s dream. It’s easy to search
posts, see all the replies to a post at a glance, bookmark the posts you want to
follow, and more.

• Although Google displays ads in the corners of your group windows, it does its
best to choose relevant ad content. For example, if the most common topic in a
group is favorite DVDs, you’re likely to see ads that promote Blu-ray DVD
players and mail-order movie clubs.

You can learn more about Google Groups at http://groups.google.com/googlegroups/
overview.html.

Creating a Group
To create a new Google Group, follow these steps:

1. Head on over to http://groups.google.com. Look for a link inviting new
members to join, and then click it.

You need to register (with a valid email address and password) before you can
create a group. You can use your Google account if you have one. Once you
complete the process and activated your account, you’re ready to return to the
group setup page.

2. Click the “Create a group” link to get started.

http://groups.google.com/googlegroups/overview.html
http://groups.google.com/googlegroups/overview.html
http://groups.google.com

Chapter 12: Letting Visitors Talk to You (and Each Other) 351

Adding Forums and
Groups to Your Site

3. When asked, log in with your user name and password. The “Create a group”
page appears, as shown in Figure 12-6.

4. Fill in all the information for your group.

The group name identifies your group, like Candy Collectors.

The group email address is a version of the name and it works as an email address or
URL. You can’t use spaces, but Candy-Collectors and CandyCollectors work. The
email address also becomes part of the group URL, so make sure it’s memorable.

The group description explains what the group’s all about, using two or three
sentences.

The access level indicates who’s allowed to post. If you want to create a com-
pletely open group that accepts all comers, choose Public, which makes sense
for most Web groups. Anyone who stumbles across your group can join at will,

Figure 12-6:
Creating a Google group
takes two steps. In the
first, you define all the
basic information about
your group, including its
name and email address.

352 Creating a Web Site: The Missing Manual

Adding Forums and
Groups to Your Site

without your intervention. If you want to use the group solely as a place to post
your own musings, choose Announcements-only. However, you’re probably bet-
ter off to put these announcements right on your Web site instead of in a group.
Finally, if you want to micromanage who you let in, choose Restricted. That
way, the only people allowed to join are those you specifically invite.

Finally, you’ll see a checkbox to allow adult content. If you leave this box
unchecked, Google automatically blocks naughty posts, saving you some
embarrassment.

5. Click the “Create my group” button.

Before continuing, you may have to copy some letters from a picture to prove
you’re a real person, not some sort of Google-group-generating program gone wild.

The second step appears (see Figure 12-7).

6. Fill in the initial set of group members.

Supply a list of email addresses, with one address per line. When you finish cre-
ating the group, Google emails these people to tell them they can join the
group.

Note: Don’t worry if you don’t have email addresses handy. You don’t need to invite anyone now. You
can return to this page to invite people later on, after you create the group.

7. Choose whether to invite or add the initial group members.

Ordinarily, you invite new members to your group by email. To actually
become a member, each invitee needs to visit the site and opt in. But you can
click “Add members directly” if you prefer to make these people automatic
group members, with no acceptance required (as in Figure 12-7). Either way,
recipients need to create a Google account (if they don’t have one already)
before they can post messages.

8. If you invite members, set the subscription option.

If you add rather than invite people, you see a section named “Email subscrip-
tion options.” This lets you choose how these new members will interact with
the group over email. (You don’t get to make this choice if you’re merely invit-
ing new members. Instead, they’ll get to pick their subscription option when
they join the group.)

The subscription options include:

No email. Group members have to read the group posts in a browser, by visit-
ing the group site.

Send email for each message. Google sends every post to every group member. This
is a bad idea unless it’s a quiet discussion group.

Chapter 12: Letting Visitors Talk to You (and Each Other) 353

Adding Forums and
Groups to Your Site

One summary email a day. Group members receive one email message per day
(as long as there’s at least one new post). This message contains a list of new
message titles, with a link to the full text next to each one. This option is a
handy way to stay on top of group activity, and keep an eye out for interesting
posts.

One email with all activity. Group members receive all the new content once per
day in a single gargantuan email. This option won’t clutter an email inbox as
much as receiving each message separately, but in a busy group it results in long
emails that make for impractical browsing.

No matter what subscriber type you choose, group members can change this
setting to match their personal preference later on.

9. Enter a welcome message, and then click Done.

Google creates the group, and shows you a summary (Figure 12-8). Sometime
shortly thereafter, it sends welcome messages to the initial set of group mem-
bers to let them know you’ve created the group (see Figure 12-9).

Figure 12-7:
In the second step, you
choose your initial group
members. Remember, if
you create a public
group, new people can
join at any time through
Google.

354 Creating a Web Site: The Missing Manual

Adding Forums and
Groups to Your Site

Figure 12-8:
The Google Group
summary page provides
important information,
including the group’s
home page URL (which
you’ll want to link to
from your Web site) and
email address. You can
use the links at the
bottom (circled) to skip
directly to the group’s
homepage.

Figure 12-9:
Welcome aboard! You’re a new member
of a Google group.

Chapter 12: Letting Visitors Talk to You (and Each Other) 355

Adding Forums and
Groups to Your Site

Participating in a Group
When you first head over to your group, you’ll find that it’s awfully barren. To get
the discussion started, why not post the first topic?

Google gives you two ways to post a topic. You can add a topic right from the Web
page by clicking the “Start a new topic” link. Or, if you’re really in a hurry, you can
simply send an email message to the group email address. Google then converts
the message into a group topic (Figure 12-10).

Of course, discussions are all about back-and-forth exchanges. Once someone
posts a message, you can read it, and then click the Reply link to post a response.
Google threads posts and replies, which means it groups them together so you can
easily see what message goes with what topic (see Figure 12-11).

Figure 12-10:
Top: This email is about to be
sent to a Google group.

Bottom: Once Google Groups
receives the email, it becomes
an ordinary posting (shown
here). You can click “View
profile” to learn more about
the message poster or “More
options” to reply, forward, or
remove the message
(assuming you’re the group
owner). Interestingly, even
with a single topic, Google’s
already picked out an ad for
the group (shown on the
bottom right). As people use
your group, Google refines
the types of ads it uses, based
on which ones get the most
clicks from group members.

356 Creating a Web Site: The Missing Manual

Adding Forums and
Groups to Your Site

You now have a fully functioning group. From this point on, the challenge isn’t in
using the group, it’s in attracting enough interesting people so that it becomes a
lively community.

Managing Your Group
When ordinary group members visit a group, they have the option to post new
messages, reply to existing ones, or change their delivery settings (by clicking the
“Edit my membership” link). Group members can use this last option to have
group messages automatically emailed to them or to see a summary of group activity.

On the other hand, when the group creator visits the group, additional links
appear. If you head to your group page, you’ll see an “Invite members” link, which
lets you send welcome messages to a new batch of groupies. You’ll also see the
“Group settings” (Figure 12-12) and “Management tasks” (Figure 12-13) links,
which let you take control of a lot more.

The “Group settings” section is chock full of options you can set, organized into a
few subgroups. Here’s a quick rundown of what they offer:

• General. This page shows basic group information, like your group name,
description, URL, and email address. You can click the Edit button to change
these details.

Figure 12-11:
When browsing a group,
you only see a list of
topic posts, not replies.
However, each entry
clearly indicates the
number of replies. In this
example, there are four
posts and a total of six
messages. The first three
posts have no replies.
The fourth topic has the
original post and two
replies. Click the post title
to see the full post and
any replies.

Chapter 12: Letting Visitors Talk to You (and Each Other) 357

Adding Forums and
Groups to Your Site

• Access. These settings let you define who can perform various tasks. For exam-
ple, you can control who can read and create posts (anybody, or only group
members), who’s allowed to invite new members (just you, or any group mem-
ber), and who’s allowed to join. This last option is the most interesting. You can
allow everyone, restrict the group to just people you invite, or force strangers to
apply for group membership. If you use the last choice, anyone can apply to
join, but you have the chance to review the application and give the final vote of
acceptance or refusal. You can even tell Google to give hopeful applicants a spe-
cific question. You can then review their answers to determine whether they’re
group-worthy. Lastly, you can use the Access settings to turn on moderated mes-
sages. With moderated messages, Google sends every new message to you
before it posts it. Messages won’t appear until you give them a thumbs-up (and
if you don’t, they never reach the group). Only use moderated messages if you
have a lot of spare time.

• Appearance. If you want your group to stand out from the crowd, you can use
these options to give your group site different fonts and a snazzy color scheme.

• Navigation. This section lets you hide some of the links shown on the main
group page. For example, if you don’t want to let group members upload and
share files, you can remove the Files link.

Figure 12-12:
When you click “Group
settings,” you see this
page, which lets you set
everything from your
group’s color scheme to
restrictions that limit
different types of group
members. The settings
here are far more
detailed than those you
saw when you created
the group.

358 Creating a Web Site: The Missing Manual

Adding Forums and
Groups to Your Site

FREQUENTLY ASKED QUESTION

Group Restrictions
Should I restrict people from joining my group or posting
messages?

It’s tempting to force group members to apply to your
group, but resist the ego trip. On the Web, people are impa-
tient and easily distracted. If you place barriers in the way
of potential group members, they may just walk away.

On the other hand, there are some cases where restricted
group membership makes a lot of sense. Two examples are
when you want to discuss semi-secret information, like
company strategies, or if you’re afraid your topic might
attract the wrong kind of crowd. For example, if you set up
a group called Software-Piracy to discuss the social implica-
tions of software piracy, you might find yourself deluged
with requests for the latest versions of stolen software. As a
general rule, restrictions make sense only if you use them
to maintain group quality control.

The same holds true for message moderation. Most healthy
online communities are self-regulating. If a member inad-
vertently offends the general community, others will correct
him or her; if it’s deliberate, most will eventually ignore the
provocation. You might need to step in occasionally to ban
a member, but screening every message is overkill. It also
adds a huge amount of extra work for you, and severely
cramps the dynamic of your group, because a new mes-
sage won’t appear until you have the chance to review it,
which will usually be several hours after the poster wrote it.
For fans of the Web who expect instant gratification, this
isn’t good news.

You’ll find the settings for restricting people and moderat-
ing messages in the “Group settings” page, in the Access
section.

Figure 12-13:
Here, the group member
Sarah has been selected
(note the checkmark on
the left). Using the drop-
down lists at the top, you
can quickly change her
message delivery options
or assign her a different
access level. In this
example, she’s about to
be made into a manager,
giving her the ability to
remove posts, invite new
members, and change
group settings (but not
delete the entire group).
Other options include
Unsubscribe, which
would remove her from
the group, and Ban,
which would remove her
with extreme prejudice,
so she would never be
allowed to rejoin.

Chapter 12: Letting Visitors Talk to You (and Each Other) 359

Adding Forums and
Groups to Your Site

• Email delivery. If some of your group members receive messages by email, you
can use these settings to tweak the footer text and control what happens if a
member replies to an emailed posting. Ordinarily, the reply is posted alongside
the original message for the whole group to see, but you can choose to direct
replies to just the original poster or to the group owner (you).

• Categories. Here, you can define a category for your group (like People ➝

Relationships or Health ➝ Addictions). Once you do so, it’s easier for Google
searchers to stumble across your group.

• Advanced. This section lets you perform some low-level administrative tasks,
like setting up a group that’s stored on another server, or deleting your group
altogether.

While the “Group tasks” link presents you with a wide range of settings, the “Man-
agement tasks” link focuses on a single concept—dealing with group members.
Using the “Management tasks” page, you can review the full list of group mem-
bers, see who hasn’t responded to a group invitation, ban troublemaking posters,
and give other members managerial powers (see Figure 12-13).

GEM IN THE ROUGH

Social Networking
It can be tough to build a group from scratch. That’s why an
increasing number of Web dwellers don’t try to do it alone.
Instead, they bring their audience to an existing commu-
nity—one that’s set up around a social networking site. And
when it comes to social networking, no company is better
known than Facebook.

Facebook began as a way for college students to keep in
touch with each other. In only a few years, it mushroomed
into a social site where millions of ordinary people track
down everyone from long-lost loves to faintly remembered
high-school acquaintances. Recently, it’s been making
strides as a business tool—one with both unique advan-
tages and limitations.

To control the chaos, Facebook limits how people interact.
You can’t view someone else’s Facebook profile unless you
sign up with Facebook. And even then, you’ll probably be
locked out unless that person accepts you as a “friend.”
Restrictions like these limit the ways people can interact
(and the ways a business can promote itself). But it also
makes it easier for you to communicate with contacts once
you establish a relationship, without being lost in the
clamor of the Internet.

If you’re already a Facebook fan, here’s what you can do to
bring it into your Web site promotion:

• Make friends. If you’re running a business, add
your business contacts. If you’re planning a new
community, hook up with others in the field. If you
don’t make connections and pump up your friend
list, you’ll find that Facebook is a very lonely place.

• Join a group. Use the search box to hunt for
groups that relate to your interests or business. Join
them. And then keep looking. As with most things in
Facebook, more is more.

• Create your own group. If you have a cause of
your own or a business to promote, you’ll need to
create a group for it. The advantage of a Facebook
group is that it’s wired into the Facebook commu-
nity—so when you post a message, your Facebook
followers are sure to notice.

To learn far more about Facebook and hone your promo-
tional strategies, check out Facebook: The Missing Manual.

361

Chapter 13chapter

13

Making Money with
Your Site

If it’s not for sale on the Web, it’s probably not for sale at all. It’s no secret that the
Internet is a global bazaar with more merchandise than a decade’s worth of garage
sales. Visitors generate huge amounts of traffic hunting for travel discounts, dis-
cussing hot deals, and scouring eBay for bargains. So how can you get your share
of Web capital?

One obvious option is to sell a real, tangible product. The Internet abounds with spe-
cialty shops hawking art, jewelry, and handmade goods. But even if you have a prod-
uct ready to sell, you still need a few specialized tools to transform your corner of the
Web into a bustling e-commerce storefront. For example, you’ll probably want a vir-
tual shopping cart, which lets visitors collect items they want to buy as they browse.
And when they finally head for the virtual checkout counter, you need a secure way
to accept their cash—usually by way of a credit card transaction. In this chapter,
you’ll learn how to get both these features using PayPal’s merchant tools.

Even if you aren’t looking for a place to unload your hand-crafted fishbone pen-
cils, your Web site can still help fatten your wallet. In fact, just about any Web site
can become profitable, either by selling ad space or by recommending other com-
panies’ products. In this chapter, you’ll consider how to use two of the Web’s most
popular affiliate programs—Google AdSense and Amazon Associates—to collect
some spare cash.

Note: Not a U.S. citizen? Don’t worry—all the money-making ideas in this chapter rely on companies that
provide services worldwide. Google, Amazon, and PayPal let you rake in the cash no matter what country
you live in.

362 Creating a Web Site: The Missing Manual

Money-Making the
Web Way

Money-Making the Web Way
The Web offers many paths to fiduciary gain. Here are some of the most popular
ways Web sites make money:

• Donations. It sounds crazy, but some Web sites badger visitors for spare
change. Donations might work if your site provides some truly valuable and
unique content (see Figure 13-1). Otherwise, don’t bother. Don’t be seduced by
logic like “If 1,000 visitors come to my site and every one pays just 10 cents…”
They won’t. However, if you still want to add a Donate button to your Web
pages, you can use a payment service like PayPal, discussed later in this chapter.

• Advertisements. The most popular way to make money on the Web is by sell-
ing small pieces of Web-page real estate. Unfortunately, it’s also a great way to
exasperate your visitors, especially if the ads are distracting, unrelated to your
site, or simply take up too much space. Not long ago, ads were the worst thing
you could do to Web pages. Fortunately, in the 21st century, monitors are big-
ger, and companies like Google provide targeted, unobtrusive ads that fit right
in with the rest of your site.

• Affiliate Programs. Rather than plastering ads across your site, why not put in a
good word for a company you really believe in? Many affiliate programs give
you a commission for referring customers to their sites. For example, if you
review gourmet cookbooks, why not include links to the books on Amazon’s
Web site? If an interested reader buys a book, Amazon’s associate program
forks over a few dollars.

Figure 13-1:
Sites that offer free
software programs are
some of the most likely
to ask for a handout.
Here, Paint.NET begs for
spare change. But even
the best Web sites have
trouble making real
money this way.
Paint.NET hedges its bets
by selling ad space
elsewhere on its site.

Chapter 13: Making Money with Your Site 363

Google AdSense

• Sell Stuff. If you have your own products to sell, the Web is the perfect
medium, since the cost to set up shop online is much less than it is in the real
world. You can build a slick store, complete with product pictures and a shop-
ping cart, with surprisingly little work.

• Pay-for-content. If you have really great content, you can ask for cash before let-
ting your visitors into your site. Warning: This is even harder to pull off than
asking for donations, because visitors need to take a huge leap of faith. It’s a
technique used by established media companies like the Wall Street Journal and
by hucksters promising secret ways to conquer the real estate market or to get
free camcorders.

Note: Pay-for-content is the only money-making scheme you won’t learn to pull off in this chapter.
That’s because in order for it to work, you need a way to authenticate visitors—in other words, you need
to be able to identify visitors to tell whether they’ve paid you or not. This needs some heavy-duty pro-
gramming (or a pay service from another company).

Google AdSense
Even if you don’t have any products to sell, you still have one valuable asset: the
attention of your visitors. The good news is there are a huge number of companies
ready to pay for it.

Some of these companies pay you a minuscule fee every time someone visits one of
your pages that carries one of their ads, while others pay you only when a reader
actually clicks an ad, or when a visitor both clicks an ad and buys something. For-
tunately, you don’t need to waste hours checking out all these options, because
Google has an advertising program that handily beats just about every other
system out there.

The program is called Google AdSense, and it requires you to display small, text-
only advertisements on your pages. You sign up, set aside some space on one or
more pages, and paste in some Google-supplied XHTML (see Figure 13-2). Google
takes care of the rest, filling in that space with a group of ads every time someone
requests your page.

Just displaying Google AdSense ads doesn’t get you anything, but whenever a visi-
tor clicks one of the ad links, you earn a few cents. When your total reaches $100,
Google mails you a check or sends the cash straight to your bank account.

There’s no way to know for sure how much money an individual AdSense click is
worth. That’s because Google advertisers compete by bidding for different key-
words (see page 320) and keyword prices can fluctuate over time. Google does let
you know how much your clicks were worth (in total) when it pays you. A typical
click nets you about 10 cents, but per-click prices often range from a few pennies
to several dollars.

364 Creating a Web Site: The Missing Manual

Google AdSense

Before you become an AdSense devotee, you should know what makes AdSense
different from other ad programs. Here are some of its top advantages:

• AdSense ads are relevant. Google automatically scans your site and picks ads
based on your site’s content. That means that if you have a site devoted to
SpongeBob SquarePants, Google provides ads hawking SpongeBob DVDs, inflat-
able dolls, and birthday gear. Using content-based ads is far, far better than
aggravating your visitors with offers for completely unrelated products, like
high-tech spy cameras. Even better from a profit perspective, these “targeted”
ads dramatically increase the chance that a visitor will click an ad and generate a
click-through fee. And if you’re worried about a competitor’s site turning up in
an advertisement, you can tell Google to filter it out.

• AdSense ads blend in with the scenery. Google gives you a wide range of layout
and color options for its ads. This ensures that the ads you place on your page
match the design and slick color scheme of your site.

• Google provides fair payment. As you learned in Chapter 11 (page 320), Google
charges advertisers different amounts of money for different keywords. Some
advertising providers would just swallow the extra money and pay their mem-
bers the same amount for any click-through. Not Google. It pays you according
to the current value of the keyword, which guarantees that you always get a
competitive rate.

• There are no start-up charges. The AdSense program is free to join.

Figure 13-2:
This Web site nestles a
box with three Google
AdSense ads alongside its
travel links. It blends into
the scenery perfectly
because of its similar
visual style and content.
Google calls this grouping
of ads an ad unit. Google
lets you choose the ad
layout and the number of
ads you want to use in a
page, so it’s up to you
whether you want to slip
a few ads in quietly or
have them dominate your
page.

Google
ad box

Chapter 13: Making Money with Your Site 365

Google AdSense

Tip: Don’t try to cheat AdSense. Devious Web developers have tried to game the system by clicking their
own ads over and over again, or even firing up automated programs to do it for them. The problem is that
Google uses various techniques to spot suspicious usage patterns. If it sees a ridiculous number of clicks
over a short period of time all originating from the same computer, it’s likely to spot the deception and
ban your site outright.

Signing Up for AdSense
You can learn much more about the specifics of Google’s ad program by visiting
www.google.com/adsense. There’s also a great, not-too-detailed walkthrough at
www.google.com/services/adsense_tour.

When you’re ready to get started with AdSense, follow these steps:

1. On the AdSense homepage (www.google.com/adsense), click the Sign Up Now
button.

Google starts gathering account information (Figure 13-3). First, type in your
site URL and identify its language. Next, indicate whether you’re applying as an
individual or as a registered business. This determines the kind of tax informa-
tion Google needs to collect. Registered businesses based in the U.S. need an
EIN (Employer Identification Number). U.S. citizens applying as individuals
need to give Google an SSN (Social Security Number). Citizens of other coun-
tries may need to apply for a U.S. TIN (Taxpayer Identification Number)—see
www.google.com/adsense/taxinfo for the lowdown.

Note: Google won’t pay you until it gets the tax details it needs. To help make the process less painful, it
guides you to the correct form and lets you submit it online. However, Google won’t prompt you for tax
information until it has collected at least $10 in advertising revenue.

Finally, fill in your name, address, and phone number.

Along the way, you need to tick the checkboxes next to several disclaimers,
vouching that you won’t click your own ads, place ads on pornographic sites,
and so on.

2. Once you finish, click Submit Information.

The next page summarizes all the information you supplied.

3. If you already have a Google account, choose “I have an email and password I
already use with Google services.” Otherwise, choose “I do not use these other
services.”

Google provides a dizzying number of online services. To prevent you from
having to track dozens of passwords, it’s a good idea to group them all under
one Google account. If you already have a Google account, you need to fill in
your email address and current password. If you don’t, you need to fill in your
email address and choose a password.

http://www.google.com/adsense
http://www.google.com/services/adsense_tour
http://www.google.com/adsense
http://www.google.com/adsense/taxinfo

366 Creating a Web Site: The Missing Manual

Google AdSense

4. Click Continue to finish the process.

Now you need to wait for Google to contact you by email to confirm your
account. This involves two steps. First, Google sends you an email confirma-
tion message almost immediately. This message contains a link you need to
click to confirm your email address. However, this still doesn’t finish the job.

Someone at Google needs to take a quick look at your site to confirm that it
really exists and that it isn’t promoting illegal activity (for example, offering
pirated copies of Windows Vista). Once they do this, which usually takes a couple
of days, you’ll get a second email message confirming that Google has activated
your account.

Creating an Ad
Now that you have an AdSense account, you’re ready to generate some ads and put
them on your site. Go to www.google.com/adsense, and log in with your email
address and Google password. You’ll see Google’s AdSense page (see Figure 13-4),
divided into four sections by tabs at the top.

Figure 13-3:
Google AdSense collects
all the information it
needs, from Web site
details to your address,
in a single page.

http://www.google.com/adsense

Chapter 13: Making Money with Your Site 367

Google AdSense

UP TO SPEED

AdSense Rules
Google enforces a handful of rules that your Web site has
to follow to be a part of AdSense. Many are common sense,
but it’s still worth taking a quick look at them.

• You can’t put the Google ads in email messages or
pop-up windows—the temptation for spammers to
abuse the system is just too great.

• You can’t put ads on pages that don’t feature any
“real” content. This includes error, login, registration,
welcome, and under-construction pages. You defi-
nitely can’t create pages that include nothing but ads.

• You can’t try to obscure parts of an ad (for example,
by placing other elements over them using a style
sheet). The entire content of an ad needs to be visible.

• You can’t click your own ads. You also can’t use pro-
grams that do this for you. Finally, you can’t entice
your visitors to click your links using threats or
incentives.

• Your Web site can’t include excessive profanity,
copyrighted material, pornography, content about
hacking hi-tech security systems, advocacy for illegal
drugs, hate speech, or anything related to gambling.

For the full AdSense policy, visit www.google.com/
adsense/policies.

Figure 13-4:
Google divides its
AdSense page into
several tabs. Initially, you
begin at the Reports tab,
where you can survey a
day-by-day breakdown
of the money you’ve
made.

http://www.google.com/adsense/policies
http://www.google.com/adsense/policies

368 Creating a Web Site: The Missing Manual

Google AdSense

These sections include:

• Reports. Reports help you assess the performance of your ads. You’ll see a sum-
mary of the money you made today and over the last week. To get more
detailed information, click a report link, like “This month, by day,” which gives
you your earnings for the current month, totaled by day. (Google won’t tell you
what each individual click was worth, or which particular ad caught a reader’s
eye.) You can also view a payment history that records each check Google
mailed to you (click the “View payment history” link).

• AdSense Setup. This is your starting point for generating AdSense ads—it’s
where you specify the display format for your ads and get the XHTML markup
to insert into your Web pages. You can also access some advanced features, like
filtering out ads from specific Web sites.

• My Account. This tab lets you update most of the information you supplied
when you registered, including your mailing address and tax information.

• Resources. This tab has links to other useful information and tools. For exam-
ple, you can browse the AdSense blog, chat with others in AdSense’s help
forum, or read through some inspiring success stories and optimization tips.

Note: Before you can generate the right ad unit, you need to have a basic idea of where you plan to put
your ads. Consider whether you want a vertical or horizontal strip of ads, and try to assess how wide or
long that bar should be. You can skip ahead to Figure 13-6 to see a preview of some of your layout
options.

Now you’re ready to dive in and build your first ad unit. Here’s how:

1. On the AdSense page, click the AdSense Setup tab.

You see several clickable subcategories, including the automatic selection, Get
Ads. Using this subtab, you generate the XHTML code for a Google ad unit.

2. Click the AdSense for Content link.

AdSense for Content is the traditional form of AdSense ad, which lets you earn
money by placing small text ads on your site. However, Google AdSense pro-
vides several other options for the entrepreneur:

• AdSense for Search invites you to make money by putting a Google search
box on your pages. When a visitor executes a search using this box, a stan-
dard Google search results page appears, complete with relevant ads (as
shown on page 364). If the searcher clicks one of these ads, you get the usual
commission.

• AdSense for Feeds inserts ads in a blog feed. (See Chapter 17 for more about
blogs and feeds.)

Chapter 13: Making Money with Your Site 369

Google AdSense

• Video Units let you show movies on your Web page with small embedded
ads at the bottom of the playback window. You choose a category of movie
(or let Google choose one based on your page’s content), and then add a
video window to your page. When a visitor plays a movie, ads appear under-
neath, and if the video watcher clicks one, you earn your usual commission.
The Video Units service uses YouTube, which you’ll learn about in
Chapter 16.

• AdSense for Mobile Content appeals to people who build tiny Web sites for
the browsers in mobile phones. It’s the mobile equivalent of AdSense for
Content.

Note: Google is constantly tweaking and refining the types of ads it offers. Don’t be surprised if you find even
more types of ad formats available than those described here when you check out the AdSense program.

3. Choose the type of ad you want to create—either an ad unit or a link unit—
and then click Continue.

Google shows you a preview of each type of ad (Figure 13-5).

An ad unit is a group of one or more ads, complete with descriptive text or
(optionally) images. When visitors click an ad, they wind up at the advertiser’s
Web site and you get paid.

Figure 13-5:
Ad units are the most
common type of AdSense
ad. Ordinarily, Google
uses text-and-image ads
in an ad unit, but you can
change that to text-only
or image-only ads in the
Ad unit list.

370 Creating a Web Site: The Missing Manual

Google AdSense

A link unit is a slim box of links with no descriptive text. The box has the title
“Ads by Google” and the links are one- or two-word entries, like “Digital Cam-
eras” or “Consumer Electronics.” If a visitor clicks one of these links, Google
serves up a new page filled with ads for products in that category. If your visitor
clicks one of these ads, you get paid.

If you create an ad unit, you can choose whether you want to use text ads,
image ads, or both (the default). Generally, image ads stand out more than text
ads. However, you need to balance two conflicting goals—the desire to make
money by attracting clicks with eye-catching ads, and the desire to minimize
distraction on your page by choosing less obtrusive ads.

4. Choose the ad layout in the Format section.

Google always packages AdSense ads in boxes. Each box includes several ads. The
ad format you choose determines whether you’ll get a vertical stack of ads or a hor-
izontal row. It also determines how many ads you see at once (from one to five).

It’s difficult to picture what different ad layouts really look like. To orient your-
self, click the Ad Formats link, which opens a window with an example of every
layout option (see Figure 13-6, bottom). Using this page, you can find the for-
mat that best suits your site.

5. Choose a color palette (this step is optional).

The color palette sets the colors Google uses for the ad unit’s text, background,
and border. Google has preset palettes, with names that rival those in designer
paint lines (“Mother Earth” and “Fresh Mint” are two). As you choose the pal-
ette you want, Google previews the result in a small ad at the bottom-left of the
page. To see the effect on your entire ad box, click the “Preview this AdSense
unit” link underneath.

If you want to make sure your colors match the ones on your Web site, you can
adjust them. For example, you might want the ad box’s border or background
color to blend in with the background on your page. To change the colors of an
ad unit, modify the color codes in the boxes underneath the list of color pal-
ettes. If you want to reuse a custom color scheme later, click the “Edit palettes”
link, name the scheme, and then save it.

Tip: Usually, you choose background and text colors that match the colors you already use on your Web
page. If you don’t change the standard colors, your ad box will have the same background color as your
Web page, and no border. For some advice on how to choose custom XHTML colors, see page 152.

6. Choose an alternate ad (this step is optional). Then, click Continue.

When you first put an ad unit on a page, Google doesn’t yet know what ads are
a good match for your content, so it temporarily uses alternate content. Ordi-
narily, Google uses public service ads—messages from nonprofit organizations
like Unicef. Not long thereafter, Google’s text-sniffing software pays a visit to
your page, and the real ads materialize within a couple of days.

Chapter 13: Making Money with Your Site 371

Google AdSense

If you don’t want to put up with generic ads, you can display alternate content.
You have two options—you can choose an alternate color, in which case Goo-
gle uses a block of color without any ad content. The idea is that you use a color
that matches the background of your page, so the “ad” disappears entirely. Your
second option is to specify a URL for a page you want to use. Until the real ads
are ready, that content appears on your page.

Tip: Alternate ads probably aren’t worth the trouble. It’s better to use the generic ads, because the ad lay-
out is the same, which makes it easy to place the ad in the right place and get an idea of what it looks like
alongside the rest of your content.

Figure 13-6:
Top: Google AdSense has layout
options for virtually any Web site. This
example (top) uses a 300- × 250-pixel
rectangle, which holds four ads, one on
top of the other. Of course, the only
way you’ll know how many ads fit in a
layout is by clicking “Ad Formats”
(circled) to see Google’s sample
(bottom).

372 Creating a Web Site: The Missing Manual

Google AdSense

7. Choose a channel (this step is optional). Then, click Continue.

If you generate a half-dozen ads and scatter them on different pages through-
out your site, you don’t know which ones are making you money. Google’s
report shows you only the total number of clicks for all the pages on your site.
Many site owners want more detail about which ads are working. Enter Google’s
channels feature.

To track the performance of different ads, you place each ad in a separate, vir-
tual “channel.” Google then lets you create reports that compare each channel
so you can tell which performs best.

To create a new channel, click the “Add new channel” link, which pops open a
window asking you to name the channel. Once you create a channel, you can
apply it to your current ad by clicking the tiny “add” link next to the channel
name (Figure 13-7). (By the same token, click “remove” to stop tracking an ad.)

Tip: Channels are a great way to try out different ad strategies, and see which ad formats and place-
ments have the most success coaxing clicks out of your visitors. You can add multiple ads to the same
channel to track them as a group, or you can create a separate channel for each ad.

Figure 13-7:
This AdSense account
has two different
channels. The current
block of ads (the one in
the process of being
created) uses the
TravelPage channel.

Chapter 13: Making Money with Your Site 373

Google AdSense

8. Choose a name for your AdSense unit, and then click “Submit and Get Code”.

This name identifies your ad unit. That way, you can log in to AdSense, call up the
ad unit by name, and modify the unit, instead of rebuilding it from scratch. To try
this out, click the AdSense Setup tab, and then click Manage Ads underneath. Most
changes—say, altering the ad box color scheme—take effect immediately. How-
ever, if you want to change the format of your ad box, you need to get new code
and paste it into your pages, because the size of your ad unit will change.

9. Copy your ad code.

The final page has your complete, customized ad unit code (see Figure 13-8).
Click in the text box to select it, right-click the selection, and then choose Copy.
You’re now ready to paste the code into one or more Web pages, as described in
the next section.

Placing Ads in Your Web Pages
Once you generate an ad script, you’re ready to pop it into your Web page. Hori-
zontal strips are the easiest to position. You simply paste the entire script right
where you want it to appear.

Figure 13-8:
The ad unit doesn’t
consist of XHTML
elements—instead, it’s
JavaScript code (which
you’ll learn about in
Chapter 14). Google uses
a script because it needs
to be able to generate
blocks of ads
dynamically, according to
the preferences you
choose. Whenever a
visitor requests your
page, the ad script runs,
communicates with the
Google Web servers, and
asks for a set of ads. The
server looks up relevant
ads, applies your layout
and color options, and
then sends the final block
of XHTML back to the
script so it can insert the
ads into your page.

374 Creating a Web Site: The Missing Manual

Google AdSense

Here’s an example that places ads at the bottom of a page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>...</head>

<body>

 <h1>A Trip to Remember</h1>

 <p>

 After returning from my three-month travel adventure ...</p>

 <p>I hope you enjoy these pictures as much as I do.</p>

 <p>See pictures from ...</p>

 <script type="text/javascript"><!--

 google_ad_client = "pub-5876479552859050";

 google_ad_slot = "8247622134";

 google_ad_width = 728;

 google_ad_height = 90;

 //-->

 </script>

 <script type="text/javascript"

 src="http://pagead2.googlesyndication.com/pagead/show_ads.js">

 </script>

</body>

</html>

Figure 13-9 shows the result.

Positioning vertical ad strips requires a little more work, but it’s easy to do once
you learn the trick. The challenge is to flow the rest of your page content beside the
vertical ad. As you learned in Chapter 9, two techniques help you do this. You can
use invisible tables and lock the ad unit into a specific cell, or you can use style
sheet rules to float the ads on the side of the page.

To use the style sheet approach, begin by wrapping your ad script in a <div> element.
Here’s an example featuring the content you saw in Figure 13-9:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>...</head>

<body>

 <div class="floatRight">

 <h1>A Trip to Remember</h1>

Chapter 13: Making Money with Your Site 375

Google AdSense

 <script type="text/javascript"><!--

 google_ad_client = "pub-5876479552859050";

 google_ad_slot = "4493177655";

 google_ad_width = 120;

 google_ad_height = 240;

 //-->

 </script>

 <script type="text/javascript"

 src="http://pagead2.googlesyndication.com/pagead/show_ads.js">

 </script>

 </div>

 <p>

 After returning from my three-month travel adventure ...</p>

 <p>I hope you enjoy these pictures as much as I do.</p>

 <p>See pictures from ...</p>

</body>

</html>

Figure 13-9:
A 728- × 90-pixel
horizontal slab provides
four ads for this page.
The Google bot hasn’t
visited this site yet, so the
initial set of ads consists
of generic news
headlines. But notice how
the background ad color
matches the background
heading color, thanks to
the selection of custom
ad colors (page 370).

376 Creating a Web Site: The Missing Manual

Google AdSense

Notice that the <div> element (which has no formatting on its own), uses the style
sheet class floatRight. In your style sheet, you use the rule below to make the <div>
section float using the float attribute (see page 193):

.floatRight {

 float: right;

 margin-left: 20px;

}

Figure 13-10 shows the result.

Google-Powered Searches
Google gives you another way to please your visitors (and earn some cash in the
process). You can add a search box to your pages, letting visitors launch Google
queries right from your site. Even better, you get the earnings for any ads they click
in the search results—a feature Google calls (rather unimaginatively) AdSense for
Search.

Once you have an AdSense account, it’s easy to add a Google search box to your site:

1. Log in to your AdSense account, click the AdSense Setup tab, and then click
the AdSense for Search link.

An introductory page appears. On the right, you can play a two-minute video to
get an overview of AdSense straight from the people at Google. Or, click the Get
Started button to dive right into the process.

Figure 13-10:
A 120- × 240-pixel
vertical banner fits two
ads on this page. Vertical
ads are the most popular
format for Google ads.
Not only do they tuck in
neatly next to a Web
page’s content, but if you
make them long enough,
they remain visible even
as your visitors scroll
down the page.

Chapter 13: Making Money with Your Site 377

Google AdSense

2. Choose the search type.

Choose “The entire Web” to create a search box that uses the familiar Google
search engine we all know and love.

Choose “Only sites I select” to restrict the search to a limited set of sites. You
can use this feature to limit searches to your site only.

If you want to provide both options (searching the entire Web and searching
just your Web site), follow the above instructions twice to create two different
search boxes. But be careful you don’t wind up confusing your visitors.

3. If you choose to limit the search, fill in a list of searchable sites in the “Selected
sites” box (Figure 13-11).

You can enter individual pages (as in http://www.ChocolateMysteries.com/
recipe01.html), or use an asterisk to represent all the pages in a folder or on a
Web site (as in http://www.ChocolateMysteries.com/*), which is more common.
If you need to enter multiple URLs, put them on separate lines in the box.

Note: Even when you choose to limit searches to your Web site, Google still uses its standard, central-
ized catalog of Web pages--it just limits the results it displays to the pages from your site. If Google doesn’t
have your pages in its catalog (either because you just created the site or because Google doesn’t know
your site exists), these pages won’t turn up in any searches, no matter how you customize your search
box. For a refresher about getting Google to notice you, see page 316.

UP TO SPEED

How AdSense Creates Targeted Ads
Every time you serve up a Web page that contains Google
ads, the AdSense script sends a message to the Google
Web server asking for ads. This message includes your ad
preference information and your unique client ID. (Your cli-
ent ID is something like pub-5876479552359052; you can
see it in the script code.)

The first time Google receives this request, it realizes that it
hasn’t examined your page yet, and it doesn’t know what
types of ads are best suited for it. So Google sends you a
block of generic ads (or sends back your alternate content,
if you choose that feature, as described on page 370). Goo-
gle also adds your page to a list of pages it needs to visit.
Sometime in the next couple of days, the Google bot heads
over to your site and analyzes its content. From that point
forward, you’ll see ads based on the content of your page.

If 48 hours pass and you still aren’t getting targeted ads,
there could be a problem. One of the most common mis-
takes is putting ads on pages that don’t have much text, in
which case Google can’t figure out what your site is really
all about. Remember, Google only considers a single
page—the one with the ad unit—when it checks out your
site. Another potential problem happens if you put your ad
in an inaccessible page. For example, the Google bot can’t
get to any page that’s not on the Internet—pages on your
personal computer or a local network just won’t cut it. Like-
wise with password-protected pages. Some Web sites block
robots through exclusion rules (see page 321), which stops
the Google bot cold.

http://www.ChocolateMysteries.com/*

378 Creating a Web Site: The Missing Manual

Google AdSense

4. Fill in the Optional Keywords box.

AdSense for Search automatically adds any keywords you include here to your
visitors’ searches. This gives you a way to design a search box that’s targeted to
certain types of content. For example, if your site is all about golf, you might
include the keyword golf. That way, if a visitor searches for tiger, the search
returns pages about Tiger Woods, not the African savannah.

5. Tweak the other settings on the page, if they apply to you. Then click Con-
tinue to move on.

These settings include your Web site’s language and geographic location. As
you probably know, Google has country-specific pages that can tweak search
results, providing them in different languages or giving priority to local sites.

You can also place your search box in a specific channel, which is useful if you
want to track the ad dollars you make from this box. See page 372 for more
information about channels.

Finally, if you want to filter out profanity and sexual content from the search
results, choose the SafeSearch option. You’ll find SafeSearch useful in two situa-
tions. First, it’s de rigueur for sites that provide children’s content. Second, it’s
handy if your Web site deals in a topic that shares some keywords with adult-
only sites. For example, if you’re creating a breast cancer awareness page, you
don’t want searches for “breast exam” to dig up the wrong goods.

Figure 13-11:
Usually, when you pick
“Only sites I select,” you
enter just one site in the
“Selected sites” box—
yours. That way, visitors
can hunt for one of your
pages without being
seduced by another site
on the Web. For
example, if you have
dozens of pages of travel
stories, a visitor could
home in on the page they
want by searching for
“funny story about
rubber chicken in Peru.”

Chapter 13: Making Money with Your Site 379

Google AdSense

6. Tailor the appearance of the Google search box, and then click Continue.

There’s not a lot to change here. You can change the size of the search box and
the placement of the Google logo.

7. Choose how Google displays the search results.

Choose “Open results on Google in the same window” to replace the current
page with Google’s standard search results page.

Choose “Open results on Google in a new window” to pop open a new browser
window with the search results. Pop-up windows are usually annoying to Web
visitors, but this technique is handy if you want to make sure your Web site
sticks around on your visitor’s desktop.

Choose “Open results within my own site” to keep your visitors on your Web
site, and show the search results alongside your content. This is everyone’s
favorite option, but it requires slightly more work because you need to create
two pages—one with the search box, and one that holds the search results. Goo-
gle gives you some markup to place on each page. If you want to use this
option, you need to supply the URL for your search results page (for example,
http://www.ChocolateMysteries.com/searchresults.html). Don’t worry if you
haven’t created this page yet—you can create and upload it when you finish cre-
ating the search box. You also need to tell Google how wide the search results
should be. The standard option is 800 pixels, which is a good choice if you don’t
plan to pad the sides of your page with extra content (like ads or a menu bar). If
you have other content you want to show on the page, you can place it above
the search results.

8. Choose a color palette, and then click Continue.

Choose a color palette for the search results page. This way, the search results
can blend in with the color scheme on the rest of your site. This feature is
almost the same as the color palettes for AdSense ad units (page 370).

9. Supply a name, and then click Submit and Get Code.

The name lets you log in later, tweak your search box settings, and get new code
without starting from scratch.

10. Copy your search box.

The final setup page includes the markup for your complete, customized search
box (see Figure 13-12) in a <form> element. (Page 339 has more about forms
in XHTML.) As with the AdSense code, you can copy this XHTML and paste it
into any Web page.

If you choose to use a search results page on your own site, you’ll get a second
box with the markup you need to add to your search results page. This consists
of a <div> element and some JavaScript code. It works in much the same way as
the AdSense code—you simply place the <div> element where you want the
search results to appear.

380 Creating a Web Site: The Missing Manual

Amazon Associates

Amazon Associates
As popular as ads are with Web site owners, they have one serious drawback—they
clutter up your pages. Once you perfect a design with carefully chosen pictures and
style sheets, you might not want to insert someone else’s ad. And although Google
ads aren’t as visually distracting as other types of ads, like animated banners or pop-
up windows, they still chew up valuable screen space. If you can’t bear to disturb
your Web page masterpieces, you might be interested in a subtler affiliate program.

Amazon Associates is the Web’s longest-running affiliate program. If you have a
personal site with a “favorite books” page, or if you just refer to the odd book here
and there, you might be able to make some extra money by signing up.

The basic idea behind the Amazon Associates program is that you provide links to
book pages and other product pages on Amazon’s Web site. For example, if you
write a blurb about a great recipe you tried, you could add a link that, when a reader
clicks it, goes to the Amazon page that sells the cookbook you’re quoting. The link
itself is a nice feature for your site, since it provides visitors with more relevant infor-
mation. But the best part is what happens if a visitor decides to buy the book. You
wind up making a healthy commission of 4 percent of the book’s sale price.

Figure 13-12:
This example includes the
markup for the custom
search box (top) and the
search results listing
(bottom). As tempting as
it may be, resist the urge
to change the search box
markup, as Google
strictly forbids the
practice.

Chapter 13: Making Money with Your Site 381

Amazon Associates

Tip: Amazon commissions aren’t just for books. You can provide links to pretty much everything for sale
on Amazon (excluding items sold by other retailers, like Target and Office Depot). But there are limits to
how much you can make on non-book items. For example, with personal computers, you’re capped at a
maximum $25 commission per item. These rules change from time to time, so make sure you scour the
Amazon Associates Web site carefully to get the lowdown.

Signing Up As an Associate
Signing up for the Amazon Associates program is even easier than joining
AdSense. Just follow these steps:

1. Go to http://affiliate-program.amazon.com, click the “Join now” button, and
then log in with your Amazon email and password.

To join the associates program, you need to be an Amazon customer. If you
aren’t, click “I am a new customer” to create an account.

2. Enter your personal information and your Web site information

For your personal information, you need to supply your name, address, and
telephone number.

For your Web site information, you need to supply a Web site name, URL, and
brief description (see Figure 13-13).

Figure 13-13:
To become an Amazon
associate, you need to
supply some basic
information about your
site. Don’t skip over this
step, because someone
from Amazon will take a
quick look at your site
before it approves you
for the program.

http://affiliate-program.amazon.com

382 Creating a Web Site: The Missing Manual

Amazon Associates

3. Click Finish to submit your application.

Shortly after you submit your application, you’ll get a confirmation message
that approves you on a trial basis. This email also supplies you with your unique
associate ID. This number is important, because it’s the single piece of informa-
tion you need to add to all your Amazon links to start earning commissions.
You can now use the associate tools at http://associates.amazon.com (see the next
section).

In a couple of days, when someone at Amazon verifies your site and confirms
that it doesn’t run afoul of the law, you’ll get a second email message confirm-
ing that you’re in for good.

4. If you’d like to tell Amazon how to pay you right now, click Specify Payment
Method Now.

You can choose your preferred form of payment even before Amazon officially
accepts you into its program. Your choices include check, Amazon gift certifi-
cate, or direct deposit to a U.S. bank account. Amazon doesn’t send checks until
you make at least $100, and it charges you a $15 processing fee. Other payment
types kick in once you reach $10, and they don’t involve any fees.

Generating Associate Links
Once you have your associate ID, which Amazon provides in its confirmation
email, you can create associate links, the hyperlinks that send your visitors to Ama-
zon. The trick is formatting the URL in the right way.

You add your associate ID to the very end of the associate link. For example, the
first email Amazon sends includes an example of the associate link to its homepage.
It looks like this:

http://www.amazon.com?tag=prosetech-22

In this example, the associate ID is prosetech-22. (Replace it with your own ID to
create a link for your Web site.) If someone follows this link and buys something,
you earn a 4 percent commission.

Here’s how you could use this link in an anchor (page 207):

Visit

Amazon and help me save up to buy a Ferrari.

Tip: Amazon encourages you to advertise the fact that you’re an Amazon associate. If you’d like to boast,
Amazon provides a collection of ready-made Amazon logos and banners at http://associates.amazon.
com/gp/associates/network/build-links/banner/main.html. You can add these to your site, and even put
them in anchor elements to transform them into associate links. (You have to be an Amazon associate to
view the banner page.)

http://associates.amazon.com
http://associates.amazon.com/gp/associates/network/build-links/banner/main.html
http://associates.amazon.com/gp/associates/network/build-links/banner/main.html

Chapter 13: Making Money with Your Site 383

Amazon Associates

Product links

You get better commissions with links that lead directly to a specific product.
Amazon supports several associate link formats, and here’s one of the simplest:

http://www.amazon.com/dp/ASIN/?tag=AssociateID

And here’s a specific example:

http://www.amazon.com/dp/0141181265/?tag=prosetech-22

In this link, you customized two details, the ASIN (Amazon Standard Item Number)
and the associate ID. The ASIN is 0141181265 (which leads to the book Finnegans
Wake) and the associate ID is prosetech-22. Figure 13-14 shows you where to find
an ASIN.

Here’s an example of a complete link:

The development of the modern personal computer was first presaged in Joyce's

Finnegans Wake.

That’s all you need.

Note: If one of your Web site visitors follows a link to a specific Amazon product, but then goes on to
buy something completely different, it’s all good. You still get the same 4 percent commission.

Figure 13-14:
Every item in the Amazon
catalog has a unique
ASIN, which you can find
in the Product Details
section on the page for
that product. For books,
the ASIN is the same as
the ISBN (highlighted),
which is an industry-
standard book ID number.

http://www.amazon.com/dp/ASIN/?tag=AssociateID

384 Creating a Web Site: The Missing Manual

Amazon Associates

Advanced links

Amazon has a set of specialized tools that help you generate links. Using these
tools, you can create a range of snazzy links. Your options include:

• Links with thumbnail pictures.

• Links to product categories (like equestrian magazines or bestselling kitchen
gadgets).

• Ad banners that advertise a specific Amazon department.

• Amazon search boxes that let visitors perform their own queries.

Even if you don’t want these fancier links (and if your life isn’t dedicated to selling
books, you probably don’t), there’s still good reason to build links with the tools
Amazon provides: They create links that have built-in tracking, so you can deter-
mine how many people see each link.

Note: Amazon tracking is very clever. Essentially, Amazon embeds a tiny one-pixel image alongside each
link. If someone requests a page that contains one of these links, the browser automatically fetches the
invisible picture from Amazon. When Amazon gets the request for the invisible picture, it knows someone
is looking at the link, and it records a single impression in its tracking database.

Here’s how you use Amazon’s link-building tools:

1. Go to http://affiliate-program.amazon.com and log in.

This takes you to the Associates Central home page, which gives you a variety of
reports for checking your progress to date, as well as tools for building links.

Tip: For detailed information about the more ambitious things you can do with Amazon Associates, click
the Get Started Now button. You can also get invaluable advice from other associates by visiting the dis-
cussion forums—look for the Discussion Boards link at the bottom of the menu bar on the left.

2. Click the Links & Banners tab. Then, in the menu on the left, choose Product
Links.

Amazon lets you build many different types of links. Product links point to
individual items on Amazon’s site. They’re generally the most useful one for
your site. But if you plan to go Amazon-crazy, feel free to explore all the other
types of links.

3. In the search box, type the ASIN for your product, and then click Go.

If you don’t know the ASIN, select what you think is the most appropriate cate-
gory, and then type in the product name. When you click Go, Amazon searches
for the product and lists the results (see Figure 13-15).

http://affiliate-program.amazon.com

Chapter 13: Making Money with Your Site 385

Amazon Associates

4. Click the Get Link button next to the product you want to link to.

You’ll see a page that shows you the product and previews the link you’re about
to create.

5. Choose the link type and customize its appearance.

You can configure your product link to be as fancy or as simple as you want
(see Figure 13-16). To create a text link, choose Text Only as the link type. Oth-
erwise, you’ll get a more detailed box that includes a product picture and price.

You can choose whether your page opens the link in a new browser window,
how big the image is, what price information the product box includes, and
what colors it uses.

Once you finish, copy the XHTML from Amazon’s text box and paste it in any
Web page on your site.

When you create a text link, Amazon generates an anchor element that looks fairly
complex. (As described earlier, the anchor element contains an element for
an invisible picture that lets Amazon track how many times it displays the link.)

Figure 13-15:
When building a link, you
can search for the
specific product you
want. This search works
in more or less the same
way as a search from the
Amazon home page.

386 Creating a Web Site: The Missing Manual

Amazon Associates

However, like all anchor elements, it’s relatively easy to put this element where you
want it. Just pop it into an existing paragraph, like this:

<p>Lewis Carroll's work as a mathematician may have driven him insane,

as his famous book

The Hunting of the Snark

attests.</p>

Note: Amazon puts the full title of the book inside the anchor element. This title might be a little longer
than you intend, because it might include information about the edition or a byline. If so, just cut it down
to the title you want to use.

Figure 13-16:
As you choose your link options,
Amazon shows you a preview of what
the link will look like. You can choose
to make a text-and-image link (top) or
a plainer, easier-to-integrate text link
(bottom).

Chapter 13: Making Money with Your Site 387

PayPal Merchant
Tools

Amazon sends you monthly emails to let you know how your much you’re earn-
ing. But if you can’t stand the suspense, you can log in to Amazon Associates any
time. Click the Reports tab (Figure 13-17) to get detailed information on how
much you’re earning per day, week, month, or quarter.

PayPal Merchant Tools
Unless your Web site is wildly popular, ads and other affiliate programs will net
you only spare change. If you have all-consuming dreams of Web riches, you need
to actually sell something.

You don’t need to go far to run into self-made Internet commerce kingpins. A sur-
prisingly large number of people have made their living with creative products.
Examples include t-shirts with political catchphrases, empty bottles of wine with
Titanic labels, and collectable toys from a relative’s basement. Your path to a thriv-
ing e-business might involve little more than buying tin spoons from Honest Ed’s
and decorating them with macramé.

But no matter how good your goods are, you need a way to sell vast quantities eas-
ily and conveniently. Very few people will go through the hassle of mailing you a
personal check. However, if they can make an impulse purchase with a credit card,
your odds of making a sale improve significantly.

Figure 13-17:
Amazon provides many
different types of reports.
To get a fascinating look
at what items your
visitors are buying, click
the Orders Report link in
the menu on the left.

388 Creating a Web Site: The Missing Manual

PayPal Merchant
Tools

Accepting credit cards isn’t the easiest thing in the world to do. An e-business can
do so in two ways:

• Open a merchant account with a bank. This is the traditional way to accept
credit cards. Requirements vary from country to country, but you may need a
business plan, an accountant, and some up-front capital.

• Use a third-party service. A number of companies accept credit card payments
on your behalf in exchange for a flat fee or a percentage of the sale. In this chap-
ter, you’ll learn how to use one of the best—PayPal.

Unless you have a large business, the second option is always better. The reason
has to do with the additional risks that accompany Web-based sales.

First of all, the Internet is an open place. Even if you have a merchant account, you
need a secure way to accept credit card information from your customers. That
means the credit card number needs to be encrypted (scrambled using a secret key)
so that Internet eavesdroppers can’t get it. Most Web masters don’t have a secure
server sitting in their basement, and many Web hosts charge extra for the privilege.

Another problem is that when you conduct a sale over the Web, you don’t have
any way to collect a signature from the e-shopper. This makes you vulnerable to
chargebacks (see the box on page 389).

Note: PayPal is a staggeringly large Internet company that offers its payment services in well over 100
countries, and has more than 100 million account members worldwide. PayPal was established in 1998
and purchased by eBay in 2002.

Signing Up with PayPal
Once you sign up with PayPal, you can accept payments from customers across the
globe. Here’s how you go about it:

1. Head to the PayPal Web site (www.paypal.com). Click the Sign Up link on the
home page.

This sends you to the Sign Up Web page.

2. Choose your country and language.

3. Choose the type of account you want to create (Personal, Premier, or Busi-
ness), and then click the Get Started button in the corresponding box.

A personal account is ideal if you want to use PayPal to buy items on sites like
eBay using your credit card or with funds from your bank account. You can
also accept payments from other people, without having to pay any fees. How-
ever, there’s a significant catch—credit card payments aren’t supported. In
order to do business with you, your customers need to already have money in
their PayPal accounts (which they get by selling something and receiving a
PayPal payment, or by transferring money from a linked bank account).

http://www.paypal.com

Chapter 13: Making Money with Your Site 389

PayPal Merchant
Tools

A premier account is the best way to run a small business. You get the ability to
send money (great if you crave a rare movie poster on eBay) and accept any
type of payment that PayPal supports, including credit cards and bank account
debit cards. You also get to use PayPal’s e-commerce tools. However, you’ll be
charged a fee for every payment you receive, which varies by volume but ranges
from 1.9 percent to 2.9 percent of the payment’s total value (with a minimum
fee of 30 cents). That means that on a $25 sale, PayPal takes about $1 off the
top. If you accept payments in another currency, you surrender an extra 2.5
percent. To get the full scoop and to see the most current rates, refer to www.
paypal.com/fees.

A business account is almost identical to a premier account, except that it supports
multiple logins. This is the best choice if you have a large business with employ-
ees who need to access your PayPal account to help you manage your site.

4. The next page collects typical account details. Enter your email address and
choose a password. Then fill in your name, postal address, and phone number.

Make your password complex—you don’t want a malicious hacker guessing it
and using your PayPal account to go on an electronic buying binge.

FREQUENTLY ASKED QUESTION

Understanding Chargebacks
What’s a chargeback?

A chargeback happens when a buyer asks their credit card
company to remove a charge from their account. The buyer
may claim that the seller didn’t live up to their end of the
agreement, or claim that they never made the purchase in
the first place. A chargeback can occur weeks or months
after an item is purchased.

From the buyer’s point of view, a chargeback is relatively
easy. They simply phone the credit card company and
reverse the transaction. The money you made is deducted
from your account, even though you’ve already shipped
the product. If you want to dispute the buyer’s claim, you’re
in the unenviable position of trying to convince a mono-
lithic credit card company to take your side. Many small
businesses don’t dispute chargebacks at all, because the
process is too difficult, expensive, and unsuccessful.

However, when you use a third-party service, the odds tilt
in your favor. If the buyer asks for a chargeback, the chargeback

is made against the third-party company that accepted the
payment (like PayPal), not you. And even though PayPal
isn’t as large as the average multinational bank, it’s still a
major customer of most credit card companies, which
means it has significant clout to fight a chargeback.

The end result is that buyers are less likely to charge back
items to PayPal. And if they do, PayPal gives you the chance
to dispute the chargeback. PayPal even lets you contact the
buyer to see if there’s a simple misunderstanding (for
example, to check whether you sent the item to the wrong
address). And if you’re really paranoid, you can use Pay-
Pal’s Seller Protection Policy which, if you take a few addi-
tional steps (like retaining proof of delivery), insures you for
up to a $5,000 loss. For more information about how Pay-
Pal handles chargebacks, check out www.paypal.com/
chargeback. To learn about PayPal’s seller protection, refer
to www.paypal.com/SellerProtection.

http://www.paypal.com/chargeback
http://www.paypal.com/chargeback
http://www.paypal.com/SellerProtection
http://www.paypal.com/fees
http://www.paypal.com/fees

390 Creating a Web Site: The Missing Manual

PayPal Merchant
Tools

Tip: As a general rule of thumb, guard your PayPal account information the same way you guard your
bank PIN. If you’re really paranoid, don’t use your PayPal account to buy items on other Web sites, and
don’t use your credit card to do so either.

5. Finally, click Agree and Create Account to complete the process.

PayPal sends you an email confirmation immediately. Once you click the link in
the message, PayPal activates your account, and you can start creating PayPal
buttons and shopping carts to collect payments.

Accepting Payments
PayPal makes it ridiculously easy to create e-commerce Web pages. One way is to
add a Buy Now button to any Web page on your site. Here’s how:

1. Head to www.paypal.com, and sign in.

Once you sign in, you can access several tabs crammed with goodies.

Use My Account to update your account information, see what recent transac-
tions you’ve made, check your balance, and request a withdrawal.

Use Send Money to email someone cash (which you need to supply from a real-
world bank account or credit card), and Request Money to send a buyer an
email asking for payment.

Use the Merchant Services tab to build buttons you can add to your Web pages.

Use Auction Tools to specify PayPal as the form of payment for things you sell
on eBay. (eBay is still one of the most popular places to set up an e-business.)

Use the Products & Services tab to learn about various PayPal services.

2. Click the Merchant Services tab.

Scroll down the page, and you see a variety of tools for collecting money, as
explained in Figure 13-18.

3. Click the “Buy Now button” link.

PayPal displays a page where you configure your Buy Now button’s appearance
and set the price of your product (Figure 13-19).

4. Give your item a name and, if you want to keep track of it, a product code.
Then supply the price and currency.

Don’t worry about locking out international visitors when you set your cur-
rency. Credit card companies are happy to charge Canadian customers in U.S.
dollars, U.S. customers in euros, and European customers in rupees. Just
choose the currency you think your buyers expect to see.

http://www.paypal.com

Chapter 13: Making Money with Your Site 391

PayPal Merchant
Tools

Figure 13-18:
PayPal gives you a range
of options for collecting
money via email or
using buttons on your
Web pages.

Figure 13-19:
The basics of a Buy Now button.

Buy Now buttons
get the buyer to

pay a single
fixed fee

The PayPal
Shopping Cart is
the easiest way

to build an
e-commerce site

Donation buttons
let the buyer
choose how
much to pay

Subscriptions
send subscribers

regular bills

Email invoices
help you collect

money from
clients, but they
don’t plug into
your Web site

If you’re building
Web applications,

these tools can
help you interact

with PayPal’s
services

392 Creating a Web Site: The Missing Manual

PayPal Merchant
Tools

5. If you want to give buyers different options, fill in the information in the
“Customize button” box.

You can collect extra buying information from your buyers in three nifty ways:

Choose “Add drop-down menu with price/option.” This lets you give buyers a
list of options, each with a different price (see Figure 13-20). For example, you
could let a buyer choose between a plain, premium, or organic tin of hamster
food.

Choose “Add drop-down menu without prices.” This also gives your buyers a
list of options, but without changing the product’s price. For example, you
could use a list like this to let buyers choose the color of the embroidered
undergarments they’re about to buy.

Choose “Add text field.” This adds a text box where buyers can type in any-
thing. Use this if you need to collect information that varies, like the name your
buyer wants engraved on a magnetic screwdriver.

6. If you want to change the appearance of a button, click “Customize appearance.”

PayPal gives you limited options for the button’s size and text.

Figure 13-20:
With a drop-down list of
options, you can collect
additional information
about the type of product
your visitor wants. This is
useful if you offer the
same item in multiple
sizes or colors (as shown
here). To add another
color to the list, click the
“Add option” link under
the current values.

Chapter 13: Making Money with Your Site 393

PayPal Merchant
Tools

The standard Buy Now button is perfectly usable, but a little plain. If you’ve
created a nicer button (see Chapter 15 for tips) and uploaded it to your site,
supply the URL for the image here. (You can always change the XHTML that
PayPal generates if you want to use a different button picture later on.)

7. Scroll down and fill in any additional options you want.

PayPal gives you a heap of extra possibilities. You can add a flat surcharge for
shipping and a percentage for sales tax. You can get PayPal to track how many
items you have in stock, and stop selling your product when it’s sold out—all
you do is fill in the number of items you currently have.

And PayPal has an entire section of advanced possibilities, like whether you
need a buyer’s address (PayPal assumes you do), if you want your customers to
fill in additional comments with their payments (ordinarily, they can’t), and
where PayPal should send visitors after they complete or cancel a payment (you
can send shoppers to a specific URL on your site, rather than to PayPal’s generic
pages).

8. Click Create Button.

You’ll see a text box with the markup for your customized Buy Now button,
which you copy and paste into your Web page.

When you create a Buy Now button, PayPal puts everything inside a <form> ele-
ment (explained on page 339). If you haven’t used encryption, you might be able
to figure out what’s going on inside your form.

Here’s an example of a button for a pair of handmade origami socks based on the
last few steps above:

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">

 <input type="hidden" name="cmd" value="_s-xclick" />

 <input type="hidden" name="hosted_button_id" value="633788" />

 <table>

 <tr><td>

 <input type="hidden" name="on0" value="Choose a Color" />

 Choose a Color</td></tr><tr><td>

 <select name="os0">

 <option value="Yellow">Yellow</option>

 <option value="Green">Green</option>

 <option value="Tomato">Tomato</option>

 <option value="Chartreuse">Chartreuse</option>

 </select>

 </td></tr>

 </table>

 <input type="image" border="0" name="submit" alt=""

 src="https://www.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" />

 <img src="https://www.paypal.com/en_US/i/scr/pixel.gif" alt=""

 width="1" height="1" />

</form>

394 Creating a Web Site: The Missing Manual

PayPal Merchant
Tools

If you added any option fields, you’ll see <select> and <option> elements that
define the relevant list boxes (page 343). The form also includes the Buy Now but-
ton. Clicking it sends the form to PayPal. You can change the button’s src attribute
(bolded in the listing above) to point to a different image file. After the code for
the Buy Now button is an invisible image that lets PayPal track how many times
visitors view the page that includes the button. Amazon Associates provides this
same service; see page 384 for a description.

Tip: As long as you don’t tamper with the <input> fields and you keep everything inside the <form> ele-
ments, you can tweak the markup PayPal creates for you. For example, you can add other elements into
the form, or apply style sheet formatting. Or you might want to remove the invisible table (represented by
the <table>, <tr>, and <td> elements) that PayPal uses to organize your button and your option fields to
get a different layout.

So what happens when a shopper clicks the Buy Now button and submits this
form? The action attribute in the very first line of the above code tells the story.
When someone clicks the button, the browser sends the buyer’s information to
PayPal using the action URL (https://www.paypal.com/cgi-bin/webscr). The browser
uses a secure channel to prevent Internet eavesdroppers—that’s why the URL
starts with “https” instead of “http.”

Notice that this form doesn’t include key pieces of information, like the product
name or price. That’s a safety measure designed to prevent troublemakers from
tampering with the markup in your Web page to attempt to pay you less than you
or your products are worth. When PayPal receives the form data, it retrieves the
hidden ID value (633788 in the example above), and then looks that ID up in its
giant, private database of buttons to identify the relevant product, price, and seller
(you).

In fact, the PayPal markup doesn’t provide any information about the item you’re
selling. You put the item name, picture, description, and price into your Web page
(probably before the Buy Now button). Here’s an example:

<html>

<head>...</head>

<body>

 <h1>Handmade Origami Socks</h1>

 <p>

 You've waited and they're finally here. Order your own

 pair of origami socks for only $26.95 and get them in time

 for the holidays. What better way to show your loved ones how

 poor your gift giving judgement really is?</p>

 <form action="https://www.paypal.com/cgi-bin/webscr" method="post">

 ...

 </form>

</body>

</html>

https://www.paypal.com/cgi-bin/webscr

Chapter 13: Making Money with Your Site 395

PayPal Merchant
Tools

Note: Unfortunately, at the time of this writing, PayPal buttons use ordinary HTML that’s not quite up to
the stricter standards of XHTML. Although this is sure to change in the future, you can give PayPal a help-
ing hand by cleaning up its markup. Often, the changes involve little more than making sure empty ele-
ments like <input> are closed properly (they should end with the characters /> rather than just >). Or,
leave it the way it is and rest assured that it will still work in any Web browser, even if it gives your XHTML
validator indigestion.

Figure 13-21 shows the result. This example displays the standard PayPal ordering
page, but you can customize it with your own logo (see the next section).

Building a Shopping Cart
PayPal’s Buy Now button gives you a great way to make a quick sale. But if you
dream about a Web e-commerce empire, you need to create a store where visitors
can collect several items at once and pay for them all at the same time. To give

Figure 13-21:
Top: A page with a Buy Now
button.

Bottom: Clicking the Buy Now
button starts a secure checkout
process using PayPal. The visitor
can pay for the item by credit
card, and you both get an email
confirming the transaction. Then
it’s up to you to fulfill your end of
the deal.

396 Creating a Web Site: The Missing Manual

PayPal Merchant
Tools

your buyers this kind of convenience, you need a shopping cart, which is a staple
of e-commerce Web sites. The good news is that you don’t need to program your
own cart—instead, you can use PayPal’s prebuilt shopping cart service, which inte-
grates smoothly into your Web site.

Creating a PayPal shopping cart is remarkably similar to creating a Buy Now button
(so if you haven’t tried that, you might want to play around with it before you go any
further). The basic idea is that you create a separate Add To Cart button for each
item you sell. You’ll get many of the same options you saw when you created a Buy
Now button—for example, you can set a price, product code, shipping charges, and
so on. The difference is that when visitors click an Add To Cart button, PayPal
doesn’t send them straight to a checkout page. Instead, it displays a shopping cart
page in a new window. Visitors can keep shopping until they have everything they
want. Then they click a Checkout button to complete their purchase.

To show how this works, the following example uses the page shown in
Figure 13-22 as a starting point. This example also shows a great use of style-based
layout. Check out the downloadable samples—available from the Missing CD page
at www.missingmanuals.com—to try it out for yourself.

Figure 13-22:
Right now, this BrainFood
page has a great list of
product descriptions, but
doesn’t give the reader
any way to make an
impulse purchase. You
can change that by
adding PayPal shopping
cart buttons.

http://www.missingmanuals.com

Chapter 13: Making Money with Your Site 397

PayPal Merchant
Tools

Creating a custom page style

Before you create your shopping cart, there’s an extra step you can take to really
personalize your payment page. If you’re happy with the PayPal standard, feel free
to skip straight to the next section. But if you’d like to have your company logo
appear on the shopping cart pages, keep reading.

1. If you’re not already there, head to www.paypal.com, and sign in.

2. Select the My Account tab, and then click the Profile link just underneath.

You’ll see a page with a slew of information about your preferences, grouped
into three main categories: Account Information (who you are and where you
live), Financial Information (your bank, credit card, and payment history infor-
mation), and Selling Preferences (extra options you can use with PayPal’s mer-
chant services). In this case, you’re interested in the Selling Preferences section.

3. In the Selling Preferences section, click the Custom Payment Pages link.

This takes you to the Custom Payment Page Styles page, where you can set up
new page styles or edit existing ones.

4. Click Add to create a new page style.

You start off with only a single page style—the PayPal standard, which sports a
basic PayPal logo.

5. Supply information for your page style.

Type a descriptive title into the Page Style Name box to help you remember
which style is which.

Use the Header Image URL to point to a picture on your Web site. This picture
is the logo you want to show at the top left of the PayPal shopping cart page.
You can use an image up to 750 pixels wide by 90 pixels high.

Note: Because PayPal’s shopping cart page is a secure page, when you use a custom logo, the shopper
may get a message informing them that there are some insecure items on the page (namely, your pic-
ture). If you want to avoid this message, talk to your Web hosting company about putting your picture on
a secure (https) server.

The settings for Header Background Color, Header Border Color, and Back-
ground Color let you specify page colors with color codes (see page 152). This
part is optional—leave it out if you’re happy with the standard white.

6. Click Save to store your page style.

Before you commit, you can click Preview to take a sneak peek at what the Pay-
Pal payment page looks like.

7. Select your new page style, and then click Make Primary.

Now all your customers will see your customized checkout page.

http://www.paypal.com

398 Creating a Web Site: The Missing Manual

PayPal Merchant
Tools

Generating the shopping cart buttons

You’re ready to build the buttons that add items to an e-shopper’s cart. Here’s
how:

1. If you’re not already there, head to www.paypal.com and sign in.

2. Click Merchant Services, and then click the “Add to Cart button” link.

PayPal displays a page where you configure the Add To Cart button for a single
item.

3. Give your item a name and, if you want to keep track of it, a product code.
Then supply the price, currency, and any other relevant information.

These settings are exactly the same as for a Buy Now button.

4. Click Create Button.

You’ll see a text box with the markup for your customized Add To Cart button.
Copy it out of the text box and paste it into your Web page. But remember, this
Add To Cart code applies to a single, specific product. If you have more than
one item on a page (as in the BrainFood example), you need to generate multi-
ple buttons. To do so, click “Create similar button” and head back to step 3.
When you finish generating all the buttons you need and copying each one into
your page, continue with the next step.

5. Create a View Cart button.

Your shopping cart solution wouldn’t be complete without a button that lets
shoppers see what’s in their carts (and then head to the virtual checkout
counter). To create one, click the “Create a View Cart button” link.

You have virtually no options for the View Cart button, as its purpose is pretty
straightforward. PayPal lets you use the standard View Cart button or supply a
URL that points to a button picture of your own design. Once you make your
selection, click Create Button, and then copy the markup into your page along
with all the other buttons. Figure 13-23 shows the final result.

Withdrawing Your Money
PayPal safely stashes all your payments in your PayPal account (which is like a vir-
tual bank account). You can see the balance any time. Just log in and click the My
Account tab.

If you earn a small amount of money, you may be happy leaving it with PayPal so
you can buy other stuff on Web sites like eBay and www.buy.com. But if you’re rak-
ing in significant dough, you’ll want to transfer some of it to the real world.

http://www.paypal.com
http://www.buy.com

Chapter 13: Making Money with Your Site 399

PayPal Merchant
Tools

The most common approach is to send money to your bank account. To do this,
you need to give PayPal your bank account information. PayPal waives its transfer
fee as long as your withdrawal meets a certain minimum (like $150). However,
your bank may apply an electronic transaction fee. Depending on the country you
live in, PayPal may offer other withdrawal options, too. For example, it may let you
transfer money to a debit card or a credit card.

To get started with any of these approaches, log in, click the My Account tab, click
the Withdraw link just underneath, and then follow the instructions there.

Figure 13-23:
Top: Here’s the revised BrainFood page, with
shopping cart buttons.

Bottom: After clicking a few Add To Cart buttons,
here’s the shopping cart page your visitors will see (in
a separate window). All they need to do is click Secure
Checkout to make the purchase.

4
IV.Part Four:
Web Site Frills

Chapter 14: JavaScript: Adding Interactivity

Chapter 15: Fancy Buttons and Menus

Chapter 16: Audio and Video

403

Chapter 14chapter

14

JavaScript: Adding
Interactivity

JavaScript is a simplified programming language designed to beef up XHTML
pages with interactive features. It gives you just enough programming muscle to
add some fancy effects, but not enough to cause serious damage if your code goes
wonky. JavaScript is perfect for creating pop-up windows, marquee-style scrolling
text, and buttons that light up when visitors mouse over them. On the other hand,
JavaScript can’t help you build a hot e-commerce storefront; for that, you need the
PayPal tools described in Chapter 13.

The goal of this chapter isn’t to teach you all the details of JavaScript—instead, it’s
to give you enough background so you can find great JavaScript code online,
understand it well enough to make basic changes, and then paste it into your pages
to get the results you want. Since the Web has dozens of JavaScript sites offering
thousands of ready-made scripts for free, these basic skills can come in very handy.

Understanding JavaScript
The JavaScript language has a long history—it first hit the scene with the Netscape
Navigator 2 browser in 1995, and Internet Explorer jumped on the bandwagon by
adding JavaScript compatibility to IE version 3. Today, all modern browsers support
JavaScript, and it’s become wildly popular as a result. However, some justifiably
paranoid Web visitors turn off JavaScript compatibility because malicious develop-
ers have, on occasion, used JavaScript-fueled agents to attack computers with pop-up
ads and other types of browser annoyances. That means that the best rule of thumb
with JavaScript is to use it to improve your pages, but make sure your page still
works (even if it doesn’t look quite as nice) for people who disable it.

404 Creating a Web Site: The Missing Manual

Understanding
JavaScript

Note: JavaScript is thoroughly different from the Java language (although the code sometimes looks
similar, because they share some syntax rules). Sun Microsystems developed Java, and it’s a full-fledged
programming language, every bit as powerful—and complicated—as C++, C#, and Visual Basic.

So what can JavaScript do?

• It can dynamically insert new content into a Web page or modify an existing
XHTML element. For example, you can display a personalized message to your
visitors (“Hello, Joe!”) or make titles grow and shrink perpetually (an example
of which is shown on page 424).

• JavaScript can gather information about the current date, your visitor’s
browser, or the content your visitors type into forms. You can display any of
this information on a page or use it to make decisions about what your page
does next. For example, you could stop visitors from going any further on your
site until they type in an email address.

• JavaScript can react to events that take place in a browser. For example, you can
write code that runs when a page finishes loading or when a visitor clicks a picture.

It’s just as important to understand what JavaScript can’t do. JavaScript code is
sandboxed, which means a browser locks your page into a carefully controlled place
in memory (known as a sandbox) so it can’t access anything on your visitor’s com-
puter. This design, which is necessary to ensure good security, effectively prevents
JavaScript from performing any potentially risky tasks, like sending orders to a
printer, creating or editing files, running other programs, reformatting a hard
drive, and so on. In fact, about the only thing JavaScript can do is modify the
appearance of a Web page.

Server-Side and Client-Side Programming
To understand how JavaScript fits into the Web universe, it’s important to under-
stand the two types of programming on the Web.

When you use a search engine like Google or go to an e-commerce site like Ama-
zon, you’re actually connecting to a high-powered piece of software, known as a
server-side application, which runs on a Web server. When you visit one of these
sites, you send the server-side program information, like the keywords you want to
search for or the book you want to buy. The program, in turn, consults a massive
database and spits out some XHTML that creates the page you see in your browser.

Server-side applications rule the Web world, because there’s virtually nothing they
can’t do. However, they’re insanely difficult to program. Not only do developers
need to worry about getting the program to generate XHTML for a browser, they
also need to make sure the program can run all kinds of complex routines and
consult giant databases—and they need to do it all in a way that performs just as
well when millions of people are clamoring for attention as it does when there’s
only one person visiting a site. This is hard work, and it’s best handled by the poor
souls we call programmers.

Chapter 14: JavaScript: Adding Interactivity 405

Understanding
JavaScript

Client-side applications, on the other hand, use a completely different model. They
embed small, lightweight programs inside an ordinary XHTML page. When a
browser downloads the page, the browser itself runs the program (assuming secu-
rity settings or compatibility issues haven’t disabled it). Client-side programs are
much less powerful than those on the server side—they can’t reliably access the
huge databases stored on Web servers, for example, and for security reasons they
can’t directly change most things on your home computer. However, they’re much
simpler to create. If you’ve ever played a game of Java checkers in your browser
(see Figure 14-1), you’ve used a client-side program.

Scripting Languages
Even client-side programs can be a challenge for non-technogeeks. For example, to
build the checkers game shown in Figure 14-1, you need to know your way around
the highly sophisticated Java programming language. However, a whole class of cli-
ent-side programs exist that aren’t nearly as ambitious. They’re called scripts, and
their purpose in life is to give a browser a list of instructions, like “scroll that head-
ing from left to right” or “pop up an ad for fudge-flavored toothpicks in a new
window.”

Figure 14-1:
This game of Java checkers looks
like an ordinary Web page, but
something very different is taking
place behind the scenes. In fact,
the checkerboard is actually a
complete Java program embedded
inside the Web page.

406 Creating a Web Site: The Missing Manual

JavaScript 101

Scripts are written in a simplified scripting language, and even if you don’t know all
the ins and outs of a language, you can often copy and paste a cool script from a
free Web site to get instant gratification. Two examples of scripting languages are
JavaScript and VBScript (the latter a scripting language that uses syntax resem-
bling Visual Basic).

This chapter focuses exclusively on scripts you create with JavaScript, the only
scripting language that’s reliably supported on most browsers.

JavaScript 101
Now that you’ve learned a bit about JavaScript and why it exists, it’s time to dive in
and start creating your first real script.

The <script> Element
Every script starts with a <script> block you slot somewhere into an XHTML
document. Really, you have only two options:

• The <body> section. Put scripts you want your browser to run right away in
the <body> section of your XHTML. The browser launches your script as soon
as it reaches the <script> element. If you put your script at the beginning of the
<body> section, your browser fires up the script before it displays the page.

Tip: Usually, JavaScript fans put their scripts at the end of the <body> section. That way, you avoid errors
that might occur if you use a script that relies on another part of the page, and the browser hasn’t read that
other section yet. Because browsers read an entire page quickly, these scripts execute almost immediately.

• The <head> section. If you place an ordinary script in the <head> section of
your XHTML document, it runs immediately, before the browser processes any
part of the XHTML markup. However, it’s more common to use the <head>
section for scripts that contain functions (see page 414). Functions don’t run
immediately—instead, you summon them when your visitor takes some kind of
action on a page, like moving a mouse.

Note: You can place as many <script> blocks in a Web page as you want.

A typical script block consists of a series of programming instructions. To get a
handle on how these instructions work, consider the following example, which
makes your browser display a JavaScript alert box:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

Chapter 14: JavaScript: Adding Interactivity 407

JavaScript 101

 <title>JavaScript Test</title>

</head>

<body>

 <h1>You Will Be Wowed</h1>

 <p>This page uses JavaScript.</p>

 <script type="text/javascript">

 alert("Welcome, JavaScript coder.")

 </script>

</body>

</html>

This script pops up a window with a message, as shown in Figure 14-2. When you
click OK, the message disappears, and it’s back to life as usual for your Web page.

Like all scripts, the script in this example is wrapped inside a <script> element.
The type attribute tells the browser that the script holds JavaScript code, which is
an essential detail:

<script type="text/javascript">

 ...

</script>

You’re probably wondering exactly how this script works its magic. When a
browser processes the script, it runs all the code, going one line at a time. In this
case, there’s only one line:

alert("Welcome, JavaScript coder.")

Figure 14-2:
Because you positioned the script element at
the end of the XHTML markup for the page,
the browser displays all the XHTML first and
then pops up this alert box. If you put the
script element at the beginning of the
<body> section (or in the <head> section),
the alert box would appear earlier, while the
page is still blank. The browser would then
wait until you clicked OK before reading the
rest of the XHTML page and displaying its
contents.

408 Creating a Web Site: The Missing Manual

JavaScript 101

This line uses a built-in JavaScript function called alert. A function is a program-
ming routine consisting of one or more lines of code that performs a certain task.
JavaScript has many built-in functions, but you can also build your own.

JavaScript’s alert() function requires one piece of information, otherwise known
as an argument in programmer-speak. In this case, that piece of information is the
text you want to display in the alert box. If you want to display an ordinary num-
ber, say 6, you could type it in as is—that is, you don’t need to put it in quotes. But
with text, there’s no way for a browser to tell where text starts and stops. To han-
dle this problem in JavaScript, you put text inside single apostrophe quotes (') or
double quotation marks ("), as in the example above.

Note: In programmer-speak, a distinct piece of text used in a program is called a string. “The friendly
fox,” “a,” and “Rumpelstiltskin” all qualify as strings.

That’s it. All this simple script does is call JavaScript’s alert() function. (Spend
enough time around programmers and JavaScript fans, and you’ll soon learn that
“call” is the preferred way to describe the action of triggering a function.) The
alert() function does the rest, popping up the correct-sized window and waiting
for your visitor to click OK.

Note: To write this script, you need to know that there’s an alert() function ready for you to use—a fact
you can find out on one of the many JavaScript tutorial sites.

Based on what you now know, you should be able to change this script in the fol-
lowing ways:

• Display a different message (by changing the argument).

• Display more than one message box, one after the other (by adding more lines
in your <script> block).

• Display the message box before your browser displays the Web page (by chang-
ing the position of the <script> block).

It’s not much to keep you occupied, but it does show how easy it is to get started
using and changing a simple script.

Scripts and XHTML

As you’ve seen, XHTML uses the <script> block to hold JavaScript code. But it’s
important to understand that <script> is just one more XHTML element, and like
all XHTML elements, it needs to follow the rules. One of those rules limits the
characters allowed inside the <script> block. XHTML forbids certain characters,
like the infamous angle brackets, because they have a special meaning in the
XHTML language.

Chapter 14: JavaScript: Adding Interactivity 409

JavaScript 101

Unfortunately, special characters do sometimes crop up in code. You could replace
them with character entities (page 132), but that makes it far more difficult for
other people to read, understand, and edit your code. A better solution is to wrap
the entire script in something called a CDATA section—a specialized region of your
XHTML document that suspends the usual XHTML rules. Here’s how:

<script type="text/javascript">

//<![CDATA[

 alert("Welcome, JavaScript coder.")

//]]>

</script>

This technique is a bit ugly, but it does the trick. It’s best not to think about it too
deeply and just get into the habit of wrapping any lengthy block of script code in a
CDATA section. The one exception is script code you put in a separate file (page
418)—your browser won’t interpret it as XHTML, so you don’t need to wrap it in
a CDATA section.

Note: For simplicity, this chapter uses a CDATA section only when absolutely necessary—in other words,
when the script contains special characters that XHTML ordinarily wouldn’t allow.

Browsers that don’t support JavaScript

Some browsers will recognize the <script> element but refuse to execute your
code. This can happen if a browser doesn’t support JavaScript, or if JavaScript has

GEM IN THE ROUGH

Dealing with Internet Explorer’s Paranoia
If you run the alert example in Firefox, you’ll find that every-
thing works seamlessly. If you run it in Internet Explorer,
you won’t get the same satisfaction. Instead, you’ll see a
security warning appear in a yellow bar at the top of the
page. Until you click the yellow bar, and then choose Allow
Blocked Content, your JavaScript code won’t run.

At first glance, IE’s security warning seems like a surefire
way to scare off the bravest Web visitor. However, there’s
no need to worry. In fact, the message is just part of the
quirky way Internet Explorer deals with Web pages that you
store on your hard drive. When you access the same page
over the Web, Internet Explorer won’t raise the slightest
objection.

That said, the security warning is still an annoyance while
you’re testing your Web page, because it forces you to keep

explicitly telling the browser to allow the page to run Java-
Script. To remove the security warning altogether, you can
tell Internet Explorer to pretend you downloaded your Web
page from a Web server. You do this by adding a special
comment called the Mark of the Web. You place this com-
ment immediately after the <html> element that begins
your page:

<html xmlns="http://www.w3.org/1999/xhtml">
<!-- saved from url=(0014)about:internet -->

When IE sees the Mark of the Web, it treats the page as
though it came from a Web server, skipping the security
warning, and running your JavaScript code without hesita-
tion. To all other browsers, the Mark of the Web just looks
like an ordinary XHTML comment.

410 Creating a Web Site: The Missing Manual

JavaScript 101

been switched off. To deal with this situation, you can use the <noscript> ele-
ment, which lets you supply alternate XHTML content.

You place the <noscript> element immediately after the <script> element. Here’s an
example that displays a paragraph of text for browsers that lack JavaScript support:

<script type="text/javascript">

 alert("Welcome, JavaScript coder.")

</script>

<noscript>

 <p>Welcome, non-JavaScript-enabled browser.</p>

</noscript>

Variables
Every programming language includes the concept of variables, which are tempo-
rary containers that store important information. Variables can store numbers,
objects, or pieces of text. As you’ll see throughout this chapter, variables play a key
role in many scripts, and they’re a powerful tool in any programmer’s arsenal.

Declaring variables

To create a variable in JavaScript, you use the var keyword, followed by the name
of the variable. You can choose any name that makes sense to you, as long as
you’re consistent (and avoid spaces or special characters). Here’s an example that
creates a variable named myMessage:

var myMessage

To store information in a variable, you use the equal sign (=), which copies the
data on the right side of the equal sign into the variable on its left. Here’s an exam-
ple that puts some text into myMessage:

myMessage = "Everybody loves variables"

UP TO SPEED

Spaces and Line Breaks in JavaScript
JavaScript code is quite tolerant of extra spaces. In this
chapter, most of the examples use some sort of indenting
to help you see the structure of the code. But as with
XHTML, you don’t absolutely have to add these spaces.

The only rule in JavaScript is that every code statement
needs to be on a separate line. You can get around this lim-
itation by using the line-termination character, which is a
semicolon (;). For example, here’s how you can compress
three code statements onto one line:

alert("Hi"); alert("There"); alert("Dude");

Each semicolon designates the end of a code statement.
This strange convention comes from the Bizarro world of C
and Java.

If you don’t want to put more than one code statement on
the same line, you don’t need the semicolons. However,
you’re still free to add them at the end of each line if you
want. In fact, if you download a script from the Web, you
just might find these optional semicolons, which is often a
tip-off that a C or Java programmer wrote the script.

Chapter 14: JavaScript: Adding Interactivity 411

JavaScript 101

Remember, you need to use quotation marks whenever you’ve got a text string. In
contrast, if you want to copy a number into a variable, you don’t need quotation
marks:

myNumber = 27.3

Note: JavaScript variables are case-sensitive, which means a variable named myMessage is different from
one named MyMessage. If you try to use them interchangeably, you’ll wind up with a scripting error (if
your browser is nice) or a bizarre mistake in the page (which is usually what happens).

You’ll often want to create a variable and fill it with useful content, all in the same
step. JavaScript lets you do so if you put an equal sign immediately after the vari-
able name when you declare it:

var myMessage = "Everybody loves variables"

To make matters a little confusing, JavaScript lets you refer to variables you
haven’t yet declared. Doing so is considered extremely bad form and is likely to
cause all sorts of problems. However, it’s worth knowing that these undeclared
variables are permissible, because they’re the source of many an unexpected error.

Modifying variables

One of the most useful things you can do with numeric variables is perform opera-
tions on them to change your data. For example, you can use arithmetic operators
to perform mathematical calculations:

var myNumber = (10 + 5) * 2 / 5

These calculations follow the standard order of operations (parentheses first,
then addition and subtraction, then multiplication and division). The result of
this calculation is 6.

You can also use operations to join together multiple pieces of text into one long
string. In this case, you use the plus (+) operator:

var firstName = "Sarah"

var lastName = "Smithers"

var fullName = firstName + " " + lastName

Now the fullName variable holds the text Sarah Smithers. (The " " tells JavaScript
to leave a space between the two names).

An example with variables

Although you’d need to read a thick volume to learn everything there is to know
about variables, you can pick up a lot from a simple example. The following script
inserts the current date into a Web page. The example on the next page numbers
each line of code to make it easy to reference.

412 Creating a Web Site: The Missing Manual

JavaScript 101

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>JavaScript Test</title>

</head>

<body>

 <h1>What Day Is It?</h1>

 <p>This page uses JavaScript.</p>

 <p>

 <script type="text/javascript">

1 var currentDate = new Date()

2 var message = "The current date is: "

3 message = message + currentDate.toDateString()

4 document.write(message)

 </script>

 </p>

</body>

</html>

Here’s what’s happening, line by line:

1. This line creates a new variable named currentDate. It fills the currentDate vari-
able (see number 3 below) with a new Date object. You’ll know JavaScript is
creating an object when you see the keyword new. (You’ll learn more about
objects on page 420; for now, it’s enough to know that objects come with built-
in functions that work more or less the same way as the functions you learned
about earlier.)

2. This line creates a new variable named message, and fills it with the beginning of
a sentence that announces the date.

3. This line adds some new text to the end of the message you created in line 2.
The new text comes from the currentDate object. The tricky part is understand-
ing that the currentDate object comes with a built-in toDateString() function
that converts the date information it gets from your PC into a piece of text suit-
able for displaying in a browser (see Figure 14-3). Once again, this is the kind of
detail you can only pick up by studying a good JavaScript reference.

4. This line uses JavaScript’s document object, which has a function named write().
The write() function copies a piece of text onto a Web page at the current loca-
tion. The final result is a page that shows your welcome message (see
Figure 14-4).

Chapter 14: JavaScript: Adding Interactivity 413

JavaScript 101

Scripts can get much more complex than this. For example, they can use loops to
repeat a single action several times, or make decisions using conditional logic.
You’ll see examples of some of these techniques in this chapter, but you won’t get a
blow-by-blow exploration of the JavaScript language—in fact, that would require a
small book of its own. If you want to learn more, check out the box on page 414.

Figure 14-3:
Some Web page editors
help you out when you
write JavaScript code. For
example, Expression Web
displays a drop-down menu
that shows you all the
functions an object
provides. Although this
probably isn’t enough for
you to figure out how to use
the Date object the first
time out, it’s a great way to
refresh your memory
later on.

Figure 14-4:
The document.write() command inserts text
directly into a page, wherever you position
the script block. In this case, the command
displays the current date.

414 Creating a Web Site: The Missing Manual

JavaScript 101

Functions
So far, you’ve seen simple scripts that use only a few lines of code. More realistic
JavaScript scripts can run to dozens of lines and if you’re not careful, they can
grow into a grotesque tangle that leaves the rest of your page difficult to edit. To
control the chaos, smart JavaScripters almost always use custom functions.

A function is a series of code instructions you group together and give a name. In a
way, functions are like miniature programs, because they can perform a series of
operations. The neat thing about functions is that you only need to create them
once, and you can reuse them over and over again.

Declaring a function

To create a JavaScript function, start by deciding what your function is going
to do (like display an alert message), and then choose a suitable name for it (like
ShowAlertBox). As with most things in the programming world, function names
can’t have any spaces or special characters.

Armed with this information, you’re ready to put a <script> block in the <head>
section of your page. But this <script> block looks a little different from the exam-
ples you’ve seen so far. Here’s a complete function that shows an alert box with a
predefined message:

<script type="text/javascript">

 function ShowAlertBox() {

 alert("I'm a function.")

 }

</script>

To understand what’s going on here, it helps to break down this example and con-
sider it piece by piece.

POWER USERS’ CLINIC

Becoming a JavaScript Guru
JavaScript requires some basic programming skills. How-
ever, it’s fairly forgiving. Even non-geeks can learn to use
JavaScript to create their own wildly customized programs
(with the right motivation).

If you decide that you’re not satisfied using other people’s
scripts and you want to create your own, it’s time to learn
more. Although in-depth JavaScript programming is
beyond the scope of this book, there are plenty of great
resources to get you started.

If you’re happy learning from the Web, there’s no shortage
of tutorials. Three great places to start are www.w3schools.
com/js, www.echoecho.com/javascript.htm, and www.
htmlgoodies.com/primers/jsp. If you prefer to have your
advice printed and neatly bound, check out JavaScript: The
Missing Manual (O’Reilly).

http://www.w3schools.com/js
http://www.w3schools.com/js
http://www.echoecho.com/javascript.htm
http://www.htmlgoodies.com/primers/jsp
http://www.htmlgoodies.com/primers/jsp

Chapter 14: JavaScript: Adding Interactivity 415

JavaScript 101

Every function declaration starts with the word function, which tells JavaScript
what you’re up to.

function

Then, you want to name your function and add two parentheses. You use the
parentheses to send extra information to your function, as you’ll see on page 416.

function ShowAlertBox()

At this point, you’ve finished declaring the function. All that remains is to add the
code inside the function that actually makes it work. To do this, you need the
funny curly braces shown in the alert box function above. The { brace indicates the
start of your function code and the } brace indicates the end of it. You can put as
many lines of code as you want in between.

One tricky part of function writing is the fact that JavaScript sets notoriously loose
standards for line breaks. That means you can create an equivalent JavaScript func-
tion and put the curly braces on their own line, like this:

<script type="text/javascript">

 function ShowAlertBox()

 {

 alert("I'm a function.")

 }

</script>

But don’t worry—both functions work exactly the same way.

Tip: You can put as many functions as you want in a single <script> block. Just add them one after the other.

Calling a function

Creating a function is only half the battle. On their own, functions don’t do any-
thing. You have to call the function somewhere in your page to actually run the
code. To call a function, you use the function name, followed by parentheses:

ShowAlertBox()

Note: Don’t leave out the parentheses after the function name. Otherwise, browsers will assume you’re
trying to use a variable rather than call a function.

You can call ShowAlertBox() anywhere you’d write ordinary JavaScript code. For
example, here’s a script that shows the alert message three times in a row to really
hassle your visitors:

<script type="text/javascript">

 ShowAlert()

 ShowAlert()

 ShowAlert()

</script>

416 Creating a Web Site: The Missing Manual

JavaScript 101

This is the same technique that, earlier, you saw used to call the alert() function.
The difference is that alert() is built into JavaScript, while ShowAlertBox() is
something you created yourself. Also, the alert() function requires one argument,
while ShowAlertBox() doesn’t use any.

Functions that receive information

The ShowAlertBox() function is beautifully simple. You simply call it, and it dis-
plays an alert box with the built-in message. Most functions don’t work this easily.
That’s because in many cases you need to send specific information to a function,
or take the results of a function and use them in another operation.

For example, imagine you want to display a welcome message with some standard
information in it, like the current date. But you also want the flexibility to change
part of the message by substituting your own witty words each time you call the
function. To do so, you need a way to call a function and to supply a text string
with your message in it.

To solve this problem, you can create a ShowAlertBox() function that accepts a
single argument. This argument represents the customized text you want to incor-
porate into your greeting. Choose a name for your customized text, say custom-
Message, and put it between the parentheses after the function name, like so:

function ShowAlertBox(customMessage) {

 ...

}

There’s no limit to how many pieces of information a function can accept. You
just need to separate each argument with a comma. Here’s an example of the
ShowAlertBox() function with three arguments named messageLine1,
messageLine2, and messageLine3.:

function ShowAlertBox(messageLine1, messageLine2, messageLine3) {

 ...

}

Here’s another example that shows a finished ShowAlertBox() function. It accepts
a single argument named customMessage, and uses the customMessage argument
to generate the text it displays in the alert box:

<script type="text/javascript">

1 function ShowAlertBox(customMessage)

2 {

3 // Get the date.

4 var currentDate = new Date()

5

6 // Build the full message.

7 var fullMessage = "** IMPORTANT BULLETIN **\n\n"

8 fullMessage += customMessage + "\n\n"

9 fullMessage += "Generated at: " + currentDate.toTimeString() + "\n"

Chapter 14: JavaScript: Adding Interactivity 417

JavaScript 101

10 fullMessage += "This message courtesy of MagicMedia Inc."

11

12 // Show the message.

13 alert(fullMessage)

14 }

</script>

Here are some helpful notes to help you wade through the code:

• Any line that starts with // is a comment (see lines 3 and 6). Good program-
mers include lots of comments to help others understand how a function works
(and help themselves remember what they did during a late-night coding
binge). The browser ignores them.

• To put line breaks into an alert box, use the code \n (lines 7, 8, and 9). Each \n
is equivalent to one line break. (This rule is for message boxes only. When writ-
ing XHTML, you add the familiar
 element to create a line break.)

• To build the text for the fullMessage variable (lines 7 to 10), the code uses a
shortcut in the form of the += operator. This operator automatically takes
whatever’s on the right side of the equal sign and pastes it onto the end of the
variable on the left side. In other words, this…

8 fullMessage += customMessage + "\n\n"

… is equivalent to this longer line:

8 fullMessage = fullMessage + customMessage + "\n\n"

Using this function is easy. You just need to remember that when you call the
function, you have to supply the same number of arguments as you defined for the
function, separating each one with a comma. In the case of the ShowAlertBox()
function above, you only need to supply a single value for the customMessage vari-
able. Here’s an example:

<script type="text/javascript">

 ShowAlertBox("This Web page includes JavaScript functions.")

</script>

Figure 14-5 shows the result of this script.

Figure 14-5:
This message is built out of several pieces of text, one of which you supplied
as an argument to the ShowAlertBox() function.

418 Creating a Web Site: The Missing Manual

JavaScript 101

Functions that return information

Arguments let you send information to a function. You can also create functions
that send information back to the script code that called them. The trick to doing
this is the return command, which you put right at the end of your function. The
return command ends the function immediately, and spits out whatever informa-
tion you want your function to generate.

Of course, a sophisticated function can accept and return information. For exam-
ple, here’s a function that multiplies two numbers (supplied as arguments) and
returns the result to anyone who’s interested:

<script type="text/javascript">

 function MultiplyNumbers(numberA, numberB)

 {

 return numberA * numberB

 }

</script>

Here’s how you use this function elsewhere on your Web page:

<p>The product of 3202 and 23405 is

<script type="text/javascript">

 var product = MultiplyNumbers(3202, 23405)

 document.write(product)

</script>

</p>

This XHTML shows a single line of text, followed by a block of script code. The
script code calls the MultiplyNumbers() function, gets the result (the number
74942810), and stuffs it in a variable named product for later use. The code then
uses the document.write() command to display the contents of the product vari-
able on the page. The final result is a paragraph with this text:

The product of 3202 and 23405 is 74942810

To use a typical script you get from the Web, you need to copy one or more func-
tions into your page. These functions are likely to look a lot more complex than
what you’ve seen so far. However, now that you understand the basic structure of a
function, you’ll be able to wade through the code to get a fundamental under-
standing of what’s taking place (or to at least pinpoint where the action is going
down).

External Script Files
Reusing scripts inside a Web page is neat, but did you know that you can share
scripts between individual pages and even among different Web sites? The trick is
to put your script into an external file and then link to it. This procedure is similar
to the way you learned to link external style sheets back in Chapter 6.

Chapter 14: JavaScript: Adding Interactivity 419

JavaScript 101

For example, imagine you perfect the ShowAlertBox() routine so that it performs
a complex task exactly the way you want it to, but it requires a couple of dozen
lines of code to do so. To simplify your life and your XHTML document, you cre-
ate a new file to store that script.

Script files are always plain text files. Usually, they have the extension .js (for Java-
Script). You put all your code inside a script file, but you don’t include the
<script> element. For example, you could create this JavaScript file named
ShowAlert.js:

function ShowAlertBox()

{

 alert("This function is in an external file.")

}

Now save the file, and put it in the same folder as your Web page. In your Web
page, define a script block, but don’t supply any code. Instead, add the src attribute
and indicate the script file you want to link to:

<script type="text/javascript" src="ShowAlert.js">

</script>

When a browser comes across this script block, it requests the ShowAlert.js file and
treats it as though the code were right inside the page. Here’s a complete XHTML
test page that uses the ShowAlert.js file. The script in the body of the page calls the
ShowAlertBox() function:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Show Alert</title>

 <!-- Make all the functions in the ShowAlert.js file

 available in this page. Notice there's no actual content here. -->

 <script type="text/javascript" src="ShowAlert.js">

 </script>

</head>

<body>

 <!-- Test out one of the functions. -->

 <script type="text/javascript">

 ShowAlertBox()

 </script>

</body>

</html>

420 Creating a Web Site: The Missing Manual

Dynamic XHTML

There’s no difference in the way an embedded or external script works. However,
storing your scripts in separate files helps keep your Web site organized and makes it
easy to reuse scripts across several pages. In fact, you can even link to JavaScript
functions on another Web site—just remember that the src attribute in the <script>
block needs to point to a full URL (like http://SuperScriptSite.com/ShowAlert.js)
instead of just a file name. Of course, this technique is risky because the Web site
owner might rename, move, or modify the JavaScript file. If you really want to use
the code, it’s far better to copy it to your own Web server so that that can’t happen.

Note: Using separate script files doesn’t improve your security one iota. Because anyone can request
your script file, a savvy Web visitor can figure out what scripts your page uses and take a look at them. So
never include any code or secret details in a script that you don’t want the world to know about.

Dynamic XHTML
JavaScript underwent a minor revolution in the late 1990s, adding support for a set
of features called Dynamic XHTML (also referred to as Dynamic HTML, or short-
ened to DHTML). Dynamic XHTML isn’t a new technology—instead, it’s a fusion
of three distinct ingredients:

• Scripting languages like JavaScript, which let you write code.

• The CSS (Cascading Style Sheet) standard, which lets you control how to
position an XHTML element and how it appears.

• The XHTML document object model (or DOM), which lets you treat an XHTML
page as a collection of objects.

The last point is the most important. Dynamic XHTML extends scripting lan-
guages like JavaScript so they can interact with a page as a collection of objects. This
is a radical shift in Web programming. Dynamic XHTML treats each XHTML ele-
ment, including images, links, and even the lowly paragraph, as a separate pro-
gramming ingredient that your JavaScript code can play with. Using these objects,
you can change what each element looks like or even where your browser places
them on a page.

XHTML Objects
Clearly, Dynamic XHTML requires a whole new way of thinking about Web page
design. Your scripts no longer look at your Web page as a static block of XHTML.
Instead, they see a combination of objects.

Before you can manipulate an object on your Web page, you need a way to
uniquely identify it. That way, your code can find the object it needs. The best
choice for identifying objects is the id attribute. Add this attribute to the start tag
for the element you want to manipulate, and choose a unique name, as shown
here:

<h1 id="PageTitle">Welcome to My Page</h1>

Chapter 14: JavaScript: Adding Interactivity 421

Dynamic XHTML

Once you give your element a unique ID, you can easily locate that object in your
code, and have JavaScript act on it. JavaScript has a handy trick for locating an
object: the document.getElementById() method. Basically, document is an object
that represents your whole XHTML document. It’s always available and you can
use it any time you want. This document object, like any object worthy of its name,
gives you some handy properties and methods. The getElementById() method is
one of the coolest—it scans a page looking for a specific XHTML element.

Note: In the example on page 412, you saw the document object working on a different task—displaying
information in a Web page. To accomplish this feat, the script used the write() method of the document
object.

When you call the document.getElementById() method, you supply the ID of the
XHTML element you’re looking for. Here’s an example that digs up the object for
an XHTML element with the ID PageTitle:

var titleObject = document.getElementById("PageTitle")

UP TO SPEED

Understanding Objects
In many programming languages, including JavaScript,
everything revolves around objects. So what, exactly, is an
object?

In the programming world, an object is nothing more than
a convenient way to group some related features or infor-
mation. For example, say you want to change the picture
shown in an element on a Web page (which is use-
ful if you want to write a script that flashes a series of
images). The easiest way to interact with an element
in JavaScript is to use the corresponding image object. In
effect, the image object is a container holding all sorts of
potentially useful information about what’s happening
inside an element (including its dimensions, its posi-
tion, the name of the image file associated with it, and so
on). The image object also gives you a way to manipulate
the element—that is, to change some or all of these
details.

For example, you can use an image object to get informa-
tion about the image, like this:

document.write("The tooltip says" + image.title)

You can even change one of these details. For example, you
can modify the actual image that an element shows
by using this code:

image.src = "newpic.jpg"

You’ll know an object’s at work by the presence of a dot (.)
in your code line. The dot separates the name of the vari-
able (the first part) from one of the built-in functions it pro-
vides (called methods), or one of the related variables
(called properties). You always put methods and properties
after a period.

In the previous examples, src and title are two of the image
object’s properties. In other words, the code image.src =
“newpic.jpg” is the equivalent of saying “Hey, Mr. Object
named Image: I have a new picture for you. Change your
src to point to newpic.jpg.”

Programmers embraced objects long ago because they’re
a great way to organize code conceptually (not to mention
a great way to share and reuse it). You might not realize it
at first, but working with the image object is actually easier
than memorizing a few dozen different commands that
manipulate an image.

422 Creating a Web Site: The Missing Manual

Dynamic XHTML

This code gets the object for the <h1> element shown earlier and stores it in a vari-
able named titleObject. By storing the object in a variable (titleObject), you can
perform a series of operations on it without having to look it up more than once.

So what, exactly, can you do with XHTML objects? To a certain extent, the answer
depends on the type of element you’re working with. For example, if you have a
hyperlink, you can change its URL. If you have an image, you can change its
source. And there are some actions you can take with almost all XHTML ele-
ments, like changing their style details or modifying the text that appears between
the beginning and ending tags. As you’ll see, you’ll find these tricks useful in mak-
ing your pages more dynamic—for example, you can change a page when a visitor
takes an action, like clicking a link. Interactions like these make visitors feel as
though they’re using an intelligent, responsive program instead of a plain, inert
Web page.

Here’s how you modify the text inside the just-mentioned <h1> element, for
example:

titleObject.innerHTML = "This Page Is Dynamic"

If you run this code in a script, the header’s text changes as soon as your browser
runs this script.

The trick that makes this script work is the innerHTML property, which sets the
content that’s nested inside an element (in this case, the <title> element). Like all
properties, innerHTML is just one aspect of an XHTML object you can alter. To
write code statements like this, you need to know what properties are available for
you to play with. Obviously, some properties apply to specific XHTML elements
only, like the src attribute of an image. But modern browsers boast a huge catalog
of DOM properties you can use with just about any XHTML element. Table 14-1
lists some of the most useful.

Tip: To get the properties that a specific XHTML element supports, check out the reference at www.
w3schools.com/htmldom/dom_reference.asp.

Currently, the above example works in two steps (getting the object, and then
manipulating it). Although this two-step maneuver is probably the clearest
approach, it’s possible to combine these two steps into one line, which scripts often
do. Here’s an example:

document.getElementById("PageTitle").innerHTML = "This Page Is Dynamic"

Remember, the advantage to getting an object first is that you can change several
properties one after the other, without needing to look up the XHTML object
using getElementById() each time.

http://www.w3schools.com/htmldom/dom_reference.asp
http://www.w3schools.com/htmldom/dom_reference.asp

Chapter 14: JavaScript: Adding Interactivity 423

Dynamic XHTML

Using XHTML objects in a script

The easiest way to come to grips with how XHTML objects work is to look at an
example. The Web pages shown in Figure 14-6 include a paragraph that continu-
ously grows and then shrinks, as your code periodically tweaks the font size.

The way this example works is quite interesting. First of all, you define two vari-
ables in the <head> section of the underlying XHTML document. The size vari-
able keeps track of the current size of the text (which starts at 10 pixels). The
growIncrement variable determines how much the text size changes each time your
browser runs the code (initially, it grows by two pixels at a time):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

Table 14-1. Common XHTML object properties

Property Description

className Lets you retrieve or set the class attribute (see page 173). In other words, this
property determines what style (if any) this element uses. Of course, you
need to define this style in an embedded or linked style sheet, or you’ll end
up with the plain-Jane default formatting.

innerHTML Lets you read or change the HTML inside an element. innerHTML is insanely
useful, but it has two quirks. First, it allows all XHTML content, including text
and tags. So if you want to put bold text inside a paragraph, you can set
innerHTML to Hi. Special characters aren’t welcome—you need to
replace them with the character entities described on page 132.
Second, when you set innerHTML, you replace all the content inside this ele-
ment, including any other HTML elements. So if you set the innerHTML of a
<div> element that contains several paragraphs and images, all these items
disappear, to be replaced by your new content. If you want to modify a spe-
cific piece of a paragraph, wrap that piece in a element.

parentElement Provides the XHTML object for the element that contains this element. For
example, if the current element is a element in a paragraph, this gets the
object for the <p> element. Once you have this object, you can modify the
paragraph. Using this technique (and other similar techniques in Dynamic
XHTML), you can jump from one element to another.

style Bundles together all the CSS attributes that determine the appearance of the
XHTML element. Technically, the style property returns
a full-fledged style object, and you need to add another dot (.)
and the name of the style attribute you want to change, as in
myObject.style.fontSize. You can use the style object to set colors, borders,
fonts, and even positioning.

tagName Provides the name of the XHTML element for this object, without the angle
brackets. For example, if the current object represents an element, this
returns the text “img”.

424 Creating a Web Site: The Missing Manual

Dynamic XHTML

<head>

 <title>Dynamic XHTML</title>

 <script type="text/javascript">

//<![CDATA[

 // The current font size.

 var size = 10

 // The amount the font size is changing.

 var growIncrement = 2

Note: This script example is wrapped in a CDATA block because it uses the angle brackets to perform a
numeric comparison.

Figure 14-6:
If you were looking at this
heading in a live Web
browser, you’d see that the
text is always changing size,
making it difficult to ignore.

Chapter 14: JavaScript: Adding Interactivity 425

Dynamic XHTML

Next, the script defines a function named ChangeFont(). This function retrieves
the XHTML object, here the <p> element holding the text that will grow and
shrink. Once again, the getElementById() function does the job:

 function ChangeFont() {

 // Find object that represents the paragraph

 // whose text size you want to change.

 var paragraph = document.getElementById("animatedParagraph")

Now, using the size and growIncrement variables, you define a variable that per-
forms a calculation to determine the new size for the paragraph:

 size = size + growIncrement

In this example, the + performs a numeric addition, because both the size and
growIncrement variables store a number.

It’s just as easy to set the new size using the paragraph.style.fontSize property. Just
tack the letters px on the end to indicate that your style setting is measured in pixels:

 paragraph.style.fontSize = size + "px"

If this code runs perpetually, you’ll eventually end up with text so ridiculously
huge you can’t see any of it on the page. To prevent this from happening, you add
a safety valve to the code.

Say you decide that, when the text size hits 100, you want to stop enlarging it and
start shrinking it. To do this, you write the script so that it sets the growIncrement
variable to –2 when the text size reaches 100. This way, the text will start shrinking
from this point on, two pixels at a time. To detect when the message has grown too
big, you use conditional logic courtesy of the if statement. Here’s what it looks like:

 // Decide whether to reverse direction from

 // growing to shrinking (or vice versa).

 if (size > 100) {

 paragraph.innerHTML = "This Text is Shrinking"

 growIncrement = -2

 }

Of course, you don’t want the shrinking to go on forever, either. So it makes
sense to add one last check that determines whether the text has shrunk to 10
pixels or less, in which case the script goes back to enlarging the text by setting
growIncrement back to 2:

 if (size < 10) {

 paragraph.innerHTML = "This Text is Growing"

 growIncrement = 2

 }

Now here comes the really crafty bit. JavaScript includes a setTimeout() function,
which lets you give the browser an instruction that says “call this function, but wait a

426 Creating a Web Site: The Missing Manual

Dynamic XHTML

bit before you do.” The setTimeout() function is handy when you want to create an
interactive page. In this example, the setTimeout() function instructs the browser to
call the ChangeFont() method again in 100 milliseconds (0.10 seconds):

 setTimeout("ChangeFont()", 100)

 }

//]]>

 </script>

</head>

Because the ChangeFont() function always uses setTimeout() to call itself again,
the shrinking and resizing never stops. However, you can alter this behavior. You
could, for example, add conditional logic so that JavaScript calls the setTimeout()
method only a certain number of times.

The last detail is the <body> section, which contains the actual paragraph that you
resize and a script that calls ChangeFont() for the first time, starting the whole
process off:

<body>

 <p id="animatedParagraph">This Text is Growing</p>

 <script type="text/javascript">

 ChangeFont()

 </script>

</body>

</html>

Although the resizing paragraph trick is absurdly impractical, the technique is the
basis for many much more impressive scripts (to get the whole script and play
around with it, download it from the Missing CD page at www.missingmanuals.
com). For example, you can easily find scripts that animate text in various ways,
making it fly in from the side of the page (see www.codejunction.com/detailed/
sequential-fly-in-text-effect.html); showing words appear one letter at a time, type-
writer-style (www.javascript-page.com/tickert.html); or making a sparkle float over
a title (www.flooble.com/scripts/animate.php). Each of these examples uses the same
basic approach, but adds significantly more code and gives you a much slicker
effect.

Events
The most exciting JavaScript-powered pages are dynamic, which means they per-
form various actions as your visitor interacts with them (moving his mouse, typing
in text, clicking things, and so on). A dynamic page is far more exciting than an
ordinary XHTML page, which appears in the browser in one shot and sits there,
immobile.

To make dynamic pages, you program them to react to JavaScript events. Events
are notifications that an XHTML element sends out when specific things happen.

http://www.missingmanuals.com
http://www.missingmanuals.com
http://www.codejunction.com/detailed/sequential-fly-in-text-effect.html
http://www.codejunction.com/detailed/sequential-fly-in-text-effect.html
http://www.javascript-page.com/tickert.html
http://www.flooble.com/scripts/animate.php

Chapter 14: JavaScript: Adding Interactivity 427

Dynamic XHTML

For example, JavaScript gives every <a> hyperlink element an event named
onmouseover (a compressed version of “on mouse over”). As the name suggests,
this event takes place (or fires, to use programmer-speak) when a visitor moves his
mouse pointer over an XHTML element like a paragraph, link, image, table cell, or
text box. That action triggers the onmouseover event and your code flies into
action.

Here’s an example that displays an alert message when a visitor moves his mouse
pointer over a link:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>JavaScript Test</title>

 <meta http-equiv="Content-Script-Type" content="text/javascript" />

</head>

<body>

 <h1>You Will Be Wowed (Again)</h1>

 <p>When you hover over <a href="SomePage.htm"

onmouseover="alert('Colorless green ideas sleep furiously.')">

this link

 you'll see a secret message.

 </p>

</body>

</html>

When you write code to react to an event, you don’t absolutely need a script block
(although it’s a good idea to use one anyway, as shown in the next section).
Instead, you can just put your code between quotation marks next to the event
attribute:

...

There’s one detail to keep in mind. In this example, the text argument ('Colorless
green…') uses single quotation marks instead of double quotes. That’s because the
event attribute itself uses double quotes, and using double quotes for two different
purposes at the same time will horribly confuse your browser.

When you attach code to an event, your browser assumes you’re using JavaScript,
which is by far the most popular scripting language. However, to meet the strictest
rules of XHTML, you need to explicitly indicate your language choice by adding
the following <meta> element to the <head> section of your page:

<meta http-equiv="Content-Script-Type" content="text/javascript" />

428 Creating a Web Site: The Missing Manual

Dynamic XHTML

Figure 14-7 shows the result of running this script and moving your mouse pointer
over the link.

To use events effectively, you need to know what events JavaScript supports. In
addition, you need to know which events work on which XHTML elements.
Table 14-2 provides a list of commonly used events and the XHTML elements that
they apply to (and you can find a more complete reference at www.w3schools.com/
htmldom/dom_reference.asp).

In the following sections, you’ll see two common scenarios that use some of these
events.

Note: XHTML requires that events use all-lowercase names, which is dreadfully unreadable. The event
list in Table 14-2 breaks that rule so that you can review the event names more easily. However, when you
use these events in your Web pages, you need to replace the mixed-case name (like onMouseOver) with
all lowercase letters (like onmouseover) to satisfy the laws of XHTML.

Figure 14-7:
In this example, the alert box doesn’t pop
up until you move your mouse pointer over
the link.

Table 14-2. Common XHTML object properties

Event Name
(with uppercase
letters) Description

Applies To Which XHTML
Elements

onClick Triggered when you click an element. Almost all

onMouseOver Triggered when you move your
mouse pointer over an element.

Almost all

onMouseOut Triggered when you move your
mouse pointer away from an element.

Almost all

http://www.w3schools.com/htmldom/dom_reference.asp
http://www.w3schools.com/htmldom/dom_reference.asp

Chapter 14: JavaScript: Adding Interactivity 429

Dynamic XHTML

Image Rollovers
One of the most popular mouse events is the image rollover event. To write one,
you start by creating an element that displays a specific picture. Then, when
a visitor’s mouse pointer moves over the image, your browser displays a new pic-
ture, thanks to the onmouseover event. Creating an image rollover is fairly easy.
All you do is get the XHTML object for the element, and then modify the
src property.

In this situation, you can’t get everything done with a single line of code. You
could pile your entire script into the event attribute (using semicolons to separate
each line), but that would be dreadfully confusing. A better choice is to write the
code as a function. You can then hook the element up to the function using the
event attribute.

onKeyDown Triggered when you press a key. <select>, <input>, <textarea>,
<a>, <button>

onKeyUp Triggered when you release a pressed
key.

<select>, <input>, <textarea>,
<a>, <button>

onFocus Triggered when a control receives
focus (in other words, when the cur-
sor appears there so you can type
something in). Controls include text
boxes, checkboxes, and so on—see
page 343 in Chapter 12 for a
refresher.

<select>, <input>, <textarea>,
<a>, <button>

onBlur Triggered when focus leaves a control. <select>, <input>, <textarea>,
<a>, <button>

onChange Triggered when you change a value in
an input control. In a text box, this
event doesn’t fire until you move to
another control.

<select>, <input type="text">,
<textarea>

onSelect Triggered when you select a portion
of text in an input control.

<input type="text">, <textarea>

onError Triggered when your browser fails to
download an image (usually due to
an incorrect URL).

onLoad Triggered when your browser fin-
ishes downloading a new page or fin-
ishes loading an object, like an image.

, <body>, <frame>,
<frameset>

onUnload Triggered when a browser unloads a
page. (This typically happens after
you enter a new URL or when you
click a link. It fires just before the
browser downloads the new page.)

<body>, <frameset>

Table 14-2. Common XHTML object properties (continued)

Event Name
(with uppercase
letters) Description

Applies To Which XHTML
Elements

430 Creating a Web Site: The Missing Manual

Dynamic XHTML

For example, here’s the function to swap an image. This example writes the func-
tion in a very generic way using parameters, so you can reuse it over and over, as
you’ll see in a moment. Every time you call the function, you indicate which image
you want to change (by supplying the corresponding ID) and what new image file
you want to use. That way, you can call the same function for any image rollover,
anywhere on your page.

<script type="text/javascript">

 function ChangeImage(imageName, newImageFile) {

 // Find the object that represents the img element.

 var image = document.getElementById(imageName)

 // Change the picture.

 image.src = newImageFile

 }

</script>

When you create an image rollover, you need to use two events. The onmouseover
event switches to the rollover picture, and the onmouseout event (triggered when
your visitor moves her mouse pointer off the XHTML element) switches back to
the original picture.

<img id="SwappableImage" src="pic1.gif" alt=""

onmouseover="ChangeImage('SwappableImage', 'LostInterestMessage.gif')"

onmouseout="ChangeImage('SwappableImage', 'ClickMe.gif')" />

Figure 14-8 shows the result.

If you want to add more rollover images, just add a new element with a dif-
ferent name. The following element uses the same initial image, but shows a differ-
ent rollover image each time a visitor moves her mouse pointer on and off the
image:

<img id="SwappableImage2" src="pic1.gif" alt=""

onmouseover="ChangeImage('SwappableImage2', 'MouseOverPicture.gif')"

onmouseout="ChangeImage('SwappableImage2', 'InitialPicture.gif')" />

Figure 14-8:
A rollover image in
action.

Chapter 14: JavaScript: Adding Interactivity 431

Dynamic XHTML

If you want to get really fancy, you can even use the onclick event (which occurs
when you click an element) to throw yet another picture into the mix.

Note: You’ll get your hands dirty with more image rollovers when you create fancy buttons in
Chapter 15.

Collapsible Text
Another nifty way to use events is to create collapsible pages. The basic idea behind
a collapsible page is this: If you’ve got a lot of information to show your viewers
but don’t want to overload them with a lengthy page, you hide (or collapse)
chunks of text behind headlines that viewers can click when they want to see the
details (see Figure 14-9).

Dynamic XHTML gives you many ways to trick browsers into hiding text to create
a collapsible page, and the next example shows one of the best. The technique
revolves around the CSS display property. When you set this property to block, an

Figure 14-9:
Top: Initially, the browser hides all the
body text.

Bottom: But when you click the down
arrow image, the browser displays the
content in that section. You can reveal as
many sections at a time as you want.

432 Creating a Web Site: The Missing Manual

Dynamic XHTML

item appears in the XHTML page in the normal way. But when you set it to none,
the element disappears, along with everything inside it.

The first ingredient in making a collapsible page is to create the function that per-
forms the hiding and the showing. The function requires two parameters: the
name of the open/close image, and the name of the element you want to hide or
show. The function actually does double duty. It checks the current state of the
section, and then it changes that state. That means that it automatically shows a
hidden section and automatically hides a displayed section, thanks to conditional
logic. At the same time, the function changes the open/close image to display a dif-
ferent type of arrow.

Note: This practice, where you always reverse the current state of an item, is called toggling by jargon-
happy programmers.

<script type="text/javascript">

 function ToggleVisibility(image, element){

 // Find the image.

 var image = document.getElementById(image)

 // Find the element to hide/unhide.

 var element = document.getElementById(element)

 // Check the element's current state.

 if (element.style.display == "none"){

 // If hidden, unhide it.

 element.style.display = "block"

 image.src = "open.png"

 }

 else

 {

 // If not hidden, hide it.

 element.style.display = "none"

 image.src = "closed.png"

 }

 }

</script>

The code starts out by looking up the two objects you need and storing them in the
variables image and element. Then it gets to work. It looks at the current state of
the paragraph and makes a decision (using an if statement) about whether it needs
to show the paragraph or hide it. Only one part of this conditional code runs. For
example, if the browser is currently hiding the image (if the display style is none),
the function runs just these two lines of code, then skips to the bottom of the func-
tion and ends:

element.style.display = "block"

image.src = "open.png"

Chapter 14: JavaScript: Adding Interactivity 433

Dynamic XHTML

On the other hand, if the browser is displaying the image, this code gets a chance
to prove itself:

element.style.display = "none"

image.src = "closed.png"

To use this function, you need to add the element that performs the tog-
gling to your Web page. You also need to add the XHTML section that contains
the hidden content. You can show or hide virtually any XHTML element, but a
good all-purpose choice is a <div> element because you can stuff whatever you
want to hide inside it. Here’s an example:

<p>

 <img id="Question1Image" src="closed.png" alt=""

 onclick="ToggleVisibility('Question1Image','HiddenAnswer1')" />

 Where has all the information gone?

</p>

<div id="HiddenAnswer1">

 <p>Now you've found it. We've decided to hide parts of the

 page in these neat little collapsible sections. That way you won't

 see everything at once, panic, and do something drastic.</p>

</div>

The first part of the page markup (between the first <p> elements) defines the
question heading, which visitors always see. It contains the image and the question
(in bold). The second part (in the <div> element) is the answer, which your code
alternately shows or hides.

Best of all, because you put all the complicated stuff into a function, you can reuse
the function to make additional collapsible sections. These sections have the same
structure, but different contents:

<p>

 <img id="Question2Image" src="closed.png" alt=""

 onclick="ToggleVisibility('Question2Image','HiddenAnswer2')" />

 Can I read more than one answer at a time?

</p>

<div id="HiddenAnswer2" style="display:none">

 <p>You can expand as many or as few sections as you want.

 Once you've expanded a section, just click again to collapse it back up

 out of sight. The only rule is that when you leave this page and come back

 later, everthing will be hidden all over again. That's just the way

 JavaScript and Dynamic XHTML work.</p>

</div>

Notice that you have to give each and <div> element a unique id or your
function won’t know which picture to change and which section to hide.

434 Creating a Web Site: The Missing Manual

Dynamic XHTML

Optionally, you can change this page to give it a different feel but keep the same
collapsing behavior. For example, you can make the page easier to use by letting
your visitor expand and collapse sections by clicking the heading text (instead of
just the image). The easiest way to do this is to pop the image and the bold head-
ing into a <div> element, and then add the onclick event attribute to that <div>
element. Here’s the change you need:

<div onclick="ToggleVisibility('Question1Image','HiddenAnswer1')">

 <p>

 Where has all the information gone?

 </p>

</div>

You could even underline the heading text so it looks like a link, which lets view-
ers know something will happen if they click it. Use the text-decoration style sheet
property to underline the heading (page 155).

Finally, if you want all your collapsible sections to start off as collapsed, you need
to add another script that performs this service. Here’s the <script> block you
need, which you can position at the end of your page, just before the closing </body>
tag:

<script type="text/javascript">

 // Hide all sections, one by one.

 ToggleVisibility('Question1Image','HiddenAnswer1')

 ToggleVisibility('Question2Image','HiddenAnswer2')

 ...

</script>

You could hide your collapsible sections more easily by setting the display style
property on each <div> element with an inline style rule (page 146). However, this
approach runs into trouble if a visitor turns off JavaScript, in which case every sec-
tion will remain permanently hidden. By using the code approach shown here, you
ensure that JavaScript-challenged browsers will simply display all the content,
including the collapsible sections. The page won’t be as impressive, but at least
nothing goes missing.

Note: You’ll see more collapsible text effects when you tackle collapsible menus in Chapter 15.

An Interactive Form
You see some of the most powerful examples of JavaScript when you combine it
with XHTML forms. As you learned in Chapter 12 (page 339), XHTML forms let
you create graphical widgets like text boxes, checkboxes, buttons, and more. With-
out using a client-side programming language like JavaScript or a more powerful
server-side programming language, forms are quite limited. However, if you use
JavaScript and add a dash of programming savvy, you can create pages that have
their own intelligence.

Chapter 14: JavaScript: Adding Interactivity 435

Dynamic XHTML

For example, consider the page shown in Figure 14-10. It provides several text
boxes where visitors type in numbers, and then it performs a calculation when visi-
tors click a button.

Building this example is surprisingly easy. The trickiest part is creating the func-
tion that powers the underlying calculations. This function needs several pieces of
information, corresponding to the values in the three text boxes (feet, inches, and
pounds). The function also needs the name of the element where it should display
the results. Here’s what the function looks like to start with:

<script type="text/javascript">

 function CalculateBMI(feet, inches, pounds, resultElementName) {

Tip: You could create a CalculateBMI() function that doesn’t take any arguments. Instead, the function
could just search for all the controls on the page by name. However, using arguments is always a good
idea, because it makes your code more flexible. Now you can use the CalculateBMI() function on all kinds
of different pages, with or without a form.

The function code that follows isn’t much different from what you’ve seen before.
One trick is that it begins by using a Number() function that’s hardwired into
JavaScript. This function converts the text a visitor types in to numbers that the
function can use in its calculations. If you don’t take this step, you might still get

Figure 14-10:
BMI, or Body Mass Index, is a popular way to
calculate a person’s overall health by taking their
height and weight into consideration. It produces
a single number that you can compare against a
few standard values. The BMI calculation is
thought to be accurate for most people, but there
are always exceptions.

436 Creating a Web Site: The Missing Manual

Dynamic XHTML

the right answer (sometimes), because JavaScript can automatically convert tex-
tual strings into numbers as needed. However, there’s a catch—if you try to add
two numbers and JavaScript thinks they’re strings, it will just join the two strings
into one piece of text, so 1+1 would get you 11. This mistake can really scramble
your calculations, so it’s best to always use the Number() function, like so:

 inches = Number(inches)

 pounds = Number(pounds)

 feet = Number(feet)

The actual calculation isn’t too interesting. It’s taken straight from the definition of
Body Mass Index, or BMI, which you can find on the Internet.

 var totalInches = (feet * 12) + inches

Finally, the function displays the result on the page:

 var resultElement = document.getElementById(resultElementName)

 resultElement.innerHTML =

 Math.round(pounds * 703 * 10 / totalInches / totalInches) / 10

}

</script>

Creating the form that uses this function is the easy part. All you do is create the
text boxes with <input> elements and give them names you can easily remember.
In this example, the form uses a table to make sure the text boxes line up neatly
next to each other:

<form action="">

 <table>

 <tr>

 <td>Height: </td>

 <td><input type="text" name="feet" /> feet</td>

 </tr>

 <tr>

 <td> </td>

 <td><input type="text" name="inches" /> inches</td>

 </tr>

 <tr>

 <td>Weight: </td>

 <td><input type="text" name="pounds" /> pounds</td>

 </tr>

 </table>

Finally, at the bottom of the form, you create a button that calls the CalculateBMI()
function using the form’s values. To have the button make this call, you need to
program your page to react to the onclick event. To look up a value in a form, you

Chapter 14: JavaScript: Adding Interactivity 437

Scripts on the Web

don’t need the getElementById() function. Instead, you access it by name through
the this.form object, which represents the current form:

 <p>

 <input type="button" name="calc" value="Calculate"

 onclick="CalculateBMI(this.form.feet.value, this.form.inches.value,

this.form.pounds.value, 'result')" />

 </p>

</form>

The final ingredient is the element that displays the result. In this case, because you
want it to appear inside another paragraph, the element makes more sense
than the <div> element (see page 122 to review the difference).

<p>

 Your BMI:

</p>

You can use all sorts of other form-related scripts. For example, you can check the
information that people enter into forms for errors before letting them continue
from one page to another. To learn more about these tricks, you need to take your
search to the Web, as described in the next section.

Scripts on the Web
JavaScript is a truly powerful tool. If you’re a die-hard alpha nerd who likes to
program your TiVo to talk to your BlackBerry, you’ll enjoy long nights of Java-
Script coding. However, if you don’t like to lie awake at night wondering what
var howMany = (trueTop>1?"s" : ""); really means, you’ll probably be happier let-
ting someone else do the heavy lifting.

If you fall into the nonprogrammer camp, this chapter has some very good news.
The Web is flooded with free JavaScript. In fact, it’s easier to find free scripts on
the Web than free clip art, style sheets, or MIDI music. Most of the time, these
scripts include step-by-step instructions that explain where to put the functions,
what elements to use in your page, and how to hook your elements up to func-
tions using events.

Although the list of JavaScript sites is too long to print, here are some good starting
points:

• http://webdeveloper.earthweb.com/webjs

Offers a huge collection of JavaScript standards.

• http://javascript.internet.com

Provides a solid catalog of 2,000 bread-and-butter scripts.

• www.javascript-2.com

Tips the scales with a staggering 9,000 scripts.

http://webdeveloper.earthweb.com/webjs
http://javascript.internet.com
http://www.javascript-2.com

438 Creating a Web Site: The Missing Manual

Scripts on the Web

• www.dynamicdrive.com

Provides a smaller set of scripts that emphasize modern programming tech-
niques based on Dynamic XHTML. Includes exotic scripts like glowing green
letters that tumble down the page, Matrix-style. Offers many scripts that are IE-
only, but clearly indicates browser support for each script.

• www.javascripter.net/faq

Unlike the other sites, this one doesn’t offer a catalog of complete download-
able scripts. Instead, it’s organized as a set of frequently asked JavaScript questions,
with the relevant code for each answer.

• www.webmonkey.com/tutorial/JavaScript_Tutorial

Unlike the other sites, this one offers a smaller set of detailed JavaScript tutori-
als instead of a huge variety of standalone scripts. Useful if you want to learn
more about some of the core JavaScript techniques.

UP TO SPEED

Script Categories
To get a handle on the types of Dynamic HTML scripts avail-
able, look through the different categories at Dynamic Drive
(www.dynamicdrive.com). Here’s a sampling of what you’ll
find:

The Calendars category has scripts that produce nifty
XHTML that looks like calendars—great for displaying
important dates or letting visitors plan in advance.

The Date & Time category has live clocks and countdowns
to a specific date.

The Document Effects category has page transitions and
background effects (like fireworks or floating stars).

The Dynamic Content category has menus that slide out,
sticky notes, and scrollable panels.

The Form Effects category has scripts for managing forms
(see page 339). You can use them to make sure visitors sub-
mit forms only once, check for invalid entries, and more.

The Games category has complete miniature games, like
tic-tac-toe and Tetris. These games stretch the capabilities
of JavaScript and Dynamic XHTML as far as they can go.

The Image Effects category has slideshow and image gallery
scripts, along with dynamic images that change pictures
when you move your mouse.

The Links & Tooltips category has fancy links that flash, but-
ton tricks, and pop-up text boxes that capture your visitors’
attention.

The Menus & Navigation category has handy collapsible
menus and navigation bars that let visitors move through
your site, like the ones you’ll see in Chapter 15.

The Mouse and Cursor category has scripts that change the
mouse pointer and add those annoying mouse trails (pic-
tures that follow the mouse pointer wherever it goes).

The Scrollers category has marquee-style scrolling text, like
you might see in a news ticker.

The Text Animations category has scripts that bring text to
life, making it shake, fly, glow, or take on even more bizarre
characteristics.

The User/System Preference category has scripts that dig
up information about the browser that’s currently display-
ing your page.

The Window and Frames category has scripts for a dozen
different types of pop-up windows.

http://www.dynamicdrive.com
http://www.dynamicdrive.com
http://www.javascripter.net/faq
http://www.webmonkey.com/tutorial/JavaScript_Tutorial

Chapter 14: JavaScript: Adding Interactivity 439

Scripts on the Web

Using this list, you can dig up everything from little frills to complete, functioning
Tetris clones. But keep in mind that a script is only as good as the coder who cre-
ated it. Even on sites with good quality control, you could stumble across a script
that doesn’t work on all browsers or slows your page down to a sluggish crawl. As a
rule of thumb, always try out each script thoroughly before you start using it on
your site.

Tip: The hallmark of a good script site is that it’s easy to navigate. You’ll know you’ve found a bad script
site if it’s so swamped with ads and pop-ups that you can’t find the scripts themselves.

Finding a Cool Script
Ready to hunt for scripts online? The next series of steps takes you through the
process from beginning to end.

1. Fire up your browser and choose your site.

In this example, use www.dynamicdrive.com.

2. Choose the category you want from the site’s home page (Figure 14-11).

In this case, use the Documents Effects category. For a sample of what else you
can find, see the box on page 438.

Figure 14-11:
The Dynamic Drive site
organizes its scripts into
clearly defined
categories. If you’re
looking for something
new, scroll down the
page and you’ll find links
to the most recently
added scripts. Some sites
also provide quick links
to reader favorites.

http://www.dynamicdrive.com

440 Creating a Web Site: The Missing Manual

Scripts on the Web

3. Scroll through the list of scripts in your category (Figure 14-12), and then click
one.

In this case, use the Top-Down Stripy Curtain Script.

4. The next page shows an example of the script (Figure 14-13).

Once the page loads, you find a script description, the author’s name, and a link
to try the script out (if it isn’t already being displayed on the page). Underneath
all this information are the step-by-step instructions you need to use the script.

5. Follow the instructions to copy and paste the different parts of the script into
your page (Figure 14-14).

Often, you get a set of functions you need to put in the <head> portion of your
page and then some XHTML elements you need to place in the <body> sec-
tion. In some cases, you can customize the scripts—for example, you might
modify numbers and other values to tweak the script code, or change the
XHTML elements to provide different content.

Note: Many scripts include a set of comments with author information. If they do, the rule usually is that
you need to keep these comments in your script file, so other developers who check out your site will
know where the code originally came from. This practice is just part of giving credit where credit’s due.
Ordinary Web visitors won’t even think to look at the script code, so they won’t have any idea whether or
not you wrote the script from scratch.

Figure 14-12:
The Top-Down Stripy
Curtain Script is good to
go, with support for
Firefox, Internet
Explorer 5 or greater,
and Opera 7 or greater.

Here’s a script
that sounds

interesting

The description
gives some basic

information

The browser
compatibility

information may
be the most

important
consideration

Chapter 14: JavaScript: Adding Interactivity 441

Scripts on the Web

Figure 14-13:
Here’s the Top-Down
Stripy Curtain Script in
action. It fills in the page
by drawing alternating
black strips, some from
top to bottom and others
from bottom to top. It all
happens in a flash.

Figure 14-14:
The Top-Down Stripy
Curtain Script has two
components. The first
part is a style definition
that produces the solid
background curtain that’s
wiped away with the
page content. The second
part creates the
background curtain (as a
<div> element) and
includes the script code
that performs the
transition. Copy both of
these components to any
page, and you’re set.
(For even better
organization, consider
placing the code in a
separate JavaScript file,
as described on
page 418.)

443

Chapter 15chapter

15

Fancy Buttons and
Menus

Chapter 14 gave you a crash course in JavaScript, the secret ingredient you need to
add slick features and frills to ordinary Web pages. Although JavaScript is quirky,
arcane, and sometimes frustrating, learning its basics pays off. In this chapter,
you’ll use that knowledge to create fancy buttons and menus that liven up any
Web site.

Although buttons and menus that pulse, swirl, and unfurl may seem like small
potatoes, they’re actually a hallmark of contemporary Web design. In fact, a styl-
ized button or well-designed collapsible menu is sometimes all the polish you need
to make your pages stand out.

Fortunately, you don’t need to be a JavaScript whiz to add these sophisticated touches
to your site. As you’ll see in this chapter, there are plenty of great tools (both in Web
editing programs like Expression Web and Dreamweaver and in free online scripts)
that can help you get the results you want without all-night JavaScript coding sessions.

Creating Fancy Buttons
In Chapter 8, you learned to use links to let site visitors travel from one page to
another. Although ordinary links work perfectly well, they just aren’t showy
enough for creative Web masters. Modern Web sites guide visitors through their
pages with graphical buttons. Figure 15-1 shows an example.

444 Creating a Web Site: The Missing Manual

Creating Fancy
Buttons

A graphical button is really just an image you turn into a link. (In fact, your
XHTML refers to these buttons with the familiar element.) You perform
this transformation in one of two ways. You can put the image inside an anchor
element, as described in Chapter 8. Here’s what that looks like:

Unfortunately, when you use this method, XHTML adds an ugly blue border
around the image to indicate that it’s a link. To get rid of the border, you set CSS’s
border-style attribute (see page 168) to none.

Alternatively, you can use the element in conjunction with JavaScript’s
onclick event attribute (as described on page 428). This is a good approach if you
want to animate your page with interactive elements instead of just redirecting vis-
itors with plain-Jane URLs. You used this same approach in Chapter 14 with the
BMI calculator (page 434)—visitors clicked a button to have the calculator per-
form an arithmetic operation and display the result.

Going the JavaScript route has another advantage: It lets you plumb JavaScript’s
vast library of features to create interactive effects that go beyond simple one-button
links. For that reason, this chapter focuses on JavaScript; you’ll use it as the core
for your site’s interactive components.

Here’s an example of the JavaScript onclick technique:

This method doesn’t generate an ugly blue border, so you don’t need the border-
style attribute. However, you do need to create a function named DoSomething()
with code that does what you need.

Figure 15-1:
These menu links look
like ordinary text, but
they’re actually
graphical buttons. When
you hover over one, the
text changes color by
substituting a different
image. When you click a
button, the image
changes yet again, this
time to a version with a
different background
color. Sometimes
buttons add even more
graphical details, like
etched borders or
artfully textured
backgrounds.

A group of
buttons

Chapter 15: Fancy Buttons and Menus 445

Creating Fancy
Buttons

Neither of these techniques is new. However, things get a little more interesting if
you decide to add dynamic buttons to your pages. Dynamic buttons (also known
as rollover buttons) change subtly but noticeably when a visitor hovers her mouse
pointer over them. This change lets the visitor know that she’s poised over a real,
live button, and all she needs to do is click the button to complete the deal.

To create a dynamic button, you use the image rollover technique described on
page 429. Here’s a quick overview of how it works: When you mouse over a
dynamic button, JavaScript swaps one button image for another. The second
image looks similar to the first, yet it’s slightly different. And if you click this
swapped-in button, off you go to whatever link’s associated with it.

Really slick dynamic buttons use three pictures—one for the initial state, one for
when you hover your mouse pointer over it, and the third for when you click the
button (just before the new page appears).

Creating a dynamic button presents two challenges:

• Creating the button pictures. Not only should you make these buttons look
eye-catchingly cool, the different versions you use (the normal version and the
mouseover version) need to line up exactly. If one has text a slightly different
size or in a slightly different place, it makes for a jarring effect when your
browser swaps the images.

• Loading the images. Every dynamic button on your site can use up to three
images. For best performance, your browser should download all the images the
buttons use as it loads the page. That way, when a visitor moves her mouse
pointer over a button, she won’t experience a delay as the browser downloads
the appropriate mouse-over image.

In the next two sections, you’ll learn to create button images and make them
dynamic using a dash of JavaScript.

Generating Button Pictures
If you’re graphically inclined, you can create button pictures by hand using just
about any graphics program (Adobe Illustrator and Macromedia Fireworks are
two popular choices). However, getting buttons to look good isn’t always easy. It’s
also hard to mass-produce them, because you need to make sure every button has
the text in the same place and a consistent size, color palette, and background.

Fortunately, if you need a bunch of buttons in a hurry, or if your artistic abilities
are feebler than those of Koko the painting Gorilla, there’s an easier option. You
can use a specialized button creation program. These programs have no purpose in
life other than to help you create attractive buttons with the text, colors, and back-
grounds you choose.

The Web’s teeming with a range of these tools (see the box on page 446). The fol-
lowing example shows you how to use one of them, ButtonGenerator, to get what
you need.

446 Creating a Web Site: The Missing Manual

Creating Fancy
Buttons

1. Go to www.buttongenerator.com.

The ButtonGenerator Web site provides separate tools for creating buttons and
menus.

2. To make sure you’re using the right tool, start by clicking the Web Button
Generator link.

Now, scroll down the page until you see the section “Select the web button you
wish to edit.”

3. In the Show list, choose Only Free Buttons. Figure 15-2 shows you the list
you’ll see.

ButtonGenerator has a large catalog of button styles, and it offers a rotating
selection of them for free. For a small yearly fee, you can join ButtonGenerator.com
and access more powerful ButtonGenerator features and its full catalog of buttons.

If you want to stick with the free option but find something you like in the full
catalog, look for the “Will be FREE in” message underneath the button, which
tells you when the site will offer this style for free (typically in less than a week
from the current date).

GEM IN THE ROUGH

Free Button Makers
Creating a cool rollover button is an age-old problem with
plenty of solutions.

On the Web, you’ll find a range of online button-making
tools. These tools usually start by asking you to specify but-
ton details (like the text, color, background, and so on).
Once you finish, you simply click a button and the program
creates the button image (or images) and displays them in
a new page. All you need to do is download the images and
start using them in your own pages.

Some examples of online button-making tools include
www.buttongenerator.com (which you’ll see demonstrated
in this chapter) and www.grsites.com/button. Not all these
button makers can create images for each button “state.”
However, you can usually run the button generator multi-
ple times and choose a slightly different color scheme to
create the highlighted button image. For a change of pace,
try www.flashbuttons.com, which lets you create animated
buttons—miniature animations that run using a browser
add-in called Adobe Flash (which is described on page 474).

Although these types of buttons are impressive, few Web
sites use them because only browsers with Flash installed
can display them.

The most powerful button-making tools aren’t Web-based
at all. They’re separate programs you can download and
install on your computer. They often give you a richer range
of button choices, more configurable options, and features
that let you create a pile of buttons at once. Unlike online
button-makers, if you go this route you’ll need to shop
around a bit before you find a program that runs on your
operating system (for example, Windows or Mac) and has
the right price (free or close to it).

The best place to find free button-making software is a
high-quality shareware site like www.download.com. Win-
dows fans might be interested in trying out the free http://
freebuttons.org. And if you have Expression Web, skip
ahead to page 458 to find out about its integrated button
generator.

http://www.buttongenerator.com
http://www.grsites.com/button
http://www.flashbuttons.com
http://www.download.com
http://freebuttons.org
http://freebuttons.org
http://www.buttongenerator.com

Chapter 15: Fancy Buttons and Menus 447

Creating Fancy
Buttons

4. Once you find a button you like, click to select it.

Now you see a page that lets you customize the button.

5. In the “Choose a mode” list, select Advanced Form.

The Advanced Form lets you create an ordinary button image and the rollover
image at the same time. It also lets you create several buttons at once. The
plain-vanilla Easy Form lacks both these valuable features.

6. Choose a different picture or a different background for the mouse-over version
of your button (see Figure 15-3).

To create a good dynamic button, you need to differentiate your ordinary but-
ton image (called the initial state button) from the image that appears when
someone mouses over the button (called the mouse-over state button). The dif-
ference should be noticeable yet subtle.

Figure 15-2:
ButtonGenerator offers
about 50 free buttons
styles at any given time.
Using the Sort Buttons By
options (circled), you can
see an alphabetical list,
or put the most popular
or most recently updated
buttons first.

448 Creating a Web Site: The Missing Manual

Creating Fancy
Buttons

7. In the Background Transparency section, choose Light Background or Dark
Background, depending on your page background.

Button images often need to use some transparency because they aren’t exact
rectangles. The Light Background option creates an image that tends to look
better when you put it on a white, gray, yellow, or similar background. The
Dark Background is a better choice if your pages use a black background.

8. In the Text Labels section, enter the text you want to appear on the button (see
Figure 15-4).

If you enter multiple lines of text, each line creates a separate button. This is a
great trick for generating a pile of buttons in one go.

9. In the Text Font section, choose a font for the button text, the font size, and
whether or not you want to use anti-aliasing.

ButtonGenerator limits you to a relatively small number of fonts. The good
news is that you don’t need to worry about what fonts your visitors have on
their computers because the program generates complete button images (which
include the button text), not ordinary XHTML markup.

Anti-aliasing is a feature that smoothes the edges of a font by blending them in
with the background. Usually, this makes the button look more professional.

Figure 15-3:
The best way for you to
distinguish a normal-
state button from a
selected one is by
choosing different state
images, as in this
example. The ordinary
button uses the Dog 1
state, while the selected
button uses Dog 5, which
is lighter and doesn’t
have the paw-print icon.
If your button doesn’t
provide multiple state
choices, you’ll need to
choose different
background colors to
make the distinction.

Chapter 15: Fancy Buttons and Menus 449

Creating Fancy
Buttons

10. In the Text Alignment section, choose left, right, or center alignment, depend-
ing on whether you want your text flush with the left edge, lined up on the
right, or centered in the middle.

You can also use the X and Y text boxes to offset the text slightly in either direc-
tion. Use these settings only if you find that your button text isn’t aligned per-
fectly after you generate it. For example, if you create a button with lowercase
text, you might find that the text is positioned too low on the button. You can
correct this by using a negative number for the Y value.

11. Optionally, tweak the colors for various parts of the button in the Text Color
and Mouse Over Buttons Text Color sections.

The Text Color section corresponds to the initial button image. The Mouse
Over Buttons Text Color section corresponds to the image that appears when
you hover over the button. If you like the current colors, you don’t need to
change anything.

12. Optionally, choose an image from the list in the Icon Insertion section.

If you want, you can embed a small image inside your button, like an arrow or a
flag. However, you’re limited to the options that ButtonGenerator gives you.
Usually, you don’t need a button icon—it’s overkill.

Figure 15-4:
In this example,
ButtonGenerator is
creating three buttons at
once (with the text
“Dogs,” “Cats,” and
“Lemurs,” respectively).
The options underneath
let you choose font
attributes.

450 Creating a Web Site: The Missing Manual

Creating Fancy
Buttons

13. If you want all your buttons the same size, turn on the All Same Width check-
box in the Buttons Width section.

If you choose this option, ButtonGenerator uses your longest piece of text to
calculate the width of the largest button, then makes all the other buttons the
same width. If you don’t choose this option, the program sizes each button to
fit its text exactly.

Tip: If you plan to stack more than one button in a column (for example, to create a navigation bar),
make sure you use the All Same Width option. Otherwise, your buttons won’t line up.

There’s one other option. If you have a specific width in mind, you can enter
that value (in pixels) in the Buttons Width text box. ButtonGenerator then
draws all the buttons at that width. This is a good choice if you’re fitting but-
tons to a specific layout and you know exactly how much space you have. How-
ever, ButtonGenerator ignores your size setting if it isn’t big enough to fit all the
text you enter.

14. Select the Click Here to Generate Your Button link at the bottom of the page.

ButtonGenerator creates all your buttons and displays them in a new page (see
Figure 15-5). Now it’s time to download the pictures (or to click your browser’s
Back button and try again).

Tip: Once you create your button images, you can’t edit them in ButtonGenerator. For that reason, it’s a
good idea to keep track of the settings you used (like colors, font, text size, and button width). That way,
you can generate replacement buttons later on if you need to change the wording or color of your exist-
ing buttons. Or, you can create additional buttons that match those you already have.

15. You need to download the pictures one at a time. To save a picture on a Win-
dows PC, right-click the button, and then choose Save As (the actual wording
depends on your browser). If you’ve got a Mac, Control-click the button to
access your Save As option.

The Save Picture dialog box appears.

16. In the Save Picture dialog box, browse to your Web site folder, type in a but-
ton name, and then click Save. Return to step 14 to save the next picture, and
continue until you’ve saved every image.

It’s important to use a good naming convention for your button pictures so you
don’t get lost in a tangle of picture files. One approach is to give each button a
descriptive name, followed by an underscore and then the button state. For
example, you could name the two pictures for the Dogs button DogsButton_
Normal.png and DogsButton_MouseOver.png.

Chapter 15: Fancy Buttons and Menus 451

Creating Fancy
Buttons

Note: All unregistered ButtonGenerator fanatics are kindly asked to include a link to the ButtonGenerator
site somewhere on their Web page. It’s completely kosher to bury this detail on an About Us or Credits page.
ButtonGenerator provides the XHTML it wants you to include—it’s below the button pictures it generates.

Building a Rollover Button
Now that you have the button images you need, you’re ready to incorporate them
into a Web page. You can use the exact same ChangeImage() function you used in
Chapter 14 (page 430).

Note: If you use Dreamweaver, you don’t need to write the JavaScript on your own. Instead, skip ahead
to page 458 (or keep reading if you’re curious to learn how rollover buttons really work).

The following example shows a Web page that includes the ChangeImage() script
and a single element, which represents one button. (This element
will show one of two pictures depending on whether a mouse pointer is hovering
over the button.) This example puts the button inside an anchor element so that,
when visitors click it, they move to another page. This example also includes a style
sheet rule that removes the standard blue border that the anchor element adds
around its nested image.

Figure 15-5:
If you create three
buttons, you’ll end up
with six pictures in total,
two for each button.

452 Creating a Web Site: The Missing Manual

Creating Fancy
Buttons

Here’s the full XHTML, including several comments to help guide you along the
way:

<html>

<head>

 <title>Fancy Buttons</title>

 <style type="text/css">

 /* Hide the blue link border on all images. */

 img {

 border-style: none;

 }

 </style>

 <meta http-equiv="Content-Script-Type" content="text/javascript" />

 <script type="text/javascript">

 // This is the script for swapping button pictures.

 function ChangeImage(imageID, newImageFile) {

 // Find the object that represents the img element.

 var image = document.getElementById(imageID)

 // Change the picture.

 image.src = newImageFile

 }

 </script>

</head>

<body>

 <p>

 <!-- Create the link with the dynamic button inside. -->

 <img id="Dogs" src="DogsButton_Normal.png" alt="Dogs"

 onmouseover="ChangeImage('Dogs', 'DogsButton_MouseOver.png')"

 onmouseout="ChangeImage('Dogs', 'DogsButton_Normal.png')" />

 </p>

</body>

</html>

Figure 15-6 shows the result.

Chapter 15: Fancy Buttons and Menus 453

Creating Fancy
Buttons

Using image lists

Although this page gets the job done, it’s a little more complicated than it needs to
be. First, the declaration for the element is quite long. Worse, if you make a
slight mistake when you type in the image IDs or picture URLs, the code won’t
work. In a page with dozens of buttons, keeping all this information straight
becomes a headache, especially if you store your pictures in a subfolder, which
makes the URLs much longer. And if you add the image preloading technique dis-
cussed a bit later (on page 457), you’re in even more danger of derailing your code
with a minor mistake in the picture URL.

To minimize the chance of error, pages with rollover buttons commonly use
another JavaScript technique. They declare all of the picture URLs in a single list,
and put this list in a script block at the start of the page. The list assigns each pic-
ture URL a number, like 1 for the first button picture, 2 for the second, and so on.
From that point onward, the rest of your page refers to each picture by number,
which shortens your XHTML and simplifies life considerably.

Figure 15-6:
Top: The rollover button in its initial state.

Middle: The rollover button when a mouse pointer hovers
over it.

Bottom: The rollover button without the style rule that hides
the border. Without this ever-important style rule, a blue
rectangle appears as a clumsy indication that the button’s a
link.

454 Creating a Web Site: The Missing Manual

Creating Fancy
Buttons

To see the advantage of this approach, it helps to consider an example with more
buttons. Consider Figure 15-7, which uses three similar buttons that all have
images from www.buttongenerator.com. To keep track of all the pictures in this
example, you use a JavaScript ingredient you haven’t seen yet: the array.

An array is a JavaScript object that represents a list of items. It can hold as many
items as you want. Here’s an example that creates an array:

var myArray = new Array()

Initially, this array is empty. To put information into it, you use square brackets to
indicate an index number. This is where arrays get a little wonky, because they use
zero-based numbering. This is a fancy way of saying that an array assigns the first
item in a list the index number 0, the second item in the list the index number 1,
and so on. Strange as it seems, programmers always start counting at 0.

Here’s an example that puts a text string into the first slot of the array:

myArray[0] = "This is the first item"

In the example shown in Figure 15-7, you’re dealing with three buttons. Each one
has an initial image and a mouse-over image. To track these two sets of images, it
makes sense to create two arrays, one for normal-state images (which you can
name imgN) and one for selected buttons (imgS). Here’s the code that creates the
arrays and stores all the image URLs:

<script type="text/javascript">

 // The image lists.

 var imgN = new Array()

 imgN[0] = "DogsButton_Normal.png"

 imgN[1] = "CatsButton_Normal.png"

 imgN[2] = "LemursButton_Normal.png"

Figure 15-7:
A page with three rollover buttons.

http://www.buttongenerator.com

Chapter 15: Fancy Buttons and Menus 455

Creating Fancy
Buttons

 var imgS = new Array()

 imgS[0] = "DogsButton_MouseOver.png"

 imgS[1] = "CatsButton_MouseOver.png"

 imgS[2] = "LemursButton_MouseOver.png"

 ...

Now you can rewrite the button code so that it retrieves the button names from
the array:

 <img id="Dogs" src="DogsButton_Normal.png"

 onMouseOver="ChangeImage('Dogs', imgS[0])"

 onMouseOut="ChangeImage('Dogs', imgN[0])">

There’s another change you can make to streamline the code and make the
ChangeImage() function easier to use. Right now, the current version of
ChangeImage() uses two arguments—one for the ID of the element, the
other for the file name of the new image. Check it out:

 function ChangeImage(imageID, newImageFile) {

You can simplify life by modifying the ChangeImage() function so that it accepts
an object that represents the element, instead of the name of the
element itself. Here’s the modified version:

 // This is the script for swapping button pictures.

 function ChangeImage(image, newImageFile) {

 image.src = newImageFile

 }

</script>

As you can see, this means that you no longer need to have your script go hunting
for an image object with the document.getElementById() method. This change
also gives you a handy shortcut. When you call ChangeImage(), you can specify
the current element using a special keyword named this. The this keyword always
refers to the object for the current element—in this case, that current object is the
 element. Here’s how it works:

 <img src="DogsButton_Normal.png" alt="Dogs"

 onmouseover="ChangeImage(this, imgS[0])"

 onmouseout="ChangeImage(this, imgN[0])" />

Take a moment to compare this code to the more painful version on page 452.
With the above script, you no longer need to give each element a unique ID
to keep track of it. You also don’t need to type in the picture URLs every time you
call ChangeImage(). Instead, imgS[0] refers to the first selected button image, and
imgN[0] refers to the first normal button image.

456 Creating a Web Site: The Missing Manual

Creating Fancy
Buttons

Note: Keen eyes may notice that the initial image URL still appears in the src attribute of the ele-
ment. You might wonder if there’s a way to set this detail through JavaScript code using the imgN array.
Although it’s possible, it’s not a good idea. That’s because the current approach works even when a
browser doesn’t support JavaScript. In that situation, the fancy rollover effect doesn’t work, but the
browser still displays the ordinary button image. If you relied entirely on JavaScript, the buttons wouldn’t
appear at all on feebler browsers.

To complete this example, you need an element for each button. The fol-
lowing code groups all the buttons into a <div> element so that, using a style rule,
you can position all the buttons together along the left-hand side of your Web
page:

<div class="Menu">

 <p>

 <img src="DogsButton_Normal.png" alt="Dogs"

 onmouseover="ChangeImage(this, imgS[0])"

 onmouseout="ChangeImage(this, imgN[0])" />

 </p>

 <p>

 <img src="CatsButton_Normal.png" alt="Cats"

 onmouseover="ChangeImage(this, imgS[1])"

 onmouseout="ChangeImage(this, imgN[1])" />

 </p>

 <p>

 <img src="LemursButton_Normal.png" alt="Lemurs"

 onmouseover="ChangeImage(this, imgS[2])"

 onmouseout="ChangeImage(this, imgN[2])" />

 </p>

</div>

Here’s the style rule that formats this <div> element, lining it up neatly on the left
side of the page:

div.Menu {

 float: left;

 margin-right: 20px;

 margin-top: 20px;

 height: 1000px;

}

For a quick refresher on style sheet-based layout, pop back to page 247.

Chapter 15: Fancy Buttons and Menus 457

Creating Fancy
Buttons

Preloading images

With the current example, it’s only a little bit more work to use image preloading.
This technique ensures that a browser downloads the mouse-over images when it
processes the page for the first time, instead of waiting until a visitor moves his
mouse pointer over a button. Although you won’t notice the difference when you
run the page from your computer’s hard drive, preloading images makes the buttons
more responsive when visitors interact with them over the Internet, particularly if
they’ve got a slow connection.

The technique for preloading images requires a bit of a quirky workaround. Basi-
cally, you need to trick your browser into thinking that you’re using the rollover
pictures right away. This convinces it to download the images without delay.

Then, later on, when you hover over a button and the ChangeImage() method
runs, your browser gets ready to download the mouse-over image. However, being
a relatively clever program, the browser immediately realizes that it already has the
image stored away in its cache (a temporary location in memory or on disk for
storing recently visited pages and other recently downloaded files). As a result, the
browser abandons its download plans and uses the image it already has.

To preload images, you need to add a function that downloads the rollover pic-
tures. The first step is to create a dummy image object in memory. You won’t actu-
ally use this image object to do anything but download your button images, but
the browser doesn’t know that.

function PreloadImages() {

 // Create a "dummy" image.

 var preloadedImage = new Image()

 ...

Next, the script reads through the entire imgS list of rollover images, using a pro-
gramming construct called a for loop. Each time it finds an image, it stuffs it into
the image object, which convinces the browser to download it.

 ...

 // Load all the pictures into this image object, one after another.

 for (var j = 0; j < imgS.length; j++) {

 preloadedImage.src = imgS[j]

 }

}

A for loop repeats code a certain number of times using a built-in counter. In this
case, the counter is a variable named j that starts at 0, and keeps increasing the
variable number until it matches imgS.length—in other words, until it gets to the
last item in the imgS array. Assuming the imgS array has three items, your browser
executes this statement three times:

 preloadedImage.src = imgS[j]

458 Creating a Web Site: The Missing Manual

Creating Fancy
Buttons

The first time, j is 0, and the code loads up the first image in the list. The second
time, j is 1, and it digs up the second image. You can guess what happens the third
time.

Strangely enough, that’s all you need to do. Even though you’re not using the
images, the browser still obligingly fetches them from your Web server and stores
them in its cache.

The only remaining step is to make sure you call the PreloadImages() function
when your browser first loads the page. You do this by adding the onload event
attribute to the <body> element, as shown here:

<body onload="PreloadImages()">

That’s it. Your rollover buttons are now Web-ready!

Creating Rollover Buttons in Dreamweaver and
Expression Web
If you’re using a Web page editor like Dreamweaver or Expression Web, you don’t
need to write your own JavaScript code. Both programs provide a built-in way to
quickly create rollover buttons.

In Dreamweaver, select Insert ➝ Image Objects ➝ Rollover Image. You see an
Insert Rollover Image dialog box, which you can use to set all the important details
(Figure 15-8). Click OK, and Dreamweaver creates the <a> and elements
and adds the JavaScript code for swapping images.

The only way to improve on this feature is with a tool that not only inserts a roll-
over button, but also creates the button images you need, based on the text and
style options you choose. Expression Web provides the goods with a feature it calls
interactive buttons.

Figure 15-8:
To create a rollover button
in Dreamweaver, you supply
a unique button name, the
normal-state and mouse-
over images, any alternate
text you want to appear if a
browser can’t display the
image, and the target URL.
You can also check the
“Preload rollover images”
option to insert JavaScript
code that downloads the
images for the rollover
buttons when the browser
first loads the page.

Chapter 15: Fancy Buttons and Menus 459

Creating Fancy
Menus

To create an interactive button in Expression Web, select Insert ➝ Interactive But-
ton. Expression Web presents you with an impressively featured button generator
(see Figure 15-9).

When you save your Web page, Expression Web prompts you to choose file names
for all the button pictures you created using the Interactive Buttons dialog box.

The best part about the Expression Web button generator is that it’s easy to modify
your button settings and regenerate the button pictures later on. Just open the
page that has the button, double-click the button in the editor, modify the settings
in the Interactive Buttons dialog box, and then click OK to generate the new
images.

Creating Fancy Menus
Rollover buttons are wildly popular on the Web, and it’s easy to see why. There’s
something irresistible about a button that lights up when you mouse over it. You
can, however, have too much of a good thing, and stuffing too many rollover but-
tons on a page is a surefire way to create an overdone turkey of a Web site.

More recently, the Web’s seen a small renaissance in simplicity and a trend away
from excessive rollover buttons. Part of the reason is the increasing complexity of
Web sites—quite simply, a handful of rollover buttons no longer offers enough

Figure 15-9:
Left: The Expression Web
button generator lets you
choose from a long list of
button styles, ranging
from metallic rectangles
to soft-glow tabs. You
supply the text and the
target link.

Right: Use the Image tab
to set the button size and
background color. Turn
on the “Create hover
image” checkbox to
generate a mouse-over
image along with the
initial button image, and
then turn on “Create
pressed image” if you
want a third image, one
that appears when a site
visitor clicks the button
(just before the browser
navigates to the new
page).

460 Creating a Web Site: The Missing Manual

Creating Fancy
Menus

navigational aid for today’s typically complex sites. Instead, these sites use more
detailed multilevel menus, replacing dozens of rollover buttons with a clearer,
more streamlined set of hierarchical links.

Tip: Fancy buttons and fancy menus play a similar role in taking visitors from one page to another in a
Web site. If you have a relatively small site, you may choose to use buttons exclusively. If you have a large
site, you’re more likely to use a combination of menus and buttons.

A typical menu starts with a collection of anchor elements that you group together
on a page. The key is to organize these links into logical groups. For example, the
Web site for a company might include a group of product pages, a group of pages
with contact and location information, and another group of tech support pages.
By arranging links into separate groups, it’s much easier for visitors to find what
they’re looking for.

So far, this menu design doesn’t require anything special. Using the linking skills
you picked up in Chapter 8 and the layout smarts you gained in Chapter 9, you
can easily create a side panel with a grouped list of anchors. But really neat menus
add another trick—they’re collapsible. That means you don’t see the whole list of
links at once. Initially, you see only the group headings, like Products, Contact
Information, and Tech Support. When you click a group heading, a list of related
links pops open just underneath.

You can create collapsible menus in a variety of ways. Some are easy, while others
are dizzyingly complicated. In the following sections, you’ll learn how to build a
simple collapsible menu of your own, and then use a more complicated menu
courtesy of a free JavaScript site.

Do-It-Yourself Collapsible Menus
You can create a respectable menu of your own using the collapsible Dynamic
XHTML trick described in Chapter 14 (page 431). The basic idea is to use Java-
Script to hide and show specific XHTML elements by changing the CSS display
property.

Imagine you want to create the cool two-level tabbed menu shown in Figure 15-10.
This page splits its links into three separate groups, each of which it represents on-
screen by a tab. Only one tab shows its sublinks at a time.

This design might seem a little intimidating, but it consists of only two parts: the
tabs at the top of the page, and the link boxes (menus) that appear dynamically
underneath them. To make these regions easy to deal with, it makes sense to wrap
them in <div> and elements, as you’ve seen throughout this book.

Note: In the rest of this section, you’ll get a chance to look at the solution piece by piece. To see the
complete page, check out the downloadable content for this chapter, available from the Missing CD page
at www.missingmanuals.com.

http://www.missingmanuals.com

Chapter 15: Fancy Buttons and Menus 461

Creating Fancy
Menus

Because the three tabs appear next to each other on the same line, the ele-
ment is the best choice. Remember, the <div> element adds a line break and some
space between each element. The element is an inline element, which
means you can fit it inside an existing paragraph and put more than one
element side by side.

Here’s the XHTML you start with:

About Me

My Store

Really Cool Stuff

Figure 15-10:
Top: When this page first loads, it presents
visitors with three tabs.

Middle and bottom: As a visitor moves the
mouse pointer over a tab box, a set of
related links appears underneath.

462 Creating a Web Site: The Missing Manual

Creating Fancy
Menus

These elements have the descriptive class name Tab. That associates them
with the following style sheet rule, which gives the tabs the correct font and borders:

.Tab {

 font-weight: bold;

 padding: 5px;

 border-style: solid;

 border-width: 1px;

}

body {

 font-family: Veranda, sans-serif;

}

After you declare the elements, it makes sense to add the link groups. You
can write each link group with either a or a <div> element, but the <div>
element makes the most sense because you want each group to exist indepen-
dently on the page (meaning you won’t insert them into another paragraph). You
also need to give each <div> element a unique ID, so you can change its visibility
based on the tab a visitor clicks.

Here are the <div> elements for the three link groups:

<div id="AboutMe" class="Links">

 My Traumatic Childhood

 My Education

 Painful Episodes

</div>

<div id="MyStore" class="Links">

 Buy Something

 Request a Refund

 File a Complaint

</div>

<div id="ReallyCoolStuff" class="Links">

 Just kidding.

</div>

Even though this example stacks these <div> elements one on top of the other, you
won’t ever see them this way on a page. When a page first loads, your browser
hides all the menus, thanks to the style rule for the Links class:

.Links {

 display: none;

 border-width: 1px;

 border-style: solid;

 padding: 10px;

 background-color: lightyellow;

 font-size: small;

}

Chapter 15: Fancy Buttons and Menus 463

Creating Fancy
Menus

These style sheet rules, elements, and <div> elements create the basic
framework for your page. The final step is to create a script that displays one of the
hidden <div> elements, depending on which tab your visitor selects.

The code you need is similar to that used in the ToggleVisibility() function dem-
onstrated in Chapter 14 (page 432). The difference is that in this case, you’re not
interested in hiding and showing individual sections. Instead, you want to show a
single section (depending on the tab selected) and hide everything else. A custom
function named MakeVisible() handles this task.

Here’s a simplified version of the MakeVisible() function. As you can see, it takes
an element name, finds the element, and changes its style settings to make it
appear on the page.

function MakeVisible(element){

 // Find the element and unhide it.

 var element = document.getElementById(element)

 element.style.display = "block"

}

Now you can hook this function up to all the tab buttons. You have a choice
here—MakeVisible() could react to either a click using the onclick event, or to a
mouse pointer hovering over the tab using the onmouseover event. This example
uses the latter approach.

About Me

My Store

Really Cool

 Stuff

The page still isn’t quite right. Although the MakeVisible() function shows the
correct tabs, it doesn’t hide anything. That means that if you pass your mouse
pointer over all three tabs, you’ll see all three groups of links at the same time, one
above the other.

To hide the other tabs, you need to get a little craftier. The problem is that
MakeVisible() knows what tab it’s supposed to show, but it doesn’t know the sta-
tus of the other tabs. To find these tabs, your code needs to search through the rest
of the page. In this example, the basic approach is to look for any <div> element
that has the class name Links and hide it. You can perform this step at the begin-
ning of the MakeVisible() function, so that it hides all the menus. Then, you need
the code you saw before to display just the menu you want.

Here’s the corrected MakeVisible() function:

function MakeVisible(tab, element) {

 // Get an array with div elements.

 var links = document.getElementsByTagName("div")

 // Search the array for link boxes, and hide them.

464 Creating a Web Site: The Missing Manual

Creating Fancy
Menus

 for (var j = 0; j < tabs.length; j++) {

 if (links[j].className == 'Links') links[j].style.display = "none"

 }

 // Find the element and unhide it.

 var element = document.getElementById(element)

 element.style.display = "block"

}

This code is a little tricky. As with the rollover example earlier in this chapter (page
457), it uses an array and a for loop. In this case, the array has a list of all the <div>
objects on your page. As the code moves through this list, it checks the class name
of each <div> element. If the class name indicates that you’ve found a link box, the
code makes it disappear from the page by changing the display style.

The code in the downloadable example gets slightly fancier—it also fiddles with
the tab to change the background border color and hide the border for the selected
tab. However, the basic approach is the same.

Note: If the stranger aspects of JavaScript still look like Danish, don’t worry. If you’re inclined, you can
learn about JavaScript programming features like arrays, loops, and if statements from a dedicated book or
Web site (see page 414 for some good resources). Or, you can keep your sanity and rely on the exam-
ples provided with this book and find great free scripts online.

Third-Party Menus
If you’ve had enough fun writing your own JavaScript code, you’ll be happy to
hear that the Web is chock-full of free menu scripts. Many of these have more dazzle
than the tabbed menu shown in the previous example. Some of the extra features
you might find include:

• Multilevel menus that let your visitors drill down into specific subcategories.

• Pop-up menus that appear “above” your Web page when you click them.

• Ridiculously showy effects, like shaded highlighting and transparent backgrounds.

To find a good menu, you can use any of the JavaScript sample sites described in
Chapter 14 (see page 437). You’ll find that there’s quite a bit more diversity in
menus than in rollover buttons. Every menu looks and behaves a little differently.
Some pop up, others slide out, and others try to emulate the look and feel of popu-
lar programs like Microsoft Outlook.

To get a glimpse of what’s out there, head over to Dynamic Drive, which has a
nifty set of menus at www.dynamicdrive.com/dynamicindex1 and a particularly
interesting specimen (called, rather unimaginatively, Top Navigational Bar III) at
www.dynamicdrive.com/dynamicindex1/topmen3. Figure 15-11 shows this menu
with the menu structure used in the tabbed menu example earlier in this chapter.

http://www.dynamicdrive.com/dynamicindex1
http://www.dynamicdrive.com/dynamicindex1/topmen3

Chapter 15: Fancy Buttons and Menus 465

Creating Fancy
Menus

Tip: Before you choose a navigation bar for your own Web site, you’ll want to test drive quite a few. This
section walks you through the process, but you’ll want to compare the results with other navigation bars
before you commit to one.

In the following sections, you download the script code for Top Navigation Bar III
and use it to create your menu.

Getting the script

To download Top Navigational Bar III, follow these steps:

1. Go to www.dynamicdrive.com/dynamicindex1/topmen3.

You’ll see a page that displays the navigation bar, and provides step-by-step
instructions for using it. A detailed table describes the browser support for Top
Navigational Bar III, and the news is good—it works in every mainstream browser.

2. Look for the download link for the topmenu3.zip file. Click it, and then save
the ZIP file somewhere on your computer.

To use Top Navigational Bar III, you need a whole bunch of JavaScript files. To
make life easy, they’re all included in a single ZIP file.

Figure 15-11:
Top Navigational Bar III is a lot like the
menus in Windows and Mac programs.
When you pop open a menu, it
appears on top of the existing Web
page content.

http://www.dynamicdrive.com/dynamicindex1/topmen3

466 Creating a Web Site: The Missing Manual

Creating Fancy
Menus

3. Unzip the contents of topmenu3.zip. Put them in the folder on your PC where
you store all your site pages.

Unzipping a file is pretty easy. Just double-click topmenu3.zip to open it up, and
then drag all the files to their new destination folder.

Altogether, topmenu3.zip contains a text file with instructions (readme.txt), a
sample page that shows the menu (template.html), a JavaScript file that defines
the menu shown in the sample page (custom.js), and nine more JavaScript files
that contain the behind-the-scenes code that powers the menu.

4. Open the page template.html in your Web browser.

You’ll see a sample menu with a series of headings and subheadings. To change
this menu into the menu you really want, you need to edit the JavaScript code
that defines the menu. As you’ll see in the next section, it’s pretty easy.

Creating the menu

Every JavaScript menu has a slightly different procedure for creating it. Some
menus make you define the menu in a separate text file. Other menus, like Top
Navigational Bar III, ask you to modify the actual JavaScript code to define the
links you want.

Defining a menu for Top Navigational Bar III is fairly easy, but at times the code
looks a bit wacky. That’s because it’s packed full of different options you can set,
which let you change colors, fonts, and the exact size and placement of every sub-
menu. You won’t need to adjust many of these details. In fact, most of the time
you’ll start with the sample menu definition that Top Navigation Bar III provides,
and edit it to get the menu you really want.

To get started, open the custom.js file. You’ll find several pages of JavaScript code.
At the beginning are a series of statements that define variables. Here are the first
three lines you’ll see:

var menuALIGN = "left"; // alignment

var absLEFT = 1; // absolute left position (if menu is left aligned)

var absTOP = 1; // absolute top position

Note: The code in this example looks a little different because every statement ends with a semicolon (;).
This is a C programming convention that’s supported (but optional) in JavaScript. Programming types like
the convention because it clearly indicates where each line ends. This section uses it because the develop-
ers of Top Navigational Bar III used it.

Next to each variable is a terse comment that gives you a clue about its purpose. For
example, the first line defines a variable named menuALIGN. The comment informs
you, rather unhelpfully, that this detail sets the “alignment.” In fact, menuALIGN
controls the alignment of the text in the menu, and a value of left, used here, lines
the menu captions up with the left edge of the menu. (You could replace this with

Chapter 15: Fancy Buttons and Menus 467

Creating Fancy
Menus

the value center to center each caption in each menu box.) And while menuALIGN
may not seem that interesting, there are dozens of similar details ready for your
tweaking. Table 15-1 lists a few of the most useful ones.

For now, ignore the long list of variables, and scroll down to the code that actually
defines the menu. Top Menu Navigational Bar III uses three commands to create
every menu:

• addMainItem() creates a top-level menu heading. The example in Figure 15-11
has three such headings (About Me, My Store, and Really Cool Stuff).

• defineSubmenuProperties() sets up a submenu. You use it immediately after
addMainItem(). Here’s where you set the submenu width.

• addSubmenuItem() inserts an item into a submenu. You use this after you set
up the submenu with defineSubmenuProperties().

Table 15-1. Useful variables for Top Navigation Bar III

Variable Name Description Sample Value

absLEFT and absTOP Places the menu on your page
using absolute positioning (page
253).

Set both to 10 to put the top-left
corner of the menu 10 pixels
from the top-left corner of your
page. Set them to 0 to create a
menu fused right to the top-left
edge.

fFONT and fSIZE Sets the font and font size for the
first level of menu captions (those
that appear without any clicking).
Remember to use the Web-
friendly fonts that every browser
has (page 157).

Set fFONT to “Arial” and fSIZE to
13 if you want 13-pixel Arial text.

sfFONT and sfSIZE Works the same magic as fFONT
and fSIZE, but only applies to
submenus.

See above.

mCOLOR and rCOLOR Sets the background color for
top-level menu items, both ini-
tially (mCOLOR) and when a
mouse hovers over them
(rCOLOR, where r stands for
rollover).

Use CSS color names (like
“blue”) or more fine-tunable
color codes (like #ffddaa). Page
152 has more about Web page
colors.

smCOLOR and srCOLOR Does the same color-changing
feat as mCOLOR and rCOLOR,
but for submenus.

See above.

stretchMENU and
showBORDERS

Lets you create an interesting
effect: padding the right side of
the menu so it stretches to the
edge of a browser window.

Set both to true to make your
menu look like an uninter-
rupted menu bar that continues
all the way to the right side of a
browser window, no matter
what its size.

468 Creating a Web Site: The Missing Manual

Creating Fancy
Menus

To create a menu, use these commands in the same, unwavering order, until you
fill in the whole menu structure that you want. For example, to start the menu
shown in Figure 15-11, you use this line of code:

addMainItem("", "About Me", 100, "", "", "", 0, 0, "", "", "", "", "");

This statement looks a fair bit more complex than it should. The problem is that
addMainItem is ridiculously flexible—it lets you supply numerous arguments (13
in all) that fine-tune details like placement and colors. Many of these are the same
details you saw in the variables section, but their presence here lets you fine-tune
each and every menu command in a different way (which is usually a bad idea). If
you’re interested in unleashing your inner designer, read the comments in the code
to find out what you can use. Otherwise, stick to the barebones format shown
above, which includes only two essential details: the menu text (“About Me”) and
the menu width (100 pixels). Keep the zeroes and blank text strings for every other
argument.

After creating a top-level menu item, you need to use defineSubmenuProperties()
to configure it. Once again, you have a ridiculous number of options. The only
argument that’s essential is the submenu width. Here, it’s set to 160 pixels:

defineSubmenuProperties(160, "", "", 0, 0, "", "", "", "", "", "", "");

Now, you fill in the submenu by calling addSubmenuItem() once for each menu
item. You also need two essential arguments. First, you need an absolute or rela-
tive link that tells the browser where to go when a visitor clicks this menu item (in
this example, it’s a page named Childhood.htm). Second, you need the descriptive
menu text (in this case, it’s the words “My Traumatic Childhood.” Here’s the code
that fills in the About Me submenu:

addSubmenuItem("Childhood.htm", "My Traumatic Childhood", "", "");

Note: Remember, you don’t need to understand how this code works (or why the syntax is the way it is)
to use it. You simply need to copy the sample code exactly, and replace the menu captions and page links
with yours. (You should also test your page with a range of different browsers and on different operating
systems.)

Now you know just about everything you need to know to create fancy menus for
your site’s navigation menu. You just need to repeat the previous step to create
each menu item.

Here’s the complete code that creates the My Store submenu:

addMainItem("", "My Store", 100, "", "", "", 0, 0, "", "", "", "", "");

defineSubmenuProperties(160,"","",0,0,"","","","","","","");

addSubmenuItem("Buy.htm", "Buy Something", "", "");

addSubmenuItem("Refund.htm", "Request a Refund", "", "");

addSubmenuItem("Complaint.htm", "File a Complaint", "", "");

Chapter 15: Fancy Buttons and Menus 469

Creating Fancy
Menus

Continue this process of defining submenus until you create all the menus you
want. The only rule you need to keep in mind is that you create the menu items in
the same order in which you want them to appear on the page.

Placing the menu on a page

All the work you’ve done editing the custom.js file prepares the menu you want to
display on your Web site. To make it actually appear, you need to insert it into a
Web page. Fortunately, this process is easy. In fact, the template.html file included
with Top Navigational Bar III shows you exactly how to do it. You can copy this
file and insert your own Web page content. Or, you can study it and copy the
essential details into another file to add the menu to an existing page.

Here’s a bare-bones Web page that highlights the details you need:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>...</title>

 <script type="text/javascript" language="javascript" src="sniffer.js">

 </script>

 <script type="text/javascript" language="javascript1.2" src="custom.js">

 </script>

 <script type="text/javascript" language="javascript1.2" src="style.js">

 </script>

</head>

<body>

 <p>Here is the ordinary page content...</p>

 <script type="text/javascript" language="javascript1.2" src="menu.js">

 </script>

</body>

</html>

As you can see, you can give any page a menu with Top Navigational Bar III simply
by adding four <script> elements. If you want to use different menus in different
pages, just edit the <script> element, and then replace the file name custom.js with
the file that contains your menu.

Note: Once you perfect your Web site and you’re ready to take it live, remember to upload all the Java-
Script files that come with Top Navigational Bar III.

471

Chapter 16chapter

16

Audio and Video

In the early days of the Internet, Web sites were about as jazzy as an IRS form.
You’d see pages filled with an assortment of plain text, links, and more plain text.
Over time, the Web matured, and Web pages started to change as designers
embraced the joys of color, pictures, and tacky clip-art. But when that excitement
started to wear off, it was time for a new trick—multimedia.

Multimedia is a catchall term for a variety of technologies and file types, all of
which have dramatically different PC requirements and pose different Web design
challenges. Multimedia includes everything from the irritating jingle that plays in
the background of your best friend’s homepage to the wildly popular movie clip of
a cat playing the piano. (Depressing fact: with over 10 million views, it’s unlikely
you’ll ever create a Web page that’s half as popular.)

In this chapter, you’ll consider how to use several types of multimedia. First, you’ll
learn to play background music and sound effects. Then you’ll learn to use Flash to
put a real music player in your Web page. Finally, you’ll see how to use YouTube
to popularize your own movie clips, and take a shot at becoming the center of
attention.

Note: Before you go any further, take a moment to consider the worst examples of multimedia abuse.
These include flashing banner ads, irritating background music, time-wasting intro pages, and bandwidth-
sucking commercials. Before you jump on the multimedia bandwagon, think about what you want to do.
Are you planning to showcase your musical compositions or provide downloadable recordings of Junior’s
first moments? If so, multimedia probably makes sense. But if you’re just looking for a way to dazzle visi-
tors with an animated logo, think twice. It’s probably not worth the considerable effort to design some-
thing that will only aggravate most of your readers.

472 Creating a Web Site: The Missing Manual

Understanding
Multimedia

Understanding Multimedia
There comes a point when every new Web designer wants more than mere text and
pictures. Even spruced-up fonts and elegant page layouts don’t satisfy the design
envy many newcomers feel when they spot a site loaded with sound and motion.
That’s understandable: You, too, want to trick out your pages with audio and
video. But before you can jazz up your site, you need to understand a few basics.

Linking, Embedding, and Hosting
One of the key choices you make when you outfit your pages with multimedia is
whether to link to or embed the files you’re adding.

Linking to multimedia content is the simplest but least glamorous approach. It lets
you create a link that points to an audio or video file you’ve stored along with all
your other XHTML pages and files. There’s really nothing to creating linked multi-
media. You use the same lowly anchor element and href attribute you used in
Chapter 8. Here’s an example:

Would you like to hear Industrial Noise?

Figure 16-1 shows what happens when you click one of these babies.

Note: It makes absolutely no difference what kind of software your Web host’s server runs when you
add audio to your site. When someone clicks a link to an audio file, the browser downloads the file to the
visitor’s PC and plays it there, not from the server.

Figure 16-1:
When you click a link to a multimedia file, your
browser asks whether you want to save the
multimedia file or open it straightaway. If you
choose the latter, your browser first downloads the
file, and then launches it using a separate
program. The actual program your browser uses to
play the file depends on the software installed on
your PC. For example, if you use the popular
Winamp program (www.winamp.com) to play MP3
files, the downloaded song heads straight to your
Winamp play list. Other common players include
Apple QuickTime Player and Windows Media
Player.

http://www.winamp.com
http://www.winamp.com

Chapter 16: Audio and Video 473

Understanding
Multimedia

Embedding multimedia is a more advanced approach. It integrates music or video
into your XHTML page. As a result, you can create rich combinations of text,
sound, and video.

But embedding multimedia can be a challenge. Multimedia files come in many dif-
ferent formats, as you’ll see in the next section. Some browsers support some of
these formats, but few, if any, support all of them. Other browsers have no native
multimedia compatibility at all. While visitors can add multimedia support with
browser plug-ins (small programs that extends a browser’s capabilities), you have
no way of knowing which plug-in your visitors have. The bottom line? There’s no
guarantee that your visitors can see any particular type of multimedia content you
embed on a page.

The Web offers a couple of solutions to embedded multimedia, neither of them
ideal. One exists in the form of the slightly disreputable <embed> element, which
you’ll learn to use on page 476.

Note: The distinction between linking and embedding multimedia is the same as the distinction between
linking to a picture (with the <a> element), and embedding it right in your page (with the ele-
ment). The only difference is that images are a basic, well-supported part of the XHTML standard, so
embedding pictures never causes much concern. However, embedding audio and video takes you into
less-well-charted waters.

But there’s one other option for managing multimedia. That solution is hosted
multimedia—multimedia files stored on someone else’s server but displayed (or
linked to) on your Web page. The best-known example of hosted multimedia is
YouTube, a ridiculously popular site that plays back more than 100 million video
clips every day.

Hosted multimedia is an excellent choice if you want to display really large files,
particularly movie clips. It won’t tap out your Web site’s bandwidth (page 69), and
it works with virtually all browsers and operating systems. Its only drawback is that
you give up a fair bit of control. For example, if you use YouTube to host your vid-
eos, you can’t show movies that are longer than 10 minutes, and YouTube ratchets
down your movie’s quality to make sure it performs well. (Technically, YouTube
reduces the video’s file size so browsers can download them more quickly—that
way, visitors experience no delay in playback when they push the play button.)
You’ll learn to use YouTube on page 494.

Types of Multimedia Files
Your decision to link or embed files depends, at least in part, on the type of multi-
media content you want to showcase. Because XHTML has no multimedia stan-
dard of its own, other companies have innovated to fill the gap. Today, there’s a
slightly bewildering field of choices.

474 Creating a Web Site: The Missing Manual

Understanding
Multimedia

Here are the types of multimedia files you can add to your pages:

• Synthesized music (MIDI). MIDI files store notes that your PC’s sound card
generate on playback, rather than playing back a recording of a musical instru-
ment. As a result, MIDI files are small but of questionable quality. Although the
actual audio quality depends on your visitor’s sound card, the results most
commonly resemble a cheesy Casio keyboard. But because MIDI files are light-
weight, and since almost all browsers support them, they’re commonly used for
Web page background music. (MIDI stands for Musical Instrument Digital
Interface.)

• Digital audio (WAV and MP3). These file types store recorded audio, which
means they’re of higher quality than MIDI files. But WAV files are enormous,
making them unsuitable for all but the most bloated Web sites. MP3 files are
one-tenth the size of WAVs, but browsers often require a plug-in to play them,
which means you can’t embed them with impunity.

• Digital video (MPEG, AVI, MOV, and WMV). These file types are multime-
dia’s heavy hitters. They let you play back video that ranges in quality from
thumbnail-sized windows with jerky playback to DVD-quality movies. Digital
video files are a challenge for any Web page creator because they’re ridiculously
large. To have even a chance of making digital video perform acceptably, you
need to compress, shrink, and reduce your clip’s size and quality using video
editing software.

• Animated GIFs. Animated GIFs consist of a series of small, still images dis-
played one after the other in rapid succession, like a flipbook. If you see a Web
site with dancing cartoon characters, spinning text, or a pulsing globe (don’t
ask), you’re probably looking at an animated GIF. Most Web-heads dismiss
animated GIFs as not being “real” multimedia because they’re so simple. But
they’re small, pretty easy to create, and widely supported.

• Flash. Flash is a versatile playback standard designed especially for the Web. It
supports video files, animation, and interactivity. Flash also supports vector-
based animation, which uses mathematically rendered images—shapes built on
the fly as a result of complex calculations—rather than pixel-based graphics. As
a result, even intricate animations boast small, quick-to-download files, mak-
ing Flash the perfect medium for animated logos, commercials, and dazzling
intro screens (see Figure 16-2). Finally, Flash supports interactivity, so Flash
experts can build lightweight but slick menus and embedded games that really
enliven sites.

Despite these impressive pluses, Flash has three drawbacks: First, to create Flash
content you need specialized software from Adobe, which runs into the hun-
dreds of dollars. Second, even if you shell out the Flash cash, creating profes-
sional animations requires the skill of a talented Flash artiste. Finally, visitors
won’t be able to see Flash movies unless they have a Flash plug-in installed.
(That said, good estimates suggest that over 90 percent of Web-connected com-
puters have the Flash plug-in.)

Chapter 16: Audio and Video 475

Understanding
Multimedia

Note: Multimedia hosters, like YouTube, use Flash to show their movies. That’s because Flash gives the
best combination of customizability, performance, and compatibility. Of course, these high-powered com-
panies also have plenty of cash to pay their programming teams.

It’s difficult to digest all this information at once. If you’re still mulling over your
choices, take a look at the scenarios in Table 16-1 to help you sort out the roles dif-
ferent multimedia types play.

Figure 16-2:
The news and current
affairs site www.salon.
com makes
nonsubscribers sit
through a short
commercial before letting
them read certain
articles. Though the
commercial varies, it’s
always a Flash
animation—a fact you
can confirm by right-
clicking it any time
(Control-clicking on a
Mac). Instead of seeing
options that let you
download a file (as you
would with a picture),
you see a command for
changing playback
settings.

Table 16-1. Multimedia scenarios

If You Want To: Then Use:
Embedded, Linked,
or Hosted

Play a synthesized version of your
favorite pop tune in the background

MIDI files Embedded

Play a short loop of digital audio
continuously in the background

Flash. (You can use the MP3
format instead, but not all
browsers support it, and the
looping is less precise.)

Embedded

Let visitors download your band’s
newest indie recordings

MP3 files (record your music
using WAV files, then covert
them to MP3 format to save
space).

Linked

http://www.salon.com
http://www.salon.com

476 Creating a Web Site: The Missing Manual

Background Music

Tip: If you plan to create a Web site with a lot of digital audio and video, you’ll need to reconsider its space
and bandwidth requirements (see page 71). Unlike ordinary XHTML pages and Web graphics, multimedia
files can grow quite large, threatening to overwhelm your Web host’s space and bandwidth allotment.

Background Music
Most people like to browse the Web in peaceful silence. That means no trance-
hypno-ambient background tracks, no strange disco beats, and no sudden cymbal
crashes. This aversion to noise may be due to the fact that something like 98 percent
of all Web browsing takes place on company time.

But if you like to startle and annoy people, or if you’re absolutely convinced that
your Web audience really does want some funky beats, keep reading to bring on
the background music.

The <embed> Element
Although the XHTML standard doesn’t support background music, almost all
browsers support the <embed> element, first pioneered by Netscape in the early
days of the Web. You can put the <embed> element anywhere on your page.
Here’s a basic page that uses it to play background music:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Background Music</title>

</head>

Let visitors see your favorite home
movie

MPEG, AVI, WMV, or MOV files
(but make sure you use video-
editing software to dramatically
reduce file size).

Hosted (on a service
like YouTube)

Show a stock animation effect, like
clapping hands, a flashing star, or a
dancing bean

Animated GIFs or Flash (for
more features and a slicker ani-
mation).

Embedded

Show an animated intro screen or
commercial

Flash Embedded

Show a humorous animated story
you’ve created

Flash Embedded

Table 16-1. Multimedia scenarios (continued)

If You Want To: Then Use:
Embedded, Linked,
or Hosted

Chapter 16: Audio and Video 477

Background Music

<body>

<h1>Automatic, Unsolicited Music</h1>

<p>The music now blaring from your speakers is

Scarlatti's first sonata (K. 500).

I hope you didn't tell your colleagues you were working!</p>

<embed src="soundfile.mid" />

</body>

</html>

The <embed> element gives you a slew of options for playback control. If you use
the element without specifying any of them (as in the previous example), your visi-
tors see a page like the one shown in Figure 16-3 and hear its audio file automatically.

Music playback isn’t always this seamless, however. Because every browser handles
embedded music a little differently, you can run into problems like the ones shown
in Figure 16-4. The best advice is to test your page on at least the three main
browsers (Internet Explorer, Firefox, and Safari).

The <embed> element harbors an ugly secret—it’s not valid XHTML. In fact, it’s
not even a recognized part of the HTML language. Despite its poor pedigree, it
works seamlessly in all modern browsers. But there’s still a price to pay. Once you
put the <embed> element in your Web page, you can no longer validate your page
using an XHTML checker (like the one described on page 49). If you’ve sworn to
uphold the standards of XHTML, this may weigh heavily on your heart. Or per-
haps not—many rogue Web designers think nothing of using <embed> and
retaining the XHTML doctype, which is necessary to avoid the browser inconsis-
tencies of quirks mode (see page 31). It’s up to you whether you’re ready to violate
the spirit of XHTML to get what you want.

Figure 16-3:
If you use a plain-vanilla <embed>
element, the playback controls
appear in your page wherever you
place the element. The exact style of
the playback controls varies
depending on your operating system,
browser, and audio plug-ins.

478 Creating a Web Site: The Missing Manual

Background Music

Note: There’s one alternative to the <embed> element. You can use the <object> element, which lets
you insert audio, video, and other types of plug-in content in a Web page. (Later in this chapter, you’ll use
the <object> element with Flash files.) Even thought the <object> element is more standardized, it actu-
ally suffers from more browser quirks. When you use the <object> element to play sound, it’s surprisingly
difficult to make sure your Web page works in different browsers.

Embedded audio options

Ordinarily, the <embed> element starts playing music as soon as your browser
downloads the specified music file. Visitors can kill the sound with a quick click of
the stop button (assuming you display the playback controls), but if they’re not
expecting to hear a burst of music it’s enough to frazzle some nerves.

Figure 16-4:
Top: Paranoid visitors sometimes step up their
security settings, which can lock out your
music.

Bottom: Depending on what a Web visitor has
installed or uninstalled, a browser might not
find the components it needs to play your
background music.

Chapter 16: Audio and Video 479

Background Music

A more polite way to handle background audio is to display the playback controls
and let your visitors decide when to click the play button. This design is easy—just
use the autoplay attribute:

<p>If you'd like some soft music to browse by, click the play button.</p>

<embed src="soundfile.mid" autoplay="false" />

Turning off autoplay is considered good Web etiquette. A much poorer idea is the
hidden attribute, which lets you hide the playback controls altogether. All too
often, you’ll find Web pages that use <embed> elements like this:

<embed src="soundfile.mid" hidden="true" />

In this example, the sound file plays automatically. Because the playback controls
are hidden, the only way someone can stop it is to lunge for the volume control.
Web sites that put their visitors through this ordeal rarely see a return visit.

Note: Unfortunately, autoplay and hidden playback controls are all too common on the Web. Some Web
designers become intoxicated with their newfound multimedia abilities, and decide it’s not enough to let
visitors listen to music—they force them to. Resist the urge.

The <embed> element offers quite a few more frills. Table 16-2 has the lowdown.

Other audio formats

As you learned earlier, MIDI files are remarkably small because they store digitally
generated notes. Because of that, they don’t usually sound that great, and they
don’t sound the same on everyone’s computer. MIDI files are fun, but they often
make a site seem amateurish.

Table 16-2. Attributes for the <embed> element

Attribute Description

src The URL that points to an audio file.

autoplay A true or false value that indicates whether the audio should start playing
immediately (true) or wait for your visitor to click the play button (false).

hidden A true or false value that indicates whether the playback controls are visible.

loop A true or false value that indicates whether the audio should be played once
(from start to finish), or repeated endlessly. When looping audio, you’ll
notice a distinct pause before the audio restarts.

volume A value between 1 and 100 that specifies playback volume as a percentage
of maximum volume. 100 percent is the loudest you can get. 50 percent
tends to produce the standard volume on a Windows computer; on Macs,
you get that effect at 75 percent. If you set your volume to 100 percent, you
can be sure you won’t get any repeat visitors. When you use the volume
attribute, supply a number only (leave out the % sign).

border, width,
and height

These attributes let you set the dimensions of the playback controls and the
border around them, in pixels. You can achieve greater customization by
applying a style sheet rule (see Chapter 6).

480 Creating a Web Site: The Missing Manual

Background Music

What if you want something a little more upmarket? You could use a WAV file, which
are audio files recorded in an uncompressed digital file format first introduced by
Microsoft but now supported everywhere. Most computers have software for record-
ing WAV files—for example, on Windows PCs you can usually find a program called
Sound Recorder lurking in the Programs ➝ Accessories ➝ Entertainment section of
the Start menu (in Windows XP) or All Programs ➝ Accessories ➝ Sound Record (in
Windows Vista). Mac fans may want to use the free program Audacity (http://
audacity.sourceforge.net), which is also available in a Windows version.

You can use the <embed> element to play a WAV file in exactly the same way you
did to play a MIDI file above:

<embed src="soundfile.wav" autoplay="false" />

The problem with WAV files is that they’re really, really big. In fact, they’re enor-
mous. Think of the file size of an MP3 file, and then multiply it by 10. As a result,
it rarely makes sense to use WAV files on Web pages. With a typical mid-speed
Internet connection, your visitor will wait a long time before the complete music
file trickles down and starts playing.

Note: A typical MIDI file is even smaller than a typical image. A 100 kilobyte (KB) MIDI file could handle
the first movement of a detailed symphony.

Alternatively, you can use MP3 files. This approach works great in modern brows-
ers, but older ones may ignore your playback attempt or they may launch an MP3
player (like Windows Media Player) to play the file:

<embed src="soundfile.mp3" autoplay="false" />

GEM IN THE ROUGH

Finding MIDI Files
Although MIDI files usually sound cheesy, you can’t com-
plain about the number of tunes available online. With a
simple Google search, you can usually dig up MIDI files for
your favorite band, movie, computer game, or classical
composer.

Technically, it’s against copyright rules to use a MIDI file of
another artist’s work on your Web site. However, there’s a
fairly large gray area. First of all, fans or amateur musicians
usually sequence (transcribe onto the computer) MIDI files.
So not only do they lack real instruments and vocals, they
may also contain outright errors. In that respect, putting a

cheap MIDI file on your Web site is a little bit like listening
to a Led Zeppelin cover band—it’s a tribute to the original,
not a competitive threat. That’s why music companies
haven’t made any effort to crack down on MIDI files.

If you want to steer clear of copyright issues altogether, stick
to music that’s in the public domain. Music created before
1923 falls into this category, which means you’re free to
draw from a huge catalog of classical pieces. To download
your favorites, try the Classical MIDI Archives (www.
classicalarchives.com).

http://www.classicalarchives.com
http://www.classicalarchives.com
http://audacity.sourceforge.net
http://audacity.sourceforge.net

Chapter 16: Audio and Video 481

Background Music

If you want to try this option, keep your file small and try it out on all the brows-
ers your visitors might use. A 10-second MP3 file takes a modest 170 KB. (As a rule
of thumb, most Web authors suggest you limit autoplay clips to 30 seconds.)

Sadly, the <embed> element won’t help you create those nifty looping soundtracks
you may have heard on some Web sites. Even though <embed> supports a loop
attribute, the results aren’t good because it doesn’t loop cleanly. It pauses each
time it reaches the end of your audio file. If you want a slick looping soundtrack,
you need to use Flash, as described on page 483.

Tip: There’s lots of great shareware available for recording WAV files and converting them into the more
compact MP3 format. Two bargain-basement choices that are free to try are GoldWave (www.goldwave.
com) and FlexiMusic (www.fleximusic.com). If all you want to do is convert existing WAV files to MP3 for-
mat, you can use Apple’s iTunes software, available free for both Windows and the Mac (www.apple.com/
itunes). You can get the job done by right-clicking (Control-clicking on a Mac) any song name and choos-
ing “Convert Selection to MP3” from the pop-up menu.

Sound Effects
Ever wanted to create one of those Web pages where every mouse movement
unleashes a sound? For example, maybe you want a whoosh sound when visitors
move over a button or you want them to hear an audible click when they select a
link.

Sadly, there’s no perfect solution that works with every browser. But there are two
compromises:

• Use Flash, which lets you create pages that run rampant with sound effects. But
to enjoy your creativity, your visitors need the Flash browser plug-in.

• Use the <bgsound> element (short for background sound) along with a Java-
Script technique you’ll learn about next. The key limitation with this trick is
that it works only with Internet Explorer 5 and later—most other browsers and
older versions of IE ignore the background effects altogether. And like
<embed>, XHTML doesn’t officially welcome the <bgsound> element.

You can find several versions of the background sound script online. The one you’ll
see in the next example (and available via the Missing CD page at www.
missingmanuals.com) is one of the simplest. If you dig around on the Internet, you
can find similar versions that preload an audio file, which delivers better perfor-
mance. If you don’t use preloading, visitors may experience a slight delay the first
time you play a given sound, because the browser needs to download the audio file.

To use JavaScript-powered sounds, start by adding a <bgsound> element in the
<head> section of your Web page. The <bgsound> element is an IE-specific version
of the <embed> element:

<bgsound src="" id="SoundEffect" autostart="true" loop="1" />

http://www.goldwave.com
http://www.goldwave.com
http://www.fleximusic.com
http://www.apple.com/itunes
http://www.apple.com/itunes
http://www.missingmanuals.com
http://www.missingmanuals.com

482 Creating a Web Site: The Missing Manual

Background Music

The trick in this example is that you don’t supply any source file at first. Instead,
you set the src attribute when something actually happens on the page, at which
point the sound begins playing.

Notice that you assign the name SoundEffect to the <bgsound> element. (The id
attribute uniquely identifies an element in your document—for a refresher, see
page 420.) The last two attributes in the element instruct it to play audio files
immediately (autostart="true") and play them exactly once (loop="1").

The next step is to add the script that includes the PlaySound() function to the
<head> portion of your page. The PlaySound() function has one role—to point
the <bgsound> element to the audio file you want to play:

<script type="text/javascript">

function PlaySound(soundfile) {

 if (document.all && document.getElementById)

 {

 document.getElementById("SoundEffect").src = soundfile

 }

}

</script>

In other words, to play a sound, you need to call the PlaySound() function.
PlaySound() finds the <bgsound> element, and then sets its src attribute to point
to the audio file. This change causes the <bgsound> element to play the sound
immediately.

Remember, functions just hang around idly until you call them. Your Web page
won’t make a peep until a visitor triggers a JavaScript event that calls the
PlaySound() function.

Here’s how you use the PlaySound() function to play a file named soundeffect.wav
when a visitor moves her mouse pointer over a link:

<a href="http://www.somesite.com"

onmouseover="PlaySound('ding.wav')">Click Me

The only problem here is that if you want to add sound effects like this to several
links, you need to add every single link separately, even if they all use the same
audio file. But don’t despair. There’s a solution courtesy of www.dynamicdrive.
com. There, you can download a second JavaScript function named BindSound()
that lets you add a sound effect to all the elements of a certain type in a certain
container.

For example, if you want to add a sound effect to a group of links, pop them into a
<div> element, like this:

<div>

 Click Me

 Click Me

 ...

</div>

http://www.dynamicdrive.com
http://www.dynamicdrive.com

Chapter 16: Audio and Video 483

Flash MP3 Players

Now, instead of adding the onmouseover attribute to every <a> element, you can
attach it to a <div> container using the BindSound() function. The BindSound()
function takes three arguments—the type of element you want to call, the sound
effect file name, and the container that holds the elements you want to effect.
Here’s an example:

<div onmouseover="BindSound('a', ding.wav', this)">

 Click Me

 Click Me

 ...

</div>

Notice that in the first argument, it’s important to leave out the angle brackets (for
example, you use “a” to apply the function to every <a> anchor element). For the
third argument, you can always use the keyword this, which refers to the current
element (in this case, that’s the <div> container). The end result of this is that you
link every anchor in the <div> section to the ding.wav audio file.

You can use this trick to put sounds on your entire page—just add the onmouseover
attribute to the <body> element that contains the page.

Tip: Looking for some free sound effects to use with this script? Try out www.grsites.com/sounds and
www.freeaudioclips.com.

Flash MP3 Players
As you already learned, Flash is a browser plug-in that lets you add videos, anima-
tions, and even whole miniature programs, like games, to a Web page. Although it
takes a fair amount of work (and some pricey software) to create a Flash program
from scratch, it’s not nearly as difficult to add a Flash-based music player to your
page. That’s because plenty of people have already done the work for you. The
Web is awash in free Flash music players.

Note: You can download the Flash plug-in at http://get.adobe.com/flashplayer.

Search on Google for “flash mp3 player” to find a few free players. Most of them
are surprisingly polished, with scrolling song lists, slick playback buttons, and even
tiny animations that play in sync to your music.

The E-Phonic Player
One more-than-decent choice is E-Phonic (available at www.e-phonic.com/
mp3player). It’s easy to use, looks good, and you can style it in endlessly different
ways (see Figure 16-5). And if you’re a budding JavaScript geek, you can use script
code to add some cool features. For example, you can have E-Phonic start play-
back or switch songs when certain JavaScript events take place, like when a visitor
mouses over a picture.

http://www.grsites.com/sounds
http://www.freeaudioclips.com
http://get.adobe.com/flashplayer
http://www.e-phonic.com/mp3player
http://www.e-phonic.com/mp3player

484 Creating a Web Site: The Missing Manual

Flash MP3 Players

To get E-Phonic, click the Download link on their Web site. You’ll get a ZIP file
with a whole package of sample skins, including the three shown in Figure 16-5.

To use E-Phonic on your Web site, you need the following ingredients:

• The Flash file ep_player.swf. This miniature Flash program runs in your Web
page. It’s the heart of the E-Phonic player.

• The JavaScript files ep_player.js and swfobject.js. These files set up the Flash
player and give you the ability to interact with it using JavaScript. Although you
won’t learn how to do that in this chapter, you can get all the details at www.e-
phonic.com/mp3player/documentation.

• Your skin folder. As Figure 16-5 shows, you can deck out the E-Phonic player
with a thousand faces. Once you choose a skin, copy it to your Web site. For
example, to use the luminous green alien skin, add the alien_green folder and
all its contents to your site. (Skin folders consist of one XML file, which defines
the player’s layout, and a whole bunch of images, one for each of the player’s
buttons and components.)

• Your music. If you want to play some music, you probably want to add the
MP3 files to your site. If you have several songs, put them in a subfolder (for
example, a folder named MP3).

Figure 16-5:
The E-Phonic player has many
different skins. Each skin defines
the layout and graphics that make
up the player’s interface. The
standard skin (nobius platinum) is
at the top, the dazzling green alien
skin is shown in the middle, and the
nearly invisible micro skin appears
at the bottom.

Playback controls
(Previous song,

pause, play, stop,
and next song)

Current file
position

Song list

Switch looping
on or off

Switch shuffle
on or off (to
play songs in
random order)

Volume slider and
mute button

http://www.e-phonic.com/mp3player/documentation
http://www.e-phonic.com/mp3player/documentation

Chapter 16: Audio and Video 485

Flash MP3 Players

• The playlist file playlist.xml. This lists all the files you want to load into the
player, in order. You’ll see how to edit this file shortly.

• The XHTML page that includes the player. You can add the player to any page
on your site. All you need to do is add the right markup. The easiest way to get
it is to copy it from one of the example files included with the E-Phonic down-
load. You’ll find one example file for each skin.

Figure 16-6 shows how these files are arranged.

The following sections show you how to get the E-Phonic player up and running in
one of your pages.

Create a playlist

The playlist tells the E-Phonic player what songs to load. To create a track list with
your garage band’s best tunes, for example, copy your MP3 files into a subfolder
named MP3 (see Figure 16-6). Then create a playlist and tweak it to play your
songs. To make a playlist, start with the following skeleton:

<playlist version="1" xmlns="http://xspf.org/ns/0/">

 <trackList>

 </trackList>

</playlist>

Figure 16-6:
The E-Phonic player needs requires a lot of files,
but you can use most of them as-is. The files
that do need your touch—the XHTML Web page,
the playlist, and the actual songs—appear
bolded in this figure. You can copy everything
else from the E-Phonic download, as long as
you make sure it stays in the right place.

The Root Folder

skins MP3

alien_green

skin.xml
background.jpg
b_play.jpg
b_pause.jpg
b_prev.jpg
b_next.jpg
...

PlaybackPage.htm
playlist.xml

ep_player.swf
ep_player.js
swfobject.js

HotBananas.mp3
LoveSong.mp3
HappyTimes.mp3

486 Creating a Web Site: The Missing Manual

Flash MP3 Players

This looks a lot like an XHTML page because it uses a combination of XML elements.
But unlike XHTML, a browser can’t display this content—instead, this format
exists solely to provide information to the E-Phonics player.

In the <trackList> element, add one <track> element for each song in your play-
list. You need to add two other elements inside the <track> element—a <location>
element, which indicates the song’s file name, and a <title> element, which identi-
fies the song title that the player will display during playback:

<track>

 <location>MP3/HotBananas.mp3</location>

 <title>Hot Bananas</title>

</track>

Notice that the <location> element uses the same relative link system you used
earlier for anchors and images (page 212). That means the link is always relative to
the location of the XHTML page that displays the player. In the example above, the
location points to a file named HotBananas.mp3 in a folder named MP3.

You can add two optional elements to the <track> element (not shown in the
example above)—a <creator> element and an <image> element. The <creator>
element records the artist who made the song, which is shown in the song list next
to the title. The <image> element points to an image file, which some skins show
while playing a song. (For example, in the topmost skin in Figure 16-5, there’s a
spot in the top-left corner for song images, where the music note appears.)

Here’s the complete playlist with all three songs:

<playlist version="1" xmlns="http://xspf.org/ns/0/">

 <trackList>

 <track>

 <location>MP3/HotBananas.mp3</location>

 <title>Hot Bananas</title>

 </track>

 <track>

 <location>MP3/LoveSong.mp3</location>

 <title>Please Don't Forget (That I Stopped Loving You)</title>

 </track>

 <track>

 <location>MP3/HappyTimes.mp3</location>

 <title>Happy Times Have Gone Away</title>

 </track>

 </trackList>

</playlist>

Chapter 16: Audio and Video 487

Flash MP3 Players

Adding the player to a Web page

Your final step is to embed the E-Phonic player and your customized playlist in
your Web page. The easiest way to do this is to start with one of the sample files
included with the E-Phonic download. Choose the file based on the skin you want.
For the alien skin, open example_alien.html.

To use the E-Phonic player, your page needs three ingredients. First, you need a
<script> block in the <head> section of your page that references the E-Phonics
JavaScript file:

<script type="text/javascript" src="swfobject.js"></script>

This gives your Web page access to the JavaScript code you used to create the
player.

Next, you need a <div> element with the id="flashcontent" attribute. The E-Phonics
player will appear on your page at the location of the <div> element:

<div id="flashcontent"></div>

You don’t actually need to put anything in the <div> element, because the magic
of JavaScript will create the player for you. But it’s a good idea to supply some
alternate content. The browser displays this alternate content if it can’t create the
E-Phonics player, which usually means that it doesn’t have the required version of
Flash:

<div id="flashcontent">

 To view the E-Phonic MP3 Player, you need to have Javascript turned on and

 you must have Flash Player 9 or better installed. Download it (for free)

 here.

</div>

Lastly, after the <div> element, you need to add a <script> block with the code
that actually creates the player. This script also configures the player using several
JavaScript variables (page 410). The variables shown here are the ones included
with the samples in the E-Phonic download. To keep life simple, you can copy this
whole <script> section from the E-Phonic sample Web page (like example_alien.
html) into your own Web pages:

<script type="text/javascript">

 var so = new SWFObject("ep_player.swf", "ep_player", "220", "265", "9",

"#000000");

 so.addVariable("skin", "skins/alien_green/skin.xml");

 so.addVariable("playlist", "playlist.xml");

 so.addVariable("autoplay", "false");

 so.addVariable("shuffle", "false");

 so.addVariable("repeat", "true");

 so.addVariable("buffertime", "1");

 so.addParam("allowscriptaccess", "always");

 so.write("flashcontent");

</script>

488 Creating a Web Site: The Missing Manual

Flash MP3 Players

You can tweak these variables to change the player’s behavior. For example, to
change song lists, point the playlist variable to a different file. You can make the
player start the moment a browser creates it by changing the autoplay value from
false to true. You can modify similar values to turn song shuffle and automatic
repeat on or off.

Whatever you do, don’t touch the skin setting. If you want to change skins, find
the matching XHTML sample page and copy the <script> block from it. That’s
because the very first line of code in the skin script sets the size of the player, and
the player size has to match the skin graphics or it won’t work properly.

Here’s a complete sample page that uses the alien skin and the playlist you developed:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>Page with a Player </title>

 <script type="text/javascript" src="swfobject.js"></script>

</head>

<body>

 <h1>You'll Love E-Phonic</h1>

 <p>This page has its own MP3 player built in. It's right here:</p>

 <div id="flashcontent">

 To view the E-Phonic Player, you need to have Javascript turned on and

 you must have Flash Player 9 or better installed. Download it (for free)

 here.

 </div>

 <script type="text/javascript">

 var so = new SWFObject("ep_player.swf", "ep_player", "220", "265", "9",

"#000000");

 so.addVariable("skin", "skins/alien_green/skin.xml");

 so.addVariable("playlist", "playlist.xml");

 so.addVariable("autoplay", "false");

 so.addVariable("shuffle", "false");

 so.addVariable("repeat", "true");

 so.addVariable("buffertime", "1");

 so.addParam("allowscriptaccess", "always");

 so.write("flashcontent");

 </script>

 <p>(And this text is under the player.)</p>

</body>

</html>

Chapter 16: Audio and Video 489

Flash MP3 Players

Flashtrak Loops
The E-Phonic player is a great option if you want a full-featured MP3 player in
your Web page. But sometimes, you’re after a simpler goal. Rather than give your
visitors the ability to shuffle through a collection of songs, you might just want to
keep them happy with endlessly looping background music.

Although many Web sites sell audio loops, you can download free ones at Flash
Kit, www.flashkit.com/loops (see Figure 16-7). Flash Kit offers a large and excellent
catalogue of nearly 10,000 loops ranging in style from ambient to urban.

Note: Loops are the audio equivalent of a wallpaper tile. They’re short snippets of music specially
designed so the beginning picks up where the end leaves off. That means you can play an audio loop
over and over again, and the result is a seamless background track. In a first-rate loop, the repetition isn’t
immediately obvious, and you can happily listen to it for several minutes.

If you download one of these loops as an MP3 file, you can use it with a free Flash
MP3 player, like the E-Phonic player discussed above. But there’s another alterna-
tive, one that uses a slimmed-down audio format called Flashtrak. Flashtrak files
download in a jiffy, so your visitors never have to wait to experience your site’s
ambience. Flashtrak files require a Flashtrak player, which you can also download
at the Flash Kit Web site. (The Flashtrak player is a Flash program, just like E-Phonic
is, but it doesn’t support MP3 files.)

Figure 16-7:
You can preview Flash
Kit’s loops right in your
browser, without
downloading them. Once
you find what you want,
click the “flashtrak” link
to download the audio in
one of three formats:
MP3 (the usual), WAV
(good if you want to edit
it), or in Flashtrak format,
which works with the
specialized players
available on the site. In
this example, a high-
quality 10-second WAV
file weighs in at almost 2
MB, but the MP3 version
is a more respectable
700 KB. The Flashtrak
format is even smaller,
requiring just 200 KB.

Download the
Flash version
of this loop

Get Flash
players that
can play this
loop

The size of
the WAV file
original (in
ZIP format)

Listen to the loop

http://www.flashkit.com/loops

490 Creating a Web Site: The Missing Manual

Flash MP3 Players

To download the Flashtrak player, look for the “Get flashtrak players” link just
under the links for loops (see Figure 16-7). You can choose from more than a
dozen player styles. Most have snazzy effects as they play music, like pulsing lines
or expanding circles.

Note: When you download the Flashtrak player, you may end up with more files than you actually need.
For example, you don’t need any files that end with “.fla” (these are Flash source files that you can only
edit in the Flash software). You can delete these files. Also, when you download a player, you’ll probably
find yourself with a pile of extra song files. Delete the ones you don’t want, or your player will cycle
through all of them.

Once you download a player, you’re ready to embed it in your Web page. You can
take care of that with a simple <embed> element that points to the player file:

<embed src="StarPlayerMultiTrackWithAutoStart.swf" />

Figure 16-8 shows you what you’ll see when you run the page that contains this
element.

Flash content is notoriously difficult to patch into a page without breaking
XHTML validation rules. The following markup provides a nice, clean solution
that works in most browsers without requiring the pesky <embed> element:

<object data="StarPlayerMultiTrackWithAutoStart.swf"

 type="application/x-shockwave-flash">

 <param name="movie" value="StarPlayerMultiTrackWithAutoStart.swf" />

</object>

Notice that this technique forces you to put the Flash file name in two places.

Figure 16-8:
Here are the Flash-based audio controls in action, complete
with playback buttons and soothing graphics. The best
way to try out this example (and the E-Phonic example
shown earlier) is to download the sample content for this
chapter, available from the Missing CD page at
www.missingmanuals.com.

http://www.missingmanuals.com

Chapter 16: Audio and Video 491

Video Clips

Video Clips
Now that you’ve conquered the challenges of audio and learned to put everything
from sound effects to looping background music into your Web pages, it’s time to
move on to one more challenge—video content.

Although browsers use many of the same tools to play video as they do to play
audio (plug-ins like Windows Media Player, QuickTime, and Flash), there are
some hefty differences. Most importantly, video files are big. Even the smallest of
them is many times the size of an audio recording of a full-length Mahler sym-
phony. Handling this data without trying your visitors’ patience is a true test. In
the following sections, you’ll learn how to prepare your video content for the Web,
and consider two ways to let visitors view it.

Preparing Video
Putting personal video on a Web site is a task meant for ambitious multimedia
mavens. The key stumbling block is the sheer size of digital video. Consider the
popular MiniDV camcorder. It stores an hour of video on a single tape. You can
download that video to your computer—but only if you have a spare 13 GB of
drive space handy. The ugly truth is that every second of raw, high-quality video

POWER USERS’ CLINIC

Unlocking the Power of Flash
Flash files are utterly unlike ordinary multimedia content.

First, Flash stores animations as a series of instructions. So
instead of, say, saving three dozen pictures of a circle in
slightly different positions to simulate a ball in flight (as you
would with an animated GIF or a video clip), you simply
instruct Flash to “move this shape from here to there, at this
speed.” That makes complex animations much easier to
create and edit.

Second, Flash uses programming code. That means you
can program all kinds of devious logic into a Flash program,
like making shapes move and sounds play when a Web vis-
itor moves his mouse or clicks a portion of an animation.
This ability brings all the tricks of client-side programming
(Chapter 14) together with all the tools of graphic design to
make really slick animations. Best of all, your Web server
doesn’t need any special software because the Flash
browser plug-in does it all.

If you’re an ambitious sort, the Flash music players you
learn about in this chapter just might have you dreaming
big about building your own Flash animations or programs.
You can certainly do that, but it’s a major undertaking.
Before you start, you need to plunk down about $700 for
the premier design tool Adobe Flash CS4 Professional.
Then, you face a steep learning curve. Everything you’ve
learned so far (XHTML, styles, and so on), won’t help you
much in the world of Flash. And once you have the right
software and you’ve fought your way through all the new
concepts, you’ll find it takes more than a modicum of artis-
tic skill to create a professional Flash animation.

To dip your toe into the fascinating world of Flash, check
out the basic online tutorials at www.w3schools.com/flash,
or read a dedicated book on the subject, like Flash CS4: The
Missing Manual. To get a sense of what’s possible with
Flash, check out the gorgeous graphics in the free Flash
games at www.ferryhalim.com/orisinal, or take on the
detailed negotiation simulations at www.zapdramatic.com,
which pit you against a host of unsavory characters.

http://www.w3schools.com/flash
http://www.ferryhalim.com/orisinal
http://www.zapdramatic.com

492 Creating a Web Site: The Missing Manual

Video Clips

chews through a sizeable 3.5 MB of storage. Not only is this enough to take a bite
out of any Web master’s server and bandwidth allocations, it’s too big for even the
speediest browser to download.

What can you do to make a Web video both look good and perform well? You can
always use someone else’s Web-ready video (or pay a video editing company lots
of money to trim yours down to Web proportions). Assuming that’s not what you
want, you have two choices.

• Record at lower quality. Some video cameras let you record video using lower
quality settings for the sole purpose of putting video on a Web site. Cellphones,
tiny computer spy cams, and digital still cameras all create low-quality movies,
letting you both dodge conversion headaches and send video straight to your
site. In fact, some video fans find the best solution is to have two cameras, one
for ordinary home movies and one for lower-quality Web movies.

• Lower the quality afterward. More commonly, you’ll need to start with your
high-quality video and go through a long process of re-encoding it to convert it
to a size suitable for the Web. To do this, you need a video-editing program.
Video cameras generally include some sort of tool to help you out, although
you may want to pony up for more powerful software. Two popular choices are
iMovie for the Mac (included with OS X) and Windows Movie Maker, included
with Windows XP and Windows Vista. In addition, some video editing programs
have a feature that automatically picks suitably scaled-down quality settings for
videos you want to upload to a Web site.

Note: For full details on how to operate Windows Movie Maker, check out Windows Vista: The Missing
Manual. If you’re using iMovie, take a look at iMovie HD & iDVD: The Missing Manual.

Here are the steps to follow to get your video ready for the Web:

1. First, film your movie.

Take a couple of lessons from video aficionados and film your video in a way
that makes it easier to compress and introduces less distortion. Keep camera
movements smooth and gradual, and don’t film complex patterns. Your com-
pressed video will be smaller and look better.

2. Fire up the video capture program included with your video camera. Use it to
download your movie to your computer’s hard drive.

Typically, this step involves connecting your camera to your computer using a
FireWire cable. Although USB cables aren’t fast enough to keep up with huge
chunks of raw video data, you might use one if you transfer video from less
powerful devices, like a camera or cellphone that records short video clips.

3. Now you need to use a video-editing program to snip out just the video segment
you want to post to your Web site.

Some programs let you add music or special effects at this point, too.

Chapter 16: Audio and Video 493

Video Clips

4. Next, re-encode that piece of video in a highly compressed format. If all the
format information in your program sounds like gobbledy-gook, look for an
option that clearly says “Web video” when you save your clip.

Technically, you make three choices in this step—you specify a video format
(the algorithm your editing program uses to encode your video), the dimen-
sions of the playback window (Web pages usually use 320 × 240 pixels), and the
video quality (as with JPEGs, the greater the compression, the more detail you
lose).

Note: There is a range of competing Web video formats, but the most common is MPEG-4. Just to make
life more interesting, MPEG-4 has all kinds of quality settings, so you can use it to create DVD-quality mov-
ies or Web-friendly video clips. If in doubt, double-check the final file size of your movie. If 60 seconds of
video take up 1 MB on your hard drive, you’re doing well.

Re-encoding video is a time-consuming operation—even the speediest computer
can take five times as long as the length of the original clip. The good news is that
at the end of the process, you’ll have a more manageable Web-ready video file—
say, 2 MB for a full 90-second clip.

Linking to and Embedding Video
Surprisingly, you can pop a video into your Web page using the same techniques
you used with digital audio (see Figure 16-1). That means you can link to a video
so that it opens up in another browser window:

Click to download or open my home movie

Ouch, That Hurts.

Or, you can use the <embed> element to put a video window right inside your
Web page.

<embed src="ouch.mpg" autoplay="false" />

If you use the <embed> element, make sure you turn off autoplay. Otherwise, visi-
tors with feeble dial-up connections will see their Web pages slow to a crawl while
your video downloads.

The video window shows up wherever you place the <embed> element (see
Figure 16-9).

If this seems too easy to be true, that’s because it is. Although this simple test page
works well most of the time, it’s not entirely reliable. Depending on your movie’s
encoding format and your browser’s settings, visitors may be forced to download
the entire movie before they can start watching it. And if their browsers don’t have
the right plug-in or it’s incorrectly installed, your video might not play at all.

Heavyweight companies that show videos on their Web sites use special Web
server software to ensure good performance. Budget Web hosting companies can’t
compete. However, if you want to get serious about video but avoid the hosting

494 Creating a Web Site: The Missing Manual

Video Clips

and compatibility headaches, there’s an easy solution. You can use a video hosting
service like the insanely popular YouTube.

Uploading Your Videos to YouTube
Before YouTube hit the scene, video clips hadn’t really taken off on the Web.
Movie clips were all-around inconvenient. They were slow to download, and play-
back was often jerky and sporadic. But in a mere 5 years, the landscape has shifted.
Web connections are faster and browser plug-ins that support movie playback
(like Flash and Microsoft’s new Flash competitor, Silverlight) are more common.
Ordinary people own all sorts of digital video gadgets that can shoot short movies,
from true video cameras to digital cameras, cellphones, and Webcams. Popular
clips rocket around the world, going from unknown to Internet sensation in a
matter of hours. Family members, adventurers, and wannabe political commenta-
tors all regularly use video to keep in touch, show their skills, and dish the dirt.

YouTube (www.YouTube.com) is at the forefront of this revolution. Despite being
a Web newcomer (YouTube was created in 2005, after the first edition of this book
was printed), it currently ranks as the world’s second-most popular Web site. And
YouTube’s range of content is staggering. With a quick search, you can turn up a
range of both amateur and professional content, including funny home videos,

Figure 16-9:
You can add a video window to your
Web pages almost as easily as adding
basic audio playback controls. If you
don’t specify a fixed size, the window
automatically adjusts to the dimensions
of your video.

http://www.YouTube.com

Chapter 16: Audio and Video 495

Video Clips

product reviews and announcements, homemade music videos, clips from movies
and television shows, and ordinary people spouting off on just about any topic (a
trend called video blogging).

If you’re still considering options for putting your video content online, there are
two great reasons to use YouTube:

• It performs well. YouTube uses Flash to ensure that virtually all browsers can
play back its videos. In addition, its videos support progressive downloading,
which means you can watch a video as your browser downloads it, rather than
waiting for the whole enchilada.

• YouTube extends the reach of your Web site. YouTube is one of the most popu-
lar sites on the Web. Videos that get lucky can increase their audience size from a
few people to millions of eager clip-watchers. By putting your movies on
YouTube, you increase the odds that someone will discover it and possibly visit
your site afterward. For example, many of the most popular clip-makers capital-
ize on their YouTube popularity by selling themed merchandise on their sites.

One disadvantage with YouTube is that you lose control over video quality. You-
Tube is notorious for applying a heavy dose of compression to shrink video size,
making some clips look terrible.

In the following sections, you’ll see how to upload your first YouTube video, and
even learn how to embed it in a window on one of your own pages.

Signing up with YouTube

Anyone can browse and view YouTube’s full catalog of videos (six million clips at
the time of this writing). But to upload your own, you need a YouTube account.
Here’s how to create one:

1. Go to www.YouTube.com. Click the Sign Up link (you can find it in the top
right-hand corner of the page).

2. Fill in your account information.

You need to supply the usual information, including your email address, pass-
word, location, and date of birth. Unlike some Web sites, which identify you
solely by your email address, YouTube requires a user name, which is a string of
letters and numbers like JoeTheMovieMaker403. Given the site’s popularity, it
may take a few tries to find an available name. To find out if a potential name is
taken, click the Check Availability link after you type it in.

Tip: If you already have a Google Account, you can use that with YouTube. Scroll down to the bottom-
left of the Sign Up page, and then click the “Sign in with your Google Account” link. You’ll still need to pick
a YouTube user name and supply your address, but you’ll be able to log in to all the Google services you
use with the same email and password combination.

http://www.YouTube.com

496 Creating a Web Site: The Missing Manual

Video Clips

3. Click Create My Account.

YouTube sends a confirmation message to your email address. When you get
this email, click the link inside it to confirm your account.

Preparing a video

Now you’re ready to post a video. But before you do, it’s time to double-check
your video format to make sure YouTube supports it.

YouTube helps out quite a bit in this regard. You can upload a video in just about
any popular video format, including AVI, MOV, WMV, MPG, DivX, FLV, OGG,
and 3GP. Best of all, YouTube automatically re-encodes your video with the right
quality settings so Web visitors can download it without teeth-gnashing delays.
This doesn’t mean you can upload a video straight out of your camcorder, how-
ever. YouTube limits uploads to files that are less than 1 GB (1,000 MB) in size,
and even a movie file that’s half that size is still too large for many people to
upload in a reasonable amount of time. Best-case scenario, it takes hours. Worst-
case, your browser conks out halfway through the process.

With that in mind, you need to use the re-encoding process described on page 492.
Although it may take a bit of trial and error to get the best settings for your video,
here are some guidelines:

• YouTube supports standard and widescreen video formats. The device you use
to make your video usually determines which format you choose. If you record
video in standard size, use a resolution of 480 × 360 pixels. For slightly lower-
quality content with standard video, you can use the original YouTube play-
back window size, which is 320 × 240. Either way, YouTube uses a widescreen
video window to play back your standard video content, which means you’ll see
a black bar of empty space on the sides of your video. For widescreen video, use
a resolution of 640 × 360 pixels for best results.

• Although YouTube supports a kitchen sink of video formats, it recommends
you use the MPEG-4 or H.263 codecs when preparing your video.

• Ordinarily, you should encode your videos at 30 frames per second. However,
you can sometimes cut this down to 15 frames per second to save space, and
still get good results.

• The longer your video, the more compression you’ll need to get the file size
down to manageable proportions.

• Aim to create a file that’s less than 100 MB in size. You may need to fiddle with
your settings and re-encode your video several times to get the right balance of
size and quality.

Chapter 16: Audio and Video 497

Video Clips

Uploading a video

Once your video’s ready, it’s time to put it online. The process is refreshingly
straightforward:

1. Head back to YouTube and sign in.

You’ll see that YouTube offers plenty of features to help you track down the
videos you like. It keeps track of the videos you watch, recommends related vid-
eos for you to check out, and lets you subscribe to specific video groups. But
right now, ignore these features and concentrate on adding your own video
creation to the mix.

2. Click the yellow Upload button at the top right-hand side of the page.

This takes you to the upload page shown in Figure 16-10.

3. Fill in the information for your video.

You need to supply a title and description, which YouTube displays on your
video page and when your video appears in the YouTube search results. You
also need to specify a category for your video, and add one or more tags. When
other people search YouTube using keywords that match your tags, there’s a
better chance that your video will turn up in the search results.

Along with this required information, YouTube offers several sections of
optional settings. You can click the “choose options” link in any of these sec-
tions to change your options.

Use Broadcast Options to switch your video from public to private. Public vid-
eos turn up in YouTube search results, while you share private videos only with
YouTubers you explicitly identify.

UP TO SPEED

Understanding Bit Rates
The main way you control video quality settings is by
adjusting the bit rate. The bit rate determines how much
raw information each frame of your movie includes. For
example, a mid-range bit rate of 400 kbps means there are
400 KB of data in every second of video. If your movie is
about 4 minutes long, it will total about 96 MB in size.

Life isn’t quite that simple however, because many encod-
ing programs use variable bit-rate encoding. That means
they use a higher bit rate to encode more complex sections
(like fast-moving action), and a lower bit rate to save space
during simpler scenes. No matter what encoding rate you

use, you’ll always run into the same trade-off. Bigger files
have the potential for better quality video after YouTube
converts them. But the smaller the file, the faster you can
upload it.

Because every encoding program works a bit differently,
you need to experiment (and sit through a few YouTube
uploads to find out how fast your Internet connection really
is). You might also want to try scouring the Web for tips on
using your video editor to prepare YouTube videos. You
can even hunt down one of free program that are designed
to streamline YouTube uploads.

498 Creating a Web Site: The Missing Manual

Video Clips

Use Date and Map Options to identify when and where you recorded your
video.

Use Sharing Options to control how other people can offer feedback or use
your video. For example, you can ban people from commenting on your video,
or allow only comments that you approve. You can also specify whether people
can rate your videos, post a video response (a video linked to yours), and play
your video on their Web page. YouTube allows all these options automatically,
giving the site a somewhat raucous community atmosphere.

Note: You can prevent other people from embedding your video by choosing the “External sites may not
embed this video” option. If you do this, however, it not only stops other people from showcasing your
video, it prevents you from embedding your own video on your Web pages.

Don’t worry if you can’t decide on all your options right now. You can change
them (along with the descriptive video information) any time.

Figure 16-10:
YouTube uses just a
single page to collect all
the necessary
information about your
video and let you
configure options like
comment support. (Click
the “choose options”
links to expand these
sections.)

Chapter 16: Audio and Video 499

Video Clips

4. Click the “Upload a video” button.

This is the simplest way to submit your video. However, YouTube offers other
options.

Click the Use Quick Capture button to record and upload your video on the
spot. You need to have a Webcam connected to your PC.

Click the “Use multi-video uploader” button on the right side of the page to use
a special uploading interface. The multi-video uploader makes it easy to upload
several files at once. This way, if you have a bunch of videos you want to put
online, you can queue them all up and walk away from your computer for the
day. The multi-video uploader also lets you upload files larger than 100 MB, up
to the 1,000 MB maximum. If you click this button, YouTube prompts you to
install the free Google Gears Web browser extension (http://gears.google.com),
which YouTube requires to make the multi-video uploader work.

5. It’s time to upload your file. Click Browse, find your video file on your PC, and
then click OK. Finally, click Upload Video to start the transfer process.

As YouTube uploads your video, it displays a status message that counts the num-
ber of bytes copied and displays the percent of the entire process it’s completed.

YouTube says it typically takes 1 to 5 minutes to upload each megabyte of video
if you have a high-speed connection, so this is a good time to get a second cup
of coffee.

6. When YouTube finishes the upload, it displays a confirmation message.

The process isn’t really finished yet, however. YouTube still needs to convert
your video to the streamlined Flash format, and that process could take min-
utes or hours depending on the number of requests ahead of yours.

As long as you didn’t switch off video embedding in step 3, YouTube gives you
the block of XHTML you need to embed the video on your own site (see
Figure 16-11).

Watching a video

Once your video is ready, you can watch it in several ways:

• You can search for it on YouTube.

• You can browse through the videos in your account. Log into YouTube, click
the Account link (at the top right-hand side of the page), scroll down to the My
Videos section, and then click the Uploaded Videos link.

Tip: You can handle other management tasks in the Uploaded Videos page as well. For example, click
Delete to remove a video, Edit to change the video information and options you specified when you
uploaded your video, and Insight to get some fascinating statistics on the people who’ve seen your video.

http://gears.google.com

500 Creating a Web Site: The Missing Manual

Video Clips

• You can play it back in a YouTube window on one of your Web pages. To do
so, copy the markup shown in Figure 16-11 into your page. If you neglected to
copy this markup when you uploaded your video, go to the YouTube page for
your video, where you’ll find these details (see Figure 16-12).

• You can put a link on your Web page that leads to the YouTube video page.
Figure 16-12 shows the information you need to create this link.

Of all these options, embedding your video in a YouTube window on your Web
page is the most interesting. It lets you combine the look and feel of a self-hosted
video with YouTube’s high performance and solid browser support. Best of all,
embedding videos is as easy as copying a snippet of XHTML markup into your
page. You simply put this markup where you want the video window to appear.
Often, you’ll put it in a <div> element, and use style rules to position the <div>
element (as described in Chapter 9).

Figure 16-11:
Even though your video isn’t ready yet, you
can already copy the markup needed to
display it on a Web page. At the moment,
that markup won’t have much effect—it’ll
just create a blank YouTube window. But
once your video goes live on YouTube,
you’ll see it in your page.

Chapter 16: Audio and Video 501

Video Clips

Here’s the complete markup that creates the page from Figure 16-12:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

 <title>A Taste of YouTube</title>

</head>

<body>

 <h1>A Taste of YouTube</h1>

Figure 16-12:
Top: You can watch your video at
its YouTube home. The page
provides two useful text boxes
(circled here): a URL box with the
address you need to link to this
page, and an Embed box with the
markup you need to embed this
video window in another Web
page.

Bottom: Embedding lets you watch
your video in a page of your own
devising.

502 Creating a Web Site: The Missing Manual

Video Clips

 <p>The following video window is brought to you by the fine people

 at YouTube.</p>

 <object width="425" height="344">

 <param name="movie"

 value="http://www.youtube.com/v/qx0QIUkRAGQ&hl=en&fs=1"></param>

 <embed src="http://www.youtube.com/v/qx0QIUkRAGQ&hl=en&fs=1"

 type="application/x-shockwave-flash" allowfullscreen="true"

 width="425" height="344">

 </embed>

 </object>

 <p>Click it to start playing.</p>

</body>

</html>

Keen eyes will notice that this video window consists of an <embed> element
wrapped in an <object> element. This messy markup is great for browser compati-
bility, because browsers that support the <object> element will ignore the content
inside, and browsers that don’t recognize the <object> element will use the
<embed> element instead. However, like all uses of the <embed> element, it has
the unhappy side effect of breaking the rules of XHTML. This simply goes to show
that making a page work perfectly still trumps any standard—at least for the Web’s
hottest video-sharing site.

Tip: To change the color of the border around your video window, make it start playing automatically,
give it support for fullscreen mode, or tweak one of several other details, you need to adjust the parame-
ters inside the markup. For the complete scoop, check out http://code.google.com/apis/youtube/player_
parameters.html.

http://code.google.com/apis/youtube/player_parameters.html
http://code.google.com/apis/youtube/player_parameters.html

5
V.Part Five:
Blogs

Chapter 17: Blogs

505

Chapter 17chapter

17

Blogs

Throughout this book, you learned how to craft a Web site using basic site-building
ingredients: XHTML, style sheets, and JavaScript. Armed with this know-how, you
can build a fairly impressive site.

Maintaining a Web site, however, requires a significant investment of your time.
You need to regularly review what you have, add fresh material, keep site naviga-
tion menus up to date, check old links, and periodically update your pages to
incorporate the latest Web design trends. For some people, this constant groom-
ing is fun—after all, you get to tweak and fiddle with the most minute details of
your site until you get everything exactly the way you want it. But not everyone’s
that ambitious. Some people prefer to spend less time managing their sites and
more time creating content.

In this chapter, you’ll learn about blogs, a self-publishing format that can help you
avoid the headaches of Web site management. Blogs are a fresh, straightforward,
and slightly chaotic way to communicate on the Web. To maintain a blog, you
publish short entries whenever the impulse hits you. Your blog posts are collected,
chronologically organized, and presented in Web pages by high-powered blogging
software. That means that if you don’t want to fuss with the fine details of Web site
management, you don’t need to. All you need to worry about is sending in postings—
and with some blogging software, that’s as easy as firing off an email.

In this chapter you’ll learn how blogs work, and you’ll see how to create your own
blog with Blogger, one of the Web’s leading free blogging services.

506 Creating a Web Site: The Missing Manual

Understanding
Blogs

Understanding Blogs
The word “blog” is a nerdy abbreviation of Web log, which makes sense because
blogs are logs of a sort—regular, dated blurbs, like a cross between a diary entry
and a posting in a discussion forum. “Blog” is also a verb, as in “I just ate at a terri-
ble restaurant; when I get home I’m going to blog about it.” Figure 17-1 dissects
the anatomy of a basic blog.

Although blogs simplify Web posting, it’s unfair to say that they’re just a simplified
way to work the Web. Rather, blogs are a wholly different form of online commu-
nication. And although there’s no definitive test to determine what is or isn’t a
blog, most blogs share several characteristics:

• Blogs are personal. You can find topic-based blogs, work-based blogs, political
blogs, and great numbers of blogs filled with random, offbeat musings. No mat-
ter what their mission, however, blogs always emphasize the author’s point of
view. They rarely attempt to be objective—instead, they’re unapologetically
idiosyncratic opinions. Blogs are always written in the first person.

• Blogs are organized chronologically. When you design a Web site, you spend a
lot of time deciding how best to organize your material, often using menus or
links to guide visitors through an assortment of topics. Blogs take a radically
different approach. They have no organization other than ordering your post-
ings chronologically. Anything else would just slow down restless bloggers.

Figure 17-1:
A typical blog displays
posts in reverse
chronological order,
starting with the most
recent at the top of the
page. A blog’s home
page may feature the
last few entries, or just
the most recent one. If
blog entries are
extremely long, the
home page might
display just the post’s
first few paragraphs,
with a link to the rest of it
(as in this example). Off
to the side, you’ll find
other details, like a
calendar or set of links
that let you read older
posts, a picture or blurb
about the author (not in
this example), or a list of
recommended blogs
(called a blogroll).

Use these
links to see
older posts

About the
blogger

Recom-
mended
bloggers

Blog
entries

Link to read or
post comments

Link to read
full post

Time this
entry was posted

Chapter 17: Blogs 507

Understanding
Blogs

• Blogs are updated regularly. Blogs emphasize fast, freewheeling communica-
tion rather than painstakingly crafted Web pages. Bloggers are known to add
content obsessively (sometimes as often as hourly). Because blog entries are
dated, it’s glaringly obvious if you don’t keep your blog up to date. If you can’t
commit to blogging regularly, don’t start a blog—set up a simple Web page
instead.

• Blogs are flexible. There’s a bit of blog wisdom that says no thought’s too small
for a blog. And it’s true—whether you write a detailed discussion on the viabil-
ity of peanut-butter Oreos or a three-sentence summary of an uneventful day, a
blog post works equally well.

• Blogs create a broader conversation. Blogs form communities more readily
than Web sites do. Not only are blogs more conversational in nature, they also
support comments and links that can tie different blogs together in a conversa-
tion. If someone posts an interesting item on a blog, a legion of fellow bloggers
often links to it within hours. Scandalous blog gossip can rocket around the
globe in a heartbeat.

Note: When a large amount of activity, information, and opinion erupts around a particular subject or
controversy in the blogosphere, it’s sometimes called a blogstorm, or blog swarm. You can find more
blogtastic jargon at http://en.wikipedia.org/wiki/Blog.

The actual content of a blog isn’t fixed—it can range widely, from political com-
mentary to personal travelogues. There are millions of blogs online today; Goo-
gle’s Blogger service alone hosts several million blogs, many thousands of which
are considered active.

The best way to get a feel for the blogosphere is to check out some popular exam-
ples. For widely read political commentary, head over to arch-conservative Andrew
Sullivan’s blog at www.andrewsullivan.com. Or check out a frank, gripping account
of life in war-torn Baghdad on Salam Pax’s (now-abandoned) blog at http://dear_
raed.blogspot.com. For somewhat lighter fare, visit the curiously popular http://
wilwheaton.typepad.com, a blog by Wil Wheaton, the actor who played the nerdy
upstart Wesley Crusher on Star Trek. Computer security whiz Bruce Schneier pro-
vides expertise and observations at www.schneier.com/blog. The list goes on—from
journalists to hobbyists to sports heroes to porn stars, it seems that almost every-
one’s willing to psychoanalyze their life or chat about water-cooler topics with an
audience of millions via a blog.

Tip: Blogs occupy a specialized Web niche distinct from a lot of the other types of sites you’ve seen. For
example, you can’t effectively sell a line of trench coats for dogs on a blog. But many people start blogs in
addition to ordinary Web sites. This is a great combination. Visitors love blogs because they crave a
glimpse behind the scenes. They’re also sure to visit again and again if they can count on a regularly
updated blog that offers a steady stream of news, gossip, and insight.

http://en.wikipedia.org/wiki/Blog
http://www.andrewsullivan.com
http://dear_raed.blogspot.com
http://dear_raed.blogspot.com
http://wilwheaton.typepad.com
http://wilwheaton.typepad.com
http://www.schneier.com/blog

508 Creating a Web Site: The Missing Manual

Understanding
Blogs

Syndication
One of neatest features of blogs is syndication, which lets avid blog readers moni-
tor their favorite blogs using a program called a feed reader or news aggregator. To
use a feed reader, you enter links to all your favorite blogs, and then keep an eye
out for updates. The feed reader periodically checks these blogs and alerts you to
new postings, saving you from having to check every blog 94 times a day to see if
there’s fresh content. If you follow blogs regularly, feed readers are the most prac-
tical way to stay current with all your friends in the blogosphere.

Note: Feed readers are a little like email programs, which, of course, let you regularly check to see if you
have new messages from any of your friends. This is a lot more efficient than contacting each of them and
asking if they have anything new to say. Similarly, you can use a feed reader whenever you want to check
up on blog activity. If there’s nothing new, you find out in an instant.

WORD TO THE WISE

The Hazards of Blogging
There’s something about the first-person nature of a blog
that sometimes lures people into revealing much more
information than they should. Thanks to reckless moments
of blogging, lovers have discovered their cheating spouses,
grandmothers have read memorable accounts of their
daughter’s sexual conquests, and well-meaning employees
have lost their jobs.

The dangers of impulse blogging are particularly great in
the working world. In most countries, companies have the
ability to fire employees who make damaging claims about
a business (even if they’re true). Even famously open-
minded Google ditched Mark Jen (http://roseandsnail.
com) after he blogged a few choice words about a Google
sales conference that he claimed resembled a drunken frat
party. The notable part of his story is that he didn’t set out
to undermine Google or make his blog widely available. In
fact, only his close friends and family even knew he had a
blog. Unfortunately, a few Google-watching sites picked up
on the blog post and sent the link around the Internet.
There are many more stories like these, where employees
lose their jobs after revealing trade secrets, admitting to
inappropriate on-the-job conduct (for example, posting risqué

at-work photos or bragging about time-wasting games of
computer solitaire), or just complaining about the boss.

To protect yourself from the hazards of blogging, remem-
ber these rules:

• “Anonymous” never is.

• If you plan to hide your identity, adopt a pseud-
onym, or conceal personal details, remember the
first rule.

• Funny is in the mind of the beholder. Your humor-
ous work-related stories will be seen in a different
light when read by high-powered executives who
lack your finely developed sense of irony.

• Think before you write. There’s a fine line between
company secrets and information in the public
domain.

• There’s no going back. Although many blogging
tools let you edit or remove old posts, the original
versions can stick around in search-engine caches
for eternity.

http://roseandsnail.com
http://roseandsnail.com

Chapter 17: Blogs 509

Understanding
Blogs

Although most blogs work with feed readers, some don’t. To work with a reader,
blogs need to provide a feed (Figure 17-2), a computer-friendly format of recent
blog postings. Feed readers interpret blog feeds to get important information, like
the post’s title, description, date, and text. They display that information for your
reading pleasure, without forcing you to make a separate trip to the blog Web site.

If you want to try a feed reader, you’ve got lots of choices:

• Online feed readers require that you sign up and create a free account, but you
don’t need to install anything on your computer. You just go to the feed reader
Web site and read the feeds right in your browser window. Popular examples
include Google Reader (www.google.com/reader), Bloglines (www.bloglines.com),
and NewsGator (www.newsgator.com).

• Desktop feed readers run on your PC. You can check out and download many
of them on popular shareware sites like www.download.com. If you’re using a
Windows computer, you can download the excellent FeedDemon (see Figure
17-3) at www.newsgator.com/Individuals/FeedDemon. Mac fans might like the
highly touted NetNewsWire at http://ranchero.com/netnewswire. Both programs
are free.

Figure 17-2:
Most blogs have a feed
link somewhere on their
home page. Look for the
word “feed” or
“syndication” or
“subscribe.” Sometimes,
the link includes the
actual name of the feed
format, like RDF, RSS, or
Atom (all of which use
XML), so be on the
lookout for these words,
too.

http://www.google.com/reader
http://www.bloglines.com
http://www.newsgator.com
http://www.download.com
http://www.newsgator.com/Individuals/FeedDemon
http://ranchero.com/netnewswire

510 Creating a Web Site: The Missing Manual

Understanding
Blogs

• Browsers are increasingly adding features like feed readers. If you use Firefox,
for example, its live bookmarks feature tracks feeds (see Figure 17-4). Internet
Explorer 7 (and later) and Safari also have built-in feed readers. (For more
information about IE’s support, check out www.microsoft.com/windows/IE/ie7/
tour/rss. For Safari, read the article series at www.macdevcenter.com/pub/a/mac/
2005/05/31/safari_rss.html.) However, no browser offers feed-reading features
as slick or convenient as dedicated programs like FeedDemon.

Blog Hosting and Software
Before you can set up your own blog, it helps to understand the different kinds of
blogmaking options out there. There are really two types of blogs:

• Self-hosted blogs. If you’re a hardcore high-tech geek with a Web server in your
basement, you might be interested in hosting a blog entirely on your own. To
do this, you need to find some blog hosting software that works on your server
platform, install it, and then configure everything. This approach gives you
unlimited flexibility (and maybe better performance), but, unless you enjoy do-
it-yourself challenges like making your laptop talk to your coffee maker, it’s
probably not for you.

Examples of blogging software include Movable Type (www.movabletype.org),
Blosxsom (www.blosxom.com), and WordPress (http://wordpress.org).

Figure 17-3:
FeedDemon is a modern
Windows program that
lets you keep your finger
on the pulse of the
blogosphere. You can
monitor dozens of blogs
(or more) at a time, and
home in on any new
activity.You can sort

your favorite
blogs into

groups

The currently
selected blog

Bold blogs have
new items. The
number of new

items is indicated
in parentheses.

List of postings in the
currently selected blog

The currently
selected post

Text for the currently
selected post

http://www.microsoft.com/windows/IE/ie7/tour/rss
http://www.microsoft.com/windows/IE/ie7/tour/rss
http://www.macdevcenter.com/pub/a/mac/2005/05/31/safari_rss.html
http://www.macdevcenter.com/pub/a/mac/2005/05/31/safari_rss.html
http://www.movabletype.org
http://www.blosxom.com
http://wordpress.org

Chapter 17: Blogs 511

Understanding
Blogs

• Hosted blogs. With a hosted blog, you simply sign up with a blog provider and
start blogging away. Adding a blog entry is as simple as filling out a form in
your Web browser. You never need to hassle with a separate program or figure
out how to upload content files, because the blog provider stores all your files
for you. You don’t even need to have a Web site. Hosted blogs are the best bet
for new bloggers, because they’re completely painless and remarkably flexible.

Examples of hosted blog providers include Windows Live Spaces (http://spaces.
msn.com), TypePad (www.typepad.com), WordPress (http://wordpress.com), and
Blogger (www.blogger.com).

Figure 17-4:
Top: When Firefox detects a link to a
feed in the current page, it displays a
special orange icon in the address bar.
Click this icon, and then choose one of
the “Subscribe” options to add a live
bookmark.

Middle: Firefox asks you how you want
to store your bookmark. You can use
Firefox’s live bookmarks feature, or a
separate feed reading service like
Google Reader (just pick it from the
list). Click the “Always use” setting if
you don’t want to see this feed options
page again. Then, click the Subscribe
Now button.

Bottom: Live bookmarks provide a
submenu of current blog posts, which
Firefox updates automatically. You still
need to check the bookmark to see if
there’s a new post (which requires
more effort than a feed reader like
FeedDemon), but you don’t need to
keep visiting the original site.

http://spaces.msn.com
http://spaces.msn.com
http://www.typepad.com
http://wordpress.com
http://www.blogger.com

512 Creating a Web Site: The Missing Manual

Getting Started with
Blogger

Tip: Some blog services let you store your blog files on your own Web server. This model gives you the
ease of hosted blogs without forcing you to give up your domain name. On page 533, you’ll learn how to
pull off this feat with Blogger.

If you’re interested in researching the many different blogging products and blog
hosts available, refer to Wikipedia’s up-to-date summary at http://en.wikipedia.org/
wiki/Blog_hosting_service. In this chapter, you’ll spend your time using one blog-
ging tool, called Blogger. Blogger is simple to use yet remarkably powerful, which
makes it the best candidate for all-around blogging champ.

Getting Started with Blogger
Blogger is the most commonly used blogging tool today. It provides the easiest way
to start a blog, and it’s chock-full of nifty blog management tools. Once upon a time,
Blogger was available in a basic free version (supported by ads) and a more full-
featured premium version, which required a small yearly contribution. In early 2003,
all that changed when Google bought Blogger. Now, all Blogger’s features are part of
the same free package. As an added benefit, Blogger’s once-unreliable services are a
thing of the past, thanks to Google’s stacks of cash and rock-solid Web servers.

Creating a blog with Blogger is ridiculously easy. In the following sections, you’ll
learn how to create a blog, add posts, and take charge of a few neat features.

Tip: You can also check out the official catalog of Blogger help at http://help.blogger.com and the discus-
sion boards at www.bloggerforum.com, where bloggers share tips, ask questions, and vent their frustrations.

Creating a Blog
Before you create your blog, it’s a good idea to assess your goals and decide exactly
what type of content you plan to showcase. Will your blog contain random
thoughts, a chronicle of daily life, or more targeted, topic-specific posts? Once you
know how you want to position your blog, you’ll be able to choose a snappy name
and a suitable URL. Start with these steps:

1. Go to www.blogger.com.

This is the home page for the Blogger service.

2. Click the Create Your Blog button.

Creating a blog is a three-step process. First, you create a Google account (see
Figure 17-5).

If you use other Google services (like Gmail, Google AdSense, or Google Ana-
lytics), you can use that account to create your blog. Click the Sign In link, and
then skip to step 5. If you don’t have a Google account, continue to step 2 to
provide some basic information about yourself.

http://en.wikipedia.org/wiki/Blog_hosting_service
http://en.wikipedia.org/wiki/Blog_hosting_service
http://help.blogger.com
http://www.bloggerforum.com
http://www.blogger.com

Chapter 17: Blogs 513

Getting Started with
Blogger

3. Type in your account information, which consists of an email address, a pass-
word, and your display name (the name your blog will display to the world).

You also need to type in a string of letters to prove you’re not a computer pro-
gram, and turn on a checkbox at the bottom of the page to officially accept
Blogger’s rules.

Note: You only need to create an account once. However, you can create multiple blogs for the same
account.

4. Click Continue to move to the next step.

You actually create your blog in this step (see Figure 17-6).

5. Supply the title and URL you want your blog to have.

A blog title is just like a Web page title—it’s the descriptive bit of text that
appears in the browser title bar.

The URL is the really important part, because you don’t want to change this later
on and risk losing your loyal readers. It’s the address that eager Web followers use
to find your blog. Blogger is surprisingly generous with URLs—unlike free Web

Figure 17-5:
In the first step, you
create your account.

Click here
if you have
a Google
account

514 Creating a Web Site: The Missing Manual

Getting Started with
Blogger

hosting providers, Blogger lets you use just about any URL, so long as it ends with
.blogspot.com. Although other bloggers have already taken some of the most obvi-
ous names, it’s still reasonably easy to create short-and-sweet blog names like http://
secretideas.blogspot.com or http://richwildman.blogspot.com.

If you want a customized domain name, you have two choices. You can use the
domain-forwarding technique described in Chapter 3 (page 62) to forward visi-
tors from a domain name of your choice to your blog’s actual URL. Or you can
use a more seamless but more complex approach, and tell Blogger you’ll host
your blog on another Web server (page 533).

Tip: Even though there’s nothing wrong with a .blogspot.com URL, there’s a good reason to get a
domain name of your own. No matter how much you love Blogger right now, someday you might move
on to a different service. It’s always easier to make this transition if you don’t need to tell all your readers
to update their bookmarks and head to a completely new Web address.

Just under the section where you choose your URL is an option that lets you use
advanced setup if you want to host your blog elsewhere. You don’t need to set
this up right now. You can choose ordinary hosting to start with, and then
change your settings if you move your blog to another server (as described on
page 534).

Figure 17-6:
In the second step, you
create the important
part—the blog itself. To
make sure you’re in the
clear, click Check
Availability to see if your
blog URL is available. (If
not, you need to try
again.) Fortunately, it’s
easier to find a catchy
Blogger URL (which
always ends with
.blogspot.com) than it is
to find a good Web site
URL.

http://secretideas.blogspot.com
http://secretideas.blogspot.com
http://richwildman.blogspot.com

Chapter 17: Blogs 515

Getting Started with
Blogger

6. Click Continue to move to the next step.

In this third step of the setup process, you choose a template for your blog (see
Figure 17-7).

7. Scroll down through the list of templates, and then select the one you want.

Click the “preview template” link to get a sneak peek at what your blog would
look like. Don’t worry too much about your decision right now—you can
choose a different template any time (page 525).

8. Click Continue to finalize your blog.

The page displays a “Creating your blog” message for a few seconds, followed
by a confirmation message.

9. Click Start Blogging to create your first blog post.

You can return to manage your blog any time by going to www.blogger.com
(page 519). For now, continue with the next step to create your first blog entry.

10. Enter the title for your entry, and then type the content of your post into the
large text box, which acts like a miniature word processor (see Figure 17-8).

Don’t worry about all the fancy frills in the editing window just yet—you’ll
learn about those in the next section.

Figure 17-7:
Blogger templates just
may qualify for coolest
feature of the year. You
choose one of the slick
presets, and Blogger
formats your posts with
the template’s color,
graphics, and layout.

http://www.blogger.com

516 Creating a Web Site: The Missing Manual

Getting Started with
Blogger

Note: A blog entry can be as long or as short as you want. Some people blog lengthy stories, while oth-
ers post one- or two-sentences that simply provide a link to an interesting news item (or, more com-
monly, to a post from another blogger).

11. Click the Post Options link at the bottom of the page to set a few more options.

You can categorize your post by filling in a word (or a list of words separated by
commas) in the “Labels for this post” box. When people run a search on your
blog, they can look for posts with specific labels. For best results, always use the
same labels to identify the same things. For example, every time you talk about
your pet hogs, add the label pig.

You can let people add comments to your blog post (choose Allow, the auto-
matic setting), or you can prevent them from doing so (choose “Don’t allow”).

You can set the post date and post time, which will appear at the bottom of
your post. Blogger fills these text boxes in automatically, but the time probably
isn’t correct right now because you haven’t set the time zone for your blog.
(You’ll learn how to do that on page 532.) For now, change the date by hand so
readers know when you created your entry.

Figure 17-8:
Blogger uses a tabbed
page layout organized
around three tasks—
posting, changing
settings, and modifying
your layout. When you
create a post, you use
the Posting tab, which
provides three links—one
for creating a new post,
one for editing an
existing one, and one for
reviewing comments if
you use moderation
(page 523).

The three
tabs

The Posting
tab has three

options

Chapter 17: Blogs 517

Getting Started with
Blogger

12. Click Publish Post to create your blog entry.

Blogger displays a confirmation message, informing you that it’s posted your
new entry online.

If, instead of publishing right away, you want to take some time to think over
your post, click Save Now. That way, Blogger saves the text you just entered,
and keeps it waiting for you the next time you return to your blog. (Page 520
explains how you can find an un-posted entry and edit it.)

Tip: Blogger automatically saves a draft of your post as you type, just in case you run into Internet trou-
bles (or you accidentally close the browser window). However, it only saves your entry every few minutes.
Clicking Save Now saves an updated draft immediately.

Now’s a great time to check out what your post looks like. Click the View Blog
link, or type your blog URL into a browser by hand. Figure 17-9 shows an exam-
ple of what you’ll see.

Creating Formatted Posts
So far, you’ve seen how to post text-only content in a blog. But Blogger’s pretty
flexible when it comes to customizing your blog. You can implement all sorts of
fancy design maneuvers, from highlighting text to inserting graphics. Best of all,

Figure 17-9:
This blog shows two
recent posts (placed in
reverse chronological
order, so the most recent
appears first). On the
right, a sidebar provides
sections of information
about the author and
other Web sites of
interest (neither of which
has been filled in yet),
along with links to recent
posts.

518 Creating a Web Site: The Missing Manual

Managing a Blog

Blogger lets you run rampant with the XHTML markup. You just need to know
your way around the editor.

To do some customizing, start a new post by clicking the Posting tab, and then
choosing Create. Type something in the Compose box in the middle of the page.
Next, select some text and try out some of the buttons in the toolbar to format
your post (see Figure 17-10).

This editor, called the visual composer, is designed to mimic a word processor.
However, if you’re itching for some XHTML action, click the Edit HTML link at
the top right of the edit window. Now you can add elements and other XHTML
goodies directly.

Managing a Blog
Once you create your blog, you can do exactly two things when any kind of blog-
related urge strikes:

• Read all your blog entries and review the comments left by other people. To do
this, go to your blog, using whatever URL you picked when you created it.

Figure 17-10:
The toolbar buttons in
Compose mode limit
you to a few basic
choices. You can change
your font, resize the text,
add bold or italic
formatting, create
simple lists, and add
pictures.

Choose from
a short list of

well-supported
Web fonts

(like Verdana)

Choose one
of five size

presets

Use bold
or italic

formatting

Change the
text color

Insert
a link

Choose one
of four

justification
options

Insert a
numbered
or bulleted

list

Indent the
text on all
sides as a

block quote

Spell check
your content

Upload a new
picture to Blogger

and insert an
 tag for it

Add a
video

Clear the
formatting

of the
selected text

Edit
XHTML
markup

Chapter 17: Blogs 519

Managing a Blog

• Add new posts and manage your blog. To do this, go to www.blogger.com and
sign in.

When you try out this second option, you’ll see a page called the Dashboard (see
Figure 17-11). This is the starting point for Blogger management. It lists all your
blogs (which, initially, includes just one), and provides a set of management links
under each blog.

Although the Dashboard is the starting point for blog management, as soon as you
get to work you’ll return to the multi-tabbed Blogger page you used when you cre-
ated your first post. This page is the core of the Blogger service—depending on the
tab you choose, you can do anything from adding and editing posts to changing
the way your blog works.

GEM IN THE ROUGH

Emailing a Blog Entry
To take advantage of all of Blogger’s features, it makes
sense to use the editor on the Blogger Web site. However,
if you find yourself on the go with only limited time to
spare, you might appreciate Blogger’s ability to accept
emails and turn them into posts automatically. It really
comes in handy if you want to email a post from a mobile
phone, or if you’ve got a sporadic Internet connection. In
the latter case, you can prepare a post in your email pro-
gram, and then connect to the Internet just long enough to
send in the posting.

To use Blogger’s email posting features, you first need to
turn them on. Click the Settings tab and choose “email.” In

the Mail-To-Blogger section, enter a secret word to use in
your email address, and then turn on the Publish checkbox.

The secret word prevents other people from sneaking their
posts onto your blog, because they won’t know the exact
address. For example, if your user name is lisajones and
your secret word is antelope12, you need to send a mes-
sage to lisajones.antelope12@blogger.com.

When you send an email, the subject line immediately
becomes the title of your blog entry, and the message text
becomes the body of the post. Blogger inserts the date
automatically, based on your time zone (page 523).

Figure 17-11:
When you log in to
Blogger, you start out in
a section called the
Dashboard, where you
see all your blogs and
how many posts they
have. Click the New Post
button to add a new blog
entry (Figure 17-9), or
click Edit Posts to review
earlier entries
(Figure 17-12).

lisajones.antelope12@blogger.com
http://www.blogger.com

520 Creating a Web Site: The Missing Manual

Managing a Blog

For example, if you click Edit Posts, you’ll end up back on Blogger’s multi-tabbed
management page, but with the Edit Posts tab selected (see Figure 17-12). This tab
lets you review and edit the posts you’ve published. It’s the perfect tool for correct-
ing a blunder—if you’re fast enough to catch it before anyone else does.

Tip: If you haven’t yet posted your blog entry, you’ll see it listed with the word “Draft” next to it. This
handy feature lets you pick up your blog posting where you left off.

The multi-tabbed management page consists of three tabs and one link:

• Posting. Use this tab to do one of four things: create a new post, edit an exist-
ing one, review the status of your last post, or republish your blog (so that
recent changes appear).

• Settings. This tab groups a dizzying number of options into several subgroups.
You can set everything from basic information about you and your blog to
options for managing reader comments and Web hosting.

Figure 17-12:
The Edit Posts page lets
you review what you’ve
written. You can sift
through the full list of
posts, search for specific
content (type something
in the Search box, and
then click Search), or
review just those posts
that have a specific label
(click the label in the
Labels box at the far
left), Once you find the
entry you want to
change, click Edit. Or, if
you have second
thoughts about
something you already
posted, click Delete to
remove the post
altogether.

There is one post with
the label “blogging.”
Click here to see it.

Edit this
post

See the full
post (in a

new window)

Delete this
post

Search for keywords
in a blog post

Chapter 17: Blogs 521

Managing a Blog

• Layout. This tab lets you rearrange the content on your page or choose a new
template. If you aren’t happy with your blog’s look and feel, come here to give
your blog an effortless makeover.

• View Blog. This link opens a separate browser window that calls up your blog.
After you make changes to your blog, use this link to take a look at the results.

Tweaking a Few Common Settings
To add a few more details to your blog, follow the steps below. You’ll add a
description, choose how many posts you want to display on your front page, and
set the time zone to make sure your posts get the right date stamp.

1. If you’re at the Dashboard, click the Settings link next to your blog. If you’re
already working in the multi-tabbed management page, click the Settings tab.

The Settings tab gives you eight options. Initially, Blogger displays the Basic section.

2. Add a description for your blog.

This description appears on your home page. Typically, you’ll find it just under
the blog title, although the exact spot depends on your template. Try to keep the
description to a sentence or two that hints at the flavor of your blog. Two good
descriptions are “The sober confessions of an unlicensed meat handler,” and
“An on-again, off-again look at my life and adventures.”

3. Scroll down, and then click Save Settings.

When you save your settings, your changes take effect immediately. But before
you check out your blog, there’s still more work to do.

4. Under the Settings tab, click the Archiving link.

Archiving is the process Blogger uses to group together old posts and shuffle
them out of sight. Every archive gets a link on your home page. For example, if
you have Blogger create monthly archives, it adds links like “January 2009,”
“February 2009,” and so on. If a visitor clicks one of these links, Blogger dis-
plays the posts from that period.

5. Set the Archive Frequency, and choose whether or not you want each post to
have its own page.

You can have Blogger archive your posts monthly, weekly, or daily. Casual blog-
gers usually find monthly the best choice. If you blog every day, you might split
posts into weekly groups, but you’ll end up cluttering your index page with a lot
of extra links (one for every week you’ve blogged).

The Enable Post Pages option determines whether or not each post gets its own
page. Usually, you want posts to have their own dedicated pages. That way, a
reader can blog in response to your posting, and provide the exact link to your
post to friends and other bloggers. You also need to use the Enable Post Pages
option if you want to support blog comments.

522 Creating a Web Site: The Missing Manual

Managing a Blog

Note: Even though each blog posting has its own page, Blogger still shows multiple entries on your
home and archive pages.

6. Click Save Settings.

You’re still not quite finished.

7. Click the Formatting link (under the Settings tab).

The Formatting options let you choose how many postings Blogger displays on
your home page and how it formats dates (see Figure 17-13).

8. Choose the number of posts you want to appear on your first page.

You can ask Blogger to show a specific number of posts or number of days. For
example, you could ask Blogger to show your last 14 days’ worth of posts, or
you could tell it to display just your three most recent posts, no matter when
you published them. For best results, don’t crowd your front page with too
many entries. If you post daily, stick to a small number of posts or just topics
from the current week.

Figure 17-13:
Here’s how you configure
your blog to show a
week’s worth of posts.

Chapter 17: Blogs 523

Managing a Blog

9. Set the date format you want to use, and specify your time zone.

Blogger dates every blog post at the beginning or end of your entry, depending
on your template. By setting the time zone, you won’t need to manually set the
date every time you create a post.

10. Click Save Settings.

Whenever you create a new post, Blogger saves your content letter for letter.
When you change the settings for your blog, and then click Save Settings, Blog-
ger doesn’t touch this saved content—instead, it changes your blog setup. This
way, when you visit your blog, you see the same entries but they reflect your
new options. To see the results, click View Blog.

Configuring Your Blogger Profile
Interested in customizing the information that appears beside your posts on the
home page? Blogger pulls this information from your user profile, and it’s easy to
customize it. Follow these steps:

1. Head to the Dashboard on Blogger’s main page.

If you’re in the tabbed view, click the Dashboard link at the top right-hand side
of the page. Otherwise, go to www.blogger.com and sign in.

2. Click the Edit Profile link (which appears next to the head-and-shoulders
silhouette).

Your profile page appears.

3. Edit your profile (see Figure 17-14). Pay special attention to the Display Name,
Photo URL, City, State, Country, and About Me sections.

The profile page lets you supply a range of information about yourself. Only
some of these details will appear on your blog home page. The most important
include your name (Display Name), an optional photo (Photo URL), your loca-
tion (City, State, and Country), and the descriptive text in the About Me box.

4. Once you enter all the profile information you want to supply, click Save Profile.

Head back to Blogger’s main page (click Dashboard) and click View Blog to see
the results of your changes. Figure 17-15 shows an example.

Templates
Templates are keenly important in Blogger. They not only reflect your blog’s visual
style (irreverent, serious, technical, breezy, and so on), they also determine its
ingredients and how those ingredients appear on the page. Fortunately, Blogger
lets you change many of your template’s components. For example, you can move
the About Me box to a new position, modify its appearance, or remove it entirely.

http://www.blogger.com

524 Creating a Web Site: The Missing Manual

Managing a Blog

You can also add new sections, like a set of links that point to your favorite fellow
bloggers, or a sidebar of targeted Google ads (page 528). You can even get more
radical and replace your template entirely, even if you’ve been posting for years.
Blogger retrofits all your old posts to the new template, so your thoughts, both old
and new, remain available for eager readers.

To take control of these details, use the Layout tab.

Figure 17-14:
The About Me section is
one of the most
important parts of your
profile, because it
appears prominently on
your blog home page.
Other sections, like
Interests, Occupation,
and Favorite Movies,
don’t show up on your
home page, but readers
can find them by clicking
the View My Complete
Profile link at the bottom
of the About Me box.

Figure 17-15:
Here’s a fine-tuned blog
home page that shows a
custom description and
About Me text.Title

Description

Recent posts
in reverse

chronological
order

Photo
URL

Display
Name

City,
State,
and
Country

About
Me

Chapter 17: Blogs 525

Managing a Blog

Applying a new template

When you first create a blog, you choose a template. Over time (or even right
away), you may decide that the template no longer suits your content. If that hap-
pens, follow these steps to pick something different:

1. If you’re at the Dashboard, click the Layout link under your blog name. If
you’re already working in the multi-tabbed management page, click the Lay-
out tab.

The Layout tab lets you either modify your existing template or switch to a new
one.

2. Under the Layout tab, click Choose New Template.

This page displays the same set of templates you saw when you created your
blog (page 515). Look through the thumbnails, and then click “preview tem-
plate” to take a closer look when you find a promising candidate. When you do,
Blogger displays a full-screen rendering of your blog, current content and all, in
the new template. When you’re satisfied, click the Save Template button.

When you select a template, you may see a warning message informing you that
any customization you made to the current template will be lost. Since you
haven’t invested any effort in changing your template yet (a process described
in the next section), you can safely ignore this message.

3. Click View Blog to take a look at your changes (see Figure 17-16 for an example).

Blogger confirms the template save and offers a “View Blog” link. Click it to
open a new window with your blog outfitted in its new clothes. If you don’t like
what you see, head back to step 1, and then pick a new template.

GEM IN THE ROUGH

Team Blogs
Having trouble keeping your blog up to date? If you want to
be part of the blogosphere but just can’t manage to update
more than once a month, consider sharing the effort with
some friends. Look for a natural reason to band together—
for example, colleagues often create blogs to discuss spe-
cific work projects, and families create them to keep in
touch.

Creating a team blog in Blogger is easy. You take your ordi-
nary blog, choose the Settings tab, click Permissions, and
then click the Add Authors button to add fellow bloggers.

You need to supply just one piece of information—the email
address of the blogger you want to enlist. Blogger sends an
email invitation to each potential blogger. To accept the
invitation, the recipient clicks a link in the email message
(and creates a Gmail account, if the blogger-to-be doesn’t
have one).

All bloggers have the ability to post entries. Additionally,
you can give some bloggers administrator status, which
means they can add more bloggers (and delete existing
ones).

526 Creating a Web Site: The Missing Manual

Managing a Blog

Customizing your template

Replacing your template altogether may seem like a drastic move. If you have a
template that’s almost right, you can tweak it to perfection by changing its fonts,
colors, and layout. Here’s how:

1. If you’re at the Dashboard, click the Layout link next to your blog. If you’re
already working in the multi-tabbed management page, click the Layout tab.

2. Under the Layout tab, click Fonts and Colors.

Blogger gives you an exceedingly easy way to adjust every font and color in your
template. Start by picking the detail you want to change using Blogger’s scroll-
ing list (Text Color, Blog Title Color, Sidebar Title Font, and so on). Then make
your adjustments.

Figure 17-16:
Ready for a change?
Compare this example
with Figure 17-15 to see
how a new template
changes everything.

Chapter 17: Blogs 527

Managing a Blog

3. Customize to your heart’s content.

If you want to customize a color, you can use one of Blogger’s three color pal-
ettes. The first displays the colors your blog already uses, the second palette
shows complimentary colors, and the third offers a group of standard colors. If
you can’t find a suitable color in any of these palettes, specify a custom color by
typing in a color code (page 151).

To change your text, Blogger has six standard Web fonts (Arial, Georgia, Tre-
buchet, Courier, Times, and Verdana, all of which are shown on page 158), and
lets you either shrink or enlarge your text size. Best of all, Blogger previews all
these changes as you make them (Figure 17-17).

4. When you finish, click Save Changes.

This stores your color and font selections.

5. Click Page Elements (under the Layout tab).

Page Elements is a powerful blog-editing feature that lets you choose what con-
tent blocks your blog displays and where it displays them on the page. Blogger
calls these content blocks gadgets. To help you move, add, and remove gadgets,
Blogger displays an outline of your blog’s current structure and shows you the
location of your gadgets (Figure 17-18).

Figure 17-17:
This blog is getting a new
title color. You can select
from the small clickable
color boxes or specify a
color using the color
code text box at the
right. Particularly
interesting (and odd) is
the “Shuffle blog colors”
link, which keeps the
same set of colors (and
thus the same color
scheme), but rearranges
them randomly, so
Blogger applies the
colors to different page
components.

Pick the
part you
want to
colorize

Click a color box
to apply a new color

Type in a color code to
get exactly what you want

528 Creating a Web Site: The Missing Manual

Managing a Blog

6. Add, change, move, or remove the gadgets on your blog.

Initially, your page displays whatever content blocks your template defines.
However, you have plenty of options to mix things up:

To move a gadget, simply drag it to a new place (Figure 17-18).

To add a new gadget, click one of the Add a Gadget links in the Page Elements
preview. You see a pop-up list with Blogger’s wide choice of handy gadgets.
Some are plain—blocks of ordinary text, lists, pictures, and links, for example.
But others are much more interesting, like Blog List, a catalog of blogs you fol-
low or admire; AdSense, which displays the money-making Google ads you
learned about on page 363; and Poll, which lets you survey your readers and
tally their votes. Once you find a gadget you like, click the plus (+) button to
pop it into your page, and then drag it to any spot you want (Figure 17-19).

To change a gadget’s settings, click the Edit link in the gadget box. Your edit
options depend on the gadget. For example, the Blog Archive gadget displays a
calendar of previous blog entries. You can change the order of the entries, the
way Blogger groups the posts, or the way it formats the dates. If you edit the
Blog List gadget, you can supply the list of blogs you want to link to.

To remove a gadget, click the Edit link, and then click Remove. One detail you
can’t remove is the NavBar, the thin strip that appears at the top of your blog.

Figure 17-18:
You can drag any gadget
to one of the carved-out
regions of a page. Your
possibilities depend on
the template, but you’ll
usually be able to choose
from a left or right
sidebar, a top header
region, and a bottom
footer region. Here, the
About Me section is being
relocated to a more
prominent place.

Chapter 17: Blogs 529

Managing a Blog

Visitors who view your blog can use the NavBar to travel from one blog to
another, sign up for their own blog, or (most usefully) search your blog for key-
words. The good news is that, although you can’t remove the NavBar, you can
assign it a color so that it matches your template and blends in with the scenery.

Note: If you really, really want to remove the NavBar, you have two choices. You can host your blog on
your own Web site (page 533), in which case the NavBar isn’t required. Or, you can use a bit of style sheet
trickery to hide it. For more information about this workaround, search for “hide blogger navbar” on Google.

7. When you finish adding and arranging gadgets, click Save.

Alternatively, you can click Preview to see what your blog will look like when
you commit the changes, or click Clear Edits to abandon your changes and go
back to the way things were.

Customizing the XHTML in a template

The tools you’ve used so far give you a lot of control over your blog’s appearance.
But there’s one more frontier for die-hard bloggers who want unrestricted control
over their pages—your template’s XHTML markup. Using the skills you learned
throughout this book, you can change virtually anything there.

Figure 17-19:
In this example, the blog has two
new gadgets: a list of links and an
ad box.

530 Creating a Web Site: The Missing Manual

Managing a Blog

This is obviously more work than using the editing controls in Fonts and Colors
and Page Elements. So why take this extra step? There are a few good reasons:

• You want to use an entirely new template. Blogger includes only a small set of
templates for you to choose from. You can find more online (use a search
engine like Google, and search for “blogger template”). But before you down-
load a template, read the box on page 531 to understand the difference between
classic templates and dynamic templates.

• You want to use advanced CSS formatting. Blogger doesn’t give you much
design control beyond fonts and colors. If you want to throw something else
into the mix—tweaking margins and padding, for example, or adding borders
or setting background pictures—you need to dig into the template and modify
its style sheet.

• You want no-holds-barred customization. Adding gadgets is a powerful sys-
tem, but it doesn’t give you the complete, fine-grained control that editing the
XHTML does. Of course, sometimes too much control makes life unnecessarily
complicated.

Blogger’s templates are really just XHTML documents that define your blog pages.
At first glance, this seems a little unusual—after all, a modest blog has dozens of
pages, and you have only a relatively simple template! The trick is that the tem-
plate defines special replaceable regions. When a visitor requests a page in your
blog, Blogger starts with your template and fills in the appropriate content wher-
ever it finds special codes.

For example, if Blogger finds this odd-looking code:

<title><data:blog.pageTitle /></title>

It replaces the highlighted element with your blog’s title. The final XHTML file it
creates for your home page actually contains this text:

<title>A Cheese Maker's Story</title>

To change the XHTML in your template, follow these steps:

1. If you’re at the Dashboard, click the Layout link next to your blog. If you’re
already working in the multi-tabbed management page, click the Layout tab.

2. Click Edit HTML.

You see a text box with the full XHTML for your template, codes and all. You
can change some details right away, like the formatting rules in the inline style
sheet. But if you want to add new content or rearrange the page, you need to
understand Blogger’s template codes. You can get that information at http://
help.blogger.com/bin/answer.py?answer=46870.

http://help.blogger.com/bin/answer.py?answer=46870
http://help.blogger.com/bin/answer.py?answer=46870
http://help.blogger.com/bin/answer.py?answer=46870

Chapter 17: Blogs 531

Managing a Blog

Tip: Once you perfect your template, it’s a good idea to back it up before you make any more changes.
Otherwise, you could muck it up and have no way to get back to the right version. To make a backup,
head to the “Backup / Restore Template” section, click the Download Full Template link, and then pick a
place to save it on your computer. To restore a template, click Browse to find it on your computer, and
then click Upload to transfer it to Blogger.

3. When you finish making your changes, click Save Template.

Blogger updates your blog to use the new template immediately.

Moderating Comments
Ordinarily, Blogger lets visitors leave comments on your blog. That means your
readers can post their own thoughts and follow-ups, and Blogger displays them
along with your posts.

To leave a comment, readers have to have a Google account or an OpenID account
(which is a standard that many blogging services and Web sites support). Blogger
imposes this restriction to reduce comment spam—distracting comments, usually
posted by automated programs, that advertise the spammer’s products. Despite
Blogger’s best efforts, this restriction often isn’t enough. If you’re unlucky, you
might find your blog entries swamped by offensive or annoying messages.

If that happens, you have a few options. You can turn off comments altogether,
but that breaks the back-and-forth interaction that characterizes the blogosphere.
You can delete objectionable comments, which is pretty easy—each comment has
a trash can next to it, and a simple click banishes unwanted posts. The only prob-
lem with this approach is that you have to log on regularly to check for comment
spam, and your edits take place after the fact. If you don’t have the time to keep

UP TO SPEED

Classic Templates
Most of the Blogger templates available on the Web are
classic templates. Classic templates use an older template
system than dynamic templates, and a completely different
set of codes. They lack support for the layout features
described in the previous section, which means you can’t
add or rearrange gadgets. Instead, the only way to change
the content in a classic template is to edit the template
XHTML by hand.

That said, classic templates work perfectly well, and there
are many beautifully designed classic templates to choose
from on the Web. Classic templates are also required if you
plan to use the self-hosting option described on page 533.

If you want to use a classic template, you have to click the
“Revert to Classic Template” link at the bottom of the Edit
HTML page. Only then can you copy the template into the
text box. If you click Save Template and you get a cryptic
error about misbehaving XHTML, you’re probably using a
classic template but haven’t yet clicked the “Revert to Clas-
sic Template” link.

Incidentally, you can easily get back to a dynamic template
if you decide you need the layout features. To do so, click
the Template tab, then the Customize Design link under-
neath, and then the Upgrade Your Template button. Finally,
pick a new template, and then click Save Template.

532 Creating a Web Site: The Missing Manual

Managing a Blog

checking your blog, or you’re dealing with a controversial issue and you want to
make sure no one gets a chance to post inflammatory remarks for even a brief
period of time, you need a different approach.

Your third option is to moderate the comments, only allowing them on your blog
after you’ve given them your personal thumbs up. Moderating comments imposes
extra work, but in some situations it’s the only way to lock out undesirable com-
ments—particularly if you have a popular blog on a hot topic. Here’s how you
moderate comments:

1. If you’re at the Dashboard, click the Settings link next to your blog. If you’re
already working in the multi-tabbed management page, click the Settings tab.

2. Click Comments (under the Settings tab).

Blogger gives you a surprisingly thorough set of options to control how com-
ments work. For example, you can control whether anonymous readers can
post comments (ordinarily, they can’t), or you can switch off comments
entirely. But right now, the most interesting option is the one that controls
moderation.

Tip: Regardless of whether you allow anonymous readers and whether you use comment moderation,
you should always keep the “Show word verification” option switched on. This forces readers to copy a
word out of a picture before they can post their comments. Annoying as it sometimes is, this technique
cripples automated comment-posting software that leaves the worst comment spam.

3. Change the “Comment moderation” setting from Never to Always or “Only on
posts older than 14 days.”

The “Only on posts older than 14 days” option is an interesting compromise. It
lets readers post comments when your blog entry is new, which is when most
comments come in, but it switches to moderated comments after a certain
number of days. This model works well because spammers are far more likely to
comment on old postings than your readers are. Although Blogger suggests a
timeframe of 14 days, you can reduce that number to fight comment spam
more aggressively, or increase it to give your readers more time to speak their
mind without hassle.

Optionally, supply your email address so Blogger can notify you when someone
posts a comment. However, this step isn’t necessary, because you can moderate
comments from Blogger’s Posting tab.

4. Click Save Settings to store your new comment settings.

Now you’re ready to try the system out. First, log out of Blogger. To test the
moderating system, sign back in with a different Google account or as an anon-
ymous visitor (if your blog lets anonymous readers leave comments). You could
leave a comment while you’re logged in as the blog owner, but in this case Blog-
ger assumes you don’t need to second-guess yourself, and it skips the modera-
tion step altogether.

Chapter 17: Blogs 533

Managing a Blog

5. Post a new comment.

To leave a comment, click the comment link at the end of a blog entry. Add a
comment and your ID information, if required, and then click Publish Your
Comment to make it official. Blogger is smart enough to know that the blog
uses moderation, so it displays a message explaining that the comment won’t
appear until the blog’s owner (that’s you) approves it.

6. Review your comments.

To look at new comments, log in as the blog owner again, click the Posting tab,
and then the Moderate Comments link underneath. You’ll see the comments
that await your approval (Figure 17-20).

Hosting Your Blog on Your Web Site
In the past, cutting-edge bloggers often chose to host their own blogs because ser-
vices like Blogger were unreliable—all too often, blog messages would disappear or
blog tools would temporarily become unresponsive. Fortunately, Blogger has
evolved into a remarkably reliable host. Even so, you still might want to host a blog
on your own Web site for different reasons. One of the most obvious is because
you already have a domain, and you want to use it for your blog. For example, if
you have the site www.CheeseMaker.com, you could put your blog at www.
CheeseMaker.com/blog.

Hosting your own blog doesn’t mean foregoing Blogger’s cool tools, however. You
can still use the Blogger service to create your blog’s XHTML pages. But instead of
saving those pages to Blogger’s Web servers, you’ll get Blogger to upload them
directly to your site.

Figure 17-20:
This blog has just a single
unreviewed comment.
Click Publish to allow it
into the blog alongside
the relevant post, or
Reject to toss it out. If you
want to approve or reject
multiple comments at
once, just tick the
checkbox next to each
one, and then click
Publish or Reject.

http://www.CheeseMaker.com/blog
http://www.CheeseMaker.com/blog

534 Creating a Web Site: The Missing Manual

Managing a Blog

To set this up, you need a few pieces of information at your fingertips, including
the FTP address for your Web site’s host, and the user name and password you use
to log in to the FTP server. You then need to provide this information to Blogger.
That way, every time you add a post, Blogger will connect to your Web host’s FTP
server and transmit the newly generated files to your Web site.

Here’s how you set this up:

1. Switch to a classic template.

Before you can configure your blog to use your own site, you need to switch to
a classic template (page 531). That’s because dynamic templates work in con-
cert with specialized software that runs on Blogger’s servers. Your Web server
doesn’t have the same software, so it can’t use dynamic templates.

To revert to a classic template, click the Layout tab, click Edit HTML, and then
click “Revert to Classic Template”.

2. Click the Settings tab. Then click the Publishing link under the Settings tab.

The first line on this page tells you who’s hosting your blog. You’ll see the line
“You’re publishing on blogspot.com” unless you already followed these steps to
switch hosts.

3. Next to the “Switch to” heading, click either FTP or SFTP, depending on the
type of publishing system you use with your Web hosting provider.

Most hosts use FTP servers; SFTP servers encrypt your password when they
connect to other servers.

4. Enter all the information about your FTP server.

FTP Server is the URL for your server (like ftp.website.com).

Blog URL is the address on your Web domain where you can view your blog
(like http://www.website.com/blog).

FTP Path is the subfolder of your Web site where you store your blog. Usually,
you don’t want the blog in the root (main) folder, because that’s where your
Web site goes. Instead, you can use a path like blog/ to tell Blogger to drop files
in a blog subfolder. Make sure you include the trailing forward slash character.

Blog Filename is the file name you want Blogger to use when it creates your
blog home page. For example, you might use index.html. Don’t use the name of
a page that already exists or Blogger will overwrite it when it transfers your blog.

FTP Username and FTP Password make up the user information you supply to
connect to the FTP server. You can leave these values blank, in which case you’ll
have to supply them every time you publish your blog.

5. Click Save Settings to abandon your blogspot.com-based blog and switch over
to your own server.

From this point on, any time you publish your blog, Blogger will connect to
your FTP server and transfer all your blog files.

http://www.website.com/blog

Chapter 17: Blogs 535

Managing a Blog

6. Republish your blog.

Whenever you make sweeping changes to your blog (for example, when you
modify your template), it’s up to you to make sure Blogger updates and copies
all your pages to your Web server. To do so, click the Posting tab, click the Sta-
tus link just underneath it, and then click the Republish Entire Blog button.

GEM IN THE ROUGH

Promoting Your Blog
You need to promote your blog just as you do any other
Web site. Although you can use all the techniques you
learned in Chapter 11, there are some others unique to the
blogosphere. Here are some important tips to get you
started:

• Add a blogroll to your site. A blogroll is really just
a set of links that lead to blogs you like. But blog-
rolls also make a statement. They say, “these are the
people I like” or “this is the crowd I want to be asso-
ciated with.” In other words, blogrolls represent
social networking at its best. The easiest way to cre-
ate one is to use the Blog List gadget described on
page 528.

• Participate with others. Bloggers are an open-
minded bunch. If you leave an insightful comment
in response to someone else’s blog entry, odds are
good that at least some readers will head over to
your blog to see what else you have to say. If you let
them comment on your posts, they’re even more
likely to come back for more.

• Use the Email This Post feature. You need to cap-
italize on the enthusiasm of your visitors. If you blog
about a truly fascinating piece of gossip or news,
readers might just decide to tell all their friends
about it—if you make it easy enough. To encourage
this impulse, add a link that lets readers email your
posts. Choose the Settings tab, click the Basic link,
and then set “Show Email Post links” to Yes.

• Make sure you’re in Blogger’s listings. You’re
probably already there, but it’s a good idea to double-
check. Choose the Settings tab, click the Basic section,

and then make sure “Add your blog to our listings”
and “Let search engines find your blog” are both set
to Yes. If not, you’re hiding from the world.

• Promote your feed. Feeds, discussed on page 508,
work with feed readers. True blog aficionados love
them because they can track dozens or even hun-
dreds of blogs at a time. Blogger’s software lets you
create a feed, and it’s worth promoting your feed to
your regular readers. To see your feed, click the
“Subscribe to Posts (Atom)” link on your blog home-
page. Or, if you don’t see the link or you’ve
removed it from your template, tack /feeds/posts/
default onto the end of your blog URL. For exam-
ple, if your blog is http://cheesemakerstory.blogspot.
com, odds are you’ll find the feed at http://cheese-
makerstory.blogspot.com/feeds/posts/default.

• Use BlogThis. A huge number of blog postings sim-
ply call attention to interesting news stories, scandal-
ous gossip, or funny pictures that appear online. If
you’re an infrequent blogger, referencing these sto-
ries is a great way to beef up your blog. Using a nifty
tool called BlogThis, you can create a new blog entry
that links to an existing Web page with a single click.
There are two ways to use BlogThis—you can use the
Google Toolbar for Internet Explorer or Firefox,
which has a button for just this purpose, or you
can add a link to your Bookmark or Favorites menu
that does the same thing. For the full details, check
out http://help.blogger.com/bin/answer.py?hl=en&
answer=41469.

http://cheesemakerstory.blogspot.com/feeds/posts/
http://cheesemakerstory.blogspot.com/feeds/posts/
http://help.blogger.com/bin/answer.py?hl=en&answer=41469
http://help.blogger.com/bin/answer.py?hl=en&answer=41469

6
VI.Part Six:
Appendixes

Appendix A: XHTML Quick Reference

Appendix B: Useful Web Sites

539

Appendix Aappendix

a

XHTML Quick
Reference

XHTML is the modern language of the Web. You can use it to create any Web
page, whether you’re promoting a local bake sale or running a Fortune 500 com-
pany. Chapter 2 introduced XHTML in detail, and since that point you’ve steadily
added to your arsenal of XHTML elements.

This appendix provides a quick reference of all the XHTML elements you’ve seen
in this book (and a few more). Each entry features a brief description of what the
element does, and many entries provide cross-references to more detailed exam-
ples in the book. You’ll also get a quick refresher of XHTML character entities,
which let you display special characters on a Web page.

XHTML Elements
As you already know, the essential idea behind the XHTML standard is elements—
specialized codes in angle brackets that tell a browser how to format text, when to
insert images, and how to link different documents together. Throughout this
book, you’ve examined just about every important XHTML element in use today.
The elements in this reference are arranged in alphabetical order. At the beginning
of each section are two key details about the element:

• Block or inline. You can put a block element directly in the <body> of a Web
page. You can’t do that with an inline element—you need to put it inside
another block element. Some elements are even more restricted, and make
sense only in certain types of containers. For example, the <area> element,
which defines an image-map hotspot, is restricted to the <map> element that
defines an image map (page 552).

540 Creating a Web Site: The Missing Manual

XHTML Elements

• Container or standalone. A container element can hold text or other elements
inside it. A standalone element has to remain empty, so you usually write it as
one tag with the empty element syntax (page 33).

This reference also includes a few elements that are limited to XHTML 1.0 transi-
tional (page 30). When that’s the case, you’ll see a special message in italics that
alerts you to this restriction.

<a> (Anchor Element)
Inline Element, Container Element

The anchor element (<a>) has two roles. The most common is to create a link
that, when you click it, takes you from one page to another. To insert this type of
link, you supply the destination URL using the href attribute and put the clickable
link text between the opening and closing tags:

Click Me

When setting the href attribute, you can use a relative URL, which points to a page
on your own Web site, or an absolute URL, which starts with http:// and can point
to any page on the Web. For a review of the differences between relative and abso-
lute links and when to use each, see page 210.

Creating clickable image links is just as easy as creating clickable text links. The
trick is to put an element inside an <a> element, like this:

Finally, you can create a link that, instead of sending a visitor to a new page, pops
up an email message with the address information filled in. You do this by creat-
ing a mailto link, as shown here:

Email Me

For more information about the ins and outs of the mailto link, see page 337.

You can also apply the target attribute to an anchor, which instructs a browser to
open the destination page in a specific frame, or in a new window. Only XHTML
1.0 transitional allows this attribute.

Click Me

You can learn about this technique on page 274.

The anchor element also lets you create a bookmark in a specific spot on a Web
page. Once you create a bookmark, you can create a link that takes visitors straight
to that spot.

To create a bookmark, you use the <a> anchor element, but with a difference. You
don’t supply the href attribute, because the anchor doesn’t lead anywhere. You
don’t put any text inside the anchor, either, because it’s not clickable. Instead, all

Appendix A: XHTML Quick Reference 541

XHTML Elements

you supply is a name attribute that gives your bookmark a descriptive name.
Here’s an example:

Pet Canaries

Once you create a bookmark, you can write a URL that points to that bookmark.
The trick is that you need to add the bookmark information to the end of the URL.
To do this, add the number sign symbol (#) followed by the bookmark name, as
shown here:

Learn about recent developments in canary

sales.

You can learn more about bookmarks and ordinary links in Chapter 8.

<acronym>
Inline Element, Container Element

The acronym element displays the full version of an abbreviation. For example,
wouldn’t your visitors like to know that the hipster slang AFAIK stands for “as far
as I know”? You can tell them using this markup:

<acronym title="As Far As I Know">AFAIK</acronym>

On your Web page, the information in the title attribute doesn’t appear right away.
But it’s available for automated programs that scan Web pages and, more interest-
ingly, many Web browsers (including Internet Explorer and Firefox) show the full
title text in a pop-up text box if you hover over the acronym.

If you use the <acronym> element, consider applying some style sheet formatting
to make sure your acronym looks different from the rest of your body text (per-
haps with a different background color). That way, a visitor will know there’s some
extra information waiting to be uncovered with a mouseover.

<address>
Block Element, Container Element

The address element is an occasionally used element that identifies contact infor-
mation (like a Web or postal address). Here’s an example:

<address>If you have any questions about the content of this site,

 phone our offices at 555-5555.

</address>

Most browsers format addresses in italics, just as though you had used the <i>
element. The only value in using the <address> element is that it lets automated
programs that scan Web pages extract useful address information.

542 Creating a Web Site: The Missing Manual

XHTML Elements

<area> (Image Map)
Only Allowed in <map>, Standalone Element

The area element defines a clickable region (known as a hotspot) inside an image
map (which you generate with the <map> element; see page 552). When defining
an area, you need to supply the target URL (using the href attribute), the type of
shape (using the shape attribute), and the coordinates of that shape (using the
coords attribute). For shape, you can specify a circle, square, or polygon.

For a circle, you specify the coordinates in this order: center point (x-coordinate),
center point (y-coordinate), radius. For any other shape, you supply the corners in
order as a series of x-y coordinates, like this: x1, y1, x2, y2, and so on. Here’s an
example that creates a square-shaped hotspot:

<area href="page1.htm" shape="square" coords="5,5,95,195" alt="A clickable

square" />

The square is invisible. If you click anywhere inside this square, you’ll go to page1.
htm. For more information, see the <map> element on page 552. For a full-fledged
image map example, see page 218.

 (Bold Text)
Inline Element, Container Element

The bold text element displays text in boldface. XHTML experts suggest using
 instead of , because more clearly indicates the relative
importance of your text, rather than giving a strictly typographic instruction about
how to format it. However, the element is still more common.

Here is some bold text.

You can get much more control over every aspect of formatting using style sheet
rules (see Chapter 6).

<base> (Base URL)
Only Allowed in <head>, Standalone Element

The base element defines a document’s base URL, which is a Web address used to
interpret all relative paths. You have to place the <base> element in the <head>
section of a page, and you can use two attributes—href (which supplies the base
URL) and target (which supplies a target frame for links).

For example, if you have a link that points to a file named MySuperSunday.htm
and the base URL is http://www.SundaysForever.com/Current, the browser inter-
prets the link as http://www.SundaysForever.com/Current/MySuperSunday.htm.

Appendix A: XHTML Quick Reference 543

XHTML Elements

Web-heads rarely use the base URL this way because it almost always makes more
sense for the browser to use the current page as a starting point for all relative
URLs. In other words, if you’re looking at http://www.SundaysForever.com/
Current/Intro.htm, the browser already knows that the base URL is http://www.
SundaysForever.com/Current. For more information about the difference between
absolute and relative links, see page 208.

The <base> element does have one useful purpose—you can use it to set the target
frame used for all links on a page (unless otherwise indicated). Here’s an example:

<base target="Main" />

You can only use the target attribute in XHTML 1.0 transitional. You can learn
much more about frames in Chapter 10.

<big> (Large Text)
Inline Element, Container Element

The <big> element steps the text size up a notch to create larger text. The <big> ele-
ment is out of vogue, and you’re better off using style sheets to control text formatting.

<blockquote> (Block Quotation)
Block Element, Container Element

The <blockquote> element identifies a long quotation (which stands on its own,
separate from other paragraphs) as a block element:

<blockquote><p>It was the best of times, it was the worst of times.</p>

</blockquote>

Usually, browsers indent the <blockquote> element on the left and right side.
However, you shouldn’t use the <blockquote> for formatting alone. Instead, use
the <blockquote> element where it makes sense—to highlight a passage quoted
from a book. As with any element, you can use a style sheet rule to change the way
the browser formats <blockquote> text.

If you want to put a brief quotation inside a block element (like a paragraph), use
the <q> element instead (see below).

<body> (Document Body)
Only Allowed in <html>, Container Element

The <body> element is a basic part of the structure of any XHTML document.
You put it immediately after the <head> section ends, and it contains all the con-
tent of your Web page, including its text, image URLs, tables, and links.

544 Creating a Web Site: The Missing Manual

XHTML Elements

 (Line Break)
Inline Element, Standalone Element

The line break element (
) is an inline element that forces the text following
it onto a new line, with no extra spacing. For example, you can use the
 ele-
ment to split address information in a paragraph:

<p>Johny The Fever

200 Easy Street

Akimbo, Madagascar</p>

<button> (Button)
Inline Element, Container Element

The <button> element lets you create a clickable button within a form, with any con-
tent you want inside of it (for example, you can put a phrase or an image between the
<button> element’s start and end tags). As with any other form control, you need to
supply a unique name and a value that the form will submit when a visitor clicks the
button. You put the button content between the opening and closing tags:

<button name="submit" value="order" type="button">Place Order</button>

You can create three types of button, depending on the value you choose for the
type attribute. A value of button creates an ordinary button with no built-in smarts
(add JavaScript code to make it do something). A reset button clears the input con-
trols in a form, and a submit button sends the form data back to the Web server,
which is useful if you create a Web application that runs on a Web server.

The <button> element is more powerful than the <input> element for creating
buttons, because it puts whatever content you want on the face of a button, includ-
ing images.

<button name="submit" value="order" type="button">

</button>

<caption> (Table Caption)
Only Allowed in <table>, Container Element

The <caption> element defines the title text for a table. If you use it, you have to
make it the first element in a <table> element:

<table>

 <caption>Least Popular Vacation Destinations</caption>

 ...

</table>

XHTML applies no automatic formatting to the caption—it simply positions it at
the top of a table as ordinary text (and wraps it to fit the width of the table). You
can apply whatever formatting you want through style sheet rules.

Appendix A: XHTML Quick Reference 545

XHTML Elements

<cite> (Citation)
Inline Element, Container Element

The <cite> element identifies a citation, which is a reference to a book, print arti-
cle, or other published resource.

<p>Charles Dickens wrote <cite>A Tale of Two Cities</cite>.</p>

Usually, browsers render the <cite> element as italic text. But you shouldn’t use
the <cite> element for formatting alone. Instead, use it when it makes sense (for
example, when you refer to a published work you quote) and add style sheet rules
that apply the specific formatting you want.

<dd> (Dictionary Description)
Only Allowed in <dl>, Container Element

The <dd> element identifies the description in a dictionary list. For more informa-
tion, see the simple example under the <dl> element description below, or refer to
page 127.

 (Deleted Text)
Block Element or Inline Element, Container Element

The element is rarely used and identifies text that was present but has now
been removed. Browsers that support this element display crossed-out text to rep-
resent the deleted material. Another element Web-heads sometimes use to indicate a
revision trail is <ins>.

<dfn> (Defined Term)
Inline Element, Container Element

The <dfn> element is rarely used and indicates the defining instance of a term. For
example, the first time you learn about a new term in this book, like froopy, it’s
italicized. That’s because it’s the defining instance, and a definition usually fol-
lows. Browsers render the <dfn> element in italics.

<div> (Generic Block Container)
Block Element, Container Element

The division element groups together one or more block elements. For example,
you could group together several paragraphs, a paragraph and a heading, and so
on. Here’s an example:

<div>

 <p>...</p>

 <p>...</p>

</div>

546 Creating a Web Site: The Missing Manual

XHTML Elements

On its own, the <div> element doesn’t do anything. However, it’s a powerful way
to apply style sheet formatting. In the example above, you can apply formatting to
the <div> element and the browser passes that formatting along to the two nested
paragraphs (assuming the style properties you’re using support inheritance, as
described on page 148).

To learn more about how to use the <div> element to apply style rules, see page
175. You should also refer to the element (page 123), which applies for-
matting inside a block element.

<dl> (Dictionary List)
Block Element, Container Element

The <dl> element defines a definition list (also known as a dictionary list), which
is a series of terms, each one followed by a definition in an indented block of text
that appears immediately below it. In theory, you could put any type of content in
a dictionary list, but it’s recommended that you follow its intended use and include
a list of points and explanations. Here’s an example:

<dl>

 <dt>tasseomancy</dt>

 <dd>Divination by reading tea leaves.</dd>

 <dt>tyromancy</dt>

 <dd>Divination by studying how cheese curds form during cheese making.</dd>

</dl>

<dt> (Dictionary Term)
Only Allowed in <dl>, Container Element

The <dt> element identifies the term in a dictionary list. For more information,
see the simple example under the <dl> element description above, or refer to page
127.

 (Emphasis)
Inline Element, Container Element

The element has the same effect as the <i> (italic text) element, but many
XHTML experts prefer it because it indicates the relative importance of your text,
not just the way your browser should format it. After all, you might use style sheet
rules to change the formatting of this element to emphasize its content in a way
that doesn’t use italic formatting, like coloring text red.

<form> (Interactive Form)
Block Element, Container Element

The <form> element creates an interactive form, where you can put graphical wid-
gets like text boxes, checkboxes, selectable lists, and so on (represented by the

Appendix A: XHTML Quick Reference 547

XHTML Elements

<input>, <textarea>, <button>, and <select> elements, respectively). By putting
these widgets in a <form> element, you can create pages that collect information
from visitors and submit this information to a Web application. Web applications
are outside the scope of this book, but you can learn how to create a basic form
that emails you the relevant information in Chapter 12.

<frame> (Frame)
Only Allowed in <frameset>, Standalone Element

This element is restricted to frameset documents.

The <frame> element defines a frame—a rectangular subset of a browser win-
dow—inside a <frameset> element. Each frame can display a different Web page.
When defining a frame, you can supply a frame name with the name attribute
(which you use to identify the frame in your links) and the page that your browser
should display with the src attribute.

<frame name="Menu" src="menu.htm" />

You can also create a fixed, non-resizable frame by adding the noresize="noresize"
attribute to the frame element. You can hide the border between frames by adding
the frameborder="0" attribute, and you can prevent scrolling the frame by adding
scrolling="no".

For much more information about frames and how to use them, refer to
Chapter 10.

<frameset> (Frameset)
Only Allowed in <html>, Container Element

This element is restricted to frameset documents.

The <frameset> element defines a frameset page—a page that contains one or
more frames. Each frame is a rectangular region in a browser window that can
show a different Web page. The <frameset> element also sets the size of each
frame (using absolute pixel sizes or a percentage of the current browser window).
If you split a page horizontally, you use the rows attribute. If you split it vertically,
you use the cols attribute.

Here’s an example with two frames split vertically. The first frame is 100 pixels
wide, and the second frame occupies the remaining space:

<frameset cols="100,*">

 <frame name="Menu" src="menu.htm" />

 <frame name="Main" src="welcome.htm" />

</frameset>

For more information about frames and how to use them, refer to Chapter 10.

548 Creating a Web Site: The Missing Manual

XHTML Elements

<h1>, <h2>, <h3>, <h4>, <h5>, <h6> (Headings)
Block Element, Container Element

Headings are section titles. They display in bold lettering, at various sizes. The size
of the heading depends on the heading level. There are six heading levels, starting
at <h1> (the biggest), and moving down to <h6> (the smallest). Both <h5> and
<6> are actually smaller than regularly sized text. Here’s an <h1> element in
action:

<h1>Important Information</h1>

When you use headings, always make sure your page follows a logical structure
that starts with <h1> and gradually works its way down to lower heading levels.
Don’t start with <h3> just because the formatting looks nicer. Instead, use style
sheets to change the formatting of each heading to suit you, and use the heading
levels to delineate the structure of your document.

<head> (Document Head)
Only Allowed in <html>, Container Element

The <head> element defines the header portion of an XHTML document. Put the
<head> section before the <body> section of a page. While the <body> element
contains the Web page content, the <head> element includes other information,
like the Web page title (the <title> element), descriptive metadata (one or more
<meta> elements), and styles (the <style> or <link> elements).

<hr> (Horizontal Rule)
Block Element, Standalone Element

The <hr> element defines a horizontal rule (a solid line) that you use to separate
block elements:

<p>...</p>

<hr />

<p>...</p>

Although the <hr> element still works perfectly well, XHTML whizzes prefer using
border settings in a style sheet rule to get much more control over the line style
and its color. Here’s an example that defines a style sheet rule for a solid blue line:

.border { border-top: solid medium navy }

And here’s how you could apply it:

<p>...</p>

<div class="border"></div>

<p>...</p>

For more information about the style sheet border settings, refer to page 167.

Appendix A: XHTML Quick Reference 549

XHTML Elements

<html> (Document)
The <html> element is the first element in any XHTML document. It wraps the
rest of the document. If you create an ordinary Web page, the <html> element
contains two other essential ingredients—the <head> element, which defines the
title, metadata, and linked style sheets; and the <body> element, which contains
the actual content. If you create a frames page, the <html> element contains a
<head> element, a <frameset> element, and a <noframes> region.

<i> (Italic Text)
Inline Element, Container Element

The <i> element displays text in italics. XHTML experts suggest using
(emphasis) instead of <i>, because it more clearly indicates the relative impor-
tance of your text, rather than giving a strictly typographic instruction about how
to format it. However, the <i> element is still more common:

Here is some <i>italicized</i> text.

You can get much more control over every aspect of formatting using style sheet rules.

<iframe> (Inline Frame)
Inline Element, Container Element

This element works in XHTML 1.0 transitional only.

The <iframe> element creates an inline frame—an embedded, scrollable window
that displays a Web page inside another one. You supply the attributes src (the
page you want your browser to display in the frame), name (the unique name of
the frame), and width and height (the dimensions of the frame in pixels). You can
also turn off the border by setting the frameborder="0" attribute, or turn off scroll-
ing by adding the scrolling="no" attribute. Here’s one use of the <iframe> element:

<iframe src="MyPage.html" width="100" height="250"></iframe>

You can put content inside the <iframe> element that a browser will display if it
doesn’t support the <iframe> element:

<iframe src="MyPage.html" width="100" height="250">

 <p>To see more details, check out this page.</p>

</iframe>

 (Image)
Inline Element, Standalone Element

The element points to a picture file you want to display in a page. The src
attribute identifies the picture using a relative or absolute link—see page 210. The
alt attribute supplies text that a browser displays if it can’t display the picture.

550 Creating a Web Site: The Missing Manual

XHTML Elements

Internet Explorer displays alternate text in a pop-up text box, while some more
standards-aware browsers (namely Firefox) don’t. In either case, you can supply a
pop-up text box in just about any browser using the title attribute. This is the best
way to add pop-up text to an image.

The element also supports height and width attributes you can use to
explicitly size a picture:

In this example, the picture has a width of 100 pixels and a height of 150 pixels. If
these dimensions don’t match the actual size of the source picture, your browser
stretches and otherwise mangles the picture to match the dimensions.

Never use the width and height attributes to resize an image; instead, make those
kinds of edits in a proper image-editing program. You can use the width and
height attributes to tell a browser how big your picture is so it can lay out the page
before it downloads the whole image, and so your layout is preserved even if the
browser can’t find your picture file.

To learn more about supported image types, how to organize pictures on a page,
and where to find the best material, refer to Chapter 7. To learn how to create
images that serve as fancy clickable buttons, check out Chapter 15.

Finally, you can create clickable regions on an image by defining an image map,
and then link that image map to your image with the usemap attribute of the
 element. For more information, see the <map> section (page 552).

<input> (Input Control)
Only Allowed in <form>, Standalone Element

The input element is the most common ingredient in an XHTML form (which is
itself represented by the <form> element). The input element can represent differ-
ent onscreen widgets (called controls) that collect information from a Web visitor.

The type attribute specifies the kind of control you want to create. Table A-1 lists
the most common types. Additionally, you should give every control a unique
name using the name attribute.

Table A-1. XHTML form controls

Control XHTML Element Description

Single-line text box <input type="text" /> Shows a text box where a visitor can
type in any text.

Password text box <input type="password" /> Shows a text box where a visitor can
type in any text. However, the
browser doesn’t display the text.
Instead, it displays an asterisk (*) in
place of every letter, to hide the text
from prying eyes.

Appendix A: XHTML Quick Reference 551

XHTML Elements

Here’s an <input> element that creates a text box. When a visitor submits the
page, whatever they typed into the box will be sent along, with the descriptive
identifier “LastName”:

<input type="text" name="LastName" />

For more information about forms and how you can use them to collect data, refer
to page 339.

<ins> (Inserted Text)
Block Element or Inline Element, Container Element

The <ins> element is rarely used and identifies newly inserted text. It lets you cre-
ate an XHTML Web page with limited change-tracking. (Of course, you don’t
really want too much change-tracking information in a page, because you want to
keep your page sizes as small as possible so they can sail across the Internet with-
out a care.)

You can use the <ins> element around block elements or inside a block element.
The element is another revision element, and you might want to use it in
conjunction with <ins>.

Checkbox <input type="checkbox" /> Shows a checkbox you can set as
turned on or off.

Radio button <input type="radio" /> Shows a radio button (a circle you
can set as turned on or off). Usually,
you have a group of radio buttons
next to each other, in which case a
visitor selects exactly one.

Submit button <input type="submit" /> Shows a standard push button that
submits a form and all its data.

Reset button <input type="reset" /> Shows a standard push button that
clears visitor selections and entered
text in all the input controls of the
form.

Image button <input type="image" /> Shows a submit button with a
difference—you supply its visuals as
a picture. To specify the file you
want, set the src attribute.

Ordinary button <input type="button" /> Shows a standard push button that
doesn’t do anything unless you hook
it up to some JavaScript code
(Chapter 14).

Table A-1. XHTML form controls (continued)

Control XHTML Element Description

552 Creating a Web Site: The Missing Manual

XHTML Elements

 (List Item)
Only Allowed in and , Container Element

The element represents a single item in an ordered (numbered) or unordered
(bulleted) list. For more information, see the element for ordered lists and
the element for unordered lists.

<link> (Document Relationship)
Only Allowed in <head>, Standalone Element

The <link> element describes a relationship between the current document and
another document. For example, you might use it to point to the previous version
of the current document. More commonly, you use it to point to an external style
sheet that provides formatting instructions for the current page. You always put the
<link> element in the <head> section of a page. Here’s one possible use:

<link rel="stylesheet" href="MyStyles.css" type="text/css" />

By using external style sheets, you can define your styles in one file and use them in
multiple pages. Chapter 6 has much more on style sheets and how to use them.

<map> (Image Map)
Inline Element, Container Element

The <map> element defines an image map—a picture with one or more clickable
regions. When you create an image map, you assign a unique name that identifies
the map using the name attribute. You then add one <area> element inside the
<map> element for each clickable region, specifying the coordinates of the click-
able area and the destination URL. (See the <area> element on page 542 for more
on how the coords attribute works.) Here’s an example of an image map with three
clickable regions:

<map id="Three Squares" name="ThreeSquares">

 <area href="page1.htm" shape="square" coords="5,5,95,195"

 alt="Square #1" />

 <area href="page2.htm" shape="square" coords="105,5,195,195"

 alt="Square #2" />

 <area href="page3.htm" shape="square" coords="205,5,295,195"

 alt="Square #3" />

</map>

Finally, to use your image map, you need to apply it to an image using the usemap
attribute. The usemap attribute matches the name of the map, but starts with a
number sign (#), which tells a browser that the image map is on the current page:

Appendix A: XHTML Quick Reference 553

XHTML Elements

You can’t see the clickable regions of an image map (unless you outline them in
the image). However, when you hover over a hotspot, your mouse pointer changes
to a hand. Clicking a hotspot has the same effect as clicking an ordinary <a>
link—you immediately go to the new URL address. For a full-fledged image map
example, see page 218.

<meta> (Metadata)
Only Allowed in <head>, Standalone Element

Meta elements let you embed descriptive information in your Web pages. Your
visitors never see this information, but automated programs like Web search
engines can find it as they scan your site. You add metadata by placing <meta>
elements in the <head> section of your page.

Every <meta> element includes a name attribute (which identifies the type of informa-
tion you’re adding) and a content attribute (which supplies the information itself).
Although you can have an unlimited number of potential <meta> elements, the two
most common are description and keywords, because some search engines use them:

<meta name="description" content="Sugar Beat Music for Children offers age-

appropriate music classes for children 4 months to 5 years old" />

Page 309 describes meta elements in more detail, and explains how search engines
use them.

<noframes> (Frames Alternate Content)
Only Allowed in <frameset>, Container Element

This element is restricted to frameset documents.

The <noframes> element defines the content that browsers should display instead
of a frames page if the browser doesn’t support frames. The <noframes> element
has to immediately follow the <frameset> element on a frames page.

It’s incredibly rare to stumble across a browser that’s too old to support frames
(Netscape has supported frames since version 2). Today, the only browsers you’re
likely to find that don’t support frames are mobile browsers for small devices like cell-
phones, and screen reading programs (typically used by viewing-impaired visitors).

For more information about frames and how to use them, refer to Chapter 10.

<noscript> (Alternate Script Content)
Block Element, Container Element

The <noscript> element defines the content a browser should display if it can’t run
a script. The <noscript> element should immediately follow the <script> element.
The most common reason a browser can’t run a script is because a Web visitor has
specifically turned off that feature through browser settings.

For more information about scripts, refer to Chapter 14.

554 Creating a Web Site: The Missing Manual

XHTML Elements

<object> (Embedded Object)
Inline Element, Container Element

The <object> element embeds specialized objects in your page, like audio, video,
and even applets (miniature programs that run inside a Web page). For example,
you might use an <object> element to place a Flash movie inside a Web page, as
described in Chapter 16.

 (Ordered List)
Block Element, Container Element

An ordered list starts with the element and contains multiple list items, each
of which you represent with an element. In an ordered list, your browser
numbers each item in a list consecutively, using your choice of numbers, letters, or
roman numerals.

Here’s a simple ordered list that numbers items from 1 to 3:

 Buy bread

 Soak stamps off letters

 Defraud government with offshore investment scheme

To start at a number other than 1, use the start attribute and supply the starting
number. To change the list formatting, use the type attribute with one of these val-
ues: 1 (numbers), a (lowercase letters), A (uppercase letters), i (lowercase roman
numerals), I (uppercase roman numerals). Both the start and type attributes are
restricted to XHTML 1.0 transitional. If you use strict XHTML, you can substitute
the style sheet property list-style-type for the type attribute, but there’s no equiva-
lent for the start attribute.

For more information about ordered lists, see page 124.

<option> (Menu Option)
Only Allowed in <select>, Container Element

The <option> element defines an item in a selectable list control, inside a <select>
element. For example, if you want to create a drop-down menu that lets visitors
choose a color from a list of options including the entries Blue, Red, and Green,
you need one <select> element with three <option> elements inside it.

When you define the <option> element, you can use the selected="selected"
attribute to tell a browser to select this item when it shows the page for the first
time. You can also use the value attribute to associate a uniquely identifying piece
of information with an option, which is included with the form data when a visi-
tor submits the form.

For a basic example, see the description of the <select> element.

Appendix A: XHTML Quick Reference 555

XHTML Elements

<p> (Paragraph)
Block Element, Container Element

The paragraph element contains a paragraph of text:

<p>It was the best of times, it was the worst of times ...</p>

Because paragraphs are block elements, a browser automatically adds a line break
and a little extra space between two paragraphs, or between a paragraph and
another block element, like a list or heading.

Browsers ignore empty paragraphs. To create a blank paragraph that takes up the
normal amount of space, use a nonbreaking space like this:

<p> </p>

<param> (Object Parameter)
Only Allowed in <object>, Standalone Element

The <param> element defines extra information in an <object> element, which
the browser sends to an applet or plug-in.

<pre> (Preformatted Text)
Block Element, Container Element

Preformatted text breaks the normal rules of XHTML formatting. Inside a <pre>
element, a browser pays close attention to every space and line break you use, and
it duplicates that format exactly in the resulting Web page. Additionally, the
browser puts all the content in a monospaced font (typically Courier), which
means the results aren’t always pretty. The <pre> element is an easy and quick way
to get text to appear exactly the way you want it to, which is useful if you want to
represent visual poetry or display a snippet of programming code. However, you
shouldn’t use it to align large sections of ordinary text—use tables and CSS posi-
tioning rules (see Chapter 9) for those tasks.

<pre>

Tumbling-hair

 picker of buttercups

 violets

 dandelions

And the big bullying daisies

 through the field wonderful

 with eyes a little sorry

Another comes

 also picking flowers

</pre>

556 Creating a Web Site: The Missing Manual

XHTML Elements

<q> (Short Quotation)
Inline Element, Container Element

The <q> element defines a short quotation inside another block element, like a
paragraph.

<p>As Charles Dickens once wrote, <q>It was the best of times, it was the

worst of times</q>.</p>

Usually, browsers render the <q> element as italic text and some browsers, like
Firefox, add quotation marks around the text inside. However, don’t use the <q>
element for formatting alone. Instead, use it to identify quotations in your text,
and then add style sheet rules to apply the formatting you want.

If you want a longer quotation that stands on its own as a block element, use the
<blockquote> element instead.

<script> (Client-Side Script)
Block Element, Container Element

The <script> element includes a client-side script inside your Web page. A script is
a set of instructions written in a simplified programming language like JavaScript.
Web designers use scripts to create more interactive Web pages by adding effects
like buttons that change color when you mouse over them. To learn some of the
basics of JavaScript and see scripts in action, check out Chapter 14.

<select> (Selectable List)
Only Allowed in <form>, Container Element

The <select> element defines a list control inside a form. Your visitor can select a
single item from the list (or multiple items, if you add the multiple="multiple"
attribute). You use the name attribute to uniquely identify this control, as in the
following example:

<select name="PromoSource">

 <option value="Ad">Google Ad</option>

 <option value="Search">Google Search</option>

 <option value="Psychic">Uncanny Psychic Intuition</option>

 <option value="Luck">Bad Luck</option>

</select>

Ordinarily, controls create selection lists as drop-down menus. However, you can
create a scrollable list box using the size attribute. Just specify the number of rows
you want to show at once:

<select name="PromoSource" size="3">

 ...

</select>

For an example of a form, refer to page 339.

Appendix A: XHTML Quick Reference 557

XHTML Elements

<small> (Small Text)
Inline Element, Container Element

The <small> element steps text size down one notch to create smaller text. The
<small> element is out of vogue, and you’re better off using style sheets to control
text formatting.

 (Generic Inline Container)
Inline Element, Container Element

Use the element to identify text you want to format inside a block ele-
ment. For example, you could format a single word in a paragraph, a whole sentence,
and so on. Here’s an example:

<p>In this paragraph, some of the text is wrapped in a span element.

That gives you the ability to format it in some fancy

way later on.</p>

On its own, the element doesn’t do anything. However, it’s a powerful way
to apply style sheet formatting in a flexible, reusable way.

You should also refer to the <div> element (page 122), which can apply format-
ting to several block elements at once.

 (Strong Emphasis)
Inline Element, Container Element

The element has the same effect as the (bold text) element, but
some XHTML experts prefer it because it indicates the relative importance of your
text, not just the way your browser should format it. After all, you might use style
sheet rules to change the format so it’s emphasized in some other way,
without necessarily using boldface.

<style> (Internal Style Sheet)
Only Allowed in <head>, Container Element

Use the <style> element to supply CSS (Cascading Style Sheet) rules that format a
Web page. Always put the <style> element inside the <head> section of a Web page.

The <style> element lets you define a style right inside a Web page. This is known
as an internal style sheet. Here’s an example that gives <h1> headings fuchsia text:

<style type="text/css">

 h1 { color: fuchsia }

</style>

558 Creating a Web Site: The Missing Manual

XHTML Elements

More commonly, you’ll use the <link> element instead of the <style> element, so
that you can link to a separate file that defines your styles. That way, you can apply
the same styles to multiple pages without cluttering up your XHTML. Chapter 6
has much more about style sheets and how to use them.

<sub> (Subscript)
Inline Element, Container Element

The <sub> element formats text so that it appears smaller and lower (the middle
of the text lines up with the bottom of the current line). It’s best not to rely on this
trick for formatting (use style sheets instead), but it’s a handy way to deal with sci-
entific terms like H20. Here’s how you use it:

Water is H₂0

<sup> (Superscript)
Inline Element, Container Element

The <sup> element formats text so that it appears smaller and higher (the middle
of the text lines up with the top of the current line). It’s best not to rely on this
trick for formatting (use style sheets instead), but it’s a handy way to deal with
exponents like 33. Here’s the <sup> element in action:

3³ is 27

<table> (Table)
Block Element, Container Element

The <table> element is the outermost element that defines a table. Inside the
<table> element, you define rows with the <tr> element, and inside each row, you
use the <td> element to define individual cells and specify the content they hold.
Here’s a basic table:

<table>

 <tr>

 <td>Row 1, Column 1</td>

 <td>Row 1, Column 2</td>

 </tr>

 <tr>

 <td>Row 2, Column 1</td>

 <td>Row 2, Column 2</td>

 </tr>

</table>

Appendix A: XHTML Quick Reference 559

XHTML Elements

It looks like this:

For more information about creating exotic tables and sizing them perfectly, refer
to Chapter 9.

<td> (Table Data Cell)
Only Allowed in <tr>, Container Element

The <td> element represents an individual cell inside a table row (a <tr> ele-
ment). Each time you add a <td> element, you create a column. However, it’s per-
fectly valid to have different numbers of columns in subsequent rows (although it
might look a little wacky). For a basic table example, see the <table> element defi-
nition above, and for a detailed table explanation, check out Chapter 9.

<textarea> (Multiline Text Input)
Only Allowed in <form>, Container Element

The <textarea> element displays a large text box in a <form> that can fit multiple
lines of text. As with all input controls, you need to identify the control by giving it
a unique name. Additionally, you can set the size of the text box using the rows and
cols attributes.

If you want text to appear in the <textarea> element initially, put it in between the
start and end tags, like so:

<textarea name="Comments">Enter your comments here.</textarea>

<th> (Table Header Cell)
Only Allowed in <tr>, Container Element

The <th> element represents an individual cell with table heading text. Use the
<th> element in the same way you use the <td> element—the difference is that
you usually reserve the <th> element for the first row of a table (because it repre-
sents column headings), and <th> text appears boldfaced and centered (which you
can tailor using style sheets).

<title> (Document Title)
Only Allowed in <head>, Container Element

The <title> element specifies the title of a Web page. The browser displays this text
in its title bar and uses it as the bookmark text if a visitor bookmarks the page. You
have to put the <title> element in the <head> section of a page.

<title>Truly Honest Car Mechanics</title>

Row 1, Column 1 Row 1, Column 2

Row 2, Column 1 Row 2, Column 2

560 Creating a Web Site: The Missing Manual

XHTML Elements

<tr> (Table Row)
Only Allowed in <table>, Container Element

The <tr> element represents an individual row inside a table (a <table> element).
To add cells of information, you need to add the <td> element inside the <tr> ele-
ment. For a basic table example, see the <table> element definition above, and for
a detailed explanation of tables, check out Chapter 9.

<tt> (Teletype Text)
Inline Element, Container Element

The teletype element displays text in a fixed-width (monospaced) font, like Cou-
rier. Programmers sometimes use it for snippets of code in a paragraph:

<p>To solve your problem, use the <tt>Fizzle()</tt> function.</p>

Teletype text is designed for use inside a block element, like a paragraph (because it’s an
inline element). For a similar effect in a block element, check out the <pre> element.

<u> (Underlined Text)
Inline Element, Container Element

This element works in XHTML 1.0 transitional only.

The <u> element displays text as underlined. Be careful about using this element,
because it’s all too easy for Web visitors to mistake underlined text for links.

Here is some <u>underlined</u> text.

To create underlined text in Web pages that use XHTML strict, you can use a style
sheet rule that applies the text-decoration style property (page 155).

 (Unordered List)
Block Element, Container Element

An unordered list starts with the element, and includes multiple list items,
each of which you represent with a element. The browser indents each item in
the list, and draws a bullet next to it.

Here’s a simple unordered list:

 Buy bread

 Soak stamps off letters

 Defraud government with offshore investment scheme

If you use XHTML 1.0 transitional, you can change the bullet style in an unor-
dered list with the type attribute (allowed values are disc, circle, and square). If you
use strict XHTML, you can substitute the style sheet property list-style-type instead.
Or you can use an image for a bullet, as shown on page 204.

Appendix A: XHTML Quick Reference 561

XHTML Character
Entities

XHTML Character Entities
XHTML character entities are codes that a browser translates into other characters
when the browser displays the page. All XHTML character entities start with the
ampersand (&) and end with the semicolon (;).

There are two reasons you might want to use XHTML character entities. First of
all, you might want to use a character that has a special meaning in the XHTML
standard. For example, if you type < in an XHTML document, a browser assumes
you’re starting to define an element, which makes it difficult to write a pithy bit of
logic like “2 < 3.” To get around this, you can replace the < symbol with a charac-
ter entity that represents the less-than symbol. The browser then inserts the actual
< character you want when it displays the page.

The other reason you might use XHTML character entities is because you want to
use a special character that’s not easy to type, like an accented letter or a currency
symbol. In fact, characters like this are quite possibly not on your keyboard at all.

Table A-2 has the most commonly used XHTML entities. For the complete list,
which includes many more international language characters, see http://www.
webmonkey.com/reference/Special_Characters. You can also type in certain special
characters using a non-English keyboard, or pick international language characters
from a utility program. See page 134 for more information about these options.

Table A-2. XHTML character entities

Character Name of Character What to Type

< Less than <

> Greater than >

& Ampersand &

“ Quotation mark "

© Copyright ©

® Registered trademark ®

¢ Cent sign ¢

£ Pound sterling £

¥ Yen sign ¥

Euro sign € (but € is better supported)

˚ Degree sign °

± Plus or minus ±

÷ Division sign ÷

× Multiply sign ×

µ Micro sign µ

Fraction one-quarter ¼

Fraction one-half ½

Fraction three-quarters ¾

http://www.webmonkey.com/reference/Special_Characters
http://www.webmonkey.com/reference/Special_Characters

562 Creating a Web Site: The Missing Manual

XHTML Color Names

XHTML Color Names
The XHTML standard officially recognizes only 16 color names. They’re listed in
Table A-3.

Although many browsers recognize more names, the safest option to get better colors
is to use a color code (see page 152).

¶ Paragraph sign ¶

§ Section sign §

« Left angle quote,
guillemotleft

«

» Right angle quote,
guillemotright

»

¡ Inverted exclamation ¡

¿ Inverted question mark ¿

æ Small ae diphthong
(ligature)

æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut
mark

ë

ö Small o, dieresis or umlaut
mark

ö

É Capital E, acute accent É

Table A-3. XHTML color names

Aqua Navy

Black Olive

Blue Purple

Fuchsia Red

Gray Silver

Green Teal

Lime White

Maroon Yellow

Table A-2. XHTML character entities (continued)

Character Name of Character What to Type

563

Appendix Bappendix

b

Useful Web Sites

Throughout this book, you learned about a number of great Web sites where you
can download handy software or get valuable information. Odds are, you’ll want
to revisit some of these sites to keep honing your Web skills (or just to get free
stuff). To save you the effort of leafing through hundreds of pages, this appendix
provides those links, grouped by chapter.

To avoid carpal tunnel syndrome, you don’t need to painstakingly type these URLs
into your browser. Instead, use the online version of this appendix located, on the
Missing CD page at www.missingmanuals.com. That way, once you find a site you
want to visit, you’re just a click away. In addition, check this page for late-breaking
changes (like URLs that have moved to another location).

Chapter Links
The following tables list the links found in each chapter. Each table lists the links in
the same order they occurred in the text. You’ll find all kinds of links here. Some
point to useful tutorial sites and articles, others to Web curiosities, and still more
to handy free tools or downloadable pictures and media. Particularly important or
noteworthy links appear in bold.

http://www.missingmanuals.com

564 Creating a Web Site: The Missing Manual

Chapter Links

Chapter 1. Preparing for the Web

Chapter 2. Creating Your First Page

Chapter 3. Putting Your Page on the Web

Description URL

The history of the Internet www.isoc.org/internet/history
www.walthowe.com/navnet/history.html

Internet Explorer (browser) www.microsoft.com/windows/ie

Firefox (browser) www.mozilla.org/products/firefox

Safari (browser) www.apple.com/safari

Summary of Mac browsers http://darrel.knutson.com/mac/www/browsers.
html

Opera (browser) www.opera.com

Google Chrome (browser) www.google.com/chrome

Netscape (browser) http://browser.netscape.com/releases

Browser usage statistics http://en.wikipedia.org/wiki/Usage_share_of_
web_browsers

Spybot Search & Destroy (spyware removal
tool)

www.safer-networking.org

Windows Defender (for Windows XP) www.microsoft.com/defender

Lavasoft Ad-Aware (spyware removal tool) www.lavasoftusa.com/software/adaware

One of many free blogging services (see the
Chapter 17 link list for more)

www.blogger.com

What not to do in a Web page www.angelfire.com/super/badwebs

The ultimate examples of bad Web design www.worstoftheweb.com

Description URL

Java checkers http://thinks.com/java/checkers/checkers.htm

Flash games www.ferryhalim.com/orisinal

XHTML validator www.validome.org

Description URL

Smartdots (free subdomain names) www.smartdots.com

Domain Direct (Web host) www.domaindirect.com

Brinkster (Web host) www.brinkster.com

DreamHost (Web host) www.dreamhost.com

GoDaddy (Web host) www.godaddy.com

HostGo (Web host) www.hostgo.com

Insider Hosting (Web host) www.insiderhosting.com

http://www.isoc.org/internet/history
http://www.walthowe.com/navnet/history.html
http://www.microsoft.com/windows/ie
http://www.mozilla.org/products/firefox
http://www.apple.com/safari
http://darrel.knutson.com/mac/www/browsers.html
http://www.opera.com
http://www.google.com/chrome
http://browser.netscape.com/releases
http://en.wikipedia.org/wiki/Usage_share_of_web_browsers
http://www.safer-networking.org
http://www.microsoft.com/defender
http://www.lavasoftusa.com/software/adaware
http://www.blogger.com
http://www.angelfire.com/super/badwebs
http://www.worstoftheweb.com
http://thinks.com/java/checkers/checkers.htm
http://www.ferryhalim.com/orisinal
http://www.validome.org
http://www.smartdots.com
http://www.domaindirect.com
http://www.brinkster.com
http://www.dreamhost.com
http://www.godaddy.com
http://www.hostgo.com
http://www.insiderhosting.com

Appendix B: Useful Web Sites 565

Chapter Links

Chapter 4. Power Tools

Chapter 5. XHTML Text Elements

Chapter 6. Style Sheets

Pair Networks (Web host) www.pair.com

Sonic.net (Web host) www.sonic.net

WebHostingTalk (discussion board) http://tinyurl.com/5zffwp

Web host research www.consumersearch.com/www/internet/
web-hosting/review.html

TinyURL (URL-shrinking service) http://tinyurl.com

Directory of free Web hosts www.free-webhosts.com/user_reviews.php

Description URL

Shareware programs www.download.com

List of Web page editors http://en.wikipedia.org/wiki/Comparison_of_
HTML_editors

Nvu/KompoZer (Web page editor) www.kompozer.net

Amaya (Web page editor) www.w3.org/Amaya

HTML-Kit (Web page editor) www.html-kit.com

CoffeeCup (Web page editor) www.coffeecup.com/free-editor

Expression Web (trial software) www.microsoft.com/Expression/try-it

Dreamweaver (trial software) www.adobe.com/products/dreamweaver

Description URL

Firefox Web Developer add-on http://addons.mozilla.org/en-US/firefox/addon/60

Learn about the semantic Web http://logicerror.com/semanticWeb

Special characters in XHTML http://www.webmonkey.com/reference/Special_Characters

Description URL

CSS compatibility tables for different
browsers

www.webdevout.net/browser-support-css
www.quirksmode.org/css/contents.html

Online color pickers www.colorpicker.com
www.colorschemer.com/online.html

Information about font support on
different operating systems

http://web.mit.edu/jmorzins/www/fonts.html
www.upsdell.com/BrowserNews/res_fontsamp.htm

Description URL

http://www.pair.com
http://www.sonic.net
http://tinyurl.com/5zffwp
http://www.consumersearch.com/www/internet/web-hosting/review.html
http://tinyurl.com
http://www.free-webhosts.com/user_reviews.php
http://www.download.com
http://en.wikipedia.org/wiki/Comparison_of_HTML_editors
http://www.kompozer.net
http://www.w3.org/Amaya
http://www.html-kit.com
http://www.coffeecup.com/free-editor
http://www.microsoft.com/Expression/try-it
http://www.adobe.com/products/dreamweaver
http://addons.mozilla.org/en-US/firefox/addon/60
http://logicerror.com/semanticWeb
http://www.webmonkey.com/reference/Special_Characters
http://www.webdevout.net/browser-support-css
http://www.quirksmode.org/css/contents.html
http://www.colorpicker.com
http://www.colorschemer.com/online.html
http://web.mit.edu/jmorzins/www/fonts.html
http://www.upsdell.com/BrowserNews/res_fontsamp.htm

566 Creating a Web Site: The Missing Manual

Chapter Links

Chapter 7. Adding Graphics

Chapter 8. Linking Pages

Chapter 9. Page Layout Tools

Chapter 10. Multipart Pages

Description URL

Free image editors www.gimp.org (all platforms)
www.getpaint.net (Windows-only)

Free backgrounds www.grsites.com/textures
www.backgroundcity.com
www.backgroundsarchive.com

Google image search (pictures aren’t
necessarily free to use)

http://images.google.com

Stock.XCHNG (free pictures) http://sxc.hu

Overview of places to find free pictures www.masternewmedia.org/where_to_find_free_
images_and_visuals

Commercial picture sites www.istockphoto.com
www.fotolia.com
www.dreamstime.com

Microsoft Office clip art http://office.microsoft.com/clipart

Description URL

Link checker http://validator.w3.org/checklink

Description URL

A huge catalog of style sheet layout examples www.csszengarden.com

CSS tutorial www.w3schools.com/css

CSS validator http://jigsaw.w3.org/css-validator

Style sheet templates www.bluerobot.com/web/layouts
http://glish.com/css

CSS resources www.westciv.com/style_master/house

Description URL

How to force frames with JavaScript http://javascript.about.com/library/blframe.htm

EBook about Expression Web page templates http://any-expression.com/expression-web/
ebooks/expression-web-dwt-ebook.htm

http://www.gimp.org (all platforms)
http://www.getpaint.net
http://www.grsites.com/textures
http://www.backgroundcity.com
http://www.backgroundsarchive.com
http://images.google.com
http://sxc.hu
http://www.masternewmedia.org/where_to_find_free_images_and_visuals
http://www.istockphoto.com
http://www.fotolia.com
http://www.dreamstime.com
http://office.microsoft.com/clipart
http://validator.w3.org/checklink
http://www.csszengarden.com
http://www.w3schools.com/css
http://jigsaw.w3.org/css-validator
http://www.bluerobot.com/web/layouts
http://glish.com/css
http://www.westciv.com/style_master/house
http://javascript.about.com/library/blframe.htm
http://any-expression.com/expression-web/ebooks/expression-web-dwt-ebook.htm

Appendix B: Useful Web Sites 567

Chapter Links

Chapter 11. Attracting Visitors

Chapter 12. Letting Your Visitors Talk to You
(and Each Other)

Description URL

The Open Directory Project http://dmoz.org
http://dmoz.org/add.html (submission rules)
http://dmoz.org/guidelines (editor guidelines)

Google Directory http://directory.google.com

Yahoo Directory submission guidelines http://help.yahoo.com/l/us/yahoo/directory/
suggest/listings-03.html
www.apromotionguide.com/yahoo.html
(unofficial)
https://ecom.yahoo.com/dir/submit/intro
(Yahoo Directory Submit)

How Google works www.akamarketing.com/google-ranking-tips.html
www.markhorrell.com/seo/pagerank.html
http://infolab.stanford.edu/~backrub/google.html

Google site submission guidelines http://www.google.com/addurl (submit a site)
www.google.com/webmasters/tools/removals
(remove a site)

Search Engine Land (industry news) http://searchengineland.com

Webmaster World (industry news) www.webmasterworld.com

Google AdWords http://adwords.google.com

AdWords poetry www.iterature.com/adwords

Wayback Machine (archived Web pages) www.archive.org

List of Web robots www.robotstxt.org

Google Analytics www.google.com/analytics

Description URL

A tool for encoding mail-to message text http://meyerweb.com/eric/tools/dencoder

Introduction to CGI www.cgi101.com/book

ASP and ASP.NET introductions www.w3schools.com/asp
www.w3schools.com/aspnet

HTML forms tutorial www.w3schools.com/html/html_forms.asp

Generate server scripts for form submission www.tele-pro.co.uk/scripts/contact_form

Form submission services www.emailmeform.com
www.response-o-matic.com

http://dmoz.org
http://dmoz.org/add.html
http://dmoz.org/guidelines
http://directory.google.com
http://help.yahoo.com/l/us/yahoo/directory/suggest/listings-03.html
http://www.apromotionguide.com/yahoo.html
https://ecom.yahoo.com/dir/submit/intro
http://www.akamarketing.com/google-ranking-tips.html
http://www.markhorrell.com/seo/pagerank.html
http://infolab.stanford.edu/~backrub/google.html
http://www.google.com/addurl
http://www.google.com/webmasters/tools/removals
http://searchengineland.com
http://www.webmasterworld.com
http://adwords.google.com
http://www.iterature.com/adwords
http://www.archive.org
http://www.robotstxt.org
http://www.google.com/analytics
http://meyerweb.com/eric/tools/dencoder
http://www.cgi101.com/book
http://www.w3schools.com/asp
http://www.w3schools.com/aspnet
http://www.w3schools.com/html/html_forms.asp
http://www.tele-pro.co.uk/scripts/contact_form
http://www.emailmeform.com
http://www.response-o-matic.com

568 Creating a Web Site: The Missing Manual

Chapter Links

Chapter 13. Making Money with Your Site

Chapter 14. JavaScript: Adding Interactivity

Examples of discussion groups on the Web www.microsoft.com/office/community/en-us/
flyoutoverview.mspx
http://survivorsucks.yuku.com
www.officefrustration.com
http://forums.delphiforums.com/JLTechSupport

Google Groups http://groups.google.com
http://groups.google.com/googlegroups/
overview.html

Description URL

Google AdSense www.google.com/adsense (sign up)
www.google.com/services/adsense_tour
www.google.com/adsense/taxinfo
www.google.com/adsense/policies

Amazon Associates http://affiliate-program.amazon.com
http://associates.amazon.com/gp/associates/
network/build-links/banner/main.html (banners)

PayPal www.paypal.com
www.paypal.com/chargeback
www.paypal.com/SellerProtection
www.paypal.com/fees

Description URL

JavaScript tutorials www.w3schools.com/js
www.echoecho.com/javascript.htm
www.htmlgoodies.com/primers/jsp
www.webmonkey.com/tutorial/JavaScript_
Tutorial

Text effect examples www.codejunction.com/detailed/sequential-fly-
in-text-effect.html
www.javascript-page.com/tickert.html
www.flooble.com/scripts/animate.php

JavaScript events www.w3schools.com/htmldom/dom_reference.
asp

EarthWeb (JavaScript samples) http://webdeveloper.earthweb.com/webjs

The JavaScript Source (JavaScript samples) http://javascript.internet.com

JavaScript 2 (JavaScript samples) www.javascript-2.com

Description URL

http://www.microsoft.com/office/community/en-us/flyoutoverview.mspx
http://survivorsucks.yuku.com
http://www.officefrustration.com
http://forums.delphiforums.com/JLTechSupport
http://groups.google.com
http://groups.google.com/googlegroups/overview.html
http://www.google.com/adsense
http://www.google.com/services/adsense_tour
http://www.google.com/adsense/taxinfo
http://www.google.com/adsense/policies
http://affiliate-program.amazon.com
http://associates.amazon.com/gp/associates/network/build-links/banner/main.html
http://associates.amazon.com/gp/associates/network/build-links/banner/main.html
http://www.paypal.com
http://www.paypal.com/chargeback
http://www.paypal.com/SellerProtection
http://www.paypal.com/fees
http://www.w3schools.com/js
http://www.echoecho.com/javascript.htm
http://www.htmlgoodies.com/primers/jsp
http://www.webmonkey.com/tutorial/JavaScript_Tutorial
http://www.codejunction.com/detailed/sequential-fly-in-text-effect.html
http://www.javascript-page.com/tickert.html
http://www.flooble.com/scripts/animate.php
http://www.w3schools.com/htmldom/dom_reference.asp
http://webdeveloper.earthweb.com/webjs
http://javascript.internet.com
http://www.javascript-2.com

Appendix B: Useful Web Sites 569

Chapter Links

Chapter 15. Fancy Buttons and Menus

Chapter 16. Audio and Video

Dynamic Drive (JavaScript samples) www.dynamicdrive.com

JavaScript FAQ www.javascripter.net/faq

Description URL

Button image generator www.buttongenerator.com
www.grsites.com/button

Flash button generator www.flashbuttons.com

Button-making software (Windows) http://free-buttons.org

Navigation bars www.dynamicdrive.com/dynamicindex1
www.dynamicdrive.com/dynamicindex1/topnavbar.
htm
www.dynamicdrive.com/dynamicindex1/topmen3

Description URL

Winamp (MP3 player) www.winamp.com

Classical MIDI Archives www.classicalarchives.com

Audacity (sound editor) http://audacity.sourceforge.net

WAV/MP3 editors www.goldwave.com
www.fleximusic.com

iTunes www.apple.com/itunes

Sound effects www.grsites.com/sounds
www.freeaudioclips.com

Flash player http://get.adobe.com/flashplayer

E-Phonic www.e-phonic.com/mp3player
www.e-phonic.com/mp3player/documentation

Flash background music loops www.flashkit.com/loops

Impressive Flash examples www.ferryhalim.com/orisinal
www.zapdramatic.com

Flash tutorials www.w3schools.com/flash

YouTube www.youtube.com
http://code.google.com/apis/youtube/player_parameters.
html (configuring a video window)

Description URL

http://www.dynamicdrive.com
http://www.javascripter.net/faq
http://www.buttongenerator.com
http://www.grsites.com/button
http://www.flashbuttons.com
http://free-buttons.org
http://www.dynamicdrive.com/dynamicindex1
http://www.dynamicdrive.com/dynamicindex1/topnavbar.htm
http://www.dynamicdrive.com/dynamicindex1/topmen3
http://www.winamp.com
http://www.classicalarchives.com
http://audacity.sourceforge.net
http://www.goldwave.com
http://www.fleximusic.com
http://www.apple.com/itunes
http://www.grsites.com/sounds
http://www.freeaudioclips.com
http://get.adobe.com/flashplayer
http://www.e-phonic.com/mp3player
http://www.e-phonic.com/mp3player/documentation
http://www.flashkit.com/loops
http://www.ferryhalim.com/orisinal
http://www.zapdramatic.com
http://www.w3schools.com/flash
http://www.youtube.com
http://code.google.com/apis/youtube/player_parameters.html
http://code.google.com/apis/youtube/player_parameters.html

570 Creating a Web Site: The Missing Manual

Chapter Links

Chapter 17. Blogs

Description URL

Definition of “blog” http://en.wikipedia.org/wiki/Blog

Examples of popular blogs www.andrewsullivan.com
http://dear_raed.blogspot.com
http://wilwheaton.typepad.com
www.schneier.com/blog
http://roseandsnail.com

Online feed readers www.google.com/reader
www.bloglines.com
www.newsgator.com

Windows feed reader www.newsgator.com/Individuals/FeedDemon

Mac feed reader http://ranchero.com/netnewswire

Browser feed readers www.microsoft.com/windows/IE/ie7/tour/rss (IE)
www.macdevcenter.com/pub/a/mac/2005/05/31/
safari_rss.html (Safari)

List of blog software and blog hosts http://en.wikipedia.org/wiki/Blog_hosting_service

Movable Type (blogging software) www.movabletype.org

Bloxsom (blogging software) www.blosxom.com

WordPress http://wordpress.org (blogging software)
http://wordpress.com (hosted blogs)

Windows Live Spaces (hosted blogs) http://spaces.msn.com

TypePad (hosted blogs) www.typepad.com

Blogger (hosted blogs) www.blogger.com
http://help.blogger.com (information)
http://help.blogger.com/bin/answer.
py?answer=46870 (template tag reference)
http://help.blogger.com/bin/answer.
py?hl=en&answer=41469 (create a BlogThis book-
mark)

Blogger discussion forum www.bloggerforum.com

http://en.wikipedia.org/wiki/Blog
http://www.andrewsullivan.com
http://dear_raed.blogspot.com
http://wilwheaton.typepad.com
http://www.schneier.com/blog
http://roseandsnail.com
http://www.google.com/reader
http://www.bloglines.com
http://www.newsgator.com
http://www.newsgator.com/Individuals/FeedDemon
http://ranchero.com/netnewswire
http://www.microsoft.com/windows/IE/ie7/tour/rss
http://www.macdevcenter.com/pub/a/mac/2005/05/31/safari_rss.html
http://www.macdevcenter.com/pub/a/mac/2005/05/31/safari_rss.html
http://en.wikipedia.org/wiki/Blog_hosting_service
http://www.movabletype.org
http://www.blosxom.com
http://wordpress.org (blogging software)
http://wordpress.com (hosted blogs)
http://spaces.msn.com
http://www.typepad.com
http://www.blogger.com
http://help.blogger.com
http://www.bloggerforum.com

571

Index

Symbols
(number symbol) in URLs, 222
& (ampersand) in XHTML, 133
* (asterisk) in frame sizing, 269
+= operator in JavaScript, 417
/ (forward slash) in URLs, 217
// (forward slashes) for code comments, 417
:active pseudo-selector, 209
:hover pseudo-selector, 209
:link pseudo-selector, 209
:visited pseudo-selector, 209
; (semicolon) as line-termination character

(JavaScript), 410, 466
= (equals sign) to store variable

information, 410
\ (backslash) in file paths, 217
{ } (curly braces) for style rules, 141
" " (quotation marks) for text strings, 411

A
absolute positioning

combining with relative positioning, 258–
260

style-based layouts and, 253–254
absolute sizing

tables, 240
text, 159

absolute URLs, defined, 210
acronym element, XHTML, 541

ActiveX controls, defined, 28
ad units (AdSense), 369
address element, XHTML, 541
Adobe Photoshop, 189
ads (Google AdSense)

creating, 366–373
creating targeted, 377
placing in Web pages, 373–376

advertisements overview, 362
AdWords, Google, 320–321
affiliate programs, 361, 362
alert function (JavaScript), 408
aligning

images, 190–191
tables, 239–243
text (CSS), 163–168
vertical text, 244

alt (alternate text) attribute, 44, 181–182, 311
alternate image text in site promotion, 311
Amaya page editor, 87
Amazon Associates

generating associate links, 382–387
overview of, 380–381
signing up as associate, 381–382

ampersand (&) in XHTML, 133
anchor (a) element, XHTML, 207–208, 540–

541
angle brackets in XHTML, 133
animated GIFs, 474
anti-aliasing, defined, 448

572 Creating a Web Site: The Missing Manual

Index

Aplus.Net Web hosting walkthrough, 73–75
archiving blog posts, 521
area element (image map), XHTML, 218, 542
arguments, defined (JavaScript), 408
arithmetic operators, 411
arrays, defined (JavaScript), 454
art, finding on Internet, 205–206
artifacts, compression, 186
ASP (Active Server Pages), 341
ASP.NET, 341
associate links, Amazon, 382
attributes, defined (XHTML), 43
Audacity (Mac), 480
audience awareness, 17–18
audio

digital (WAV and MP3), 474
embedded audio options, 478
files, linking to, 216
loops, Flashtrak, 489–490

authentication of visitors, 363
autoplay attribute (embed element), 479

B
background image properties, 198, 200–202
background images, 198–202
background music

embed element, 476–482
sound effects, 481–483

background watermarks, 199
background-color property (CSS), 150–151,

168
backgrounds

for various elements, 203
pictures on colored, 188–190
shaded, 154

bandwidth
calculating, 71
defined, 69

base (base URL) element, XHTML, 542–543
bgsound element, 481
big (large text) element, XHTML, 543
binary files, defined, 24
bit rates and video quality, 497
block elements (XHTML), 113–114, 539
block-level elements (XHTML), 45–46
blockquote (block quotation) element,

XHTML, 121–122, 543
Blogger

blog entries, emailing, 519
comments, moderating, 531–533
common blog settings, 521–523
configuring user profiles, 523
creating blogs with, 512–517
creating formatted posts, 517–518

hosting personal blogs on Web sites, 533–
535

managing blogs with, 518–521
overview of, 512
team blogs, creating, 525
templates. See templates, Blogger

blogging
defined, 336
video, 494

Bloglines, 509
blogroll, defined, 535
blogs (Web logs)

creating with Blogger. See Blogger
dangers of, 508
defined, 15, 67
overview of, 505–507
promoting, 535
software, 510
syndication, 508–510
types of, 510–512

BlogThis tool, 535
Blosxsom, 510
body (document body) element, XHTML, 36,

543
body section, XHTML, 406
bold (b) tags, defined, 32
bold text (b) element, XHTML, 129–130, 542
bookmarks

creating with anchor elements, 540–541
for linking to fragments, 221–222
URL, 55

borders
basics, 168–169
border-style attribute (CSS), 444
for images, 191–192
formatting table, 236–237
frames and, 276–277
properties, 167
separating sections with, 170
table, when to use, 244

boxes, floating, 251–252
Brin, Sergey, 318
Brinkster Web hosting walkthrough, 76
broken links, 222
browsers

basics, 10
browser compatibility, XHTML and, 25
browser support for CSS, 140
browser-based uploading of files, 78–80
choosing, 11–13
feed readers in, 510
non-support of frames in, 280–281
not supporting JavaScript, 409
plug-ins, 28
spyware and, 13
windows, opening pages in new, 211

Index

Index 573

bullets (graphical) in lists, 204
business (e-commerce) Web sites, 17
business accounts, PayPal, 389
business names, domain names and, 59
buttons, fancy

button creation programs, 445–451
button element, XHTML, 544
creating, 443–445
generating button pictures, 445–451
online button-making tools, 446
rollover buttons, building, 451–458
rollover buttons, creating in

Dreamweaver, 458
rollover buttons, creating in Expression

Web, 459
Buy Now button, PayPal, 395

C
cache

defined, 147, 457
keyword, 323

calling functions (JavaScript), 415–416
captions

element, XHTML, 544
for pictures, 196–198

cascade, CSS, 147–148
case

in domain names, 58
in JavaScript events, 428

CDATA
block, 424
section (XHTML), 409

cell spans (tables), 237–239
CGI (Common Gateway Interface), 341
ChangeFont() function, 425–426
channels feature (AdSense), 372
character entities

ignoring XHTML tags with, 35
XHTML, 132–135, 561

chargebacks, PayPal and, 389
checkers, link, 225–227
cite (citation) element, XHTML, 545
class rules (CSS)

creating, 171–175
generic, 176–177

class selectors (CSS), 171
classic templates (Blogger), 531
clear property, 194
client-side applications, 405
client-side scripts, 69
clips, video. See video clips
code view, creating Web pages in, 93–96

CoffeeCup Free HTML Editor, 89
collapsible pages (DHTML), 431–434
color values

hexadecimal, 152
RGB, 152

colors
colored backgrounds, pictures on, 188–190
color-picking programs, 152–153
cols attribute, 268
link, changing with style sheets, 209
names, XHTML, 562
palette, AdSense, 370
property (CSS), 150–151
tips for Web pages, 154
Web-safe, 153

colspan attribute, 237
columns, sizing, 242–243
comments

CSS, 174
in page templates, 290–291
in XHTML documents, 43
moderating blog, 531–533

communities, Web
groups and forums. See groups and forums
mailto links, 337–339
software to manage, 337
XHTML forms and. See forms, XHTML

compression of images
defined, 184
fundamentals of, 186
in file formats, 187

configuring user profiles (blogs), 523
container elements (XHTML), 33, 113, 540
content

adding to XHTML documents, 38–39
AdSense for, 368
Content Overview (Google Analytics), 333

contextual selectors, 249–250
controls, XHTML form, 343, 550–553
cookies, defined, 325
coordinates, image map, 219
Creating a Web Site: The Missing Manual

(O’Reilly)
book outline, 3–4
downloadable examples, 4
topics covered, 1–2
use of arrows in text, 4

CSS (Cascading Style Sheets)
border-style attribute, 444
defined, 2
display property, 460
display style property, 431, 434
XHTML text elements and, 111–112

574 Creating a Web Site: The Missing Manual

Index

customizing
Blogger templates, 526–529
custom collapsible menus, 460–464
custom functions (JavaScript), 414
shopping cart pages (PayPal), 397–398
XHTML in Blogger templates, 529–531

D
Dashboard Blogger management, 519
dashes (-) in domain names, 58
declaring

functions (JavaScript), 414–415
variables (JavaScript), 410–411

default pages, defined, 212
defined term (dfn) element, XHTML, 545
defining sites

in Dreamweaver, 103–105
in Expression Web, 100–101

definition lists (text), 127–128
deleted text (del) element, XHTML, 545
description meta element, 310
design tips, 19–20
desktop feed readers, 509
dictionary description (dd) element,

XHTML, 545
dictionary list (dl) element, XHTML, 546
dictionary term (dt) element, XHTML, 546
digital audio (WAV and MP3), 474
digital video (MPEG, AVI, MOV, and

WMV), 474
directories for site searches, 312–316
display property (CSS), 431, 434, 460
dithering, defined, 153
division (div) element, XHTML

basics, 122–123
fundamentals of, 545
style sheets and, 175–176
style-based layouts and, 249
usage of, 461–463

DNS (Domain Name Service)
basics of, 56
defined, 65

documents
document object (XHTML), 421
document title (title) element, XHTML, 559
document type definitions (DTDs). See

DTDs (document type definitions)
document-relative links, 215
saving as HTML, 86

DOM (document object model), XHTML, 420
domain names

basics of, 21
choosing and obtaining, 57–59

defined (URLs), 54
free subdomain services, 65
hosting companies and, 65, 69
international, 60
registering, 60–65
searching for, 59–60

domains
forwarding, 61, 62–65
parking, 60, 62

donations, 362
double border style, 170
downloadable examples, 4
drawing programs, 189
Dreamstime, 206
Dreamweaver, Adobe

background, 90
creating rollover buttons in, 458
defining sites in, 103–105
Dreamweaver CS4: The Missing Manual

(O’Reilly), 90
page templates in, 288
uploading sites in, 105–106
utilizing page templates in, 293–295
version of page templates, 291

DTDs (document type definitions), 30–31
dynamic buttons. See rollover buttons,

creating in Expression Web
Dynamic Drive site for scripts, 438
dynamic Web pages, 426
Dynamic Web Templates, 288
Dynamic XHTML (DHTML)

collapsible pages, 431–434
Dynamic Drive site for scripts, 438
events, 426–428
image rollover events, 429–431
interactive form example, 434–437
overview of, 420
searching for scripts online, 439–440
XHTML objects, 420–427

E
e-commerce

Google AdSense. See Google AdSense
methods for making money, 362–363
Web sites, overview of, 17

editable regions in page templates, 288
editors, image, 189
effects, background sound, 481–483
elements, XHTML

basics of, 33, 539–540
block-level, 45–46
nesting, 34–35
quick reference, 539–551

Index

Index 575

emailing
blog entries with Blogger, 519
email and Web site addresses, 69
information from XHTML forms, 344–345
links to open email messages, 217

embedding
embed element (background music), 476–

482
multimedia, 473
video clips, 493–494

emphasis (em) element, XHTML, 130, 546
empty paragraphs, 117
encoding, Unicode, 134–135
encryption, 388
end tags, XHTML, 32
entities, character (XHTML), 561
E-Phonic MP3 player, 483–488
errors, checking XHTML documents for, 48–

50
euro symbol, 133
events

DHTML, 426–428
event Web sites, defined, 16
image rollover, (DHTML), 429–431

Expression Web, Microsoft
background, 90
creating interactive buttons in, 459
creating rollover buttons in, 459
defining sites in, 100–101
hyperlink viewer, 225
page templates in, 288
uploading sites in, 101–102
utilizing page templates in, 295–297
version of page templates, 292

external and internal links, 208–211
external script files, 418–420
external style sheets

defined, 138
speed of, 147

F
Facebook, 359
fancy buttons. See buttons, fancy
fancy menus. See menus, fancy
favorite icons (favicons), 308
Favorites feature (IE), 282
feed readers, 508
feedback pages, creating with forms, 345–

347
FeedDemon, 509
files

browser-based uploading of, 78–80
formats, image, 184–190
names in URL paths, 55

protocol, 217
transferring to Web servers, 78–82
types of multimedia, 473–477

Firefox browser
overview of, 12
viewing XHTML code in, 27

fixed content in templates, 288
fixed IP address, defined, 14
flaming, defined, 336
Flash

CS4 Professional (Adobe), 491
defined, 474
Kit for audio loops, 489
overview of, 491
plug-in, 483

Flash MP3 players
E-Phonic player, 483–488
Flashtrak audio loops, 489–490
overview of, 483

Flashtrak audio loops, 489–490
FlexiMusic, 481
float attribute, 376
float property, 193, 195
floating boxes, 251–252
floating images/text, 193
floating layouts, 251
folders

linking down to subfolders, 213
linking to root folders, 215–216
linking up to parent folder, 214–215
relative links and, 212–216

fonts
commonly used, 157
graphical text, 156
monospaced, 120
non-standard, 17
properties, 153–157
selecting with font-family attribute, 155–

157
sizing, 158–162

for loops, 457–458
foreign languages, special characters

and, 134–135
formatted posts, creating (blogs), 517–518
formatting

borders of tables, 236–237
inline (text), 129
vs. structuring documents, 110–111

forms, XHTML
basics, 340–343
controls, 343, 550–553
creating feedback pages with, 345–347
emailing information from, 344–345
form (interactive form) element, 340, 546
form submission services, 348

576 Creating a Web Site: The Missing Manual

Index

forms, XHTML (continued)
interactive form example (DHTML), 434–

437
overview of, 339–340
programming tools for creating, 341
server scripts and, 347–348

forums. See groups and forums
forwarding, domain, 61, 62–65
Fotolia, 206
fragments

bookmarks for linking to, 221–222
Web page, 221

frames
basics of, 266
borders and resizing, 276–277
browsers not supporting, 280–281
defined, 262
frame element, XHTML, 547
frameborder attribute, 277
link navigation and, 211
reasons to avoid, 267
scrolling in, 278–279
targeting, 274–275

framesets
creating, 267–269
element, XHTML, 547
nested, 282–287
page, creating, 267–269
placing documents in, 271–274
URLs for, 281–282
XHTML 1.0 Frameset, 31

free Web hosting, 77–78
freeware Web page editors, 86–89
FrontPage server extensions, 72
FTP (File Transfer Protocol)

servers, Web host, 534
uploading files with, 80–82

full-text search catalogs, 312
functions (JavaScript), 414–418
functions (JavaScript), defined, 408

G
gadgets (Blogger), 527–529
generic class rules (CSS), 176–177
getElementById() method, 421
GIF format

animated GIFs, 474
compression in, 187
defined, 184
linking to, 216
when to choose, 188

GIMP image editor, 189
GoldWave, 481

Google
AdWords, 320–321
Chrome browser, 12
Gears Web browser extension, 499
Google: The Missing Manual

(O’Reilly), 318
Groups, 350
PageRank system, 318
Reader, 509
Webmaster Tools, 319

Google AdSense
ads, creating, 366–373
creating targeted ads with, 377
Google-powered searches, 376–379
overview of, 363–365
placing ads in Web pages, 373–376
rules, 367
signing up for, 365–366

Google Analytics
fundamentals of, 324–325
signing up for, 326–327
Web traffic, examining, 327–333

graph of site visits (Google Analytics), 328–
329

graphical bullets in lists, 204
graphics

file formats for, 184–190
finding free graphics, 205–206
graphical text, 156, 201–203
graphical widgets for forms, 339
programs, 189
raster graphics (bitmaps), 184
sizing, 18
vector graphics, 184

groups and forums
creating, 350–353
Facebook, 359
Google Groups, 350
managing, 356–359
overview, 348–349
posting messages, 355–356
restrictions and message moderation, 358
social networking, 359

H
hard returns, 115
head (document head) element, XHTML, 548
head section, XHTML, 406
header element, XHTML, 36
headings (h1, h2...) elements, XHTML, 118,

548
height property

borders, 170
tr attribute, 243

hexadecimal color values, 152

Index

Index 577

hidden attribute (embed element), 479
hidden keywords, 312
hiding from search engines, 321–322
high color (16-bit) standard, 153
Home Networking: The Missing Manual

(O’Reilly), 58
horizontal rule (hr) element, XHTML, 119,

548
hosting

hosted blogs, 511
hosted multimedia, 473
personal blogs on Web sites, 533–535
Web, 14

hotspots
defined, 218
editors, 219

href (hypertext reference) attribute, 207, 540
HTML (Hypertext Markup Language)

editors. See Web page editors
forms, 339
htm/html extension, 29
HTML (document) element, XHTML, 549
HTML-Kit page editor, 88–89
saving documents as, 86
vs. XHTML, 25

HTML tags
<cite>, 545
<q>, 556
<td>, 558
<tt>, 560
<u>, 560

hyperlink viewer (Expression Web), 225

I
icons, favorite (favicons), 308
id attribute, 420
id selectors, 250–251
idiomatic elements (XHTML), 110
iframe (inline frame) element, XHTML, 549
images

alt attribute (alternate text), 181–182
alternate image text in site promotion, 311
background images, 198–202
backgrounds for other elements, 203
borders for, 191–192
captions for pictures, 196–198
compression of, 186, 187
editors, 189
file formats for, 184–190
finding free graphics, 205–206
for rollover buttons, 445
fundamentals of, 179
generating button, 445–451
graphical bullets in lists, 204
graphical text, 201–203

graphics programs, 189
image (img) element, XHTML, 43, 549–550
image rollover events (DHTML), 429–431
img element, 180–181, 204
inline images in text, 191
lists, using (buttons), 453–456
maps, 218, 552
picture size, 182–184
pictures on colored backgrounds, 188–190
preloading, 457–458
turning into links, 217–220
typical file sizes for, 186
wrapping text around, 192–196

iMovie (Mac), 492
include command, 264, 266
includes, server-side (SSIs), 261, 263–266
index number (arrays), 454
index.htm file name, 272
information

functions that receive, 416–417
functions that return, 418

inheritance, style (CSS), 148–150
initial state button, 447
inline elements (XHTML), 113–114, 539
inline formatting, 129
inline images in text, 191
inline styles, 139, 146–147
innerHTML property, 422
input (input control) element, XHTML, 341–

343, 550
inserted text (ins) element, XHTML, 551
interactive buttons (Expression Web), 458
interactive form example (DHTML), 434–437
internal and external links, 208–211
internal style sheets, 138, 144, 557
international domain names, 60
Internet

defined, 10
vs. Intranet, 58
vs. World Wide Web, 10

Internet commerce
Amazon Associates. See Amazon Associates
PayPal merchant tools. See PayPal merchant

tools
Internet Explorer

overview of, 11
security quirk, 211
security warnings in, 409

Intranet vs. Internet, 58
invisible tables, defined, 229
IP addresses, defined, 14, 325
ISPs (Internet Service Providers), 72, 332
iStockPhoto, 206
italic text (i) element, XHTML, 129–130, 549
iTunes, converting WAV to MP3 with, 481

578 Creating a Web Site: The Missing Manual

Index

J
Java

applets, defined, 28
Checkers, 28

JavaScript
browsers not supporting, 409
Dynamic XHTML (DHTML) support. See

Dynamic XHTML (DHTML)
external script files, 418–420
framesets and, 282
functions, 414–418
overview of, 403–404
programming with, 341
references online, 414
script element, 406–410
script resources online, 437–439
scripts and scripting languages, 405
spaces and line breaks in, 410
variables, 410–413

Jen, Mark, 508
JPEG format

compression in, 187
defined, 184
linking to, 216
when to choose, 188

justify setting, text, 164

K
keyword meta element, 311–312
keyword sizing (fonts), 159
keyword tricks, 312

L
large text, defined, 159
layering (style-based layouts), 255–257
layouts, ad (AdSense), 370
layouts, page

floating, 251
invisible tables, defined, 229
overview of, 229–230
pages sizes, testing, 232
resolution basics, 232
screen space and sizing, 230–231
style-based. See style-based layouts
tables. See tables

Liberty, Jesse, 349
line breaks

element (br), XHTML, 116–117, 544
in JavaScript, 410

lines, horizontal, 119
linking

to fragments with bookmarks, 221–222

to multimedia, 472
to non-XHTML content, 216–217
to video clips, 493–494

links (hyperlinks)
anchor (a) element, 207–208
broken, 222
browser redirects, 227–228
changing colors with style sheets, 209
checkers, 225–227
document-relative, 215
for useful web sites by chapter, 563
generating Amazon Associates, 382–387
internal and external, 208–211
link (document relationship) element,

XHTML, 552
link-building tools (Amazon), 384
mailto, 337–339
navigation and frames, 211
product (Amazon), 383–384
reciprocal, 303–304
relative links and folders, 212–216
relative URLs, rules for, 217
root-relative, 215
rot, 223
site management to review, 223–225
turning images into, 217–220
units (AdSense), 370
validators, 223

lists
graphical bullets in, 204
list item (li) element, XHTML, 123, 552
list-style-image property, 204
list-style-type style property, 126
nesting, 128
ordered (text), 123, 124–127
unordered (text), 123, 126

live bookmarks feature (Firefox), 510
logical elements (XHTML), 110
logs, Web server, 323
loops, Flashtrak audio, 489–490
lossy/lossless compression, 184, 187
Lynx browser, 13

M
Macromedia Fireworks, 189
mailto links, 337–339, 344
maps

element (image map), XHTML, 218, 552–
553

image, 218
Map Overlay (Google Analytics), 330

margins
for td and tr elements, 240
property, 165

Index

Index 579

marking up documents, 33
medium font size, defined, 159, 160
menus, fancy

creating, 459–460
custom collapsible menus, 460–464
third-party menus, 464–469

messages
moderating group, 358
posting to groups, 355–356

meta elements
creating redirects with, 228
description meta element, 310
keyword meta element, 311–312
metadata, XHTML, 553
overview of, 309–310

metadata, defined, 100
Microsoft

Expression Web. See Expression Web,
Microsoft

Office SharePoint Designer, 90
MIDI (Musical Instrument Digital Interface)

files
defined, 474
finding, 480

MiniDV camcorder, 491
mobile content, AdSense for, 368
moderating

blog comments, 531–533
group messages, 357, 358

modifying variables (JavaScript), 411
money

methods for making, 362–363
withdrawing through PayPal, 398–399

monitors, compatibility and, 17
monochrome use of color, 153
monospaced fonts, 120, 132
mouse-over state button, 447
Movable Type, 510
MP3 and WAV files, 474, 480
MPEG-4 quality settings, 493
multimedia

background music. See background music
embedding, 473
Flash MP3 players. See Flash MP3 players
hosted, 473
linking to, 472
overview of, 471
types of files, 473–477
video clips. See video clips

multipart pages
basics of, 262–263
frames and. See frames
overview of, 261–262

page templates. See page templates
server-side includes (SSIs), 263–266

multiple views of XHTML documents, 93
music

background. See background music
synthesized (MIDI), 474

N
name attribute (form controls), 344
namespace, XHTML, 36
naming AdSense units, 373
NavBar, 528
navigation, link, 211
negative margins, 165
nesting

elements (XHTML), 34–35
lists, 128
nested framesets, 282–287
nested tables, 247

netizen, defined, 336
NetNewsWire (Mac), 509
Netscape Navigator browser, 13
news aggregators, 508
NewsGator, 509
noframes (frames alternate content) element,

XHTML, 280, 553
nonbreaking spaces, 115
noresize attribute, 277
noscript (alternate script content) element,

XHTML, 409, 553
numbers

in variables, 411
Number() function (JavaScript), 435

numeric variables, operations on, 411
Nvu page editor, 87

O
objects

fundamentals of, 421
object element (embedded object),

XHTML, 554
object element, to play sound, 478
object parameter (param) element,

XHTML, 555
online button-making tools, 446
Open Directory Project (ODP), 313–315
Opera browser, 12
operations on numeric variables, 411
option (menu option) element, XHTML, 346,

554
ordered list (ol) element, XHTML, 124–127,

554

580 Creating a Web Site: The Missing Manual

Index

P
padding

defined, 169
property (td/tr elements), 240

page templates
anatomy of, 290–293
creating new, 288–290
defined, 262
drawbacks of, 287
Dreamweaver version of, 291
Expression Web version of, 292
fundamentals of, 288
in Dreamweaver, 288
in Expression Web, 288
overview of, 287–288
utilizing, 293–297

Page, Larry, 318
Paint.net image editor, 189
paragraphs

empty, 117
paragraph (p) element, XHTML, 37, 114–

115, 555
param (object parameter) element,

XHTML, 555
parking, domain, 60, 62
paths, defined (URLs), 54
pay-for-content sites, 363
PayPal merchant tools

accepting payments, 390–395
chargebacks and, 389
overview of, 387–388
shopping cart service, 395–398
signing up, 388–390
withdrawing money, 398–399

PDF files, linking to, 216
percentage sizing (fonts), 160–161
personal accounts, PayPal, 388
personal Web sites, 15
physical elements (XHTML), 111
pictures

captions for, 196–198
generating button, 445–451
in XHTML documents, 42–45
on colored backgrounds, 188–190
size of, 182–184
typical file sizes of, 186

pitch range property, 140
pixels

sizing (fonts), 162
transparent, 188

playlists, creating (E-Phonic Player), 485–
488

plug-ins, browser, 28

PNG format
compression in, 187
defined, 184
linking to, 216
when to choose, 188

POP (Post Office Protocol), defined, 70
pop-up blockers, 211
positioning

absolute, 253–254
relative, 258–260

posting messages to groups, 355–356
posts, creating formatted (blogs), 517–518
pre value (white-space property), 167
preferences, font, 154
preformatted text

basics of, 119–120
element (pre), XHTML, 555

preloading, image, 457–458
premier accounts, PayPal, 389
product links (Amazon), 383–384
promoting blogs, 535
promotion Web sites, defined, 16
properties

float, 193
fonts, 153–157
of CSS rules, 141
text alignment/spacing, 163–167
XHTML object, 422, 428

proportional sizing (layouts), 230
protocols, defined (URL), 54
pseudo-selectors, 209
public service ads (Google), 370

Q
q (short quotation) element, XHTML, 556
query strings, URL, 55
quotation marks (“ ”) for text strings, 411
quotations (blockquote element), 121–122

R
radio buttons, 345
rankings, improving site, 318
raster graphics (bitmaps), 184
Rbrowser FTP program (Mac), 82
reciprocal links, 303–304
recording videos, 492
redirects, browser, 227–228
re-encoding videos, 492–493
references

JavaScript online, 414
style sheets online, 260
XHTML elements quick reference, 539–551

registering domain names, 60–65

Index

Index 581

relative links, folders and, 212–216
relative positioning, absolute positioning

and, 258–260
relative sizing

fonts, 161–162
tables, 240

relative URLs
defined, 210
rules for, 217

reports, AdSense, 368
reserved target names (XHTML), 275
resizing frames, 276–277
resolution, screen, 232
restrictions, group, 358
résumé, 16
return command (JavaScript), 418
return visitors, Web site, 307–308
RGB (red-green-blue) color standard, 152,

153
rings, Web, 305
robots meta element, 322
rollover buttons

building, 451–458
creating in Dreamweaver, 458
creating in Expression Web, 459
fundamentals of, 445

rollover events, image (DHTML), 429–431
root folders, linking to, 215–216
root-relative links, 215
rot, link, 223
rows

attribute, 268
rowspan attribute, 239
sizing, 243

rules
creating class (CSS), 171–175
Google AdSense, 367
style sheet, 138, 140–142

S
Safari

Bookshelf, 5
browser, 12

SafeSearch option (Google), 378
saving documents as HTML, 86
Schneier, Bruce, 507
screen space, 230–231
screen-reading programs, 181
scripts

and scripting languages, 405
DHTML from Dynamic Drive site, 438
DHTML, searching online, 439–440
external script files (JavaScript), 418–420

JavaScript online, 437–439
script (client-side script) element,

XHTML, 406–410, 556
text animation, 426
using XHTML objects in, 423–426
XHTML and, 408–409

scrolling frames, 278–279
search engines

Google AdWords, 320–321
Google PageRank system, 318
Google Webmaster Tools, 319
hiding from, 321–322
improving rankings in, 318
overview of, 316–317
site permanence and, 323
workings of, 310

searching
AdSense for, 368
for domain names, 59–60
for scripts online, 439–440
Google-powered, 376–379

security warnings in IE, 409
select (selectable list) element, XHTML, 343,

556
selectors

class (CSS), 171
contextual, 249–250
defined (CSS), 141
id, 250–251

self-hosted blogs, 510
self-promotion of Web sites, 306–307
semantic Web, 111
server scripts, 347–348
servers, Web. See Web servers
server-side

applications, 404
includes (SSIs), 261, 263–266
scripts, defined, 69
scripts, need for, 71

setTimeout() function, 425
shaded backgrounds, 154
shaded boxes, 154
shape attribute, 219
SharePoint Designer, Microsoft Office, 90
shareware Web page editors, 86–89
shopping cart service (PayPal), 395–398
short quotation (q) element, XHTML, 556
Silverlight, Microsoft, 494
sites

management to review link structure, 223–
225

permanence of, 323
Site Usage (Google Analytics), 330
Web. See Web sites

582 Creating a Web Site: The Missing Manual

Index

size
attribute, menus and, 347
keywords (fonts), 159
of pictures, 182–184, 186

sizing
absolute (tables), 240
columns, 242–243
fonts, 158–162
pages, 230–231
proportional (layouts), 230
relative (tables), 240
rows, 243
tables, 240–241

small (small text) element, XHTML, 557
small font size, defined, 160
social networking, 359
sound effects, background, 481–483
Sound Recorder (Windows), 480
source code (XHTML page), 24–27
source pages, defined, 212
spaces

in JavaScript, 410
nonbreaking, 115
spacing of text, 165

spam, comment, 531
span (generic inline container) element,

XHTML, 122–123, 197–198, 461–
463, 557

spanning, defined (tables), 237
spans, cell (tables), 237–239
special characters

foreign languages and, 134–135
XHTML, 132–135

split window page editors, 85
Spybot Search & Destroy, 13
spyware

basics of, 13
overview of, 13

src (source) attribute, 44, 181, 429
standalone elements (XHTML), 33, 113, 540
start tags, XHTML, 32
statistics, Web site, 70
stock photography, 206
Stock.XCHNG, 206
strikethrough (strike) element, 131
strings, defined (JavaScript), 408
strong (strong emphasis) element,

XHTML, 130, 557
structuring

text in XHTML documents, 39–42
vs. formatting documents, 110–111

style sheets (CSS)
alignment of text, 163–168
alternatives to, 139
applying, 142–144

background-color property, 150–151
basics of, 138
border basics, 168–169
border properties, 167
borders to separate sections, 170
browser support for CSS, 140
cascade, 147–148
changing link colors with, 209
class rules, creating, 171–175
class selectors, 171
color property, 150–151
color tips for Web pages, 154
color values, hexadecimal, 152
color values, RGB, 152
color-picking programs, 152–153
creating for entire Web sites, 177–178
creating with Web page editors, 145
div element to save time, 175–176
external style sheets, speed of, 147
fonts. See fonts
generic class rules, 176–177
inheritance, style, 148–150
inline styles, 146–147
internal style sheets, 144
overview of, 137
resources on Internet, 260
rules, 140–142
spacing of text, 165
style (internal style sheet) element,

XHTML, 557
text-decoration style sheet property, 434
Web-safe colors, 153
white-space property, 166–167

style-based layouts
absolute and relative positioning, 258–260
absolute positioning, 253–254
contextual selectors, 249–250
defined, 229
div element, 249
floating boxes, 251–252
id selectors, 250–251
layering, 255–257
overview of, 247–249
style sheet resources, 260

styles
inline, 146–147
types of, 138–139

subdomains
defined, 64
free service, 65

subfolders
linking down to, 213
naming and moving, 213

subscript (sub) element, XHTML, 131, 558
Sullivan, Andrew, 507

Index

Index 583

superscript (sup) element, XHTML, 131, 558
Synchronize button (Dreamweaver), 106
syndication, blogs, 508–510
synthesized music (MIDI), 474

T
tables

anatomy of, 233–235
cell spans, 237–239
defined, 233
formatting borders of, 236–237
invisible, defined, 229
nested, 247
organizing pages with, 243–247
sizing/aligning, 239–243
table data cell (td) element, XHTML, 559
table element, XHTML, 558
table header cell (th) element, XHTML, 559
table row (tr) element, XHTML, 560

tags, XHTML. See XHTML tags
target attribute (anchor element), 211, 274,

540
target pages, defined, 212
targeted ads, creating (AdSense), 377
targeting frames, 274–275
td (table data cell) element, XHTML, 234, 559
team blogs, creating, 525
tech support, live chat, 71
teletype (tt) element, XHTML, 132, 560
templates, Blogger

applying new, 525
classic templates, 531
customizing, 526–529
customizing XHTML in, 529–531

templates, page. See page templates
testing page sizes, 232
text

alignment of (CSS), 163–168
alternate image text in site promotion, 311
collapsible, 431–434
graphical, 156, 201–203
inline images in, 191
spacing of (CSS), 165
structuring in XHTML documents, 39–42
text animation scripts, 426
text-align property, 164
text-based page editors, 85
text-decoration style property, 130, 434
vertical text alignment, 244
wrapping around images, 192–196

text elements, XHTML
block elements, 113–114
container elements, 113
CSS and, 111–112

definition lists, 127–128
div (division) element, 122–123
emphasis (em) element, 130
empty paragraphs, 117
headings, 118
horizontal line (hr) element, 119
inline elements, 113–114
inline formatting, 129
italics/bold/underline elements, 129–130
line break (br) element, 116–117
list elements, 123
logical structuring vs. physical

formatting, 110–111
nesting lists, 128
nonbreaking spaces, 115
non-English languages and, 134–135
ordered list (ol) element, 124–127
ordered lists, 123
overview of, 109–110
paragraphs, 114–115
preformatted text, 119–120
quotations (blockquote element), 121–122
span element, 122–123
special characters, 132–135
standalone elements, 113
strong element, 130
subscript/superscript/strikethrough

elements, 131
teletype (tt) element, 132
textarea (multiline text input) element,

XHTML, 343, 559
tips for good use of, 124
unordered list (ul) element, 126
unordered lists, 123

th (table header cell) element, XHTML, 234,
559

third-party menus, 464–469
this keyword, 455
thumbnails, 183
tiled backgrounds, 198
TinyURLs, 74
title (document title) element, XHTML, 37,

311, 559
title attribute, 181
toggling, defined, 432
Top Navigational Bar III

defining menu for, 466–469
downloading, 465–466
placing menu on page, 469
variables for, 466–469

topical Web sites, defined, 16
top-level domains, 59
tr (table row) element, XHTML, 233, 560
tracking site visitors, 323–324
trackList element (E-Phonic Player), 486

584 Creating a Web Site: The Missing Manual

Index

traffic
examining Web, 327–333
Traffic Sources Overview (Google

Analytics), 331
traffic virus, 307

transitional XHTML, defined, 30
transparent pixels, 188
tree model of Web pages, 41
trolling, defined, 336
true color (24-bit) standard, 153
tt (teletype text) element, XHTML, 560
type attribute

input controls and, 341
input element and, 550
unordered lists and, 126

type selectors
defined, 142
vs. class selectors, 171

TypePad, 511
typographic elements (XHTML), 111

U
underlined text (u) element, XHTML, 129–

130, 560
Unicode encoding, 134–135
universal standards, 39
unordered list (ul) element, XHTML, 126,

148, 560
updating Web sites, 18–19, 308
uploading

browser-based files, 78–80
files with FTP, 80–82
sites in Dreamweaver, 105–106
sites in Expression Web, 101–102
video clips to YouTube, 497–499

URLs (Uniform Resource Locators)
absolute, defined, 210
basics, 54–55
blogspot, 514
browser use, 55–57
frames and, 267
relative, defined, 210
rules for relative, 217
TinyURLs, 74

usemap attribute, 220, 550
user profiles, configuring (blogs), 523

V
validating Web pages

link validators, 223
validation tool, defined, 48
with www.validome.org, 49–50

values
of CSS rule properties, 141
value attribute (input element), 343, 344

variables
defined (JavaScript), 410–413
operations on numeric, 411
var keyword, 410

vector graphics, 184
vertical text alignment, 244
vertical-align property (text), 191
video blogging, 494
video clips

linking to and embedding, 493–494
preparing, 491–493
uploading to YouTube, 497–499

videos
AdSense for video units, 369
digital (MPEG/AVI/MOV/WMV), 474
formats for YouTube, 496
preparing for YouTube, 496
watching YouTube, 499–502

views
creating Web pages in code view, 93–96
creating Web pages in WYSIWYG view, 96
multiple views of XHTML documents, 93
View Cart button, creating (PayPal), 398

virus, traffic, 307
visitors, tracking site, 323–324
visual composer (Blogger), 518

W
watermarks, background, 199
WAV and MP3 files, 474, 480
Wayback Machine, 323
Web applications, multipart pages and, 263
Web Developer toolbar (Firefox add-on), 232
Web hosting

assessing features offered, 68–72
checklist, 70–72
choosing providers, 72–78
companies providing, 73–75
determining Web space/bandwidth

requirements, 71
domain names and, 65
free Web hosts, 77–78
from one’s own server, 14
FTP access, 80–82
TinyURLs, 74
types of packages, 67
URL basics, 54–55
URLs, browser use of, 55–57
WebHostingTalk, 73

Index

Index 585

Web page editors
Adobe Dreamweaver, 90
creating style sheets with, 145
creating Web pages in code view, 93–96
creating Web pages in WYSIWYG view, 96–

99
defining sites in Dreamweaver, 103–105
defining sites in Expression Web, 100–101
finding freeware/shareware versions, 86–89
launching and opening, 91–93
managing Web sites with, 99
Microsoft Expression Web, 90
mid-level, 91
multiple views of XHTML documents, 93
qualities of good ones, 84–85
types of, 85
uploading sites in Dreamweaver, 105–106
uploading sites in Expression Web, 101–102

Web pages
adding E-Phonic MP3 Player to, 487–488
collapsible (DHTML), 431–434
color tips for, 154
creating in code view, 93–96
creating in WYSIWYG view, 96–99
defined, 23
dynamic, 426
formatting with XHTML elements, 139
organizing with tables, 243–247
overview of, 23
placing ads in (Google AdSense), 373–376
sizing overview, 230–231
testing sizes of, 232
XHTML. See XHTML

Web program hosting packages, 67
Web resources, 566
Web rings, 305
Web servers

logs, 323
overview of, 13

Web sites
adding groups and forums to. See groups

and forums
awareness of audience for, 17–18
components of, 20–21
creating style sheets for, 177–178
defining in Dreamweaver, 103–105
defining in Expression Web, 100–101
hosting personal blogs on, 533–535
incompatibility cautions, 17–18
lifespan of, 18–19
making money with. See e-commerce
managing with Web page editors, 99
preserving old, 323
promotion of, 16
regular updating of, 308

requirements for creating, 2
return visitors to, 307–308
simplified creation packages, 67
standard hosting packages, 67
tips for good design of, 19–20
transforming into community, 335–337
types of, 14–17
updating tips, 18–19
uploading in Dreamweaver, 105–106
uploading in Expression Web, 101–102

Web sites, defined, 16
Web sites, for downloading

Audacity (Mac), 480
background images, 199
blogging software, 510
ButtonGenerator Web site, 445–451
Classical MIDI Archives, 480
color-picking programs online, 152
Dreamweaver, 90
Dynamic Drive for DHTML scripts, 438
E-Phonic MP3 player, 483
Expression Web, 90
Flash Kit for audio loops, 489
Flash plug-in, 483
free clip art from Microsoft, 206
free sound effects, 483
freeware and shareware, 86
GIMP image editor, 189
Google Chrome browser, 12
Google Gears Web browser extension, 499
graphics search tool, 205
graphics, commercial, 206
HTML-Kit page editor, 88
Internet Explorer, 11
JavaScript scripts, 437–439
Netscape Navigator, old versions, 13
online button-making tools, 446
Paint.net image editor, 189
Rbrowser FTP program (Mac), 82
server scripts on Web, 348
shareware for recording/converting sound

files, 481
Spybot Search and Destroy, 13
Stock.XCHNG for free graphics, 206
text animation scripts, 426
validator at www.validome.org, 49
Web Developer toolbar (Firefox add-

on), 232
Windows Defender, Microsoft, 13

Web sites, for further information
AdSense policy and rules, 367
Amazon Associates tools, 382
Amazon logos and banners, 382
article on finding free photographs, 206
ASP (Active Server Pages), 341

586 Creating a Web Site: The Missing Manual

Index

Web sites, for further information
(continued)

ASP.NET, 341
blog examples of interest, 507
blog jargon, 507
Blogger, 16, 512
browser feed readers, 510
browser usage statistics, 13
browsers for Macs, 12
catalog of free Web hosts, 78
CGI (Common Gateway Interface), 341
CSS Web browser compatibility charts, 140
desktop feed readers, 509
examples of bad Web sites, 19
feed readers, 509
Flash games, 28
Flash online tutorials and games, 491
font usage, 158
form submission services, 348
forms, 347
framesets and JavaScript, 282
Google AdSense, 365
Google AdWords, 320
Google Analytics, 327
Google Groups, 350
Google Webmaster Tools, 319
history of Internet, 10
hosted blog providers, 511
Java Checkers, 28
JavaScript references, 414
link-building tools (Amazon), 384–387
links by book chapter, 563
Open Directory Project (ODP), 313, 314
PageRank, 318
PayPal, 388
PayPal and chargebacks, 389
PayPal fees and rates, 389
remove URL feature (Google), 323
robots, 322
search engines, 317
semantic Web, 111
special characters, XHTML, 134
style sheet resources, 260
templates in Expression Web (ebook), 297
video window markup parameters, 502
Wayback Machine, 323
Web hosting advice, 73
Wikipedia, 87
Wikipedia blog summary, 512
www.missingmanuals.com, 4, 4–5
XHTML element supported properties, 422
XHTML entities, 561
XHTML-based standards, 31
Yahoo directory, 316

Web sites, promoting
alternate image text, 311
directories, 312–316
favorite icons (favicons), 308
Google Analytics. See Google Analytics
keyword tricks, 312
meta elements, adding. See meta elements
planning for, 301–302
reciprocal links, 303–304
return visitors, 307–308
search engines. See search engines
self-promotion, 306–307
title elements, use of, 311
tracking visitors, 323–324
Web rings, 305
Web search engines, 310

Web space
and bandwidth requirements, 71
defined, 68

Web traffic, examining, 327–333
Webmaster Tools, Google, 319
Web-safe colors (CSS), 153
Wheaton, Wil, 507
white text, avoiding, 154
white-space property (CSS), 166–167
width property

borders, 170
columns, 242

width/height attributes (img element), 183–
184

Windows, Microsoft
Defender, 13
Live Spaces, 511
Movie Maker, 492
Windows Vista: The Missing Manual

(O’Reilly), 492
WordPress, 510
World Wide Web

background, 9–10
browsers, 10–13
vs. the Internet, 10
Web servers and, 13

wrapping text around images, 192–196
WYSIWYG

page editors, 85
view, creating Web pages in, 96–99

X
XHTML

1.0 strict, 31
1.0 transitional, 31
character entities, 561
color names, 562
customizing in Blogger templates, 529–531

Index

Index 587

defined, 1
DOM, 420
Dynamic (DHTML). See Dynamic XHTML

(DHTML)
flavors of, 31
forms. See forms, XHTML
linking to non-XHTML content, 216–217
mid-level editors, 91
multiple views of documents, 93
namespace, 36
objects, 420–427
overview of, 24
reserved target name, 275
scripts and, 408–409
source content of pages, 24–27
vs. HTML, 25

XHTML documents
adding content, 38–39
basic structure, 36–38
checking for errors, 48–50
comments and, 43
pictures and, 42–45
structuring text, 39–42

XHTML elements
basics of, 539–540
formatting Web pages with, 139
quick reference, 539–551

XHTML files
creating, 27–29
document type definitions (DTDs), 30–31

XHTML tags
defined, 24
elements. See elements (XHTML)
fundamentals of, 32–33
ignoring with character entities, 35

x-large text, defined, 159
x-small text, defined, 161

Y
Yahoo directory, 315–316
YouTube

bit rates and video quality, 497
overview of, 494–495
preparing videos for, 496
signing up with, 495–496
uploading videos to, 497–499
watching videos, 499–502

Z
zero-based numbering (arrays), 454
z-index number, 255–257

Colophon
Sumita Mukherji and Adam Witwer provided quality control for Creating a Web
Site: The Missing Manual, Second Edition.

The cover of this book is based on a series design originally created by David
Freedman and modified by Mike Kohnke, Karen Montgomery, and Fitch
(www.fitch.com). Back cover design, dog illustration, and color selection by Fitch.

David Futato designed the interior layout, based on a series design by Phil Simp-
son. This book was converted by Abby Fox to FrameMaker 5.5.6. The text font is
Adobe Minion; the heading font is Adobe Formata Condensed; and the code font
is LucasFont’s TheSansMonoCondensed. The illustrations that appear in the book
were produced by Robert Romano and Jessamyn Read using Macromedia Free-
Hand MX and Adobe Photoshop CS.

	Table of Contents
	The Missing Credits
	About the Author
	About the Creative Team
	Acknowledgments
	The Missing Manual Series

	Introduction
	What You Need to Get Started
	About This Book
	Macintosh and Windows
	About the Outline
	About › These › Arrows
	Downloadable Examples
	About MissingManuals.com
	Safari® Books Online

	Preparing for the Web
	Introducing the World Wide Web
	Browsers
	Choosing your Web browser

	Web Servers

	Planning a Web Site
	Types of Sites
	Understanding Your Audience
	The Lifespan of Your Site
	Practice Good Design

	The Ingredients of a Web Site

	Creating Your First Page
	The Anatomy of a Web Page
	Cracking Open an XHTML Document
	Creating Your Own XHTML Files
	The Document Type Definition

	XHTML Tags
	What’s in a Tag
	Understanding Elements
	Nesting Elements

	The XHTML Document
	The Basic Skeleton
	Adding Content
	Structuring Text
	Where Are All the Pictures?
	The 10 Most Important Elements (and a Few More)
	Checking Your Pages for Errors

	Putting Your Page on the Web
	How Web Hosting Works
	Understanding the URL
	How Browsers Analyze a URL

	Domain Names
	Getting the Right Name
	Searching for a Name
	Registering Your Name
	Domain parking
	Domain forwarding

	Free Domain Names

	Getting Web Space
	The Big Picture
	Assessing Your Needs
	A Web Host Checklist

	Choosing Your Host
	Your ISP (Internet Service Provider)
	Web hosting companies
	A Web host walkthrough (#1)
	A Web host walkthrough (#2)

	Free Web Hosts

	Transferring Files
	Browser-Based Uploading
	FTP

	Power Tools
	Choosing Your Tools
	Types of Web Page Editors
	Finding a Free Web Page Editor
	Nvu
	Amaya
	HTML-Kit
	CoffeeCup Free HTML Editor

	Professional XHTML Editors

	Working with Your XHTML Editor
	Starting Out
	Multiple Views
	Creating a Web Page in Code View
	Creating a Web Page in WYSIWYG View
	Managing a Web Site
	Defining a site in Expression Web
	Uploading a site in Expression Web
	Defining a site in Dreamweaver
	Uploading a site in Dreamweaver

	XHTML Text Elements
	Understanding Text and the Web
	Logical Structure vs. Physical Formatting
	CSS (Cascading Style Sheets)

	XHTML Elements for Basic Text
	Paragraphs
	Line Breaks
	Headings
	Horizontal Lines
	Preformatted Text
	Quotes
	Divisions and Spans

	XHTML Elements for Lists
	Ordered Lists
	Unordered Lists
	Definition Lists
	Nesting Lists

	Inline Formatting
	Italics, Bold, and Underline
	Emphasis and Strong
	Subscript, Superscript, and Strikethrough
	Teletype
	Special Characters
	Non-English Languages

	Style Sheets
	Style Sheet Basics
	The Three Types of Styles
	Browser Support for CSS
	The Anatomy of a Rule
	Applying a Style Sheet
	Internal style sheets
	Inline styles

	The Cascade
	Inheritance

	Colors
	Specifying a Color
	Hexadecimal color values
	RGB color values

	Finding the Right Color

	Fonts
	Specifying a Font
	Finding the Right Font
	Font Sizes
	Keyword sizing
	Percentage sizing
	Relative sizing
	Pixel sizing

	Text Alignment and Spacing
	Alignment
	Spacing
	White Space

	Borders
	Basic Borders
	Making Better Borders
	Using Borders to Separate Sections

	Class Selectors
	Creating Class Rules
	Saving Work with the <div> Element
	More Generic Class Rules
	Creating a Style Sheet for Your Entire Web Site

	Adding Graphics
	Understanding Images
	The Element
	Alternate Text
	Picture Size
	File Formats for Graphics
	Compression
	Choosing the right image format

	Putting Pictures on Colored Backgrounds

	Images and Styles
	Inline Images in Text
	Borders
	Wrapping Text Around an Image
	Adding Captions
	Background Images
	Background “watermarks”

	Techniques with Graphics
	Graphical Text
	Backgrounds for Other Elements
	Graphical Bullets in a List

	Finding Free Art

	Linking Pages
	Understanding the Anchor
	Internal and External Links
	Relative Links and Folders
	Moving down into a subfolder
	Moving up into a parent folder
	Moving to the root folder

	Linking to Other Types of Content

	Image Links and Image Maps
	Adding Bookmarks
	When Good Links Go Bad
	Site Management
	Link Checkers
	Using Redirects

	Page Layout Tools
	The Challenge of Screen Space
	Testing Different Page Sizes

	Tables
	The Anatomy of a Table
	Formatting Table Borders
	Cell Spans
	Sizing and Aligning Tables
	Sizing a table
	Sizing a column
	Sizing a row

	Organizing a Page with Tables

	Style-Based Layout
	Structuring Pages with the <div> Element
	Even Better Selectors
	Contextual selectors
	id selectors

	Floating Boxes
	Absolute Positioning
	Layering
	Combining Absolute and Relative Positioning

	Multipart Pages
	Understanding Multipart Pages
	Server-Side Includes
	Frame Basics
	Creating a Frames Page
	Putting Documents in a Frameset
	Targeting Frames

	Building Better Frames Pages
	Frame Borders and Resizing
	Scrolling
	Handling Browsers That Don’t Support Frames
	Better URLs for Framesets
	Nested Framesets
	Another Way to Nest Frames

	Page Templates
	Understanding Page Templates
	Creating a New Page Template
	The Anatomy of a Page Template
	Using a Page Template

	Attracting Visitors
	Your Web Site Promotion Plan
	Spreading the Word
	Reciprocal Links
	Web Rings
	Shameless Self-Promotion
	Return Visitors

	Adding Meta Elements
	The Description Meta Element
	The Keyword Meta Element

	Directories and Search Engines
	Directories
	The Open Directory Project
	The Yahoo directory

	Search Engines
	Rising up in the rankings
	The Google Webmaster Tools
	Google AdWords
	Hiding from search engines

	Tracking Visitors
	Understanding Google Analytics
	Signing Up for Google Analytics
	Examining your Web Traffic
	Graph of Visits
	Site Usage
	Map Overlay
	Traffic Sources Overview
	Content Overview

	Letting Visitors Talk to You (and Each Other)
	Transforming a Site into a Community
	Helping Visitors Email You
	Mailto Links
	XHTML Forms
	Form basics
	Mailing a form
	Creating a more complex form
	More reliable forms with server scripts

	Adding Forums and Groups to Your Site
	About Google Groups
	Creating a Group
	Participating in a Group
	Managing Your Group

	Making Money with Your Site
	Money-Making the Web Way
	Google AdSense
	Signing Up for AdSense
	Creating an Ad
	Placing Ads in Your Web Pages
	Google-Powered Searches

	Amazon Associates
	Signing Up As an Associate
	Generating Associate Links
	Product links
	Advanced links

	PayPal Merchant Tools
	Signing Up with PayPal
	Accepting Payments
	Building a Shopping Cart
	Creating a custom page style
	Generating the shopping cart buttons

	Withdrawing Your Money

	JavaScript: Adding Interactivity
	Understanding JavaScript
	Server-Side and Client-Side Programming
	Scripting Languages

	JavaScript 101
	The <script> Element
	Scripts and XHTML
	Browsers that don’t support JavaScript

	Variables
	Declaring variables
	Modifying variables
	An example with variables

	Functions
	Declaring a function
	Calling a function
	Functions that receive information
	Functions that return information

	External Script Files

	Dynamic XHTML
	XHTML Objects
	Using XHTML objects in a script

	Events
	Image Rollovers
	Collapsible Text
	An Interactive Form

	Scripts on the Web
	Finding a Cool Script

	Fancy Buttons and Menus
	Creating Fancy Buttons
	Generating Button Pictures
	Building a Rollover Button
	Using image lists
	Preloading images

	Creating Rollover Buttons in Dreamweaver and Expression Web

	Creating Fancy Menus
	Do-It-Yourself Collapsible Menus
	Third-Party Menus
	Getting the script
	Creating the menu
	Placing the menu on a page

	Audio and Video
	Understanding Multimedia
	Linking, Embedding, and Hosting
	Types of Multimedia Files

	Background Music
	The <embed> Element
	Embedded audio options
	Other audio formats

	Sound Effects

	Flash MP3 Players
	The E-Phonic Player
	Create a playlist
	Adding the player to a Web page

	Flashtrak Loops

	Video Clips
	Preparing Video
	Linking to and Embedding Video
	Uploading Your Videos to YouTube
	Signing up with YouTube
	Preparing a video
	Uploading a video
	Watching a video

	Blogs
	Understanding Blogs
	Syndication
	Blog Hosting and Software

	Getting Started with Blogger
	Creating a Blog
	Creating Formatted Posts

	Managing a Blog
	Tweaking a Few Common Settings
	Configuring Your Blogger Profile
	Templates
	Applying a new template
	Customizing your template
	Customizing the XHTML in a template

	Moderating Comments
	Hosting Your Blog on Your Web Site

	XHTML Quick Reference
	XHTML Elements
	<a> (Anchor Element)
	<acronym>
	<address>
	<area> (Image Map)
	 (Bold Text)
	<base> (Base URL)
	<big> (Large Text)
	<blockquote> (Block Quotation)
	<body> (Document Body)
	
 (Line Break)
	<button> (Button)
	<caption> (Table Caption)
	<cite> (Citation)
	<dd> (Dictionary Description)
	 (Deleted Text)
	<dfn> (Defined Term)
	<div> (Generic Block Container)
	<dl> (Dictionary List)
	<dt> (Dictionary Term)
	 (Emphasis)
	<form> (Interactive Form)
	<frame> (Frame)
	<frameset> (Frameset)
	<h1>, <h2>, <h3>, <h4>, <h5>, <h6> (Headings)
	<head> (Document Head)
	<hr> (Horizontal Rule)
	<html> (Document)
	<i> (Italic Text)
	<iframe> (Inline Frame)
	 (Image)
	<input> (Input Control)
	<ins> (Inserted Text)
	 (List Item)
	<link> (Document Relationship)
	<map> (Image Map)
	<meta> (Metadata)
	<noframes> (Frames Alternate Content)
	<noscript> (Alternate Script Content)
	<object> (Embedded Object)
	 (Ordered List)
	<option> (Menu Option)
	<p> (Paragraph)
	<param> (Object Parameter)
	<pre> (Preformatted Text)
	<q> (Short Quotation)
	<script> (Client-Side Script)
	<select> (Selectable List)
	<small> (Small Text)
	 (Generic Inline Container)
	 (Strong Emphasis)
	<style> (Internal Style Sheet)
	<sub> (Subscript)
	<sup> (Superscript)
	<table> (Table)
	<td> (Table Data Cell)
	<textarea> (Multiline Text Input)
	<th> (Table Header Cell)
	<title> (Document Title)
	<tr> (Table Row)
	<tt> (Teletype Text)
	<u> (Underlined Text)
	 (Unordered List)

	XHTML Character Entities
	XHTML Color Names

	Useful Web Sites
	Chapter Links
	Chap�ter�1. Preparing for the Web
	Chap�ter�2. Creating Your First Page
	Chap�ter�3. Putting Your Page on the Web
	Chap�ter�4. Power Tools
	Chap�ter�5. XHTML Text Elements
	Chap�ter�6. Style Sheets
	Chap�ter�7. Adding Graphics
	Chap�ter�8. Linking Pages
	Chap�ter�9. Page Layout Tools
	Chap�ter�10. Multipart Pages
	Chap�ter�11. Attracting Visitors
	Chap�ter�12. Letting Your Visitors Talk to You (and Each Other)
	Chap�ter�13. Making Money with Your Site
	Chap�ter�14. JavaScript: Adding Interactivity
	Chap�ter�15. Fancy Buttons and Menus
	Chap�ter�16. Audio and Video
	Chap�ter�17. Blogs

	Index

