
 case "hedgehog":
 pet = new Hedgehog(name);
 break;
 case "cat":
 hypoallergenic = form.elements["hypoallergenic"].value;
 pet = new Cat(name, hypoallergenic);
 break;
 case "southern tamandua":
 pet = new Tamandua(name);
} // end switch

Note that there’s no default block. Having a default block is very common because it
ensures that all situations are handled. But for this switch statement’s controlling expression, we
know that all situations are handled because the controlling expression is a pull-down menu, with
a predefined set of options for the user to choose from.

11.13 Arrays
Overview
Normal objects have different names for each of the object’s different data items. For example, a
dog object has name, sound, and trick properties for its different data items. Now we’ll look at
a special type of object that holds multiple data items and uses a common name for all of them.
That special type of object is an array.

In the past, we’ve used the term collection to describe a group of items with a common
name. An array is not only a special type of object; it’s also a special type of collection. Remem-
ber in the last chapter how we retrieved a collection of t-shirt color radio buttons using the
following code?

tshirtRBs = form.elements["color"];

And then later, we used the tshirtRBs name to access individual elements within the collection.
Here’s an example:

currentRB = tshirtRBs[i];

In tshirtRBs[i], the i is an index variable, and it allows you to access an element within the
collection. Arrays also use index variables to access individual elements.

So, what’s the difference between a collection and an array? The browser engine builds
collections for control groups (like radio buttons and checkboxes) automatically when it cre-
ates the DOM node tree. On the other hand, with arrays, it’s up to you, the web developer, to
instantiate an array before you can use it. To instantiate a class, you first have to define the
class and specify the class’s properties and methods. Instantiating an array is easier. You use

538 Chapter 11 Object-Oriented Programming and Arrays

Jesse
Rectangle

the predefined Array object (that’s Array with a capital A) with the new
operator to instantiate an array. For example:

stuntGroup = new Array("Ellie", "Caiden", "Alexa",
 "Olivia");

That code creates an array of girls for a stunt group within my daughter Caid-
en’s cheerleading squad. The instantiation syntax should look familiar because
we’ve used it for instantiating objects in prior examples. But now we’re using
“Array” instead of a class name.

It’s very common to use a for loop to loop through the elements
of an array. For example, suppose you have a web page with the preced-
ing stuntGroup assignment, and within the body container, you have
<div id="stunt-group"></div>. To insert the stunt group girls’ names
within that div container, you could use this code:

var names = "";

for (let i=0; i<stuntGroup.length; i++) {
 names += stuntGroup[i] + "
";
}
document.getElementById("stunt-group").innerHTML =
 names;

In the for loop heading, note the stuntGroup array’s length property. It works the same as the
length property for radio button and checkbox collections—it returns the number of elements
in the array. Note that the index variable i gets initialized to 0. As with collections, an array’s first
element is at index position 0.

Continuing with the stunt group example, suppose Caiden suffers a concussion from a fall.
She has to sit out, and she gets replaced by Coach Ayers. Here’s the code that models that behavior
(assuming “Caiden” is stored in the stuntGroup array’s second element):

stuntGroup[1] = "Coach Ayers";

After Caiden regains consciousness, she rejoins her teammates as a fifth member of the stunt
group, with Coach Ayers continuing to help out when Caiden gets disoriented. Here’s the code
that models Caiden rejoining the stunt group:

stuntGroup[4] = "Caiden";

The assignment statement dynamically expands the array’s size by adding a fifth element to the
array at index position 4.

You’ve already seen how to instantiate an array with initial values for the array’s elements—
new Array(comma-separated-list-of-initial-values). As an alternative, you can instantiate an

53911.13 Arrays

empty array and then later assign values into the array. For example, we could have started with
an empty stuntGroup array and implemented an “Add cheerleader” button with an onclick
event handler that adds a user-entered name to the array. Here’s a declaration for an empty
stuntGroup array, plus a function that could be used for an “Add cheerleader” button’s event
handler:

var stuntGroup = new Array();

function addCheerleader() {
 stuntGroup[stuntGroup.length] =
 document.getElementById("cheerleader").value;
} // end addCheerleader

Note how the function uses the array’s length property as an index for the new element.
Before any cheerleaders have been added, the array is empty with a length of 0. So the first time
addCheerleader gets called, the assignment statement’s left side refers to an element at index
position 0. As a result of the assignment, that element becomes the first element in the array.
The assignment statement’s right side retrieves the contents of a text control with an id value of
“cheerleader”.

As you’ve seen before, JavaScript sometimes provides more than one way to accomplish
the same thing. As a more elegant alternative to using stuntGroup.length as shown earlier,
we can use the Array object’s push method to add an element to the end of the array. Here’s
the code:

stuntGroup.push(document.getElementById("cheerleader").value);

Methods
The Array object has quite a few methods, and every array you instantiate inherits those meth-
ods. Take a look at FIGURE 11.16. It shows a few of the more popular Array methods, starting
with the push method, which you’ve already seen. When you call the push, reverse, sort, or
splice method, the primary purpose is to modify the calling object array. That’s different from
when you call the concat or indexOf methods. With those methods, the purpose is to return a
value, and the calling object array remains intact, unmodified.

The reverse method is self-explanatory. It reverses the order of the calling object array’s
elements.

The sort method can be a little tricky. If you have an array of strings, the sort method uses
lexicographical ordering. As you might recall from Chapter 9, lexicographical ordering is pretty
much the same as dictionary ordering. Here’s an example:

stuntGroup = new Array("Ellie", "Caiden", "Alexa", "Olivia");
stuntGroup.sort();

540 Chapter 11 Object-Oriented Programming and Arrays

After this code executes, “Alexa” moves to the first position, followed by “Caiden,” “Ellie,” and
“Olivia.” Lexicographical ordering is different from dictionary ordering in that lowercase letters
go after uppercase letters. As a new-age hipster, Ellie sometimes prefers lowercase e for the first
letter in her name (“ellie”). With that spelling, the sort method would move “ellie” to the last
position in the array.

By default, if you have an array of numbers, the sort method first converts the numbers
to strings and then sorts using lexicographical ordering. So if you have an array that holds 4,
196, 8, and 23 initially, the array holds 196, 23, 4, and 8 after sorting. That’s because the “1”
character in “196” comes before the “2” character in “23,” and the “2” comes before “4,” which
comes before “8.” In the next section, you’ll learn how to sort numbers in standard numerical
order.

The splice method removes elements from the calling object array and/or inserts ele-
ments into the calling object array. When you call the splice method, the first argument

FIGURE 11.16 Some of the more popular Array methods—their headings and
descriptions

array-variable.concat(another-array)
Returns a new array that is formed by concatenating the passed-in array to the end of the
calling object array. The calling object array does not change.

array-variable.indexOf(value)
Returns the index of the first element that holds the specified value. Returns -1 if
not found.

array-variable.push(value)
Creates an element with the specified value and adds that element to the end of the
array. To add multiple elements to the end of an array, use commas to separate the
element values. It returns the new length of the array.

array-variable.reverse()
Reverses the array’s elements, so the first array element becomes the last, and the last
array element becomes the first. It returns the reversed array.

array-variable.sort()
Sorts the array’s elements, so the elements with smaller values move to the start of the
array. It returns the sorted array.

array-variable.splice(start, delete-count, value1, value2, ...)
Removes elements from the array and/or inserts elements into the array. The start
parameter specifies the index position where elements are removed and/or inserted.
The delete-count parameter specifies the number of elements removed. The value
parameters specify the values for inserted elements. It returns an array of the
deleted elements or an empty array if no elements are removed.

54111.13 Arrays

specifies the index position where the removal and/or insertion takes place. The second
argument specifies the number of elements that are to be removed from the array. If there
is no second argument, then the splice method removes all the elements starting at the
first argument’s position. If the second argument is 0, that means no elements are removed.
Subsequent arguments specify the values for elements that are to be inserted into the array.
We’ll show an example that uses the splice method after first describing the concat and
indexOf methods.

The concat method returns a new array that is formed by concatenating the argument array
to the end of the calling object array. Here’s an example:

megaStuntGroup = stuntGroup1.concat(stuntGroup2);

After that code executes, the megaStuntGroup array holds all of the elements from stuntGroup1
plus stuntGroup2. The concat method does not impact the original arrays, so stuntGroup1
and stuntGroup2 are unchanged.

The indexOf method searches for a specified value within the calling object array’s ele-
ments. It returns the index of the first element that holds the value. It returns -1 if the value is
not found.

To illustrate how the indexOf and splice methods work, we need another stunt group
example. Let’s check in on Caiden and see how she’s doing with her concussion recovery. After
two weeks, she’s finally able to remember her name. Way to go, Caiden! With that hurdle cleared,
Coach Ayers leaves the stunt group and returns to full coaching duties. The following code models
Coach Ayers leaving the stunt group:

deletePosition = stuntGroup.indexOf("Coach Ayers");
stuntGroup.splice(deletePosition, 1);

Note how we use the indexOf method to search for Coach Ayers and then use the splice
method to remove Coach Ayers’s element.

11.14 Arrays of Objects
In the previous section, we kept things simple by sticking with one array, stuntGroup, whose
elements were all strings. Be aware that JavaScript arrays are very flexible in that an array can have
different types for its elements. So if you want to keep track of the cheerleaders’ heights, you could
use the stuntGroup array to store string elements for the cheerleaders’ names and also number
elements for the cheerleaders’ heights. Although that would be legal, there’s a better way to handle
different types of values in an array—using an array of objects.

542 Chapter 11 Object-Oriented Programming and Arrays

Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

