
CHAPTER OUTLINE

10.1 Introduction

10.2 while Loop

10.3 External JavaScript Files

10.4 Compound Interest Web Page

10.5 do Loop

10.6 Radio Buttons

10.7 Checkboxes

10.8 Job Skills Web Page

10.9 for Loop

10.10 fieldset and legend Elements

10.11 Manipulating CSS with JavaScript

10.12 Using z-index to Stack Elements on
Top of Each Other

10.13 Textarea Controls

10.14 Dormitory Blog Web Page

10.15 Pull-Down Menus

10.16 List Boxes

10.17 Case Study: Collector Performance
Details and Nonredundant Website
Navigation

10.1 Introduction
In the previous two chapters, you learned about the basic building blocks needed to implement inter-
active web pages. Specifically, you learned about forms, buttons, text controls, number controls, event
handlers, and JavaScript. In this chapter, you’ll add to your tool bag, so you can implement a wider vari-
ety of web pages. You’ll learn how to make those web pages look better and behave more dynamically.

In this chapter, we introduce controls that can be grouped together, such as radio buttons
and checkboxes. You’ll learn how to access and update those controls by using JavaScript loop
statements to process the individual values within the control’s group of values. You’ll also use
 JavaScript to dynamically modify a web page’s CSS formatting. You’ll learn a new type of format-
ting with the CSS z-index property. It enables you to stack elements on top of each other, and
you’ll use JavaScript to modify the stacking order. Finally, you’ll learn about pull-down menus and
list boxes, which allow users to select one or more values from a list of choices.

10.2 while Loop
For many programming tasks, you’ll need to perform the same operation repeatedly (e.g., adding
a group of numbers to find their sum). To perform operations repeatedly, you’ll need to use a loop
statement. JavaScript provides three types of loop statements—while loop, do loop, and for
loop. We’ll cover the while loop in this section, and the do and for loops later in the chapter.

Syntax and Semantics
The while loop is the most flexible of the three types of loops. You can use it for any task that
needs repetitive operations. FIGURE 10.1 shows the syntax and semantics for the while loop.
The syntax at the left of the figure should look familiar because it’s similar to the if statement

426 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

syntax. In the while loop’s heading, after the reserved word while, you need parentheses, a
condition, and an opening brace. As you know, a condition is a question that evaluates to true or
false. In the while loop’s body, you can have as many statements as you like. Below the body’s
statements, you indicate the end of the while loop with a closing brace.

In terms of style, the while loop is pretty much the same as the if statement. You should put
a space between the condition and the opening brace. Also, don’t forget to indent the statements
within the braces and align the closing brace with the first character in the loop’s heading.

In using loops, you’ll need to get comfortable with the jargon. The number of times that a
loop repeats is referred to as the number of iterations. It’s possible for a loop to repeat forever.
That’s known as an infinite loop, and it’s usually indicative of a bug. It’s also possible for a loop to
repeat zero times. There’s no special term for the zero iteration occurrence, but it’s important to
be aware that this sometimes happens.

Study Figure 10.1’s flowchart and make sure you understand the while loop’s semantics. If the
while loop’s condition evaluates to true, then the statements within the loop are executed and control
then flows back to the top of the loop, where the condition gets checked again. That continues until
the condition becomes false. At that point, control flows down to whatever is below the while loop.

tracing an Example
The code fragment in FIGURE 10.2 uses a while loop to calculate the factorial of a user-entered
number. The code comes from an exercise at the end of this chapter. The exercise shows the
code as part of a complete web page, so go there now if you’re curious. The main point of the
code fragment is to show how a while loop can be used to implement a solution that requires
repetitive operations. As you probably recall from a middle school math class, the factorial of a
nonnegative integer x is denoted by x! To calculate the factorial of x, you multiply all the integers
from 1 up to x. So 4! equals 1 • 2 • 3 • 4, which equals 24. In the code fragment, the while loop
uses a count variable as the multiplicand for each loop iteration multiplication operation.

FIGURE 10.1 Syntax and semantics for the while loop

while (condition) {
 statement;
 statement;
 ...
 statement;
}

the loop’s body

the loop’s heading

statement(s)

true

false
condition

42710.2 while Loop

Let’s trace the code fragment. Tracing is where you essentially pretend you’re the computer.
You step through the program line by line and carefully record what happens. For many traces,
the outcome is dependent on user input. For the factorial web page, the user enters a value into a
number box, and when the user clicks the form’s button, the JavaScript retrieves the user’s entered
value. We don’t know what a real user will enter, but we need to provide an assumed input value
so we can proceed with the trace. Let’s assume the user enters 3 into the number box.

The code fragment’s first statement uses form.elements["number"] to retrieve a control
that has an id value of number. If you look at the complete web page code in the exercise at the
end of this chapter, you can see that the number box has an id value of number. The number box’s
input value, which we assume to be 3, gets assigned into the num variable. The second and third
statements assign 1 and 2 to the factorial and count variables, respectively. Remember, the
point of a trace is to carefully record what happens. Here’s how you should record the trace after
executing the first three lines:

result elementcountfactorialnum

3 1 2

The while loop’s heading checks the condition count <= num. Because 2 is less than 3,
the condition is true, and the loop’s body gets executed. The loop body’s first statement multiplies
factorial times count and puts the result back into the factorial variable. The loop body’s
second statement increments count. Here’s what your trace should look like after executing those
two statements:

result elementcountfactorialnum

3 1 2

2 3

FIGURE 10.2 Code fragment that uses a while loop to calculate a factorial

The while loop performs multiple
multiplication operations:
1 * 2 * 3 * … * num

num = form.elements["number"].valueAsNumber;
factorial = 1;
count = 2;

while (count <= num) {
 factorial *= count;
 count++;
}

form.elements["result"].value = num + "! = " + factorial;

428 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

Note how 1 and 2 are crossed off. After a variable’s value changes, you should cross off its old value
so the old value doesn’t accidentally get reused later.

Continuing with the trace, the next step is to jump back to the while loop’s heading and
check the condition again. Is the condition count <= num still true? Yes, count, 3, is equal to
num, 3. So the loop’s body gets executed again, and here’s what your trace should look like after
that execution:

result elementcountfactorialnum

3 1 2

2 3

6 4

Going back to the top of the loop, and checking the condition, count is 4 and num is 3, so
the condition is false. The next step is to jump below the loop and execute the bottom state-
ment. The bottom statement concatenates three entities: num’s value, “! = ”, and factorial’s
value. The concatenated result is “3! = 6”. That string is then assigned into the control speci-
fied by form.elements["result"]. In the trace, we represent that control with the heading
“result element.” Here’s what your final trace should look like:

result elementcountfactorialnum

3 1 2

2 3

6 4

3! = 6

10.3 External JavaScript Files
All the JavaScript function definitions you’ve seen so far have been positioned within web page
head containers. In the real world, web programmers will often use external files to hold their
JavaScript function definitions and then have their web pages link to those external JavaScript
file(s).

There are several advantages of positioning a web page’s JavaScript function definitions in an
external file:

 ▸ If another web page needs the functionality provided by one of the functions, the second
web page can link to the external file and share the function. By using the already-written
function, the second web page doesn’t have to “reinvent the wheel.”

42910.3 External JavaScript Files

Jesse
Rectangle

and td elements. So we’re using JavaScript to dynamically generate a table—pretty cool, right?
Before examining the JavaScript, let’s finish working our way through the CSS rules in the style
container.

The table {text-align: center;} rule causes all of the table’s text to be center aligned.
The table’s text resides in the th and td elements, so as an alternative, we could have used a th, td
type selector instead of the table type selector. As you might recall, the text-align property is
inheritable. That means if you assign a text-align value to the table element (as we do in the
Compound Interest web page), the text-align value also gets assigned to the table element’s
descendant elements, which include the th and td elements.

As you can see in Figure 10.3’s browser window, there are no explicit borders around the entire
table or the table’s cells. The web page delineates the table’s cells by applying nonwhite background
colors to the cells and letting the web page’s default white background color poke through between
the cells to form the cell borders. With those lines coming from the web page’s background color,
there’s no need for explicit CSS table borders. The table, th, td {border: none;} rule
indicates that such borders will be suppressed. The default is for the table, th, and td elements
to have no borders, so that rule is technically unnecessary. So why include it? It’s a form of self-
documentation. Remembering that no borders is the default might be difficult, and the CSS rule
makes it clear what’s going on.

The Compound Interest web page’s remaining CSS rules are pretty straightforward. Go
through them on your own, and then note the script tags at the bottom of the head container.
The script start tag’s src attribute points to the external JavaScript file, which we’ll discuss
next.

Generating the table with JavaScript
FIGURE 10.5 shows the JavaScript file for the Compound Interest web page. Note the prologue
section at the top of the file. You should include a prologue at the top of every one of your
JavaScript files. A prologue is a block comment that provides information about the file, so
someone who’s interested in the file can quickly get an idea of what the file is all about.

In the figure, note how the prologue begins with /* and ends with */. As you know, those
characters are required to mark the beginning and end of a JavaScript block comment. To make
the prologue’s information stand out, it’s common to enclose the prologue’s information in a box
of asterisks. Note how the “box” is formed with an asterisk line at the top, single asterisks at the left
edge, and an asterisk line at the bottom. Within the box, include the filename, the programmer’s
name, a blank line, and a description of the file’s code.

Below the prologue, you can see that the file contains just one thing—the generateTable
function definition. It’s common for a JavaScript file to contain multiple function definitions,
where the functions are called from different web pages, but in this relatively simple example,
there’s just one function definition and one web page.

The generateTable function starts by retrieving the values from the three number controls.
The rest of the function is all about building the code that implements the table that displays the
compound interest results. That code gets built by assigning and concatenating code strings into

434 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

Jesse
Rectangle

FIGURE 10.5 External JavaScript file for Compound Interest web page

/***
* compoundInterest.js
* John Dean
*
* This file contains a function that supports the
* compound interest web page.
***/

// This function generates a compound interest table.

function generateTable(form) {
 var amount; // accumulated value for each new year
 var rate; // interest rate
 var years; // years for principal to grow
 var interest; // interest earned each year
 var table; // compound interest table
 var year = 1; // the year being calculated

 amount = form.elements["deposit"].valueAsNumber;
 rate = form.elements["rate"].valueAsNumber;
 years = form.elements["years"].valueAsNumber;

 table =
 "<table>" +
 "<tr><th>Year</th><th>Starting Value</th>" +
 "<th>Interest Earned</th><th>Ending Value</th></tr>";

 while (year <= years) {
 table += "<tr>";
 table += "<td>" + year + "</td>";
 table += "<td>$" + amount.toFixed(2) + "</td>";
 interest = amount * rate / 100;
 table += "<td>$" + interest.toFixed(2) + "</td>";
 amount += interest;
 table += "<td>$" + amount.toFixed(2) + "</td>";
 table += "</tr>";
 year++;
 } // end while

 table += "</table>";
 document.getElementById("result").innerHTML = table;
} // end generateTable

start of the block comment

end of the block comment

prologue

43510.4 Compound Interest Web Page

the table variable. The first such assignment takes care of the table start tag and the first tr
element with its four th cells:

table =
 "<table>" +
 "<tr><th>Year</th><th>Starting Value</th>" +
 "<th>Interest Earned</th><th>Ending Value</th></tr>";

Go back to Figure 10.3’s browser window and verify that the displayed table’s first row matches the
<tr> content in the preceding code.

The subsequent assignments use the += compound assignment operator to concatenate addi-
tional code onto the end of the table variable. Note how those compound assignment operators
are inside a loop. Each loop iteration implements a new tr container with its td cells. More
 specifically, each loop iteration starts by concatenating a tr start tag and ends by concatenating
a tr end tag. In between those += operations, you can see += operations for a row’s four td
elements. Those td elements contain values for the current year, the year’s starting balance, the
calculated interest, and the calculated ending balance. Get used to the technique exhibited here
when you need to build a rather complicated string value. Start by initializing a string variable and
then incrementally append to it by using the += operator. Very useful!

The function’s last statement assigns the just-built table variable to the placeholder div
element at the bottom of the web page. Here’s that statement:

document.getElementById("result").innerHTML = table;

The getElementById method retrieves the “result” element. Going back to the web page’s body
container, you can see id="result" in the bottom div element. As you know, the innerHTML
property is how you access the interior between the element’s start and end tags. So assigning the
table variable there causes the compound interest table to display. Yay!

JavaScript Debugging
All of the major browsers have debugging tools built in. Chrome’s debugging tool is called “Devel-
oper Tools.” To load it while viewing a web page with Chrome, you press ctrl+shift+i for Windows
computers or cmd+opt+i for Mac computers. To get practice using Developer Tools, you should
download the Chrome Developer Tools tutorial on the book’s website and work your way through
the tutorial’s instructions. It uses the Compound Interest web page to illustrate how to use the
debugger tool to find bugs and fix them.

If you don’t have time to learn all of the debugger’s features, that’s OK, but you should at least
open the debugger and take advantage of its console frame. As you execute JavaScript on a web page,
if there’s a syntax error, the console frame displays a message that describes the error and provides
a link to the errant line in the source code. That can be very helpful. Also, to help with debugging,
you can call console.log with a message as an argument and the message gets displayed in the
debugger’s console frame. Very helpful again! For example, suppose you’ve got an event handler
that calculates the total cost of a user’s purchase, and you want to display the cost variable’s value.
The following console.log method call displays the cost variable’s value in the console frame:

console.log("cost = " + cost);

436 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

10.5 do Loop
As mentioned earlier, JavaScript has three types of loops—the while loop, do loop, and for loop.
Next up—the do loop.

Syntax and Semantics
Note the do loop’s syntax template at the left of FIGURE 10.6. It shows the do loop’s condition
at the bottom. That contrasts with the while loop, where the condition is at the top. Having the
condition tested at the bottom guarantees that the do loop executes at least one time. After all,
the condition is the only way to terminate the loop, and the JavaScript engine won’t check the
condition (at the bottom) until after executing the lines above it. In the syntax template, note
the semicolon at the right of the condition. That’s also different from the while loop. Finally,
note that the while part is on the same line as the closing brace—that’s good style. It’s legal to
put while(condition); on the line after the closing brace, but that would be bad style because it
would look like you’re trying to start a new while loop.

With a while loop, with its condition at the top, if the condition starts out with a false value,
the JavaScript engine will execute the loop body zero times. For most looping situations, it’s
appropriate to accommodate the possibility of zero iterations. But for those situations where zero
iterations doesn’t make sense—that is, when you’re sure that the loop body should be executed at
least one time—it’s more efficient to use a do loop.

powers of 2 Web page
FIGURE 10.7 shows a web page that uses a do loop as part of its event handler code. Let’s start by
figuring out why using a do loop is appropriate. The web page asks the user to enter the largest power
of 2 he or she can think of. If the user enters a number less than 10, the web page tells the user to enter
a larger number. After the user submits an answer, the button’s event handler determines whether
the entered number is indeed a power of 2. It does so by repeatedly dividing by 2 until the result is

FIGURE 10.6 Syntax and semantics for the do loop

do {
 statement;
 statement;
 ...
 statement;
} while (condition) ;

statement(s)

true

false

condition

43710.5 do Loop

less than or equal to 1. If the result is exactly 1, that means the entered number is a power of 2. For
example, the following division operations show that 64 is a power of 2, and 80 is not a power of 2:

64 / 2 ⇒ 32, 32 / 2 ⇒ 16, 16 / 2 ⇒ 8, 8 / 2 ⇒ 4, 4 / 2 ⇒ 2, 2 / 2 ⇒ 1

80 / 2 ⇒ 40, 40 / 2 ⇒ 20, 20 / 2 ⇒ 10, 10 / 2 ⇒ 5, 5 / 2 ⇒ 2.5, 2.5 / 2 ⇒ 1.25, 1.25 / 2 ⇒ .625

exactly 1

less than 1

FIGURE 10.7 powers of 2 web page—initial display and what happens after the user
enters a correct value and clicks the button

©
 D

aw
n H

ud
so

n/
Sh

ut
te

rS
to

ck
, In

c.

438 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

Because the user is forced to enter a number 10 or greater, you’re guaranteed to need to divide by
2 at least once. That means a do loop is appropriate.

We’ll get to the do loop code soon enough, but let’s examine the HTML and CSS code first.
FIGURE 10.8a shows the web page’s body container. As you skim through it, note the body
container’s two child elements—a form and an image. By default, a form is a block element, so it
would normally span the width of the web page’s viewport, causing the image to display below the
form. To get the image to display at the right of the form, we use a little CSS magic….

We introduced the flexible box layout in an earlier chapter and used it to center a web page’s
contents horizontally. This time, we use it to “flex” the size of the body container’s two child
elements so they conform to the size of their contents. Take a look at FIGURE 10.8B’s style
container, and note this flexbox CSS rule:

body {display: flex; align-items: flex-start;}

The display: flex property-value pair converts the body container into a flexbox and causes
the form’s width to conform to the size of its content (and not span the width of the web page).
The align-items: flex-start property value causes the flex container’s child elements to
be aligned at the top. The style container’s next two rules tweak the layout’s margins to further
improve the layout:

form, img {margin: 20px 20px 0;}
h1 {margin-top: 0;}

The style container’s last CSS rule applies a very light shade of pink to the web page’s
background:

body {background-color: rgb(255, 246, 250);}

FIGURE 10.8a body container for powers of 2 web page

<body>
<form>

<h1>MATH IS FUN!</h1>
<label for="number">What is the largest power of 2

you can think of?</label>

<input type="number" id="number"

min="10" step="1" required>

<input type="button" value="Submit"

onclick="checkForPowerOf2(this.form);">

<output id="result"></output>

</form>

</body>
</html>

43910.5 do Loop

The web page’s background color applies to the background parts of the image (the parts surrounding
the girl and her juggled numbers) because the image’s background uses transparent bits there.

Now let’s examine the web page’s script container with its checkForPowerOf2 function
definition. Figure 10.8B shows trivial stuff—the function heading and the variable declarations.
FIGURE 10.8C shows the good stuff. The function checks the number box and displays an error
message for invalid input. If the user enters valid input, the function uses a do loop to repeatedly
divide by 2 while the resulting quotient is greater than 1. After the loop, if the final quotient is
exactly 1, that means the user entered a power of 2, and the web page displays a congratulatory
message.

Note the condition at the bottom of the do loop:

} while (wholeNumber && quotient > 1);

Previously, we said the loop repeats as long as the resulting quotient is greater than 1. Well,
almost. As you can see in the do loop’s condition, there’s a second thing that must also be true for
the loop to repeat—the wholeNumber variable must have a value of true. If you start with a power
of 2 and you repeatedly divide by 2, each resulting quotient will be a whole number (e.g., 16 / 2 ⇒
8, 8 / 2 ⇒ 4, 4 / 2 ⇒ 2, 2 / 2 ⇒ 1). On the other hand, if you start with a number that’s not a power
of 2 and you repeatedly divide by 2, you’ll eventually get a quotient that’s not a whole number. So
to make the function more efficient, with each loop iteration, you can check the resulting quotient
to see if it’s a whole number. If it’s not a whole number, you can immediately terminate the loop
and tell the user that his or her entry was not a power of 2. To keep track of whether the resulting
quotient is a whole number, we use the wholeNumber variable.

FIGURE 10.8B head container for powers of 2 web page

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Powers of 2</title>
<style>

body {display: flex; align-items: flex-start;}
form, img {margin: 20px 20px 0;}
h1 {margin-top: 0;}
body {background-color: rgb(255, 246, 250);}

</style>
<script>

// This function checks whether the user entered a power of 2.

function checkForPowerOf2(form) {
var numBox; // number control
var output; // output element that displays the response
var num; // user-entered number
var quotient; // number that is repeatedly divided by 2
var wholeNumber; // is the quotient a whole number?

440 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

Using a Boolean Variable to terminate the Loop
In the past, we’ve used variables to store numbers, strings, and objects. The JavaScript language
supports those data types as well as a few others. The Boolean data type is for variables that
hold the value true or the value false, and those variables are referred to as Boolean variables. As
you might have guessed by now, the wholeNumber variable is a Boolean variable. It holds the
value true if the most recently generated quotient is a whole number and false otherwise. In the
checkForPowerOf2 function, note how we assign true to wholeNumber above the loop and
then inside the loop, we assign false to wholeNumber if the new quotient is not a whole number.
Note how we use Math.floor to see if the new quotient is not a whole number:

if (quotient != Math.floor(quotient)) {

Remember that the floor method rounds down, so if the quotient is not a whole number, round-
ing down returns a value different from the original value. And the != operator evaluates to

FIGURE 10.8C head container for powers of 2 web page

 numBox = form.elements["number"];
 output = form.elements["result"];

 if (!numBox.checkValidity()) {
 output.value =
 "Invalid input. You must enter an integer 10 or greater.";
 }
 else {
 num = quotient = numBox.valueAsNumber;
 wholeNumber = true;
 do {
 quotient /= 2;
 if (quotient != Math.floor(quotient)) {
 wholeNumber = false;
 }
 } while (wholeNumber && quotient > 1);

 if (quotient == 1) {
 output.value = "Yes, " + num + " is a power of 2." +
 " You're so awesome!";
 }
 else {
 output.value = "Sorry, " + num + " is not a power of 2.";
 }
 } // end else
 } // end checkForPowerOf2
</script>
</head>

compound assignment operator for division

check for quotient not
being a whole number

44110.5 do Loop

true if the values are different. At the bottom of the loop, we use wholeNumber in the do loop’s
condition:

} while (wholeNumber && quotient > 1);

If wholeNumber has the value false, then the condition pares down to false && quo tient
> 1. Remember that if you use false with the && operator, the result is false, regardless of the other
operand’s value.

By the way, we didn’t have to use a Boolean variable in the checkForPowerOf2 function.
This do loop provides the same functionality without using a Boolean variable:

do {
 quotient /= 2;
} while (quotient != Math.floor(quotient) && quotient > 1);

So, what’s the benefit of using a Boolean variable? It can lead to more readable code, as is the
case in the do loop condition in the Powers of 2 web page. Readability can be improved even more
dramatically in other cases. In general, a Boolean variable can be used to keep track of a situation
in which there’s a state with one of two possible values. For example, if you’re writing a program
that plays a game against the computer, you can keep track of the “state” of whose turn it is by
using a Boolean variable named userTurn. If userTurn holds the value true, it’s the user’s turn.
If userTurn holds the value false, it’s the computer’s turn. In an end-of-chapter exercise, you’ll be
asked to trace a code fragment that uses such a userTurn Boolean variable.

In case you were wondering, the term Boolean comes from George Boole, a 19th-century
English mathematician. He invented Boolean algebra, which describes operations that can be
performed with true and false values.

10.6 Radio Buttons
So far, we’ve covered several form controls in depth—the button, text, and number controls. Also,
we briefly introduced you to several other controls, such as the email and password controls.
Now it’s time for the radio button control. Radio buttons come in a group, where only one radio
button in a group can be selected at a time. When one of the buttons in the group is clicked, it
gets selected and the other buttons get unselected. That’s different from regular buttons, which
are standalone entities.

htML attributes
Here are the radio button control’s more important attributes:

Radio Button Control Attributes

type name value checked required disabled onclick

442 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

Jesse
Rectangle

variable. That’s how we create the list of the skills that the user is deficient in. After the loop termi-
nates, we assign the message variable to the placeholder p element at the bottom of the web page.

10.9 for Loop
In the previous section, we used a while loop to access all the checkboxes in the collection of job
skills checkboxes. Using a while loop works OK, but in this section, we use a for loop to access
the checkboxes, which leads to a more compact implementation.

FIGURE 10.13 shows the while loop used in the Job Skills web page and a functionally
equivalent for loop. Both versions use a counter variable, i, that gets initialized to 0 and gets
incremented each time through the loop. With a for loop, the counter mechanism is imple-
mented within the loop’s heading. It’s such a foundational part of a for loop that the counter vari-
able is given a special name—an index variable. Sound familiar? Yep, an index variable is also the
name we use for the variable inside []’s when referring to an individual object within a collection.
So in Figure 10.13’s for loop body, the i in jobSkillsCBs[i] is an index variable not only for
the for loop, but also for the jobSkillsCBs collection.

FIGURE 10.13 while loop versus for loop comparison for Job Skills web page

for (let i=o; i<jobSkillsCBs.length; i++) {

 if (!jobSkillsCBs[i].checkValidity()) {

 message += "
" + jobSkillsCBs[i].value;

 }

} // end for

var i = 0;

while (i < jobSkillsCBs.length) {

 if (!jobSkillsCBs[i].checkValidity()) {

 message += "
" + jobSkillsCBs[i].value;

 }

 i++;

} // end while

452 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

Jesse
Rectangle

With a for loop, all the looping mechanism code is stuffed into the for loop heading.
That can make for a rather complicated looking heading when you’re new to for loops. But
for veteran for loop users, the for loop heading’s structure can be comforting because it’s
compact and it follows a standard format. The for loop heading is formed with three compo-
nents—the initialization, condition, and update components—with the components separated
by semicolons:

for (initialization; condition; update) {

In Figure 10.13, identify those three components in the for loop heading. And note the
arrows, which show the corresponding component code embedded in the while loop. Hopefully,
seeing how the while loop incorporates the components makes it clear how the components
work, but if not, the following list explains how the for loop uses the three components:

1. Initialization component
Before the first pass through the body of the loop, execute the initialization component.

2. Condition component
Before each loop iteration, evaluate the condition component:
• If the condition is true, execute the body of the loop.
• If the condition is false, terminate the loop (exit to the statement below the loop’s closing

brace).
3. Update component

 After each pass through the body of the loop, return to the loop heading and execute the
update component. Then, recheck the continuation condition in the second component,
and if it’s satisfied, go through the body of the loop again.

Perhaps the hardest part of the for loop mechanism to remember is that you have to execute the
update component’s code after you’re done with each loop iteration. It can be hard to remember
because the code appears at the top of the loop, even though you execute it after executing the
bottom of the loop.

In Figure 10.13, note that we declare the i index variable with let in the for loop heading.
When you declare a for loop index variable with let, that limits the scope of the index variable
to just the loop. In other words, whenever a variable is declared in the for loop heading, it exists
and can be recognized and used only by code that is within the heading or body of that for
loop. By limiting the index variable’s scope, you can redeclare the same-named index variable in
a second loop with no fear of one loop’s index variable messing up the other loop’s index variable.
You might think that using var instead of let for declaring your index variable would accom-
plish the same thing. Nope. If you declare a variable with var, the variable’s scope is the entire
function. Normally, that won’t create problems, but you should do more than strive for acceptable
normalcy. You should strive for maximum elegance, and that means using let for your index
variable declarations.

In the following for loop heading (copied from Figure 10.13 for your convenience), note that
there are no spaces surrounding the = operator and the < operator:

for (let i=0; i<jobSkillsCBs.length; i++) {

45310.9 for Loop

Why is that good practice? The for loop header is inherently complex, so in order to temper that
complexity, we add visual cues to compartmentalize the for loop header. More specifically, we
omit spaces within each of the three sections, and we insert a space after each semicolon to keep
the three sections separate.

When to Use Each type of Loop
Although you can use any of the three loops for any looping task, you should strive to use the
type of loop that fits best for your particular task at hand. If you have a task where you know
the exact number of loop iterations before the loop begins, use a for loop. For the Job Skills
web page, the task was to loop through the checkboxes in a checkbox collection. The number
of loop iterations came from the checkbox collection’s length property. We knew that value
before executing the loop, so using a for loop worked out nicely. Remember the compound
interest web page? The task was to repeatedly generate projected interest and balance values for
upcoming years. The number of loop iterations came from the user’s input in the “Years to grow”
text control (see Figure 10.3 for a refresher). We used a while loop for that implementation, but
because we knew the number of loop iterations before executing the loop, we could have used a
for loop and the result would have been slightly more compact. On the other hand, what about
the Powers of 2 web page? The task was to repeatedly divide by 2 until the quotient became 1 or
less than 1. Before the loop began, we did not know how many times the loop would repeat, so
using a for loop would have been inappropriate. We knew that the loop should be executed at
least one time, so we used a do loop, and the JavaScript programming gods smiled down upon
us and said, “It was good.”

for…of Loop
Now that you know when to use a for loop, let’s get fancy and introduce another version of the
for loop. The for…of loop uses a more compact heading than the traditional for loop by elimi-
nating the index variable. For example, here’s a for…of loop that is functionally equivalent to the
loop used in the Job Skills web page:

for (let skill of jobSkillsCBs) {
 if (!skill.checkValidity()) {
 message += "
" + skill.value;
 }
} // end for

As promised, you can see that the for…of loop uses no index variable. The for…of
loop is more compact than the traditional for loop because there are no initialization, con-
dition, and update parts you need to worry about. With a traditional for loop, those parts
implement the loop’s counting mechanism. With a for…of loop, the counting functionality
is taken care of automatically behind the scenes without you (the developer) having to do
anything.

454 ChaptER 10 Loops, Additional Controls, Manipulating CSS with JavaScript

Before you get too excited about the for…of loop, you need to realize that it’s not as general
purpose as the standard for loop. The for…of loop works only if you have a collection. Here’s
the syntax for the for…of loop’s heading:

for (let variable of collection) {

In the Job Skills for…of loop shown here, jobSkillsCBs is the collection and skill is the vari-
able. The skill variable serves as a repository for each object in the jobSkillsCBs collection
as the loop traverses through the objects. So in the loop’s body, to access a value in the collection,
you don’t need []’s around an index variable. Instead, you simply use the variable declared in the
loop’s heading. In the Job Skills web page, to access a checkbox object within the loop, we simply
use the skill variable. “Accessing” the checkbox object means you can read its values or update
its values.

10.10 fieldset and legend Elements
In the past several sections, we’ve used radio button groups and checkbox groups. To make the
groupings more obvious to someone viewing the web page, you can add a border around each
group and embed a caption within the border. Note the following example, which provides a bor-
der and caption for a group of three color-selection radio buttons:

To make a border, surround the radio button elements with a fieldset container. To make
a caption, include a legend element within the fieldset container. Here’s the relevant code that
was used to create the preceding radio button group:

<style>
 fieldset {display: inline;}
</style>
...
<fieldset>
 <legend>Choose your t-shirt's color</legend>
 <input type="radio" name="color" value="black">Black

 <input type="radio" name="color" value="pistachio">Pistachio

 <input type="radio" name="color" value="indigoBlue">Indigo Blue
</fieldset>

The fieldset element is a block element, so by default, its border spans the web page’s
entire width. To have its border conform to its contents, convert the fieldset element to an
inline element by applying a display: inline property-value pair to it. See the relevant CSS

45510.10 fieldset and legend Elements

Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

