
Think about the situation where the alert message displays “your reply was false.” Describe
the type of person who would generate that output—someone who always tells the truth, some-
one who always lies, or some other type of person? This brainteaser is an end-of-chapter exercise
question, so no answer is provided here.

Look again at the alert method call statement, and note how it spans two lines. It would
have been legal to enter the entire method call statement on one line, but if someone printed the
code, line wrap would occur. Line wrap is ugly and leads to code that is harder to understand.
To avoid line wrap, you should press enter at an appropriate breaking point and on the next line,
indent past the starting point of the prior line. That’s what we do for the alert method call, but
the breaking point is in the middle of a string, and that requires a little extra work. To break/split a
string, terminate the first part of the string with a closing quote, insert a concatenation operator, +,
and start the next line’s continuation string with an opening quote.1 Look at Figure 9.4 and verify
that the alert method call uses that technique for splitting the alert method’s message string.

9.4 if Statement: if by itself
In the previous section, we didn’t do much with the confirm method call’s returned value—we
simply displayed it. That’s OK, but rather unusual. Usually, you’ll use the confirm method call’s
returned value of true or false as the criterion for making a decision. If the user clicks OK (for yes),
then you’ll do one thing, or if the user clicks Cancel (for no), then you’ll do something else. The
easiest way to implement that logic is with an if statement.

Syntax
Let’s jump right into an if statement example. In the next section, you’ll see an if statement that
uses a confirm method call, but for our first example, let’s keep things simple. Here’s an if state-
ment that checks a person’s age and displays a message of joy if the age is greater than 16:

if (age > 16) {
 msg = document.getElementById("message");
 msg.innerHTML =
 "You can now drive without parental supervision. Road trip!";
}

Note how this example fits the syntax shown at the left of FIGURE 9.5. The syntax requires
you to have a condition after the word if. The condition is a question, and it must be surrounded
by parentheses. To form a question, you can use the > (greater than) symbol as shown in this
example or other comparison operators that we’ll talk about later.

In Figure 9.5’s syntax at the left, note the braces ({ }) that surround the statements that follow
the condition. In JavaScript (and other programming languages as well), braces are used to group

1As an alternative, you can use the backslash (\) to split a string across two lines. We’ll explain that technique
later in this chapter.

condition

3619.4 if Statement: if by itself

Jesse
Rectangle

statements together that are logically inside something else. So they’re used for the statements
inside an if statement’s condition. They’re also used for the statements that comprise a function’s
body. Whenever you use braces (for if statements, function bodies, and other situations intro-
duced later on), you should indent the statements that are inside the braces. This is not a JavaScript
language requirement, it’s a style thing. By indenting, you make it clear to someone reading your
code that the statements inside the braces are logically inside something else. The formal term
for zero or more statements surrounded by braces is a block statement (or compound statement
for other languages). A block statement can be used anywhere a standard statement can be used.

Semantics
The semantics of a statement is a description of how the statement works. The diagram at the right
side of Figure 9.5 illustrates the semantics of the if statement by showing what happens for dif-
ferent values of the if statement’s condition. The diagram is a flowchart. A flowchart is a pictorial
representation of the logic flow of a computer program. More formally, it shows the program’s flow
of control, where flow of control is the order in which program statements are executed.

In Figure 9.5, note the flowchart’s rectangles, diamond, and arrows. The rectangles are for sequen-
tial statements, which are statements that are executed in the sequence/order in which they are written
(i.e., after executing a statement, the computer executes the statement immediately below it). The
diamond shapes are for branching statements (like if statements), where the answer to a question
determines which statement to execute next. They’re called branching statements because their deci-
sion points (the conditions) generate branches/forks in the code’s flow of control. The arrows indicate
how the rectangles and diamonds are connected. Branching statements are also known as selection
statements because in executing those types of statements, the computer selects which path to take.

Study Figure 9.5’s flowchart, and make sure you understand the if statement’s semantics. If the
if statement’s condition evaluates to true, then the right-side statements are executed. Otherwise,
those statements are skipped, and control flows down to the statements below the if statement.

FIGURE 9.5  Syntax and semantics for the “if by itself” form of the if statement

if(){

...

}

362 Chapter 9 Additional JavaScript Basics

The standard way to generate dynamic output is to use dynamic HTML, and the standard
way to get input is to use form controls. So when should you use the alert, confirm, and
prompt methods for output and input? Use them only when you want to draw sharp attention to
something and to force the user to deal with the issue immediately.

9.8 if Statement: else and else if Clauses
In the Game Night web page, you were introduced to the simplest form of the if statement—
when the if clause is by itself. That form takes care of the case when you want to do something
or nothing. But what if you want to do one thing or something else, depending on the value (true
or false) of a condition? Or, what if you want to do one thing from among a list of three or more
options? In this section, we describe additional forms of the if statement that take care of those
situations.

FIGURE 9.9 shows the syntax and semantics for the form of the if statement that takes
care of the situation where you want to do one thing or something else. It uses the same if
clause at the top that you’ve seen before, but it adds an else clause. To differentiate, we’ll refer
to the previous form of the if statement as “if by itself ” and this new form of the if statement
as “if, else.”

FIGURE 9.10 shows the syntax and semantics for the form of the if statement that takes
care of the situation where you want to do one thing from among a list of three or more options. It
uses the same if clause at the top and the same else clause at the bottom that you’ve seen before,
but it adds one or more else if clauses in the middle. To distinguish this form of the if state-
ment, we’ll refer to it as the “if, else if ” if statement. You may include as many else if clauses
as you like—more else if clauses for more choices. Note that the else clause is optional.

In Figure 9.10, note the flowchart’s flow of control as indicated by the arrows. After one
condition is found to be true, all the other conditions are skipped, and control flows down to the
statement below the entire if statement. That means that the JavaScript engine executes only

FIGURE 9.8  script container for improved Game Night web page

<script>
// Print a party reservation pass.

function partyOn() {
var name; // user's name

name = prompt("What's your name?", "");
if (name != null) {
alert("The next pop-up will be your party" +
" reservation. Print it.");

alert("Admit one to the ACM Club party: " + name);
}

} // end partyOn
</script>

3679.8 if Statement: else and else if Clauses

Jesse
Rectangle

one of the block statements—the one with the condition that’s true. If all the conditions are false
and there’s no “else” block, the JavaScript engine executes none of the block statements.

In this section, you learned about the three forms of the if statement. You’ll see those forms
used in examples throughout the remainder of the book. Here’s a summary of the different
forms:

▸▸ “if by itself ”—use when you want to do one thing or nothing.
▸▸ “if, else”—use when you want to do one thing or another thing.
▸▸ “if, else if ”—use when there are three or more possibilities.

FIGURE 9.10  Syntax and semantics for the “if, else if, else” form of the if statement

FIGURE 9.9  Syntax and semantics for the “if, else” form of the if statement

if () {

}
else {

}

if (if-condition) {
 if-statement(s)
}
else if (else-if-condition) {
 else-if-statement(s)
}
.
.
.
else {
 else-statement(s)
}

if-statement(s)
optional additional
else if’s

true

false

following-statement

else-statement(s)

if-condition

else-if-statement(s)optional

true

false

else-if-condition

368 Chapter 9 Additional JavaScript Basics

To counteract the negative vibes from red backgrounds on invalid inputs, you might want to make
the user feel good by showing soothing light green backgrounds for valid inputs. You can do that
with the :valid pseudo-class. For example, the improved Water Balloons web page uses the
following rule to highlight its valid-input number controls with a light green background when a
control has the focus:

input:valid:focus {background-color: lightgreen;}

To see what the web page looks like when the user enters valid input, go back to Figure 9.21 and
note the light green background in the quantity number control.

By the way, the improved Water Balloons web page uses the same style container code as
the original Water Balloons web page, except for the addition of the two background color CSS
rules.

9.19 Comparison Operators and Logical
Operators
We’re not done with the improved Water Balloons web page. We still need to present its
calculateWater function, which checks for valid input and calculates the number of gal-
lons of water needed to fill up the balloons. But all that checking and calculating uses Java
Script operators that haven’t been introduced, or they’ve been introduced but not described
fully. So in this section, we’ll take a little side trip where you learn about those operators,
and in the next section, we’ll use those operators in implementing the calculateWater
function.

Comparison Operators
As you know, an if statement’s heading includes a condition with parentheses around the con-
dition, like this:

if (condition) {
 ...

Usually (but not always), the condition performs some type of comparison, and the comparison
uses a comparison operator. Here are JavaScript’s comparison operators:

<, >, <=, >=, ==, !=, ===, !===

Each comparison operator compares two operands and returns either true or false, depending on
the values of those operands.

The <, >, <=, and >= operators are collectively referred to as JavaScript’s relational operators.
They work the same as the operators you’ve seen in mathematics books, except that you have to
use <= instead of ≤, and you have to use >= instead of ≥. The reason you can’t use ≤ or ≥ is because
those symbols are not found on standard keyboards, and even if they were there, the JavaScript
engine wouldn’t understand them.

4019.19 Comparison Operators and Logical Operators

Jesse
Rectangle

The ==, !=, ===, and !== operators are collectively referred to as JavaScript’s equality opera-
tors. As you might recall from earlier in this chapter, the == operator tests two operands for equal-
ity. For example, suppose you have a variable named floor that keeps track of an elevator’s floor
position in a hotel. Because of triskaidekaphobia, many hotels do not have a thirteenth floor.8 The
following code fragment attempts to display a warning if floor holds the value 13:

if (floor = 13) {
 alert("Warning – The elevator indicates floor 13, but there" +
 " is no 13th floor!");
}

Do you see the error in the code? It’s a very common mistake to use one equals sign instead of
two, and that can lead to a particularly pernicious bug. It’s pernicious (causing harm in a way that
is not easily seen or noticed) in that the browser engine executes the code with no error message,
so the programmer might not realize there’s an error. With just one equals sign, the if statement’s
condition is an assignment, not a test for equality. And when there’s an assignment, the assign-
ment expression evaluates to the value that’s assigned into the variable. So for this code fragment,
the if statement’s condition evaluates to 13. Having a condition evaluate to 13 might seem odd.
Normally, a condition should evaluate to true or false, but this is JavaScript, and—sorry—
JavaScript has its quirks. Here’s the behind-the-scenes scoop, set off in a box to give it the idiosyn-
cratic attention it deserves:

If a condition evaluates to a non-zero value, the condition is treated as true.
If a condition evaluates to zero, the condition is treated as false.

So that means that with the prior hotel floor if condition evaluating to 13, the condition is
treated as true. Which means that regardless of the floor variable’s original value, after executing
the code fragment, floor gets assigned the value 13, and the user sees the dialog warning. When
the floor variable starts out holding something other than 13, that warning is inappropriate. We
hope the programmer (you) will catch the bug, but maybe not. So try hard to remember to use ==
and not = when testing for equality.

As you might recall from earlier in this chapter, the != operator tests two operands for
inequality. The != operator is pronounced “not equal.”

It won’t affect your programs very often, but you should be aware that in comparing two
values with == or !=, if the values are of different types, the JavaScript engine attempts to convert
them to the same type before performing the comparison. That slows things down a bit, but it’s
normally imperceptible. The attempt to convert the operands to the same type might come in

8 In many countries, the number 13 is considered to be an unlucky number. Some consider the number to be
more than unlucky and have an intense fear of 13, which is known as triskaidekaphobia. Because architects
and builders are aware of this phobia, they may decide to skip 13 when numbering hotel floors. In such
hotels, elevators show buttons for floors 1 through 12, then floors 14 through the top floor, with no floor
13. In the United States, many government buildings use their secret 13th floors for surveillance operations
conducted in partnership with space aliens.

This is a bug.

402 Chapter 9 Additional JavaScript Basics

handy if you retrieve a string value from a text control and you want to know if it equals a partic-
ular number. For example, imagine a web page that provides division practice for kids. It prompts
the user to enter two numbers in dividend and divisor number controls, and it prompts the user to
enter the division result in a text control. A text control is used for the result instead of a number
control because we want to allow the user to enter a string for the result. After all, if the user enters
a divisor value of 0, then the division operation generates the special numeric value Infinity,9
and for the right answer, the user would need to enter the string “Infinity”. The following code
checks to see whether the user’s entered division result is correct:

dividend = form.elements["dividend"].valueAsNumber;
divisor = form.elements["divisor"].valueAsNumber;
result = form.elements["result"].value;
if (dividend / divisor == result) {
 ...

The point of this example is that the if statement’s test for equality works fine, even though
the left side evaluates to a number and the right side is a string. Note the valueAsNumber prop-
erty for the dividend’s number control. If you use the value property for a number control, you’ll
get a string value, which will sometimes be OK. But in most cases (including this case), you’ll want
to use the valueAsNumber property so you can use the retrieved number later on as part of an
arithmetic calculation.

Although you’ll usually want to use == and != for testing equality and inequality, be aware
that there are “strict” versions of those operators that do not perform type conversions. The strict
equality operator (also called the identity operator) uses three equals signs, ===, for its syntax. It
evaluates to true only if its two operands are the same value and the same type. The strict inequal-
ity operator (also called the non-identity operator) uses !== for its syntax. It evaluates to true if its
two operands are different values or they are different types. Most programmers don’t use ===
and !== very often. They rely instead on the == and != operators because they’re used to those
operators from other programming languages, and unless their operands are different types, ==
works the same as === and != works the same as !==.

Logical Operators
You’ve now seen how to use comparison operators to test a condition for an if statement. An if
statement will sometimes need a condition that involves more than one test. The && (pronounced
“and”) and || (pronounced “or”) operators enable you to tie multiple tests together to form a
nontrivial if condition.

If two criteria both need to be true for a condition to be satisfied, then you should use
the && operator to join the two criteria together. For example, suppose you’re designing a web

9 If the user enters a negative number for the dividend and 0 for the divisor, then the division operation
generates -Infinity. And if the user enters 0 for both the dividend and the divisor, the division operation
generates the special numeric value NaN, which stands for “not a number.”

The value property returns a string.

The valueAsNumber
property returns a number
from a number control.

4039.19 Comparison Operators and Logical Operators

page that checks whether a user-entered vehicle speed is legal in the United Kingdom. Dif-
ferent types of roads have different minimum and maximum speeds. For a dual carriageways
road, the minimum speed is 40 mph and the maximum speed is 70 mph. If the user enters
a speed in a text control and then clicks the Dual Carriageways button, the following code
uses the && operator to check that the speed is at least 40 mph and the speed is no greater than
70 mph:

speed = form.elements["speed"].valueAsNumber;
if (speed >= 40 && speed <= 70) {
 ...

We could have added inner parentheses to make it obvious that the >= and <= operators need
to be executed before the && operator:

if ((speed >= 40) && (speed <= 70))

The additional parentheses might help to make the code more understandable to a human reader,
but they’re irrelevant to the computer. That’s because, due to operator precedence, the JavaScript
engine automatically executes the >= and <= operators before the && operator. Note the operator
precedence table in FIGURE 9.23,10 and verify that the comparison operators (including >= and
<=) have higher precedence than the logical and operator (&&). This table adds comparison oper-
ators and logical operators to the operator precedence table presented earlier.

By the way, in checking to see if the user-entered speed is between 40 and 70, you might be
tempted to do something like this:

if (speed >= 40 && <= 70)

Sorry—that’s a common error and it doesn’t work. If you have a condition where both criteria use
the same variable (like when a variable’s value needs to be between two other values), you must
include the variable on both sides of the &&. In other words, you must include the second speed
variable like this:

if (speed >= 40 && speed <= 70)

As you know, with the && operator, both conditions must be true for the result to be true. If
you have a situation where only one of two conditions needs to be true for the result to be true,
then you should use the || operator. For example, suppose you’re designing a medical advice
web page for your astrology practice. The following code uses the || operator to check whether a
user-entered blood type is A or B:

10 The table shown in Figure 9.23 has the operators you’ll need for most of your JavaScript programming tasks.
But if you’re an operatorphile, you’ll probably want to peruse the complete (and considerably larger) JavaScript
operator precedence table at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators
/Operator_Precedence.

404 Chapter 9 Additional JavaScript Basics

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence

bloodType = form.elements["bloodType"].value;
sign = form.elements["zodiacSign"].value;
if ((bloodType == "A" || bloodType == "B") && sign == "Taurus") {
 alert("You are susceptible to ACL tears." +
 " Adding myrrh to your incense should help.");
}

Note that the bloodType variable appears twice in the if statement’s condition. That’s nec-
essary because you must repeat the variable when both sides of an || condition involve the same
variable. Note that we’re using not only the || operator, but also the && operator. The code works
as expected—if the user has A or B blood and the user is a Taurean, then the entire if condition
is true.

In the preceding code fragment, note the inner parentheses surrounding the || operation.
We want the JavaScript engine to execute the || operator before the && operator, and the paren-
theses force that order of operation. But would the code still work even if the parentheses were
omitted? Look at the operator precedence table. It indicates that && has higher precedence than
||, so we do indeed need the parentheses to force the || operation to be performed first.

The && and || operators are referred to as logical operators because they rely on true and
false logic. There’s one more logical operator, the ! (pronounced “not”) operator. The ! operator
reverses the truth or falsity of an expression. So if you have an expression that evaluates to true,
and you stick a ! operator in front of it, the resulting expression evaluates to false. For example,

FIGURE 9.23  JavaScript operator precedence table

Operator Type Associativity Specific Operators

1. grouping with parentheses ()

2. logical not right-to-left !

3. increment and decrement ++, --

4. exponentiation right-to-left **

5. multiplication and division left-to-right *, /, %

6. addition and subtraction left-to-right +, -

7. relational left-to-right <, >, <=, and >=

8. equality left-to-right ==, !=, ===, and !==

9. logical and left-to-right &&

10. logical or left-to-right ||

11. assignment right-to-left =, +=, -=, *=, /=, %=, **=

4059.19 Comparison Operators and Logical Operators

suppose the variable sign contains the value “Taurus”. Then the following ! operators turn true
to false and false to true, respectively:

!(sign == "Taurus") ⇒ false
!(sign == "Virgo") ⇒ true

If you dislike the three fire zodiac signs (Aries, Leo, and Sagittarius) and want to exclude
them using an if condition, you can do this:

if (!(sign == "Aries" || sign == "Leo" || sign == "Sagittarius"))

Note that the ! is inside one set of parentheses and outside another set. Both sets of parenthe-
ses are required. The outer parentheses are necessary because the compiler requires parentheses
around the entire condition. The inner parentheses are also necessary because without them, the
! operator would operate on the sign variable instead of on the entire condition. Why? This
would happen because the operator precedence table shows that the ! operator has higher prece-
dence than the == and || operators. The way to force the == and || operators to be executed first
is to put them inside parentheses.

Try not to get the ! logical operator confused with the != inequality operator. The ! operator
switches the truth or falsity of a condition. The != operator asks a question—are the two things
unequal?

9.20 JavaScript for the Improved Water Balloons
Web Page
In the last section, we journeyed into the exciting world of comparison operators and logical oper-
ators. In this section, we put those operators into practice while we improve the input validation
for the Water Balloons web page. Specifically, we add JavaScript to display error messages after the
user submits a form with invalid input.

You might recall from our earlier Water Balloons web page discussion that you can use CSS
to perform constraint validation before the form is submitted. After the form is submitted (by
clicking a button that executes an onclick event handler), you can use JavaScript to call the form
object’s checkValidity method. If it returns false, that means at least one of the form’s control
values is invalid, and you can then display an appropriate warning message. Here’s an example
that illustrates how the checkValidity method could be used to check the inputs in the Water
Balloons web page:

if (form.checkValidity() == false) {
 alert("Invalid input.\nAs you enter values," +
 " green means valid input and red means invalid input.");
}
else {
 qty = form.elements["qty"].valueAsNumber;
 diameter = form.elements["diameter"].valueAsNumber;
 ...

406 Chapter 9 Additional JavaScript Basics

Jesse
Rectangle

As you may recall, there are two confirm methods—one defined in the Pet class and one defined
in the Dog class. So how does the pet.confirm() method call know which confirm method
to use? Drum roll please....

One of the cornerstones of OOP is polymorphism. Polymorphism is the ability for a particular
method call to perform different operations at different times. It occurs when you have a variable
that holds an object (more precisely, a reference to an object). The variable can refer to different
types of objects during the course of a program’s execution. When the variable calls the polymor-
phic method, the JavaScript engine determines the type of object that the variable currently holds
and calls the method that’s associated with that type of object. Pretty cool, eh? Polymorphism pro-
vides programs with a great deal of power and versatility. Returning to the register function’s
pet.confirm() method call, if pet contains a Dog object, then the Dog class’s confirm method
is called. If pet contains a Hedgehog object, then the Hedgehog class’s confirm method is
called. Wait—the Hedghog class does not provide a confirm method. No worries—remember
that subclasses inherit their superclass members, so that means the Hedgehog class inherits the
Pet class’s confirm method.

The Dog class also inherits the Pet class’s confirm method, so how does the JavaScript
engine know which method to call when a Dog object calls the confirm method? The principle
of locality comes to the rescue. Because the calling object is a Dog, it’s the local Dog class confirm
method that wins. As you learned earlier, if you’d like to call the superclass confirm method
from within the Dog confirm method, you can do so by prefacing the confirm method calls with
super dot.

Our Pet Registry web page is just a prototype. In registering a pet, it simply stores the pet’s
information in an object and then retrieves the object’s information as part of a confirmation
message. For a real-world registration, you’d use server-side programming to store the pet object’s
information in a database so you can retrieve registered pets later on for various purposes (e.g.,
retrieve all the dogs that can catch a Frisbee). Server-side programming is beyond the scope of this
book. But after finishing this book, you are encouraged to learn about server-side programming
on your own.

11.12 switch Statement
For the Pet Registry web page to be useful in the real world, you’d need to modify it to accommo-
date more than just two types of pets. The web page’s register function uses an if statement
to distinguish between two types—Dog and Hedgehog. To accommodate more pet types, you
could use an if statement with lots of else if clauses. But the more elegant solution is to use a
switch statement.

The switch statement works similarly to the “if, else if ” form of the if statement in that
it allows you to follow one of several paths. But a key difference between the switch state-
ment and the “if, else if ” statement is that the switch statement’s determination of which
path to take is based on a single value. (For an “if, else if ” statement, the determination of
which path to take is based on multiple conditions, with a separate condition for each path.)

536 Chapter 11 Object-Oriented Programming and Arrays

Jesse
Rectangle

Having the determination based on a single value can lead to a more compact, more under-
standable implementation.

Study the switch statement’s syntax in FIGURE 11.15. When executing a switch state-
ment, control jumps to the case constant that matches the controlling expression’s value, and
the computer executes all subsequent statements up to a break statement. The break statement
causes control to jump below the switch statement. If there are no case constants that match
the controlling expression’s value, then control jumps to the default label (if there is a default
label) or below the switch statement (if there is no default label).

Usually, break statements are placed at the end of every case block. That’s because you
normally want to execute just one case block’s subordinate statement(s) and then exit the
switch statement. Forgetting to include a break statement is a common error. If there’s no
break at the bottom of a particular case block, control flows through subsequent case con-
stants and executes all subordinate statements until a break statement is reached. If there’s
no break at the bottom of the last case block, control flows through to the statements in the
default block (if there is a default block).

Returning to the Pet Registry web page, here’s an improved version of how the register func-
tion can process the pet type pull-down menu with a switch statement and several additional
pet types:

switch (form.elements["petType"].value) {
 case "dog":
 trick = form.elements["trick"].value;
 pet = new Dog(name, trick);
 break;

FIGURE 11.15  switch statement’s syntax

statement(s);

statement(s);

statement(s);

break;

break;

.

.

.

default:

end switch//}

optional

switch (controlling-expression)
{
case constant1:

case constant2:

53711.12 switch Statement

 case "hedgehog":
 pet = new Hedgehog(name);
 break;
 case "cat":
 hypoallergenic = form.elements["hypoallergenic"].value;
 pet = new Cat(name, hypoallergenic);
 break;
 case "southern tamandua":
 pet = new Tamandua(name);
} // end switch

Note that there’s no default block. Having a default block is very common because it
ensures that all situations are handled. But for this switch statement’s controlling expression, we
know that all situations are handled because the controlling expression is a pull-down menu, with
a predefined set of options for the user to choose from.

11.13 Arrays
Overview
Normal objects have different names for each of the object’s different data items. For example, a
dog object has name, sound, and trick properties for its different data items. Now we’ll look at
a special type of object that holds multiple data items and uses a common name for all of them.
That special type of object is an array.

In the past, we’ve used the term collection to describe a group of items with a common
name. An array is not only a special type of object; it’s also a special type of collection. Remem-
ber in the last chapter how we retrieved a collection of t-shirt color radio buttons using the
following code?

tshirtRBs = form.elements["color"];

And then later, we used the tshirtRBs name to access individual elements within the collection.
Here’s an example:

currentRB = tshirtRBs[i];

In tshirtRBs[i], the i is an index variable, and it allows you to access an element within the
collection. Arrays also use index variables to access individual elements.

So, what’s the difference between a collection and an array? The browser engine builds
collections for control groups (like radio buttons and checkboxes) automatically when it cre-
ates the DOM node tree. On the other hand, with arrays, it’s up to you, the web developer, to
instantiate an array before you can use it. To instantiate a class, you first have to define the
class and specify the class’s properties and methods. Instantiating an array is easier. You use

538 Chapter 11 Object-Oriented Programming and Arrays

Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index
	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

