
In the generateEmail function, here’s the assignment statement that uses innerHTML to
update the p element with a generated email address:

document.getElementById("email").innerHTML =
 form.elements["first"].value + "." +
 form.elements["last"].value + "@park.edu";

string concatenation operator

To connect a string to something else (e.g., another string, a number), you need to use the
concatenation operator, +. The resulting connected value forms a string. So in the preceding
assignment statement, the three concatenation operations form a single string, and that string
gets assigned into the innerHTML part of the retrieved p element.

In the generateEmail function, we use form.elements to retrieve the two text controls.
As an alternative, we could have used document.getElementById to retrieve the controls (e.g.,
document.getElementById["first"]). Why is it better to use form.elements? Because
document.getElementById has to search through all the element nodes in the web page’s
entire node tree, whereas form.elements has to search through only the control nodes in the
form part of the web page’s node tree. This difference in speed won’t be noticeable with web pages
that don’t use much code (like the Email Address Generator web page), but it’s good to use coding
practices that scale well to web pages with lots of code.

8.16 reset and focus Methods
Go back to Figure 8.9B, and you can see that we still haven’t talked about the last two lines in the
generateEmail function. Here are those lines:

form.reset();
form.elements["first"].focus();

The form object’s reset method reassigns the form’s controls to their original values. Because
the Email Address Generator web page has no value attributes for its text controls, the reset
method call assigns empty strings to the text controls, thereby blanking them out.

When an element object calls the focus method, the browser puts the focus on the element’s
control if it’s possible to do so. For text control elements, like the first-name text control retrieved in
the preceding code, putting the focus on it means the browser positions the cursor in the text control.

8.17 Comments and Coding Conventions
In prior chapters, you learned about various coding conventions for HTML and CSS. Earlier in
this chapter, you learned a few coding conventions for JavaScript, such as needing to use descrip-
tive variable names. In this section, you’ll get a deeper immersion into JavaScript coding conven-
tions. Remember—it’s important to follow coding conventions so your code is understandable,
robust, and easy to maintain.

3358.17 Comments and Coding Conventions

mailto:"@park.edu"
Jesse
Rectangle

Comments
Let’s start with a very important coding convention—use appropriate comments. JavaScript has two
types of comments: one type for short comments and one type for longer comments. The syntax for
short comments is simply two forward slashes (//) at the left of the descriptive text. Here’s an example:

// An "admin" user can create and edit accounts.
form.elements["username"].value = "admin";

The JavaScript engine ignores JavaScript comments, so why bother to include them? One of
the primary purposes of comments is to explain tricky code so programmers can understand the
code more easily. Some programmers might find the preceding focus method call confusing,
and the comment attempts to alleviate some of that confusion.

If you have a comment that spans multiple lines, you can preface each line of the comment with
its own //, but that can get cumbersome for long comments. For long comments, you’ll normally
want to use the other JavaScript comment syntax. Here’s the syntax for the other type of comment:

/* descriptive-text-goes-here */

Typically, this syntax is used for comments that span multiple lines, but it’s legal to use it for
 single-line comments as well. Here’s an example comment that spans multiple lines:

/* After entering an invalid password 3 times, disable the
 password control so the user cannot try again this session.*/
form.elements["password"].readOnly = true;

The /* … */ syntax should look familiar. CSS uses the same syntax for its comments.
In all of these examples, note the blank spaces next to each of the comment characters (after //,

after /*, and before */). The spaces are not required by the JavaScript language, but coding conven-
tions suggest that you include them. Why? So the words in your comments stand out and are clear.

Code Skeleton that Illustrates Coding Conventions
There are quite a few coding conventions that we’d like to introduce in rapid-fire succession. To
help with the explanations, we’ll refer you to the code skeleton shown in FIGUre 8.10.

As stated earlier, you should use comments to explain tricky code. In addition, you should
include a comment above every function to describe the function’s purpose. To make a function’s
preliminary comment and its subsequent function heading stand out, you should insert a blank
line between them. In Figure 8.10, note the two functions and the comments with blank lines
above them.

As you read the following coding conventions, for each convention, go to Figure 8.10 and
verify that the code skeleton follows that convention:

 ▸ If there are two or more functions, separate each adjacent pair of functions with a line of *’s
surrounded by blank lines.

336 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

 ▸ Put all variable declarations at the top of a function’s body, and for each variable
declaration, provide a comment that describes the variable.

 ▸ Provide an “end …” comment for each function’s closing brace.
 ▸ Position a function’s opening brace ({) at the right of the function heading, separated by a

space.
 ▸ Position a function’s closing brace (}) in the same column as the function heading’s first

character.
 ▸ Between a function’s opening and closing braces, indent each statement with two spaces.

We’ll introduce coding conventions throughout the book’s remaining chapters. Appendix B
describes all of the JavaScript coding conventions used in this book. Go ahead and skim through
it now, and refer back to it later on as questions arise.

Why You Should Use var for Variable Declarations
Earlier in the chapter, you were told that before you use a variable, you should use var to declare
the variable in a declaration statement. Unfortunately, many JavaScript programmers do not use
var, and you should understand why it’s better to use var.

Using var helps programmers to identify the variables in a function quickly, and that makes
the function easier to understand and maintain. If var is not used for a variable, then the JavaS-
cript engine creates a global variable. A global variable is a variable that’s shared between all the
functions for a particular web page. Such sharing can be dangerous in that if you coincidentally
use same-named variables in different functions, changing the variable’s value in one function
affects the variable in the other function.

By using var, you can use same-named variables in different functions, and the JavaScript
engine creates separate local variables. A local variable is a variable that can be used only within
the function in which it is declared (with var). The scope of a variable refers to where the variable

FIGUre 8.10 Code skeleton that illustrates coding conventions

// Check whether the entered username is valid.

function validUsername(form) {
var username; // object for username text control
...

} // end validUsername

//**************************************

// Check whether the entered password is valid.

function validPassword(form) {
var password; // object for username text control
...

} // end validPassword

3378.17 Comments and Coding Conventions

can be used, so the scope of a function’s local variables is limited to the function’s body. If you have
same-named local variables in different functions, changing one of the variables won’t affect the
other variable because each variable is a separate entity. Such separation is normally considered a
good thing because that makes it harder for the programmer to accidentally mess things up.

8.18 Event-Handler Attributes
Remember the onclick attribute for the button control’s input element? That attribute is known
as an event-handler attribute because its value is an event handler. As you know, an event handler
is JavaScript code that tells the JavaScript engine what to do when a particular event takes place.
When an event takes place, we say that the event fires. For the button control’s onclick attribute,
the event is clicking the button.

Take a look at the table of event-handler attributes and their associated events in
FIGUre 8.11. We’ll provide a brief overview of those event-handler attributes in this section and
put them to use in web page examples later on.8

The first event-handler attribute shown in Figure 8.11’s table is onclick, which you should
already be familiar with. It’s very common to use onclick with a button, but the HTML5 stan-
dard indicates that you can use it with any element.

The next event-handler attribute is onfocus. You can use onfocus to do something special
when a control gains focus. For example, when the user clicks within a text control, you could
implement an onfocus event handler to make the text control’s text become blue.

The next event-handler attribute is onchange. You can use onchange to do something spe-
cial when a control’s value changes. For example, when the user clicks a radio button, you could
implement an onchange event handler that displays an “Are you sure you want to change your
selection?” message.

8 Web Hypertext Application Technology Working Group (WHATWG), “Event handlers on elements,
Document objects, and Window objects,” https://html.spec.whatwg.org/multipage/webappapis.html#event
-handlers-on-elements,-document-objects,-and-window-objects. If you’d like to learn about additional
event-handler attributes, peruse the WHATWG’s event handler page.

FIGUre 8.11 Some of the more popular event-handler attributes and their associated events

Event-Handler Attributes Events

onclick User clicks on an element.

onfocus An element gains focus.

onchange The value of a form control has been changed.

onmouseover Mouse moves over an element.

onmouseout Mouse moves off an element.

onload An element finishes loading.

338 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

https://html.spec.whatwg.org/multipage/webappapis.html#event-handlers-on-elements,-document-objects,-and-window-objects
https://html.spec.whatwg.org/multipage/webappapis.html#event-handlers-on-elements,-document-objects,-and-window-objects

The next event-handler attributes, onmouseover and onmouseout, are often used to imple-
ment rollovers for img elements. The mouseover event is triggered when the mouse moves on top
of an element. The mouseout event is triggered when the mouse moves off of an element.

The last event-handler attribute shown in Figure 8.11 is onload. The load event is triggered
when the browser finishes loading an element. It’s common to use the onload attribute with the
body element so you can do something special after the entire web page loads.

8.19 onchange, onmouseover, onmouseout
In this section, we provide web page examples that put into practice what you learned earlier
about event-handler attributes. Specifically, we’ll use the onchange event-handler attribute to
improve the Email Address Generator web page. Then we’ll use onmouseover and onmouseout
to implement a rollover in another web page.

Improving the email address Generator Web page with
onchange

In the Email Address Generator web page, suppose you want to force the user to enter the first
name before the last name. To do that, you can disable the last-name text control initially and
remove that restriction after the first-name text control has been filled in. To determine whether
the first-name text control has been filled in, you can rely on the text control’s change event firing.
A text control’s change event fires after the user clicks or tabs away from the text control after the
user has made changes to the text control. By adding an onchange event-handler attribute to the
text control’s input element, the text control can “listen” for the first-name text control being
changed and then act accordingly.

In implementing the improvements to the Email Address Generator web page, the first step is
to disable the last-name text control when the web page first loads. Note the disabled attribute:

Last Name:
<input type="text" id="last" size="15" disabled>

The next step involves adding an onchange event handler to the first-name text control’s
input element. Note the onchange event handler:

First Name:
<input type="text" id="first" size="15" autofocus
 onchange = "this.form.elements['last'].disabled=false;">

1. Spaces
around = .

2. Retrieve the
form object.

3. Retrieve the
last-name text
control object.

4. Make the
control active
(not disabled).

3398.19 onchange, onmouseover, onmouseout

Before we explain the onchange event handler’s rather complicated details, let’s first appreci-
ate its overall nature. In our previous event-handler examples, the event handler has always been
a function call, like this:

onclick="generateEmail(this.form)";

With a function call, the work is done in the function’s body. In the onchange event handler
shown earlier, the event handler contains code that does the work “inline.” Inline JavaScript is
appropriate when there is just one statement and there is only one place on the web page where
the code is used. An advantage of using inline JavaScript is that it can lead to code that is easier
to understand because all the code (the HTML control code and the event handler JavaScript
code) is in one place.

Now let’s dig into the details of the onchange event handler shown earlier. The following
four items refer to four noteworthy details from the onchange event handler. As you read each
item, go to the same-numbered callout next to the onchange event handler code fragment and
see where the item is located within the code fragment.

1. For normal attribute-value pairs, you should not surround the = with spaces. But
for an event-handler attribute, if its value is not short, separate the value from
the attribute with spaces around the =. For the onchange event handler, we have
inline JavaScript code and the event handler is not short, so spaces around the = are
appropriate.

2. If you’re inside a form control, to retrieve the form element’s object, use this.form.
The example code fragment is for an input element, and the input element is
indeed inside a form (as you can verify by going back to the web page’s source code in
Figure 8.9A).

3. To retrieve the last-name text control object, specify elements['last'] with
single quotes around 'last' to avoid terminating the prior opening double quote.
In the event-handler code fragment, note the double quote that begins the onchange
attribute’s value. To nest strings inside strings, you can use double quotes for the outer
string and single quotes for the inner string (as shown in the example code fragment)
or vice versa.

4. To make the retrieved text control active (not disabled), assign false to the text control
object’s disabled property.

Suppose you’ve added the disabled attribute to the last-name text control and the
onchange event handler to the first-name text control as described earlier. With the new code
added, what happens after a user clicks the Generate Email button and wants to enter first and
last names for a second email address? Will the user’s experience be the same? (Having a con-
sistent experience is a good thing, by the way.) Specifically, will the user again be forced to enter
the first name first?

Well… actually no. The onchange event handler activates the last-name text control, and it
remains active after that. So, what’s the solution? After clicking the button, you need to disable the

340 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

last-name text control. To do that, you should add this code at the bottom of the generateEmail
function:

form.elements["last"].disabled = true;

Implementing a rollover with onmouseover and
onmouseout

A rollover is when an image file changes due to the user rolling the mouse over the image. As you
learned in the previous chapter, you can implement a rollover with a CSS image sprite. Now, you’ll
learn how to implement a rollover with onmouseover and onmouseout event handlers that
reassign values to the image object.

Take a look at the Scraps the Dog web page in FIGUre 8.12. If the user moves the mouse over
the image, the browser swaps out the original picture and displays a picture of Scraps at his third
birthday party. If the mouse moves off of the image, the browser swaps out the birthday picture
and displays the original picture.

FIGUre 8.13 shows the source code for the Scraps web page. Let’s focus on the event-handler
code. The onmouseover and onmouseout event handlers both rely on the this keyword. Read
the figure’s left callout and make sure you understand why this refers to the img element. With
that in mind, this.src refers to the img element’s src attribute, which is in charge of specifying
the img element’s image file. So it’s the event handlers’ assignment of files to the src attribute that
implements the rollover functionality.

FIGUre 8.12 Scraps the Dog web page

©
 El

iza
be

th
 Al

dr
idg

e/
Ge

tty
 Im

ag
es

3418.19 onchange, onmouseover, onmouseout

Read the right callout in Figure 8.13 and note the line break in the source code after
onmouseover =. The line break is necessary because the event-handler code is long enough to run
the risk of bumping against the edge of a printer’s right margin. If that happens, then line wrap occurs.
Several chapters ago, we introduced the concept of line wrap for HTML code, and the concept is the
same with JavaScript code. For statements that might be too long to fit onto one line, press enter at
an appropriate breaking point, and on the next line, indent past the starting point of the prior line.

8.20 Using noscript to Accommodate Disabled
JavaScript
So far, you might have assumed that all users will be able to take advantage of the cool JavaScript
that you’ve learned. That assumption is valid for the vast majority of users, but with 3.7 billion

FIGUre 8.13 Source code for Scraps the Dog web page

For statements that are
too long to fit on one
line, press enter at an
appropriate breaking
point, and indent.

The this keyword refers to
the object that contains the
script in which this is used.
In this example, the enclosing
object is the img element's
object.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Scraps</title>
</head>

<body>
<h1>My Best Friend</h1>
<p>
 Meet Scraps. Here he is posting pictures of his recent
 trip to the park. In October, Scraps turned the big
 zero three, which is 21 in human years. Look out, doggie
 distilleries! Move your mouse over his picture
 to see him at his birthday bash.
</p>
<img scr="../images/scrapsAtWork.jpg"
 width="130" height="90" alt="Scraps"
 onmouseover =
 "this.src='../images/scrapsThirdBirthday.jpg';"
 onmouseout = "this.src='../images/scrapsAtWork.jpg';">
</body>
</html>

342 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

users in the world and counting,9 you’ll probably run into a lack of JavaScript support every now
and then.

Older browsers don’t support JavaScript, but the bigger roadblock is that some users inten-
tionally disable JavaScript on their browsers. Typically, they do that because they’re concerned
that executing JavaScript code can be a security risk. However, most security experts agree that
JavaScript is relatively safe. After all, it was/is designed to have limited capabilities. For example,
JavaScript is unable to access a user’s computer in terms of the computer’s files and what’s in the
computer’s memory. Also, JavaScript can send requests to web servers only in a constrained (and
safe) manner.

Despite JavaScript’s built-in security measures, some users will continue to disable JavaScript
on their browsers. For your web pages that use JavaScript, it’s good practice to display a warn-
ing message on browsers that have JavaScript disabled. To display such a message on only those
browsers and not on browsers that have JavaScript enabled, use the noscript element. Specif-
ically, add a noscript container to the top of your body container, and insert explanatory text
inside the noscript container. Here’s an example:

<noscript>
 <p>
 This web page uses JavaScript. For proper results,
 you must use a web browser with JavaScript enabled.
 </p>
</noscript>

9 InternetLiveStats.com, “Internet Users,” http://www.internetlivestats.com/internet-users

3438.20 Using noscript to Accommodate Disabled JavaScript

http://InternetLiveStats.com
http://www.internetlivestats.com/internet-users

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

