
8.9 Document Object Model
Whew! We’ve finally finished examining the Hello web page code. The examination process
required getting down in the weeds and learning about objects. Now let’s step back and look at a
big-picture issue related to objects. Let’s examine how a web page’s objects are organized.

The Document Object Model, which is normally referred to as the DOM, models all of the parts of
a web page document as nodes in a node tree. A node tree is similar to a directory tree, except instead
of showing directories that include other directories (and files), it shows web page elements that include
other elements (and text and attributes). Each node represents either (1) an element, (2) a text item that
appears between an element’s start and end tags, or (3) an attribute within one of the elements. If that
doesn’t make sense, no worries. See the node tree example in FIGUre 8.3, and you should be able to
understand things better by examining how the code maps to the nodes in the node tree.

The figure’s code is a stripped-down version of the Hello web page code shown earlier, with
some of its elements and attributes (e.g., the meta and script elements) removed. The node tree
shows blue nodes for each element in the web page code (e.g., head and title). It shows yellow
nodes for each text item that appears between an element’s start and end tags (e.g., “Hello”). And it
shows green nodes for each attribute in the web page document’s elements (e.g., h3’s id attribute).

FIGUre 8.3 Node tree for simplified hello web page

<!DOCTYPE html>
<html lang="en">
<head>
<title>Hello</title>
</head>
<body>
<h3 id="message">
 To see the traditional
 first-program greeting, click below.
</h3>
<input type="button" value="Click Me!">
</body>
</html>

documentroot of
node tree

Node Tree

html

lang=“en” head body

title h3 input

Hello value=“Click Me!”type=“button”id=“message” To see the traditional first-
program greeting, click below.

blue: element nodes
yellow: text nodes
green: attribute nodes

322 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

Note that the nodes are arranged in a hierarchical fashion, where nodes at the top contain the
nodes below them (e.g., the head node contains the title node). The node at the top of the node
tree is the document object, which we discussed earlier. Using computer science terminology, the
node at the top of a tree is called the root node.

The term dynamic HTML refers to updating the web page’s content by manipulating the
DOM’s nodes. Assigning a value to an element object’s outerHTML property (as in the Hello web
page) is one way to implement dynamic HTML. We’ll see other techniques later.

The main point of explaining the DOM is for you to get a better grasp of how everything in
a web page is represented behind the scenes as an object. As a web programmer, you can use the
DOM’s hierarchical structure to access and update different parts of the web page. The DOM
provides different ways to access the nodes in the node tree. Here are three common techniques:

1. You can retrieve the node tree’s root by using document (for the document object) in
your code and then use the root object as a starting point in traversing down the tree.

2. You can retrieve the node that the user just interacted with (e.g. a button that was clicked)
and use that node object as a starting point in traversing up or down the tree.

3. You can retrieve a particular element node by calling the document object’s
getElementById method with the element’s id value as an argument.

In the Hello web page, we used the third technique, calling getElementById. Later on, we’ll
provide web page examples that use the first two techniques. We hope you’re excited to know what
you have to look forward to!5

8.10 Forms and How They’re Processed: Client-Side
Versus Server-Side
Have you ever filled out input boxes on a web page and clicked submit in order to have some task
performed, like converting miles to kilometers or buying a canine selfie stick? If so, you’ve used a
form. A form is a mechanism for grouping input controls (e.g., buttons, text controls, and check-
boxes) within a web page.

If you’ve spent much time on the Internet, you probably know that forms are very popular.
So why did we wait until now to introduce them? Before this chapter, all you knew was HTML,
which is very limited in terms of processing capabilities. With HTML, you can implement forms
and controls, but HTML won’t help you process the user’s input. To make forms useful, you need
to read the user’s input, process it, and display the results. And to do all that, you need JavaScript.

Before we dig into the details of how to implement a form with HTML and how to process the
input with JavaScript, let’s look at an example web page that uses a form. FIGUre 8.4 shows a tem-
perature conversion calculator. Note the quantity text control at the top, the result text control at

5 If you read about those techniques in the later chapters and that doesn’t satiate your quest for knowledge,
you can learn yet another technique on your own. Using a node object from the DOM node tree, you can call
getElementsByTagName to retrieve all of the node’s descendant elements that are of a particular type
(e.g., all the div elements).

3238.10 Forms and How They’re Processed: Client-Side Versus Server-Side

the bottom, the two list boxes at the sides, and the convert button in the center. All those controls
are inside a form. Behind the scenes, the convert button has a JavaScript event handler. When the
user clicks the button and submits the form, the event handler code reads the form’s input values,
does the calculation, and displays the result.

There are two basic strategies for processing a form’s input data. The calculations may occur
on the client side (on the browser’s computer) or on the server side (on the web server’s com-
puter). With server-side processing, the form input values are transmitted across the Internet
to the server computer. The server then does the calculations and transmits the answers back to
the client computer. The answers are in the form of a new web page or an updated version of the
original web page. With client-side processing, there’s no need to go back and forth across the
Internet with user input and generated results. After the web page downloads, the client computer
does all the work. Therefore, client-side processing tends to be faster. So normally, you should use
client-side processing for relatively simple web pages.

On the other hand, there are several reasons why server-side processing is sometimes
preferable:

 ▸ When the calculations require a lot of programming code. If client-side processing were
used, all the calculation code would have to be downloaded to the client, and that would
slow things down. Slowdowns can lead to impatient users giving up and going away.

 ▸ When the calculations require the use of large amounts of data, which usually means
using a database. The rationale is basically the same as for the case where there’s lots of
programming code. With large amounts of data, you don’t want to have to download it
across the Internet to the browser because that would slow things down. Therefore, you
should keep the data on the server side and do all the processing there.

 ▸ When the code is proprietary. Proprietary code is code that gives the programmer (or, more
often, the programmer’s company) a competitive advantage. You should keep proprietary
code on the server side, where it’s more difficult for a competitor or hacker to access it.

FIGUre 8.4 Web page that performs temperature conversions

Co
ur

te
sy

 of
 on

lin
ec

on
ve

rsi
on

.co
m

324 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

FIGUre 8.5 Web page that manages the phone numbers for a company’s employees

 ▸ When the inputs and/or calculation results need to be shared by other users. In order for the data
to be shared, it needs to be transmitted to the server so it can be later transmitted to other users.

 ▸ When user information needs to be processed securely behind the scenes on the server.
For example, credit card numbers and passwords should be processed on the server side.

Quiz time: For Figure 8.4’s temperature conversion web page, should processing take place on
the client side or the server side? Think before you read on.

The calculations are simple enough that all the programming can be done on the client side,
and client-side would lead to a slightly faster experience, so client-side processing is preferred. Be
aware that some developers like to use server-side for almost all their web pages. Although that’s not
recommended, you should be aware that that’s sometimes the case. If someone knows a server-side
tool really well (e.g., ASP.NET or PHP, which are beyond the scope of this book), they might be
inclined to use it for everything. After all, if your only tool is a hammer, everything looks like a nail.

Let’s look at a second example web page that uses a form. FIGUre 8.5 shows a web page that
manages the phone numbers for employees at a company. Once again, should processing take

3258.10 Forms and How They’re Processed: Client-Side Versus Server-Side

http://ASP.NET

place on the client side or the server side? With a large company, there would be a large number of
employees, a large amount of data, and a database would be appropriate, so server-side processing
is the way to go. With a small company, there wouldn’t be a large amount of data, but, regardless,
you need to save the data permanently on the server side, so the updated employee phone data
can be viewed later by other users. So with a small company, server-side processing is still the way
to go.

8.11 form Element
Let’s now discuss the form element, which is in charge of grouping a form’s controls. Here’s a
template for the form element’s syntax:

<form>
 label
 text-box, list-box, check-box, etc.
 label
 text-box, list-box, check-box, etc.
 ...
 submit-button
</form>

Note how there’s a submit button control at the bottom and other controls above it. That’s
probably the most common layout because it encourages the user to first provide input for the
controls at the top before clicking the button at the bottom. However, you should not try to
pigeonhole every one of your web page forms into the template. If it’s more appropriate to have
your submit button at the top or in the middle, then you should put your submit button at the top
or in the middle. One other thing to note in the template is the labels. The labels are text prompts
that tell the user what to enter in the subsequent controls.

The following code implements a form with two text controls and a submit button:

<form>
 First Name:
 <input type="text" id="first" size="15">

 Last Name:
 <input type="text" id="last" size="15">

 <input type="button" value="Generate Email"
 onclick="generateEmail(this.form);">
</form>

Notice how this code matches the template provided earlier. The first two controls are
text controls that hold first name and last name user entries. We’ll cover text control syntax
details shortly, but not quite yet. The bottom control is a button. When the button is clicked,
its onclick event handler calls the generateEmail function that combines the entered first
and last names to form an email address. We’ll explain the event handler’s this.form argu-
ment later, when we present the web page that this form is part of. But first, let’s finish talking
about forms.

326 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

Although it’s legal to use input elements—like text controls and buttons—without surround-
ing them with a form element, you’ll usually want to use a form. Here are some reasons for doing so:

 ▸ Forms can lead to faster JavaScript processing of the input elements. Understanding why
that’s the case will make sense after we explain the JavaScript code in an upcoming web
page later in this chapter.

 ▸ Forms provide support for being able to check user input to make sure it follows a
particular format. That’s called input validation, and we’ll spend a considerable amount of
time on it in the next chapter.

 ▸ Forms provide the ability to add a reset button to assign all the form controls to their
original values. To implement a reset button, specify reset for the type attribute, like this:

 <input type="reset" value="Reset">

8.12 Controls
There’s lots more syntax to cover when it comes to HTML controls, but before returning to the
syntax jungle, a controls overview might be helpful. It’s rather difficult to keep track of which
controls use which elements, and this section attempts to make the learning process easier. Read
it now and use it as a reference later.

FIGUre 8.6 shows some of the more popular controls and the elements used to implement
them. As you can see, most of the controls use the input element for their implementation. But
just to make things difficult,6 not all controls use the input element. Some important controls use
the select and textarea elements.

In the figure, note the controls in the first table that use the input element. You’ve already
learned about the button control. You’ve been introduced to the text control, and you’ll learn its
syntax details in the next section. You’ll learn about the number control in Chapter 9. For now,

6 Although difficulty is generally not fun, it’s not always bad. As difficulty goes up, web programmer wages go up.

FIGUre 8.6 Some of the more popular controls and the elements used to implement them

input Element select Element

button pull-down menu

text control list box

number

radio button textarea Element

checkbox textarea control

password

date

color

3278.12 Controls

just know that the number control provides a mechanism for users to enter a number for input,
and it has built-in checking to make sure the input is a properly formatted number. You’ll learn
about the radio button and checkbox controls in Chapter 10. You’ve probably seen those controls
many times on the Web, so we’ll forgo a preliminary explanation at this point.

At this point, we’re not providing code examples for the password, date, and color controls,
but you should understand what they do. The password control allows the user to enter text into
a box where, to help with privacy, the entered characters are obscured. Typically, that means the
characters display as bullets. The date control allows the user to enter a month-day-year value for
a date. Most browsers implement the date control with a drop-down calendar where the user picks
a date from it. Note FIGUre 8.7, which shows a calendar displayed after the user clicks the down
arrow on the date control’s top-right corner. The color control enables the user to select a color
from a color picker tool. Figure 8.7 shows a color picker displayed after the user clicks the color
control’s black button.

Be aware that you might run into older browsers that don’t support the date and color con-
trols fully. Instead of displaying date and color pickers, they just display boxes that users can enter
text into.7

7 Web Hypertext Application Technology Working Group (WHATWG), “The input element,” https://html
.spec.whatwg.org/#the-input-element. We encourage you to peruse the WHATWG’s input element page
for more details about the password, date, and color controls, and to learn about all the other controls that
use the input element.

FIGUre 8.7 Web page that illustrates the date and color controls

Click here to display the calender. Click here to display the color picker.

328 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

https://html.spec.whatwg.org/#the-input-element
https://html.spec.whatwg.org/#the-input-element

In Figure 8.6, note the two controls that use the select element—the pull-down menu and
list box controls. You’ll learn about those controls in Chapter 10. Both controls allow the user to
select an item(s) from a list of items. The pull-down menu control normally displays just one item
at a time from the list and displays the rest of the list only after the user clicks the control’s down
arrow. On the other hand, the list box control displays multiple list items simultaneously without
requiring the user to click a down arrow.

And finally, in Figure 8.6, note the control that uses the textarea element—the textarea
control. You’ll learn about the textarea control in Chapter 10. For now, just know that it allows the
user to enter text into a multiline box. So it’s the same as the text control except for the height of
the box. We cover the text control in all its glory in the next section.

8.13 Text Control
Earlier, we described the text control as a box that a user can enter text into. Now it’s time to dig
into text control details. Here’s a template for the text control’s syntax:

<input type="text" id="text-box-identifier"
 placeholder="user-entry-description"
 size="box-width" maxlength="maximum-typed-characters">

As you can see, and as you might recall from our description of the button control, the input
element is a void element, so there’s just one tag and no end tag.

The preceding text control template does not include all the attributes for a text control—just
the more important ones. We’ll describe the attributes shown, plus a few others shortly, but let’s
first look at an example text control code fragment:

<input type="text" id="ssn"
 placeholder="#########" size="9" maxlength="9">

Note how the example follows the syntax pattern shown earlier. The text control is for storing
a Social Security number, so the id attribute’s ssn value is an abbreviation for Social Security
number. What’s the purpose of the nine #’s for the placeholder attribute? Social Security
numbers have nine digits, so the nine #’s implicitly tell the user to enter nine digits with no
hyphens.

attributes
Here are the text control attributes we’ll talk about in this subsection:

Text Control Attributes

type id placeholder size maxlength value autofocus disabled readonly

As mentioned earlier (when describing the input element for the button control), the type
attribute specifies the type of control. For a text control, use type="text". The default value
for the type attribute is text, so if you omit the type attribute, you’ll get a text control. But for

3298.13 Text Control

self-documentation purposes, we recommend that you always include type="text" for your
text controls.

The id attribute’s value serves as an identifier for the text control, so it can be accessed
with JavaScript. Previously, in the Hello web page, we used an h3 element’s id value and called
getElementById to retrieve the object associated with the h3 element. In an upcoming exam-
ple, we’ll do the same thing using a text control’s id value.

The placeholder attribute provides a word or a short description that helps the user to know
what to enter into the text control. When the page loads, the browser puts the placeholder’s
value in the text control. As soon as the user enters a character into the text control, the entire
placeholder value disappears.

The size attribute specifies the text control’s width, where the width value is an integer that
approximates the number of average-size characters that can fit in the box. So size="5" means
approximately 5 characters could display in the box simultaneously. The default size is 20.

The maxlength attribute specifies the maximum number of characters that can be entered
in the box. By default, an unlimited number of characters is allowed. Entries that exceed the box’s
width cause input scrolling to occur.

The next four attributes are popular, but not quite as popular as the prior attributes, and that’s
why they don’t appear in the previous text control example. Like the other attributes, they are not
required by the HTML5 standard. Use them if you need them.

The value attribute specifies an initial value for the text control. The value attribute’s value
is treated as user input. If the user wants a different input, the user must first delete the value
attribute’s value. If the user does nothing and there’s JavaScript code that retrieves the user input,
it gets the value attribute’s value by default.

The autofocus attribute specifies that after the page has loaded, the browser engine posi-
tions the cursor in the text control. To achieve autofocus, specify autofocus by itself. As you may
recall, when you specify an attribute by itself, that’s known as an empty attribute.

The disabled attribute specifies that the text control cannot receive the focus, and, there-
fore, the user cannot copy or edit the text control’s value. To disable a control, specify disabled
by itself. The readonly attribute specifies that the user can highlight the control’s value and copy
it, but the user cannot edit it. To make a control read-only, specify readonly by itself. For dis-
abled and read-only text controls, the only way to change their values is to use JavaScript assign-
ment statements. You’ll see an example of that later in this chapter.

8.14 Email Address Generator Web Page
In this section, we examine a web page that uses text controls for a person’s first and last names.
In FIGUre 8.8, you can see what happens on that web page when the user clicks the Generate
Email button. The underlying JavaScript code retrieves the text controls’ user-entered values and
displays an email address that’s built with those values.

In dissecting the Email Address Generator web page’s implementation, let’s start with the
body container, which you can see in FIGUre 8.9a. Note the form container and the h3

330 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

element above the form. It would be legal to move the h3 element inside the form, but we rec-
ommend not doing so. It’s good to keep the form clean, with just control elements and their
labels inside it. As you’ll see later, having less content within a form can lead to faster retrieval
of user input.

Note the two text controls with size="15". So are the user entries limited to 15 characters
each? No. The boxes are 15 characters wide, but the user can enter as many characters as desired.
Note the first-name text control’s autofocus attribute. That causes the browser to load the web
page with the cursor in that text control.

Note the p element below the form. It’s a placeholder for the generated email address.
When the user clicks the button, the JavaScript engine calls the generateEmail function,
which assigns the generated email address to the empty area between the p element’s start and
end tags.

FIGUre 8.8 email address Generator web page—what happens after the user enters first
and last names and what happens after the user clicks the Generate Email button

3318.14 Email Address Generator Web Page

Note the this.form argument in the button event handler’s generateEmail function
call. The this.form argument requires some in-depth explanation. In the generateEmail
function (which we’ll examine later), we’ll need to retrieve the user inputs from the form.
To make that possible, when the user clicks the button, we need to pass the form to the
 generateEmail function. So why this.form for the generateEmail function call’s argu-
ment? In general, the this keyword refers to the object that contains the JavaScript in which
this appears. Specifically in this example, the enclosing object is the button element’s
object. The button element’s object has a form property that holds the form that surrounds
the button. Therefore, we can pass the form object to the generateEmail function by call-
ing generateEmail(this.form).

8.15 Accessing a Form’s Control Values
In the previous section, you learned how the Email Address Generator’s button event handler passes
its form object to the generateEmail function by using this.form. In this section, we’ll exam-
ine the function itself and learn how to use the form object to access control values within the form.

As you learned earlier, whenever you pass an argument to a function, you should have an
associated parameter in the function’s heading. Therefore, to receive the form object passed to
the generateEmail function, there’s a form parameter in the function’s heading, as you can see
here:

function generateEmail(form)

FIGUre 8.9a body container for email address Generator web page

<body>
<h3>

Enter your first and last names and then click the button.
</h3>
<form>

First Name:
<input type="text" id="first" size="15" autofocus>

Last Name:
<input type="text" id="last" size="15">

<input type="button" value="Generate Email"

onclick="generateEmail(this.form);">

<p id="email"></p>
</body>

</form>

</html>

Use autofocus
for the first-name
text control.

The this keyword refers
to the object that contains
the JavaScript in which this
appears. In this example, the
enclosing object is the button
element's object.

332 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

FIGUre 8.9B shows the head container for the Email Address Generator web page. Note the
form parameter in the generateEmail function’s heading. Be aware that you’re not required
to use the word “form” for the parameter. We could have used a different parameter name, like
“namesForm,” but then everywhere you see form within the function body, we’d need to change
it to the new parameter name.

Within the generateEmail function body, we use the form parameter to retrieve the
text control user inputs. Here’s the code for retrieving the user input from the first-name text
control:

form.elements["first"].value

To access the controls that are within a form, we use the form object’s elements property. The
elements property holds a collection of controls, where a collection is a group of items that are
of the same type. To access a control within the elements collection, you put quotes around
the control’s id value and surround the quoted value with []’s. So in the preceding code, you
can see first within the []’s, and first is the value for the control’s id attribute. Go back
to Figure 8.9A and verify that the first-name text control uses id="first". After retrieving
the control, there’s still one more step (which people forget all the time). To get the user input,
you need more than just the control by itself; you need to access the control’s value property
as shown.

As an alternative to using form.elements["first"], you can use form["first"]. We
don’t use the form[] syntax in the book’s examples because it uses quirky syntax that works
with JavaScript, but not with other programming languages. You should get used to standard

FIGUre 8.9B head container for email address Generator web page

Parameter that holds the
form object.

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Email Address Generator</title>
<script>
// This function generates an email address.

function generateEmail(form) {

document.getElementById("email").innerHTML =
form.elements["first"].value + "." +
form.elements["last"].value + "@park.edu";

form.reset();
form.elements["first"].focus();

} // end generateEmail

</script>
</head>

3338.15 Accessing a Form’s Control Values

mailto:"@park.edu"

programming language syntax. The elements property is a collection of things, and in JavaScript,
to access an element within a collection, you use []’s. On the other hand, form["first"] relies
on the form object somehow morphing into a collection so []’s are used—very odd indeed!
But on the other other hand (assuming you have three hands), if you feel comfortable using the
form[] syntax, go for it. It uses less code, which leads to slightly faster downloads.

JavaScript Object properties and htML element
attributes
In the form.elements["first"].value code fragment shown in the previous section, the
value property returns the text control’s user-entered value. If there’s no user entry, then the
value of the text control’s value attribute is returned. If there’s no user entry and there’s also no
value attribute, then the value property holds the empty string by default. Having a correspond-
ing JavaScript value property for the HTML value attribute is indicative of a pattern. There’s a
parallel world between JavaScript properties and HTML element attributes. In our earlier presen-
tation of the text control element’s syntax, we showed these text control element attributes:

type, placeholder, size, maxlength, value, autofocus, disabled,
readonly

Here are the corresponding JavaScript properties for a text control element object:

type, placeholder, size, maxLength, value, autofocus, disabled,
readOnly

Note that HTML attributes use all lowercase, whereas JavaScript properties use camel case,
which means the two-word properties are spelled maxLength and readOnly. Get used to that
weirdness—use all lowercase for HTML attributes, but camel case for JavaScript properties. JavaS-
cript is case sensitive, so you must use camel case for your code to work. HTML is not case sensi-
tive, but you should use all lowercase in order to exhibit proper style.

Control elements’ innerHTML property
In the Email Address Generator web page’s generateEmail function, the goal is to update the
following p element by replacing its empty content with a generated email address:

<p id="email"></p>

To do that, we retrieve the p element’s object and then use its innerHTML property, like this:

document.getElementById("email").innerHTML

Remember the outerHTML property? It accesses the control element’s code, including its start
and end tags. The innerHTML property accesses the content within the control element’s code,
not including its start and end tags.

334 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

In the generateEmail function, here’s the assignment statement that uses innerHTML to
update the p element with a generated email address:

document.getElementById("email").innerHTML =
 form.elements["first"].value + "." +
 form.elements["last"].value + "@park.edu";

string concatenation operator

To connect a string to something else (e.g., another string, a number), you need to use the
concatenation operator, +. The resulting connected value forms a string. So in the preceding
assignment statement, the three concatenation operations form a single string, and that string
gets assigned into the innerHTML part of the retrieved p element.

In the generateEmail function, we use form.elements to retrieve the two text controls.
As an alternative, we could have used document.getElementById to retrieve the controls (e.g.,
document.getElementById["first"]). Why is it better to use form.elements? Because
document.getElementById has to search through all the element nodes in the web page’s
entire node tree, whereas form.elements has to search through only the control nodes in the
form part of the web page’s node tree. This difference in speed won’t be noticeable with web pages
that don’t use much code (like the Email Address Generator web page), but it’s good to use coding
practices that scale well to web pages with lots of code.

8.16 reset and focus Methods
Go back to Figure 8.9B, and you can see that we still haven’t talked about the last two lines in the
generateEmail function. Here are those lines:

form.reset();
form.elements["first"].focus();

The form object’s reset method reassigns the form’s controls to their original values. Because
the Email Address Generator web page has no value attributes for its text controls, the reset
method call assigns empty strings to the text controls, thereby blanking them out.

When an element object calls the focus method, the browser puts the focus on the element’s
control if it’s possible to do so. For text control elements, like the first-name text control retrieved in
the preceding code, putting the focus on it means the browser positions the cursor in the text control.

8.17 Comments and Coding Conventions
In prior chapters, you learned about various coding conventions for HTML and CSS. Earlier in
this chapter, you learned a few coding conventions for JavaScript, such as needing to use descrip-
tive variable names. In this section, you’ll get a deeper immersion into JavaScript coding conven-
tions. Remember—it’s important to follow coding conventions so your code is understandable,
robust, and easy to maintain.

3358.17 Comments and Coding Conventions

mailto:"@park.edu"
Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

