316

CHAPTER 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

Functions

A function in JavaScript is similar to a mathematical function. A mathematical function receives
arguments, performs a calculation, and returns an answer. For example, the sin(x) mathematical
function receives the x argument, calculates the sine of the given x angle, and returns the calcu-
lated sine of x. Likewise, a JavaScript function might receive arguments, will perform a calcula-
tion, and might return an answer. Here’s the syntax for calling a function:

function-name(zero-or-more-arguments-separated-by-commas) ;

As mentioned earlier, the Hello web page button has an onclick attribute with a value
of displayHello() ;. That’s a JavaScript function call, and its syntax matches the preceding


jheines
Rectangle

jheines
Sticky Note
Unmarked set by jheines


8.5 Functions

syntax. Note the parentheses are empty because there’s no need to pass any argument values to the
displayHello function. If there were arguments, they would need to be separated by commas,
and proper style suggests that you insert a space after each comma.

Here’s the syntax for a function definition:

function function-name (zero-or-more-parameters-separated-by-commas) {
statement-1 ;

statement-2;

last-statement ;

1
And here’s the displayHello function definition from the Hello web page:
function displayHello() { <«—— function heading
" var msg; T ooTooTmoTTo 1
: msg = document.getElementById ("message") ; ' i
, msg.outerHTML = "<hls>Hello, world!</hl>"; : < function body
1

You should be able to recognize that the displayHello function definition follows the prior
syntax. The parentheses in the function heading are empty because the function call’s parentheses
are empty (the function call was displayHello () ;). If there are arguments in the function call,
then you’ll normally have the same number of parameters in the function heading—one param-
eter to receive each argument’s value. Note how we're using the term argument for the values in
a function call’s parentheses and the term parameter for the associated words in a function defi-
nition heading’s parentheses. Some people use the term argument for both, but to make it easier
to distinguish between the function call and the function definition, well stick with the separate
formal names—argument and parameter.

Normally, function definitions should be placed (1) in a script container in the web page’s
head container or (2) in an external JavaScript file. Go back to the Hello web page code in
Figure 8.2 and verify that the displayHello function definition is in a script container. You’ll
want to use an external JavaScript file if you have lots of JavaScript code. We'll show a web page
that uses an external JavaScript file later in the book.

Looking at the previous code fragment, you can see three lines in the function’s body. Each
line is a JavaScript statement, where a statement performs a task. Note the semicolons at the end
of all three statements. Semicolons are required at the end of a JavaScript statement only if the
JavaScript statement is followed by another JavaScript statement, so it would have been legal to
omit the semicolon after the last statement. However, coding conventions dictate that you termi-
nate every statement with a semicolon, even the last one. Why? Suppose there’s no semicolon at
the end of the last statement and someone later adds a new statement after the last statement. If
they forget to insert a semicolon between the two statements, that creates a bug. Another reason
to insert a semicolon after the last statement is that if you don’t do it, the JavaScript engine does it
for you behind the scenes, and that slows things down slightly.

317



8.8 Assignment Statements and Objects 319

Assignment Statements and Objects

We still haven’t finished with the Hello web page. Actually, we still haven’t explained the magic
behind how the web page replaces the initial message with “Hello, world!” when the user clicks the

button. To understand how that works, we need to talk about assignment statements and objects.
Once again, here’s the Hello web page’s displayHello function:

function displayHello() {
var msg;

/ variable declaration
n n

document .getElementById ("message") ; assignment statements

msg.outerHTML = "<hls>Hello, world!</hls>";

!

msg =



jheines
Rectangle


320

CHAPTER 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

In the function’s body, the first statement is a variable declaration for the msg variable. After
you declare a variable, you’ll want to use it, and the first step in using a variable is to put a value
inside it. An assignment statement puts/assigns a value into a variable. As you can see in the
preceding example, the function body’s second and third statements are assignment statements.
The assignment operator (=) assigns the value at the right into a variable at the left. So in the first
assignment statement, the document . getElementById ("message") thing gets assigned into
the msg variable. In the second assignment statement, the "<h1>Hello, world!</hl>" thing
gets assigned into the msg. out erHTML variable.

Those two assignment statements are pretty confusing. To understand the syntax requires an
understanding of objects. An object is a software entity that represents something tangible. The
fact that it’s software means that it can be manipulated with JavaScript code, which provides you,
the programmer, with great power!

Behind the scenes, all of the elements in a web page are represented as objects. When a
browser loads the Hello web page, the browser software generates objects for the head element,
the body element, the h3 element, and so on. There’s also an object associated with the entire
web page, and that object’s name is document. Each object has a set of related properties, plus
a set of behaviors. A property is an attribute of an object. A behavior is a task that the object can
perform. The document object contains properties like the web page’s type. Most web pages these
days (and all the web pages in this book) have a value of HTMLS5 for the document object’s type
property. But it’s possible to have other types, like HTML 4.01 or XHTML 1.0 Strict. The type
property’s value comes from the doctype instruction, which should appear at the top of every web
page. Here’s the Hello web page’s doctype instruction:

<!DOCTYPE htmls>

The html value indicates that the document object’s type is HTML5.* To access an object’s prop-
erty, you specify the object name, a dot, and then the property name. So to access the current
web page’s document type, use document for the object name, . for dot, and doctype for the
property. Here’s the JavaScript code:

document .doctype

Remember that an object is not only a set of properties, but also a set of behaviors. One
of the document object’s behaviors is its ability to retrieve an element using the elements id
value. In JavaScript (and many other programming languages, as well), an object’s behaviors are
referred to as methods. To retrieve an element, the document object uses its get ElemementById
method. To call an object’s method, you specify the object name, a dot, the method name, and

*It might seem odd that the htm1 value indicates HTML5, but as you might recall, the standards organizations
worked very hard to move from older versions of HTML to HTML5. By having htm1 indicate HTMLS5, the
W3C makes HTML5 the default and furthers HTML5’s position as king. If you want another version of
HTML, like HTML 4.01, you have to provide a doctype instruction with a value different from html—a
value too painfully long and ugly to show here.



8.8 Assignment Statements and Objects

then parentheses around any arguments you want to pass to the method. For example, here’s the
getElemementById method call from the Hello web page’s displayHello function:

document .getElementById ("message")

See how the method call includes "message" for its argument? In executing the method call, the
JavaScript engine searches for an element with id="message". There is such an element in the
Hello web page, and here it is:

<h3 id="message">
To see the traditional first-program greeting, click below.
</h3>

So the getElementById method call retrieves that h3 element.

The HTMLS5 standard says that an id attribute’s value must be unique for a particular web
page. You might recall how we used an id attribute to identify a target for a link within a web page.
Using an id attribute is necessary in that situation because we need a link’s target to be unique.
Likewise, we use an id attribute to retrieve an element (with getElementById) so there won't
be any confusion in terms of which element to retrieve.

Let’s get back to explaining the displayHello function. Here it is again:

function displayHello() {

var msg;
msg = document.getElementById ("message") ;
msg.outerHTML = "<hls>Hello, world!</hl>";

}

Previously, we said the get ElementById method call retrieves the h3 element. Well, almost.
Actually, the getElementById method retrieves the object associated with the h3 element. In
the displayHello function, you can see that the getElementById method call is on the right-
hand side of an assignment statement, so the method’s returned value (the h3 element’s object)
gets assigned into the variable at the left of the assignment statement. After msg gets the h3 ele-
ment’s object, that object gets updated with this assignment statement:

msg.outerHTML = "<hls>Hello, world!</hl>";

Note msg . outerHTML. All element objects have an outerHTML property, which stores the ele-
ment’s code, including the element’s start and end tags. The msg variable holds the h3 element’s
object, so msg. outerHTML holds the h3 element’s code. Assigning <h1>Hello, world!</hl>
to msg.outerHTML causes msg’s code to be replaced with <h1>Hello, world!</hl>. Thus,
when the button is clicked, the original h3 message gets replaced with an h1 “Hello, world!” mes-
sage. Go back to Figure 8.1 and confirm that the “Hello, world!” text is larger than the original
“To see the .. text. That should make sense, now that you realize that the h3 start and end tags
get replaced with h1 start and end tags.

As you might have guessed, in addition to outerHTML, there’s also an innerHTML property.
It accesses the content that’s between the element’s start and end tags, and it does not include the
element’s start and end tags. Later on, we'll use innerHTML in a separate web page example.

321



322

CHAPTER 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

Document Object Model

Whew! We've finally finished examining the Hello web page code. The examination process
required getting down in the weeds and learning about objects. Now let’s step back and look at a
big-picture issue related to objects. Let’s examine how a web page’s objects are organized.

The Document Object Model, which is normally referred to as the DOM, models all of the parts of
a web page document as nodes in a node tree. A node tree is similar to a directory tree, except instead
of showing directories that include other directories (and files), it shows web page elements that include
other elements (and text and attributes). Each node represents either (1) an element, (2) a text item that
appears between an element’s start and end tags, or (3) an attribute within one of the elements. If that
doesn’t make sense, no worries. See the node tree example in FIGURE 8.3, and you should be able to
understand things better by examining how the code maps to the nodes in the node tree.

The figure’s code is a stripped-down version of the Hello web page code shown earlier, with
some of its elements and attributes (e.g., the meta and script elements) removed. The node tree
shows blue nodes for each element in the web page code (e.g., head and title). It shows yellow
nodes for each text item that appears between an element’s start and end tags (e.g., “Hello”). And it
shows green nodes for each attribute in the web page document’s elements (e.g., h3’s id attribute).

blue: element nodes <!DOCTYPE html>
yellow: text nodes <html lang="en">
green: attribute nodes <head>
<titles>Hello</titles>
</head>
Node Tree <body>
<h3 id="message">
root of —» To see the traditional
node tree document first-program greeting, click below.
</h3>
| <input type="button" value="Click Me!">
</body>
il </html>
lang="en” head body
title h3 input
Hello id="“message” To see the traditional first- type="button” value="Click Me!”
program greeting, click below.

FIGURE 8.3 Node tree for simplified Hello web page



8.10 Forms and How They're Processed: Client-Side Versus Server-Side

Note that the nodes are arranged in a hierarchical fashion, where nodes at the top contain the
nodes below them (e.g., the head node contains the tit1e node). The node at the top of the node
tree is the document object, which we discussed earlier. Using computer science terminology, the
node at the top of a tree is called the root node.

The term dynamic HTML refers to updating the web page’s content by manipulating the
DOM’s nodes. Assigning a value to an element object’s out erHTML property (as in the Hello web
page) is one way to implement dynamic HTML. We'll see other techniques later.

The main point of explaining the DOM is for you to get a better grasp of how everything in
a web page is represented behind the scenes as an object. As a web programmer, you can use the
DOM’s hierarchical structure to access and update different parts of the web page. The DOM
provides different ways to access the nodes in the node tree. Here are three common techniques:

1. You can retrieve the node tree’s root by using document (for the document object) in
your code and then use the root object as a starting point in traversing down the tree.

2. You can retrieve the node that the user just interacted with (e.g. a button that was clicked)
and use that node object as a starting point in traversing up or down the tree.

3. You can retrieve a particular element node by calling the document object’s
getElementById method with the element’s id value as an argument.

In the Hello web page, we used the third technique, calling get ElementById. Later on, we'll
provide web page examples that use the first two techniques. We hope you’re excited to know what
you have to look forward to!®

*If you read about those techniques in the later chapters and that doesn't satiate your quest for knowledge,
you can learn yet another technique on your own. Using a node object from the DOM node tree, you can call
getElementsByTagName to retrieve all of the node’s descendant elements that are of a particular type
(e.g., all the div elements).

323


jheines
Rectangle




