
The input element is used for different types of user input, and its type attribute specifies
which type of user input. More formally, the type attribute specifies the type of control that’s
being implemented, where a control is a user input entity such as a button, text control, or check-
box. In the Hello web page source code, note that the type attribute gets the value button, which
tells the browser to display a button. If you don’t provide a type attribute, the browser will display
a text control, because that’s the default type of control for the input element. We’ll describe text
controls later in this chapter. For now, just know that a text control is a box that a user can enter
text into, and this is what a (filled-in) text control (with a prompt at its left) looks like:

Because it uses a box, many web developers refer to text controls as “text boxes.” We use the term
“text control” because that’s the term used more often by the HTML standards organizations.

The input element’s value attribute specifies the button’s label. If you don’t provide a value
attribute, the button will have no label. If you want a button with no label, rather than just omit-
ting the value attribute, we recommend that you specify value="". That’s a form of self-docu-
mentation, and it makes your code more understandable.

The input element’s onclick attribute specifies the JavaScript instructions that the JavaScript
engine executes when the user clicks the button. What’s a JavaScript engine, you ask? A JavaScript
engine is the part of the browser software that runs a web page’s JavaScript. In the Hello web page,
the onclick attribute’s value is JavaScript code that “handles” what’s supposed to happen when the
user clicks the button. Clicking the button is considered to be an event, so the onclick attribute’s
JavaScript code is known as an event handler. Besides onclick, there are other attributes that call
event handlers, like onfocus and onload, but they aren’t used much for buttons, so they won’t be
introduced until later, when they will be more useful with other types of controls.

In the Hello web page source code, note that the onclick attribute’s value is simply
displayHello();. That calls the displayHello function, which is defined in the web page’s
script block. We’ll discuss function calls and function definitions in the next section.

8.5 Functions
A function in JavaScript is similar to a mathematical function. A mathematical function receives
arguments, performs a calculation, and returns an answer. For example, the sin(x) mathematical
function receives the x argument, calculates the sine of the given x angle, and returns the calcu-
lated sine of x. Likewise, a JavaScript function might receive arguments, will perform a calcula-
tion, and might return an answer. Here’s the syntax for calling a function:

function-name(zero-or-more-arguments-separated-by-commas);

As mentioned earlier, the Hello web page button has an onclick attribute with a value
of displayHello();. That’s a JavaScript function call, and its syntax matches the preceding

First Name: Ahmed

316 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

jheines
Rectangle

jheines
Sticky Note
Unmarked set by jheines

syntax. Note the parentheses are empty because there’s no need to pass any argument values to the
displayHello function. If there were arguments, they would need to be separated by commas,
and proper style suggests that you insert a space after each comma.

Here’s the syntax for a function definition:

function function-name(zero-or-more-parameters-separated-by-commas) {
 statement-1;
 statement-2;
 …
 last-statement;
}

And here’s the displayHello function definition from the Hello web page:

function displayHello() {
 var msg;
 msg = document.getElementById("message");
 msg.outerHTML = "<h1>Hello, world!</h1>";

}

You should be able to recognize that the displayHello function definition follows the prior
syntax. The parentheses in the function heading are empty because the function call’s parentheses
are empty (the function call was displayHello();). If there are arguments in the function call,
then you’ll normally have the same number of parameters in the function heading—one param-
eter to receive each argument’s value. Note how we’re using the term argument for the values in
a function call’s parentheses and the term parameter for the associated words in a function defi-
nition heading’s parentheses. Some people use the term argument for both, but to make it easier
to distinguish between the function call and the function definition, we’ll stick with the separate
formal names—argument and parameter.

Normally, function definitions should be placed (1) in a script container in the web page’s
head container or (2) in an external JavaScript file. Go back to the Hello web page code in
Figure 8.2 and verify that the displayHello function definition is in a script container. You’ll
want to use an external JavaScript file if you have lots of JavaScript code. We’ll show a web page
that uses an external JavaScript file later in the book.

Looking at the previous code fragment, you can see three lines in the function’s body. Each
line is a JavaScript statement, where a statement performs a task. Note the semicolons at the end
of all three statements. Semicolons are required at the end of a JavaScript statement only if the
JavaScript statement is followed by another JavaScript statement, so it would have been legal to
omit the semicolon after the last statement. However, coding conventions dictate that you termi-
nate every statement with a semicolon, even the last one. Why? Suppose there’s no semicolon at
the end of the last statement and someone later adds a new statement after the last statement. If
they forget to insert a semicolon between the two statements, that creates a bug. Another reason
to insert a semicolon after the last statement is that if you don’t do it, the JavaScript engine does it
for you behind the scenes, and that slows things down slightly.

function heading

function body

3178.5 Functions

different times during the execution of a program. For example, it would be legal to assign a string
to name and then later assign a number to name. But proper coding conventions dictate that you
don’t do that, because it can lead to code that’s difficult to understand.

8.7 Identifiers
An identifier is the technical term for a program component’s name—the name of a function, the
name of a variable, and the names of other program components we’ll get to later on. In the Hello
web page, displayHello was the identifier for the function name, and msg was the identifier for
a variable. In naming your variables and functions, the JavaScript engine requires that you follow
certain rules. Identifiers must consist entirely of letters, digits, dollar signs ($), and/or underscore
(_) characters. The first character must not be a digit. If you do not follow these rules, your Java-
Script code won’t work.

Coding-convention rules are narrower than the preceding rules. Coding conventions suggest
that you use letters and digits only, not dollar signs or underscores. They also suggest that all
letters should be lowercase except the first letter in the second word, third word, and so on. That’s
referred to as camel case, and here are a few examples: firstName, message, daysInMonth.
Notice that the identifiers’ words are descriptive. Coding conventions suggest that you use
descriptive words for your identifiers. Beginning programmers have a tendency to use names like
x, y, and num. Normally, those are bad variable names. However, if you have a situation in which
you’re supposed to read in a number and the number doesn’t represent anything special, then x
or num is OK.

If any of the coding conventions are broken, it won’t affect your web page’s ability to work
properly, but your code will be harder to understand and maintain. If your code is harder to
understand and maintain, that means programmers who work on the code in the future will
have to spend more time in their efforts, and their time costs money. Normally, programmers
spend more time working on old code (making bug fixes and making improvements) rather
than writing new code, and all that work on old code costs money. So to help with your present
or future company’s bottom line (profit and world domination), put in the time up front writing
good code.

8.8 Assignment Statements and Objects
We still haven’t finished with the Hello web page. Actually, we still haven’t explained the magic
behind how the web page replaces the initial message with “Hello, world!” when the user clicks the
button. To understand how that works, we need to talk about assignment statements and objects.

Once again, here’s the Hello web page’s displayHello function:

function displayHello() {
 var msg;
 msg = document.getElementById("message");
 msg.outerHTML = "<h1>Hello, world!</h1>";
}

variable declaration

assignment statements}

3198.8 Assignment Statements and Objects

jheines
Rectangle

In the function’s body, the first statement is a variable declaration for the msg variable. After
you declare a variable, you’ll want to use it, and the first step in using a variable is to put a value
inside it. An assignment statement puts/assigns a value into a variable. As you can see in the
preceding example, the function body’s second and third statements are assignment statements.
The assignment operator (=) assigns the value at the right into a variable at the left. So in the first
assignment statement, the document.getElementById("message") thing gets assigned into
the msg variable. In the second assignment statement, the "<h1>Hello, world!</h1>" thing
gets assigned into the msg.outerHTML variable.

Those two assignment statements are pretty confusing. To understand the syntax requires an
understanding of objects. An object is a software entity that represents something tangible. The
fact that it’s software means that it can be manipulated with JavaScript code, which provides you,
the programmer, with great power!

Behind the scenes, all of the elements in a web page are represented as objects. When a
browser loads the Hello web page, the browser software generates objects for the head element,
the body element, the h3 element, and so on. There’s also an object associated with the entire
web page, and that object’s name is document. Each object has a set of related properties, plus
a set of behaviors. A property is an attribute of an object. A behavior is a task that the object can
perform. The document object contains properties like the web page’s type. Most web pages these
days (and all the web pages in this book) have a value of HTML5 for the document object’s type
property. But it’s possible to have other types, like HTML 4.01 or XHTML 1.0 Strict. The type
property’s value comes from the doctype instruction, which should appear at the top of every web
page. Here’s the Hello web page’s doctype instruction:

<!DOCTYPE html>

The html value indicates that the document object’s type is HTML5.4 To access an object’s prop-
erty, you specify the object name, a dot, and then the property name. So to access the current
web page’s document type, use document for the object name, . for dot, and doctype for the
property. Here’s the JavaScript code:

document.doctype

Remember that an object is not only a set of properties, but also a set of behaviors. One
of the document object’s behaviors is its ability to retrieve an element using the element’s id
value. In JavaScript (and many other programming languages, as well), an object’s behaviors are
referred to as methods. To retrieve an element, the document object uses its getElemementById
method. To call an object’s method, you specify the object name, a dot, the method name, and

4 It might seem odd that the html value indicates HTML5, but as you might recall, the standards organizations
worked very hard to move from older versions of HTML to HTML5. By having html indicate HTML5, the
W3C makes HTML5 the default and furthers HTML5’s position as king. If you want another version of
HTML, like HTML 4.01, you have to provide a doctype instruction with a value different from html—a
value too painfully long and ugly to show here.

320 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

then parentheses around any arguments you want to pass to the method. For example, here’s the
getElemementById method call from the Hello web page’s displayHello function:

document.getElementById("message")

See how the method call includes "message" for its argument? In executing the method call, the
JavaScript engine searches for an element with id="message". There is such an element in the
Hello web page, and here it is:

<h3 id="message">
 To see the traditional first-program greeting, click below.
</h3>

So the getElementById method call retrieves that h3 element.
The HTML5 standard says that an id attribute’s value must be unique for a particular web

page. You might recall how we used an id attribute to identify a target for a link within a web page.
Using an id attribute is necessary in that situation because we need a link’s target to be unique.
Likewise, we use an id attribute to retrieve an element (with getElementById) so there won’t
be any confusion in terms of which element to retrieve.

Let’s get back to explaining the displayHello function. Here it is again:

function displayHello() {
 var msg;
 msg = document.getElementById("message");
 msg.outerHTML = "<h1>Hello, world!</h1>";
}

Previously, we said the getElementById method call retrieves the h3 element. Well, almost.
Actually, the getElementById method retrieves the object associated with the h3 element. In
the displayHello function, you can see that the getElementById method call is on the right-
hand side of an assignment statement, so the method’s returned value (the h3 element’s object)
gets assigned into the variable at the left of the assignment statement. After msg gets the h3 ele-
ment’s object, that object gets updated with this assignment statement:

msg.outerHTML = "<h1>Hello, world!</h1>";

Note msg.outerHTML. All element objects have an outerHTML property, which stores the ele-
ment’s code, including the element’s start and end tags. The msg variable holds the h3 element’s
object, so msg.outerHTML holds the h3 element’s code. Assigning <h1>Hello, world!</h1>
to msg.outerHTML causes msg’s code to be replaced with <h1>Hello, world!</h1>. Thus,
when the button is clicked, the original h3 message gets replaced with an h1 “Hello, world!” mes-
sage. Go back to Figure 8.1 and confirm that the “Hello, world!” text is larger than the original
“To see the …” text. That should make sense, now that you realize that the h3 start and end tags
get replaced with h1 start and end tags.

As you might have guessed, in addition to outerHTML, there’s also an innerHTML property.
It accesses the content that’s between the element’s start and end tags, and it does not include the
element’s start and end tags. Later on, we’ll use innerHTML in a separate web page example.

3218.8 Assignment Statements and Objects

8.9 Document Object Model
Whew! We’ve finally finished examining the Hello web page code. The examination process
required getting down in the weeds and learning about objects. Now let’s step back and look at a
big-picture issue related to objects. Let’s examine how a web page’s objects are organized.

The Document Object Model, which is normally referred to as the DOM, models all of the parts of
a web page document as nodes in a node tree. A node tree is similar to a directory tree, except instead
of showing directories that include other directories (and files), it shows web page elements that include
other elements (and text and attributes). Each node represents either (1) an element, (2) a text item that
appears between an element’s start and end tags, or (3) an attribute within one of the elements. If that
doesn’t make sense, no worries. See the node tree example in FIGUre 8.3, and you should be able to
understand things better by examining how the code maps to the nodes in the node tree.

The figure’s code is a stripped-down version of the Hello web page code shown earlier, with
some of its elements and attributes (e.g., the meta and script elements) removed. The node tree
shows blue nodes for each element in the web page code (e.g., head and title). It shows yellow
nodes for each text item that appears between an element’s start and end tags (e.g., “Hello”). And it
shows green nodes for each attribute in the web page document’s elements (e.g., h3’s id attribute).

FIGUre 8.3 Node tree for simplified hello web page

<!DOCTYPE html>
<html lang="en">
<head>
<title>Hello</title>
</head>
<body>
<h3 id="message">
 To see the traditional
 first-program greeting, click below.
</h3>
<input type="button" value="Click Me!">
</body>
</html>

documentroot of
node tree

Node Tree

html

lang=“en” head body

title h3 input

Hello value=“Click Me!”type=“button”id=“message” To see the traditional first-
program greeting, click below.

blue: element nodes
yellow: text nodes
green: attribute nodes

322 Chapter 8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers

Note that the nodes are arranged in a hierarchical fashion, where nodes at the top contain the
nodes below them (e.g., the head node contains the title node). The node at the top of the node
tree is the document object, which we discussed earlier. Using computer science terminology, the
node at the top of a tree is called the root node.

The term dynamic HTML refers to updating the web page’s content by manipulating the
DOM’s nodes. Assigning a value to an element object’s outerHTML property (as in the Hello web
page) is one way to implement dynamic HTML. We’ll see other techniques later.

The main point of explaining the DOM is for you to get a better grasp of how everything in
a web page is represented behind the scenes as an object. As a web programmer, you can use the
DOM’s hierarchical structure to access and update different parts of the web page. The DOM
provides different ways to access the nodes in the node tree. Here are three common techniques:

1. You can retrieve the node tree’s root by using document (for the document object) in
your code and then use the root object as a starting point in traversing down the tree.

2. You can retrieve the node that the user just interacted with (e.g. a button that was clicked)
and use that node object as a starting point in traversing up or down the tree.

3. You can retrieve a particular element node by calling the document object’s
getElementById method with the element’s id value as an argument.

In the Hello web page, we used the third technique, calling getElementById. Later on, we’ll
provide web page examples that use the first two techniques. We hope you’re excited to know what
you have to look forward to!5

8.10 Forms and How They’re Processed: Client-Side
Versus Server-Side
Have you ever filled out input boxes on a web page and clicked submit in order to have some task
performed, like converting miles to kilometers or buying a canine selfie stick? If so, you’ve used a
form. A form is a mechanism for grouping input controls (e.g., buttons, text controls, and check-
boxes) within a web page.

If you’ve spent much time on the Internet, you probably know that forms are very popular.
So why did we wait until now to introduce them? Before this chapter, all you knew was HTML,
which is very limited in terms of processing capabilities. With HTML, you can implement forms
and controls, but HTML won’t help you process the user’s input. To make forms useful, you need
to read the user’s input, process it, and display the results. And to do all that, you need JavaScript.

Before we dig into the details of how to implement a form with HTML and how to process the
input with JavaScript, let’s look at an example web page that uses a form. FIGUre 8.4 shows a tem-
perature conversion calculator. Note the quantity text control at the top, the result text control at

5 If you read about those techniques in the later chapters and that doesn’t satiate your quest for knowledge,
you can learn yet another technique on your own. Using a node object from the DOM node tree, you can call
getElementsByTagName to retrieve all of the node’s descendant elements that are of a particular type
(e.g., all the div elements).

3238.10 Forms and How They’re Processed: Client-Side Versus Server-Side

jheines
Rectangle

