
CHAPTER OUTLINE

6.1 Introduction

6.2 a Element

6.3 Relative URLs

6.4 index.html File

6.5 Web Design

6.6 Navigation Within a Web page

6.7 CSS for Links

6.8 a Element Additional Details

6.9 Bitmap Image Formats: GIF, JPEG, PNG

6.10 img Element

6.11 Vector Graphics

6.12 Responsive Images

6.13 Case Study: Local Energy and Home 
Page with Website Navigation

6.1 Introduction
This chapter presents two web page features—links and images—that are emblematic of what it 
means to be a web page. Almost all web pages include links and images, and they are usually cru-
cial to the web page’s popularity. And if you’re a web page, popularity is everything.1

In Chapter 4, you learned a few link syntax details while implementing a nav container. In 
this chapter, you’ll learn more link syntax details, plus various techniques for jumping to different 
link targets. In particular, you’ll learn how to jump to a target location on a different web page, as 
well as to a target location on the current web page. Next, you’ll learn how to download a file. For 
all the jumping and downloading operations, you can use a path to identify the location of your 
target, and you’ll learn different techniques for specifying paths. You’ll also learn techniques for 
formatting the links, using various CSS rules.

After learning about links, next you’ll learn about another basic building block—images. 
You can implement a link to an image, but in this chapter, we focus on standalone images. In 
Chapter 4, you learned a few image syntax details while implementing a figure container. In 
this chapter, you’ll learn a few more image syntax details, but most of the image discussion in 
this chapter will be about the different types of images that are available. In particular, you’ll 
learn about bitmap image file formats (GIF, JPEG, and PNG) and a vector graphics file format 
(SVG).

6.2 a Element
To implement a link, you’ll need to use the a element. Here’s an example a element that imple-
ments a link to Park University’s website:

<a href="http://www.park.edu">Park University</a>

1 This rather shallow notion of success is particularly prevalent with younger web pages, where getting invited 
to the “popular” web pages’ parties is paramount.

218 Chapter 6 Links and Images

http://index.html


The text that appears between an a element’s start tag and end tag forms the link label that the user 
sees and clicks on. So in this code, the link label is “Park University.” By default, browsers display 
link labels with underlines. So this code renders like this:

Park University

The blue color indicates that the linked-to page has not been visited. We’ll discuss visited and 
unvisited links later on.

When the user clicks on a link, the browser loads the resource specified by the href attri-
bute. For this example, the “resource” is another web page, so when the user clicks on the “Park 
University” link, the browser loads that web page—the one at http://www.park.edu. As an alter-
native to specifying a web page for the href attribute’s resource, you can specify an image file for 
the href attribute’s resource. We’ll show an example of that in the next chapter.

Besides enabling a user to load a resource (which usually means jumping to another web 
page), the a element can be used as a mechanism that enables a user to download a file of any 
type—image file, video file, PDF file, Microsoft Word file, and so on. To implement that down-
load functionality, include a download attribute as shown here:

<a download href="http://www.park.edu/catalogs/catalog2018-2019.pdf">
  Park University 2018-2019 catalog</a>

As always for the a element, the browser displays the text that appears between the start 
tag and end tag; in this case, that’s “Park University 2018–2019 catalog.” When the user clicks 
on that text, the browser downloads the file specified by the href attribute. The user can then 
choose to view it or save it. Normally, the download attribute has no value, but if you (as the 
web programmer) want the end user to save the file using a different filename than that specified 
by the href atttibute, then you should include a filename for the download attribute’s value, 
such as download="Park University 2018-2019 catalog.pdf". But be aware that 
the browser might override your download attribute’s filename and use the href attribute’s 
filename instead.

Continuation rule for elements that Span Multiple Lines
Did you notice that the preceding a element code fragment spans two lines and the second line 
is indented? This subsection explains that indentation. It’s a style thing, and the explanation is 
not specific to the a element. This subsection is a digression from the rest of this chapter, and it’s 
relevant for examples throughout the rest of the book.

The a element is a phrasing element (which means that it displays “inline,” like a phrase 
within a paragraph). Most phrasing element code is short and can easily fit on one line, but the 
preceding a element is rather long and spans two lines. The solution was to press enter at the end 
of the a element’s start tag and indent the next line. We use that same solution for other elements 
that are too long to fit on one line. Here’s a meta element example:

<meta name="description"
  content="This web page presents Dean family highlights.">

2196.2 a Element

http://www.park.edu


Note that we press enter after the name attribute-value pair. In the a element example, we 
pressed enter after the a element’s start tag. The goal is to press enter at a reasonable breaking 
point. For the preceding example, if we wait to press enter until after “Dean family,” that would 
not be a “reasonable breaking point.” It would split the content attribute’s value across two lines. 
Doing so would make the code slightly harder to understand and thus defeat one of the primary 
purposes behind good style—understandability.

Back in Chapter 2, we introduced you to block formatting for block elements, which means 
the start and end tags go on lines by themselves. The p element is a block element, and here’s a 
properly formatted p element:

Within the p container, there’s an a element that spans more than one line, and we align its con-
tinuation line with the line above it (we don’t indent further). That’s different from the prior a
element example. Indenting continuation lines is a bit of a gray area. If the continuation line 
is in a container that represents something that is supposed to look like a paragraph (e.g., p or 
blockquote), then do not indent. Otherwise indent.

Note the line break in the source code after “program,”. We inserted a line break so we could 
fit the a element’s entire start tag on one line. If we attempt to put the a element’s entire start tag 
on the same line as “program,” then line wrap would occur if we printed the code on paper. Here’s 
what that would look like: 

line wrap

<p>
  Known for its Computer Science program, <a 
href="http://www.park.edu/informationAndComputerScience/accolades">
  Park University</a> is tied for first in the number of Turing Award
  winners among all Missouri universities whose motto is "Fides et Labor."
</p>

Note how href wraps to the next line where it’s not indented. The href is aligned with the 
<p> start tag, and that implies that href is separate from the p element rather than a part of it. 
And that implication makes the logic hard to follow. The moral of the story is, for statements 
that might be too long to fit onto one line, press enter at an appropriate breaking point to avoid 
line wrap.

Press enter.

Align the a element’s continuation line with the prior line.

<p>
  Known for its Computer Science program,
  <a href="http://www.park.edu/informationAndComputerScience/accolades">
  Park University</a> is tied for first in the number of Turing Award
  winners among all Missouri universities whose motto is "Fides es Labor."
</p>

220 Chapter 6 Links and Images



Different types of href Values
As you know, the a element’s href attribute value specifies the resource that is to be loaded. In 
addition to specifying the resource, the href attribute value indicates where the link jumps to in 
order to find the resource. Indicating where the link jumps to is not a trivial task. Take a look at 
FIGUre 6.1, which provides an overview of the different link-jumping techniques employed by 
the href attribute’s value.

For an example that uses an absolute URL, suppose you want to add a link on a Facebook page 
that directs the user to an Instagram page. Here’s the link code to do that for a subscriber named 
Hannah Davis:

<a href=" https://www.instagram.com/hannahDavis.html">
  Hannah's Instagram</a>

Note the https value for the href attribute. You’ve seen http in the past; https is another popular 
protocol that you can use with the href attribute. It stands for hypertext transfer protocol secure. 
So the https protocol provides more security for communications than does http.

To jump to a web page that resides on the same web server as the current web page, for the link’s 
href attribute, use a relative URL. The relative URL specifies a path from the current web page’s 
directory to the destination web page. The next section provides complete details and examples.

To jump to a designated location within the current web page, for the link’s href attribute, use a 
value starting with # such that that value matches an id attribute’s value for an element in the web page. 
We introduced this technique earlier, and we’ll provide more details and examples later in this chapter.

6.3 Relative URLs
As promised, in this section we provide additional details about relative URLs. A relative URL 
value allows you to jump to a web page that resides on the same web server as the current web 
page. It does so by specifying a path from the current directory to the destination web page. The 

FIGUre 6.1 href attribute values

2216.3 Relative URLs

Types of href Attribute Values Where the Link Jumps To

absolute URL Find the resource on a different web server than the 
current web page.

relative URL Find the resource on the same web server as the 
current web page. Specify the location of the resource 
by providing a path from the current web page’s 
directory to the destination web page.

jump within current web page Find the resource within the current web page. Specify 
the location of the resource by providing an id value 
for an element in the web page.



current directory is the directory where the current web page resides. The destination web page is 
the page that the user jumps to after clicking on the link.

In forming a path for a relative URL value, you’ll need to understand how files and directo-
ries are organized in a directory tree structure. Note the example directory tree in FIGUre 6.2. It 
shows the container relationships between all the files and directories that are within the oleung 
directory. The oleung directory is the home page directory for student Olivia Leung. A home 
page is the default first page a user sees when the user visits a website. We’ll have more to say about 
home pages shortly, but for now, just realize that a home page directory is the directory where a 
home page resides, and a home page is the starting point for a user’s browsing experience on a 
particular website. A subdirectory (also called a subfolder or a child folder) is a directory that 
is contained within another directory. Thus, in Figure 6.2, there are four subdirectories within 
the oleung home page directory and one subdirectory within the misc subdirectory. The other 
entities in Figure 6.2 (the words without borders) are files. The index.html file is in the oleung 
directory, and the other files are in the tree’s subdirectories. Because oleung is the home page 
directory, you might have guessed that index.html is the home page file. That is indeed the case.

In forming a path for a relative URL value, you’ll need to navigate between a starting direc-
tory and a target file. In doing so, you’ll need to follow these rules:

 ▸ Use /’s to separate directories and files.
 ▸ Use “..” to go from a directory to the directory’s parent directory.

In the second bullet, what does parent directory mean? In Figure 6.2, oleung is the parent direc-
tory of hw1 because oleung and hw1 are connected by a single line with oleung on the top. That 
should make sense because it parallels how human parents are displayed in a genealogy tree. The 
point of all this is that if you’re in a directory and you want to go to that directory’s parent direc-
tory, you need to use .. For example, suppose you want to provide a link on the newspaper page 
that takes a user to the home page, index.html. Because the newspaper page is in the hw2 direc-
tory, the hw2 directory is considered to be the current directory. The home page is in the oleung 
directory. The oleung directory is the parent directory of hw2, so you need to use .. in order to 
navigate up to the oleung directory. Here’s the relevant a element code:

<a href="../index.html">Olivia's Home Page</a>

Note the / (forward slash) between .. and index.html. As explained earlier, the / is a delimiter 
that separates directories and files. The .. refers to a directory and index.html is a file, so the / is 

FIGUre 6.2 example directory tree

222 Chapter 6 Links and Images

home page
directory

oleung

tutorial misc

lecturehello.htmlmenu.html

newspaper.html weather.htmlbusiness.html

hw1 hw2index.html

http://index.html
http://index.html
http://index.html
http:///index.html">Olivia's
http://index.html
http://index.html
http://hello.html
http://menu.html
http://newspaper.html
http://weather.html
http://business.html
http://index.html


necessary to separate them. Does it make sense that .. refers to a directory? Remember that .. 
navigates from the current directory (hw2 in this example) to its parent directory (oleung in this 
example), so the result is indeed a directory.

relative path examples
Using Figure 6.2’s directory tree, can you try to come up with the code for an a element that 
resides in the index.html file and takes the user to the business page? See if you can do that on 
your own without glancing down at the answer.

Assuming you’ve tried to work it out on your own, now you may look at the answer:

<a href="hw1/business.html">Business Page</a>

Note that href’s value starts with hw1. In coming up with the answer on your own, did you start 
with .. instead? It’s a common error among beginning web programmers to feel the need to use 
.. to go up from the current web page to that web page’s directory. Try to avoid that misconcep-
tion. There’s no need to go up. If you’re in a web page, then you’re already in that web page’s direc-
tory. So to go from the index.html page to the business page, you simply go down from oleung 
to hw1 by specifying hw1, then down to the business page by specifying /business.html.

The index.html page is the website’s home page, and as such, it’s the first page that you look at 
when you visit a website. To help with a user’s viewing experience, home pages should normally con-
tain links to other pages on the website. So for your next challenge, you should implement another 
link from the home page—this time, have the link go to the weather page. Try to come up with the 
code on your own. Assuming you’ve made an honest attempt, now you can look at the answer:

<a href="misc/lecture/weather.html">Weather Page</a>

Because the link resides on the home page, the path originates from the home page directory, 
oleung. To get to the weather page, you have to go down to the misc directory and then down 
to the lecture directory. In the example code, notice the /’s separating the two directories and 
the weather.html filename.

For one last relative URL challenge, try to come up with the code for an a element that resides 
in the business page and takes the user to the menu page. Once again, see if you can do that on 
your own without glancing down at the answer. Here’s the answer:

<a href="menu.html">Menu Page</a>

Note that there is no directory in the href value—only the filename by itself. With the business 
and menu pages both in the same hw1 directory, there’s no need to change directories and there-
fore no need for a path in front of the filename.

path-absolute UrLs
As stated previously, a relative URL is for jumping to a web page when the current web page and 
the target web page are on the same web server. In the prior examples, the relative URL’s path 
started at the current web page’s directory. As an alternative, you can have the relative URL’s path 
start at the web server’s root directory. A web server’s root directory is the directory on the web 

2236.3 Relative URLs

http://index.html
http://"hw1/business.html">Business
http://index.html
http:///business.html
http://index.html
http://"misc/lecture/weather.html">Weather
http://weather.html
http://"menu.html">Menu


server that contains all the directories and files that are considered to be part of the web server. 2 
If you want to have the relative URL’s path start at the web server’s root directory, preface the URL 
value with /. For example, using Figure 6.2’s directory tree, if oleung is immediately below the 
web server’s root directory, the following code could be added to any of the web pages shown, and 
it would implement a link to the index.html page:

<a href="/oleung/index.html">Olivia's Website</a>

A URL value that starts with a / is referred to as a path-absolute URL, and it’s a special type 
of relative URL (it’s considered a relative URL because the path is relative to the current web 
server’s root directory). The term path-absolute URL comes from the WHATWG. Remember 
the WHATWG? It stands for Web Hypertext Application Technology Working Group. It’s the 
organization that keeps track of the HTML5 standard with a living document. Its standard aligns 
very closely with the W3C’s HTML5 standard, but because it’s a living document, the WHATWG 
is free to update things at any time it sees fit. Unfortunately, the W3C does not have a formal term 
for a path that starts with /. But rest assured that the path-absolute URL syntax is valid—all major 
browsers have supported it for many years. By the way, if you see the term root-relative path, that’s 
just another way to refer to a path-absolute URL. In the real world, both terms are popular.

6.4 index.html File
If a user specifies a URL address that ends with a directory name, then the web server will auto-
matically look for a file named index.html or index.htm and attempt to load it into a browser. 
This occurs when you specify a URL for a link’s href value and also when you enter a URL in a 
web browser’s address box.3 

The default searched-for file can be reconfigured by the web server’s administrator. It’s com-
mon for Microsoft IIS web server administrators to use default.htm as another default filename 
for displaying a web page when the URL address ends with a directory name. According to the 
coding-style conventions in Appendix A, we recommend that you use index.html for your home 
page file names because that name is the most standard. We prefer .html to .htm because .html 
is more descriptive—after all, “html” describes the code contained in the file.

If a user specifies a URL address that ends with a directory name, and the web server can-
not find a file named index.html or index.htm (or possibly default.htm) in the specified 

2 As you might recall, the term “web server” can refer to (1) the physical computer that stores the web page 
files or (2) the program that runs on the computer that enables clients to retrieve the web pages. When 
talking about a “web server’s root directory,” we’re not referring to the computer’s hard drive root directory. 
We’re referring to the directory that the web server program designates as the top-level container directory 
for all the web-related files that the web server computer uses.
3 During the development process, you’ll probably want to implement your web pages on your local computer’s 
hard drive. You can load most of your hard drive web pages to a browser by simply double clicking on the file 
within Microsoft’s File Explorer tool. But if you double click on a directory name, the index.html file won’t 
load by default. Why? Because the web server is the thing that knows to look for the index.html file (i.e., 
it knows to search for it if it sees a directory name). And you bypass the web server if you double click a web 
page file within File Explorer.

224 Chapter 6 Links and Images

http://index.html
http://"/oleung/index.html">Olivia's
http://index.html
http://index.html
http://index.html
http://.html
http://.html
http://index.html
http://index.html
http://index.html


directory, then the web server will either (1) load a web page that shows the contents of the spec-
ified directory, or (2) display an error page (e.g., “Directory Listing Denied” or “HTTP 404 - Page 
Not Found”). To avoid the directory contents web page (which is rather ugly) or the error page, 
you should include an index.html file in every directory that might be specified as part of a 
URL. It might seem a bit weird to have multiple index.html files within your website, but for 
larger websites, get used to it. Clearly, you need an index.html file in the directory that sits at the 
top of your website’s directory tree structure—that particular index.html file is your website’s 
home page. The other index.html files are not the official home page, but you can think of them 
as “home pages” for different areas within your website.

6.5 Web Design
Because a home page is the default first page a user sees when the user visits a website, it’s the 
web developer’s first—and possibly only—opportunity to make a good impression on users. So 
try to get it right, or your users might leave and never come back. In this section, you will learn a 
few tips on how to make a good first impression. These tips are part of a software area known as 
web design, which is comprised of these subareas: user interface design, user experience design, 
graphic design, and search engine optimization. Sorry, explaining all that is beyond the scope of 
this book. But we do explain some of it—we scratch the surface on user interface design and user 
experience design. That’s a surface that needs to be scratched, so let’s begin.

User Interface Design
In a general sense, user interface design (UID) refers to the mechanisms by which users of a product 
can use the product. For web pages, the mechanisms are things like text, color, pictures, buttons, text 
boxes, and progress bars. A good UID designer will anticipate users’ needs and create an interface 
that meets those needs by incorporating components that are easy to understand and use.

After the home page downloads, users will want to identify the web page’s main content 
quickly. To help in that regard, you should try to avoid clutter, and focus on clear, concise words 
(and graphics, if appropriate) that describe the web page’s main content. Remember that for a 
nontrivial website, the home page is only for the main content and links to other web pages, 
not for lots of details. If you need to provide lots of details for something, you should put those 
details on a separate web page and link to that page from the home page. The link labels them-
selves are important. For each link label, use only one word or a few words that get to the point 
quickly. Don’t be afraid to remove unnecessary text and to have whitespace on your home page. 
Whitespace can provide a nice respite for stressed-out web surfers. 

In presenting the web page’s content, it’s important to be consistent with your text and colors. 
For text, you should limit the number of text fonts used. Pick pleasing fonts that go together well 
for your main content and your subsidiary content. Make sure that the foreground text colors con-
trast with the background colors so the text is easy to read. Normally, that means the contrasting 
colors should be different in terms of lightness and darkness. You should pick a set of colors for 
your text, background, and graphics that complement each other. Apply a consistent strategy for 
choosing which colors go to which type of content.

2256.5 Web Design

http://index.html
http://index.html
http://index.html
http://index.html
http://index.html


User experience Design
User experience design is a bit more nuanced than user interface design. For a car, its user inter-
face might be the power steering, the heated leather seats, and the wireless Internet communi-
cation. The user experience might be a feeling of calm comfortable control. For a web page, the 
UID incorporates the elements described in the previous subsection, whereas the user experience 
design is the feeling produced by those UID elements. For example, you should choose colors 
and fonts that generate the proper feeling for the user’s browsing experience. The user experience 
design’s feeling comes not only from UID elements, but also from things that enhance the user’s 
ability to digest the web page’s content, such as helpful pictures, familiar controls, fast downloads, 
and efficient navigation between web pages.

The first thing a web user notices when visiting a web page is how long it takes to load the 
page. So in designing your home page, pay heed to the size of the web page file and all its resource 
files. In particular, image files and video files tend to be large. Later on, you’ll learn how to load 
such resource files without slowing the download for the web page’s other content. But for a pos-
itive user experience, you should still try to avoid having your home page built with large files.

Most home pages will have links to other web pages within the website. You should use the 
nav container to group those links. Normally, users navigate to other web pages by clicking links 
at the top and left, so that’s where your nav containers should go. Suppose your website has lots of 
web pages. On the home page, you could include a link to every one of those web pages, but that 
might lead to a cluttered home page. As part of the web design process, you need to determine 
how many links to put on your home page and how to navigate to other pages after clicking on 
those links. Let’s look at some different strategies.

See FIGUre 6.3, which shows the organization for a website whose pages are organized with 
a linear structure. That means the home page links to one other page, and that second page links 
to one other page, and so on. That type of strategy might be used for a website whose purpose is 
to present a long article. By splitting up the article into separate pages and connecting them with 
links, the user doesn’t have to scroll so far down while reading. Other examples where a linear 
structure is beneficial are a shopping cart that steps through the transaction or a tutorial with a 
specific sequence of steps. But be aware that pure linear structures are not all that common. Why? 
It’s difficult for users to go backwards. To return to the beginning, the user has to click the back 
button multiple times. Another reason linear structures have fallen out of favor is because people 
are now used to scrolling feverishly on their phones. Using the scroll bar to scroll through a lengthy 
web page doesn’t seem all that bad when compared to lots of link clicking and back button clicking.

Now take a look at FIGUre 6.4, which shows a website whose pages are organized with a 
hierarchical structure. That means the home page links to several other pages where those pages 
serve as pseudo-home pages for the different areas within the website. When compared to linear 

FIGUre 6.3 Website with a linear structure for its web pages

226 Chapter 6 Links and Images



structure websites, hierarchical structure websites tend to reduce the number of clicks needed to 
navigate through a website’s web pages.

With hierarchical structures, the home page is often called the top-level page, and the next-
level pages are often called second-level pages. Second-level pages have links to the other pages 
in their areas. Both top-level and second-level pages are sometimes referred to as landing pages 
because they can be targets (or “landing places”) of links that reside outside the website. 

Finally, take a look at FIGUre 6.5, which shows a website whose pages are organized with a 
mixed structure. There’s a hierarchical structure for compartmentalizing the website’s main areas, 
plus additional links that (1) connect from within the areas to other areas and (2) connect pages 

FIGUre 6.4 Website with a hierarchical structure for its web pages

FIGUre 6.5 Website with a mixed structure for its web pages

2276.5 Web Design



back to the website’s home page. For nontrivial websites, this sort of mixed structure is by far the 
most common type of structure because it leads to the best user experience—fewer clicks to drill 
down to the different pages within a given area (due to the hierarchical structure) and fewer clicks 
to jump from within one area to get to a different area. The ability to go from one area to another 
area is particularly useful when there’s an area that serves as a repository for information needed 
by multiple other areas. To accommodate that scenario, just add a link from each of those areas to 
the common repository’s second-level page.

6.6 Navigation Within a Web Page
You might recall from Figure 6.1 that there are three basic types of values for an a element’s href 
attribute. We’ve already talked about an absolute URL value and a relative URL value. In both of 
those cases, the target is a web page separate from the current web page. The third type of href 
value shown in Figure 6.1 is for when you want a link that takes the user to some specified point 
within the current web page. That can be particularly useful for long web pages, so the user can 
quickly jump to designated destinations within the web page. For example, note the blue links near 
the top of the Clock Tower web page in FIGUre 6.6. If the user clicks the Clock Tower Photograph 
link, then the web page scrolls within the browser window so that the link’s target (the clock tower 
photograph itself) gets positioned at the top of the browser window. In Figure 6.6, there is no scroll 
bar, so no scrolling takes place if the link is clicked. But don’t think that this situation (no scrolling) 
is normal. If a web page has internal links, then the web page will normally be sufficiently long so as 
to justify the internal links. We’ll show the code used to implement those internal links, but first, let’s 
describe the web page’s other links.

Note the Back to the Top link at the bottom of the page. With a long web page, it’s common 
to have such a link so the user can quickly get back to the top after scrolling to the bottom. Once 
again, because there is no scroll bar in Figure 6.6’s browser window, no scrolling takes place if the 
link is clicked.

Note the yellow sidebar at the left of the Clock Tower web page. It forms the navigation area with 
links to other web pages. For example, clicking on Zombie Bloodbath takes users to a web page that 
describes Park University’s ill-fated foray into the brain-eating movie production business back in 1978.

Syntax for Internal Link
Now it’s time to show the code used to implement the internal links in the Clock Tower web page. 
To jump to a designated location within the current web page, you need to use a value starting 
with # such that that value matches an id attribute’s value for an element in the web page. Here’s 
the Clock Tower web page’s code that links to the pledge drive section:

<a href="#pledge-drive">Pledge Drive</a>

And here’s the element that that link jumps to:

<h3 id="pledge-drive">Pledge Drive</h3>

228 Chapter 6 Links and Images



Note the spelling for pledge-drive. Standard coding conventions suggest using hyphens to 
separate multiple words in an id value. That should look familiar because you’ve already learned 
to use hyphens with multiple-word class attribute values.

For a given web page, you can have only one element with a particular id value. So because 
pledge-drive appears in this h3 statement, pledge-drive cannot be used as an id value any-
where else within the Clock Tower web page. That should make sense—after all, if another element 
used that same id value, then the browser engine would be confused as to which target element to link 
to when the user clicks the a element (with href="#pledge-drive") shown. If you accidentally use 
the same id value for more than one element, don’t worry, the validation service will flag it as an error.4

Look for the a element code and the h3 element code in FIGUre 6.7a’s Clock Tower web 
page source code. Also, look for two other internal links in the source code. Specifically, can you 

4 Of course, this works only if you use the W3C’s validation service. You’ve been using the validation service 
for all of your web pages, right?

FIGUre 6.6 Clock tower web page

Pic
tu

re
 pe

rm
iss

ion
s g

ra
nt

ed
 by

 Br
ad

 Bi
les

, P
ar

k U
niv

er
sit

y D
ire

cto
r o

f C
om

m
un

ica
tio

ns
 an

d P
ub

lic
 Re

lat
ion

s. 

2296.6 Navigation Within a Web Page



FIGUre 6.7a Source code body container for Clock tower web page

230 Chapter 6 Links and Images

It's common to use a 
vertical bar to separate
internal links.

Note the character references to ensure two
spaces on each side of the vertical bar.

<body>
<header>

<h1 id="top">Park University's Clock Tower</h1>

<a href="#tower-photo">Clock Tower Photograph</a>&nbsp; | &nbsp;
<a href="#pledge-drive">Pledge Drive</a>

<h5>

</h5>
</header>

<div class="table">
<nav class="cell">

<div class="nav-heading">Other Park History</div>
<div><a>Swimming Pool</a></div>

<div><a>Herr House Ghosts</a></div>
<div><a>Old Kate</a></div>
<div><a>Zombie Bloodbath</a></div>

</nav>

<section class="cell">
<p>

<p>

<h3 id="pledge-drive">Pledge Drive</h3>
<p>

The clock tower building is crumbling.
Park needs your support. Do it for the kids.
Send cash contributions to michael.loeffler@park.edu.

</p>

</p>
<a href="#top">^ Back to the Top</a>

</section>
</div>
</body>
</html>

<img id="tower-photo" src="../images/clockTower.jpg"
alt="Clock Tower Photograph">

</p>

The clock tower has a long and storied history.
Built in 800 A.D. by the ancient Parkite Indian tribe,
it was originally used as a beacon for late-night
buffalo-tipping parties.
In 1865, because of its extraordinary time-keeping accuracy,
it served as the world's first Coordinated Universal Time clock.

mailto:michael.loeffler@park.edu


find the link that jumps down to the tower-photo img element? And how about the link at the 
bottom that jumps up to the top of the page?

Walking through the Clock tower Web page’s  
Source Code
There are quite a few details in the Clock Tower web page that are worth looking at. They’re not 
specific to the main point of this section (internal links within a web page), but they are noteworthy 
nonetheless. The Clock Tower web page’s code is long, requiring two figures to show it all. Figure 6.7A 
shows the web page’s body container, and FIGUre 6.7B shows the head container. It might seem 
odd to have the first figure display the body code and the second figure display the head code, even 
though the clockTower.html file positions the head container above the body container (of course). 
In the book’s figures, we position the two containers in reverse order because when we examine the 
web page, it’ll make more sense to look at the body container before the head container.

Let’s start by examining the body container code that separates the tower-photo and 
pledge-drive links:

&nbsp; | &nbsp;

Using a vertical bar (|) to separate internal links is a very common technique. The vertical bar has 
no impact on the web page’s functionality; it’s just for appearance purposes. It’s a way to indicate a 
separation between internal links. Using common techniques helps users to feel comfortable, and 
that in turn might encourage users to buy what the web page is selling.

Also in Figure 6.7A, note the &nbsp; character references and the blank spaces surrounding 
the vertical bar. By inserting a &nbsp; character reference next to a space character at the left of 
the vertical bar and also at the right of the vertical bar, that causes two spaces to display on each 
side of the vertical bar, which looks nicer than single spaces.

Below the vertical-bar-separated links, you can see a nav container and also a section 
container, both with class="cell". Can you figure out the purpose of class="cell"? 
We’re using a simple CSS table for layout with only one row and two cells—one cell for the 
navigation bar at the left and one cell for the web page’s main content. As you probably already 
know, a navigation bar is a group of links that enable users to navigate (link to) the various 
pages on a website. To make the user feel comfortable, the navigation bar should look the same 
on each web page. Typically, navigation bars go at the left, but top and bottom are common 
as well.

In the Clock Tower nav container, note the a elements and the fact that they have no href 
attributes. An a element that has no href attribute is called a placeholder link. Although the nav 
container’s placeholder links currently go nowhere, the idea is that they will be replaced later on 
with active links. For now, each link is “holding a place” for a future link.

Now let’s focus on the web page’s table layout. As you can see in Figure 6.7A, the nav and 
section elements both contain class="cell" attribute-value pairs. As you’ll confirm later 
when we examine the CSS rules, that causes the nav and section elements to act like table cells. 
What element acts like the surrounding table? The div element, with class="table".

2316.6 Navigation Within a Web Page

http://clockTower.html


The .table and .cell rules
form a table that holds the 
navigation bar at the left and 
the main content at the right.

Fixed width for the navigation 
area at the left.

:nth-child() selector

<!DOCTYPE html>

header {text-align: center;}
.table {display: table;}
.cell {
  display: table-cell;
  padding: 0px 10px 10px;

<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Park University Clock Tower</title>
<style>

}

/* Avoid yellow background at left extending above the
  page's main content. */
.cell > :nth-child(1) {margin-top: 0;}
nav {

nav.cell {width: 80px;}

color: darkred;
background-color: lemonchiffon;

}
.nav-heading {background-color: gold;}

/* Adjust link appearances. */
a {
  text-decoration: none;
  font-family: Tahoma, Geneva, sans-serif;
}

  a:hover {text-decoration: underline;}
  nav a {font-size: .8em;}
  nav > * {margin: 1em 0;}
</style>
</head>

FIGUre 6.7B Source code head container for Clock tower web page

232 Chapter 6 Links and Images



Clock tower Web page’s CSS rules
Now let’s work our way through some of the more interesting details in the web page’s CSS rules 
in the head section. Note the .table and .cell selectors in Figure 6.7B. As you learned in 
Chapter 5, they use the display property with table and cell values to implement a table and 
the cells of a table, respectively. But note that there is no .row selector. For a browser to render a 
table, the cells need to be inside rows, so how can there be no .row selector that implements the 
rows? Here’s the deal: if you have table-cell elements that are not surrounded by a table-row 
element (or even a table element), then the browser engine generates an anonymous (hidden) 
table-row element around those table-cell elements. For the Clock Tower web page, there 
are indeed table-cell elements that are not surrounded by a table-row element. Can you 
find where the anonymous table-row element tags are inserted in the web page body code? 
Here’s the relevant code from Figure 6.7A:

<div class="table">
  <nav class="cell">
  ...
  <section class="cell">
  ...
</div>

Note the callouts that show where the anonymous table-row element tags get inserted in the 
code.

Now let’s turn to the web page’s CSS rules. Here’s the CSS rule for the navigation area’s 
cell:

nav.cell {width: 80px;}

Remember what the dot means in the nav.cell selector? It means that the browser engine locates 
all nav elements and then matches only those nav elements that use cell as a class attribute 
value. If you look at the web page body’s source code, you’ll see that cell appears as a class 
attribute value in two places—in the nav container (which implements the navigation bar at the 
left) and also in the section container (which holds the page’s main content). The nav.cell 
selector matches only the cell in the navigation area at the left. And after matching that navigation 
area cell, it specifies a fixed width for it. Why do you need a fixed width for the navigation area, 
but not for the main content area? If the user expands or shrinks the window size, the user would 
normally expect the paragraphs at the right to expand and shrink, not the navigation area at the 
left. And that’s what happens for the Clock Tower web page. 

In the following CSS rule, we already talked about the table-cell value for the display 
property. Now let’s talk about its padding property: 

.cell {
  display: table-cell;
  padding: 0px 10px 10px;
}

Anonymous table-row
element start tag goes here.

Anonymous table-row
element end tag goes here.

2336.6 Navigation Within a Web Page



The rule applies to both table cells (the navigation bar cell and the main content cell). It specifies 
that there’s no padding on the top, 10 pixels of padding on the left and right (from the second 
value), and 10 pixels at the bottom. Why is it appropriate to have no padding on the top? As 
you can see in the nav CSS rule, the left cell has a yellow background and the right cell has no 
background. If there was padding at the top of the navigation bar’s cell, then it would show up as 
a yellow area jutting above the navigation bar’s text. Because the main content area has no back-
ground color, there would be no comparable color jutting above the main content area’s text, and 
that asymmetry would look weird. So that’s why it’s appropriate to have no padding on the top of 
the navigation bar cell. Knowing to specify 0 pixels for the top of the navigation bar cell is not all 
that intuitive. Coming up with that solution took some tweaking. Get used to such tweaking when 
trying to make your web pages look good.

The issue previously described (avoiding a yellow area jutting above the navigation bar’s text) 
actually requires even more tweaking than just setting the top padding to 0 pixels. It also requires 
setting no margin above each of the top elements in the navigation bar cell and the main content 
area cell. Here’s the relevant CSS rule from the Clock Tower web page’s code:

.cell > :nth-child(1) {margin-top: 0;}

As you know, this rule is known as a child selector, where child selectors use the > symbol 
to match elements that are child elements of other elements. In processing this rule, the browser 
engine searches for child elements whose parents use cell for their class attribute value. The 
:nth-child() selector is a special child selector in that it allows you to specify which child ele-
ment is selected. This particular rule selects immediate children of “cell” elements where the child 
is a first child (the 1 value is for the first child).

The :nth-child() selector thing is a pseudo-class. In Chapter 5, you learned that a pseudo- 
class begins with a colon and it conditionally selects elements from a group of elements specified 
by the selector at the immediate left of the colon. For the :nth-child example, there is no type 
selector at the immediate left of the colon. So, why’s that? If you don’t specify a type selector, then 
the browser inserts the * universal selector as the implicit type selector. So behind the scenes, that 
rule converts to this rule:

.cell > *:nth-child(1) {margin-top: 0;}

As you may recall, the * universal selector matches all elements, so all elements are matched (that 
are children of elements with a class attribute value of cell) and the browser then applies the 
:nth-child(1) pseudo-class to those matches.

By the way, as an alternative to using :nth-child(1), you can use the :first-child 
pseudo-class, which also selects the first child from among a list of child elements. We’ll use the 
:first-child pseudo-class in a later chapter.

There are still a few Clock Tower web page CSS rules that we have not yet talked about, but 
before we describe them, let’s take a short break from rules and talk about everyone’s favorite 
topic—style. You’ll need to view the CSS code in Figure 6.7B to appreciate the following style 
commentary, so be prepared to jump back and forth.

234 Chapter 6 Links and Images



The nth-child rule is kind of tricky, so you should include a comment for it. The comment 
is too long to fit at the right of the nth-child rule, so the comment appears above the rule. Note 
the indentation on the comment’s line continuation.

Because there are so many CSS rules for the Clock Tower web page, you should separate 
the rule groups with blank lines. For each rule group that is nonintuitive, you should preface the 
group with a comment above the rule group. Note the rule group comments in the Clock Tower 
web page’s source code.

In the Clock Tower web page, the last four CSS rules deal with links (see the a element in each 
rule). We’ll wait until the next section to cover those rules, because CSS for links is a big enough 
subject that it deserves its own section.

6.7 CSS for Links
Have you ever noticed that after clicking on a link and returning later, the link’s color is different? 
For example, note the different colored links at the top of the Clock Tower web page in Figure 
6.6. The left link, labeled Clock Tower Photograph, is blue, indicating that the link has not been 
clicked. On the other hand, the right link, labeled Clock Tower Photograph, is purple, indicating 
that the link has been clicked in the past. By default, the major browsers use blue text for unclicked 
links and purple text for clicked links. More formally, those links are referred to as unvisited links 
and visited links, respectively. The HTML5 standard does not mention blue and purple as typical 
defaults, but those colors have been used for decades, so it’s reasonable to assume they’ll remain 
as defaults for many more years down the road.

A link is defined as a “visited link” if it leads to a location that the computer’s browser has 
been to recently. Browsers have different time limits to determine whether a location has been 
visited “recently.” If you clear your browser’s history, the browser will consider all links to be 
unvisited, so they will go back to their unvisited color. That can be useful for testing a link’s 
color during development because once you load a page, it no longer displays the unvisited 
link color.

Be aware that end users have the ability to override the link colors specified by the browser by 
adjusting their browser’s settings. But also be aware that as a developer, you have even more power 
than the user in this regard. You can use CSS to override the link colors specified by the browser, 
and those CSS rules override the user’s link color browser settings as well.

Now for the CSS that enables you to specify link colors. For unvisited links, use this syntax:

a:link {color: color-value;}

The a is the element type for a link element. The :link thing is a pseudo-class. It qualifies the a 
element type by searching only for links that have not been visited. As you’d expect, the a:link 
selector is known as a pseudo-class selector.

You now know to use a:link for unvisited links. For visited links, use a:visited, like this:

a:visited {color: color-value;}

2356.7 CSS for Links



Here are a couple of examples. The first rule specifies burlywood for unvisited links, and the sec-
ond rule specifies light blue for visited links:

a:link {color: burlywood;}
a:visited {color: #aaaaff;}

Despite the undeniable excitement of being able to change web page link colors with CSS, 
please try to show restraint. Using different colors might confuse your end users. They might not 
consciously realize that a web page’s link colors are different, but they might realize it at a subcon-
scious level. That can be particularly annoying for users who explicitly configure their browser’s 
link colors.

In addition to being able to change the colors in your web page’s links, you can also change 
your links’ underline scheme. By default, browsers display links with underlines. If that leads 
to visual clutter or confusion with regular text that’s underlined, and you’d like to have no link 
underlining, then use text-decoration: none, like this:

a {text-decoration: none;}

If link underlines are disabled using this CSS rule, but you want to display underlines when the mouse 
hovers over a link, use the a:hover pseudo-class selector with text-decoration: underline, 
like this:

a:hover {text-decoration: underline;}

In case you were wondering, the :hover selector matches any element that is being hovered over, 
not just links, so to limit the matches to just links, you need to preface :hover with a, as shown 
in the example.

When using both of these rules, there’s a conflict in that they both apply to link elements. 
How is that conflict resolved? Because the a:hover selector is more specific than the a selector, 
the a:hover selector overrides the a selector for links that are being hovered over.

We encourage you to find these CSS rules in the Clock Tower web page code in Figure 6.7B. 
While you’re there, also note the two nav element CSS rules, which are copied here for your 
convenience:

nav a {font-size: .8em;}
nav > * {margin: 1em 0;}

The first rule specifies a smallish font size of .8em for all link elements in the nav container. 
The second rule adds a 1em margin to the top and bottom of all elements that are child elements 
of the nav container. We hope those rules make sense—you want the navigation bar links to be 
unobtrusive (with a smaller font size), but to make them easily clickable, you want them separated 
vertically (with added margin space at the top and bottom of each link).

As with all the book’s web page examples, we encourage you to retrieve the Clock Tower web 
page’s source code from the book’s website and play around with it. After loading the page in a 
browser, try hovering your mouse over the top links. That should cause your standard mouse 

236 Chapter 6 Links and Images



pointer to change to a hand icon, indicating an active link. Then hover your mouse over the 
placeholder links. That should cause your mouse pointer to change to an I-bar icon. That’s a bit 
confusing, so to improve the user’s experience, you could add this CSS rule:

  nav a {cursor: not-allowed;}

With that rule in place, hovering your mouse over the placeholder links causes your mouse pointer 
to change to a blocked icon ( ), indicating that the link is inactive.

6.8 a Element Additional Details
There are just a couple more things to discuss about links that don’t quite fit with the earlier 
sections. Previously, we discussed how to link to a different web page and also how to link to a 
specified location within the current web page. It’s also legal to combine those techniques and link 
to a specified location within a different web page.

Linking to a Specified Location Within a Different  
Web page
To link to a specified location within a different web page, use the href attribute to specify the 
other page (using an absolute url with http or a relative URL) and then append a # value to specify 
the location within that page. To explain that more fully, we need an example. Given the following 
directory tree, can you provide a link from the home page to the clock tower photograph? The 
photograph’s img element resides in the clockTower.html web page, and it uses an id value 
of tower-photo. Try to come up with the code for the link element before you glance down at 
the answer.

oleung

hw1 htmlLecture

menu.html clockTower.html

index.html

As shown, student Olivia Leung has an index.html home page in her oleung home page 
directory. In implementing a link from the home page to the clock tower photograph, don’t fall 
into the trap of thinking you need to use .. to first go up to the oleung home directory. Remem-
ber: when you’re in the index.html home page, the “current directory” is the oleung directory. 
So the path to the clock tower photograph starts by going down (from the oleung directory) to 
the htmlLecture directory. Here’s the link code:

<a href="htmlLecture/clockTower.html#tower-photo">
  Park University Clock Tower Photograph</a>

2376.8 a Element Additional Details

httporarelativeURL
http://clockTower.html
http://menu.html
http://clockTower.html
http://index.html
http://index.html
http://index.html
http://"htmlLecture/clockTower.html#tower-photo"


FIGUre 6.8 Specifying the environment in which the web page opens

After the target web page’s filename (clockTower.html), you can see #tower-photo. Go 
back to Figure 6.7A and find id="tower-photo" in the clock tower photograph’s img element. 
Remember: to link to a particular element, you preface the element’s id value with #.

target attribute
So far, we’ve discussed only one attribute for the a element—the href attribute. Now let’s dis-
cuss the target attribute. The a element’s target attribute value specifies where to open the 
linked-to web page. Note the three values listed in FIGUre 6.8.

The target attribute's default value is _self. As noted in the figure, if you have a link that 
uses the _self value and the link is clicked, the specified new page loads within the current web 
browser and overlays the previous page. Most links omit the target attribute and stick with the 
_self default behavior. But every now and then, you might want to open a targeted web page in 
a new browser window or in a new tab, and we address that next.

As noted in the figure, if you have a link that uses the _blank value and the link is clicked, 
the specified new page loads in a new browser window or in a new tab within the current browser 
window. With the _blank value, it’s up to the browser to decide whether to use a new window or 
a new tab. Here’s an example link element that uses the _blank value:

<a href="https://www.youtube.com/watch?v=zm48WoRs0hA&noredirect=1"
  target="_blank">Bethany Mota: Perfect Back to School Hair, Makeup
  &amp; Outfit!</a>

Here’s a coding conventions refresher: In the code, note that target is indented. That’s 
because it’s a continuation of the a start tag that began on the previous line. Note, &amp; Outfit 
is also indented, to the same column as the second line. Both lines are a continuation of the a ele-
ment, so they both get indented one level.

So with a target="_blank" link, if the link is clicked, the specified new page loads in a 
new browser window or in a new tab within the current browser window. Can you think of a 
disadvantage of that behavior? Clicking the back arrow won’t take the user back to the previous 
page. Maybe that’s OK if you want to give prominence to a particularly important linked-to 

Values for the a Element’s 
target Attribute Description

_self Overlay the current web page with the target web page.

_blank Open the target web page in a new browser window or in 
a new tab within the current browser window.

_parent Open the target web page in the current web page’s 
parent document, which is typically the browser window 
that caused the current web page to open.

238 Chapter 6 Links and Images

http://clockTower.html


page (like Bethany Mota’s classic 2013 video “Perfect Back to School Hair, Makeup & Outfit!”5), 
but if you want to counteract that behavior, the target attribute’s _parent value can come to 
your rescue.

As noted in Figure 6.8, if you have a link that uses the _parent value and the link is clicked, the 
target web page loads in the current web page’s parent document, which is typically the browser win-
dow that caused the current web page to open. Effectively, that means if you use target="_blank" 
to open a web page in to a new window or new tab, you can use target="_parent" to open another 
web page in the original window or tab. If you return to the original web page with _parent, you’ll 
often want to use JavaScript to close the newly opened window or tab after you leave it. We’ll discuss 
JavaScript extensively later in the book.

6.9 Bitmap Image Formats: GIF, JPEG, PNG
So far, you’ve seen examples where if the user clicks a link, the browser opens a new page. It’s also 
possible to create a link where if the user clicks it, the browser opens an image. Usually, “opening 
an image” causes the image to fill the entire browser window. Normally, that’s inappropriate, but 
as you’ll learn in the next chapter, you can use an iframe element to create a window “frame,” 
which allows you to open/display an image within just the frame part of the window. But before 
we talk about the iframe element in the next chapter, first we need to talk about image file for-
mats and img element details. That will take a while, and the rest of this chapter is devoted to that.

There are two basic categories of image files—bitmap image files and vector graphics files. 
We’ll have more to say about vector graphics files soon enough, but for now we’ll focus on bitmap 
image files. With bitmap image files, an image is comprised of a group of pixels. For example, an 
icon, which is simply a small image file, typically has 16 rows with 16 pixels in each row. Within 
a bitmap image file, every pixel gets mapped to a particular color value, and each color value is 
a sequence of bits (where a bit is a 0 or a 16). For a browser to display a bitmap image, it displays 
each pixel’s mapped color. This reliance on mapping color bit values to pixels is the basis for the 
name bitmap image.

The three most common formats for bitmap image files (also called raster image files) on 
the Web are GIF, JPEG, and PNG. You can see brief descriptions of those formats in FIGUre 6.9. 
We’ll provide more details shortly, but first, you should be aware of two other file formats—BMP 
(for bitmap) and TIFF (for tagged image file format). They’re both very popular for graphics 
applications, but they’re generally not used with web pages. Why? BMP files are too large, and 
TIFF files cannot be viewed by web browsers without a plug-in.7 Since we’re focusing on web 
pages, we’ll refrain from providing details about them.

5 According to my middle school and high school daughters, vlogger Bethany Mota is the coolest, barely 
twentysomething in the whole world. Formerly bullied, she’s now a motavatour megastar.
6 For the purpose of this discussion about bitmap images, all you need to know about bits is that they are 0’s 
and 1’s. But from a computer hardware perspective, 0’s and 1’s are high-energy signals versus low-energy 
signals. When a computer generates a low-energy signal, that’s a 0. When a computer generates a high-
energy signal, that’s a 1.
7 A plug-in is a software component that adds functionality to an existing software application, like a browser.

2396.9 Bitmap Image Formats: GIF, JPEG, PNG

Jesse
Rectangle

Jesse
Rectangle


	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

