
CHAPTER OUTLINE

6.1	 Introduction

6.2	 a Element

6.3	 Relative URLs

6.4	 index.html File

6.5	 Web Design

6.6	 Navigation Within a Web page

6.7	 CSS for Links

6.8	 a Element Additional Details

6.9	 Bitmap Image Formats: GIF, JPEG, PNG

6.10	 img Element

6.11	 Vector Graphics

6.12	 Responsive Images

6.13	 Case Study: Local Energy and Home
Page with Website Navigation

6.1 Introduction
This chapter presents two web page features—links and images—that are emblematic of what it
means to be a web page. Almost all web pages include links and images, and they are usually cru-
cial to the web page’s popularity. And if you’re a web page, popularity is everything.1

In Chapter 4, you learned a few link syntax details while implementing a nav container. In
this chapter, you’ll learn more link syntax details, plus various techniques for jumping to different
link targets. In particular, you’ll learn how to jump to a target location on a different web page, as
well as to a target location on the current web page. Next, you’ll learn how to download a file. For
all the jumping and downloading operations, you can use a path to identify the location of your
target, and you’ll learn different techniques for specifying paths. You’ll also learn techniques for
formatting the links, using various CSS rules.

After learning about links, next you’ll learn about another basic building block—images.
You can implement a link to an image, but in this chapter, we focus on standalone images. In
Chapter 4, you learned a few image syntax details while implementing a figure container. In
this chapter, you’ll learn a few more image syntax details, but most of the image discussion in
this chapter will be about the different types of images that are available. In particular, you’ll
learn about bitmap image file formats (GIF, JPEG, and PNG) and a vector graphics file format
(SVG).

6.2 a Element
To implement a link, you’ll need to use the a element. Here’s an example a element that imple-
ments a link to Park University’s website:

Park University

1 This rather shallow notion of success is particularly prevalent with younger web pages, where getting invited
to the “popular” web pages’ parties is paramount.

218 Chapter 6 Links and Images

http://index.html

The text that appears between an a element’s start tag and end tag forms the link label that the user
sees and clicks on. So in this code, the link label is “Park University.” By default, browsers display
link labels with underlines. So this code renders like this:

Park University

The blue color indicates that the linked-to page has not been visited. We’ll discuss visited and
unvisited links later on.

When the user clicks on a link, the browser loads the resource specified by the href attri-
bute. For this example, the “resource” is another web page, so when the user clicks on the “Park
University” link, the browser loads that web page—the one at http://www.park.edu. As an alter-
native to specifying a web page for the href attribute’s resource, you can specify an image file for
the href attribute’s resource. We’ll show an example of that in the next chapter.

Besides enabling a user to load a resource (which usually means jumping to another web
page), the a element can be used as a mechanism that enables a user to download a file of any
type—image file, video file, PDF file, Microsoft Word file, and so on. To implement that down-
load functionality, include a download attribute as shown here:

<a download href="http://www.park.edu/catalogs/catalog2018-2019.pdf">
 Park University 2018-2019 catalog

As always for the a element, the browser displays the text that appears between the start
tag and end tag; in this case, that’s “Park University 2018–2019 catalog.” When the user clicks
on that text, the browser downloads the file specified by the href attribute. The user can then
choose to view it or save it. Normally, the download attribute has no value, but if you (as the
web programmer) want the end user to save the file using a different filename than that specified
by the href atttibute, then you should include a filename for the download attribute’s value,
such as download="Park University 2018-2019 catalog.pdf". But be aware that
the browser might override your download attribute’s filename and use the href attribute’s
filename instead.

Continuation Rule for Elements that Span Multiple Lines
Did you notice that the preceding a element code fragment spans two lines and the second line
is indented? This subsection explains that indentation. It’s a style thing, and the explanation is
not specific to the a element. This subsection is a digression from the rest of this chapter, and it’s
relevant for examples throughout the rest of the book.

The a element is a phrasing element (which means that it displays “inline,” like a phrase
within a paragraph). Most phrasing element code is short and can easily fit on one line, but the
preceding a element is rather long and spans two lines. The solution was to press enter at the end
of the a element’s start tag and indent the next line. We use that same solution for other elements
that are too long to fit on one line. Here’s a meta element example:

<meta name="description"
 content="This web page presents Dean family highlights.">

2196.2 a Element

http://www.park.edu

Note that we press enter after the name attribute-value pair. In the a element example, we
pressed enter after the a element’s start tag. The goal is to press enter at a reasonable breaking
point. For the preceding example, if we wait to press enter until after “Dean family,” that would
not be a “reasonable breaking point.” It would split the content attribute’s value across two lines.
Doing so would make the code slightly harder to understand and thus defeat one of the primary
purposes behind good style—understandability.

Back in Chapter 2, we introduced you to block formatting for block elements, which means
the start and end tags go on lines by themselves. The p element is a block element, and here’s a
properly formatted p element:

Within the p container, there’s an a element that spans more than one line, and we align its con-
tinuation line with the line above it (we don’t indent further). That’s different from the prior a
element example. Indenting continuation lines is a bit of a gray area. If the continuation line
is in a container that represents something that is supposed to look like a paragraph (e.g., p or
blockquote), then do not indent. Otherwise indent.

Note the line break in the source code after “program,”. We inserted a line break so we could
fit the a element’s entire start tag on one line. If we attempt to put the a element’s entire start tag
on the same line as “program,” then line wrap would occur if we printed the code on paper. Here’s
what that would look like:

line wrap

<p>
 Known for its Computer Science program,
 Park University is tied for first in the number of Turing Award
 winners among all Missouri universities whose motto is "Fides et Labor."
</p>

Note how href wraps to the next line where it’s not indented. The href is aligned with the
<p> start tag, and that implies that href is separate from the p element rather than a part of it.
And that implication makes the logic hard to follow. The moral of the story is, for statements
that might be too long to fit onto one line, press enter at an appropriate breaking point to avoid
line wrap.

Press enter.

Align the a element’s continuation line with the prior line.

<p>
 Known for its Computer Science program,

 Park University is tied for first in the number of Turing Award
 winners among all Missouri universities whose motto is "Fides es Labor."
</p>

220 Chapter 6 Links and Images

Different Types of href Values
As you know, the a element’s href attribute value specifies the resource that is to be loaded. In
addition to specifying the resource, the href attribute value indicates where the link jumps to in
order to find the resource. Indicating where the link jumps to is not a trivial task. Take a look at
FIGURE 6.1, which provides an overview of the different link-jumping techniques employed by
the href attribute’s value.

For an example that uses an absolute URL, suppose you want to add a link on a Facebook page
that directs the user to an Instagram page. Here’s the link code to do that for a subscriber named
Hannah Davis:

 Hannah's Instagram

Note the https value for the href attribute. You’ve seen http in the past; https is another popular
protocol that you can use with the href attribute. It stands for hypertext transfer protocol secure.
So the https protocol provides more security for communications than does http.

To jump to a web page that resides on the same web server as the current web page, for the link’s
href attribute, use a relative URL. The relative URL specifies a path from the current web page’s
directory to the destination web page. The next section provides complete details and examples.

To jump to a designated location within the current web page, for the link’s href attribute, use a
value starting with # such that that value matches an id attribute’s value for an element in the web page.
We introduced this technique earlier, and we’ll provide more details and examples later in this chapter.

6.3 Relative URLs
As promised, in this section we provide additional details about relative URLs. A relative URL
value allows you to jump to a web page that resides on the same web server as the current web
page. It does so by specifying a path from the current directory to the destination web page. The

FIGURE 6.1  href attribute values

2216.3 Relative URLs

Types of href Attribute Values Where the Link Jumps To

absolute URL Find the resource on a different web server than the
current web page.

relative URL Find the resource on the same web server as the
current web page. Specify the location of the resource
by providing a path from the current web page’s
directory to the destination web page.

jump within current web page Find the resource within the current web page. Specify
the location of the resource by providing an id value
for an element in the web page.

current directory is the directory where the current web page resides. The destination web page is
the page that the user jumps to after clicking on the link.

In forming a path for a relative URL value, you’ll need to understand how files and directo-
ries are organized in a directory tree structure. Note the example directory tree in FIGURE 6.2. It
shows the container relationships between all the files and directories that are within the oleung
directory. The oleung directory is the home page directory for student Olivia Leung. A home
page is the default first page a user sees when the user visits a website. We’ll have more to say about
home pages shortly, but for now, just realize that a home page directory is the directory where a
home page resides, and a home page is the starting point for a user’s browsing experience on a
particular website. A subdirectory (also called a subfolder or a child folder) is a directory that
is contained within another directory. Thus, in Figure 6.2, there are four subdirectories within
the oleung home page directory and one subdirectory within the misc subdirectory. The other
entities in Figure 6.2 (the words without borders) are files. The index.html file is in the oleung
directory, and the other files are in the tree’s subdirectories. Because oleung is the home page
directory, you might have guessed that index.html is the home page file. That is indeed the case.

In forming a path for a relative URL value, you’ll need to navigate between a starting direc-
tory and a target file. In doing so, you’ll need to follow these rules:

▸▸ Use /’s to separate directories and files.
▸▸ Use “..” to go from a directory to the directory’s parent directory.

In the second bullet, what does parent directory mean? In Figure 6.2, oleung is the parent direc-
tory of hw1 because oleung and hw1 are connected by a single line with oleung on the top. That
should make sense because it parallels how human parents are displayed in a genealogy tree. The
point of all this is that if you’re in a directory and you want to go to that directory’s parent direc-
tory, you need to use .. For example, suppose you want to provide a link on the newspaper page
that takes a user to the home page, index.html. Because the newspaper page is in the hw2 direc-
tory, the hw2 directory is considered to be the current directory. The home page is in the oleung
directory. The oleung directory is the parent directory of hw2, so you need to use .. in order to
navigate up to the oleung directory. Here’s the relevant a element code:

Olivia's Home Page

Note the / (forward slash) between .. and index.html. As explained earlier, the / is a delimiter
that separates directories and files. The .. refers to a directory and index.html is a file, so the / is

FIGURE 6.2  Example directory tree

222 Chapter 6 Links and Images

home page
directory

oleung

tutorial misc

lecturehello.htmlmenu.html

newspaper.html weather.htmlbusiness.html

hw1 hw2index.html

http://index.html
http://index.html
http://index.html
http:///index.html">Olivia's
http://index.html
http://index.html
http://hello.html
http://menu.html
http://newspaper.html
http://weather.html
http://business.html
http://index.html

necessary to separate them. Does it make sense that .. refers to a directory? Remember that ..
navigates from the current directory (hw2 in this example) to its parent directory (oleung in this
example), so the result is indeed a directory.

Relative Path Examples
Using Figure 6.2’s directory tree, can you try to come up with the code for an a element that
resides in the index.html file and takes the user to the business page? See if you can do that on
your own without glancing down at the answer.

Assuming you’ve tried to work it out on your own, now you may look at the answer:

Business Page

Note that href’s value starts with hw1. In coming up with the answer on your own, did you start
with .. instead? It’s a common error among beginning web programmers to feel the need to use
.. to go up from the current web page to that web page’s directory. Try to avoid that misconcep-
tion. There’s no need to go up. If you’re in a web page, then you’re already in that web page’s direc-
tory. So to go from the index.html page to the business page, you simply go down from oleung
to hw1 by specifying hw1, then down to the business page by specifying /business.html.

The index.html page is the website’s home page, and as such, it’s the first page that you look at
when you visit a website. To help with a user’s viewing experience, home pages should normally con-
tain links to other pages on the website. So for your next challenge, you should implement another
link from the home page—this time, have the link go to the weather page. Try to come up with the
code on your own. Assuming you’ve made an honest attempt, now you can look at the answer:

Weather Page

Because the link resides on the home page, the path originates from the home page directory,
oleung. To get to the weather page, you have to go down to the misc directory and then down
to the lecture directory. In the example code, notice the /’s separating the two directories and
the weather.html filename.

For one last relative URL challenge, try to come up with the code for an a element that resides
in the business page and takes the user to the menu page. Once again, see if you can do that on
your own without glancing down at the answer. Here’s the answer:

Menu Page

Note that there is no directory in the href value—only the filename by itself. With the business
and menu pages both in the same hw1 directory, there’s no need to change directories and there-
fore no need for a path in front of the filename.

Path-Absolute URLs
As stated previously, a relative URL is for jumping to a web page when the current web page and
the target web page are on the same web server. In the prior examples, the relative URL’s path
started at the current web page’s directory. As an alternative, you can have the relative URL’s path
start at the web server’s root directory. A web server’s root directory is the directory on the web

2236.3 Relative URLs

http://index.html
http://"hw1/business.html">Business
http://index.html
http:///business.html
http://index.html
http://"misc/lecture/weather.html">Weather
http://weather.html
http://"menu.html">Menu

server that contains all the directories and files that are considered to be part of the web server. 2
If you want to have the relative URL’s path start at the web server’s root directory, preface the URL
value with /. For example, using Figure 6.2’s directory tree, if oleung is immediately below the
web server’s root directory, the following code could be added to any of the web pages shown, and
it would implement a link to the index.html page:

Olivia's Website

A URL value that starts with a / is referred to as a path-absolute URL, and it’s a special type
of relative URL (it’s considered a relative URL because the path is relative to the current web
server’s root directory). The term path-absolute URL comes from the WHATWG. Remember
the WHATWG? It stands for Web Hypertext Application Technology Working Group. It’s the
organization that keeps track of the HTML5 standard with a living document. Its standard aligns
very closely with the W3C’s HTML5 standard, but because it’s a living document, the WHATWG
is free to update things at any time it sees fit. Unfortunately, the W3C does not have a formal term
for a path that starts with /. But rest assured that the path-absolute URL syntax is valid—all major
browsers have supported it for many years. By the way, if you see the term root-relative path, that’s
just another way to refer to a path-absolute URL. In the real world, both terms are popular.

6.4 index.html File
If a user specifies a URL address that ends with a directory name, then the web server will auto-
matically look for a file named index.html or index.htm and attempt to load it into a browser.
This occurs when you specify a URL for a link’s href value and also when you enter a URL in a
web browser’s address box.3

The default searched-for file can be reconfigured by the web server’s administrator. It’s com-
mon for Microsoft IIS web server administrators to use default.htm as another default filename
for displaying a web page when the URL address ends with a directory name. According to the
coding-style conventions in Appendix A, we recommend that you use index.html for your home
page file names because that name is the most standard. We prefer .html to .htm because .html
is more descriptive—after all, “html” describes the code contained in the file.

If a user specifies a URL address that ends with a directory name, and the web server can-
not find a file named index.html or index.htm (or possibly default.htm) in the specified

2 As you might recall, the term “web server” can refer to (1) the physical computer that stores the web page
files or (2) the program that runs on the computer that enables clients to retrieve the web pages. When
talking about a “web server’s root directory,” we’re not referring to the computer’s hard drive root directory.
We’re referring to the directory that the web server program designates as the top-level container directory
for all the web-related files that the web server computer uses.
3 During the development process, you’ll probably want to implement your web pages on your local computer’s
hard drive. You can load most of your hard drive web pages to a browser by simply double clicking on the file
within Microsoft’s File Explorer tool. But if you double click on a directory name, the index.html file won’t
load by default. Why? Because the web server is the thing that knows to look for the index.html file (i.e.,
it knows to search for it if it sees a directory name). And you bypass the web server if you double click a web
page file within File Explorer.

224 Chapter 6 Links and Images

http://index.html
http://"/oleung/index.html">Olivia's
http://index.html
http://index.html
http://index.html
http://.html
http://.html
http://index.html
http://index.html
http://index.html

directory, then the web server will either (1) load a web page that shows the contents of the spec-
ified directory, or (2) display an error page (e.g., “Directory Listing Denied” or “HTTP 404 - Page
Not Found”). To avoid the directory contents web page (which is rather ugly) or the error page,
you should include an index.html file in every directory that might be specified as part of a
URL. It might seem a bit weird to have multiple index.html files within your website, but for
larger websites, get used to it. Clearly, you need an index.html file in the directory that sits at the
top of your website’s directory tree structure—that particular index.html file is your website’s
home page. The other index.html files are not the official home page, but you can think of them
as “home pages” for different areas within your website.

6.5 Web Design
Because a home page is the default first page a user sees when the user visits a website, it’s the
web developer’s first—and possibly only—opportunity to make a good impression on users. So
try to get it right, or your users might leave and never come back. In this section, you will learn a
few tips on how to make a good first impression. These tips are part of a software area known as
web design, which is comprised of these subareas: user interface design, user experience design,
graphic design, and search engine optimization. Sorry, explaining all that is beyond the scope of
this book. But we do explain some of it—we scratch the surface on user interface design and user
experience design. That’s a surface that needs to be scratched, so let’s begin.

User Interface Design
In a general sense, user interface design (UID) refers to the mechanisms by which users of a product
can use the product. For web pages, the mechanisms are things like text, color, pictures, buttons, text
boxes, and progress bars. A good UID designer will anticipate users’ needs and create an interface
that meets those needs by incorporating components that are easy to understand and use.

After the home page downloads, users will want to identify the web page’s main content
quickly. To help in that regard, you should try to avoid clutter, and focus on clear, concise words
(and graphics, if appropriate) that describe the web page’s main content. Remember that for a
nontrivial website, the home page is only for the main content and links to other web pages,
not for lots of details. If you need to provide lots of details for something, you should put those
details on a separate web page and link to that page from the home page. The link labels them-
selves are important. For each link label, use only one word or a few words that get to the point
quickly. Don’t be afraid to remove unnecessary text and to have whitespace on your home page.
Whitespace can provide a nice respite for stressed-out web surfers.

In presenting the web page’s content, it’s important to be consistent with your text and colors.
For text, you should limit the number of text fonts used. Pick pleasing fonts that go together well
for your main content and your subsidiary content. Make sure that the foreground text colors con-
trast with the background colors so the text is easy to read. Normally, that means the contrasting
colors should be different in terms of lightness and darkness. You should pick a set of colors for
your text, background, and graphics that complement each other. Apply a consistent strategy for
choosing which colors go to which type of content.

2256.5 Web Design

http://index.html
http://index.html
http://index.html
http://index.html
http://index.html

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

