
CHAPTER OUTLINE

5.1	 Introduction

5.2	 Table Elements

5.3	 Formatting a Data Table: Borders,
Alignment, and Padding

5.4	 CSS Structural Pseudo-Class Selectors

5.5	 thead and tbody Elements

5.6	 Cell Spanning

5.7	 Web Accessibility

5.8	 CSS display Property with Table
Values

5.9	 Absolute Positioning with CSS Position
Properties

5.10	 Relative Positioning

5.11	 Case Study: A Downtown Store’s
Electrical Generation and Consumption

5.1 Introduction
In Chapter 4, we focused on different ways to organize a web page’s content. We discussed
organizational elements that have clear physical manifestations—list and figure elements. We
also discussed several organizational elements that are less clear-cut in terms of their physical
manifestations—header, footer, nav, section, article, and so on. In this chapter, we
present another organizational construct, but this construct is so popular and important that
it merits an entire chapter. In this chapter, we discuss tables.

At its core, a table is a group of cells organized in a two-dimensional structure with rows
and columns. Normally, we think of a table’s cells as holding data, but tables can also be used
purely for presentation purposes. To use a table for presentation purposes, you position con-
tent at particular locations on the web page using a row-column layout scheme. An example
would be putting a navigation menu at the left, putting pictures at the right, and putting contact
information at the bottom. We devote about half of this chapter to tables whose purpose is to
hold data. We devote most of the rest of the chapter to tables whose purpose is to provide a
row-column layout scheme.

Data tables very often hold numbers, but they can hold text and other types of content as well.
The following data table holds text. More specifically, it holds descriptions for the 16 personality
types defined by the Myers–Briggs Type Indicator (MBTI) instrument.1 We created the table using
Microsoft Word. One of the projects at the end of this chapter asks you to implement it using HTML.

In the MBTI table, the letters (ST, IJ, etc.) at the top and at the left are headers that show how
a person’s preferences indicate the person’s personality type. The letters represent the contrasting
pairs: Introversion (I) / Extroversion (E); Judging (J) / Perceiving (P); Sensing (S) / Intuition (N);
Thinking (T) / Feeling (F). So in answering the MBTI questions, if a person indicates preferences

1 Isabel Briggs Myers, Introduction to Type: A Guide to Understanding Your Results on the MBTI Instrument
(Mountain View, CA: CPP, Inc., 1998). The personality descriptions in Myers’s book are quite a bit longer
than the ones shown. We shortened the descriptions to save space.

168 Chapter 5 Tables and CSS Layout

for sensing, thinking, introversion, and judging, then the table would suggest that the person’s
personality type is quiet and serious. For more details, see https://www.opp.com/en/tools/MBTI
/MBTI-personality-Types.

Unlike data tables, layout tables are not limited to holding data—they are allowed to hold
any type of content. Their purpose is to position that content with a row-column layout scheme.
Consider this graphic:

To implement this graphic as part of a web page, you would probably want to use a two-row, three-
column layout table. The “SEASONS ON THE HILL” heading would be implemented as a table cap-
tion. The pictures and season names would be positioned by placing them in the layout table’s six cells.

Pic
tu

re
s p

er
m

iss
ion

s g
ra

nt
ed

 by
 Br

ad
 Bi

les
, P

ar
k U

niv
er

sit
y D

ire
cto

r o
f C

om
m

un
ica

tio
ns

 an
d P

ub
lic

 Re
lat

ion
s

ST SF NF NT

IJ Quiet and
serious

Quiet, friendly,
and responsible

Insightful, committed
to their values

Independent-minded
and hard-working

IP Tolerant and
analytical

Quiet, friendly,
and sensitive

Idealistic and loyal Has a desire to develop
logical explanations

EP Flexible and
pragmatic

Outgoing,
friendly, and
accepting

Enthusiastic and
imaginative

Quick, ingenious, and
stimulating

EJ Practical
and realistic

Conscientious
and cooperative

Warm, empathetic,
and responsive

Decisive and quick to
assume leadership

1695.1 Introduction

https://www.opp.com/en/tools/MBTI/MBTI-personality-Types
https://www.opp.com/en/tools/MBTI/MBTI-personality-Types

We begin this chapter by describing data tables and the HTML table elements used to imple-
ment them such as table, tr, th, td, and so on. As part of our discussion of data tables, we
describe cell spanning, where adjacent cells are merged to form larger cells. Next, we discuss web
accessibility techniques that make it easier for disabled users to understand data table content. We
then move on to a discussion of layout tables. We first describe how to implement layout tables
using CSS’s display property with various values such as table, table-caption, table-row,
and so on. We then describe how to implement layout tables using CSS’s position property. We
show how to use the position property for absolute positioning, where an element gets posi-
tioned relative to its containing block, and we show how to use the position property for relative
positioning, where an element gets positioned relative to its normal position in the web page.

5.2 Table Elements
Let’s start by looking at a simple data table—the wind disasters table in FIGURE 5.1. It’s a data
table in that it displays data, the names of famous tornadoes and hurricanes, in a row-column for-
mat. Headers are not required for a data table, but they are common, and the wind disasters table
has two column headers, labeled “Tornadoes” and “Hurricanes.”

To create a data table, start with a table container element, fill the table element with a tr ele-
ment for each of its rows, and fill each tr element with th elements for header cells and td elements
for data cells. FIGURE 5.2 shows the code used to implement Figure 5.1’s Wind Disasters web page.
Note Figure 5.2’s table element and its four tr elements. The top tr element contains th elements
for the column header cells. The bottom three tr elements contain td elements for the data cells.

If you’d like to display a title for a table, embed a caption element within the table con-
tainer. For example, note the caption element in Figure 5.2 and the resulting “Wind Disasters”

FIGURE 5.1  Wind Disasters web page

170 Chapter 5 Tables and CSS Layout

Created with a caption element.

Created with one tr element
and two th elements.

Created with three tr elements
and six td elements.

title in Figure 5.1. If you include a caption element within a table container, the caption
element must be the first element within the table. As you’d expect, a table’s caption displays above
the table’s grid by default. If you want the caption’s text displayed at the bottom, you can use the
following CSS type selector rule:

caption {caption-side: bottom;}

By default, browsers use boldface font for table header cells. You can see this behavior in
Figure 5.1, where the “Tornadoes” and “Hurricanes” headers (implemented with th elements) are
bolder than the text values below the headers. That default behavior should make sense because
table headers are often boldfaced in business reports.

Beginning web programmers sometimes have trouble deciding when to use th elements and
when to use td elements. Use th for a cell that is a description for other cells’ content; use td for
all other cells in the table.

The table element is a block element. As you learned earlier, unless all the code in a block
element can fit on one line (and that’s very unlikely with a table element), you should indent all
of the block element’s contained code. For example, in Figure 5.2, note how the caption and tr
elements are indented inside the table element’s start and end tags.

FIGURE 5.2  Source code for Wind Disasters web page

1715.2 Table Elements

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Wind Disasters</title>
<style>
 table, th, td {border: thin solid;}
</style>
</head>

<body>
<table>
 <caption>Wind Disasters</caption>
 <tr><th>Tornadoes</th><th>Hurricanes</th></tr>
 <tr><td>Joplin, Missouri</td><td>Katrina</td></tr>
 <tr><td>Tri-State</td><td>Andrew</td></tr>
 <tr><td>Waco, Texas</td><td>Galveston</td></tr>
</table>
</body>
</html>

Indent all the code that appears within the table start and end tags.

Explicitly apply a
border around the
entire table and
around each cell.

5.3 Formatting a Data Table: Borders, Alignment,
and Padding
In this section, we’ll describe how to format data tables in terms of their borders, cell alignment,
and cell padding. Before HTML5, older versions of HTML allowed you to specify those presen-
tation features using HTML attributes. But in sticking to its goal of keeping content and presen-
tation separate, HTML5 has made those attributes obsolete. The solution? As usual, you should
use CSS for presentation.

To specify whether or not you want borders for a table, you should use CSS’s border-style
property. To specify the border’s width, you should use CSS’s border-width property. For exam-
ple, here’s the CSS type selector rule used in the Wind Disasters web page:

table, th, td {border: thin solid;}

Oops. Why are there no border-style and border-width properties? That’s a trick
question. You might recall from Chapter 3 that border is a shorthand property that handles
a set of border-related properties. In this example, the border property’s first value is thin,
which goes with the border-width property, and the border property’s second value is solid,
which goes with the border-style property. With table, th, and td all listed in the rule, the
resulting web page displays a thin solid border around the entire table (except for the table’s cap-
tion), around each header cell, and around each data cell. As a sanity check, glance back at Figure
5.1’s Wind Disasters web page and verify that those borders exist.

Now onto the next two formatting features—cell alignment and cell padding. If you add no
CSS to a table, then you’ll end up using the browser’s default CSS values. Table header cells (th)
have a default alignment of center and a default weight of bold. Table data cells (td) have a default
alignment of left. Both th and td cells have a default padding of none. Look at the Wind Disas-
ters web page in Figure 5.1 and verify that the table uses those default CSS values. To adjust the
horizontal alignment of text in table cells, use CSS’s text-align property with a value of left,
right, or center. To adjust the padding around the text in table cells, use CSS’s padding prop-
erty with a pixel value (e.g., 5px).

Look at the Wind Disasters web page in FIGURE 5.3. Note how the header text (“Tornadoes”
and “Hurricanes”) is left aligned. Note how there’s padding around every cell’s text. Also note the
border widths—the outer border is thicker than the cell borders, and there’s an even thicker bor-
der below the header cells. To hone your problem-solving skills, see if you can figure out what CSS
rules need to be added in order to implement those formatting features. Please do not continue
reading until you try.

Have you got the CSS figured out? To add left alignment and padding to every cell, use this
type selector rule:

th, td {
 text-align: left;
 padding: 10px;
}

172 Chapter 5 Tables and CSS Layout

This rule specifies left alignment for the td element, even though the td element uses left align-
ment by default. That’s OK. The code is self-documenting—it explicitly shows the web developer’s
intent without needing a comment.

Figure 5.2’s style container contains the following CSS rule, which creates thin border lines
around the entire table and also around each cell:

table, th, td {border: thin solid;}

To assign a medium width to the table’s outer border and to assign a thick width to the header
cells’ bottom borders, add the following type selector rules below the rule:

table {border-width: medium;}
th {border-bottom-width: thick;}

Note that all three rules deal with borders. The first and second rules both provide values for the
table element’s border-width property. The second rule’s border-width property is explicit
(border-width: medium), whereas the first rule’s border-width property is built into the
border shorthand property (border: thin). So will the table’s border width be medium or
thin? If two CSS rules refer to the same property, the rule that appears later overrides the prior
rule’s property value. Therefore, because the border-width: medium rule appears later, it wins
and the table’s border width will be medium.

FIGURE 5.3  Wind Disasters web page with improved formatting

1735.3 Formatting a Data Table: Borders, Alignment, and Padding

thicker
borders

left
alignment
and
padding

The first and third rules provide values for the th element’s border-bottom-width property.
The third rule’s border-bottom-width property is explicit (border-bottom-width: thick),
whereas the first rule’s border-bottom-width property is built into the border shorthand prop-
erty (border: thin). Because the border-bottom-width: thick rule appears later, it wins
and the th elements’ bottom border widths will be thick.

In Figure 5.3, note how there’s a gap between each of the borders. More specifically, there’s a
gap between the table’s exterior border and the individual cells’ borders, and there’s a gap between
the borders for adjacent cells. If you’d like to eliminate those gaps and merge the borders, use the
border-collapse CSS property with a value of collapse, like this:

table {border-collapse: collapse;}

The default value for border-collapse is separate, and the separate value causes gaps
to appear between adjacent borders. On the other hand, if you add the CSS rule to the “improved
formatting” Wind Disasters web page shown in Figure 5.3, here’s the result:

5.4 CSS Structural Pseudo-Class Selectors
The previous chapter described lists, and this chapter describes tables and tabular formatting. All of
these things involve collections of elements. When you have a collection of elements, sometimes you
want to display one or more of those elements differently from the rest. You could do that by including
class attributes in each element that you want to display differently. You would then use the class
attribute’s value as a class selector in a CSS rule. But if the number of elements that you want to display
with a special format is large, then quite a few class="value" code insertions would be required.

174 Chapter 5 Tables and CSS Layout

When there is regularity in the locations of certain elements within a collection of elements,
you can avoid the class="value" code insertions described and, instead, implement that func-
tionality with a structural pseudo-class CSS rule. Pseudo-classes conditionally select elements
from a group of elements specified by a standard selector. For example, the following code uses a
standard tr type selector to select all the tr elements in a web page, and the :first-of-type
pseudo-class checks each of those elements to see if it is a first tr element within a particular
table:

tr:first-of-type {background-color: palegreen;}

For each conditionally selected tr element (i.e., for each first-row tr element), the browser dis-
plays the element with a pale green background color.

A pseudo-class is called a “pseudo-class” because using a pseudo-class is similar to using
a class attribute, but the two entities are not identical. A pseudo-class is like a class selector
in that it matches particular instances of elements (that’s what happens with elements that use
class attributes). But they are different from class selectors in that they don’t rely on the class
attribute.

When we describe pseudo-class selectors, we’ll very often use the terms sibling and parent.
For the preceding CSS rule, we formally say that the pseudo-class checks for a first tr element
from among a group of sibling tr elements. Sibling elements are elements that have the same
parent element. An element is considered to be a parent of another element if it contains the other
element with just one level of nesting. This mimics the notion of a human parent. A human is a
parent of its children, but is not a parent of its grandchildren.

The W3C defines 12 structural pseudo-classes, but we’ll focus on three of the most popular
ones; they are :first-of-type, :last-of-type, and :nth-of-type(). See FIGURE 5.4
for a short description of each one. As indicated in the figure, all pseudo-classes start with a
colon. The purpose of a pseudo-class is to qualify a standard selector. More specifically, it pro-
vides a condition for selecting an element(s) from among the elements selected by a standard
selector.

We’ve already discussed :first-of-type. Now let’s discuss its partner, :last-of-type.
As you might guess, the :last-of-type pseudo-class checks each of the elements selected by a
standard selector to see if the element is a last element from among a group of sibling elements. So
the following example selects li elements that are at the bottom of unordered lists:

ul > li:last-of-type {background-color: palegreen;}

Pseudo-Class Description

:first-of-type Selects first element in sibling group of a particular type.

:last-of-type Selects last element in sibling group of a particular type.

:nth-of-type() Uses parentheses value to select an element or group of elements.

FIGURE 5.4  Popular structural pseudo-class selectors

1755.4 CSS Structural Pseudo-Class Selectors

Note the ul > li child selector notation, which means that an li element is selected only if it
is a child of a ul element. Note that there are no spaces on either side of the pseudo-class’s colon.
That’s a style rule. The rationale is that having no spaces serves as a visual reminder that the
last-of-type pseudo-class qualifies the li selector. In the CSS rule, it would be legal to qualify
ul with its own pseudo-class. If you did so, there should be no space between ul and the newly
added pseudo-class.

Now for the more challenging pseudo-class, which is :nth-of-type(). Unlike the other
pseudo-classes so far, the :nth-of-type() pseudo-class has parentheses. Inside the parenthe-
ses, you provide a value that indicates which element or group of elements you want to select. For
example, in the following CSS rule, we put 3 in the parentheses to select the third data cell within
a row of sibling data cells:

td:nth-of-type(3) {text-align: right;}

That rule matches every third td element within each row of td elements and causes those td
elements to be right-aligned. Effectively, that causes tables to display their third columns with
right-aligned data (which works nicely for money values). As an alternative to putting a number
in the parentheses, you can specify even or odd. For example, in the following CSS rule, we put
even in the parentheses to select every even-numbered row:

tr:nth-of-type(even) {background-color: lightblue;}

That rule causes tables to display their even-numbered rows (second, fourth, and so on) with a
light blue background color.

As an alternative to putting a number, even, or odd in the parentheses, you can use an
expression of the form an + b, where a and b are constant integers and n is a variable named n. By
using such an expression, you can specify interleaved groups of elements. This is better explained
with an example:

tr:nth-of-type(5n+2) {background-color: red;}

That rule selects every fifth tr element starting with the second row. In other words, it selects
rows 2, 7, 12, 17, and so on. The way it works is you plug in values for n by starting with n equals
0 and incrementing n by 1 each time. So when n equals 0, row 2 is selected. When n equals 1, row
7 is selected. Make sense?

FIGURE 5.5 shows code for a simple example that presents electrical power generated by a
small store’s rooftop photovoltaic solar collectors, plus that store’s immediate electrical consump-
tion and electrical and thermal storage. This example includes three structural pseudo-class
rules. The first uses nth–of-type selectors to right-align data in the third and fourth col-
umns of the table. The second uses :first-of-type to color the background of the table’s
header row pale green. The third uses :nth-of-type(2n+3)to color alternate data rows pale
goldenrod.

FIGURE 5.6 shows what this code displays. The optional case study at the end of this chapter
expands a variation of this example and includes other material before and after this table.

176 Chapter 5 Tables and CSS Layout

FIGURE 5.5  Source code for Power Table web page

1775.4 CSS Structural Pseudo-Class Selectors

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Local Power Generation and Consumption</title>
<style>
 h3 {text-align: center;}
 table {border-collapse: collapse; margin: 0 auto;}
 th, td {border: thin solid; padding: 2px 5px;}
 td:nth-of-type(3), td:nth-of-type(4) {text-align: right;}
 tr:first-of-type {background-color: palegreen;}
 tr:nth-of-type(2n+3) {background-color: palegoldenrod;}
</style>
</head>

<body>
<table>
 <caption>
 <h3>Noon Power Generation (positive) and Consumption (negative)</h3>
 </caption>
 <tr>
 <th>Component Description</th> <th>Overall Size</th>
 <th>Noon Power</th> <th>Installed Cost</th>
 </tr>
 <tr>
 <td>PV Solar Collectors</td> <td>137 m² panel area</td>
 <td>+18 kW</td> <td>$45,000</td>
 </tr>
 <tr>
 <td>Immediate Consumption</td> <td>274 m² floor area</td>
 <td>-5 kW</td><td> </td>
 </tr>
 <tr>
 <td>Chilled Water Storage</td> <td>2.3 m diameter x 2.1 m high</td>
 <td>-2 kW</td> <td>$1000</td>
 </tr>
 <tr>
 <td>Battery Storage</td> <td>1.3 m x 1.0 m x 1.1 m high, 1250kg</td>
 <td>+18 kW</td> <td>$6000</td>
 </tr>
</table>
</body>
</html>

These rules use structural
pseudo-class selectors.

5.5 thead and tbody Elements
Normally, you’ll put table header cells at the top of a table’s columns, but sometimes you’ll also
want to put them at the left of each row. For example, in the Global Temperatures web page in
FIGURE 5.7, note the year values in header cells at the left. If you have header cells at the left, very
often you’ll want to differentiate those header cells from the ones at the top. The preferred way
to differentiate is to put the top cells’ row (or rows) in a thead element and put the subsequent
rows in a tbody element. In the Global Temperatures web page, why would you need to differ-
entiate between the header cells at the left and the ones at the top? So you can apply different CSS
background-color rules to the different groups of header cells—midnight blue for the top cells
and violet red for the left-side cells.

Take a look at the Global Temperatures thead and tbody code in FIGURE 5.8. The thead
element contains a tr element and three th elements within the tr element. The tbody element
contains several tr elements, with each tr element holding a th element and two td elements.
Here are simplified versions of the descendant selector rules used to color thead’s header cells
differently from tbody’s header cells:

thead th {background-color: midnightblue;}
tbody th {background-color: mediumvioletred;}

In Figure 5.8, note the indentations for the thead, tbody, and tr containers. They are all
block elements, and unless all the code in a block element can fit on one line, you should indent
all of the block element’s contained code. For example, note how the tr elements are indented
inside the thead and tbody containers. Also, inside the first tr container, note how the three th
elements are indented even more so.

Besides using thead and tbody, there are other ways to distinguish the top header cells
from the left-side header cells. For example, you could use class attributes with one value for

FIGURE 5.6  Power Table web page

178 Chapter 5 Tables and CSS Layout

the top header cells and a different value for the left-side header cells. However, that would lead
to cluttered code—a class attribute for every th cell. On the other hand, the Global Tempera-
tures web page uses thead and tbody, which means less clutter because no class attributes are
necessary.

Let’s now examine a few noteworthy CSS rules from the Global Temperatures web page that
are unrelated to thead and tbody. Here’s the first such rule:

body {display: flex; justify-content: center;}

That rule tells the browser to center all the elements in the body container horizontally within the
browser window’s borders. Go back to Figure 5.8 and confirm that the body container has only
one child element—the table element. So the table gets centered. Go back to Figure 5.7 and
confirm that the table is indeed centered. In the CSS rule, the display: flex; property-value
pair creates a flexbox layout (also called a flexible box layout). It provides the ability to add certain
formatting features to a standard block element. The formatting feature we’re interested in now is
horizontal centering, and the justify-content: center property-value pair takes care of that.

FIGURE 5.7  Global Temperatures web page
Note: The web page’s table data refers to global land-ocean surface air temperatures. Data from the National Oceanic and Atmospheric Administration (NOAA), “Global
Climate Report—Annual 2016,” National Oceanic and Atmospheric Administration (NOAA), January 2017, https://www.ncdc.noaa.gov/sotc/global/201613.

1795.5 thead and tbody Elements

thead holds
the first row

tbody
holds the
subsequent
rows

https://www.ncdc.noaa.gov/sotc/global/201613

FIGURE 5.8  Source code for Global Temperatures web page

180 Chapter 5 Tables and CSS Layout

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Global Temperatures</title>
<style>
 body {display: flex; justify-content: center;}
 table, th, td {border: none;}
 th, td {padding: 10px;}
 thead th {
 background-color: midnightblue;
 color: white;
 vertical-align: bottom;
 }
 tbody th {
 background-color: mediumvioletred;
 color: white;
 }
 td {
 background-color: mistyrose;
 text-align: center;
 }
</style>
</head>

<body>
<table>
 <caption>Average Annual Global Temperatures</caption>
 <thead>
 <tr>
 <th>Year</th>
 <th>Temp
Rank</th>
 <th>Avg
Temp (°F)</th>
 </tr>
 </thead>
 <tbody>
 <tr><th>2016</th><td>1</td><td>58.98</td></tr>
 <tr><th>2015</th><td>2</td><td>58.77</td></tr>
 <tr><th>2014</th><td>3</td><td>58.53</td></tr>
 <tr><th>2013</th><td>5</td><td>58.37</td></tr>
 <tr><th>2012</th><td>9</td><td>58.33</td></tr>
 </tbody>
</table>
</body>
</html>

To center a block element
(like table), apply this CSS
code to the element's
parent container.

To position text vertically
within its container, use the
vertical-align property.

If a row's content is too long
to fit on one line, then put
indented cell elements on
separate lines.

In the CSS rule, note that the selector is body, not table. To center an element, you apply the rule
to the element’s parent container, not to the element itself.

Because the flexbox layout is fairly new (the W3C introduced it to its CSS specification in
2016), older browsers don’t support it. Therefore, you should be familiar with this alternative
technique, which is pervasive throughout the web page universe:

table {margin: 0 auto;}

The code shows two values for the margin property—0 and auto. You might recall from
Chapter 3 that if you provide two values, the first value specifies the top and bottom margins
and the second value specifies the left and right margins. So with the first value being 0 in
the CSS rule, there are no margins above and below the table. The auto value requires some
additional explanation. For any block element (including a table element), if the left margin
and right margin are both set to auto, that will force the browser to make the margins equal,
which forces the browser to center the block element. Thus, the CSS rule causes the table to be
centered.

Here’s a simplified version of another rule from the Global Temperatures web page that
deserves some attention:

thead th {vertical-align: bottom;}

What is the vertical-align property for? Before answering that question, look back at Figure
5.7’s Global Temperatures web page. Note how the top heading values are aligned at the bottom
of their cells. Using a bottom value for the vertical-align property causes a cell’s text to be
aligned at the bottom. If you need top or middle vertical alignment, use the vertical-align
property with a value of top or middle, respectively.

Note this additional CSS rule from the Global Temperatures web page, copied here for your
convenience:

table, th, td {border: none;}

The border: none property-value pair means that the browser will not draw border lines.
That means the web page’s background color appears where the border lines would normally
appear. For the Global Temperatures web page, the cells use a different background color than
the web page’s background. So with border none, the borders display as white lines, from the
web page’s default white background color. Although the default is for a table to have no vis-
ible borders, it’s fairly unusual to stick with that default. Thus, we include the rule to make it
clear to someone looking at the code that having no borders is intentional. This is a form of
self-documentation.

There is one final noteworthy item in the code for the Global Temperatures web page. The
table’s first row contains this th container code:

<th>Avg
Temp (°F)</th>

1815.5 thead and tbody Elements

What is °? It’s a character reference for the degree character (°). To verify, see the “Avg Temp
(°F)” header in Figure 5.7.

5.6 Cell Spanning
So far, all of our data table examples have used a standard grid pattern, with one cell for each
row-column intersection. But sometimes data tables will have cells that span more than one of the
intersections in a standard grid. For example, see the My Favorite Eras table in FIGURE 5.9. We
implemented it using a table element with six rows and three columns. The Events cell at the top
is a merged version of two cells in the first row. The Mesozoic cell at the left is a merged version
of two cells in the first column. Below the Mesozoic cell, the Cenozoic cell is a merged version of
the next three cells in the first column.

If you want to create a merged cell that spans more than one column, you’ll need to add a
colspan attribute to a th or td element. FIGURE 5.10 shows the code for the My Favorite Eras
web page. In particular, examine the code for the table’s first row, and note colspan="2", which
creates a merged cell that spans two columns. We’ve copied the code here for your convenience:

<tr><th>Eras</th><th colspan="2">Events</th></tr>

FIGURE 5.9  My Favorite Eras web page

182 Chapter 5 Tables and CSS Layout

This is a merged cell that
uses rowspan="2".

This is a merged cell that
uses colspan="2".

FIGURE 5.10  Source code for My Favorite Eras web page

1835.6 Cell Spanning

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Earth Eras</title>
<style>
 table {border: thin solid;}
 th, td {border: thin solid; padding: 10px;}
 thead th (background-color: lawngreen;}
 tbody th (background-color: lightcyan;}
</style>
</head>

<body>
<table>
 <caption>My Favorite Eras</caption>
 <thead>
 <tr><th>Eras</th><th colspan="2">Events</th></tr>
 </thead>
 <tbody>
 <tr>
 <th rowspan="2">Mesozoic
251 to 65.5 mya</th>
 <td>Evolutionary split between reptiles and dinosaurs</td>
 <td>235 mya</td>
 </tr>
 <tr>
 <td>South America breaks away from Africa</td>
 <td>105 mya</td>
 </tr>
 <tr>
 <th rowspan="3">Cenozoic
65.5 mya to today</th>
 <td>Modern mammals appear</td>
 <td>40 mya</td>
 </tr>
 <tr><td>Tool-making humanoids appear</td><td>2 mya</td></tr>
 <tr>
 <td>First Rolling Stones reunion tour</td>
 <td>11,000 years ago</td>
 </tr>
 </tbody>
</table>
</body>
</html>

colspan attribute

rowspan attribute

Note how this row has two cells—an Eras header cell and an Events header cell. On the other
hand, the table’s next row has three cells—a Mesozoic header cell and two data cells:

<tr>
 <th rowspan="2">Mesozoic
251 to 65.5 mya</th>
 <td>Evolutionary split between reptiles and dinosaurs</td>
 <td>235 mya</td>
</tr>

The different number of cells in the two rows should make sense when you realize that the first
row’s second cell is formed by spanning two cells in the table’s original grid pattern.

In this code fragment, note rowspan="2" in the first cell. If you want to create a merged cell
that spans more than one row, add a rowspan attribute to the cell’s th or td element. Thus, as
shown in Figure 5.9, the Mesozoic header cell spans two rows.

Here’s the code for the table’s next row:

<tr>
 <td>South America breaks away from Africa</td>
 <td>105 mya</td>
</tr>

Remember that the prior row has three cells. Can you figure out why this row has only two cells
rather than three? It’s because the prior row’s first cell (the Mesozoic header cell) spans down and
replaces the next row’s first cell.

Refer back to Figure 5.9’s My Favorite Eras web page. In the light blue header cells at the left, note
how each era’s name appears on a separate line from its range of years. We induced that separation by
adding
 elements after the words “Mesozoic” and “Cenozoic.” If there were no
 elements,
then each era’s name and range of years would appear on one line, unbroken, and the left-side col-
umn would widen to accommodate the longer lines of text. Having such a wide left-side column
would look rather odd because of all the unused space within the Mesozoic and Cenozoic header
cells. An important takeaway from this is that a table column will conform to the width of the column
cell with the widest content. An exception to that rule occurs when a table’s natural width is greater
than the browser window’s width. In that case, the browser will shrink one or more of the table’s col-
umns so that the entire table displays in the browser window. In shrinking a column(s), the browser
will initiate line wrap in the cell(s) with the widest content. To get a better appreciation for this phe-
nomenon, you should experience it for yourself. Load the My Favorite Eras web page in a browser.
Use your mouse to decrease the browser’s width, and as you do so, in the first data cell, you should
see “dinosaurs” wrap to a second line. The browser chooses to wrap that data cell’s text because that
data cell contains the widest content from among all the cells in the second column. The rules that
determine which columns to shrink first are slightly different for the different browsers. The rules
can get pretty complicated, but don’t worry—there’s no need to understand them fully just yet.

Having different rules about which columns to shrink first can lead to slightly different lay-
outs for users with different browsers. That inconsistency might run counter to your tendency
to want to make everything look identical on all browsers. Consistency is indeed a worthy goal.
Nonetheless, sometimes attempting to achieve that goal is not worth the effort.

184 Chapter 5 Tables and CSS Layout

5.7 Web Accessibility
In this section, we’ll digress a bit and discuss web accessibility—a subject that is important for
tables specifically, but also for programming in general. Web accessibility means that disabled
users can use the Web effectively. Most web accessibility efforts go toward helping users with
visual disabilities, but web accessibility also attempts to address the needs of users with hearing,
cognitive, and motor skills disabilities.

Many countries have laws that regulate accessibility for websites. For example, https://www
.access-board.gov/guidelines-and-standards/communications-and-it describes web accessibility
guidelines that U.S. government agencies are required to follow.

To promote the social good (through equal opportunities for disabled people) and to pro-
mote their own businesses, many companies have policies that require web developers and soft-
ware purchasers to follow web accessibility standards. Such policies can promote the company’s
business not only by attracting people who fall into the traditional disabled categories, but also by
providing added value to other people. For example, accessible websites tend to be better for users
with slow Internet connections and for users who need glasses.

Typically, visually impaired users have screen readers to read web pages. A screen reader is
software that figures out what the user’s screen is displaying and sends a text description of it to a
speech synthesizer. The speech synthesizer then reads the text aloud.

The easiest way to understand a table is to look at it. If you can’t see the table and you rely on
someone else reading the table’s content to you, you’ll probably have a harder time understanding
what’s going on. Likewise, because their output is purely auditory and not visual, screen readers are
a bit challenged when it comes to describing a table’s content. To overcome that challenge, screen
readers rely on the fact that most data tables have header cells in the first row or the first column.
When screen readers see such “simple” data tables, they assume that each header in the first row
describes the data cells that are below it. Likewise, if there are headers in the first column, screen
readers assume that each of those headers describes the data cells that are at the right of the header.

If you have a data table in which one or more header cells are not in the first row or column (i.e.,
it’s not a simple table), then you should consider adding code to make the table more web acces-
sible. In particular, you should consider embedding a details element in the table’s caption
element. The details element provides a description of the table’s content so that a screen reader
can read the description and get a better understanding of the nature of the table’s organization.

The Grading Weights table in FIGURE 5.11 has header cells in its second row, so the table
is a good candidate for a web accessibility makeover.2 In the figure, note the right-facing triangle
under the table’s title. If the user clicks the triangle, the browser will display “help” details that
describe the table’s content. The triangle and the text that describes the table both come from a
details element embedded in the table’s caption element. Take a look at FIGURE 5.12A and
find the details element and its enclosed text. Screen readers will use that text to describe the
table’s organization. The HTML5 standard requires that you preface the details element’s text

2 The Grading Weights web page is excerpted from the #1 hit television series “Extreme Makeover: Web Page
Accessibility Edition.”

1855.7 Web Accessibility

https://www.access-board.gov/guidelines-and-standards/communications-and-it
https://www.access-board.gov/guidelines-and-standards/communications-and-it

with a summary element. In Figure 5.12A, the summary element contains one word—“Help.” In
Figure 5.11, you can see that “Help” serves as a label for the clickable details triangle.

 The details element is new with HTML5, and, as such, older browsers don’t support it.
Besides the details element, another way to help screen readers understand complicated data
tables (where one or more header cells are not in the first row or first column) is to use the
headers attribute. With a headers attribute, you specify the header cell(s) that each data cell or
subheader cell is associated with. For example, in the Grading Weights table, the 36% data cell is
associated with the Exams header cell and also the 2 subheader cell immediately above the 36%
cell. So to help with web accessibility, the 36% cell has a headers attribute that specifies those two
header cells. Here’s the relevant code from FIGURE 5.12B:

<td headers="exams exam2">36%</td>

In this headers attribute, the “exams” and “exam2” values match the id values for the Exams
header cell and the 2 subheader cell immediately above the 36% cell. Here’s the relevant code from
Figure 5.12B:

<th colspan="2" id="exams">Exams</th>
...
<th id="exam2" headers="exams">2</th>

In this headers attribute, the “exams” value matches the id value for the Exams header cell. This
stuff can be kind of tricky, so spend time studying the Grading Weights web page and source code
until you’re comfortable with it.

The details element and headers attribute make things easier for screen readers by indi-
cating how the cells are organized by rows and columns and how the data cells relate to the header

FIGURE 5.11  Grading Weights web page

186 Chapter 5 Tables and CSS Layout

Click this to
display the
details text.

cells. But what if a table element is used for layout purposes, and the cells are not organized by
rows and columns? If a screen reader reads such a table and doesn’t know that it’s a layout table,
there’s a good chance that it will provide unhelpful (and possibly confusing) information. For
example, before verbalizing each row’s content, it might preface the content with a row number,
even though the user won’t care about row numbers. To avoid this problem, if you have a table
element being used for layout purposes, you should add a role attribute to the table element’s
start tag, like this:

<table role="presentation">

That tells the screen reader that the table is for presentation/layout purposes, not for storing data,
and the screen reader should then be able to do a better job describing the table’s content.

Even though role="presentation" is part of the HTML5 specification, the W3C is
not particularly fond of it. The W3C states that you should implement layout with CSS and not

FIGURE 5.12A  Source code for Grading Weights web page

1875.7 Web Accessibility

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Grading Weights</title>
<style>
 table, th, td {border: thin solid;}
 th, td {
 text-align: center;
 padding: 10px;
 }
 caption {margin-bottom: 15px;}
</style>
</head>

<body>
<table>
 <caption>
 Grading Weights for Web Programming I
 <details>
 <summary>Help</summary>
 The first 3 columns show weights for the 3 homework assignments.
 The next 2 columns show weights for the 2 exams.
 The last column shows the weight for staying awake during class.
 </details>
 </caption>

details element, embedded
in a caption element

summary element, embedded
in the details element

with the table element. That wasn’t always the case. In older versions of HTML, the table
element was used not only for holding data, but also for layout. Consequently, many web devel-
opers have gotten used to using the table element for layout purposes. Knowing that it’s hard
to “teach an old dog new tricks,” the W3C realizes that this nonconforming practice will con-
tinue for the foreseeable future. The role="presentation" solution somewhat mitigates the
problem.

This section provided a brief introduction to the rather large field of web accessibility. If you’d
like additional details, check out the W3C’s accessibility page at https://www.w3.org/WAI/intro
/accessibility.php.

5.8 CSS display Property with Table Values
In the previous section, we told you not to use the table element for layout tables, but if you do
so, you should use role="presentation" to avoid incurring the wrath of the W3C police. Now
it’s time to discuss how to implement layout tables the right way—using CSS rather than the table
element. There are two main ways to implement layout tables with CSS. If you want the layout
boundaries to grow and shrink the way they do for an HTML table element, then use the CSS
display property with table values. On the other hand, if you want the layout boundaries to be
fixed (no growing or shrinking), then use CSS position properties. In this section, we discuss the
first technique, using the CSS display property with table values, and in the next section, we dis-
cuss the second technique, using CSS position properties.

FIGURE 5.12B  Source code for Grading Weights web page

188 Chapter 5 Tables and CSS Layout

<tr>
<th colspan="3" id="hw">Homework Assignments</th>
<th colspan="2" id="exams">Exams</th>
<th rowspan="2" id="awake">Ability to
Stay Awake</th>

</tr>
<tr>

<th id="hw1" headers="hw">1</th>
<th id="hw2" headers="hw">2</th>
<th id="hw3" headers="hw">3</th>
<th id="exam1" headers="exams">1</th>
<th id="exam2" headers="exams">2</th>

 </tr>
 <tr>

<td headers="hw hw1">10%</td>
<td headers="hw hw2">10%</td>
<td headers="hw hw3">10%</td>
<td headers="exams exam1">30%</td>
<td headers="exams exam2">36%</td>
<td headers="awake">4%</td>

</tr>
</table>

</body>
</html>

https://www.w3.org/WAI/intro/accessibility.php
https://www.w3.org/WAI/intro/accessibility.php

The display Property’s Table Values
In Chapter 4, you learned about the CSS display property. Specifically, you used a
display: inline property-value pair to display an address element (which is normally a
block element) in the flow of its surrounding sentence. The display property can be used for
much more than just inlining block element content. It can also be used to emulate the various
parts of a table. Review FIGURE 5.13. It shows values for the display property that enable
elements to behave like the parts of a table. Figure 5.13’s first display property value is table.
The table value enables an element, like a div element, to behave like a table. Here’s how you
can do that:

<style>
 .table {display: table;}
 ...
</style>

<body>
<div class="table">
 ...
</div>
</body>

In this code, the selector name, table, is a good descriptive name, but you don’t have to use it for
your selector. You can use any selector name you want, but it should be descriptive.

In Figure 5.13, the descriptions for the display property values are pretty straightfor-
ward. The only description that needs clarification is the one for table-header-group. The
table-header-group value causes its rows to display before all other rows and after any table
captions (even if the table-header-group element code appears below any table-row ele-
ment code). If a table contains multiple elements with table-header-group values, only the
first such element behaves like a thead element; the others behave like tbody elements.

FIGURE 5.13  Table values for the CSS display property

Table Values for the
display Property Description

table Used to mimic a table element.

table-caption Used to mimic a caption element.

table-row Used to mimic a tr element.

table-cell Used to mimic a td element or a th element.

table-header-group Used to mimic a thead element.

table-row-group Used to mimic a tbody element.

1895.8 CSS display Property with Table Values

FIGURE 5.14  Ancient Wonders web page

©
 D

ud
ar

ev
 M

ikh
ail

/S
hu

tte
rst

oc
k,

In
c.,

 ©
 ga

ra
ng

a/
Sh

ut
te

rst
oc

k,
In

c.,

©
 Be

ttm
an

n/
Ge

tty
 Im

ag
es

One thing you might notice that’s missing from Figure 5.13—there are no display prop-
erty values that mimic the functionality of rowspan or colspan. Sorry, if you want that func-
tionality, the most straightforward solution is to use the real-deal rowspan and colspan
attributes in conjunction with a table element. As you might recall, you’re supposed to use the
table element only for data tables and not for table layout. But we’ll let you in on a little secret:
Browsers don’t care. So if you don’t mind getting razzed by Tim Berners-Lee at your next W3C
cocktail party, you can use the table, rowspan, and colspan elements for table layout. If you
do so, as was suggested in Section 5.7, you should add role="presentation" to the table
element’s start tag.

Example Web Page
Take a look at the Ancient Wonders web page in FIGURE 5.14. The pictures and the labels under
the pictures are displayed using a two-row, three-column layout scheme. You could implement
that layout scheme with either a table element or with CSS, so which is more appropriate?
Because the web page does not contain data,3 you should use CSS. To have the table’s column
widths accommodate the widths of the pictures, you should use the CSS display property with
table values. Using the display property with table values makes the web page easy to maintain.
As the web developer, if you decide to replace one of the pictures with a wider or narrower picture,
the picture’s column will grow or shrink to accommodate the new picture.

3 The WHATWG states, “The table element represents data with more than one dimension.” The WHATWG
doesn’t define what “data” is, so there is some ambiguity as to when it’s appropriate to use the table
element. But one thing that’s clear is the desire of the standards committees to have web developers use a
particular element only when its content coincides with the meaning that the element’s tag name implies.
Although it’s a close call, in our opinion most nonprogrammers would refer to the Ancient Wonders web
page as three pictures with labels, and they would not refer to it as a table. Therefore, given that assessment,
we feel it would be inappropriate to use the table element for the Ancient Wonders web page.

190 Chapter 5 Tables and CSS Layout

In Figure 5.14, note that there are no borders for the table’s exterior and no borders for the
table’s cells. That’s the default for tables created with CSS. If we had wanted borders, we would
have applied the CSS border property to the element we designate as a table and to the elements
we designate as table cells. Now let’s examine how we designate table elements with the CSS
display property.

In FIGURE 5.15’s Ancient Wonders style container, note the CSS rules that use the .table,
.caption, and .row class selectors. In the body container, note how those selector names are used
to implement a table using div elements—<div class="table">, <div class="caption">,
and <div class="row">. The div element is good for implementing table components because,
with one exception, it’s generic. That means it doesn’t add any formatting features of its own. The
exception to that rule is that browsers generate newlines around div elements. That works great
for implementing tables, captions, and rows because each of those entities is supposed to be sur-
rounded by newlines.

Our implementation of the table cells in the Ancient Wonders web page requires some extra
attention. As shown in Figure 5.13, to implement table cells with the display property, you need
to use the table-cell value. In the Ancient Wonders table, each cell in the first row holds a pic-
ture, so our first implementation effort attempted to use the pictures’ img elements as the targets
for a table-cell rule, like this:

img {display: table-cell;}

Testing shows that this does not work. That should make sense when you think about what a table
cell is supposed to be—a container for content. The img element is a void element, not a con-
tainer, so it’s inappropriate to try to use CSS to turn it into a table cell. The solution is to surround
the img elements with span containers and use span as the target for a table-cell rule. Here’s
the most straightforward way to apply a table-cell value to a span element:

span {display: table-cell;},

If we were to use the CSS rule, then every span element would be implemented as a table
cell. That’s OK for the current version of the Ancient Wonders web page, but as a web devel-
oper, you should think about making your web pages maintainable. That means you should
accommodate the possibility that you or someone else adds to your web page sometime in
the future. If a span element is added that’s not part of a table, the CSS rule would attempt to
make it behave like a table cell, which would be inappropriate. In general, to avoid this kind
of problem, you should not use a generic element, span or div, as the type for a type selector
CSS rule.

So rather than using a type selector rule with span, we use a more elegant technique. We use
a child selector rule that matches every element that is a child of a row element. This is justified
because it’s reasonable to assume that within a row element, every child element is a data cell.
Here’s the relevant rule from Figure 5.12’s Ancient Wonders source code:

.row > * {display: table-cell;}

1915.8 CSS display Property with Table Values

FIGURE 5.15  Source code for Ancient Wonders web page

You might recall that the > symbol is known as a combinator because it combines two selectors
into one. The selector at the left, .row, matches all the elements in the Ancient Wonders web
page that have class="row". The universal selector at the right, *, matches any element. When

192 Chapter 5 Tables and CSS Layout

This causes this div element
to behave like a table.

This causes this div element
to behave like a caption.

For tr behavior.

This causes all children
of .row elements to
behave like table cells
(i.e., td or th elements).

This causes this
div element to
behave like a row.

For caption behavior.

For table behavior.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Ancient Wonders</title>
<style>
 .table {
 display: table;
 border-spacing: 20px;
 }
 .caption {
 display: table-caption;
 font-size: xx-large;
 text-align: center;
 }
 .row {display: table-row;}
 .row > * {
 display: table-cell;
 text-align: center;
 }
</style>
</head>

<body>
<div class="table">
 <div class="caption">Ancient Wonders of the World</div>
 <div class="row">

 </div>
 <div class="row">
 Great Pyramid of Giza
 Hanging Gardens of Babylon
 Colossus of Parkville
</div>
</body>
</html>

the two selectors are combined with >, the resulting child selector matches every element that is
a child of a row element.

As explained earlier, the Ancient Wonders web page uses div elements to implement the
table’s table, caption, and row components. On the other hand, the Ancient Wonders web page
uses span elements to implement the table’s cells (which hold the table’s pictures and labels). Like
the div element, the span element is generic. Actually, even more generic. Browsers do not sur-
round span elements with line breaks. That’s a good thing for table cells because they should be
displayed inline, without line breaks surrounding them.

The border-spacing Property
By default, tables created with the display property are displayed with no gaps between their
cells. For the Ancient Wonders web page, that default behavior would have led to pictures that
were touching. To avoid that ugliness, you can use the border-spacing property, and that’s
what we did in the Ancient Wonders style container:

.table {
 display: table;
 border-spacing: 20px;
}

Go back to Figure 5.14 and note the space between the pictures and text in the Ancient Wonders
web page. That is due to the border-spacing code.

When you use the border-spacing property, you should apply it to the entire table, not
to the table’s individual cells. Consequently, in the Ancient Wonders web page, we apply the
border-spacing property shown to a div element that forms the entire table. In that example,
we apply the border-spacing property to a table created with CSS. As an alternative, you can
apply the border-spacing property to an old-fashioned HTML table element, and the effect
is the same—space gets added between the table’s cells.

The border-spacing property allows you to specify horizontal and vertical cell spacing
separately. Here’s an example:

border-spacing: 15px; 25px;

The first value, 15px, specifies horizontal spacing, and the second value, 25px, specifies verti-
cal spacing. Horizontal spacing refers to the width of the gap between adjacent cells in the same
row. Vertical spacing refers to the height of the gap between adjacent cells in the same column.

The border-spacing property adds space outside each cell’s border. On the other hand, the
padding property adds space inside each cell’s border. If you want to see how the two properties
differ, feel free to enter the Ancient Wonders web page code into your favorite web authoring tool,
add border-spacing and padding property-value pairs to the table cell selector rule, and view
the resulting web page.

1935.8 CSS display Property with Table Values

In the past, we used the margin property to specify the space outside an element’s border.
So, can we use the margin property to specify the space outside an individual table cell’s border?
No, the margin property has no effect when used with elements that are defined to be table cells.
That anomaly should make sense when you think about it. If the margin property was able to
specify the space outside individual table cell borders, then you could specify different gap sizes
between every pair of adjacent cells Yikes. What an unsightly table that would be! So the moral
of the story is to use the border-spacing property to specify consistent horizontal and vertical
gaps between table cells.

5.9 Absolute Positioning with CSS Position
Properties
If you want table layout where content controls the size of the table’s cells, then use the CSS
display property with table values. But if you want table layout where the table’s cell sizes are
fixed, you should use CSS position properties. For FIGURE 5.16’s Imprint Express web page,
which technique would be better—using the CSS display property with table values or using
CSS position properties?

The Imprint Express web page implements an online newspaper, and newspapers should
normally have columns with uniform widths. Using the CSS display property with table val-
ues wouldn’t satisfy that goal. On the contrary, that technique would cause the column widths
to be different. Why is that, you ask? Because the right column’s natural width is greater than
the left column’s natural width. By “natural width,” we mean the width of the columns if the
window were wide enough to display both columns’ content in a single row. The right column

FIGURE 5.16  Imprint Express web page

194 Chapter 5 Tables and CSS Layout

Jesse
Rectangle

