
display Property, User Agent Style Sheets
The address element is a block element, so by default, browsers display it on a line by itself. But
sometimes (actually, pretty often), you’re going to want to display an address in an inline man-
ner within a sentence. If you look at the Mangie’s List web page, you can see that the address is
embedded within the footer’s sentence. To implement that inline behavior, the web page uses this
CSS rule:

address {display: inline;}

Without that rule, the browsers’ native default settings would apply, and the address would appear
on a line by itself. You might recall from Chapter 3 that a browser’s “native default settings” are
one rung in the cascade of places where CSS rules can be defined. If you need a refresher, see
Figure 3.8. The formal term for a browser’s native default settings is a user agent style sheet, where
user agent is the formal name for a browser. A user agent style sheet forms the lowest priority
rung in the cascade of places where CSS rules can be defined. So if there’s no higher priority CSS
rule for a particular element, then the user agent style sheet’s rule will apply. Unfortunately, it can
be rather difficult to find the user agent style sheets for the various browsers. But don’t lose sleep
over that. As a web programmer, if you want certain formatting for a particular element, you
should explicitly provide the rule in your source code. Nonetheless, if you’re curious, you can go
to https://www.w3.org/TR/html51/rendering.html to see the recommended user agent style sheet
for all browsers. On that web page, the W3C says “The CSS rules [shown here] are expected to
be used as part of the user-agent level style sheet defaults for all documents that contain HTML
elements.” That doesn’t mean that all browsers follow the W3C’s user agent style sheet exactly, but
they follow it pretty closely.

4.10 Child Selectors
There are still a few Mangie’s List CSS details that need to be covered. In this section, we tackle
child selectors. In introducing child selectors, it’s helpful to compare them to descendant selec-
tors. Remember how descendant selectors work? That’s when you have two selectors separated
by a space, and the browser searches for a pair of elements that match the selectors such that the
second element is a descendant of the first element (i.e., the second element is contained any-
where within the first element). A child selector is a more refined version of a descendant selector.
Instead of allowing the second element to be any descendant of the first element, the second
element must be a child of the first matched element (i.e., the second element must be within the
first element, and there are no other container elements inside the first element that surround the
second element).

The syntax for a child selector is the same as the syntax for a descendant selector, except that
> symbols are used instead of spaces. Here’s the syntax:

list-of-elements-separated-with->’s {property1: value; property2: value;}

152 Chapter 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

https://www.w3.org/TR/html51/rendering.html
jheines
Typewritten Text

jheines
Typewritten Text

Jesse
Rectangle

For an example, look at this CSS rule from the Mangie’s List web page:

section > h2 {background-color: palegreen;}

That rule matches each h2 element that is a child element of a section element. Go back to
Figure 4.11B and look for the h2 elements inside the section containers. Those h2 elements
say “Dining” and “Clothing.” Thus, the preceding CSS rule causes browsers to display those two
words with pale green background colors.

The > symbol is called a combinator. We won’t use that term all that often, but if you’re perus-
ing the W3C literature (a good bedtime read, by the way), you’ll run into it every now and then.
The > symbol is called a “combinator” because it’s used to combine the element at its left with the
element at its right. There are other combinator symbols, and if you’re interested, you can learn
about them by searching for them on the W3C website.

What Happens When There Are Conflicting CSS Rules
For the section > h2 CSS rule shown in the previous section, why was the combinator neces-
sary? Why not use the following simpler CSS rule?

h2 {background-color: palegreen;}

If you look back at the Mangie’s List web page source code, you can see that there are three h2
elements. Without “section >” at the left of h2, all three h2 elements would be matched. That
means the h2 element at the top (inside the header container) would be pale green, and we don’t
want that. We want the h2 element at the top to use one of the other CSS rules in the Mangie’s List
web page so it gets a powder blue background. Here’s that rule:

header {background-color: powderblue;}

Both CSS rules (the h2 selector rule and the header selector rule) attempt to assign the
background color for the h2 element at the top of the Mangie’s List web page. The first rule clearly
impacts the h2 element because the selector is h2. The second rule also impacts the h2 element,
but the connection is less straightforward. The second rule’s selector is header, so it sets the
background color for the header container. By default, that background color applies to all of the
elements inside the header container, including the h2 element.

So with both rules attempting to assign the background color of the h2 element at the top,
which rule takes precedence? The pale green h2 rule has higher precedence because it’s more
specific—its h2 selector precisely matches the h2 element that is being targeted. But as stated
earlier, we don’t want the pale green rule to win for the h2 element at the top. The solution is to
tighten up the pale green rule’s selector. Instead of matching all h2 elements, we match just those
elements inside of a section container by prefacing the selector with “section >”. Here’s the
result, copied from the Mangie’s List web page source code:

section > h2 {background-color: palegreen;}

1534.10 Child Selectors

Tweaking the Aside Box
Here’s another child selector CSS rule from the Mangie’s List web page:

aside > h3 {margin: 0;}

By default, browsers display heading elements, including h3, with rather large margins above
and below the heading. We already added padding inside the aside element’s border, so the
additional default spacing from the h3 element creates gaps that are too big. Thus, we specify a
margin width of 0 for the h3 element. This is another example where tweaking was necessary. It
would be ideal if you could always write code that displays perfectly. But in the real world, most
of the time your first-cut code won’t be perfect, and you’re going to have to go back and improve
it incrementally. That’s what tweaking is all about.

Since the Mangie’s List web page has only one h3 element, we could have used a simple h3 type
selector rule (without aside >), but we’re planning for the future. If someone adds an h3 element
later on, we want it to have a 0 margin only if the h3 element is inside an aside element. That type
of thinking and coding makes your web pages more maintainable, which is very important in the
real world. Making something easy to maintain means cost savings down the road.

4.11 CSS Inheritance
Now for one last CSS concept in this chapter—inheritance. CSS inheritance is when a CSS prop-
erty value flows down from a parent element to one or more of its child elements. That should
sound familiar. It parallels the inheritance of genetic characteristics (e.g., height and eye color)
from a biological parent to a child.

Some CSS properties are inheritable and some are not. To determine whether a particular
CSS property is inheritable, go to Mozilla’s list of CSS keywords at https://developer.mozilla.org
/en-US/docs/Web/CSS/Reference and click on the property you’re interested in. That should take
you to a description of that property, including its inheritability. Of the CSS properties covered so
far in this book, here are the ones that are inheritable:

▸▸ color

▸▸ font (and all of its more granular properties, like font-size)
▸▸ line-height

▸▸ list-style (and all of its more granular properties, like list-style-type)
▸▸ text-align

▸▸ text-transform

To explain CSS inheritance, we’ll refer once again to the Mangie’s List web page. Specifically,
we’ll refer to this aside element:

<aside>
 <h3>Casey's Special</h3>
 Half-price hot dogs when rotisseried more than 24 hours!
</aside>

154 Chapter 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

Also, we’ll refer to this associated CSS rule:

aside {
 border: thin dashed red;
 color: red;
 background-color: white;
 float: right;
 width: 200px;
 padding: 10px;
 margin: 5px;
}

In this rule, the only inheritable CSS property is color. If you specify papayawhip (look it
up; it’s real) for a body element’s color, all the elements inside the body container would inherit
that color. That would cause the browser to use that color when displaying all the text within the
web page. So for the Mangie’s List web page, the red color gets inherited by the h3 element that
is a child of the aside element.

Inheritance is blocked for an inheritable property when an element explicitly spec-
ifies a new value for that property. In other words, if a parent element and its child ele-
ment have two different CSS rules with the same property specified, then the child element’s
property-value pair (and not the parent element’s property-value pair) gets applied to the
child element. Formally, we say that the child element’s property-value pair overrides the
inherited property-value pair. So, for the Mangie’s List web page, if color: blue; was spec-
ified for the h3 element inside the aside element, then the browser would display blue text
for the h3 element.

For the other properties shown in the preceding aside type selector rule, their values do not
flow down via inheritance. Thus, inside the aside element, the h3 element does not get its own
border. But it does get a background color of white, and it gets floated to the right. Why? Those
properties are not inherited, but by applying those properties to the aside element, the h3 child
element is naturally affected.

4.12 CASE STUDY: Microgrid Possibilities in a
Small City

This section adds another page to our case study website. The desired web page, shown in
FIGURE 4.12, describes microgrid possibilities. This web page illustrates local navigation, ordered
and unordered lists, an aside box, and a footnote.

As implied by the scrollbar at the right side of Figure 4.12, the browser window is too small to
display all of the web page’s content. To see the lower content, you can use the scroll bar to scroll
down. But there’s another way that provides quicker access. Note the three local navigation links
just below the page header. Clicking one of these links changes what’s displayed in the window to
let you see the start of the material identified by that link’s label. For example, suppose you click
the “Typical Microgrid Features” link. Then the window’s display changes immediately to what’s

1554.12 Case Study: Microgrid Possibilities in a Small City

Jesse
Rectangle

