
CHAPTER OUTLINE

4.1 Introduction

4.2 Unordered Lists

4.3 Descendant Selectors

4.4 Ordered Lists

4.5 Figures

4.6 Organizational Elements

4.7 section, article, and aside
Elements

4.8 nav and a Elements

4.9 header and footer Elements

4.10 Child Selectors

4.11 CSS Inheritance

4.12 Case Study: Microgrid Possibilities in a
Small City

4.1 Introduction
The first three chapters were all about getting you started. With that knowledge base, you should
be able to implement simple web pages that display relatively small amounts of text in a pleasing
manner. That’ll accommodate some of your needs, but more often than not, you’ll want to display
more than just a “small amount of text.” With web pages that have more content, you’ll want to
present that content in an organized manner so that readers will be able to figure out more eas-
ily what’s going on. You probably wouldn’t enjoy reading a web page with row upon row of text
that describes boring plumbing fixture minutia. But how about a web page with a bulleted list of
plumbing fixture dos and don’ts, a nested numbered list of plumbing regulations, a figure with a
“Mr. Fix-It” plumber picture, and a box at the right with the plumber’s contact information? Now
that’s an exciting web page! In this chapter, you learn how to do all that and more.

Specifically, in this chapter, you’ll first learn how to implement lists, so you can display a group
of items with bullets, numbers, or letters at the left of each list item. Then you’ll learn how to imple-
ment figures, which include the figure’s main content, plus a caption. The list and figure container
elements organize their content with clearly defined display characteristics—lists have symbols next
to each of their list items, and figures have captions. On the other hand, the remaining container
elements in this chapter do not have clearly defined display characteristics. They are called orga-
nizational elements and their purpose is only for grouping content, not for making the grouped
content look a particular way. For example, if you want to display an article (i.e., an essay) on a web
page, you should group the article’s text in an article element. For the different sections in an
article, you should group each section’s text in a section element. If you have a navigation bar, you
should group the navigation bar’s links in a nav element. That’s just a sample of HTML5’s organi-
zational elements. You’ll learn about those elements and more as you proceed through the chapter.

4.2 Unordered Lists
We start this chapter by learning how to implement lists. Let’s jump right into an example.
In FIGURE 4.1’s web page, note the unordered list that shows my weekday routine. It’s called

132 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

“unordered” because the list items have bullets and circles next to them, and bullets and circles do
not imply any order. If you prefer to have the list items ordered, you can replace the bullets and
circles with numbers and letters, as explained in a later section.

To create an unordered list, you surround the entire list with a ul container (ul for unordered
list) and use li containers for the individual list items. Here’s an example:

 Wake up at 9ish.
 Go to school.

Note that it is legal to omit the end tag for list elements, so this is valid HTML as well:

 Wake up at 9ish.
 Go to school.

However, in the interest of readability and maintenance, coding conventions suggest that you do
not omit the end tag.1

1 According to the HTML5 standard, it’s also legal to omit the p container’s </p> end tag. But once again, to
help with readability and maintenance, coding conventions suggest that you always include the </p> end tag.

FIGURE 4.1 Work Day web page

1334.2 Unordered Lists

parent and Child Elements
Let’s now examine the complete source code for the Work Day web page. In FIGURE 4.2, note
the outermost ul container and the dashed boxes that show its three li containers. The ul
container is considered to be a parent element for the three li containers, and the three li
containers are considered to be child elements of the ul container. The parent–child relation-
ship exists between two elements when the parent element’s start tag and end tag surround
the child element and there are no other container elements inside the parent element that

The big ul container has
three child li containers.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name= "author" content="John Dean">
<title>Typical Work Day</title>
</head>

<body>
<h3>Typical Work Day</h3>

 Morning

 Wake up at 9ish.
 Go to school.

 Afternoon

 Kick back and relax.

 Lecture period - not much prepared, so allow students to
 work on their homework during "hands-on" time in the lab.

 Go home and watch YouTube videos.

 Evening

</body>
</html>

FIGURE 4.2 Source code for Work Day web page

134 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

surround the child element. By examining the Work Day web page’s source code, you should
be able to verify that the outermost ul container and the three boxed li containers match that
description.

Nested Lists
In Figure 4.2, each of the first two child li containers contains its own sublist. Those are
examples of nested lists, where you have a list inside a list. In attempting to create a nested
list, beginning web programmers often insert a ul container immediately inside another ul
container, so the inner ul container is a child of the outer ul container. The HTML5 standard
does not allow that. The only element that’s allowed to be a child of a ul element is an li
element. Thus, to implement a nested list, you need to have an li container in between the
outer and inner ul containers. Can you see that this is the case in the Work Day web page’s
source code?

Now go back to Figure 4.1 and note the first bullet, labeled “Morning.” In implementing that
bullet and the subsequent sublist, your first thought might be to do this:

 Morning

 Wake up at 9ish.
 Go to school.

 ...

But if you do that, then the inner ul container is a child element of the outer ul container. And
that violates the rule mentioned that says ul containers can have only li elements for their child
elements. So, what’s the proper way to implement the “Morning” label and its subsequent sublist?
As shown in Figure 4.2, you need to move the end tag down below the sublist’s
end tag. That way, the inner ul list is a child of the li container and is not a child of the outer ul
container.

As you might have noticed, there are lots of indentations with HTML lists. We use the same
rule as always—indent when you’re logically inside something else. Because each li element is
logically inside a ul container, each li element should be indented. If an li element contains a
sublist, then the sublist’s ul container should be indented further. Study Figure 4.2 to verify that
the Work Day web page’s code follows these indentation rules.

Symbols for Unordered List Items
According to the W3C, the default symbol for unordered list items is a bullet for all levels in a
nested list, but the major browsers typically use bullet, circle, and square symbols for the different
levels in a nested list. Because the official symbol defaults and the browser symbol defaults are
different, you should avoid relying on them. Instead, you should use CSS’s list-style-type
property to explicitly specify the symbols used in your web page lists.

1354.2 Unordered Lists

For unordered lists, the most popular values for the list-style-type property are
none, disc, circle, and square. As you’d expect, the none value means that the browser
displays no symbol next to each list item. The disc value generates bullet symbols, which you
can see next to the outer list items in Figure 4.1’s Work Day web page. The circle and square
values generate hollow circles and filled-in squares, respectively. See FIGURE 4.3, which shows
a second version of the Work Day web page, this time with circle and square symbols for the
list items.

For Figure 4.3’s second-version Work Day web page, here’s the style container that gener-
ates the list’s circle and square symbols:

<style>
 ul {list-style-type: circle;}
 ul ul {list-style-type: square;}
</style>

The first rule causes the browser to generate circle symbols for the list items in the outer list
(e.g., see the figure’s “Morning” list item). The second rule causes the browser to generate square
symbols for the list items in the two sublists (e.g., see the figure’s “Wake up at 9ish” list item). The
second rule, with its two ul type selectors, is a descendant selector rule, and we’ll explain what
that means in the next section.

FIGURE 4.3 Second version of Work Day web page

136 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

4.3 Descendant Selectors
A descendant selector is when you specify a series of two or more selectors separated by spaces. For
each pair of adjacent selectors, the browser searches for a pair of elements that match the selectors
such that the second element is contained within the first element’s start tag and end tag. When an
element is inside another element’s start tag and end tag, we say that the element is a descendant
of the outer element.

To better understand the descendant selector, let’s look at an example. The following struc-
ture shows how the Work Day web page’s ul and li elements are related:

ul

ul ul

li li li

lilililili

The ul element at the top is for the outer list. The three li elements below it are for the morn-
ing, afternoon, and evening list items. Each of the first two list elements contains a sublist, built
with its own ul and li elements. The descendant relationship between two elements mimics
the descendant relationships you can find in a family tree. Imagine that this structure shown is a
family tree of bacteria organisms. Why bacteria? Because bacteria have only one parent, just as
HTML elements have only one parent. All the elements below the top ul element are considered
to be descendants of the top ul element. On the other hand, only the three li elements immedi-
ately below the top ul element are considered to be child elements of that ul element. So for an
element to be a child of another element and not just a descendant, it has to be immediately below
the other element.

Here’s the syntax for a descendant selector rule:
space-separated-list-of-elements {property1: value; property2: value;}
In the following style container, note how the second and third rules use that syntax:

<style>
 ul {list-style-type: disc;}
 ul ul {list-style-type: square;}
 ul ul ul {list-style-type: none;}
</style>

In applying the three preceding rules to a web page, the browser would use the first rule to gener-
ate bullet symbols for list items at the outer level of an unordered outline. It would use the second
rule to generate square symbols for list items at the first level of nesting within an unordered out-
line. And it would use the third rule to display no symbols for list items at the next level of nesting
within an unordered outline.

1374.3 Descendant Selectors

If you ever have two or more CSS rules that conflict, the more specific rule wins.2 That’s a
general principle of programming and you should remember it—the more specific rule wins. In
the preceding style container, the first rule (the one with ul for its selector) applies to all ul
elements, regardless of where they occur. On the other hand, the second rule (the one with ul
ul for its selector) applies only to ul elements that are descendants of another ul element. Those
rules conflict because they both apply to ul elements that are descendants of another ul element.
For those cases, the second rule wins because the second rule is more specific. The third rule
introduces another conflict—this time when there is a ul element that is a descendant of another
ul element, and that other ul element is a descendant of a third ul element. For those cases, the
third rule wins because the third rule is more specific.

In the preceding examples, we use descendant selectors to specify the different levels for
nested lists. But be aware that you can use descendant selectors for any element types where one
element is contained in another element. In expository writing,3 if you use a new word in a para-
graph, it’s common practice to italicize the word and then define it. What descendant selector CSS
rule could you use to support this practice? Try to come up with this on your own before you look
down. . . . Assuming you have spent sufficient time trying to figure it out on your own, now you’re
allowed to proceed. Here’s the answer:

p dfn {font-style: italic;}

4.4 Ordered Lists
Next, you’ll learn how to generate list items that have numbers and letters next to them. Numbers
and letters indicate that the order of the list items is important, and that changing the order would
change the list’s meaning. Those types of lists are referred to as ordered lists.

For an example of an ordered list, see FIGURE 4.4. It’s a three-level nested list, with roman
numerals for the outer list, uppercase letters for the middle-level list, and Arabic numbers for the
most interior list.

2 When two or more CSS rules apply to the same element, the browser goes through a rather complex
calculation to determine which CSS rule is more “specific,” and therefore which CSS rule wins. In describing
this process at https://www.w3.org/wiki/Inheritance_and_cascade, the W3C says, “It can be easily shown
how to calculate the specificity of a selector.” Normally, when you read a technical article that prefaces a
subject with something like, “It can be easily shown,” get ready to be confused. For particularly complex
calculations that can be “easily shown,” the author probably had a hard time figuring things out and realized
he’d have an even harder time explaining it. So his solution is to say that the calculation is too easy to warrant
an explanation. Nonetheless, the W3C’s aforementioned web page does provide an explanation, and it’s
actually pretty good. If you’re curious about selector specificity calculation details, check it out.
3 Expository refers to something whose purpose is to explain. So what you’re reading now is an example of
expository writing.

138 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

https://www.w3.org/wiki/Inheritance_and_cascade

To create an ordered list, you surround the entire list with an ol container (ol for ordered
list). As with unordered lists, you use li containers for the individual list items and you should
indent the li containers within the ol container. Here’s the code for the most interior list in the
Research Paper Template web page:

 Personal experiences
 What friends say

To create sublists for an ordered list, use the same technique that you learned earlier for unor-
dered lists—within the outer list’s ol container, insert an li container, and in that li container,
insert an ol container with its own list items. See examples of that in FIGURE 4.5’s source code
for the Research Paper Template web page.

Typically, the major browsers display Arabic numbers by default for items in an ordered list,
even when the ordered list is nested inside another ordered list. In other words, for the Research
Paper Template web page, the default would be to use Arabic numbers (1, 2, 3) for the outer list’s
Introduction, Main body, and Appendages items and also to use Arabic numbers (1, 2) for the
sublist’s Ice-breaker cartoons and Examples items.

FIGURE 4.4 Research paper template web page

1394.4 Ordered Lists

These rules tell the browser
how to label the different
levels of the nested list.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name= "author" content="John Dean">
<title>Research Paper Template</title>
<style>
 ol {list-style-type: upper-roman;}
 ol ol {list-style-type: upper-alpha;}
 ol ol ol {list-style-type: decimal;}
</style>
</head>

<body>
<h3>Research Paper Template</h3>

 Introduction

 Main body

 Ice-breaker cartoons

 Examples

 Personal experiences
 What friends say

 Appendages

</body>
</html>

FIGURE 4.5 Source code for Research paper template web page

As with unordered lists, you should avoid relying on the default symbols. Instead, you
should use CSS’s list-style-type property. There are lots of list-style-type property
values for ordered lists. Some of the more popular values are decimal, upper-alpha, lower-
alpha, upper-roman, and lower-roman. In Figures 4.4 and 4.5, you can see upper-roman,
upper-alpha, and decimal lists and the CSS rules that generate those lists.

Although they’re not used all that often, you should be aware of the ol element’s reversed
and start attributes. As its name implies, the reversed attribute causes list item labels to be in

140 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

reverse order. For example, the following code fragment’s list items4 get displayed with the labels
3, 2, and 1:

<body>
Top Three Least-Loved Christmas Stories
<ol reversed>
 Jack Frost Loses the Feeling in His Extremities
 I Saw Rudolph Kissing Santa Claus
 The Teddy Bear Who Came to Life and Mauled a Retail Clerk

</body>

The default is for list item labels to start at position 1. The start attribute causes list
item labels to start at a specified position. So in the following code fragment, the ol element’s
start="52" means that the first list item displays a label associated with the 52nd position.
The style container’s .roman-list rule specifies uppercase roman numerals for the list items.
Therefore, the three list items get displayed with the labels LII, LIII, and LIV (which are the roman
numerals for 52, 53, and 54).

<style>
 .roman-list {list-style-type: upper-roman;}
</style>
...
<body>
Super Bowl host cities starting in 2019
<ol class="roman-list" start="52">
 Atlanta, Georgia
 Miami, Florida
 Wakeeny, Kansas

</body>

4.5 Figures
In this section, you’ll learn how to implement a figure. Typically, a figure holds text, pro-
gramming code, an illustration, a picture, or a data table. As with all figures, the figure
element’s content should be self-contained, and it should be referenced from elsewhere in
the web page.

Figure with a Code Fragment
Take a look at FIGURE 4.6. It uses the figure element to display a listing of programming
code that’s offset from the regular flow of the web page. The programming code is in JavaScript,

4 Inspired by “Best of The David Letterman Top 10 Lists,” http://www.textfiles.com/humor/letter.txt.

1414.5 Figures

http://www.textfiles.com/humor/letter.txt

which you’ll learn about in later chapters. For now, there’s no need to worry about what the
 JavaScript code means. Instead, just focus on the figure element’s syntax. In FIGURE 4.7,
note the figure element’s start tag and end tag. Also, note the figcaption element inside the
 figure container. As its name implies, the figcaption element causes the browser to display
a caption for a figure. In the browser window’s red-bordered figure, you can see the caption at
the top of the figure.

In Figure 4.6’s browser window, note how the red-bordered figure has expansive equal-sized
margins at the left and right. The browser generates those margins by default for the figure ele-
ment. But what’s not a default is the visibility of the figure element’s border. To make the border
visible with a reddish color and a reasonable amount of padding inside it, it was necessary to add
this CSS rule:

figure {
 border: solid crimson;
 padding: 6px;
}

Figure with an Image
Next, let’s use the figure element to display a picture with a caption. For an example, see the
Final Tag web page in FIGURE 4.8 and its source code in FIGURE 4.9. The figure element code
and the figcaption element code should look familiar. That code is the same as for the Code
Fragment Figure web page, except that the figcaption element is at the bottom of the figure

FIGURE 4.6 Code Fragment Figure web page

142 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

For the
figure
element,
the browser
generates
the margins
at the left
and right.

container instead of at the top. Consequently, in the browser window, you can see that the caption
displays below the picture.

The Final Tag web page’s primary focus is its picture. To display a picture, you’ll need to use the
img element. We will present the img element formally in Chapter 6, but for now, we’ll introduce just
a few details to explain what’s going on in the Final Tag web page. Here’s the relevant source code:

<img src="finalTag.png" alt="</life> headstone">

Note the img element’s src attribute—that’s how you specify the location and name of an
image file. If you don’t specify a path in front of the image file’s name, then the default is to look

FIGURE 4.7 Source code for the Code Fragment Figure web page

1434.5 Figures

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Code Fragment Figure</title>
<style>
 figure {
 border: solid crimson;
 padding: 6px;
 }
</style>
</head>

<body>
<p>
 Listing 8.3 shows JavaScript code that repeatedly generates a pop-up
 that tells the user to provide his/her credit card information.
</p>
<figure>
 <figcaption>Listing 8.3. A credit card scam that uses a repeating
 pop-up</figcaption>
 <pre><code>while (true)
{
 alert("Your financial records have been compromised.\n" +
 " To fix the problem, go to http://www.easyCredit.com" +
 " and enter your credit card information.");
}</code></pre>
</figure>
</body>
</html>

If you have a figcaption element,
it must be inside a figure element.

With the pre element, its enclosed text should be at the left.
In other words, there is no attempt to follow the usual practice
of indenting inside a block element (pre is a block element).

for the file in the same directory that holds the web page’s .html file. Later, you’ll see how to load
a picture from a different directory, but we’re keeping things simple here with the web page and
the picture file in the same directory.

In the preceding code fragment, note the img element’s alt attribute. The HTML5 standard
requires that for every img element, you provide an alt (for alternative) attribute. The alt attri-
bute’s value should normally be a description of the picture, and it serves two purposes. It provides
fallback content for the image in case the image is unviewable. As you’ll learn in Chapter 5, fallback
content is particularly useful for visually impaired users who have screen readers. Screen readers
can read the alt text aloud using synthesized speech. The preceding code fragment’s alt value is
rather odd-looking. It contains character references for the < and > symbols. When those charac-
ter references are replaced with their symbols, the result looks like this:

</life> headstone

That text provides an accurate description of the picture’s content, so the alt value is appropriate.

FIGURE 4.8 Final tag web page

144 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

http://.html

4.6 Organizational Elements
So far in this chapter, we’ve organized web page content using lists and figures. Those organiza-
tional structures are pretty straightforward because they have physical manifestations—list items
in an outline and a caption above or below a figure. The rest of this chapter covers organizational
elements that don’t have obvious physical manifestations. Their purpose is to group web page
content into sections so that you can use CSS and JavaScript to manipulate their content more
effectively. Here are the organizational elements you’ll be introduced to:

 ▸ section

 ▸ article

 ▸ aside

 ▸ nav

 ▸ header

 ▸ footer

There’s usually no need to use these organizational elements for small web pages, but when
you have a multipage website, you should try to use them consistently. For example, you should
use a common header for all web pages on a particular website. Being consistent will make your
web pages look uniform, and that will give your users a comfortable feeling. In addition, consis-
tency leads to web pages that are easier to maintain and update.

src attribute alt attribute

img
element

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Final Tag Figure</title>
<style>
 body {text-align: center;}
</style>
</head>

<body>
<figure>
 <img src="finalTag.png" alt="</life> headstone">
 <figcaption>The Final HTML Tag</figcaption>
</figure>
</body>
</html>

FIGURE 4.9 Source code for Final tag web page

1454.6 Organizational Elements

We could explain the organizational elements by showing code fragments or a series
of small web pages, but that wouldn’t illustrate the concepts very well. It’s probably better
to jump in with a complete web page where there are different areas of content that can be
compartmentalized.

Take a look at FIGURE 4.10’s web page. It showcases Mangie’s List, a tongue-in-cheek
service that features reviews of dining and clothing venues from a manly man’s perspective.
You can see two headings at the top with a light blue background color. The headings are
surrounded by a header container. Below the headings you can see two links that are sur-
rounded by a nav (stands for navigation) container. Then comes dining content and clothing
content, each with its own section container. At the right, you can see a red box, which is
implemented with an aside container. Finally, at the bottom, you can see content enclosed in
a footer container.

FIGURES 4.11a and 4.11B show the Mangie’s List source code. We’ll describe the code in
detail in the upcoming sections, but for now just peruse the callouts that show where the organi-
zational elements are used.

FIGURE 4.10 Mangie’s List web page

146 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

4.7 section, article, and aside Elements
In this section, we describe three of the organizational elements—section, article, and
aside. As with all the organizational elements, the section element is a container. It’s used to
group together a section of a web page. Yes, that is indeed a circular definition—the section
container groups together a section of a web page. Sorry about that, but that’s how the HTML5
standard defines the section element. Even though your English teachers might cringe at
such circularity, it gets the point across pretty well. The HTML5 standard also describes the
section element as a thematic grouping of content. In other words, the content is related in
some way with a common theme. Typically, a section will contain a heading and one or more
paragraphs, with the heading saying something about the common theme. For example, if you
use a section element for a chapter, you would use a heading element for the chapter’s title.

Take a look at the two section containers in Figure 4.11B. The first section is for dining, and
the second section is for clothing. Note the two h2 heading elements for the two sections. Also note
the two ordered lists for the two sections. We said it’s common for a section to have one or more
paragraphs, but that’s not a requirement. Having lists instead of paragraphs is perfectly acceptable.

By default, all the organizational elements span the width of their surrounding containers. As
such, they are “block elements” (like p, div , and blockquote). So in the Mangie’s List web page,

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name= "author" content="John Dean">
<title>Mangie's List</title>
<style>
 body {background-color: lightyellow;}
 header {background-color: powderblue;}
 section > h2 {background-color: palegreen;}
 aside > h3 {margin: 0;}
 aside {
 border: thin dashed red;
 color: red;
 background-color: white;
 float: right;
 width: 200px;
 margin: 5px;
 padding: 10px;
 }
 address {display: inline;}
</style>
</head>

child
selectors

display property

Use the float property to position
an element at the left or right edge
of its surrounding container.

Use the width, margin, and
padding properties to make the
aside box look good.

FIGURE 4.11a Source code for Mangie’s List web page

1474.7 section, article, and aside Elements

the section containers span all the way to the right edge of the browser window. You can verify
that by glancing back at Figure 4.10 and observing the green background color for the section
headings—the green color spans the entire width of the browser window.

Next is the article element. The article element is for grouping together one or more
sections such that the group of sections form an independent part of a web page. So if there are
three related sections, it would be inappropriate to surround two of the sections with an article
container. Why? Because the article would not be independent of the excluded section.

FIGURE 4.11B Source code for Mangie’s List web page

148 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

<body>
<header>
 <h1>Mangie's List</h1>
 <h2><q>Simply the best reviews anywhere!</q></h2>
</header>
<nav>
 Dining | Clothing
</nav>
<article>
 <section>
 <aside>
 <h3>Casey's Special</h3>
 Half-price hot dogs when rotisseried more than 24 hours!
 </aside>
 <h2 id="dining">Dining</h2>

 China Star
 Casey's General Store

 </section>
 <section>
 <h2 id="clothing">Clothing</h2>

 Eddie Bauer
 Kansas Speedway Boutique
 Casey's General Store

 </section>
</article>
<footer>
 Questions? Email <address>mangie@gmail.com</address>.
</footer>
</body>
</html>

section
elements

footer
elements

address element

aside element

article element

nav element

header element

a elements

Go back to Figure 4.11B and take a look at the article container, which surrounds the web
page’s two sections. There’s just one article because the sections are related. Can you think of an
example where you should use multiple article elements in a web page? If you implement an
online magazine, then you could have multiple magazine articles per page, and each article should
be implemented with an HTML article container.

Next on the agenda—the aside element. Its purpose is to group together content that has
something to do with the rest of the web page, but it isn’t part of the main flow. Typically, you
should position an aside element at the right or left. On the Mangie’s List web page, note the
red box. It contains advertising text, which is not part of the web page’s main content, and it’s
positioned at the right side of the first section. With those characteristics, it’s a perfect candidate
for the aside element. As you can see in Figure 4.11B, we do indeed use the aside element for
its implementation.

As mentioned earlier, organizational elements are block elements, so they span the entire
width of the web page by default. A common way to undo that default behavior for the aside
element is to “float” the aside element to the left or right by using the CSS float property. The
following CSS rule is for the aside element in the Mangie’s List web page. In particular, note the
float: right; property-value pair:

aside {
 border: thin dashed red;
 color: red;
 background-color: white;
 float: right;
 width: 200px;
 margin: 5px;
 padding: 10px;
}

Go back to Figure 4.10 and observe the aside element’s position, which is at the right of
“Dining,” an h2 heading element. Getting the aside element to look good took a bit more effort
than just slapping on the float: right; property-value pair. Originally, the aside element’s
box was too short and wide, with all of its text appearing on one line. To remedy that situation, we
added a width: 200px; property-value pair to the aside CSS rule (see the earlier CSS rule).

The way the float property works is that the floated element gets positioned on the same line
as the content that precedes it or on the next line if the preceding content is a block element, and
the floated content gets moved to the surrounding container’s left or right edge, depending on the
float property’s value. In the Mangie’s List web page, the aside element is the first element in its
surrounding section container, so it appears at the top of the section container. The dining h2
element follows the aside element, and the aside element gets positioned at its right, in the same
row. Originally, the aside element’s top border was aligned precisely with the h2 element’s top
border. To nudge the aside element slightly down and to the left (which exposes the h2 element’s
green background perimeter in a pleasing manner), we add a margin: 5px; property-value pair
to the aside CSS rule. Also, to avoid having the aside element’s text too close to its border, we
add a padding: 10px; property-value pair to the aside CSS rule.

1494.7 section, article, and aside Elements

4.8 nav and a Elements
In this section, we describe another organizational element—nav. The nav element is a container
that normally contains links to other web pages or to other parts of the current web page. The nav
element gets its name from navigate because you use links to navigate to (jump to) other locations.

Go back to Figure 4.10 and note the two purple links near the top of the web page labeled
“Dining” and “Clothing.” Here’s the nav code that contains those links:

<nav>
 Dining | Clothing
</nav>

Note the two a elements, each with its own pair of start and end tags. Each a element implements a link.
When the user clicks on a link, the browser jumps to the value specified by the href attribute. Later
we’ll use a URL value to jump to a separate web page, but for now, we’re keeping things simple and just
jumping to a location within the current web page. When jumping to a location within the current web
page, the web page scrolls within the browser window so the target is at the top of the web page.

In the preceding code, note how the href’s value starts with #. The # indicates that the target
is within the current web page. To find that target, the browser looks for an element having an id
value equal to the text that follows the # sign. For example, the preceding href value is #dining,
so the browser looks for an element with “dining” for its id value. In Figure 4.11B, you can see this
heading code for the web page’s dining section:

<h2 id="dining">Dining</h2>

So with an id value of “dining,” that heading serves as a target when the user clicks on the nav
container’s first link.

Originally, the a element’s name stood for “anchor” and people would sometimes refer to an
a element as an anchor element. But the HTML5 standard no longer uses the word “anchor” in
describing the a element. The href attribute’s name stands for hyperlink reference, since the a
element implements a hyperlink.

4.9 header and footer Elements
So far, we’ve covered four organizational elements—section, article, aside, and nav. In this
section, we cover two more—header and footer.

header Element
The header element is for grouping together one or more heading elements (h1-h6) such that
the group of heading elements form a unified header for nearby content. Normally, the header
is associated with a section, an article, or the entire web page. To form that association, the
header element must be positioned within its associated content container. Typically, that means
at the top of the container, but it is legal and sometimes appropriate to have it positioned lower.

150 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

For the Mangie’s List web page, we use a header element to group together an h1 title and
an h2 quote above all of the other content. Go back to Figure 4.10 and find those header items. It’s
easy to identify them because we use CSS to apply a light blue background color to the header’s
content. Here’s the code for the CSS rule and for the header container:

<style>
 header {background-color: powderblue;}
 ...
</style>

<header>
 <h1>Mangie's List</h1>
 <h2><q>Simply the best reviews anywhere!</q></h2>
</header>

As an alternative, we could have used this CSS rule:

h1, h2 {background-color: powderblue;}

But why is the original CSS rule—with the header type selector—better? First, it leads to more
maintainable code because it still works later on if a different-sized heading element is used, like
h3 or h4. Second, it leads to a uniform background color for the entire header content. In other
words, if you use the preceding CSS rule with h1, h2 for the selector, you’ll get blue backgrounds
for the two heading elements (good) and a narrow white background in the margin area between
them (not so good). Feel free to verify this phenomenon by entering the CSS rule into a copy of
the Mangie’s List source code and displaying the result.

footer Element (with address Element Inside It)
The footer element is for grouping together information to form a footer. Typically, the footer
holds content such as copyright data, author information, or related links. The footer should be
associated with a section, an article, or the entire web page. To form that association, the
footer element must be positioned within its associated content container. Typically, that means at
the bottom of the container, but it is legal and sometimes appropriate to have it positioned elsewhere.

For the Mangie’s List web page, we use a footer element for contact information. Here’s the
relevant code:

<footer>
 Questions? Email <address>mangie@gmail.com</address>.
</footer>

Note how the footer container has an address element inside of it. The address element is
for contact information. Here, we show an e-mail address, but the address element also works
for phone numbers, postal addresses, and so on. If the address element is within an article
container, then the address element supplies contact information for the article. Otherwise, the
address element supplies contact information for the web page as a whole.

1514.9 header and footer Elements

display property, User agent Style Sheets
The address element is a block element, so by default, browsers display it on a line by itself. But
sometimes (actually, pretty often), you’re going to want to display an address in an inline man-
ner within a sentence. If you look at the Mangie’s List web page, you can see that the address is
embedded within the footer’s sentence. To implement that inline behavior, the web page uses this
CSS rule:

address {display: inline;}

Without that rule, the browsers’ native default settings would apply, and the address would appear
on a line by itself. You might recall from Chapter 3 that a browser’s “native default settings” are
one rung in the cascade of places where CSS rules can be defined. If you need a refresher, see
Figure 3.8. The formal term for a browser’s native default settings is a user agent style sheet, where
user agent is the formal name for a browser. A user agent style sheet forms the lowest priority
rung in the cascade of places where CSS rules can be defined. So if there’s no higher priority CSS
rule for a particular element, then the user agent style sheet’s rule will apply. Unfortunately, it can
be rather difficult to find the user agent style sheets for the various browsers. But don’t lose sleep
over that. As a web programmer, if you want certain formatting for a particular element, you
should explicitly provide the rule in your source code. Nonetheless, if you’re curious, you can go
to https://www.w3.org/TR/html51/rendering.html to see the recommended user agent style sheet
for all browsers. On that web page, the W3C says “The CSS rules [shown here] are expected to
be used as part of the user-agent level style sheet defaults for all documents that contain HTML
elements.” That doesn’t mean that all browsers follow the W3C’s user agent style sheet exactly, but
they follow it pretty closely.

4.10 Child Selectors
There are still a few Mangie’s List CSS details that need to be covered. In this section, we tackle
child selectors. In introducing child selectors, it’s helpful to compare them to descendant selec-
tors. Remember how descendant selectors work? That’s when you have two selectors separated
by a space, and the browser searches for a pair of elements that match the selectors such that the
second element is a descendant of the first element (i.e., the second element is contained any-
where within the first element). A child selector is a more refined version of a descendant selector.
Instead of allowing the second element to be any descendant of the first element, the second
element must be a child of the first matched element (i.e., the second element must be within the
first element, and there are no other container elements inside the first element that surround the
second element).

The syntax for a child selector is the same as the syntax for a descendant selector, except that
> symbols are used instead of spaces. Here’s the syntax:

list-of-elements-separated-with->’s {property1: value; property2: value;}

152 ChaptER 4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements

https://www.w3.org/TR/html51/rendering.html
Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

