
Normally, you should avoid using the blink value because it can be very annoying. But if your 
aim is to antagonize, go for it!

text-transform Property
The text-transform property controls the text’s capitalization. Here are the valid values for the 
text-transform property:

What’s the point of text-transform? Why not just use the desired case in the original 
HTML code? You might want to provide uppercase and lowercase buttons on your web page that 
allow users to dynamically change the page so it displays all uppercase or all lowercase. You can 
implement that with JavaScript and the text-transform property. You’ll learn how to do that 
later when we get to the JavaScript portion of the book.

text-indent Property
The text-indent property specifies the size of the indentation of the first line in a block of text. 
The block’s second and third lines (and so on) are unchanged; that is, they do not get indented. If 
you want to adjust all the lines in a block of text, use the margin property, not the text-indent 
property. You’ll learn about the margin property later in this chapter.

The most appropriate way to specify a value for the text-indent property is to use em 
units. Here’s an example type selector rule that uses the text-indent property:

p {text-indent: 4em;}

3.20 Border Properties
Now onto the next category of CSS properties—border properties. As expected, the border prop-
erties allow you to specify the appearance of borders that surround elements. We won’t bother 
to cover all the border properties, just the more important ones. Specifically, we’ll describe the 
border-style, border-width, and border-color properties. Then we’ll finish with the 
border shorthand property.

text-transform Values Description

none The text renders the same as the original text.

capitalize Transform the first character of each word to uppercase.

uppercase Transform all characters to uppercase.

lowercase Transform all characters to lowercase. 
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border-style Property
The border-style property specifies the type of border that surrounds the matched element. 
Here are the valid values for the border-style property:

Here’s an example class selector rule that uses the border-style property to draw a dashed 
border:

.coupon {border-style: dashed;}

We used “coupon” for the class selector because we want the matched element to look like a cou-
pon, with a traditional dashed border surrounding it.

border-width Property
The border-width property specifies the width of the border that surrounds the matched ele-
ment. There are quite a few values allowed for the border-width property. Here are the most 
appropriate ones:

border-style Values Appearance

none The browser displays no border. This is the default.

solid

dashed

dotted

double

border-width Values Description

thin, medium, thick The browser determines a border width that can be 
reasonably described as thin, medium, or thick. The 
default is medium.

number of px units A CSS pixel unit is the size of a single projected dot on a 
computer monitor when the monitor’s zooming factor is at 
its default position of 100%.

1113.20 Border Properties



If you ever use the border-width property, remember to use it in conjunction with the 
border-style property. If you forget to provide a border-style property, then the default 
border-style value kicks in, and the default value is none. With a border-style value of 
none, no border will be displayed. Forgetting the border-style property is a very common bug.

CSS pixel values use px units. As with all the other CSS size values, CSS pixel values are rel-
ative. If a user reduces the monitor’s resolution or zooms in on his or her browser, then each CSS 
pixel expands, and elements that use CSS pixel units will likewise expand.

It’s pretty rare to need different widths for the different border sides, but be aware that the 
feature does exist. If you specify four values for the border-width property, the four values get 
applied to the border’s four sides in clockwise order, starting at the top. For example:

.boxed {
  border-style: solid;
  border-width: 4px 2px 0px 2px;
}

Note what happens when you apply the preceding CSS rule to the following HTML code fragment:

My idol is <span class="boxed">Tim Berners-Lee</span>. He rocks!

The border’s top side is thickest due to the 4px value. The right and left sides are both two pixels, 
and the bottom side is missing due to the 0px value.

Google’s Style Guide says if you have a zero value for a CSS property, you should omit the 
unit in order to make the code more compact. So in the earlier code, that means using 0 instead 
of 0px. However, in the interest of parallelism with the other three values, I felt that keeping the 
px unit was appropriate.

With CSS properties that involve four sides (i.e., the preceding border-width property, 
and the margin and padding properties coming up), there are shortcut techniques for specify-
ing the values. If you specify three values, then the first value applies to the top side, the second 
value applies to the left and right sides, and the third value applies to the bottom side. Thus, the 
preceding border-width property value pair could have been written as follows and the result 
would be the same:

border-width: 4px 2px 0px;

If you specify just two values, then the first value applies to the top and bottom sides and the sec-
ond value applies to the left and right sides.
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In addition to its shortcut techniques, the border-width property also has techniques 
that are more verbose. Specifically, you can use a separate font property (border-top-width, 
border-right-width, border-bottom-width, and border-left-width) for each side’s 
border width. Google’s Style Guide recommends not using those properties—too wordy—and 
we’ll follow that recommendation for the most part.

Whew! There are a lot of alternative syntax techniques for the border-width property. 
Thankfully, borders should normally have the same width for all four sides, and to make that 
happen, the syntax is easy. Just specify one value for the border-width property, and that single 
value applies to all four sides.

border-color Property
The border-color property specifies the color of the border that surrounds the matched ele-
ment. There’s no new syntax to learn for the border-color property because it uses the same 
values as the color property and the background-color property. Remember the types of 
values that those properties use? Color values can be in the form of a color name, an RGB value, 
an RGBA value, an HSL value, or an HSLA value.

For the border-color property to work, you must use it in conjunction with a 
border-style property. That should sound familiar because we said the same thing about the 
border-width property. In order to change the border’s color or change the border’s width, you 
must have a visible border, and that’s done by using a border-style property.

border Shorthand Property
If you want to apply more than one of the prior border-related properties to an element, you could 
specify each of those properties separately, but there’s a more compact technique. The border 
property is a shorthand notation for specifying a border’s width, style, and color in that order. 
Here are two examples:

.understated-box {border: thin dotted blue;}

.in-your-face-box {border: 10px solid;}

In the second example, there isn’t a color value. You can omit the width and/or color values, but if 
you omit the style value, then there will be no visible border. You have to include the style value; if 
you don’t, then border-style’s default value of none will be used. In both examples, style values 
are included (dotted and solid), so the borders are visible.

3.21 Element Box, padding Property, margin 
Property
In the previous section, you learned how to display a border around an element. Usually, borders 
have no gaps inside or outside of them. Sometimes that’s appropriate, but usually you’ll want to 
introduce gaps to make the elements look comfortable, not cramped. To introduce gaps around 
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an element’s border, you need to take advantage of the element’s element box. Every web page 
element has an element box associated with it. As you can see in FIGURE 3.19, an element box 
has a border, padding inside the border, and a margin outside the border. For most elements, but 
not all, the default border, padding, and margin widths are zero. You can adjust the widths with 
the border-width, padding, and margin properties.

In Figure 3.19, the dashed lines indicate the perimeters of the margin and padding areas. 
When a web page is displayed, only the border can be made visible; the dashed lines shown in the 
figure are only for illustration purposes.

If you have trouble keeping track of which property is inside the border, padding or margin, 
think of a package you get in the mail. You put padding on the inside of a fragile package’s box, 
so the padding property is for inside the border. Therefore, the margin property must be for 
outside the border.

padding and margin Properties
The padding property specifies the width of the area on the interior of an element’s border, 
whereas the margin property specifies the width of the area on the exterior of an element’s bor-
der. Usually, the most appropriate type of value for the padding and margin properties is a CSS 
pixel value. Here’s an example CSS rule that uses padding and margin properties:

.label {border: solid; padding: 20px; margin: 20px;}

Just as with the border-width property, you can specify different padding widths for the 
four different sides. You can use multiple values with one padding property. Or you can use 
separate padding side properties—padding-top, padding-right, padding-bottom, and 
padding-left. Likewise, you can specify different margin widths for the four different sides. 
You can use multiple values with one margin property. Or you can use separate margin side 
properties—margin-top, margin-right, margin-bottom, and margin-left.

FIGURE 3.19 An element box’s margin, border, and padding
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The margin and padding properties allow negative values. While a positive value forces two 
elements to be separated by a specified amount, a negative value causes two elements to overlap 
by a specified amount.

Example That Uses padding and margin Properties
Let’s put this padding and margin stuff into practice in the context of a complete web page. 
FIGURE 3.20’s browser window shows span elements that could serve as labels for water faucet 
handles. The borders are curved to form ovals. We’ll get to the implementation of the curved 
borders shortly, but let’s first focus on the padding and margins.

FIGURE 3.21 shows the code for the Hot and Cold web page. Here’s the relevant code for 
the padding and margins, where label is the class attribute value for both of the span elements:

.label {
  padding: 20px;
  margin: 20px;
  display: inline-block;
}

The padding and margin properties both use values of 20px, which provides significant space 
on the interior and exterior of the borders. For the web page’s first-cut implementation, there was 
no display property (as shown), and there was no space provided above the two ovals—the ovals 
bumped up against the top edge of the browser window, which looked ugly. Figuring out the solu-
tion required some serious head-scratching. After much trial and error and googling, I learned that 
vertical margins do not work for standard phrasing elements, such as the span element. On the 
other hand, vertical margins do work for block elements. So, the trick was to turn the label’s span 
element into a block element—well, sort of. To help with the explanation, we’ll use some differ-
ent nomenclature. In the world of CSS, we’ll refer to phrasing elements as inline elements because 
CSS uses the inline value to describe elements that are to be formatted as phrasing elements 
(where the element’s width matches the width of its contents). We’ll also refer to elements that have 

FIGURE 3.20 Hot and Cold web page
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characteristics of both phrasing and block elements as inline block elements. So here’s the deal—
vertical margins do work for inline block elements. The span element is considered to be a standard 
inline element by default. By adding the preceding display: inlineblock property-value pair to 
the label CSS rule, we make the span element more “blockish,” and the browser accommodates by 
adding space above the ovals. This is another example where research and tweaking are necessary.

Now onto the curved borders. The border-radius property allows you to specify how 
much curvature you want at each of the four corners of an element. The default, of course, is to 
have no curvature. To achieve curved corners, you need to specify the focal point for each of the 
corners’ curves. Often, you’ll have different focal points for each of the four corners, but for both 
oval elements in the Hot and Cold web page, all four focal points are in the same place—at the 
center of the oval. To understand how the blue oval’s lower-right-corner curve is drawn, imagine 
a compass with its pointy arm stuck at the center of the blue oval and its free arm sweeping from 
the bottom of the blue oval toward the right edge of the blue oval. As it moves to the right and up, 
the compass arm will have to swivel open slightly in order to reach the far right edge of the oval. 
That sweeping motion forms the lower-right corner’s curvature.

This is necessary for the vertical 
margins to work.

This implements curved corners.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Hot and Cold Labels</title>
<style>
  .hot {background-color: red;}
  .cold {background-color: blue;}
  .label {
    color: white;
    font: bold xx-large Lucida, monospace;
    border: solid black;
    border-radius: 50%;
    padding: 20px;
    margin: 20px;
    display: inline-block;
  }
</style>
</head>

<body>
<span class="hot label">HOT</span>
<span class="cold label">COLD</span>
</body>
</html>

FIGURE 3.21 Source code for Hot and Cold web page
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So, where does the CSS rule come into play? As you can see in Figure 3.21, the border-
radius property has a value of 50%. That 50% value is used to form the spanning lines shown in 
Figure 3.20. The specified percentage (50% in this case) is relative to the width and height of the 
element. So for the lower-right corner, one spanning line goes to the left by 50% of the element’s 
width and the other spanning line goes up by 50% of the element’s height. As you can see in Fig-
ure 3.20, the ends of the two spanning lines determine the starts of the two arrows that intersect 
within the element. That intersection point serves as the focal point for the lower-right corner’s 
curved border.

Yes, the border-radius property is somewhat complex. If you want to learn all its behav-
iors and its different syntax options, check out the W3C’s explanation at https://www.w3.org/TR 
/css3-background/#the-border-radius.

Using a Percentage for a Web Page’s Margin
As indicated, you’ll normally want to use CSS pixel values for margin widths. However, it’s some-
times appropriate to use percentage values instead of pixel values. Case in point—specifying the 
margin around the entire web page.

Typically, browsers leave a small blank area on the four sides of the window, which is a result 
of the body element having a default margin value of around 8 pixels. To change the body’s mar-
gin from the default, you can provide a CSS rule for the body element’s margin property. It’s OK 
to use a CSS pixel value, but if you want to have the web page’s margin shrink and grow when the 
user resizes the browser window by dragging a corner, use a percentage value, like this:

body {margin: 10%;}

The 10% value indicates that the web page’s left and right sides will have margin widths that each 
span 10% of the web page’s width. Likewise, the web page’s top and bottom sides will have margin 
heights that each span 10% of the web page’s height.

When to Use the Different Length Units
In this chapter, we introduced various CSS units that are used for specifying the size, distance, or 
length of something. Specifically, we described em, px, %, and several absolute units such as pc, 
in, cm, and so forth. All those units are called length units. What follows is a summary of when to 
use each of the different length units:

▸▸ Use em for font-related properties (like font-size).
▸▸ Use px for properties that should be fixed for a given resolution, even if the element’s font 

size changes or even if the containing element’s size changes. Typically, that means using px 
for things like border properties and layout.

▸▸ Use % for properties that should grow and shrink with the size of the containing element 
(like margins for the body element).

▸▸ Use absolute units sparingly—only when a fixed size is essential and the target device has a 
high resolution.
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