
Normally, you should avoid using the blink value because it can be very annoying. But if your
aim is to antagonize, go for it!

text-transform Property
The text-transform property controls the text’s capitalization. Here are the valid values for the
text-transform property:

What’s the point of text-transform? Why not just use the desired case in the original
HTML code? You might want to provide uppercase and lowercase buttons on your web page that
allow users to dynamically change the page so it displays all uppercase or all lowercase. You can
implement that with JavaScript and the text-transform property. You’ll learn how to do that
later when we get to the JavaScript portion of the book.

text-indent Property
The text-indent property specifies the size of the indentation of the first line in a block of text.
The block’s second and third lines (and so on) are unchanged; that is, they do not get indented. If
you want to adjust all the lines in a block of text, use the margin property, not the text-indent
property. You’ll learn about the margin property later in this chapter.

The most appropriate way to specify a value for the text-indent property is to use em
units. Here’s an example type selector rule that uses the text-indent property:

p {text-indent: 4em;}

3.20 Border Properties
Now onto the next category of CSS properties—border properties. As expected, the border prop-
erties allow you to specify the appearance of borders that surround elements. We won’t bother
to cover all the border properties, just the more important ones. Specifically, we’ll describe the
border-style, border-width, and border-color properties. Then we’ll finish with the
border shorthand property.

text-transform Values Description

none The text renders the same as the original text.

capitalize Transform the first character of each word to uppercase.

uppercase Transform all characters to uppercase.

lowercase Transform all characters to lowercase.

110 Chapter 3 Cascading Style Sheets (CSS)

Jesse
Rectangle

border-style Property
The border-style property specifies the type of border that surrounds the matched element.
Here are the valid values for the border-style property:

Here’s an example class selector rule that uses the border-style property to draw a dashed
border:

.coupon {border-style: dashed;}

We used “coupon” for the class selector because we want the matched element to look like a cou-
pon, with a traditional dashed border surrounding it.

border-width Property
The border-width property specifies the width of the border that surrounds the matched ele-
ment. There are quite a few values allowed for the border-width property. Here are the most
appropriate ones:

border-style Values Appearance

none The browser displays no border. This is the default.

solid

dashed

dotted

double

border-width Values Description

thin, medium, thick The browser determines a border width that can be
reasonably described as thin, medium, or thick. The
default is medium.

number of px units A CSS pixel unit is the size of a single projected dot on a
computer monitor when the monitor’s zooming factor is at
its default position of 100%.

1113.20 Border Properties

If you ever use the border-width property, remember to use it in conjunction with the
border-style property. If you forget to provide a border-style property, then the default
border-style value kicks in, and the default value is none. With a border-style value of
none, no border will be displayed. Forgetting the border-style property is a very common bug.

CSS pixel values use px units. As with all the other CSS size values, CSS pixel values are rel-
ative. If a user reduces the monitor’s resolution or zooms in on his or her browser, then each CSS
pixel expands, and elements that use CSS pixel units will likewise expand.

It’s pretty rare to need different widths for the different border sides, but be aware that the
feature does exist. If you specify four values for the border-width property, the four values get
applied to the border’s four sides in clockwise order, starting at the top. For example:

.boxed {
 border-style: solid;
 border-width: 4px 2px 0px 2px;
}

Note what happens when you apply the preceding CSS rule to the following HTML code fragment:

My idol is Tim Berners-Lee. He rocks!

The border’s top side is thickest due to the 4px value. The right and left sides are both two pixels,
and the bottom side is missing due to the 0px value.

Google’s Style Guide says if you have a zero value for a CSS property, you should omit the
unit in order to make the code more compact. So in the earlier code, that means using 0 instead
of 0px. However, in the interest of parallelism with the other three values, I felt that keeping the
px unit was appropriate.

With CSS properties that involve four sides (i.e., the preceding border-width property,
and the margin and padding properties coming up), there are shortcut techniques for specify-
ing the values. If you specify three values, then the first value applies to the top side, the second
value applies to the left and right sides, and the third value applies to the bottom side. Thus, the
preceding border-width property value pair could have been written as follows and the result
would be the same:

border-width: 4px 2px 0px;

If you specify just two values, then the first value applies to the top and bottom sides and the sec-
ond value applies to the left and right sides.

112 Chapter 3 Cascading Style Sheets (CSS)

In addition to its shortcut techniques, the border-width property also has techniques
that are more verbose. Specifically, you can use a separate font property (border-top-width,
border-right-width, border-bottom-width, and border-left-width) for each side’s
border width. Google’s Style Guide recommends not using those properties—too wordy—and
we’ll follow that recommendation for the most part.

Whew! There are a lot of alternative syntax techniques for the border-width property.
Thankfully, borders should normally have the same width for all four sides, and to make that
happen, the syntax is easy. Just specify one value for the border-width property, and that single
value applies to all four sides.

border-color Property
The border-color property specifies the color of the border that surrounds the matched ele-
ment. There’s no new syntax to learn for the border-color property because it uses the same
values as the color property and the background-color property. Remember the types of
values that those properties use? Color values can be in the form of a color name, an RGB value,
an RGBA value, an HSL value, or an HSLA value.

For the border-color property to work, you must use it in conjunction with a
border-style property. That should sound familiar because we said the same thing about the
border-width property. In order to change the border’s color or change the border’s width, you
must have a visible border, and that’s done by using a border-style property.

border Shorthand Property
If you want to apply more than one of the prior border-related properties to an element, you could
specify each of those properties separately, but there’s a more compact technique. The border
property is a shorthand notation for specifying a border’s width, style, and color in that order.
Here are two examples:

.understated-box {border: thin dotted blue;}

.in-your-face-box {border: 10px solid;}

In the second example, there isn’t a color value. You can omit the width and/or color values, but if
you omit the style value, then there will be no visible border. You have to include the style value; if
you don’t, then border-style’s default value of none will be used. In both examples, style values
are included (dotted and solid), so the borders are visible.

3.21 Element Box, padding Property, margin
Property
In the previous section, you learned how to display a border around an element. Usually, borders
have no gaps inside or outside of them. Sometimes that’s appropriate, but usually you’ll want to
introduce gaps to make the elements look comfortable, not cramped. To introduce gaps around

1133.21 Element Box, padding Property, margin Property

http://.in-your-face-box

an element’s border, you need to take advantage of the element’s element box. Every web page
element has an element box associated with it. As you can see in FIGURE 3.19, an element box
has a border, padding inside the border, and a margin outside the border. For most elements, but
not all, the default border, padding, and margin widths are zero. You can adjust the widths with
the border-width, padding, and margin properties.

In Figure 3.19, the dashed lines indicate the perimeters of the margin and padding areas.
When a web page is displayed, only the border can be made visible; the dashed lines shown in the
figure are only for illustration purposes.

If you have trouble keeping track of which property is inside the border, padding or margin,
think of a package you get in the mail. You put padding on the inside of a fragile package’s box,
so the padding property is for inside the border. Therefore, the margin property must be for
outside the border.

padding and margin Properties
The padding property specifies the width of the area on the interior of an element’s border,
whereas the margin property specifies the width of the area on the exterior of an element’s bor-
der. Usually, the most appropriate type of value for the padding and margin properties is a CSS
pixel value. Here’s an example CSS rule that uses padding and margin properties:

.label {border: solid; padding: 20px; margin: 20px;}

Just as with the border-width property, you can specify different padding widths for the
four different sides. You can use multiple values with one padding property. Or you can use
separate padding side properties—padding-top, padding-right, padding-bottom, and
padding-left. Likewise, you can specify different margin widths for the four different sides.
You can use multiple values with one margin property. Or you can use separate margin side
properties—margin-top, margin-right, margin-bottom, and margin-left.

FIGURE 3.19 An element box’s margin, border, and padding

114 Chapter 3 Cascading Style Sheets (CSS)

This is sample text contained
inside an element box.

padding

border-width

margin

The margin and padding properties allow negative values. While a positive value forces two
elements to be separated by a specified amount, a negative value causes two elements to overlap
by a specified amount.

Example That Uses padding and margin Properties
Let’s put this padding and margin stuff into practice in the context of a complete web page.
FIGURE 3.20’s browser window shows span elements that could serve as labels for water faucet
handles. The borders are curved to form ovals. We’ll get to the implementation of the curved
borders shortly, but let’s first focus on the padding and margins.

FIGURE 3.21 shows the code for the Hot and Cold web page. Here’s the relevant code for
the padding and margins, where label is the class attribute value for both of the span elements:

.label {
 padding: 20px;
 margin: 20px;
 display: inline-block;
}

The padding and margin properties both use values of 20px, which provides significant space
on the interior and exterior of the borders. For the web page’s first-cut implementation, there was
no display property (as shown), and there was no space provided above the two ovals—the ovals
bumped up against the top edge of the browser window, which looked ugly. Figuring out the solu-
tion required some serious head-scratching. After much trial and error and googling, I learned that
vertical margins do not work for standard phrasing elements, such as the span element. On the
other hand, vertical margins do work for block elements. So, the trick was to turn the label’s span
element into a block element—well, sort of. To help with the explanation, we’ll use some differ-
ent nomenclature. In the world of CSS, we’ll refer to phrasing elements as inline elements because
CSS uses the inline value to describe elements that are to be formatted as phrasing elements
(where the element’s width matches the width of its contents). We’ll also refer to elements that have

FIGURE 3.20 Hot and Cold web page

1153.21 Element Box, padding Property, margin Property

characteristics of both phrasing and block elements as inline block elements. So here’s the deal—
vertical margins do work for inline block elements. The span element is considered to be a standard
inline element by default. By adding the preceding display: inlineblock property-value pair to
the label CSS rule, we make the span element more “blockish,” and the browser accommodates by
adding space above the ovals. This is another example where research and tweaking are necessary.

Now onto the curved borders. The border-radius property allows you to specify how
much curvature you want at each of the four corners of an element. The default, of course, is to
have no curvature. To achieve curved corners, you need to specify the focal point for each of the
corners’ curves. Often, you’ll have different focal points for each of the four corners, but for both
oval elements in the Hot and Cold web page, all four focal points are in the same place—at the
center of the oval. To understand how the blue oval’s lower-right-corner curve is drawn, imagine
a compass with its pointy arm stuck at the center of the blue oval and its free arm sweeping from
the bottom of the blue oval toward the right edge of the blue oval. As it moves to the right and up,
the compass arm will have to swivel open slightly in order to reach the far right edge of the oval.
That sweeping motion forms the lower-right corner’s curvature.

This is necessary for the vertical
margins to work.

This implements curved corners.

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Hot and Cold Labels</title>
<style>
 .hot {background-color: red;}
 .cold {background-color: blue;}
 .label {
 color: white;
 font: bold xx-large Lucida, monospace;
 border: solid black;
 border-radius: 50%;
 padding: 20px;
 margin: 20px;
 display: inline-block;
 }
</style>
</head>

<body>
HOT
COLD
</body>
</html>

FIGURE 3.21 Source code for Hot and Cold web page

116 Chapter 3 Cascading Style Sheets (CSS)

So, where does the CSS rule come into play? As you can see in Figure 3.21, the border-
radius property has a value of 50%. That 50% value is used to form the spanning lines shown in
Figure 3.20. The specified percentage (50% in this case) is relative to the width and height of the
element. So for the lower-right corner, one spanning line goes to the left by 50% of the element’s
width and the other spanning line goes up by 50% of the element’s height. As you can see in Fig-
ure 3.20, the ends of the two spanning lines determine the starts of the two arrows that intersect
within the element. That intersection point serves as the focal point for the lower-right corner’s
curved border.

Yes, the border-radius property is somewhat complex. If you want to learn all its behav-
iors and its different syntax options, check out the W3C’s explanation at https://www.w3.org/TR
/css3-background/#the-border-radius.

Using a Percentage for a Web Page’s Margin
As indicated, you’ll normally want to use CSS pixel values for margin widths. However, it’s some-
times appropriate to use percentage values instead of pixel values. Case in point—specifying the
margin around the entire web page.

Typically, browsers leave a small blank area on the four sides of the window, which is a result
of the body element having a default margin value of around 8 pixels. To change the body’s mar-
gin from the default, you can provide a CSS rule for the body element’s margin property. It’s OK
to use a CSS pixel value, but if you want to have the web page’s margin shrink and grow when the
user resizes the browser window by dragging a corner, use a percentage value, like this:

body {margin: 10%;}

The 10% value indicates that the web page’s left and right sides will have margin widths that each
span 10% of the web page’s width. Likewise, the web page’s top and bottom sides will have margin
heights that each span 10% of the web page’s height.

When to Use the Different Length Units
In this chapter, we introduced various CSS units that are used for specifying the size, distance, or
length of something. Specifically, we described em, px, %, and several absolute units such as pc,
in, cm, and so forth. All those units are called length units. What follows is a summary of when to
use each of the different length units:

▸▸ Use em for font-related properties (like font-size).
▸▸ Use px for properties that should be fixed for a given resolution, even if the element’s font

size changes or even if the containing element’s size changes. Typically, that means using px
for things like border properties and layout.

▸▸ Use % for properties that should grow and shrink with the size of the containing element
(like margins for the body element).

▸▸ Use absolute units sparingly—only when a fixed size is essential and the target device has a
high resolution.

1173.21 Element Box, padding Property, margin Property

https://www.w3.org/TR/css3-background/#the-border-radius
https://www.w3.org/TR/css3-background/#the-border-radius

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

