
In the previous section, you learned how to add transparency to an RGB value by using the rgba
construct. Likewise, to add transparency to an HSL value, you can use the hsla construct. Here’s
the syntax:

hsla(hue-integer,saturation-percent,lightness-percent,opacity-number-between-0-and-1)

The fourth argument specifies the opacity. The opacity value must be in the form of a decimal
number between 0 and 1, with 0 being completely transparent and 1 being completely opaque.

Here’s an example CSS rule with an HSLA color value:

<style>
 .background {background-color: hsla(120,50%,75%,.5);}
</style>

What color is specified? It’s the same as the earlier grayish-green color, except that this time, the
grayish green blends with the web page’s background color as a result of the 50% opacity value. With
a default white web page background, the result would be a lighter shade of grayish green, like this:

3.17 Font Properties
In this section, we describe how to display text with different font characteristics. You’ve probably
heard of the term “font,” but if not, font refers to the characteristics of text characters—height,
width, thickness, slantedness,7 body curvatures, and endpoint decorations. That should make more
sense later on when we present CSS font property details and show examples. Specifically, you’ll
learn about the font-style, font-variant, font-weight, font-size, font- family, and
font shorthand properties.

font-style property
The font-style property specifies whether the text is to be displayed normally or slanted. Here
are the valid values for the font-style property:

7 Apparently “slantedness” is not a word, but it should be. If it becomes a word, you heard it here first.

font-style Values Description

normal Upright characters (not slanted).

oblique Use the same font as the current font, but slant the characters.

italic Use a cursive font (which tends to be slanted and is supposed
to look like handwriting).

100 Chapter 3 Cascading Style Sheets (CSS)

Jesse
Rectangle

These descriptions indicate a slight difference between the oblique and italic properties,
with italic tending to be more decorative. Most web developers use the value italic. Because
italics are so common, you should memorize the following technique for generating italics:

.italics {font-style: italic;}

As always, choose a name for the class selector that’s descriptive. Here, we chose the name
italics because it’s descriptive and easy.

Upright (normal) characters are the default, so why would you ever want to specify normal
for the font-style property? Suppose you have a whole paragraph that’s italicized and you want
one word in the paragraph not italicized. To make that word normal (not italicized), you can use
font-style: normal.

The W3C provides default values for all CSS properties, and to force the default value to be
used for a particular property, you can specify initial for that property. So, given the situation
described with an italicized paragraph, to make one word not italicized, you can apply the follow-
ing rule to that word:

.not-italicized {font-style: initial;}

font-variant Property
The font-variant property specifies how lowercase letters are displayed. Here are the valid
values for the font-variant property:

Here’s an example that uses a small-caps CSS rule:

.title {font-variant: small-caps;}

...
<div class="title">The Great Gatsby</div>

And here’s the resulting displayed text:

The Great Gatsby

font-weight Property
The font-weight property specifies the boldness of the text characters. Here are the valid
values for the font-weight property:

font-variant Values Description

normal Display lowercase letters normally.

small-caps Display lowercase letters with smaller-font uppercase letters.

1013.17 Font Properties

These descriptions for bolder and lighter are probably all you need to know, but you may
want to dig a little deeper. With bolder and lighter, the targeted text inherits a default font-
weight value from its surrounding text, and then the targeted text’s weight gets adjusted up or
down relative to that inherited weight. For example, if you specify a bold font weight for a para-
graph, you can make a particular word within the paragraph even bolder by specifying bolder
for that word’s font weight.

Because boldfacing is such a common need, you should memorize the following technique
for making something bold:

.bold {font-weight: bold;}

font-size Property
The font-size property specifies the size of the text characters. There are quite a few values
allowed for the font-size property. Here are the most appropriate ones:
Here’s an example class selector rule that uses the font-size property with an xx-large
value:

font-size Values Description

xx-small, x-small,
small, medium, large,
x-large, xx-large

It’s up to the browser to determine a font size that can
be reasonably described as xx-small, x-small,
small, etc.

smaller, larger Using a value of smaller causes its targeted text to have
smaller characters than the text that surrounds it.
Using a value of larger causes its targeted text to have
larger characters than the text that surrounds it.

number of em units One em unit is the height of the element’s normal font size.

font-weight Values Description

normal, bold It’s up to the browser to determine a font weight that can be
described as normal or bold.

bolder, lighter Using a value of bolder causes its targeted text to have
thicker characters than the text that surrounds it.
Using a value of lighter causes its targeted text to have
thinner characters than the text that surrounds it.

100, 200, 300, 400,
500, 600, 700, 800,
900

100 generates the thinnest characters and 900 the thickest
characters.
400 is the same as normal, and 700 is the same as bold.

102 Chapter 3 Cascading Style Sheets (CSS)

.huge-font {font-size: xx-large;}

So far, most of the CSS property values you’ve seen have consisted of a text description, such
as xx-large. As an alternative, some properties have values that are comprised of two parts—a
number and a unit. For example, for the font-size property, you can use a value with a number
next to em, where one em unit is the height of a typical character. The em unit’s name comes from
the letter M. Originally, one em unit equaled the height of the letter M. However, there are fonts
for languages that don’t use the English alphabet, so it was deemed inappropriate for em to rely on
the letter M. Thus, em is no longer tied to the letter M, and testing shows that a single em unit is a
bit taller than the height of M.

Here are class selector rules that use the font-size property with em values:

.disclaimer {font-size: .5em;}

.advertisement {font-size: 3em;}

The first rule is for disclaimer text, which is supposed to be annoyingly small to avoid scrutiny,
and its .5em value displays text that is half the size of normal text. The second rule is for advertise-
ment text, which is supposed to be annoyingly large to draw attention, and its 3em value displays
text that is three times the size of normal text.

Here, for each font-size value, note that there is no blank space separating the number
from em. Likewise, for all CSS values that consist of a number and a unit, you should not have a
blank space. Having no blank space is a requirement of the CSS standard.

Absolute Units
There are quite a few other techniques for specifying font size. For example, you can specify a
number along with an in, cm, mm, pt (point), or pc (pica) unit. The W3C refers to those units
rather disdainfully as “so-called absolute units.” Although they’re still used every now and then,
and you should understand them, absolute units have fallen out of favor for everyday needs. This
is because it’s good to allow users to adjust the size of things, particularly people with impaired
eyesight. Also, with regular monitors, testing shows that the “absolute units” are not absolute;
their sizes vary with different resolutions, different monitors, and zooming in and out.

The W3C says absolute units are required to have absolute lengths only when the target
device has a high resolution; that usually means just printers, but it can also mean high-resolution
monitors. For a scenario where a fixed size is essential and absolute units are appropriate, picture
your wedding preparations. Suppose you’re tasked with printing your wedding invitations on pre-
cut pink cherub-adorned cards. To avoid agitating a stressed-out fiancé(e), you’ll want to use
absolute units to make sure the words fits perfectly on the cards.

font-family Property
The prior font properties allow the web developer to choose values for specific font characteristics
(font-weight for characters’ thickness, font-size for characters’ height, etc.). The next font

1033.17 Font Properties

property, font-family, is more holistic in nature. The font-family property allows the web
developer to choose the set of characters that the browser uses when displaying the element’s text.
As you’d expect, the characters in a particular character set are similar in appearance—same basic
height, width, body curvature, and so on.

Here’s an example class selector rule that uses the font-family property:

.ascii-art {font-family: Courier, Prestige, monospace;}

Note that with the font-family property, you should normally have a comma-separated list
of fonts, not just one font. In applying the preceding rule to elements that use “asci-art” for their
class attribute, the browser works its way through the font-family list from left to right, and
uses the first font value it finds installed on the browser’s computer and skips the other fonts. So
if Courier and Prestige are both installed on a computer, the browser uses the Courier font
because it appears further left in the list.

There are lots of fonts, and different browsers support different ones. Users are able to install
fonts in addition to the ones provided by their browsers. For a small sample of popular font
names, see https://www.w3.org/TR/css-fonts-3/#generic-font-families. On that website, you can
see that most font names use title case (the first letter of each word is capitalized), but a few use
all lowercase letters. Font names are case sensitive on some operating systems, so you should take
care to use the proper case. The font names that use all lowercase letters are special, and they are
known as generic fonts.

A generic font is a name that represents a group of fonts that are similar in appearance. For
example, monospace is a generic font, and it represents all the fonts where each character’s width
is uniform. Whenever you use a font-family CSS rule, you should include a generic font at the
end of the rule’s list of font names. In the following CSS rule (copied from earlier for your conve-
nience), note the monospace font at the end of the list of font names:

.ascii-art {font-family: Courier, Prestige, monospace;}

The generic font name provides a fallback mechanism. If a user’s browser doesn’t support any of
the fonts at the left of the generic font name, the browser uses the generic font to display a font
that the browser does support. Generic font names are not actual fonts with specific appearance
characteristics; they are just placeholders that tell the browser to look for an actual font in a partic-
ular family of fonts. So in the ascii-art CSS rule, if a browser does not support the Courier or
Prestige fonts, the browser digs up a monospace font that it does support and uses it. To ensure
that a web page’s font looks pretty much the same on different browsers, for each font-family
CSS rule, you should always use fonts that are similar, which means that they are associated with
the same generic font. Referring once again to the preceding ascii-art CSS rule, Courier and
Prestige both display uniform-width characters, and they are both associated with the same
monospace generic font.

The monospace font is one of five generic fonts that all browsers recognize and support.
Here’s a list of the five generic fonts with descriptions and examples:

104 Chapter 3 Cascading Style Sheets (CSS)

https://www.w3.org/TR/css-fonts-3/#generic-font-families

As mentioned earlier, generic font names use lowercase, and you can verify that for the five
generic fonts shown. On the other hand, specific font names use title case. You can verify that by
examining the five example fonts shown in the right column (e.g., Courier New).

When specifying a multiple-word font name, surround the name with quotes. For example,
in FIGURE 3.16, note the quotes around New Century Schoolbook. In addition, note the cod-
ing convention of inserting a blank space after each comma in a font-family list of font names.

Suppose a web page includes the code in Figure 3.16. If a user’s computer has the New
Century Schoolbook font and also the Times font installed on it, which font will the
browser use to display the paragraph? It will use New Century Schoolbook, because it’s the
first font in the list and it’s installed on the user’s computer.

Generic
Font Names Description Example Font

monospace All characters have the same width. Courier New looks like
this.

serif Characters have decorative
embellishments on their endpoints.

Times New Roman looks like this.

sans-serif Characters do not have decorative
embellishments on their endpoints.

Arial looks like this.

cursive Supposed to mimic cursive
handwriting, such that the characters
are partially or completely
connected.

Monotype Corsiva looks like this.

fantasy Supposed to be decorative and
playful.

Impact looks like this.

FIGURE 3.16 An example font-family CSS rule

1053.17 Font Properties

quotes spaces

<style>
 blockquote {font-family: "New Century Schoolbook", Times, serif;}
</style>

<blockquote>
 Call me Ishmael. Some years ago–never mind how long precisely–
 having little or no money in my purse, and nothing particular to
 interest me on shore, I thought I would sail about a little and
 see the watery part of the world.
</blockquote>
<cite>Moby Dick</cite>

font Shorthand Property
Fairly often as a web programmer, you’ll want to apply more than one of the prior font-related
properties to an element. You could specify each of those font properties separately, but there’s an
easier way. The font property can be used to specify all these more granular font properties—
font-style, font-variant, font-weight, font-size, line-height, and font-family.
Previously, we mentioned all these font properties except for line-height. We’ll cover line-
height shortly, but first we’ll discuss some overarching details about the font property.

Here’s the syntax for a font property-value pair:

font: [font-style-value] [font-variant-value] [font-weight-value]
 font-size-value[/line-height-value] font-family-value

As usual, the italics are the book’s way of telling you that the italicized thing is a description
of what goes there, so for a font property-value pair in a CSS rule, you would replace font-style-
value with one of the font-style values, such as italic. The square brackets are the book’s
way of telling you that the bracketed thing is optional, so the font-style, font-variant,
font-weight, and line-height values are all optional. On the other hand, the font-size
and font-family values have no square brackets, so you must include them whenever you use
the font property. For the property values you decide to include, they must appear in the order
previously shown. If a line-height value is included, you must position it at the right of the
font-size value, with a / separating the two values.

Here’s an example type selector rule that uses a font property:

blockquote {
 font: italic large "Arial Black", Helvetica, sans-serif;
}

In the preceding rule, how many types of font properties are specified and what are they? Glanc-
ing at the font property’s value, you can see there are five items in the list, so you might think
there are five types of font properties. Upon closer inspection, you should notice the commas
between the last three items. Those commas are delimiters for a sublist, where the sublist is the
value for the font-family property. At the left of the font-family property’s list, you can see two
other property values—italic and large—separated by spaces. Those values are for the font-
style and font-size properties.

By the way, the W3C refers to the font property as a shorthand property because it’s a time-
saving construct for handling multiple font characteristics. Later, we’ll introduce additional short-
hand properties for other groups of related CSS properties. When given a choice between using a
shorthand property and using a set of more granular properties, some web programmers prefer
using the shorthand property because of its compactness, whereas others prefer using the more

Use commas to separate
font–family values.

Use spaces to separate
property values.

106 Chapter 3 Cascading Style Sheets (CSS)

granular properties because of their clarity. In this book, we use both techniques and let the situ-
ation dictate our preference.

3.18 line-height Property
We mentioned the line-height property in the previous Font Properties section as part of
our discussion of the font shorthand property. We postponed our discussion of the line-
height property until now because, although it can be part of a font shorthand property’s
value, it’s not really a font property. It’s used to specify the vertical separation between each
line of text in an element. For example, in FIGURE 3.17, note the sentence1 CSS rule with
line-height: 2em. That rule causes its matching element to display its lines with a vertical
separation equal to twice the height of a normal character (remember, an em unit represents the
height of a normal character). Note the resulting double-spaced line heights in FIGURE 3.18’s
displayed text.

FIGURE 3.17 Source code for Declaration of Independence web page

1073.18 line-height Property

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Declaration of Independence</title>
<style>
 .sentence1 {line-height: 2em; font-family: Times, serif;}
 .sentence2 {font: 1em/2em Times, serif;}
</style>
</head>

<body>
<h2>Declaration of Independence, working draft v. 2.01</h2>
<p>
 We hold these truths to be self-evident,
 that every man is<ins>all men are</ins>
 created equal.

 That they are endowed by their Creator
 with certain unalienable Rights, that among these are Life,
 Liberty and the pursuit of Happiness.
</p>
</body>
</html>

A line height of 2em generates double spacing.

This specifies font size and then line height.

Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

