
style Container
As you know from prior examples, the style element is a container for CSS rules that apply to
the entire current web page. The browser applies the CSS rules’ property values by matching the
CSS rules’ selectors with elements in the web page. Normally, you should have just one style
container per page, and you should put it in a web page’s head container. It’s legal to put a style
container in the body, but don’t do it because then it’s harder to find the CSS rules.

In Figure 3.8’s cascading CSS rules list, note how the higher priority places are more specific.
More specific rules beat more general rules. For example, if a style attribute designates a para-
graph as blue, but a rule in a style container designates paragraphs as red, then what color will
the browser use to render the paragraph? The style attribute’s blue color wins, and the browser
renders that particular paragraph with blue text. This principle of more specific rules beating
more general rules should sound familiar. It parallels the principle introduced earlier that says
local things override global things.

3.11 External CSS Files
Overview
In general, splitting up a big thing into smaller parts makes the thing easier to understand. To improve
understandability, you should consider moving your CSS rules to an external file. There are two steps
necessary to tie a web page to an external file that contains CSS rules. First, for the external file to be
recognized as a CSS file, the external file must be named with a .css extension. For example, in an
upcoming web page, we’ll use the filename pumpkinPatch.css. Second, for the web page to access
a CSS file’s CSS rules, the web page must use a link element in the web page’s head container. The
link element is a void element, so it’s comprised of just one tag, with no end tag. Here’s the syntax:

<link rel="stylesheet" href="name-of-external-file">

In this code fragment, note the href="name-of-external-file" attribute-value pair. The W3C
does not specify what href stands for, but the most common belief is that it stands for “hypertext
reference.” The href attribute’s value specifies the name of the file that holds the CSS rules (e.g.,
pumpkinPatch.css).

Note the rel="stylesheet" attribute-value pair. rel stands for “relationship,” and its value
tells the browser engine what to do with the href file. Having a rel value of stylesheet tells the
browser engine to look for CSS rules in the href file and apply them to the current web page.

To justify the extra work of adding a link element to handle an external CSS file, typically an
external CSS file will be nontrivial. That means the file will contain at least five CSS rules (usually
a lot more), or it will be shared by more than one web page.

Why is sharing an external CSS file helpful? With a shared external CSS file, it’s easy to ensure
that all the web pages on your site follow the same common CSS rules. And if you want to change
those rules, you change them in one place, in the external file, and the change affects all the web
pages that share the external file.

88 Chapter 3 Cascading Style Sheets (CSS)

Jesse
Rectangle

External CSS files used to be referred to as “external style sheets,” but the W3C no longer
uses that term, and we won’t use it either. However, you should recognize the term “external style
sheets” because you’ll hear it being used every now and then.

Example
Let’s put what you’ve learned into practice by examining the source code for a modified version
of the Pumpkin Patch web page—a version that uses an external CSS file instead of a style
container. See FIGURE 3.9, which shows the head container for the modified Pumpkin Patch
web page. Note that there’s no style container; instead there’s a link element that connects to
an external CSS file.

See FIGURE 3.10. It shows the source code for the pumpkinPatch.css external CSS file,
which gets loaded into the new Pumpkin Patch web page. The external CSS file’s CSS rules are
identical to those found in the original Pumpkin Patch web page, so, as you’d expect, there is no
difference in how the two web pages render.

Normally, external CSS files are rather sparse. They include CSS rules, with blank lines to
separate logical groups of rules, and that’s pretty much it. Optionally, you can include comments
to explain nonintuitive characteristics of the CSS file. In the previous chapters, you’ve learned
to include a meta author element at the top of your HTML files, so other people in your com-
pany know whom to go to when questions arise. Likewise, for each external CSS file, you should
include a comment at the top that shows the author’s name. Here’s an example author’s-name
comment, copied from the top of the pumpkinPatch.css source code:

/* John Dean */

FIGURE 3.9 head container for the Pumpkin Patch web page that uses an external CSS file

FIGURE 3.10 Source code for external CSS file that gets loaded into the Pumpkin Patch
web page

893.11 External CSS Files

This link element connects the
web page to its external CSS file.

<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Halloween on the River</title>
<link rel="stylesheet" href="pumpkinPatch.css">
</head>

CSS comment
/* John Dean */

.orange {color: darkorange;}

.white {color: white;}

.black {color: black;}

.orange-background {background-color: orange;}

Note the comment syntax. You must start with a /* and end with a */.
If you have a long comment, you should have the comment span several lines, like this:

/* The following rules are for a CSS image sprite that enables hover
effects for the navigation bar at the left. */

This comment mentions a “CSS image sprite.” We’ll describe them in detail later in the book, but
for now, just realize that a CSS image sprite is a rather complicated coding construct that requires
CSS rules that are nonintuitive. Thus, it provides a good example of something where a CSS com-
ment is appropriate.

CSS Validation Service
Remember the HTML validation service mentioned in Chapter 1? It’s a great tool for verifying
that the code in an HTML file comports with the W3C’s HTML standard. Likewise, there’s a CSS
validation service tool for verifying that the code in an external CSS file comports with the W3C’s
CSS standard. You can find the CSS validation service at https://jigsaw.w3.org/css-validator. See
FIGURE 3.11 for a screenshot of the CSS validation service’s home page. We’ll discuss home pages
in more depth in a later chapter, but for now, just know that a home page is the default first page a
user sees when the user visits a website.

In Figure 3.11, note the CSS validation service’s three tabs. With the first tab, By URI, the user
enters a web address for the external file that is to be checked. For that to work, you need the web

FIGURE 3.11 W3C’s CSS validation service

90 Chapter 3 Cascading Style Sheets (CSS)

Click this tab to check a web page file on a local computer.

Click here to show options
such as displaying source code.

https://jigsaw.w3.org/css-validator

page to be uploaded to a web server. With the second option, By file upload, the user selects a file
on his or her local computer. With the third option, By direct input, the user copies HTML code
directly into a large text box. Usually, you will use the second option, By file upload, because it’s
a good idea to test a file stored locally before uploading it.

We recommend that you use the CSS validation service to check all your external CSS files.
Go ahead and try it out now on the Pumpkin Patch external CSS file. Specifically, retrieve the
pumpkinPatch.css file from the book’s resource center and save it to your hard disk or to a
flash drive. Alternatively, you can create the file yourself by loading an IDE, opening a new file,
copying Figure 3.10’s code into the file, and saving the file with the name pumpkinPatch.css.
After saving the file, go to the CSS validation service and click the By file upload tab. In the Local
CSS file box, search for and select the pumpkinPatch.css file. Click the Check button, and that
should generate a message indicating success.

3.12 CSS Properties
For the remainder of this chapter, we’ll focus on CSS properties. As you know from prior exam-
ples, a CSS property specifies one aspect of an HTML element’s appearance. The W3C’s CSS3
standard provides many CSS properties (more than a hundred), so there is great flexibility in
terms of specifying appearances. Remembering all those properties and the types of values associ-
ated with them can be daunting. Unless you’ve got the memory of a sea lion,3 you’ll probably need
to use a CSS reference and look things up every now and then.

The W3C and the WHATWG have CSS references, but, unfortunately, they’re rather
disjointed, which can make them difficult to navigate. The Mozilla Developer Network has
a more user-friendly CSS reference at https://developer.mozilla.org/en-US/docs/Web/CSS
/Reference. Take a look at FIGURE 3.12, which shows the keyword index part of the refer-
ence. Keywords are the words that form the syntax of a language, so the figure’s keyword
index shows the words that form the CSS language. Note the first keyword entry, :active.
The keywords that start with a colon are known as pseudo-elements (we’ll describe a few of
them in later chapters). The non-colonated4 words are properties. To get details on any of the
keywords, click on the keyword. Time for a short field trip: Go to Mozilla’s CSS reference and
click on the font-size property. That takes you to a page with details about the font-size
property.

We’ll discuss quite a few of the CSS properties later in the book, but for this chapter, we’ll
limit our discussion to the properties shown in FIGURE 3.13. Those properties fall into five prop-
erty groups—color, font, text, border, and margin/padding. We’ll discuss the properties in those
groups in the upcoming sections.

3 James Randerson, “Sea Lion Scores Top for Memory,” New Scientist, October 23, 2003, https://www
.newscientist.com/article/dn2960-sea-lion-scores-top-for-memory.
4 “Colonated” isn’t a word, but it should be. When the Oxford English Dictionary folks get around to approving
my word submission, colonated will mean “something that has a colon.”

913.12 CSS Properties

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://www.newscientist.com/article/dn2960-sea-lion-scores-top-for-memory
https://www.newscientist.com/article/dn2960-sea-lion-scores-top-for-memory

3.13 Color Properties
In Figure 3.13, you can see two color properties—color and background-color. The color
property specifies the color of an element’s text. The background-color property specifies the
background color of an element. The color properties are pretty straightforward, right? It’s the
values for the color properties that require more attention.

There’s quite a bit of flexibility when it comes to specifying color values. You can specify a
color value using one of five different formats. We’ll describe the formats in detail, but first, here’s
a teaser of what you can look forward to:

color name—for example, red
RGB value—specifies amounts of red, green, and blue

FIGURE 3.12 Mozilla’s CSS properties reference

FIGURE 3.13 CSS properties introduced in this chapter
Note: Ellipses are used here because there are too many border, margin, and padding properties to show in this figure.

92 Chapter 3 Cascading Style Sheets (CSS)

Color properties color, background color

Font properties font-style, font-variant, font-weight, font-size,
font-family, font

Text properties line-height, text-align, text-decoration,
text-transform, text-indent

Border properties border-bottom, border-bottom-color, …

Margin and
padding properties

margin-bottom, margin-left, …
padding-bottom, padding-left, …

RGBA value—specifies red, green, and blue, plus amount of opacity
HSL value—specifies amounts of hue, saturation, and lightness
HSLA value—specifies hue, saturation, and lightness, plus amount of opacity

Color Names
The CSS3 specification defines 147 color names, and the major browsers support all those colors. To
view the color names and their associated colors, go to https://www.w3.org/TR/css3-color/#svg-color.
On that web page, you should recognize a few of the color names, like orange and darkorange,
from previous web page examples in this book. An example of a more obscure color name is
darkslategray. Note how we use darkslategray in this code fragment’s class selector rule:

<head>
<style>
 .roofColor {color: darkslategray;}
</style>
</head>

<body>
<p>
 Mackay Hall's roof is
 dark slate gray.
</p>
</body>

3.14 RGB Values for Color
RGB stands for red, green, and blue. An RGB value specifies the amounts of red, green, and blue that
mix together to form the displayed color. To specify an amount of a color, you can use a percentage,
an integer, or a hexadecimal number (we’ll explain hexadecimal shortly). We’ll provide explana-
tions and examples coming up, but for now, here are the allowable ranges for each technique:

percentage—0% to 100% for each color
integer—0 to 255 for each color
hexadecimal—00 to ff for each color

RGB Values with Percentages
To specify an RGB value with percentages, use this format:

rgb(red-percent, green-percent, blue-percent)

Each percent value must be between 0% and 100%. Here’s an example class selector rule that uses
an RGB value with percentages:

<style>
 .eggplant {background-color: rgb(52%,20%,45%);}
</style>

color name

933.14 RGB Values for Color

https://www.w3.org/TR/css3-color/#svg-color

What background color does the preceding rule generate? 20% for the second value means
that there is very little green in the color mixture. 52% for the first value means that there is a sig-
nificant amount of red—52% of the maximum amount of red. 45% for the third value means that
there is a bit less blue than there is red. Mixing approximately 50% red, approximately 50% blue,
and not much green leads to this dark purple color:

Eggplants are dark purple, and that’s why we use eggplant in the preceding class selector rule.
If you want to specify black, then you need to use the least intensity (a value of 0%) for each

of the three colors. That should make sense because, as any physics major will tell you, black is the
absence of all light. Therefore, here’s the CSS rule for a black background:

.black {background-color: rgb(0%,0%,0%);}

To specify white, you need to use the greatest intensity (a value of 100%) for each of the three
colors. That should make sense because white is the combination of all colors.5 Therefore, here’s
the CSS rule for white text (which would work nicely with the preceding black background):

.white {color: rgb(100%,100%,100%);}

RGB Values with Integers
To specify an RGB value with integers, use this format:

rgb(red-integer,green-integer,blue-integer)

Each integer value must be between 0 and 255, with 0 providing the least intensity and 255 provid-
ing the most. Here are two class selector rules that use RGB values with integers:

<style>
 .favorite1 {color: rgb(144,238,144);}
 .favorite2 {color: rgb(127,127,127);}
</style>

What text color does the favorite1 class selector rule produce? The larger value, 238, is for
green, so it produces a shade of green. The red and blue color values are 144, which is more than half-
way to the maximum value of 255. That means the green color will be closer to white than black. The
result is a light green. By the way, if you go to the W3C’s CSS color names web page, you can find a
lightgreen color name, and you can see that it matches the preceding rgb(144,238,144) value.

What text color does the favorite2 class selector rule produce? All three color values (127,
127, 127) are the same, so it produces a color somewhere between white and black. Since 127 is
halfway to the maximum value of 255, favorite2 produces a medium gray color.

5 In 1666, Isaac Newton discovered that white light is composed of all the colors in the color spectrum. He
showed that when white light passes through a triangular prism, it separates into different colors. And when the
resulting colors pass through a second triangular prism, they are recombined to form the original white light.

94 Chapter 3 Cascading Style Sheets (CSS)

RGB Values with Hexadecimal
With many programming languages, including HTML and CSS, numbers can be represented not
only with base-10 decimal numbers, but also with base-16 hexadecimal (hex) numbers. A number
system’s “base” indicates the number of unique symbols in the number system. So base 10 (for the
decimal number system) means there are 10 unique symbols—0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. And
base 16 (for the hexadecimal number system) means there are 16 unique symbols—0, 1, 2, 3, 4, 5,
6, 7, 8, 9, A, B, C, D, E, and F.

When specifying an RGB color value, you have choices. You can use percentages or standard
integers as described earlier, or you can use hexadecimal values. For hexadecimal RGB values,
you’ll need to use the format #rrggbb where:

rr = two hexadecimal digits that specify the amount of red
gg = two hexadecimal digits that specify the amount of green
bb = two hexadecimal digits that specify the amount of blue

With the percentage and integer RGB values, a smaller number for a particular color means less
of that color. Likewise, with hexadecimal RGB values, a smaller number means less of a particular
color. The smallest hexadecimal digit is 0, so 00 represents the absence of a particular color. If all col-
ors are absent, that’s black. Therefore, #000000 (00 for each of the three colors) indicates black. The
largest hexadecimal digit is f, so ff represents the greatest intensity of a particular color. If all colors are
maximally intense, that’s white. Therefore, #ffffff (ff for each of the three colors) indicates white.

So you now know how to make black and white using hexadecimal numbers. Those are easy.
Using hexadecimal numbers that are between the two extremes is a bit trickier. What color does
the following value represent?

#ffbbbb

Note ff for the first two digits. The first two digits are for red, so #ffbbbb is a shade of red. Light
red or dark red? To figure that out, you need to know whether the other two colors are less than
or greater than halfway between 00 and ff. The other two colors both have values of bb. The b hex
digit (which represents eleven) is closer to f (which represents fifteen) than 0, so the other two
colors are closer to white than black. That means #ffbbbb is light red (otherwise known as pink),
and it looks like this:

Here’s an example CSS rule with a hexadecimal RGB value:

<style>
 .sapphire {background-color: #0f42ba;}
</style>

In the #0f42ba color value, which is the most intense—red, green, or blue? The red portion’s value,
0f, has an f in it, and we know f represents fifteen, so maybe red is the most intense? No. With good
old-fashioned base-10 decimal numbers, 09 is a small number (as compared to, say, 95) because
digits at the left (0 in this case) have greater significance than digits at the right (9 in this case).

953.14 RGB Values for Color

It’s the same in the hexadecimal number system. The red portion of #0f42ba is 0f, and now we
know that 0f is a small number; consequently, there’s very little red in the resulting color. The green
portion of #0f42ba is 42, and 42 is a relatively small number; consequently, there’s not much green
in the resulting color. The blue portion of #0f42ba is ba, and ba is a relatively large number;6 con-
sequently, there’s quite a bit of blue in the resulting color. Here’s what the color looks like:

That is the color of a sapphire gemstone, and that’s why the preceding CSS rule uses sapphire
for its class selector.

The W3C’s CSS3 standard says that RGB hexadecimal digits are case insensitive. So in this
example, #0F42BA (with uppercase F, B, and A) would also work. You’ll see lowercase and upper-
case on the W3C site and in the real world. Use lowercase to be consistent with standard HTML
coding conventions, which say to use lowercase values unless there’s a reason to do otherwise. But
if you’re reading this book as part of a course, and your teacher says to use uppercase hexadecimal
digits, then use uppercase hexadecimal digits.

3.15 Opacity Values for Color
In the previous section, you learned how to produce a color by using the rgb construct with
values for red, green, and blue. In this section, you’ll learn how to produce a partially transparent
color by using the rgba construct with values for red, green, blue, and opacity. The fourth value,
opacity, determines how opaque the color is, where opaque refers to the inability to see through
something. It’s the opposite of transparency. If the opacity value is 100%, that means the color is
completely opaque, and if there is content behind the color, that content gets covered up. At the
other extreme, if the opacity value is 0%, that means the color is completely transparent.

The A in RGBA stands for alpha. Why alpha? There’s no official documentation on alpha’s
etymology, but perhaps the CSS3 standards people chose it simply because it’s the first letter in
the Greek alphabet.

To specify an RGBA value, use one of these two formats:

rgba(red-integer,green-integer,blue-integer,opacity-number-between-0-and-1)
rgba(red-percent,green-percent,blue-percent,opacity-number-between-0-and-1)

For both formats, the fourth value specifies the opacity. The opacity value must be in the form
of a decimal number between 0 and 1, with 0 being completely transparent, 1 being completely
opaque, and .5 in between.

For the first format, each integer value must be between 0 and 255, with 0 providing the least
intensity and 255 providing the most. That should sound familiar because that was also the case
for integers with the rgb construct. For the second format, each percent value must be between
0% and 100%.

6 To calculate the decimal equivalent of a two-digit hexadecimal number, multiply the left digit by 16 and
then add the right digit. So, hexadecimal 0f is 15 (0 × 16 + 15 = 15), hexadecimal 42 is 66 (4 × 16 + 2 = 66),
and hexadecimal ba is 186 (11 × 16 + 10 = 186).

96 Chapter 3 Cascading Style Sheets (CSS)

You can use the rgba construct with the color property, which specifies the color of an ele-
ment’s foreground (e.g., text). However, it’s more common to use it with the background-color
property, as you will see in the following example.

FIGURE 3.14’s Opacity Example web page illustrates what happens when a transparent yel-
low color is placed on top of a red background—orange is formed. Before looking at the CSS rules
that generate the yellow colors, let’s first examine the CSS rule that generates the window’s red
background color:

.red {background-color: red;}

FIGURE 3.14 An opacity example that illustrates the rgba construct and the opacity property

973.15 Opacity Values for Color

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Opacity Example</title>
<style>

.red {background-color: red;}

.yellow-bg {background-color: rgb(255,255,0);}

.yellow-bg2 {background-color: rgba(255,255,0,.4);}

.yellow-bg3 {background-color: rgb(255,255,0); opacity: .4;}
</style>
</head>
<body class="red">
<p class="yellow-bg">This line uses background-color: rgb(255,255,0);</p>
<p class="yellow-bg2">

This line uses background-color: rgba(255,255,0,.4);
</p>
<p class="yellow-bg3">

This line uses background-color: rgb(255,255,0); opacity: .4;
</p>
</body>
</html>

rgba construct

opacity property

Note the browser window’s first sentence and the CSS rule that generates its yellow
background:

.yellow-bg {background-color: rgb(255,255,0);}

The rgb value’s 255 values indicate maximum amounts of red and green, and that forms yellow.
The web page’s red background is blocked by the sentence’s yellow background, which is 100%
opaque by default.

Next, note the browser window’s second sentence and the CSS rule that generates its orange
background:

.yellow-bg2 {background-color: rgba(255,255,0,.4);}

The .4 indicates that the yellow color will be 40% opaque and 60% transparent. That transparency
allows the yellow background to mix with the web page’s red background to form orange.

As an alternative to using rgba, you can use rgb in conjunction with the opacity property.
Here’s the third class selector rule from the Opacity Example web page:

.yellow-bg3 {background-color: rgb(255,255,0); opacity: .4;}

This rule matches up with the web page’s third sentence. With an opacity value of .4, that sentence
gets 40% opacity for both its color property and its background-color property. For the sen-
tence’s color property, which determines the text’s color, the default color is black, and the web
page’s background color is red. They mix to form a reddish gray. Note the reddish-gray text for the
Opacity Example web page’s third sentence. For the sentence’s background-color property, the
preceding CSS rule specifies yellow, and the web page’s background color is red. They mix to form
orange. Note the orange background color for the Opacity Example web page’s third sentence.

3.16 HSL and HSLA Values for Color
With CSS (and also with HTML), there are sometimes multiple ways to accomplish the same
thing. That point is particularly pertinent when it comes to specifying colors. You’ve already
learned how to specify color values with names, the rgb construct, and the rgba construct. Now
for the hsl construct. Here’s the syntax:

hsl(hue-integer,saturation-percent,lightness-percent)

HSL stands for hue, saturation, and lightness. Hue is a degree on the color wheel shown in
FIGURE 3.15. The wheel is a circle, so the wheel’s degrees go from 0 to 360. As you can see in
the figure, 0 degrees is for red, 120 degrees is for green, and 240 degrees is for blue. For a circle,
0 degrees is equivalent to 360 degrees. So, to specify red, you can use 360 as an alternative to 0.

The second value in the hsl construct is the color’s percentage of saturation. The W3C says
0% means a shade of gray, and 100% is the full color. For an alternative way to think about it, if you
look up “saturation” on Google, you should find something like “the extent to which something
is dissolved or absorbed compared with the maximum possible absorption.” Suppose there’s a girl

98 Chapter 3 Cascading Style Sheets (CSS)

named Caiden on her middle school cheer team. She washes her new $50 uniform and forgets
to remove her cherry nail polish from the uniform’s skirt pocket. The result? (1) A big blotch of
“maximum possible absorption” red near the pocket due to a saturation value of 100%, (2) a bit
of reddish coloring added to the rest of the uniform due to a saturation value near 25%, and (3) a
month’s worth of Caiden doing the whole family’s laundry, nail polish excluded.

The third value in the hsl construct is the color’s percentage of lightness. A lightness value
of 0% generates black, regardless of the values for hue and saturation. A lightness value of 100%
generates white, regardless of the values for hue and saturation. A lightness value of 50% generates
a “normal” color.

Here’s an example CSS rule with an HSL color value:

<style>
 p {background-color: hsl(120,50%,75%);}
</style>

That color forms a light shade of grayish green, and here’s what it looks like:

FIGURE 3.15 Color wheel for the hsl construct’s hue value

993.16 HSL and HSLA Values for Color

600 (YELLOW)

1200 (GREEN)

1800 (CYAN)

2400 (BLUE)

3000 (MAGENTA)

00 (RED)

In the previous section, you learned how to add transparency to an RGB value by using the rgba
construct. Likewise, to add transparency to an HSL value, you can use the hsla construct. Here’s
the syntax:

hsla(hue-integer,saturation-percent,lightness-percent,opacity-number-between-0-and-1)

The fourth argument specifies the opacity. The opacity value must be in the form of a decimal
number between 0 and 1, with 0 being completely transparent and 1 being completely opaque.

Here’s an example CSS rule with an HSLA color value:

<style>
 .background {background-color: hsla(120,50%,75%,.5);}
</style>

What color is specified? It’s the same as the earlier grayish-green color, except that this time, the
grayish green blends with the web page’s background color as a result of the 50% opacity value. With
a default white web page background, the result would be a lighter shade of grayish green, like this:

3.17 Font Properties
In this section, we describe how to display text with different font characteristics. You’ve probably
heard of the term “font,” but if not, font refers to the characteristics of text characters—height,
width, thickness, slantedness,7 body curvatures, and endpoint decorations. That should make more
sense later on when we present CSS font property details and show examples. Specifically, you’ll
learn about the font-style, font-variant, font-weight, font-size, font- family, and
font shorthand properties.

font-style property
The font-style property specifies whether the text is to be displayed normally or slanted. Here
are the valid values for the font-style property:

7 Apparently “slantedness” is not a word, but it should be. If it becomes a word, you heard it here first.

font-style Values Description

normal Upright characters (not slanted).

oblique Use the same font as the current font, but slant the characters.

italic Use a cursive font (which tends to be slanted and is supposed
to look like handwriting).

100 Chapter 3 Cascading Style Sheets (CSS)

These descriptions indicate a slight difference between the oblique and italic properties,
with italic tending to be more decorative. Most web developers use the value italic. Because
italics are so common, you should memorize the following technique for generating italics:

.italics {font-style: italic;}

As always, choose a name for the class selector that’s descriptive. Here, we chose the name
italics because it’s descriptive and easy.

Upright (normal) characters are the default, so why would you ever want to specify normal
for the font-style property? Suppose you have a whole paragraph that’s italicized and you want
one word in the paragraph not italicized. To make that word normal (not italicized), you can use
font-style: normal.

The W3C provides default values for all CSS properties, and to force the default value to be
used for a particular property, you can specify initial for that property. So, given the situation
described with an italicized paragraph, to make one word not italicized, you can apply the follow-
ing rule to that word:

.not-italicized {font-style: initial;}

font-variant Property
The font-variant property specifies how lowercase letters are displayed. Here are the valid
values for the font-variant property:

Here’s an example that uses a small-caps CSS rule:

.title {font-variant: small-caps;}

...
<div class="title">The Great Gatsby</div>

And here’s the resulting displayed text:

The Great Gatsby

font-weight Property
The font-weight property specifies the boldness of the text characters. Here are the valid
values for the font-weight property:

font-variant Values Description

normal Display lowercase letters normally.

small-caps Display lowercase letters with smaller-font uppercase letters.

1013.17 Font Properties

These descriptions for bolder and lighter are probably all you need to know, but you may
want to dig a little deeper. With bolder and lighter, the targeted text inherits a default font-
weight value from its surrounding text, and then the targeted text’s weight gets adjusted up or
down relative to that inherited weight. For example, if you specify a bold font weight for a para-
graph, you can make a particular word within the paragraph even bolder by specifying bolder
for that word’s font weight.

Because boldfacing is such a common need, you should memorize the following technique
for making something bold:

.bold {font-weight: bold;}

font-size Property
The font-size property specifies the size of the text characters. There are quite a few values
allowed for the font-size property. Here are the most appropriate ones:
Here’s an example class selector rule that uses the font-size property with an xx-large
value:

font-size Values Description

xx-small, x-small,
small, medium, large,
x-large, xx-large

It’s up to the browser to determine a font size that can
be reasonably described as xx-small, x-small,
small, etc.

smaller, larger Using a value of smaller causes its targeted text to have
smaller characters than the text that surrounds it.
Using a value of larger causes its targeted text to have
larger characters than the text that surrounds it.

number of em units One em unit is the height of the element’s normal font size.

font-weight Values Description

normal, bold It’s up to the browser to determine a font weight that can be
described as normal or bold.

bolder, lighter Using a value of bolder causes its targeted text to have
thicker characters than the text that surrounds it.
Using a value of lighter causes its targeted text to have
thinner characters than the text that surrounds it.

100, 200, 300, 400,
500, 600, 700, 800,
900

100 generates the thinnest characters and 900 the thickest
characters.
400 is the same as normal, and 700 is the same as bold.

102 Chapter 3 Cascading Style Sheets (CSS)

.huge-font {font-size: xx-large;}

So far, most of the CSS property values you’ve seen have consisted of a text description, such
as xx-large. As an alternative, some properties have values that are comprised of two parts—a
number and a unit. For example, for the font-size property, you can use a value with a number
next to em, where one em unit is the height of a typical character. The em unit’s name comes from
the letter M. Originally, one em unit equaled the height of the letter M. However, there are fonts
for languages that don’t use the English alphabet, so it was deemed inappropriate for em to rely on
the letter M. Thus, em is no longer tied to the letter M, and testing shows that a single em unit is a
bit taller than the height of M.

Here are class selector rules that use the font-size property with em values:

.disclaimer {font-size: .5em;}

.advertisement {font-size: 3em;}

The first rule is for disclaimer text, which is supposed to be annoyingly small to avoid scrutiny,
and its .5em value displays text that is half the size of normal text. The second rule is for advertise-
ment text, which is supposed to be annoyingly large to draw attention, and its 3em value displays
text that is three times the size of normal text.

Here, for each font-size value, note that there is no blank space separating the number
from em. Likewise, for all CSS values that consist of a number and a unit, you should not have a
blank space. Having no blank space is a requirement of the CSS standard.

Absolute Units
There are quite a few other techniques for specifying font size. For example, you can specify a
number along with an in, cm, mm, pt (point), or pc (pica) unit. The W3C refers to those units
rather disdainfully as “so-called absolute units.” Although they’re still used every now and then,
and you should understand them, absolute units have fallen out of favor for everyday needs. This
is because it’s good to allow users to adjust the size of things, particularly people with impaired
eyesight. Also, with regular monitors, testing shows that the “absolute units” are not absolute;
their sizes vary with different resolutions, different monitors, and zooming in and out.

The W3C says absolute units are required to have absolute lengths only when the target
device has a high resolution; that usually means just printers, but it can also mean high-resolution
monitors. For a scenario where a fixed size is essential and absolute units are appropriate, picture
your wedding preparations. Suppose you’re tasked with printing your wedding invitations on pre-
cut pink cherub-adorned cards. To avoid agitating a stressed-out fiancé(e), you’ll want to use
absolute units to make sure the words fits perfectly on the cards.

font-family Property
The prior font properties allow the web developer to choose values for specific font characteristics
(font-weight for characters’ thickness, font-size for characters’ height, etc.). The next font

1033.17 Font Properties

property, font-family, is more holistic in nature. The font-family property allows the web
developer to choose the set of characters that the browser uses when displaying the element’s text.
As you’d expect, the characters in a particular character set are similar in appearance—same basic
height, width, body curvature, and so on.

Here’s an example class selector rule that uses the font-family property:

.ascii-art {font-family: Courier, Prestige, monospace;}

Note that with the font-family property, you should normally have a comma-separated list
of fonts, not just one font. In applying the preceding rule to elements that use “asci-art” for their
class attribute, the browser works its way through the font-family list from left to right, and
uses the first font value it finds installed on the browser’s computer and skips the other fonts. So
if Courier and Prestige are both installed on a computer, the browser uses the Courier font
because it appears further left in the list.

There are lots of fonts, and different browsers support different ones. Users are able to install
fonts in addition to the ones provided by their browsers. For a small sample of popular font
names, see https://www.w3.org/TR/css-fonts-3/#generic-font-families. On that website, you can
see that most font names use title case (the first letter of each word is capitalized), but a few use
all lowercase letters. Font names are case sensitive on some operating systems, so you should take
care to use the proper case. The font names that use all lowercase letters are special, and they are
known as generic fonts.

A generic font is a name that represents a group of fonts that are similar in appearance. For
example, monospace is a generic font, and it represents all the fonts where each character’s width
is uniform. Whenever you use a font-family CSS rule, you should include a generic font at the
end of the rule’s list of font names. In the following CSS rule (copied from earlier for your conve-
nience), note the monospace font at the end of the list of font names:

.ascii-art {font-family: Courier, Prestige, monospace;}

The generic font name provides a fallback mechanism. If a user’s browser doesn’t support any of
the fonts at the left of the generic font name, the browser uses the generic font to display a font
that the browser does support. Generic font names are not actual fonts with specific appearance
characteristics; they are just placeholders that tell the browser to look for an actual font in a partic-
ular family of fonts. So in the ascii-art CSS rule, if a browser does not support the Courier or
Prestige fonts, the browser digs up a monospace font that it does support and uses it. To ensure
that a web page’s font looks pretty much the same on different browsers, for each font-family
CSS rule, you should always use fonts that are similar, which means that they are associated with
the same generic font. Referring once again to the preceding ascii-art CSS rule, Courier and
Prestige both display uniform-width characters, and they are both associated with the same
monospace generic font.

The monospace font is one of five generic fonts that all browsers recognize and support.
Here’s a list of the five generic fonts with descriptions and examples:

104 Chapter 3 Cascading Style Sheets (CSS)

https://www.w3.org/TR/css-fonts-3/#generic-font-families

As mentioned earlier, generic font names use lowercase, and you can verify that for the five
generic fonts shown. On the other hand, specific font names use title case. You can verify that by
examining the five example fonts shown in the right column (e.g., Courier New).

When specifying a multiple-word font name, surround the name with quotes. For example,
in FIGURE 3.16, note the quotes around New Century Schoolbook. In addition, note the cod-
ing convention of inserting a blank space after each comma in a font-family list of font names.

Suppose a web page includes the code in Figure 3.16. If a user’s computer has the New
Century Schoolbook font and also the Times font installed on it, which font will the
browser use to display the paragraph? It will use New Century Schoolbook, because it’s the
first font in the list and it’s installed on the user’s computer.

Generic
Font Names Description Example Font

monospace All characters have the same width. Courier New looks like
this.

serif Characters have decorative
embellishments on their endpoints.

Times New Roman looks like this.

sans-serif Characters do not have decorative
embellishments on their endpoints.

Arial looks like this.

cursive Supposed to mimic cursive
handwriting, such that the characters
are partially or completely
connected.

Monotype Corsiva looks like this.

fantasy Supposed to be decorative and
playful.

Impact looks like this.

FIGURE 3.16 An example font-family CSS rule

1053.17 Font Properties

quotes spaces

<style>
 blockquote {font-family: "New Century Schoolbook", Times, serif;}
</style>

<blockquote>
 Call me Ishmael. Some years ago–never mind how long precisely–
 having little or no money in my purse, and nothing particular to
 interest me on shore, I thought I would sail about a little and
 see the watery part of the world.
</blockquote>
<cite>Moby Dick</cite>

font Shorthand Property
Fairly often as a web programmer, you’ll want to apply more than one of the prior font-related
properties to an element. You could specify each of those font properties separately, but there’s an
easier way. The font property can be used to specify all these more granular font properties—
font-style, font-variant, font-weight, font-size, line-height, and font-family.
Previously, we mentioned all these font properties except for line-height. We’ll cover line-
height shortly, but first we’ll discuss some overarching details about the font property.

Here’s the syntax for a font property-value pair:

font: [font-style-value] [font-variant-value] [font-weight-value]
 font-size-value[/line-height-value] font-family-value

As usual, the italics are the book’s way of telling you that the italicized thing is a description
of what goes there, so for a font property-value pair in a CSS rule, you would replace font-style-
value with one of the font-style values, such as italic. The square brackets are the book’s
way of telling you that the bracketed thing is optional, so the font-style, font-variant,
font-weight, and line-height values are all optional. On the other hand, the font-size
and font-family values have no square brackets, so you must include them whenever you use
the font property. For the property values you decide to include, they must appear in the order
previously shown. If a line-height value is included, you must position it at the right of the
font-size value, with a / separating the two values.

Here’s an example type selector rule that uses a font property:

blockquote {
 font: italic large "Arial Black", Helvetica, sans-serif;
}

In the preceding rule, how many types of font properties are specified and what are they? Glanc-
ing at the font property’s value, you can see there are five items in the list, so you might think
there are five types of font properties. Upon closer inspection, you should notice the commas
between the last three items. Those commas are delimiters for a sublist, where the sublist is the
value for the font-family property. At the left of the font-family property’s list, you can see two
other property values—italic and large—separated by spaces. Those values are for the font-
style and font-size properties.

By the way, the W3C refers to the font property as a shorthand property because it’s a time-
saving construct for handling multiple font characteristics. Later, we’ll introduce additional short-
hand properties for other groups of related CSS properties. When given a choice between using a
shorthand property and using a set of more granular properties, some web programmers prefer
using the shorthand property because of its compactness, whereas others prefer using the more

Use commas to separate
font–family values.

Use spaces to separate
property values.

106 Chapter 3 Cascading Style Sheets (CSS)

granular properties because of their clarity. In this book, we use both techniques and let the situ-
ation dictate our preference.

3.18 line-height Property
We mentioned the line-height property in the previous Font Properties section as part of
our discussion of the font shorthand property. We postponed our discussion of the line-
height property until now because, although it can be part of a font shorthand property’s
value, it’s not really a font property. It’s used to specify the vertical separation between each
line of text in an element. For example, in FIGURE 3.17, note the sentence1 CSS rule with
line-height: 2em. That rule causes its matching element to display its lines with a vertical
separation equal to twice the height of a normal character (remember, an em unit represents the
height of a normal character). Note the resulting double-spaced line heights in FIGURE 3.18’s
displayed text.

FIGURE 3.17 Source code for Declaration of Independence web page

1073.18 line-height Property

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Declaration of Independence</title>
<style>
 .sentence1 {line-height: 2em; font-family: Times, serif;}
 .sentence2 {font: 1em/2em Times, serif;}
</style>
</head>

<body>
<h2>Declaration of Independence, working draft v. 2.01</h2>
<p>
 We hold these truths to be self-evident,
 that every man is<ins>all men are</ins>
 created equal.

 That they are endowed by their Creator
 with certain unalienable Rights, that among these are Life,
 Liberty and the pursuit of Happiness.
</p>
</body>
</html>

A line height of 2em generates double spacing.

This specifies font size and then line height.

Jesse
Rectangle

