
their tags surround not only the cost content, but also additional content. This principle of locality,
where local things override global things, parallels the nature of the “cascading” that takes place in
applying CSS rules. We’ll discuss that concept in the next section.

3.9 Cascading
Have you wondered about the significance of the words in “Cascading Style Sheets”? Traditionally,
a “style sheet” is a collection of rules that assign appearance properties to structural elements in
a document. For a web page, a style sheet “rule” refers to a value assigned to a particular display
property of a particular HTML element. The “cascading” part of Cascading Style Sheets is the sub-
ject of this section. If you look up the word “cascade” online or in a dictionary,2 you’ll see some-
thing like “a series of stages in a process.” Likewise, CSS uses a series of stages. More specifically,
there are different stages/places where CSS rules can be defined. Each stage/place has its own set
of rules, and each set of rules is referred to as a style sheet. With multiple style sheets organized in
a staged structure, together it’s referred to as Cascading Style Sheets.

To handle the possibility of conflicting rules at different places, different priorities are given
to the different places. See FIGUre 3.8, which shows the places where CSS rules can be defined.
The higher priority places are at the top, so an element’s style attribute (shown at the top of the
CSS rules list) has the highest priority. We’ll explain the style attribute in the next section, but
let’s first do a cursory run-through of the other items in Figure 3.8’s list.

Figure 3.8 shows that the second place for CSS rules is in a style container. That placement
should sound familiar because we’ve been using style containers for all the prior CSS examples.
The next place for CSS rules is in an external file. We’ll discuss external files later in this chapter.

The next place for CSS rules is in the settings defined by a user for a particular browser
installation. We won’t discuss that technique because there’s nothing for you, the programmer, to
learn or to do. Instead, the user may choose the settings he or she is interested in. If you’d like to
learn how to choose the settings, you’re on your own, and be aware that different browsers have
different interfaces for adjusting their settings.

The last place for CSS rules, and the place with the lowest priority, is in the native default
settings for the browser that’s being used. As a programmer, there’s nothing you can do to modify
a browser’s native default settings. But you should be aware of those default settings so you know
what to expect when none of the first four cascading techniques is employed. In Chapter 2, we
described “typical default display properties” for each HTML element presented. Those proper-
ties come from the major browsers’ native default settings. Different browsers can have different
default settings, so your web pages might not look exactly the same on different browsers. In gen-
eral, try not to rely on browser defaults because it’s hard to gauge the whims of the browser gods as
they churn out new browser versions (with possibly new browser defaults) at a precipitous pace.

In displaying an element, a browser will check for CSS rules that match the element, start-
ing the search at the top of the cascading CSS rules list in Figure 3.8 and continuing the search

2 A dictionary was an ancient form of communication, used as a means to record word definitions. The
definitions appeared on thin sheets of compressed wood fiber.

86 Chapter 3 Cascading Style Sheets (CSS)

Jesse
Rectangle

down the list, as necessary. When there is a CSS rule match, the CSS rule’s properties will be
applied to the element, and the search down the list stops for those properties.

3.10 style Attribute, style Container
style attribute
The style attribute is at the top of Figure 3.8’s cascading CSS rules list; as such, when you use
the style attribute for CSS rules, those rules are given the highest priority. Here’s an example
element that uses a style attribute:

<h2 style="text-decoration:underline;">Welcome!</h2>

As you can see, using the style attribute lets you insert CSS property-value pairs directly in the
code for an individual element. So the preceding h2 element—but no other h2 elements—would
be rendered with an underline.

The style attribute is a global attribute, which means it can be used with any element. Even
though it’s legal to use it with every element, and you’ll see it used in lots of legacy code, you should
avoid using it in your pages. Why? Because it defeats the purpose of CSS—keeping presentation
separate from content.

Let’s imagine a scenario that demonstrates why the style attribute is bad. Suppose you
embed a style attribute in each of your p elements so they display their first lines with an inden-
tation (later on, you’ll learn how to do that with the text-indent property). If you want to
change the indentation width, you’d have to edit every p element. On the other hand, making such
a change is much easier when the CSS code is at the top of the page in the head container because
you only have to make the change in one place—in the p element’s class selector rule. If you make
the change there, it affects the entire web page.

Using the style attribute used to be referred to as “inline styles,” but the W3C no longer
uses that term, and we won’t use it either. However, you should recognize the term “inline styles”
because you’ll hear it being used every now and then.

FIGUre 3.8 places where CSS rules can be defined

Places Where CSS Rules Can Be Defined, Highest to Lowest Priority

1. In an element’s style attribute.

2. In a style element in the web page’s head section.

3. In an external file.

4. In the settings defined by a user for a particular browser installation.

5. In the browser’s native default settings.

873.10 style Attribute, style Container

style Container
As you know from prior examples, the style element is a container for CSS rules that apply to
the entire current web page. The browser applies the CSS rules’ property values by matching the
CSS rules’ selectors with elements in the web page. Normally, you should have just one style
container per page, and you should put it in a web page’s head container. It’s legal to put a style
container in the body, but don’t do it because then it’s harder to find the CSS rules.

In Figure 3.8’s cascading CSS rules list, note how the higher priority places are more specific.
More specific rules beat more general rules. For example, if a style attribute designates a para-
graph as blue, but a rule in a style container designates paragraphs as red, then what color will
the browser use to render the paragraph? The style attribute’s blue color wins, and the browser
renders that particular paragraph with blue text. This principle of more specific rules beating
more general rules should sound familiar. It parallels the principle introduced earlier that says
local things override global things.

3.11 External CSS Files
Overview
In general, splitting up a big thing into smaller parts makes the thing easier to understand. To improve
understandability, you should consider moving your CSS rules to an external file. There are two steps
necessary to tie a web page to an external file that contains CSS rules. First, for the external file to be
recognized as a CSS file, the external file must be named with a .css extension. For example, in an
upcoming web page, we’ll use the filename pumpkinPatch.css. Second, for the web page to access
a CSS file’s CSS rules, the web page must use a link element in the web page’s head container. The
link element is a void element, so it’s comprised of just one tag, with no end tag. Here’s the syntax:

<link rel="stylesheet" href="name-of-external-file">

In this code fragment, note the href="name-of-external-file" attribute-value pair. The W3C
does not specify what href stands for, but the most common belief is that it stands for “hypertext
reference.” The href attribute’s value specifies the name of the file that holds the CSS rules (e.g.,
pumpkinPatch.css).

Note the rel="stylesheet" attribute-value pair. rel stands for “relationship,” and its value
tells the browser engine what to do with the href file. Having a rel value of stylesheet tells the
browser engine to look for CSS rules in the href file and apply them to the current web page.

To justify the extra work of adding a link element to handle an external CSS file, typically an
external CSS file will be nontrivial. That means the file will contain at least five CSS rules (usually
a lot more), or it will be shared by more than one web page.

Why is sharing an external CSS file helpful? With a shared external CSS file, it’s easy to ensure
that all the web pages on your site follow the same common CSS rules. And if you want to change
those rules, you change them in one place, in the external file, and the change affects all the web
pages that share the external file.

88 Chapter 3 Cascading Style Sheets (CSS)

External CSS files used to be referred to as “external style sheets,” but the W3C no longer
uses that term, and we won’t use it either. However, you should recognize the term “external style
sheets” because you’ll hear it being used every now and then.

example
Let’s put what you’ve learned into practice by examining the source code for a modified version
of the Pumpkin Patch web page—a version that uses an external CSS file instead of a style
 container. See FIGUre 3.9, which shows the head container for the modified Pumpkin Patch
web page. Note that there’s no style container; instead there’s a link element that connects to
an external CSS file.

See FIGUre 3.10. It shows the source code for the pumpkinPatch.css external CSS file,
which gets loaded into the new Pumpkin Patch web page. The external CSS file’s CSS rules are
identical to those found in the original Pumpkin Patch web page, so, as you’d expect, there is no
difference in how the two web pages render.

Normally, external CSS files are rather sparse. They include CSS rules, with blank lines to
separate logical groups of rules, and that’s pretty much it. Optionally, you can include comments
to explain nonintuitive characteristics of the CSS file. In the previous chapters, you’ve learned
to include a meta author element at the top of your HTML files, so other people in your com-
pany know whom to go to when questions arise. Likewise, for each external CSS file, you should
include a comment at the top that shows the author’s name. Here’s an example author’s-name
comment, copied from the top of the pumpkinPatch.css source code:

/* John Dean */

FIGUre 3.9 head container for the pumpkin patch web page that uses an external CSS file

FIGUre 3.10 Source code for external CSS file that gets loaded into the pumpkin patch
web page

893.11 External CSS Files

This link element connects the
web page to its external CSS file.

<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Halloween on the River</title>
<link rel="stylesheet" href="pumpkinPatch.css">
</head>

CSS comment
/* John Dean */

.orange {color: darkorange;}

.white {color: white;}

.black {color: black;}

.orange-background {background-color: orange;}

Note the comment syntax. You must start with a /* and end with a */.
If you have a long comment, you should have the comment span several lines, like this:

/* The following rules are for a CSS image sprite that enables hover
effects for the navigation bar at the left. */

This comment mentions a “CSS image sprite.” We’ll describe them in detail later in the book, but
for now, just realize that a CSS image sprite is a rather complicated coding construct that requires
CSS rules that are nonintuitive. Thus, it provides a good example of something where a CSS com-
ment is appropriate.

CSS Validation Service
Remember the HTML validation service mentioned in Chapter 1? It’s a great tool for verifying
that the code in an HTML file comports with the W3C’s HTML standard. Likewise, there’s a CSS
validation service tool for verifying that the code in an external CSS file comports with the W3C’s
CSS standard. You can find the CSS validation service at https://jigsaw.w3.org/css-validator. See
FIGUre 3.11 for a screenshot of the CSS validation service’s home page. We’ll discuss home pages
in more depth in a later chapter, but for now, just know that a home page is the default first page a
user sees when the user visits a website.

In Figure 3.11, note the CSS validation service’s three tabs. With the first tab, By URI, the user
enters a web address for the external file that is to be checked. For that to work, you need the web

FIGUre 3.11 W3C’s CSS validation service

90 Chapter 3 Cascading Style Sheets (CSS)

Click this tab to check a web page file on a local computer.

Click here to show options
such as displaying source code.

https://jigsaw.w3.org/css-validator

page to be uploaded to a web server. With the second option, By file upload, the user selects a file
on his or her local computer. With the third option, By direct input, the user copies HTML code
directly into a large text box. Usually, you will use the second option, By file upload, because it’s
a good idea to test a file stored locally before uploading it.

We recommend that you use the CSS validation service to check all your external CSS files.
Go ahead and try it out now on the Pumpkin Patch external CSS file. Specifically, retrieve the
pumpkinPatch.css file from the book’s resource center and save it to your hard disk or to a
flash drive. Alternatively, you can create the file yourself by loading an IDE, opening a new file,
copying Figure 3.10’s code into the file, and saving the file with the name pumpkinPatch.css.
After saving the file, go to the CSS validation service and click the By file upload tab. In the Local
CSS file box, search for and select the pumpkinPatch.css file. Click the Check button, and that
should generate a message indicating success.

3.12 CSS Properties
For the remainder of this chapter, we’ll focus on CSS properties. As you know from prior exam-
ples, a CSS property specifies one aspect of an HTML element’s appearance. The W3C’s CSS3
standard provides many CSS properties (more than a hundred), so there is great flexibility in
terms of specifying appearances. Remembering all those properties and the types of values associ-
ated with them can be daunting. Unless you’ve got the memory of a sea lion,3 you’ll probably need
to use a CSS reference and look things up every now and then.

The W3C and the WHATWG have CSS references, but, unfortunately, they’re rather
disjointed, which can make them difficult to navigate. The Mozilla Developer Network has
a more user-friendly CSS reference at https://developer.mozilla.org/en-US/docs/Web/CSS
/ Reference. Take a look at FIGUre 3.12, which shows the keyword index part of the refer-
ence. Keywords are the words that form the syntax of a language, so the figure’s keyword
index shows the words that form the CSS language. Note the first keyword entry, :active.
The keywords that start with a colon are known as pseudo-elements (we’ll describe a few of
them in later chapters). The non-colonated4 words are properties. To get details on any of the
keywords, click on the keyword. Time for a short field trip: Go to Mozilla’s CSS reference and
click on the font-size property. That takes you to a page with details about the font-size
property.

We’ll discuss quite a few of the CSS properties later in the book, but for this chapter, we’ll
limit our discussion to the properties shown in FIGUre 3.13. Those properties fall into five prop-
erty groups—color, font, text, border, and margin/padding. We’ll discuss the properties in those
groups in the upcoming sections.

3 James Randerson, “Sea Lion Scores Top for Memory,” New Scientist, October 23, 2003, https://www
.newscientist.com/article/dn2960-sea-lion-scores-top-for-memory.
4 “Colonated” isn’t a word, but it should be. When the Oxford English Dictionary folks get around to approving
my word submission, colonated will mean “something that has a colon.”

913.12 CSS Properties

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://www.newscientist.com/article/dn2960-sea-lion-scores-top-for-memory
https://www.newscientist.com/article/dn2960-sea-lion-scores-top-for-memory

3.13 Color Properties
In Figure 3.13, you can see two color properties—color and background-color. The color
property specifies the color of an element’s text. The background-color property specifies the
background color of an element. The color properties are pretty straightforward, right? It’s the
values for the color properties that require more attention.

There’s quite a bit of flexibility when it comes to specifying color values. You can specify a
color value using one of five different formats. We’ll describe the formats in detail, but first, here’s
a teaser of what you can look forward to:

color name—for example, red
RGB value—specifies amounts of red, green, and blue

FIGUre 3.12 Mozilla’s CSS properties reference

FIGUre 3.13 CSS properties introduced in this chapter
Note: Ellipses are used here because there are too many border, margin, and padding properties to show in this figure.

92 Chapter 3 Cascading Style Sheets (CSS)

Color properties color, background color

Font properties font-style, font-variant, font-weight, font-size,
font-family, font

Text properties line-height, text-align, text-decoration,
text-transform, text-indent

Border properties border-bottom, border-bottom-color, …

Margin and
padding properties

margin-bottom, margin-left, …
padding-bottom, padding-left, …

RGBA value—specifies red, green, and blue, plus amount of opacity
HSL value—specifies amounts of hue, saturation, and lightness
HSLA value—specifies hue, saturation, and lightness, plus amount of opacity

Color Names
The CSS3 specification defines 147 color names, and the major browsers support all those colors. To
view the color names and their associated colors, go to https://www.w3.org/TR/css3- color/# svg-color.
On that web page, you should recognize a few of the color names, like orange and darkorange,
from previous web page examples in this book. An example of a more obscure color name is
 darkslategray. Note how we use darkslategray in this code fragment’s class selector rule:

<head>
<style>
 .roofColor {color: darkslategray;}
</style>
</head>

<body>
<p>
 Mackay Hall's roof is
 dark slate gray.
</p>
</body>

3.14 RGB Values for Color
RGB stands for red, green, and blue. An RGB value specifies the amounts of red, green, and blue that
mix together to form the displayed color. To specify an amount of a color, you can use a percentage,
an integer, or a hexadecimal number (we’ll explain hexadecimal shortly). We’ll provide explana-
tions and examples coming up, but for now, here are the allowable ranges for each technique:

percentage—0% to 100% for each color
integer—0 to 255 for each color
hexadecimal—00 to ff for each color

rGB Values with percentages
To specify an RGB value with percentages, use this format:

rgb(red-percent, green-percent, blue-percent)

Each percent value must be between 0% and 100%. Here’s an example class selector rule that uses
an RGB value with percentages:

<style>
 .eggplant {background-color: rgb(52%,20%,45%);}
</style>

color name

933.14 RGB Values for Color

https://www.w3.org/TR/css3-color/#svg-color
Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

