
on, there will be less likelihood of accidentally forgetting to add a semicolon in front of the new
property-value pair.

3.6 Class Selectors
Class Selector Overview
So far, we’ve talked about type selectors and the universal selector. We’re now going to talk about a
third type of CSS selector—a class selector. Let’s jump right into an example. Here’s a class selector
rule with .red for its class selector and a background tomato color for matched elements:

.red {background-color: tomato;}

The dot thing (.red in this example) is called a class selector because its purpose is to select
 elements that have a particular value for their class attribute. So the class selector rule would
select/match the following element because it has a class attribute with a value of red:

<q class="red">It is better to keep your mouth closed and let people
 think you are a fool than to open it and remove all doubt.</q>

In applying the class selector rule to this element, the quote gets displayed with a tomato back-
ground color.

As with type selectors, you can have more than one class selector share one CSS rule. Just
separate the selectors with commas and spaces, like this:

.red, .conspicuous, h1 {background-color: tomato;}

Note that in addition to a second class selector (.conspicuous), there’s also a type selector (h1).
In a single CSS rule, you can have as many comma-separated selectors as you like, all sharing the
same set of property-value pairs.

With a type selector, your selector name (h1 in the this example) comes from the set of
 predefined HTML element names. But for a class selector, you make up the selector name. When
you make up the selector name, make it descriptive, as is the case for red and conspicuous in
the preceding example. As an alternative for red, you could get even more descriptive and use
tomato. If you use tomato, that will be the same as the name used by the property value. There
isn’t anything wrong with that. Consistency is good.

Now let’s look at class selectors in the context of a complete web page. In FIGUre 3.3, note the
three CSS rules with their class selectors .red, .white, and .blue. Then take a look at the three q
elements and their class attribute clauses class="red", class="white", and class="blue".
Try to figure out what the web page will display before moving on to the next paragraph.

In Figure 3.3, the first q element has a class attribute value of red, which means the .red
CSS rule applies. That causes the browser to display the first q element with a tomato-colored

class selector

793.6 Class Selectors

Jesse
Rectangle

background. I used a standard red background initially, but I found that the black text didn’t show
up very well. Thus, I chose tomato red, since it’s lighter, and the color reminds me of my cherished
home-grown tomatoes. Moral of the story: Get used to trying things out, viewing the result, and
changing your code if appropriate.

The second and third q elements have class attribute values of white and blue. As you can
see from the source code, that means they get matched with the .white and .blue class selector
rules, and they get rendered with white and skyblue backgrounds, respectively. Take a look at
FIGUre 3.4 and note the red, white, and blue background colors for the three quotes.

In addition to the three class selector rules, the Mark Twain Quotes web page also has a type
selector rule, q {font-family: Impact;}. We’ll discuss the font-family property later in
this chapter, but for now, look at the Mark Twain quotes web page and observe the thick block
lettering for the three q elements. That lettering is from the Impact font.

Usually, browsers use a default background color of white, so why did we specify white for
the second q element’s background color? One benefit is that it’s a form of self-documentation.
Another benefit is that it would handle a rogue browser with a nonwhite default background
color. With such a browser, if there were no explicit CSS rule for the white background color, then
the user would see red, nonwhite, and blue. That isn’t very patriotic for an American folk hero’s
quotes.

FIGUre 3.3 Source code for Mark twain Quotes web page

80 Chapter 3 Cascading Style Sheets (CSS)

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Mark Twain Quotes</title>
<style>
 .red {background-color: tomato;}
 .white {background-color: white;}
 .blue {background-color: skyblue;}
 q {font-family: Impact;}
</style>
</head>

<body>
<h1>Mark Twain Quotes</h1>
<q class="red">It is better to keep your mouth closed and
 let people think you are a fool than to open it and
 remove all doubt.</q>

<q class="white">Get your facts first, then you can distort
 them as you please.</q>

<q class="blue">Never put off till tomorrow what you can do
 the day after tomorrow.</q>
</body>
</html>

class
selectors

class attribute

class Selectors with element type prefixes
Let’s now discuss a specialized type of class selector—a class selector with an element type prefix.
Here’s the syntax:

element-type.class-value {property1: value; property2: value;}

And here’s an example CSS rule that uses a class selector with an element type prefix:

q.blue {background-color: skyblue;}

Because q.blue has .blue in it, q.blue matches elements that have a class attribute value of
"blue". But it’s more granular than a standard class selector in that it looks for class="blue"
only in q elements.

FIGUre 3.5 shows a modified version of the style container for the Mark Twain Quotes
web page. It uses four class selectors with element type prefixes. How will that code change the
appearance of the web page, compared to what’s shown in Figure 3.4? The original style con-
tainer used the simple class selector rule .blue {background-color: skyblue;}. That
caused all elements with class="blue" to use the CSS color named skyblue. But suppose

FIGUre 3.4 Mark twain Quotes web page

FIGUre 3.5 Improved style container for Mark twain Quotes web page

813.6 Class Selectors

<style>
 h1.blue {color: blue;}
 q.red {background-color: tomato;}
 q.white {background-color: white;}
 q.blue {background-color: skyblue;}
 q {font-family: Impact;}
</style>

you want a different shade of blue for the “Mark Twain Quotes” header. You could use a dis-
tinct class attribute value for the header, like “header-blue,” but having such a specific class
attribute value would be considered poor style because it would lead to code that is harder to
maintain. Specifically, it would be hard to remember a rather obscure name like “header-blue.”
So, what’s the better approach? As shown in Figure 3.5, it’s better to use separate h1.blue and
q.blue class selectors with element type prefixes. Note how the h1.blue rule specifies a
background color of blue, and the q.blue rule specifies a background color of skyblue.

Figure 3.5’s style container uses a class selector with an element prefix, q.red, whereas the
original style container used a simple class selector, .red. Because there’s only one element that
uses class="red", the .red class selector was sufficient by itself; however, using q.red (and
also q.white) makes the code parallel for the three q element colors. More importantly, using
a class selector with an element prefix makes the code more maintainable. Maintainable code is
code that is relatively easy to make changes to in the future. For example, suppose you decide later
that you want a different shade of red for an h2 element. You can do that by using q.red and
h2.red.

Class Selectors with * prefixes
Instead of prefacing a class selector with an element type, as an alternative, you can preface a class
selector with an *. Because * is the universal selector, it matches all elements. Therefore, the fol-
lowing CSS rule is equivalent to a standard class selector rule (with no prefix):

*.class-value {property1: value; property2: value;}

So what would the following CSS rule do?

*.big-warning {font-size: x-large; color: red;}

It would match all elements in the web page that have a class attribute value of big-warning, and
it would display those elements with extra-large red font.

In the preceding CSS rule, note the hyphen in the *.big-warning class selector rule. The
HTML5 standard does not allow spaces within class attribute values, so it would have been ille-
gal to use *.big warning. If you want to use multiple words for a class attribute value, coding
conventions suggest that you use hyphens to separate the words, as in big-warning.

CSS property names and CSS property values are built into the browser engine, so their nam-
ing is not subject to the discretion of web developers. Nonetheless, it’s still good to know their
naming conventions so it’s easier to remember how to spell them. CSS property names follow
the same coding convention as developer-defined class attribute values—if there are multiple
words, use hyphens to separate the words (e.g., font-size). CSS property values usually follow
the same use-hyphens-to-separate-multiple-words coding convention (e.g., x-large in the pre-
ceding code fragment). But sometimes nothing separates the words (e.g., skyblue in the Mark
Twain Quotes web page).

82 Chapter 3 Cascading Style Sheets (CSS)

3.7 ID Selectors
It’s time for another type of selector—an ID selector. An ID selector is similar to a class selector
in that it relies on an element attribute value in searching for element matches. As you might
guess, an ID selector uses an element’s id attribute (as opposed to a class selector, which uses
an element’s class attribute). A significant feature of an id attribute is that its value must be
unique within a particular web page. That’s different from a class attribute’s value, which does
not have to be unique within a particular web page. The ID selector’s unique-value feature means
that an ID selector’s CSS rule matches only one element on a web page. This single-element
matching mechanism is particularly helpful with links and with JavaScript, but we won’t get to
those things until later in the book. So why introduce the ID selector now instead of waiting for
the links and JavaScript chapters? Because ID selectors are an important part of CSS.

Suppose you want the user to be able to link/jump to the “Lizard’s Lounge” section of your
web page. To do that, you’d need a link element (which we’ll discuss in a later chapter) and also
an element that serves as the target of the link. Here’s a heading element that could serve as the
target of the link:

<h3 id="lizards-lounge">Lizards Lounge</h3>

In this code, note the id attribute. The link element (not shown) would use the id attribute’s value
to indicate which element the user jumps to when the user clicks the link. For the jump to work,
there must be no confusion as to which element to jump to. That means the target element must
be unique. Using an id attribute ensures that the target element is unique.

Now that you have a rudimentary understanding of links and a motivation for using the id
attribute, let’s examine how to apply CSS formatting to an element with an id attribute. As always
with CSS, you need a CSS rule. To match an element with an id attribute, you need an ID selector
rule, and here’s the syntax:

#id-value {property1: value; property2: value;}

The syntax is the same as for a class selector rule, except that you use a pound sign (#) instead of
a dot (.), and you use an id attribute value instead of a class attribute value.

Remember the Lizard’s Lounge heading element shown earlier? How would the following ID
selector rule affect the appearance of the Lizard’s Lounge heading?

#lizards-lounge {color: green;}

This rule would cause browsers to display the Lizards Lounge heading with green font.
Note the spelling of lizards-lounge. If you want to use multiple words for an id attribute

value, the HTML5 standard states that it’s illegal to use space characters to separate the words.
Coding conventions suggest that you use hyphens to separate the words. That should sound
familiar—class attribute values also use hyphens to separate words.

ID selector

833.7 ID Selectors

3.8 span and div Elements
So far, we’ve discussed different types of selectors—type selectors, the universal selector, class
selectors, and ID selectors. No matter which selector you choose, you can apply it only if there’s
an element in the web page body that matches it. But suppose you want to apply CSS to text that
doesn’t coincide with any of the HTML5 elements. What should you do?

If you want to apply CSS to text that doesn’t coincide with any of the HTML5 elements, put
the text in a span element or a div element. If you want the affected text embedded within sur-
rounding text, use span (since span is a phrasing element). On the other hand, if you want the
text to span the width of its enclosing container, use div (since div is a block element).

See FIGUre 3.6 and note how the div and span elements surround text that doesn’t fit very
well with other elements. Specifically, the div element surrounds several advertising phrases
that describe Parkville’s world-famous Halloween on the River celebration, and the two span ele-
ments surround the two costs, $10 and $15. None of those things (a group of advertising phrases,

a cost, and another cost) corresponds to any of the standard HTML elements,
so div and span are the way to go if you want to apply CSS formatting.

The div and span elements are generic elements in that they don’t
provide any special meaning when they’re used by themselves. They are
simply placeholders to which CSS is applied. Think of div and span as
vanilla ice cream and CSS as the various toppings you can add to the ice
cream, such as chocolate chips, mint flavoring, and Oreos. Yummm!

In Figure 3.6, note the span element’s class attribute, copied here for
your convenience:

$10

In particular, note that there are two class selectors for the class attribute’s
value—white and orange background. As you’d expect, that means that
both the white and orange background CSS rules get applied to the span
element’s content. Note that the two class selectors are separated with spaces.
The delimiter spaces are required whenever you have multiple class selec-
tors for one class attribute.

In the Pumpkin Patch web page, there are competing CSS rules for the
two costs, $10 and $15. The div container surrounds the entire web page body, so it surrounds
both costs, and it attempts to apply its orange text rule to both costs.1 The first span container
surrounds the first cost; consequently, the first span container attempts to apply its white text rule
to the first cost. Likewise, the second span container surrounds the second cost; consequently,
the second span container attempts to apply its black text rule to the second cost. So, what colors
are used for the span text—white and black from the span containers or orange from the div
container? As you can see in FIGUre 3.7’s browser window, the “$10” cost text is white, and the

1 The “attempt to apply its orange text rule to both costs” is due to inheritance. We’ll introduce CSS inheritance
formally in the next chapter.

84 Chapter 3 Cascading Style Sheets (CSS)

“$15” cost text is black. That means that the more local CSS rules (the two span rules) take pre-
cedence over the more global CSS rule (the div rule). The span rules are considered to be more
local because their start and end tags immediately surround the cost content. In other words, their
tags surround only their cost content and no other content. The div rule is considered to be more
global because its start and end tags do not immediately surround the cost content. In other words,

FIGUre 3.6 Source code for pumpkin patch web page

FIGUre 3.7 pumpkin patch web page

853.8 span and div Elements

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Halloween on the River</title>
<style>
 .orange {color: darkorange;}
 .white {color: white;}
 .black {color: black;}
 .orange-background {background-color: orange;}
</style>
</head>

<body>
<div class="orange">
 Parkville's Halloween on the River, every weekend in October.

 Corn maze: $10

 All you can eat pumpkins:
 $15
</div>
</body>
</html>

div Multiple class selectors for
a class attribute's value.

span

their tags surround not only the cost content, but also additional content. This principle of locality,
where local things override global things, parallels the nature of the “cascading” that takes place in
applying CSS rules. We’ll discuss that concept in the next section.

3.9 Cascading
Have you wondered about the significance of the words in “Cascading Style Sheets”? Traditionally,
a “style sheet” is a collection of rules that assign appearance properties to structural elements in
a document. For a web page, a style sheet “rule” refers to a value assigned to a particular display
property of a particular HTML element. The “cascading” part of Cascading Style Sheets is the sub-
ject of this section. If you look up the word “cascade” online or in a dictionary,2 you’ll see some-
thing like “a series of stages in a process.” Likewise, CSS uses a series of stages. More specifically,
there are different stages/places where CSS rules can be defined. Each stage/place has its own set
of rules, and each set of rules is referred to as a style sheet. With multiple style sheets organized in
a staged structure, together it’s referred to as Cascading Style Sheets.

To handle the possibility of conflicting rules at different places, different priorities are given
to the different places. See FIGUre 3.8, which shows the places where CSS rules can be defined.
The higher priority places are at the top, so an element’s style attribute (shown at the top of the
CSS rules list) has the highest priority. We’ll explain the style attribute in the next section, but
let’s first do a cursory run-through of the other items in Figure 3.8’s list.

Figure 3.8 shows that the second place for CSS rules is in a style container. That placement
should sound familiar because we’ve been using style containers for all the prior CSS examples.
The next place for CSS rules is in an external file. We’ll discuss external files later in this chapter.

The next place for CSS rules is in the settings defined by a user for a particular browser
installation. We won’t discuss that technique because there’s nothing for you, the programmer, to
learn or to do. Instead, the user may choose the settings he or she is interested in. If you’d like to
learn how to choose the settings, you’re on your own, and be aware that different browsers have
different interfaces for adjusting their settings.

The last place for CSS rules, and the place with the lowest priority, is in the native default
settings for the browser that’s being used. As a programmer, there’s nothing you can do to modify
a browser’s native default settings. But you should be aware of those default settings so you know
what to expect when none of the first four cascading techniques is employed. In Chapter 2, we
described “typical default display properties” for each HTML element presented. Those proper-
ties come from the major browsers’ native default settings. Different browsers can have different
default settings, so your web pages might not look exactly the same on different browsers. In gen-
eral, try not to rely on browser defaults because it’s hard to gauge the whims of the browser gods as
they churn out new browser versions (with possibly new browser defaults) at a precipitous pace.

In displaying an element, a browser will check for CSS rules that match the element, start-
ing the search at the top of the cascading CSS rules list in Figure 3.8 and continuing the search

2 A dictionary was an ancient form of communication, used as a means to record word definitions. The
definitions appeared on thin sheets of compressed wood fiber.

86 Chapter 3 Cascading Style Sheets (CSS)

down the list, as necessary. When there is a CSS rule match, the CSS rule’s properties will be
applied to the element, and the search down the list stops for those properties.

3.10 style Attribute, style Container
style attribute
The style attribute is at the top of Figure 3.8’s cascading CSS rules list; as such, when you use
the style attribute for CSS rules, those rules are given the highest priority. Here’s an example
element that uses a style attribute:

<h2 style="text-decoration:underline;">Welcome!</h2>

As you can see, using the style attribute lets you insert CSS property-value pairs directly in the
code for an individual element. So the preceding h2 element—but no other h2 elements—would
be rendered with an underline.

The style attribute is a global attribute, which means it can be used with any element. Even
though it’s legal to use it with every element, and you’ll see it used in lots of legacy code, you should
avoid using it in your pages. Why? Because it defeats the purpose of CSS—keeping presentation
separate from content.

Let’s imagine a scenario that demonstrates why the style attribute is bad. Suppose you
embed a style attribute in each of your p elements so they display their first lines with an inden-
tation (later on, you’ll learn how to do that with the text-indent property). If you want to
change the indentation width, you’d have to edit every p element. On the other hand, making such
a change is much easier when the CSS code is at the top of the page in the head container because
you only have to make the change in one place—in the p element’s class selector rule. If you make
the change there, it affects the entire web page.

Using the style attribute used to be referred to as “inline styles,” but the W3C no longer
uses that term, and we won’t use it either. However, you should recognize the term “inline styles”
because you’ll hear it being used every now and then.

FIGUre 3.8 places where CSS rules can be defined

Places Where CSS Rules Can Be Defined, Highest to Lowest Priority

1. In an element’s style attribute.

2. In a style element in the web page’s head section.

3. In an external file.

4. In the settings defined by a user for a particular browser installation.

5. In the browser’s native default settings.

873.10 style Attribute, style Container

style Container
As you know from prior examples, the style element is a container for CSS rules that apply to
the entire current web page. The browser applies the CSS rules’ property values by matching the
CSS rules’ selectors with elements in the web page. Normally, you should have just one style
container per page, and you should put it in a web page’s head container. It’s legal to put a style
container in the body, but don’t do it because then it’s harder to find the CSS rules.

In Figure 3.8’s cascading CSS rules list, note how the higher priority places are more specific.
More specific rules beat more general rules. For example, if a style attribute designates a para-
graph as blue, but a rule in a style container designates paragraphs as red, then what color will
the browser use to render the paragraph? The style attribute’s blue color wins, and the browser
renders that particular paragraph with blue text. This principle of more specific rules beating
more general rules should sound familiar. It parallels the principle introduced earlier that says
local things override global things.

3.11 External CSS Files
Overview
In general, splitting up a big thing into smaller parts makes the thing easier to understand. To improve
understandability, you should consider moving your CSS rules to an external file. There are two steps
necessary to tie a web page to an external file that contains CSS rules. First, for the external file to be
recognized as a CSS file, the external file must be named with a .css extension. For example, in an
upcoming web page, we’ll use the filename pumpkinPatch.css. Second, for the web page to access
a CSS file’s CSS rules, the web page must use a link element in the web page’s head container. The
link element is a void element, so it’s comprised of just one tag, with no end tag. Here’s the syntax:

<link rel="stylesheet" href="name-of-external-file">

In this code fragment, note the href="name-of-external-file" attribute-value pair. The W3C
does not specify what href stands for, but the most common belief is that it stands for “hypertext
reference.” The href attribute’s value specifies the name of the file that holds the CSS rules (e.g.,
pumpkinPatch.css).

Note the rel="stylesheet" attribute-value pair. rel stands for “relationship,” and its value
tells the browser engine what to do with the href file. Having a rel value of stylesheet tells the
browser engine to look for CSS rules in the href file and apply them to the current web page.

To justify the extra work of adding a link element to handle an external CSS file, typically an
external CSS file will be nontrivial. That means the file will contain at least five CSS rules (usually
a lot more), or it will be shared by more than one web page.

Why is sharing an external CSS file helpful? With a shared external CSS file, it’s easy to ensure
that all the web pages on your site follow the same common CSS rules. And if you want to change
those rules, you change them in one place, in the external file, and the change affects all the web
pages that share the external file.

88 Chapter 3 Cascading Style Sheets (CSS)

Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

