
CHAPTER OUTLINE

2.1 Introduction

2.2 HTML Coding Conventions

2.3 Comments

2.4 HTML Elements Should Describe Web
Page Content Accurately

2.5 Content Model Categories

2.6 Block Elements

2.7 blockquote Element

2.8 Whitespace Collapsing

2.9 pre Element

2.10 Phrasing Elements

2.11 Editing Elements

2.12 q and cite Elements

2.13 dfn, abbr, and time Elements

2.14 Code-Related Elements

2.15 br and wbr Elements

2.16 sup, sub, s, mark, and small Elements

2.17 strong, em, b, u, and i Elements

2.18 span Element

2.19 Character References

2.20 Web Page with Character References
and Phrasing Elements

2.21 Case Study: A Local Hydroelectric
Power Plant

2.1 Introduction
In the prior chapter, you were introduced to just enough about HTML elements so you could
put together a rudimentary web page. In this chapter, we’ll introduce you to additional HTML
elements, so your web pages can be more expressive. In presenting the HTML elements, we make
a point of using standard coding-style conventions, so your code will be acceptable to the web
community as a whole.

Throughout this chapter and the rest of this book, you’ll be exposed to lots of HTML elements.
If you’re like most people, learning lots of things that are all in a single category can be overwhelm-
ing. Defining subcategories can make learning easier. For example, rather than trying to memo-
rize every animal species (an impossible task because thousands of new species are discovered
each year), biologists remember categories of species, such as reptiles, mammals, and crustaceans,
and assign each species to a particular category. Likewise, before you get overwhelmed with ele-
ment overload, we describe the categorization scheme used by the World Wide Web Consortium
(W3C) for organizing HTML elements. A bit confusing at first, but it’ll pay off later.

In this chapter, after we present coding-style conventions and the W3C’s element catego-
rization scheme, we present elements that span the width of a web page (block elements) and
then elements that can be embedded inside a paragraph (phrasing elements). At the end of the
chapter, we take a break from HTML elements and introduce character references. Character
references allow you to generate characters that are not on a standard keyboard. For example,
if you need to display the half character (½) on a web page, you can do that with a character
reference.

34 Chapter 2 Coding Standards, Block Elements, Text Elements, and Character References

2.2 HTML Coding Conventions
Browsers are very lenient in terms of requiring web developers to write high-quality code. So even
if a web page’s code uses improper syntax or improper style, web browsers won’t display an error
message; instead, they’ll try to render the code in a reasonable manner. You might think that’s a
good thing, but it’s not. If a web page uses improper syntax, different browsers might render the web
page differently. In a worst-case scenario, the web developer tests the web page on a browser where
no errors are evident, mistakenly concludes that all is well, and publishes the web page on the Web.
And then a user loads the web page using a different browser, and that browser renders the page in
an inappropriate manner. So as a web developer, how do you deal with this problem? You should test
with multiple browsers and check the syntax using the W3C’s HTML validation service.

As you may recall, coding-style convention rules pertain to the format of code. For example,
there are rules about when to use uppercase versus lowercase, when to insert blank lines, and
when to indent. Those rules help programmers understand the code more easily, but the browsers
don’t care about such things. Consequently, for all those people who create web pages on their
own, there’s nothing to stop them from using horrible style. If they want to put the code for their
entire web page on one line, browsers will treat that code the same as code with proper newlines
and indentations. However, if you are taking a course in web programming, your teacher will
(I hope) deduct points for poor style. More importantly, if you create web pages for a company,
your company will require you to follow their coding-style conventions.

Companies like their programmers to follow standard coding conventions so the resulting
programs are easier to maintain (program maintenance means debugging and enhancing a pro-
gram after it has been released initially). This is particularly true for medium- and large-sized
companies, where programs are debugged and enhanced by a larger number of people. With
more people involved, there’s a greater need to understand other people’s code, and adhering to
standard coding conventions helps with that.

In this book, we attempt to use coding-style conventions that are as widely agreed upon as
possible. And how does one find such conventions? It’s the same as for everything else in the
world—by googling it. If you google “html style guide,” you will get the coding-style conventions
used by Google, the company. Because Google is ubiquitous, Google’s style rules have gained huge
support from the web developer community. Consequently, this book uses coding conventions
that match Google’s coding conventions. In this section, we’ll go over some of the more import-
ant style rules, but for a more comprehensive description, see Appendix A, HTML5 and CSS
 Coding-Style Conventions. For now, it’s OK to remember just the following style rules:

 ▸ For every container element, include both a start tag and an end tag. So even though it’s
legal to omit a p element’s end tag, don’t do it.

 ▸ Use lowercase for all tag names (e.g., meta) and attributes (e.g., name).
 ▸ Use lowercase for attribute values unless there’s a reason for uppercase. For a meta

author element, use title case for the author’s name because that’s how people’s names are
normally spelled (e.g., name="Dan Connolly").

 ▸ For attribute-value assignments, surround the value with quotes, and omit spaces around
the equals sign.

352.2 HTML Coding Conventions

The capitalization rule for the doctype instruction is a gray area. Google’s Style Guide says
“All code has to be lowercase” except when it’s appropriate for a value to use uppercase. Based on
that, <!DOCTYPE html> should be <!doctype html>. However, the vast majority of examples
on the W3C and WHATWG websites use uppercase for DOCTYPE, and the Google Style Guide
uses uppercase for DOCTYPE, so that’s what we recommend. If you prefer all lowercase for the doc-
type instruction, ask your boss or teacher if that’s OK; if he or she says it is, go for it. Remember—
HTML is case insensitive, and browsers will handle either DOCTYPE or doctype just fine.

The W3C provides a tool named Tidy, at http://services.w3.org/tidy/tidy, which can be used
to apply style rules to a web page. Feel free to play around with Tidy, and make up your own mind
whether you want to rely on it for formatting your code or rely on careful keyboarding. You can
customize Tidy’s style rules to match the rules required by your company or your teacher, but
be aware that the customization process is nontrivial. Even if you end up using Tidy for all your
formatting needs, you should still understand the style rules so you’re comfortable reading other
people’s code.

2.3 Comments
As a programmer in the real world, you’ll spend lots of time looking at and editing other people’s
code. And, other people will spend lots of time looking at and editing your code. Therefore, every-
one’s code needs to be understandable. One key to understanding is good comments. Comments
are words that humans read but the computer skips. More specifically, for web programming, the
browser engine skips HTML comments. The browser engine is the software inside a web browser
that reads a web page’s content (e.g., HTML code, image files) and formatting information (CSS),
and then displays the formatted content on the screen.

Usually, HTML code is fairly easy to understand, so there is no need for extensive comments.
However, sometimes comments are appropriate. The general rule is to include a comment when-
ever information is needed to clarify something about nearby HTML code. Here’s an example:

<!-- The following image should be updated once a month. -->

In this code fragment, which displays a picture on a web page, the first line is a comment. As you
can see, to form a comment, surround commented text with <!-- and --> markers. For com-
ments that are short enough to fit on one line, like above, proper style suggests inserting a space
immediately after <!-- and immediately before -->. This is an appropriate comment because
without it, it would be harder for the web developer to remember to update the picture.

For comments that are too long to fit on one line, proper style suggests putting the <!-- and -->
markers on lines by themselves and indenting the enclosed comment text. Here’s an example:

<!—-
 If the user clicks one of the color buttons, that will cause the
 following paragraph's font color to change to the button's color.
-->

36 Chapter 2 Coding Standards, Block Elements, Text Elements, and Character References

http://services.w3.org/tidy/tidy

If you’re curious about the comment’s subject matter—changing the color of a paragraph’s
text—be patient. You’ll learn how to do that when we cover JavaScript later in the book. For now,
all you need to know is that JavaScript is a programming language, but it’s more powerful than the
HTML programming language. For the most part, HTML just enables you (the programmer) to
display stuff on your web page. JavaScript adds quite a bit of functionality by enabling you to read
user input and update what the web page displays.

In the world of software development, documentation refers to a description of a program. That
description can be in the form of a document completely separate from the source code (like a user
guide), or it can be embedded in the source code itself. Comments are one form of embedded-
code documentation. With HTML, meta elements provide another form of embedded-code doc-
umentation. As explained in the previous chapter, you should normally always include a meta
author element, so other people in your company know whom to go to when questions arise (or
whom to blame when the boss needs a target). The meta description and meta keywords
elements are also popular, but not quite as popular as the meta author element.

2.4 HTML Elements Should Describe Web Page
Content Accurately
An overarching goal in web programming is to use appropriate HTML elements so your web
page’s content is described accurately. For example, if you have text that forms what would nor-
mally be considered a paragraph, then surround the text with a p element, not some other element
(like div). Likewise, if you want to display words as a heading, use a heading element (h1-h6), not
some other element (like strong).

A complementary overarching goal in web programming is to use HTML elements so your
web page’s content is described fully. For example, if you have a title for your web page, it would
be legal to enter the title as plain text, and not have it be inside a container. But don’t do that.
Instead, put the title text inside a title element.

So, why is it good practice to describe web page content accurately and fully? It’s a form of
documentation, and documentation helps programmers understand and maintain the web page
code more easily. Another benefit of describing web page content accurately and fully is that
it enables you (the programmer) to manipulate the web page more effectively using CSS and
JavaScript. For example, if you use p elements for all your paragraphs, you can use CSS to make
all the paragraphs indented for their first lines. As another example, if you use heading elements
(h1-h6) for all your headings, you can use JavaScript to make all the headings larger when a but-
ton is clicked.

So, how is this goal enforced whereby elements are used to accurately and fully describe
the web page’s content? Unfortunately, there’s nothing in the HTML5 standard or in the W3C’s
HTML validation service that enforces this goal. Consequently, much of the enforcement is left
up to programmers’ due diligence. For example, the HTML validation service will allow you to
surround a paragraph of text with h1 tags or no tags at all. It’s up to you not to do that; instead,
you should surround the text with p tags.

372.4 HTML Elements Should Describe Web Page Content Accurately

2.5 Content Model Categories
What Content Is allowed Within a particular Container?
Despite the HTML validation service’s shortcomings mentioned in the previous section, it’s still a
helpful tool, and you should use it. It’s good at identifying syntax errors, like misspelling tag names.
It’s also good at containership rules. For example, the head container must contain a title element,
and a p container must not contain a div container. With lots of elements (around 115), there are lots
of containership rules (more than 11,000).1 Rather than having you remember each of those rules, it’s
easier to assign elements to certain categories and have those categories be the basis for the container-
ship rules. For a given web page, if an element X contains another element Y, all you have to do is look
up Y’s category and determine whether element X is allowed to contain elements from Y’s category.

FIGUre 2.1 shows the W3C’s diagram of the different element categories. The diagram
becomes useful when you’re writing the code for a container and you want to know which elements
are allowed inside the container. For example, suppose you’re writing the code for a head container.
To determine which elements are allowed inside the head container, you can read about the head
element in the W3C standard by going to https://www.w3.org/TR/html51. There, scroll through the
table of contents to the head element entry (or do a ctrl+f “head element”), and click on its link. That
should take you to a description of the head element. Read the “content model” section, which says:

One or more elements of metadata content, of which exactly one is a title element and no more
than one is a base element.2

So the head container is allowed to include elements that are in the metadata category. Now go
to the content model categories diagram (using the URL from Figure 2.1) and hover your mouse

1 “HTML Living Standard,” Web Hypertext Application Technology Working Group (WHATWG), last modified
June 1, 2017, https://html.spec.whatwg.org/multipage/semantics.html. You can find a complete list of all the
HTML elements on this page. The site shows there are 101 container elements and 115 total elements. That
means the number of containership relationships is 101 × 115, which equals 11,615.
2 World Wide Web Consortium (W3C), “W3C HTML 5.1 Recommendation: Semantics, structure, and APIs of
HTML documents,” last modified November 1, 2016, https://www.w3.org/TR/html51/dom.html#kinds-of-content.

FIGUre 2.1 Content model categories
Reproduced from World Wide Web Consortium (W3C), “W3C HTML 5.1 Recommendation: Semantics, structure, and APIs of HTML documents,” last modified November 1, 2016, https://www.w3.org/TR/html51
/dom.html#kinds-of-content.

38 Chapter 2 Coding Standards, Block Elements, Text Elements, and Character References

Embedded
Interactive

Phrasing Heading

Flow

Sectioning

Metadata

https://www.w3.org/TR/html51
https://html.spec.whatwg.org/multipage/semantics.html
https://www.w3.org/TR/html51/dom.html#kinds-of-content
https://www.w3.org/TR/html51/dom.html#kinds-of-content
https://www.w3.org/TR/html51/dom.html#kinds-of-content

over the metadata oval. That generates a list of all the elements in the metadata category—base,
link, meta, noscript, script, style, and title.

For another example, suppose you’re writing the code for a p element and you want to know
what types of elements are allowed inside of it. How should you proceed? Try to do this on your
own before reading the next paragraph.

To determine which elements are allowed inside the p container, look up the p element in
the W3C standard and read the “content model” section, which says “phrasing content.” The
p container is allowed to include elements that are in the phrasing category. Now go to the content
model categories diagram and hover your mouse over the phrasing oval. That generates a long
list of all the content allowed in the phrasing category. That list includes elements that would be
appropriate for describing text/phrases inside a paragraph (to remember what phrasing content
is for, remember “phrase”). In addition to showing element names, the list also includes the word
“text,” which is for plain text devoid of markup tags.

As a third example, let’s determine what’s allowed inside the hr container. When you look
up the hr element in the W3C standard and read the “content model” section, it says “empty.”
That means that the hr element is a void element, so it doesn’t have an end tag or any enclosed
content.

We’ll describe Figure 2.1’s categories in depth soon enough, but first note how the categories
overlap. If two categories overlap, that means that the categories include some elements that are in
both categories. For example, because the interactive and phrasing categories overlap, that means
some of the elements in the interactive category are also in the phrasing category. If a category
is completely inside another category, then all the enclosed category’s elements are also in the
surrounding category. For example, because the interactive, phrasing, embedded, heading, and
sectioning categories are all inside the flow category, that means all the elements in the enclosed
categories are also in the overarching flow category.

Content Model Category Descriptions
In this subsection, we describe each content model category shown in Figure 2.1. Let’s start with
the metadata category. The metadata category includes elements that provide information asso-
ciated with the web page as a whole. That should sound familiar. That’s the same description we
used for the head container’s contents. So an alternative definition of the metadata category is
that it includes all the elements that are allowed in the head container.

The flow category includes plain text and all the elements that are allowed in a web page body
container. As you can imagine, there are lots of elements in the flow category. We’ll discuss quite
a few of them later in this chapter, but here’s a small sample for now—blockquote, div, hr, p,
pre, script, sup. The blockquote, div, hr, p, and pre elements are flow content elements,
and they are not in any other content model categories. The script element is for JavaScript.
It’s in the flow content category as well as the metadata content category (note the intersection
of those two categories in the content model categories diagram). You’ll normally use script
in a head container, but it’s legal to use it in a body container as well. The sup element is for
superscripting. It’s in the flow content category as well as the phrasing content category (note the
intersection of those two categories in the content model categories diagram).

392.5 Content Model Categories

We introduced the phrasing category earlier. Here are the phrasing category elements we’ll
describe later in this chapter—abbr, b, br, cite, code, del, dfn, em, i, ins, kbd, mark, q, s,
samp, small, span, strong, sub, sup, time, u, var, wbr.

The embedded category includes elements that refer to a resource that’s separate from the
current web page. For example, the audio element uses an audio file. Here are the embedded
category elements we’ll describe later in the book—audio, canvas, iframe, img, and video.

The interactive category includes elements that are intended for user interaction. For exam-
ple, the textarea element displays a box in which the user can enter text. Here are the interactive
category elements we’ll describe later in the book—a, button, input, select, textarea.

The heading category includes elements that define a header for a group of related content.
For example, the h1 element displays a large header, which would normally go above content that
is associated with the header. We already covered the following heading category elements in the
previous chapter—h1, h2, h3, h4, h5, h6.

The sectioning category includes elements that define a group of related content. For exam-
ple, the aside element is for content that’s not part of the web page’s main flow. Here are the
sectioning category elements we’ll describe later in the book—article, aside, nav, section.

Now that you’ve learned about the various content model categories and the content model
category diagram, you might feel pretty good about being able to apply the containership rules
correctly. But alas, we’re human, and we make mistakes every now and then. Therefore, when
coding a web page, you should always double-check your work by running the W3C’s HTML
validation service.

2.6 Block Elements
We’ll now introduce an element category that is not part of the HTML5 standard. The category is
for block elements. Even though “block element” is not an official term blessed by the W3C, we’ll use
it throughout the book because it will make certain explanations easier. A block element expands to
fill the width of its container, so for a given container, there will be only one block element for each
row in the container. For every example in the first part of this book, each block element’s container
is the body element, which spans the width of the browser window. So for those examples, the
block element also spans the width of the entire browser window. That’s different from a phrasing
element in that (1) a phrasing element’s width matches the width of the element’s contents and (2)
multiple phrasing elements can display in one row. If you’re curious, there is a rather convoluted
relationship between block elements and the W3C’s content model categories: A block element
corresponds to an element in the flow category that is not also an element in the phrasing category.

Be aware that a similar term, “block-level element,” was part of the HTML4 standard, but
it’s been omitted from the HTML5 standard. Why? It’s probably because the W3C feels that
HTML should focus exclusively on content and let the browsers and CSS determine an ele-
ment’s formatting. With its focus on spanning the width of its container, the W3C deemed
the block-level element category to be too format-oriented. For block-level element fans, it’s
disappointing that “block-level element” is no longer part of the official HTML lexicon. How-
ever, the term is not completely dead. The W3C’s CSS standard uses a block value for the CSS
display property (which we’ll get to in a later chapter). Mozilla still uses “block” to describe

40 Chapter 2 Coding Standards, Block Elements, Text Elements, and Character References

HTML concepts,3 and in its coding-style guide, Google uses the similar term “block element”
as a synonym for “block-level element.”4 So as not to anger our Google overlords, we follow suit
and use the term “block element” instead of “block-level element.”

2.7 blockquote Element
We’ve already talked about the div and p elements, which are block elements. Now let’s discuss
another block element—the blockquote element. You should use a blockquote element when
you have a quotation that is too long to embed within surrounding text. It’s a block element, so it
spans the width of its container. More precisely, its content spans the width of the nonmargin part
of its enclosing container.

For a blockquote element example, see FIGUre 2.2. In the figure’s browser window, note
the margins on the four sides of the quote text. Most browsers render a blockquote element
by displaying those margins. But as an alternative, a browser vendor (an organization that imple-
ments a browser) may render a blockquote element by displaying the text with italics and not
with margins.

3 “Block-level elements,” Mozilla Developer Network, last modified April 21, 2017, https://developer.mozilla
.org/en-US/docs/Web/HTML/Block-level_elements.
4 “Google HTML/CSS Style Guide: 2.2 General Formatting Rules,” Google.com, http://google.github.io
/styleguide/htmlcssguide.html#General_Formatting_Rules.

412.7 blockquote Element

FIGUre 2.2 an example blockquote

cite attribute

1em
top
margin

40px
left
margin

<blockquote cite="http://www.presidency.ucsb.edu/ws/?pid=15545">
 Democracy cannot succeed unless those who express their
 choice are prepared to choose wisely. The real safeguard
 of democracy, therefore, is education.
</blockquote>
<div>Franklin D. Roosevelt, 1938</div>

https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
http://Google.com
http://google.github.io/styleguide/htmlcssguide.html#General_Formatting_Rules
http://google.github.io/styleguide/htmlcssguide.html#General_Formatting_Rules

typical Default Display properties
For each element, the W3C’s HTML5 standard provides a “typical default display properties”
section that describes the typical format used by the major browsers in displaying the element.
Browsers are not forced to follow those guidelines, but they usually do, and as a developer, you
should pay attention to the guidelines. For example, FIGUre 2.3 shows the typical default display
properties for the blockquote element.

Do you recognize the format of Figure 2.3’s code? It’s CSS. The figure shows five CSS rules
that are commonly used as defaults when a browser renders a blockquote element. The first
CSS rule says to use a block value for the display property. That means that the element the
rule applies to, blockquote in this case, will span the width of its container. Thus, the display:
block property-value pair matches the characteristics of the block element described earlier.

The second and third CSS rules apply to the top and bottom margins. The 1em values cause
each of the two margins to be the height of one line of text. We’ll discuss the CSS em unit in
more depth in the next chapter, but for now, note the resulting blank lines above and below the
blockquote text in Figure 2.2’s browser window.

The fourth and fifth CSS rules apply to the left and right margins. The 40px values cause each
of the two margins to be 40 pixels wide, where 1 pixel is the size of an individually projected dot
on a typical computer monitor. We’ll discuss the CSS px unit in more depth in the next chapter,
but for now, note the resulting margins at the left and right of the blockquote text in Figure 2.2’s
browser window.

cite attribute
In Figure 2.2’s blockquote code, did you notice the cite attribute in the element’s start tag? For
your convenience, here’s the start tag again:

<blockquote cite="http://www.presidency.ucsb.edu/ws/?pid=15545">

The purpose of the cite attribute is to document where the quote can be found on the Internet.
The cite attribute’s value must be in the form of a URL. Interestingly, browsers do not display the
cite attribute’s value. That’s because the URL value is not for end users. Instead, it serves as doc-
umentation for the web developer(s) in charge of maintaining the web page. Presumably, the web
developer would check the URL every now and then to make sure it’s still active.

FIGUre 2.3 typical default display properties for the blockquote element

42 Chapter 2 Coding Standards, Block Elements, Text Elements, and Character References

Left and right margins
equal 40 pixels each.

Top and bottom margins equal the
height of a standard line of text.

"block" is not part of the HTML5 standard,
but it is part of the W3C's CSS standard.

blockquote {
 display: block;
 margin-before: 1em;
 margin-after: 1em;
 margin-start: 40px;
 margin-end: 40px;
}

Besides providing documentation, another benefit of including the cite attribute is that it
can be used as a “hook” for adding functionality to the blockquote element. Specifically, a web
programmer could add JavaScript code that uses the cite attribute’s URL value to perform some
URL-related task (e.g., jumping to the URL’s web page when the user hovers his or her mouse over
the quote). That will make more sense when we talk about JavaScript later in the book.

By the way, if you think the user might be interested in visiting the web page where the quote
came from, you can implement a link. We’ll describe how to implement links, using <a> and
 tags, in Chapter 4. If you use a link, you may or may not want to also include a cite attri-
bute for your blockquote element.

Block Formatting
For a blockquote element with enclosed text that’s greater than one line, you should use block
formatting. Block formatting is a coding-style convention where the start and end tags go on their
own lines and the enclosed text is indented. For an example, see Figure 2.2’s blockquote element
code, copied here for your convenience:

<blockquote cite="http://www.presidency.ucsb.edu/ws/?pid=15545">
 Democracy cannot succeed unless those who express their
 ...
</blockquote>

In the previous chapter, we covered the p and div elements. Like the blockquote element,
they are block elements, so they span the width of their containers. For a p element example, see
Figure 1.4’s p element code, copied here for your convenience:

<p>
 It should be pleasant today with a high of 95 degrees.

 With a humidity reading of 30%, it should feel like 102 degrees.
</p>

For a div element example, see Figure 2.2’s div element code, copied here for your convenience:

<div>Franklin D. Roosevelt, 1938</div>

The p and div elements are both block elements. So, in these code fragments, why does the p
element use block formatting, but the div element does not? The block formatting style rule says
to use block formatting for all block elements with content longer than one line. In the preceding
p example, the content (plain text) is longer than one line, so block formatting is used. In the
preceding div example, the content (a strong element plus plain text) is shorter than one line,
so block formatting is not used.

Displaying a Web page Without a Web Server
We’ll get back to our discussion of block elements shortly, but for now we should point out something
you might have noticed in the Franklin Roosevelt blockquote web page shown earlier. In Figure 2.2,

432.7 blockquote Element

note the URL value in the browser window’s address bar—file:///C:/cs240/lecture/rooseveltQuote1
.html. The “file” at the beginning of the URL is the protocol. When you see a “file” protocol,
that means the web page was generated by simply double clicking on its .html file from within
Microsoft’s File Explorer tool. For example, in the following File Explorer screenshot, imagine double
clicking on the rooseveltQuote1.html file. That’s how we generated Figure 2.2’s web page.

As explained in Chapter 1, if you want a web page to be accessible to everyone on the Web,
you’ll need to upload its .html file to a web server. But for a quick test, it’s often easier to generate
a web page by just double clicking on its file.

2.8 Whitespace Collapsing
The next block element we’ll describe is the pre element. But for the pre element to make sense,
we first need to explain whitespace collapsing. Whitespace refers to characters that are invisi-
ble when displayed on the browser window. The most common whitespace characters are the
blank, newline, and tab characters. The web developer generates those characteristics by pressing
the spacebar, enter, and tab keys, respectively. Normally, browsers collapse whitespace. In other
words, if your HTML code contains consecutive blank spaces, newlines, or tabs, the browser will
display the web page with only one whitespace character (usually a blank space).

For an example of whitespace collapsing, let’s look at a haiku web page. A haiku is a form of
Japanese poetry that consists of three lines—five syllables for the first line, seven syllables for the
second line, and five syllables for the third line. In FIGUre 2.4, examine the text that comprises
the plain text haiku. See how the three lines are centered horizontally? That’s common for hai-
kus. In Figure 2.5, note how the plain text haiku is displayed. In particular, note that the haiku’s
whitespace gets collapsed so that the resulting haiku is no longer centered or on three lines (a
major faux pas for haiku fashionistas).

In FIGUre 2.5, do you see the newline after “But first”? That is not from collapsing
whitespace. The only reason the browser inserts a newline after “But first” is because of line
wrap. Line wrap is when a word bumps up against the right margin and is automatically moved
to the next line.

44 Chapter 2 Coding Standards, Block Elements, Text Elements, and Character References

http://C:/cs240/lecture/rooseveltQuote1.html
http://C:/cs240/lecture/rooseveltQuote1.html
http://.html
http://rooseveltQuote1.html
http://.html

In Figure 2.5, the browser collapses whitespace within the plain text haiku, but the browser pre-
serves whitespace for the rest of the web page. Why is that? Above the plain text haiku, there’s a blank
line. That’s from the preceding h2 element, which displays a noncollapsing blank line above and below
its text. Below the plain text haiku, there’s another blank line. That’s from the pre element, introduced
in the next section, which also displays a noncollapsing blank line above and below its text.

FIGUre 2.4 Source code for haiku web page

FIGUre 2.5 haiku web page

452.8 Whitespace Collapsing

haiku using plain text

haiku using a pre container

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="author" content="John Dean">
<title>Haiku</title>
</head>

<body>
<h2>Explore the World - a Haiku</h2>
 Life is a journey.
Cross the rivers, climb the peaks.
 But first check for texts.

<pre>
 Life is a journey.
Cross the rivers, climb the peaks.
 But first check for texts.
</pre>
</body>
</html>

haiku that uses
plain text

haiku that uses a pre container

Whitespace collapsing can be helpful in many circumstances, but not all. For certain forms of
literature, like haikus, line breaks and indentations need to be preserved. Later, we’ll show another
situation where whitespace needs to be preserved—displaying programming code. The pre ele-
ment takes care of those situations.

2.9 pre Element
You should use the pre element for text that needs to have its whitespace preserved. For-
mally, pre stands for “preformatted text.” However, we prefer to pretend that it stands for
“preserved whitespace” because that makes more sense. In Figure 2.5, take a look at the bot-
tom haiku (the one that uses a pre container). Note the blank spaces and newlines. Those
are whitespace characters from the source code, and we can thank the pre container for
preserving them.

Also in Figure 2.5, note the bottom haiku’s monospace font. Monospace font is when each
character’s width is uniform. By default, browsers display pre element text with monospace
font. If you don’t like the default monospace font, you can use CSS to change the pre element
text’s font. That will make more sense when we introduce CSS’s font property in the next
chapter.

2.10 Phrasing Elements
Remember phrasing elements? If not, glance back at the content model categories diagram in
Figure 2.1.

Phrasing elements are meant for text items that would be deemed acceptable within a typical
paragraph. For example, the strong element, introduced in Chapter 1, is a phrasing element.
That should make sense when you realize that its purpose is to place emphasis on a word or group
of words within a paragraph.

Just because a phrasing element is defined
as something that is “deemed acceptable within
a typical paragraph” doesn’t mean that phrasing
elements can be found only within p containers.
On the contrary, phrasing elements are allowed
within many container elements besides the p
container. In determining whether it’s appro-
priate to use a phrasing element within a given
container, think about whether it would be rea-
sonable to put the phrasing element’s text within
that type of container. For example, in Figure 2.4,
the second haiku uses a pre container. In that
pre container, would it be reasonable to surround
“check for texts” with a strong container? With
texting found to be a “necessary component to Cell phone enthusiasts extending their Snapchat streaks

46 Chapter 2 Coding Standards, Block Elements, Text Elements, and Character References

Jesse
Rectangle

	Web Programming with HTML5, CSS, and JavaScript
	Brief Table of Contents
	Table of Contents
	Preface
	Target Audience
	Approach
	Proper Flow
	Real-World Context
	Homework Problems
	Organization
	Student Resources
	Instructor Resources

	Acknowledgments
	About the Author
	1 Introduction to Web Programming
	1.1 Introduction
	1.2 Creating a Website
	1.3 Web Page Example
	1.4 HTML Tags
	1.5 Structural Elements
	1.6 title Element
	1.7 meta Element
	1.8 HTML Attributes
	1.9 body Elements: hr, p, br, div
	1.10 Cascading Style Sheets Preview
	1.11 History of HTML
	1.12 HTML Governing Bodies
	1.13 Differences Between Old HTML and HTML5
	1.14 How to Check Your HTML Code
	1.15 CASE STUDY: History of Electric Power
	Review Questions
	Exercises
	Projects

	2 Coding Standards, Block Elements, Text Elements, and Character References
	2.1 Introduction
	2.2 HTML Coding Conventions
	2.3 Comments
	2.4 HTML Elements Should Describe Web Page Content Accurately
	2.5 Content Model Categories
	2.6 Block Elements
	2.7 blockquote Element
	2.8 Whitespace Collapsing
	2.9 pre Element
	2.10 Phrasing Elements
	2.11 Editing Elements
	2.12 q and cite Elements
	2.13 dfn, abbr, and time Elements
	2.14 Code-Related Elements
	2.15 br and wbr Elements
	2.16 sub, sup, s, mark, and small Elements
	2.17 strong, em, b, u, and i Elements
	2.18 span Element
	2.19 Character References
	2.20 Web Page with Character References and Phrasing Elements
	2.21 CASE STUDY: A Local Hydroelectric Power Plant
	Review Questions
	Exercises
	Project

	3 Cascading Style Sheets (CSS)
	3.1 Introduction
	3.2 CSS Overview
	3.3 CSS Rules
	3.4 Example with Type Selectors and the Universal Selector
	3.5 CSS Syntax and Style
	3.6 Class Selectors
	3.7 ID Selectors
	3.8 span and div Elements
	3.9 Cascading
	3.10 style Attribute, style Container
	3.11 External CSS Files
	3.12 CSS Properties
	3.13 Color Properties
	3.14 RGB Values for Color
	3.15 Opacity Values for Color
	3.16 HSL and HSLA Values for Color
	3.17 Font Properties
	3.18 line-height Property
	3.19 Text Properties
	3.20 Border Properties
	3.21 Element Box, padding Property, margin Property
	3.22 CASE STUDY: Description of a Small City’s Core Area
	Review Questions
	Exercises
	Projects

	4 Organizing a Page’s Content with Lists, Figures, and Various Organizational Elements
	4.1 Introduction
	4.2 Unordered Lists
	4.3 Descendant Selectors
	4.4 Ordered Lists
	4.5 Figures
	4.6 Organizational Elements
	4.7 section, article, and aside Elements
	4.8 nav and a Elements
	4.9 header and footer Elements
	4.10 Child Selectors
	4.11 CSS Inheritance
	4.12 CASE STUDY: Microgrid Possibilities in a Small City
	Review Questions
	Exercises
	Project

	5 Tables and CSS Layout
	5.1 Introduction
	5.2 Table Elements
	5.3 Formatting a Data Table: Borders, Alignment, and Padding
	5.4 CSS Structural Pseudo-Class Selectors
	5.5 thead and tbody Elements
	5.6 Cell Spanning
	5.7 Web Accessibility
	5.8 CSS display Property with Table Values
	5.9 Absolute Positioning with CSS Position Properties
	5.10 Relative Positioning
	5.11 CASE STUDY: A Downtown Store’s Electrical Generation and Consumption
	Review Questions
	Exercises
	Projects

	6 Links and Images
	6.1 Introduction
	6.2 a Element
	6.3 Relative URLs
	6.4 index.html File
	6.5 Web Design
	6.6 Navigation Within a Web Page
	6.7 CSS for Links
	6.8 a Element Additional Details
	6.9 Bitmap Image Formats: GIF, JPEG, PNG
	6.10 img Element
	6.11 Vector Graphics
	6.12 Responsive Images
	6.13 CASE STUDY: Local Energy and Home Page with Website Navigation
	Review Questions
	Exercises
	Project

	7 Image Manipulations, Audio, and Video
	7.1 Introduction
	7.2 Positioning Images
	7.3 Shortcut Icon
	7.4 iframe Element
	7.5 CSS Image Sprites
	7.6 Audio
	7.7 Background Images
	7.8 Web Fonts
	7.9 Video
	7.10 Centering Content Within the Viewport, Color Gradients
	7.11 CASE STUDY: Using an Image Map for a Small City’s Core Area and Website Navigation with a Generic Home Page
	Review Questions
	Exercises
	Project

	8 Introduction to JavaScript: Functions, DOM, Forms, and Event Handlers
	8.1 Introduction
	8.2 History of JavaScript
	8.3 Hello World Web Page
	8.4 Buttons
	8.5 Functions
	8.6 Variables
	8.7 Identifiers
	8.8 Assignment Statements and Objects
	8.9 Document Object Model
	8.10 Forms and How They’re Processed: Client-Side Versus Server-Side
	8.11 form Element
	8.12 Controls
	8.13 Text Control
	8.14 Email Address Generator Web Page
	8.15 Accessing a Form’s Control Values
	8.16 reset and focus Methods
	8.17 Comments and Coding Conventions
	8.18 Event-Handler Attributes
	8.19 onchange, onmouseover, onmouseout
	8.20 Using noscript to Accommodate Disabled JavaScript
	Review Questions
	Exercises
	Project

	9 Additional JavaScript Basics: window Object, if Statement, Strings, Numbers, and Input Validation
	9.1 Introduction
	9.2 window Object
	9.3 alert and confirm Methods
	9.4 if Statement: if by itself
	9.5 Game Night Web Page
	9.6 prompt Method
	9.7 Game Night Web Page Revisited
	9.8 if Statement: else and else if Clauses
	9.9 Strings
	9.10 Word Ordering Web Page
	9.11 More String Details
	9.12 Arithmetic Operators
	9.13 Math Object Methods
	9.14 Parsing Numbers: parseInt, parseFloat
	9.15 Water Balloons Web Page
	9.16 Constraint Validation for Form Controls
	9.17 Constraint Validation Using the Number Control’s Attributes
	9.18 Constraint Validation Using CSS Pseudo-Classes
	9.19 Comparison Operators and Logical Operators
	9.20 JavaScript for the Improved Water Balloons Web Page
	9.21 CASE STUDY: Dynamic Positioning and Collector Performance Web Page
	Review Questions
	Exercises
	Project

	10 Loops, Additional Controls, Manipulating CSS with JavaScript
	10.1 Introduction
	10.2 while Loop
	10.3 External JavaScript Files
	10.4 Compound Interest Web Page
	10.5 do Loop
	10.6 Radio Buttons
	10.7 Checkboxes
	10.8 Job Skills Web Page
	10.9 for Loop
	10.10 fieldset and legend Elements
	10.11 Manipulating CSS with JavaScript
	10.12 Using z-index to Stack Elements on Top of Each Other
	10.13 Textarea Controls
	10.14 Dormitory Blog Web Page
	10.15 Pull-Down Menus
	10.16 List Boxes
	10.17 CASE STUDY: Collector Performance Details and Nonredundant Website Navigation
	Review Questions
	Exercises
	Project

	11 Object-Oriented Programming and Arrays
	11.1 Introduction
	11.2 Object-Oriented Programming Overview
	11.3 Classes, Constructors, Properties, new Operator, Methods
	11.4 Point Tracker Web Page
	11.5 static Methods
	11.6 Event Handlers
	11.7 Primitive Values Versus Objects
	11.8 Using addEventListener to Add Event Listeners
	11.9 Using Prototypes to Emulate a Class
	11.10 Inheritance Between Classes
	11.11 Pet Registry Web Page
	11.12 switch Statement
	11.13 Arrays
	11.14 Arrays of Objects
	11.15 Book Club Web Page
	11.16 CASE STUDY: Downtown Properties Data Processing
	Review Questions
	Exercises
	Project

	12 Canvas
	12.1 Introduction
	12.2 Canvas Syntax Basics
	12.3 Rectangles Web Page
	12.4 Drawing Text with fillText and strokeText
	12.5 Formatting Text
	12.6 Drawing Arcs and Circles
	12.7 Drawing Lines and Paths
	12.8 Umbrella Web Page
	12.9 Face Web Page
	12.10 Using Canvas for Transformations
	12.11 Moving Face Web Page
	12.12 CASE STUDY: Solar Shadowing Dynamics
	Review Questions
	Exercises
	Project

	Appendix A: HTML5 and CSS Coding-Style Conventions
	Files
	W3C’s Validation Service
	Comments
	General
	Avoid Long Lines
	Top of the Web Page
	head Container
	body Container
	Keep Content and Presentation Separate
	Cascading Style Sheets
	Sample HTML File
	External CSS File (style.css)

	Appendix B: JavaScript Coding-Style Conventions
	JavaScript Code Placement
	script Element
	Prologue for an External JavaScript File
	Avoid Long Lines
	Delimiter Comments
	Text Comments
	Variable Declarations
	Braces That Surround One Statement
	Placement of Braces
	Alignment and Indentation
	Multiple Statements on One Line
	Spaces Within a Line of Code
	Operators
	Naming Conventions
	Functions
	Classes
	Sample JavaScript File

	Review Question Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	Index

