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Computers are increasingly being used in settings away from the desktop. Examples of such systems include in-vehicle navigation systems, maritime electronic navigation systems, personal digital assistants, and mobile telephones, among others. Working with such devices is more complex because the interactions are typically carried out in conjunction with another cognitive or manual task, such as reading, driving, or walking. In addition, the interaction frequently happens in a non-stationary environment, i.e., one where the user and the computing device are moving.
This dissertation investigates whether completion time in dual-task situations increases, and whether the activation of on-screen controls through manual input devices, such as a trackball, joystick, or touch screen, is unchanged when the targets are not stationary. The research specifically seeks to determine whether the present models for predicting task completion time still apply in mobile settings. The analysis is centered around a series of experiments conducted on a research platform developed by the author for performing movement time evaluations. Further experiments are evaluated to determine the effects of posture, walking, and distractions on cursor positioning time using either direct or indirect input. 
The research arrives at a predictive model for estimating the time it takes to enter a sequence of digits on a virtual keypad. The model is empirically validated through a series of context-aware laboratory experiments.
The results of this research provide designers of mobile devices a predictive model for mean task completion time of numerical data input tasks on a soft keypad, including specific heuristics to assure that interactions can be completed in a timely and accurate manner.
ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge the kindness and guidance of Dr. Jesse Heines for convincing me to continue my studies and providing the environment for doing so. If it had not been for his tireless efforts, this journey would not have ended up at this point. Thank you, Jesse, very much!

My gratitude also extends to Dr. Robert Pastel, without whom this dissertation would not have taken shape. His expertise with Fitts’ law was invaluable. Thank you, Robert, for your many insights, comments, and suggestions and your constant drive to “make me into a scientist.”

Thanks also go to my other committee members, Dr. Giampiero Pecelli and Dr. Holly Yanco for taking time to read my dissertation and providing many very helpful suggestions.

I also would like to extend my thanks to Dr. Georges Grinstein for his advice during the formulation of my research topic and his kind support during my earlier doctoral studies. Without the support and assistance of his Graphics Lab, I would not have been able to work on my degree.

I am also grateful for the support I received from everyone in the Computer Science Department, particularly the faculty members and students that volunteered their time for my experiments. 

Lastly, many thanks to my family, my wife Cathy, my son Jon, and my daughter Iris for their support and their understanding when Dad was not with them on many days, nights, and weekends.
Table of Contents

11.
STATEMENT OF THE PROBLEM


11.1
The Need for a Predictive Model


31.2
Contributions


42.
REVIEW OF RELEVANT RESEARCH


42.1
Introduction


42.2
Input Technologies


62.3
Taxonomy of Manual Input Devices


122.4
Conclusion


133.
PREDICTIVE MODEL FOR TASK COMPLTION TIME


133.1
Model Derivation


144.
METHODOLOGY


154.1
Experimental Platform


185.
RESULTS AND DISCUSSION


185.1
Approach to Analysis


195.2
Validation of Movement Time Models and Experimental Platform


266.
CONCLUSIONS


266.1
Contributions


276.2
Future Work


286.3
Summary


297.
Appendix A: Glossary of Terms & Acronyms


308.
References


329.
Biographical Sketch of the Author




List of Tables

5Table 1. Properties of input devices with accompanying explanations.


20Table 2. Physical sizes in mm of targets by input method. Measurements are taken along the diagonal since the targets are circular and approached along a two dimensional trajectory. The experiments for finger touch were carried out on a 15” monitor versus a 14.1” monitor for the other input methods.


22Table 3. Descriptive statistics showing mean and standard deviation for movement time across target width and input methods.


25Table 4. Comparison of predictive models across input devices by target size. In the table, R is the coefficient of correlation for the raw data, R' is the coefficient of correlation for the averaged data, and TP is the throughput.




List of figures

2Figure 1. Soft keypad for entering numeric coordinates as a numeric string. The string to be entered is printed above the keypad. Visual feedback is provided by displaying the characters as they are being entered. The ‘+’ represents the cursor.


8Figure 2. Tablet PC running Microsoft Windows. Typing is supported with a virtual keyboard that appears on demand. The keyboard depicted features the common QWERTY layout.


9Figure 3. Mouse device. Modern mouse input devices contain selection buttons, finger operated wheels, music controls, internet browser controls, keypads, scroll sliders, and application programmable buttons.


11Figure 4. A one dimensional Fitts movement along a direct path of length D from the cursor to the target with width W.


22Figure 5. Mean movement time (MT) by target size for each input device with 95% confidence interval.





1. STATEMENT OF THE PROBLEM
1.1 The Need for a Predictive Model
The design of efficient and effective user interfaces presupposes the existence of accurate predictive models that allow for a priori assessment of task completion times. The need is particularly critical when task completion time has a ceiling, such as when an interaction is being carried out in an environment where a more critical task cannot be safely neglected for a long period of time.  
Such a model is useful in that it allows user interface designers to determine if a certain interaction task can be completed in a safe time. Safe time is defined to be the maximum time for which a primary task can be neglected. For instance, during driving, operators may need to enter destination addresses in an in-vehicle navigation system. During that time, they cannot devote much time to the steering and operation of the automobile, and therefore that task becomes neglected. The neglect can only be for a certain amount of time before the potential for an accident arises. Therefore, if the maximum neglect time is known, then user interface tasks must be able to be completed in less time than the maximum neglect time assuming minimal task switch time. It is thus essential that user interface designers know ahead of time how long specific tasks will take to complete. In other words:
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The most common tasks carried out in user interfaces include the selection of a menu choice, alphanumeric data entry on a soft (or virtual) keyboard XE "soft keyboard" , swiping, and targeting a particular region on the screen. On mobile devices, the interactions are often carried out while the user is walking or performing an additional task, such as looking at a map or talking. Furthermore, interactions are typically carried out while standing, so the effects of posture are an important consideration.

The specific task modeled in this dissertation is that of entering a numeric string on a soft keypad in a dual-task situation while standing. Figure 1 shows a screen capture of a soft keypad that is the basis for the interactions studies in this dissertation.  In particular, this research investigates and extends the use of currently accepted predictive models (MacKenzie, 2003; MacKenzie, 1995a; Shneiderman, 2004 XE "Shneiderman (2004)" ; Jacko and Sears, 2004 XE "Jacko and Sears (2004)" ; Carrol, 2003 XE "Carrol (2003)" ; Hinckley, Jacob, & Ware, 2004 XE "Hinckley, Jacob, & Ware (2004)" ) of human aiming performance to the condition where the human-computer interaction is being carried out in a standing posture concurrent with another cognitive task. 
Several input devices suitable for use in ubiquitous environments are empirically evaluated and a pertinent predictive task completion model for those devices is developed and experimentally validated. This model contributes to the design of more usable and safer mobile computing systems.
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Figure 1. Soft keypad for entering numeric coordinates as a numeric string. The string to be entered is printed above the keypad. Visual feedback is provided by displaying the characters as they are being entered. The ‘+’ represents the cursor.
This research provides a performance model for the design of computer systems for a variety of mobile environments, which when applied by interface designers, increases the usability of the systems, reduces interaction errors, and increases task completion time. More importantly, a predictive model for estimating cursor positioning and task completion time is necessary for application developers when designing graphical user interfaces for mobile and ubiquitous computing systems where tasks must be completed in a certain amount of time in order for the interaction to be safe.

The proposed predictive model is based on several existing models, including the Hick-Hyman Law (Hick, 1952; Hyman, 1953) for estimating reaction time (a.k.a. choice or dwell time), Fitts’ Law (Fitts, 1954) for predicting cursor positioning time, and interference theory for understanding the effects of concurrent manual and cognitive tasks (Hoffmann and Lim, 1997; Shin and Rosenbaum, 2002; Wickens and Hollands, 2000). The aforementioned models are empirically investigated to determine if they hold for dual-task environments and standing postures. The new model is validated through a series of integrated and cumulative experiments. 
1.2 Contributions

The theoretical and practical contributions of this dissertation include: (a) Construction of a predictive model that explains the perceptual, cognitive, and motor processes that are used when a complex sequence of cursor positioning tasks is carried out in a dual-task environment. (b) Empirical validation of the model. (c) Development and validation of an open and extensible platform for conducting and analyzing cursor positioning experiments.
2. REVIEW OF RELEVANT RESEARCH
2.1 Introduction

This chapter reviews the literature relevant to the development of a predictive model for numeric string input on a soft keypad. It starts with a survey of manual input devices and their usage characteristics. Following that is a taxonomy which provides guidance as to which input devices are usable in off-the-desktop contexts. Next, an examination of relevant predictive human-computer interaction (HCI) models for cursor positioning time with manual input devices is presented. The last section contains a review of relevant HCI models for predicting reaction time and the effect of practice.
2.2 Input Technologies

Users of computers must be able control an application through its user interface. The interactions can be categorized as either command selection, command response, or data input. Input is commonly in the form of alphanumeric characters, selection of an on-screen object through a pointing device, activation of a button, or environmental information from a sensor such as temperature. An input device gathers physical information and translates the analog signal into a digital one for interpretation by the computer application. In some cases, the input device supports output and may provide tactile, haptic, visual, or auditory feedback to the user. The properties of the different input devices are summarized in Table 1.
Table 1. Properties of input devices with accompanying explanations.

	Property
	Explanation

	Sampling rate XE "Sampling rate" 
	The sampling rate determines how often measurements from the physical sensors embedded in the input device are taken and sent to the computer system. Increased sampling rates produce finer control over the input (Hinckley, 2003).

	Resolution XE "Resolution" 
	Resolution is a metric of the number of unique measurements the input device can send to the computer.

	Latency XE "Latency" 
	Latency, or lag, is the time that elapses between the physical actuation of the input device and the resulting on-screen feedback. Latencies above 100 msec. interfere with cognitive performance (MacKenzie and Ware, 1993).

	Noise XE "Noise" 
	Noise is the result of sensing errors due to hardware malfunctions or design inadequacies. Increased noise leads to sampling problems and loss of accuracy.

	Position mode XE "Position mode" 
	The position mode can be either absolute or relative. For an absolute input device, each position on the sensing surface corresponds to a specific location on the screen. In a relative positioning mode, each input is a functional translation from the current point. A touch screen is an absolute input device, whereas a mouse is a relative input device.

	Gain XE "Gain" 
	Gain is also referred to as the Control-Display (C-D) ratio. C-D XE "C-D"  is the ratio of the distance that the on-screen cursor moves in relation to the physical movement of the input device. An increased gain allows for a smaller footprint, i.e., less space is necessary for the input device. The function that controls the gain (C-D ratio) is frequently configurable through software. Studies have shown that there is no optimal setting for gain (Accot and Zhai, 2001 XE "Accot and Zhai (2001)" ) and that increased gain frequently leads to higher error rates (MacKenzie and Riddersma, 1994 XE "MacKenzie (1995) ).

	Degrees of freedom
	Degrees of freedom is a measure of the number of dimensions that the input device senses.

	Direct XE "Direct"  vs. indirect XE "indirect" 
	If the input surface is also the display surface, then the input device is direct. An example of such a device is a touch-screen. Most other input devices are indirect in that the on-screen cursor is controlled through an intermediary device such as a mouse, joystick, or stylus.

	Footprint XE "Footprint" 
	Footprint refers to the amount of space that is required for input. For example, a mouse has a large and variable footprint, whereas a trackball has a smaller but fixed footprint.

	Device acquisition time
	Device acquisition time refers to the time it takes to grasp the input device before control can be exerted.


For indirect input devices, such a mouse or joystick, feedback is in the form of on-screen movement of a cursor (MacKenzie, 1995b). While the actual shape of the cursor is programmable, an arrow head has become the de facto standard. To accommodate smaller screen sizes and visually impaired users, designers of graphical user interface have resorted to enlarged on-screen cursors. While a larger cursor may help with selecting on-screen objects, the shape and form of the cursor may be distracting. For example, empirical evidence collected by Phillips, Triggs, and Meehan (2001, 2003) XE "Phillips, Triggs, & Meehan (2001, 2003)"  suggests that the size of the cursor has a negative impact on reaction time and correct target acquisition. 

In some application areas, haptic XE "haptic feedback" , or force XE "force feedback" , feedback may be useful. A pointing device that provides haptic feedback can guide the user along a particular path. As the user veers off the correct path, the pointing device makes further movement in that direction more difficult. 
2.3 Taxonomy of Manual Input Devices
2.3.1 Physical and Soft Keyboards
Typewriter-style keyboards represent the most ubiquitous input device. Keyboards are familiar to many users and require little learning time to be useful. Most keyboards include the full alphanumeric character set coupled with a collection of application programmable function keys for facilitating common input tasks. The trend of keyboard design appears to go in two directions. On the one hand, ergonomic considerations have forced manufacturers to redesign the keyboard to alleviate discomfort during prolonged use (McFarlane, 1996 XE "McFarlane (1996)" ). Such design changes include splitting keyboards into angled arrangements, resizing and respacing keys, adding wrist resting pads, and increasing tactile XE "tactile"  key-level feedback. On the other hand, keyboards are being miniaturized to accommodate mobile computing devices, such as personal digital assistants (PDA) and mobile telephones.
For systems where a physical keyboard is not practical, a soft, or virtual, keyboard is often constructed using a touch-sensitive screen (see Figure 2). Due to the lack of space, soft keyboards often contain a limited character set and typing is done with fingers or a special stylus (Kölsch & Turk, 2002 XE "Kölsch & Turk (2002)" ). The arrangement of the keys frequently differs from the traditional QWERTY XE "QWERTY"  layout. More recent models for the layout of soft keyboards, including CHUBON XE "CHUBON" , FITALI XE "FITALI" , OPTI XE "OPTI" , and Metropolis XE "Metropolis"  have been found to increase the speed and accuracy of text input (Zhai, Hunter, & Smith, 2000 XE "Zhai, Hunter, & Smith (2000)" ). However, while optimized layouts of soft keyboards may improve the text entry speed of expert users, a study by MacKenzie and Zhang (2001) XE "MacKenzie & Zhang (2001b)"  demonstrated that users new to the alternative keyboard layouts had significantly lower text entry rates compared to a standard QWERTY layout. This would imply that non-standard keyboard layouts require significant learning time and therefore should be rejected for public access devices or systems that are used sporadically by non-expert users. Nevertheless, using a QWERTY layout means that the user is required to move the stylus more frequently for common English words. After all, it is commonly known that the QWERTY layout was initially invented to slow down the user in an effort to reduce jamming of the mechanical keys when mechanical keyboards were still commonplace (Hartman, 1997). As a result, on a QWERTY layout the text entry rate is diminished (Zhai, Kristensson, & Smith, 2004 XE "Zhai, Kristensson, & Smith (2004a)" ). Work by Soukoreff and MacKenzie (1995b) XE "Soukoreff & MacKenzie (1995b)"  fix the theoretical upper bound for text entry on a soft QWERTY XE "QWERTY"  keyboard operated with a stylus at 30.1 words per minute, although most users will never achieve that theoretical speed.
While soft keyboard XE "soft keyboard" s are well-suited for mobile and ubiquitous computing systems XE "ubiquitous computing systems"  where a physical keyboard is not practical, they have their limitations. The alternative of using natural handwriting recognition is not realistic. While the software algorithms are rapidly maturing, they are still too immature resulting in recognition errors and slow response time. Consequently, handwriting recognition is not appropriate for mobile systems where users are typically distracted by other tasks and cannot focus on the input operation (Bleicher, 2004). In addition, if the environment is not stable, drawing with a stylus XE "stylus"  is difficult and can result in significantly distorted characters making interpre​ta​tion much more error prone.
[image: image3.png]Fie Edt Experinent Data Analyze Insert Options Page Heb

DB W& e > MUAARLL[LALMQ] 8= |-

No device connected.

Latest - E]
Time ZAce XAcc 57 ﬂ“
(s) (mis?) (mis?) [ 10
2482 586 094 T .
2484 856 082 E
2486 8569 089 5 8
24.88 8.56 -0.87 Tl
2490 8359 079
2492 881 059 1 5 2 40 &«
ax a G Tmes) = |
416, 10.25) o
5
| ’,:
~] Tablet PC Input Panel [&]] @ [x]
& otaton ) Command | Not lsteing | SpeecnTook v
[ O ] O 2 O S ™ O | A"
D | B | 0 | 3 | 2 T T N N N T =" | "=
R | 7N | O | BN | | S ) N S} T N} O =~ " | =
T (- ) () Cc O] O] COC) ) . (e ) (P )
o IR ] JE) 2] Lo J[C s ]
| eyboar | W P

“J start. J ™ £ ControlP. 47" Logger P.





Figure 2. Tablet PC XE "Tablet PC"  running Microsoft Windows. Typing is supported with a virtual keyboard that appears on demand. The keyboard depicted features the common QWERTY layout.
While soft keyboards have been adopted by designers of ubiquitous computing devices, their use requires significant visual attention due to the absence of tactile feedback. Recent research has reported success with embedding tactile force-feedback mechanisms into touch screens to make it possible to operate soft keyboards in low-visibility situations (Poupyrev & Maruyama, 2003 XE "Poupyrev & Maruyama (2003)" ; Nashel & Razzaque, 2003 XE "Nashel & Razzaque (2003)" ). In the absence of physical tactile XE "tactile"  feedback, studies report that simulated tactile or auditory feedback is often accepted as natural and that users did not prefer a physical keyboard over a soft keyboard XE "soft keyboard"  when feedback was present (Oniszczak & MacKenzie, 2004 XE "Oniszczak & MacKenzie (2004)" ). Auditory feedback works best in situations when the user is distracted and cannot look at the screen for extended periods of time (Akamatsu, MacKenzie, & Hasbrouq, 1995 XE "Buxton (2005)" ).
2.3.2 Mouse Devices
The mouse XE "mouse" , along with the keyboard, represents the most commonly used manual pointing device. A mouse is a relative and indirect input device XE "indirect input device"  that reports movement velocity which is translated into an on-screen cursor movement. See Figure 3 for an example of a modern mouse that contains additional input mechanisms, such as push buttons and a scroll wheel XE "scroll wheels" . For proper operation, a mouse requires a stable, flat surface.
[image: image4.png]



Figure 3. Mouse device. Modern mouse input devices contain selection buttons, finger operated wheels, music controls, internet browser controls, keypads, scroll sliders, and application programmable buttons.

{ text deleted here for brevity }
2.3.3 Fitts XE "Fitts" ’ Law
Essentially, Fitts XE "Fitts" ' Law XE "Fitts' Law"  offers a predictive model for estimating the time it takes to point at a particular element on the screen, based on the size of and distance to the target element. Recent variations discussed later in this chapter provide additional engineering models for estimating the mean time it takes to acquire a target using different pointing techniques. Acquisition of a target can mean clicking on a screen object with an indirect pointing device XE "indirect pointing device" , such as a mouse XE "mouse"  or joystick XE "joystick" , or directly selecting it on a touch-sensitive screen. The model is well established and has been empirically validated for a variety of pointing tasks and input devices (MacKenzie & Soukareff, 2003 XE "MacKenzie & Soukareff (2003)" ; McGuffin, 2002 XE "McGuffin (2002)" ; Hinckley, Jacob, & Ware, 2004 XE "Hinckley, Jacob, &  Ware (2004)" ).
The original formulation of Fitts’ Law as applied to user interface design by Card, English, and Burr (1978) XE "Card, Moran, & Newell (1978)"  expresses the average time T it takes to tap a target with a mouse-controlled cursor from a fixed point as a linear function of the Index of Difficulty XE "Index of Difficulty"  (ID):
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where k ≈ 100ms, although many other constants have been reported (MacKenzie, 1991; MacKenzie, 1995a; Soukoreff and MacKenzie, 2004 XE "MacKenzie (1995)" ).
The Index of Difficulty XE "Index of Difficulty"  (ID XE "ID" ) is expressed by Fitts XE "Fitts (1954)"  (1954) as:
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( AUTONUMLGL  \e  TA \l "Fitts' Representation of Index of Performance" \s "Fitts' IP" \c 4 )
where 
D is the distance that the user has to move from a home point to the target (also referred to as the amplitude of the movement) and W is the width of the target (see Figure 4). In Fitts XE "Fitts" ’ experiments, the amplitude XE "amplitude"  or distance of the movement was assumed to be along a direct horizontal path, i.e., along one dimension. The direction of movement from left to right or right to left has been shown by Oel, Schmidt, and Schmitt (2001) XE "Oel, Schmidt, & Schmitt (2001)"  to be inconsequential.

[image: image7]
Figure 4. A one dimensional Fitts XE "Fitts"  movement along a direct path of length D from the cursor to the target with width W.
Many researchers report an improved fit when using the formulation suggested by Welford XE "Welford (1960)"  (1960) for the Index of Difficulty (ID), which effectively increases the distance to the target by half the width of the target. In that case, the formula essentially presumes that the user will attempt to hit the target in its center.
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A more general format for the Index of Difficulty XE "Index of Difficulty"  (ID) can be stated as:
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where ε is D/W for the standard Fitts formulation (Fitts, 1954), ½ for the Welford formulation (Welford, 1960), and 1 for the Shannon formulation (MacKenzie, 1991). 
{ text deleted here for brevity }

2.4 Conclusion

The Laws of Action and Decision form the foundation for a predictive model that describes the mean completion time of data entry tasks on soft keypads. The movement from key to key can be modeled with Fitts’ law, while the time needed to decide which key to press next can be modeled with the Hick-Hyman law.
3. PREDICTIVE MODEL FOR TASK COMPLTION TIME
An interaction with a user interface is typically comprised of several smaller tasks. For example, entering a destination into a navigation system requires a menu or command selection, followed by several numeric inputs, and finally a confirmation. Each task has certain movement characteristics that can be modeled with one of the movement prediction models presented in Error! Reference source not found. on Page Error! Bookmark not defined.. Besides the movement time, reaction and learning time are also factors in the overall completion of the interaction. The total task completion time (TT) is the sum of the completion times for each task from the initiation of the first task and the completion of the last task in a series of interactive tasks.

3.1 Model Derivation
According to Jax, Rosenbaum, Vaughan, and Meulenbroek (2003) XE "Jax, Rosenbaum, Vaughan, & Meulenbroek (2003)" , four issues are at the core of describing motor behavior: (i) task ordering, (ii) learning, (iii) perceptual-motor integration, and (iv) movement. Therefore, an approximation of the total task completion time XE "task completion time"  (TT) for an interaction that consists of n sub-tasks can be mathematically described as follows:
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( AUTONUMLGL  \e  TA \l "Integrated model for predicting mean task completion time" \s "TT" \c 4 )

where LT represents the overall learning time for the interaction, RTi is the reaction (task ordering or choice) time for a single sub-task i, and MTi is the mean movement (cursor positioning) time XE "mean movement time"  for sub-task i. For the problem of numeric string entry addressed by this dissertation, the value of n is equal to the length of the string.
{ text deleted here for brevity }

4. METHODOLOGY
The hypotheses put forth in the previous section are investigated through a series of experiments. Initially, a set of control experiments is conducted to establish the validity of the experimental environment and to investigate the currently accepted models for predicting cursor positioning time. These pilot experiments focus on standard Fitts tasks, including the selection of circular on-screen regions using four different input methods. The input methods tested are finger, stylus, trackball, and isometric joystick. The pilot experiments consist of variations on Fitts’ original discrete tapping experiments with differing sizes, locations, and types of shapes. Participants are asked to carry out each experiment in a sitting as well as a standing posture to test the effect of posture on movement time and error rate. Subsequent experiments focus on dual-task situations, in which experiment participants are asked to carry out a cognitive task while interacting with the same experimental apparatus. The goal is to establish baseline parameters for the conjectured interaction between cognitive and motor-process skills. To measure the effect of motion, an experiment is conducted that asks participants to hit “vibrating” or non-stationary targets, i.e., targets that move in a gyrating two-dimensional pattern at various amplitudes and frequencies. To further understand the influence of dual-task situations and motion, an experiment is devised that measures target selection while walking. A subsequent set of experiments introduces multi-step tasks that are representative of mobile system interactions, including entering a numeric string on a soft numeric keypad. The input to the soft keypad is done in three modes: trackball, stylus and finger. All of the experiments are conducted with approval of the University’s Institutional Review Board (IRB).
4.1 Experimental Platform

While many ad hoc utilities have been developed for evaluating input devices and predicting cursor positioning time, except for the Generalized Fitts’ Law Model Builder (Soukoreff and MacKenzie, 1995a; MacKenzie & Buxton, 1993) and the more recent WinFitts program from the University of Oregon (Douglas, Kirkpatrick, & MacKenzie, 1999), few of these utilities are bona fide research platforms. A standardized research platform that is extensible would allow HCI researchers to compare experimental results meaningfully and share experimental configurations. To support the work of this dissertation and to provide a general research platform to the scientific community the Movement Time Evaluator (MTE) has been constructed as an interactive and extensible research platform by the author (Schedlbauer, Pastel, & Heines, 2005).

MTE is a configurable tool for exploring input device characteristics as well as rapidly evaluating performance models. It is written in Java (Sun, 2005) and is constructed on an extensible object-oriented and pattern-based framework. Data files generated by MTE are openly sharable and exportable in formats compatible with many statistical analysis packages. The supported data formats are Java serialized objects, XML, and comma-separated value (CSV) files. MTE also has a comprehensive graphical user interface for researchers to configure their experiments and interpret results. Using MTE, researchers can immediately compare Fitts’ law and the variations defined by Accot and Zhai (2003), Kvålseth (1980), MacKenzie (1991), and Meyer et al. (1988). 
MTE extends Soukoreff and MacKenzie’s platform by adding bivariate pointing tasks, probe corrections (Hoffmann and Sheikh, 1991), additional performance models, non-stationary targets, soft keypads, dynamic configurability, and movement microstructure evaluation. As a result, MTE presents a new research platform which allows input device investigators to conduct standardized experiments and to directly compare device characteristics, performance and usability. Silfverberg, MacKenzie, and Kauppinen (2001) lament the fact that between-study comparisons are not addressed by ISO9241 and that unified test conditions only provide high-level comparisons of research results. Douglas, Kirkpatrick, and MacKenzie (1999) “adamantly assert caution in comparing results across experiments.” They argue that “it is critical that exactly the same experimental design, task environment, instructions and data analysis be given” and that “given these limitations, it is useful to have standardized software.” Sharable experimental configurations and results are required to carry out between-study statistical analyses. MTE provides a framework upon which to build a database of reference conditions, configurations, and ultimately experimental results.
All of the experiments are conducted using this tool developed by the author. MTE is touch-screen enabled and has the ability to deal with various indirect input devices, including mice, joysticks, touchpads, keypads, and trackballs. The input devices are supported through the universal mouse driver of Windows XP and are connected via a USB port. 
All of the interactions, including all cursor movements, region selections, clicks, cursor traces (trails), and selection errors are recorded using either Java object serialization or XML and can be exported into comma-separated text files (CSV format) so that importing into Excel, and the “R” statistical analysis package is facilitated (R Development Core Team, 2004; Chambers and Hastie, 1992; Faraway, 2002; Dalgaard, 2002; Venables and Smith, 2004). It is of particular importance to record and trace the trajectory of the cursor in the trackball and joystick movements and compare the microstructure of the movement to better understand the accuracy and kinematics of cursor positioning tasks. 
Basic statistical analysis built into the platform facilitates rapid evaluation of experimental results and interactive exploration of models. MTE implements standard descriptive statistics (mean, range, and standard deviation), Pearson product moment correlation, linear regression, as well as configurable scatter plots and distribution graphs. In addition, the raw data and the trajectory of the individual acquisition movements during a session can be viewed so that the movement patterns for different input devices can be studied. Also, the researcher can view a table comparing the correlation coefficients and throughput measures of various movement time models, including the variations of Fitts’ law by Meyer et al. (1988), Kvålseth (1980), and Accot and Zhai (2003). The linear regression coefficients and the correlation coefficient (R) can be computed either on the observed or averaged MT values over any ID binning interval using the various width models described in Section Error! Reference source not found. (probe width correction, sum of width and height, target area, width along the approach vector, and effective width). 

MTE’s architecture is based upon an extensible object-oriented design implemented in Java. The platform can be controlled remotely, allowing a researcher to observe and direct the experiment from one workstation while the participant interacts with the software on another workstation. Connectivity is through a standard TCP/IP socket, and therefore researcher and participant can be separated by any distance or any number of walls.

The configuration of experiments is a two-step process. First, the researcher constructs and saves an experimental configuration file that specifies session invariant parameters using the screens shown in Error! Reference source not found.:

· target extent
· target shape  (rectangular, oval, text, oscillating, soft keypad)
{ text deleted here for brevity }

5. RESULTS AND DISCUSSION
5.1 Approach to Analysis

This chapter presents and discusses the results of the experiments. For each experiment, the approach to analysis is similar. Initially, adjustments to the data and any removal of outliers are justified. Next, summary statistics and significance tests for movement time (MT) and error rate (ER) are presented across the various experimental factors. Finally, correlation and regression analyses are prepared to judge fit with existing and new movement time models. The data analysis is completed in MTE and R as well as Microsoft Excel with Analyze-It. 

Statistical significance is assessed at the commonly accepted threshold of p < 0.05 (Lowry, 2005; Dalgaard, 2002) using two-tailed p values. In most cases, ANOVA or repeated measures ANOVA are used to determine the effects of factors. In situations, where a statistical significance in the difference between the means of two samples is sought, the t-test is used as long as the data is reasonably normally distributed. Although the t-test is quite robust even when the normality assumption is not met (Dalgaard, 2002), the non-parametric Wilcoxon test is used when the data can be shown not to be normally distributed and cannot be normalized via a transform. Normality is assessed graphically by looking at Quantile-Quantile (Q-Q) plots as well as computationally using the Shapiro-Wilk test. In cases where the data samples do not follow a normal distribution, a log-transform is applied in an attempt to normalize the data. Linear correlation is calculated using the Pearson Product-Moment test. The Spearman rho-test is used in those situations where the data does not meet the normality assumption and a log-transform fails to normalize the data. Linear correlations and simple regression results are reported with the coefficient of correlation (R), whereas the goodness-of-fit for multiple regression analysis is reported as the coefficient of determination (R2). Many studies on Fitts’ law report R as their estimation of the strength of the correlation. Therefore to facilitate comparison of the results of this research with published studies, R is reported wherever statistically valid. However, since R is not defined for multivariate regression, the statistically more appropriate coefficient of determination, R2, is reported instead.
During the experiments, time measurements were taken at a resolution of 10ms, the smallest resolution possible for the Sun Java 5 Virtual Machine on Microsoft Windows XP (Sun, 2005). Amplitudes are calculated using the Pythagorean distance between the starting point and the end point of the movement.

5.2 Validation of Movement Time Models and Experimental Platform
This section explores the results of Experiment I described in Section Error! Reference source not found. in which participants were asked to acquire 20 randomly appearing circular targets of four different sizes (15, 30, 45, and 60 pixels) using four modes of input: finger touch, stylus touch, trackball, and isometric joystick. The data for each input device is investigated for fit with six of the movement time models presented in Error! Reference source not found., Page Error! Bookmark not defined.: Fitts (1954), Welford (1960), Shannon (MacKenzie, 1991), Meyer et al. (1988), Kvålseth (1980), and Accot and Zhai (2003). 

In keeping with the recommendations of Soukoreff and MacKenzie (2004), the experiments tested a broad range of ID (Index of Difficulty, Equation 4, Page 17) values (min = 0.75, max = 5.50, mean = 3.15). In addition, the throughput derived from the movement times calculated by the Shannon formulation of Fitts’ law is used for comparing devices. Throughput is computed as the ratio of mean ID and mean movement time rather than the reciprocal of the regression slope as suggested by Zhai (2004). There is considerable controversy over the proper calculation of throughput. Soukoreff and MacKenzie argue that throughput is the ratio of the mean ID over the mean movement time for each subject, while Zhai points out that such a definition depends on the choice of ID values. Zhai states that throughput should be defined as the reciprocal of the regression line through the origin, i.e., an intercept value of 0. No matter which approach is used, it is clear that throughput depends on experimental characteristics and choice of parameters. This reinforces the view expressed earlier that a standard platform for conducting performance measurements of input devices is needed. The recommendations are naturally limited to the ID values that were tested and extrapolation to other values must be done carefully. 
5.2.1 Adjustment of Data

Run 6 for target width 15px and run 20 for target width 30px are excluded for all subjects from the finger touch experiments. These targets were displayed in a portion of the touch screen where the touch surface did not register the selections properly. 

5.2.2 Fit of the Prediction Models

Experiment I presented 11 subjects with four differently sized circular targets having the physical sizes shown in Table 2. The targets appeared at varying distances from the starting point of the movement which was the center of the screen. Four different input methods were evaluated: finger touch, stylus touch, trackball, and isometric joystick.

Table 2. Physical sizes in mm of targets by input method. Measurements are taken along the diagonal since the targets are circular and approached along a two dimensional trajectory. The experiments for finger touch were carried out on a 15” monitor versus a 14.1” monitor for the other input methods.
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The mean movement times (MT) and standard deviations for each input method are shown in Table 3 and plotted in Figure 5. Mean MT for finger touch is 803ms (sd = 868) versus 659ms (sd = 320) for stylus touch. A Wilcoxon sum-of-ranks test shows the difference to be significant [W = 156891.5, p < 0.005]. The observed effect is made more interesting by the fact that the screen used in the stylus experiment is smaller, thus making the targets physically smaller (see Table 2). This suggests that stylus touch is more efficient compared to finger touch. 

Trackball selection is on average slower than stylus touch, but is faster than the isometric joystick. All targets were displayed at the same physical size during the stylus, trackball and joystick trials. Wilcoxon tests show the differences to be significant (p < 0.001). 
It is worthwhile to note that the standard deviations of MT for finger touch are quite large, particularly for the smaller target sizes. A large standard deviation, particularly one that exceeds the mean, is indicative of a skewed distribution containing far outliers (Lowry, 2005). This is not unexpected given the high error rate for finger touch selection of small targets as will be shown later. There are several approaches to dealing with outliers. One can simply remove them from the analysis, but this might hide certain effects, or one can average the values across each test condition and thus attenuate the influence of outliers. A third approach is to apply a log-transform which moves the outliers closer to the mean. Therefore, to reduce the influence of outliers on regression and correlation results, many Fitts’ law studies average the observed values for MT across the tested values of ID. Going forward, correlation results in this chapter are provided for both the raw (observed) data as well as the averaged data. Interpretation of the raw data must be done with a degree of caution when the standard deviation for the data sample is close to the mean (Faraway, 2002).
Table 3. Descriptive statistics showing mean and standard deviation for movement time across target width and input methods.
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Figure 5. Mean movement time (MT) by target size for each input device with 95% confidence interval.
The initial analysis for goodness-of-fit with several of the currently accepted prediction models (Fitts, Welford, Shannon, Meyer, Kvålseth, and Accot-Zhai) is done by looking at the correlations across all width and ID values for each input device. In addition, mean MT and its standard deviation are calculated for all of the input devices under consideration. ISO9421-9 standardizes on the use of the Shannon formulation of Fitts’ law for comparing throughput across input devices, making that model the most critical to look at (Soukoreff and MacKenzie, 2004).
Table 4 summarizes the fit of each of the models with the four tested input devices. The Pearson moment correlation is shown for each target width as well as the overall fit. The correlation coefficient (R) and throughput (TP) are calculated using the raw data as well as averaged MT values over 20 ID ranges (R'). There is considerable debate over whether to use the raw data values in the correlation calculations or averaged MT values over fixed ID ranges (Thompson et al., 2004). From a statistical perspective, the use of the raw data shows the shape of the data more clearly and the correlation results are more meaningful. However, as discussed previously, a few far outliers can markedly affect the correlation (Faraway, 2002). Using averaged values attenuates the effect of outliers by bringing them closer to the mean, but this may have the unintended consequence of hiding the effect of certain factors in movement time. For instance, for finger touch, the smallest target size has a much higher selection time. When using averaged MT values, this effect may be hidden. Therefore, threshold values that markedly affect performance may not be detectable. On the other hand, most published studies on Fitts’ law report correlations based average MT over a fixed range of ID values, so the use of the correlations obtained from the averaged data allows meaningful comparisons with prior results. 

Soukoreff and MacKenzie (2004) state that obvious outliers should be removed from the calculation of ID, which they define as being farther than three standard deviations from the mean. They attribute the presence of outliers to ‘misfires’ where a subject accidentally double-clicks on a target or pauses during the movement. The outliers observed in this experiment do not fall into one of these two categories. Rather, they are caused by the imprecision of touch input for small targets. Touch screens report a single (x, y) position to the testing software even though the probe (finger) covers much more than a single pixel on the screen. The reported position is most commonly an average of the covered pixels. Therefore, targets that are smaller than the probe often require repeated attempts before a successful selection occurs. Consequently, the high trial completion time measured by MT captures the actual difficulty of the task and outliers generally represent selections of small targets. As an overall performance model is sought, all movement trials should be included in the calculation, except when the high trial completion time is due to a hardware malfunction or a trial which clearly violates the experiment assumptions.
A Quantile-Quantile (QQ) plot points to the fact that the distribution of MT is not normal. Therefore, the parametric Pearson product-moment correlation test has lower predictive power. A log-transform of MT normalizes the distribution by bringing outliers closer to the mean. A recalculation of the correlations yields stronger values for both the raw data as well as the averaged data. For example, the correlations for finger touch with the Shannon model improve from 0.38 to 0.58 for the raw data and from 0.90 to 0.95 for the averaged data. 

Table 4. Comparison of predictive models across input devices by target size. In the table, R is the coefficient of correlation for the raw data, R' is the coefficient of correlation for the averaged data, and TP is the throughput.
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Overall, the models show similar strengths of prediction. However, none of the models is robust for small target sizes when using finger touch input. Generally, the models exhibit correlations consistent with what has been reported in the literature (MacKenzie, 1991, 1995; Kvålseth, 1980; Accot & Zhai, 2003, Thompson et al., 2001; Oel et al., 2001). Through exploratory analysis of Kvålseth’s model for the finger touch experiment, the best fit is obtained when the exponent c is fixed at 0.33 in Equation Error! Reference source not found..

{ text deleted here for brevity }

6. CONCLUSIONS
This dissertation extends the applicability of Fitts’ law to new situations. In addition, more powerful candidate models have been derived to better predict cursor positioning time in dual-task situations, when acquiring vibrating targets, and when selecting closely spaced targets using touch input.
6.1 Contributions

This dissertation makes the following contributions:

1. Comprehensive review and organization of recent literature on Fitts XE "Fitts" ’ Law and other perceptual-motor prediction models with a focus on the application of Fitts’ Law XE "Fitts’ Law"  to input devices commonly used to interact with applications in non-stationary environments.
2. Development of an extensible, open and interactive research platform for exploring movement time models and assessing input device performance in the context of ISO9241-9.
3. Empirical investigation, validation, and expansion of the applicability of Fitts XE "Fitts" ’ Law to cursor positioning tasks in dual-task environments, standing postures, and while walking.

4. Derivation of a new movement time model (Centering Model) that more accurately describes the acquisition of targets using touch input.

5. Development of a new model (Dual-Phase Model) that describes the two-step nature of selecting vibrating targets.

6. Empirical derivation and validation of a predictive model for mean task completion time of numerical data input tasks on a soft keypad.

7. Definition of specific design heuristics for creating user interfaces which assure that interactions can be completed in a safe and accurate manner.

6.2 Future Work
The predictive model empirically validated in this dissertation is applicable to interactive tasks involving rapid aiming motions, such as soft keyboard input, command button selection, and pointing at particular screen locations. However, it is not appropriate for interactions where the task is steering oriented, such as menu selection. Such tasks are best described by Accot and Zhai’s steering law and further work needs to be performed to develop a steering law that is parameterized for motion and distraction.

While the task completion time model has been shown to conform to data gathered in laboratory experiments, it will need to be verified in situ. In particular, a series of experiments will need to be conducted aboard a moving vessel or automobile in various motion patterns. Instrumentation of the experiment apparatus with accelerometers will help determine the motion forces will need to be added. It will also be necessary to create a model of the motion characteristics and the effect on limb and muscle performance. The MTE platform has already been modified to accept input from a Vernon LabPro 3D Accelerometer through a custom driver written in Java.

MTE will need to be enhanced to include evaluation mechanisms for steering tasks. In addition, further kinematic analysis will need to be built into MTE, including calculation of movement range, detection of movement reversal, and gathering of the number of times targets are entered and exited.

Aside from the presence of a secondary task, other factors might affect aiming performance as well, such as low visibility or loud noise as might occur on a boat or in an automobile. A study will need to be devised to determine if decision time is impacted by the presence of a secondary task and other factors. The proposed model assumes that the laws of decision are invariant to task interruption and interference.

The Dual-Phase Model describing the capture of vibrating targets has applicability in computer games and web design. For example, web pages often include graphical advertisements that employ a jittering image to attract customers. The selection of such a jittering image can likely be predicted with the Dual-Phase Model. A study is needed to validate the applicability of the Dual-Phase Model to jittering images.

A set of usability studies is needed to compare the results of this research against actual commercial systems, such as in-vehicle or on-board navigation systems, mobile telephones, personal digital assistants, and other ubiquitous systems.

6.3 Summary

In conclusion, the work presented in this dissertation provides an empirically validated model for predicting numeric input tasks on soft keyboards that are commonly used in in-vehicle navigation systems, mobile telephones, and on-board navigation systems. Specifically, the research focused on touch input and shows that Fitts’ law holds for that mode in input, although more powerful models are proposed. In addition, while the presence of secondary cognitive tasks, such as glancing at controls or the road, or reading a map has an impact on task completion time, Fitts’ law is relatively unaffected by it. 

Using the proposed models, user interface designers of ubiquitous and mobile computing systems can evaluate a priori whether tasks can be completed in a specific amount of time that is below the neglect time of other tasks present in the user environment. This allows designers to make informed layout choices during the development time of the user interface for mobile applications and assure their safe use.

7. Appendix A: Glossary of Terms & Acronyms
	IVIS
	In-Vehicle Information System

	HCI
	Human-Computer Interaction

	MMI
	Man-Machine Interface.

	MFD
	Multi-Function Display

	MT
	Movement Time

	HVI
	Horizontal-Vertical Illusion

	ID
	Index of Difficulty 

	IP
	Index of Performance 

	ICM
	Iterative Corrections Model

	IVM
	Impulse Variability Model

	OIIM
	Optimized Initial Impulse Model

	R
	Correlation coefficient

	RT
	Reaction Time (also referred to as choice or dwell time)

	TP
	Throughput (also referred to as Index of Performance)


8. References
Accot, J, & Zhai, S. (1997). Beyond Fitts’ Law: Models for trajectory-based HCI tasks. In Proceedings of the ACM CHI ’97 Conference on Human Factors in Computing Systems, Atlanta, GA: ACM, 295-302.

Accot, J, & Zhai, S. (1999). Performance evaluations of input devices in trajectory-based tasks: An application of the steering law. In Proceedings of the ACM CHI ’99 Conference on Human Factors in Computing Systems, Atlanta, GA: ACM, 295-302.

Accot, J., & Zhai, S. (2001). Scale effects in steering law tasks. In Proceedings of the ACM CHI 2001 Conference on Human Factors in Computing Systems, Seattle, WA: ACM, 1-8.

Accot, J., & Zhai, S. (2003). Refining Fitts’ law models for bivariate pointing. In Proceedings of the ACM CHI 2003 Conference on Human Factors in Computing Systems, April 2003, Ft. Lauderdale, FL: ACM, 193-200.
Akamatsu, M., MacKenzie, I. S., & Hasbrouq, T. (1995). A comparison of tactile, auditory, and visual feedback in a pointing task using a mouse-type device. Ergonomics, 38, 816-827.
Analyze-It (2005). Analyse-it Software Ltd. Leeds, UK. Available from www.analyze-it.com.
Armbrüster, C., Sutter, C., & Ziefle, M. (2004). Target Size and Distance: Important Factors for Designing User Interfaces for Older Notebook Users. In Work with Computing Systems 2004. H.M. Khalid, M.G. Helander, A.W. Yeo (Editors) . Kuala Lumpur: Damai Sciences.

Balakrishnan, R., & MacKenzie, I. S. (1997). Performance differences in the fingers, wrist, and forearm in computer input control. Proceedings of the ACM Conference on Human Factors in Computing Systems – CHI '97, pp. 303-310. New York: ACM.
Beers, R. van, Baraduc, P., & Wolpert, D. (2002). Role of uncertainty in sensorimotor control. [Electronic Version] Philosophical Transactions: Biological Sciences London: The Royal Society. Available from http://www.journals.royalsoc.ac.uk.
Beers, R. van, Haggard, P., & Wolpert, D. (2004). The role of execution noise in movement variability. Journal of Neurophysiology, 91, 1050-63.
Bleicher, P. (2004). Three new technologies for 2004. Applied Clinical Trials, February 2004. Retrieved on March 8, 2006 from http://www.actmagazine.com/ appliedclinicaltrials/article/articleDetail.jsp?id=82778.
Bodenheimer, B., Shleyfman, A., & Hodgins, J. (1999). The effects of noise on the perception of animated human running. Computer Animation and Simulation ‘99, Eurographics Animation Workshop, September 1999, 53-63. 

Bohan, M., Thompson, S., Scarlett, D., & Chaparro, A. (2003). Gain and target size effects on cursor-positioning time with a mouse. In Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting, 2003, 737-740.

Bohan, M., Thompson, S., & Samuelson, P. (2003). Kinematic analysis of mouse cursor positioning as a function of movement scale and joint set. In Proceedings of the 8th Annual International Conference on Industrial Engineering, Las Vegas, NV, November, 2003, 442-447.

{ text deleted here for brevity }

9. Biographical Sketch of the Author
Martin J. Schedlbauer holds B.S. (summa cum laude) and M.S. degrees in Computer Science from the University of Lowell (now the University of Massachusetts at Lowell.) Mr. Schedlbauer also holds a U.S. Coast Guard 100GT Masters license.
In addition to being an Adjunct Faculty member of the University of Massachusetts Lowell and Boston University, Mr. Schedlbauer frequently presents seminars and workshops in software engineering, user interface development and large scale system architecture for corporations worldwide. Before returning to complete his doctoral studies, he was Chief Technology Officer at BEA Systems, Inc. and prior to that founder, CEO, and CTO of Technology Resource Group, Inc.

Mr. Schedlbauer is a member of the IEEE Computer Society, the Association for Computing Machinery, the ACM SIGCHI, and President of the UMass-Lowell ACM SIGCHI chapter.

During the preparation of this dissertation, the following publication was submitted:

Schedlbauer, M., Pastel, R., & Heines, J. (2006). Effects of posture on target acquisition with a trackball and touch screen. Submitted for publication at Information Technology Interfaces 2006, June 2006, Dubrovnik, Croatia.

In addition, the following technical report was generated:

Schedlbauer, M., Pastel, R., & Heines, J. (2005). An extensible and interactive research platform for exploring Fitts’ law. Technical Report 2005-014, Department of Computer Science, University of Massachusetts Lowell.

W





Target





























D

























































































































































































iii

_1203684480.unknown

