NOVEMBER 1987 5

THE CBT CRAFTSMAN

<

Vriting the program
that matches the if
yith the then.

Jesse M. Heines

<

ft is with deepest regret that | report the
death of my friend and colleague, Paul Rus-
sefl, who was the subject of my May, 1987
column “On CBT and Creativity.” Paul died
cefully in his sleep due to complications

stimulating and inspiring. | will always
cherish the times we spent together discuss-
ing the qualities of good CBT in his small
room in New Jersey. Paul was without peers
inlhis efforts to produce quality CBT in spite
of|his handicap.

My last column presented the concepts
involved in designing a rule-based router.
This column presents the code necessary
o implement that router.

To review my last column, rule-based
programming is a technique for expressing
camplex interrelationships in the form of if-
thien “rules.” The “if” part of these rules,
typically called the left-hand side (LHS),
represents a specific set of circumstances
while the “then” part, typically called the
right-hand side (RHS), represents the action
tobe taken when that set of circurnstances
curs. To use these rules, the current sta-
tus of a student (or some other complex sys-
tem) is expressed in a data item called a
‘slate vector” which is in the same form as
a rule LHS. The state vector is then com-
pared to the LHS of each rule in turn until
a match is found. The program that does

P

Jdsse M. Heines, Ed.D., is an assistant
professor of computer science at the
niversity of Lowell in Lowell, Mas-
achusetts. He is the author of Screen
esign Strategies for Computer-
ssisted Instruction as well as numer-
us articles on CBT courseware develop-
ent. Dr. Heines provides training and
consultation on computer-based train-
, develops custom training pro-
grams on contract, and writes “The

CBT Craftsman” every other month.

2

3o >0

-

Rule-Base

INFERENCE ‘
ENGINE

PROGRAM

State Vector

malch found

Action To Take

Figure 1. The state vector is compared to
the LHS of each rule in the rule-base.
When a match is found, the inference en-
gine program returns the action to take.

this matching is typically referred to as an
“inference engine” When a malch is found,
the action expressed by the rule’s cor-
responding RHS is taken. The relationships
between the state vector, rule-base, and in-
ference engine program are shown in Fig-
ure 1.

The problem now is to implement the in-
ference engine program. To maintain con-
sistency with my previous columns, 1 will
show the implementation once again in
TenCORE*, an authoring language with
powerful programming capabilities. In this
language, each line begins with a coin-
mand word that tells the system what to do.
The command word is followed by a com-
mand argument that tells the system the
parameters needed for that command. The
lines are numbered in this column for refer-
ence only; TenCORE neither requires nor
allows line numbering. All lines that start
with an asterisk (*) and all text following
double dollar signs ($$) are comments.

As in most programs that work with com-

-plex data, we begin by defining the struc-

ture of the data. There are two main data
structures to consider: the state vector and
the rule-base.

Using the structure defined in my last
column, the state vector is an ordered set
of live integers: the student's mastery sta-
tus on each of three skills (with 1 indicat-
ing mastery and 0 indicating non-mastery),
the number of the module that the student
completed last (0-3), and the total number
of modules that have been completed (0-5).
in TenCORE, we define the state vector as
a five-element array of integers called
statevec. Thus, the status of Skill 1 is stored
in statevec(l), the status of Skill 2 in
statevec(2), and so on.

Each rule is also an ordered set of six in-
tegers. The first five integers represent a
rule’s LHS, which is one possible state of the
state vector, and the sixth represents the

number of the module to be studied next,
with 0 indicating Lhat the instructional pro-
gram should stop. The rule-base defined in
my last column had 10 rules, so we need 6
times 10, or 60, integers to store this rule-
base. We therefore define the rule-base as
a 60-element array of integers called rules.
(It would be nicer to use a 6 by 10 two-
dimensional array to store the rules, but
most authoring systems, including’ Ten-
CORE, only allow one-dimensional arrays
if they allow arrays at all. This is not a big
problem, because 2D arrays can be mapped
onto 1D arrays with an easy algorithm, as
you will soon see.)

We want to make the inference engine
program as generalized as possible so that
it can be used by more than one set of rules.
We should therefore implement it as a self-
contained subprogram (or unit, in Ten-
CORE terminology). To do this—since Ten-
CORE can only pass parameters that are
less than or equal to 8 bytes in length—we
must define both statevec and rules as
global variables which are defined for an
entire program and can be read or writlen
by any subroutine in that program. These
global variables are defined in a special unit
called defines. While we're at it, let’s create
a global constant called nrules so that in or-
der to use the inference engine program
with a different size rule-base, say 12 rules

Implementing The
Rule-Based Router

with 4 elements on each LHS, we only need
to change the data definitions, not the in-
ference engine program. Unit defines is
shown in Figure 2.

My last column contained a detailed dis-
cussion of how rules are derived and ex-
pressed for a sample rule-base developed
by Dr. Tim O'Shea. Those rules may be
summarized as shown in Figure 3.

To initialize the rule-base for the infer-
ence engine program, we need to translate
the rules from the form shown above into
appropriate values for each of the 60 in-
tegers in array rules. If we adopt the conven-
tion that the asterisk is translated into a
value of —1, our job can be made quite sim-
ple because all of the non-asterisk values
are already integers. The code in Figure 4
will perform the desired assignment. .

Likewise, the state vector itself can be in-
itialized to all zeros with the statement in
Figure 5.

Since rules and statevec are global, they
do not have to be passed to the inference
engine program as parameters; that pro-
gram can “see” these variables directly. We
therefore only need to write that program
so Lhat it returns the number of the next
module to be studied, nextmod. For con-
venience, however, we will also make the
inference engine program return the num-
ber of the rule that was applied. If we name

1 nrules = 10
2 . rules(60),2

3 statevec(5),2

Unit defines

$$ number of rules, a global constant
$$ the rule-base, six 2-byte integer entries for each of 10 rules
$$ the state vector, a list of five 2-byte integers

Figure 2. Statevec and rules must be global variables, defined for the entire program, to be
read or written by any subroutine in that program, and defined in a special unit.

RIGHT-HAND
eomsanememenrinascne { EFFHAND-SIDE ---eereervomeanannen SIDE
Rule Skill Skill Skil Last No. of Next
Number 1 2 3 Module Modules Module
1. * * * * 5 0
2 . . i . . 0
3 1 * * 3 * 3
4, 0 * * 3 * 1
5. * 1 * 2 . 3
6. 1 . . 2 . 2
7 0 ¢ ‘ 2 * 1
g .80 T e : 1 : 2
& . 9 i i o ;3 =N - 1 - 1
10. ; : t. > - " . 2 ‘

Nolw 4’ mdicales lhat the mlue i Ihls posn‘fon is lrelevant
* 20 in the riekt Module column Mdlmles lhal Ihe insiructonal program Should stop '

Figure 3. The rules for a sample rule~base may be summarized this way.

Copyright (c) 1987 by Weingarten Publications, Inc.

Reprinted with permission.

6 | TRAINING NEWS

5, 0 Srule
-1, 0, $$ rule 2
~1," 2 $Srule 3
-1, 1, $$ rule 4
-1,3, .88rieh
-1, 2, " 8$ruleb
-1, 1, $Srule 7 3
-1, 2 $$rule 8
-1, 1, $$ rule 9
-1, 2, $$ rule 10

Figure 4. To initialize the rule-base for the inference engine program, we need to translate

2 * Initialization

3 -
. .4 sel rules() := -1, -1, -1, -1,
Ps -1, -1, 1, -1,
o 6 1, -1, -1, 3,

7 0, -1, -1, 3
i 8 -1, 1,-1, 2
ST 1, -1, -1, 2,
i 10 ’ o, -1, -1, 2,
P e 1, -1, -1, 1,
12 : 0, -1, -1, 1,
B 13 -1, -1, =1, -1,

the rules into the appropriate values for each of the 60 integers in array rules.

13 set statevec(l) := 0, 00 0, 0 0,

0, $$ set all state values to 0

Figure 5. The state vector itself can be initialized to all zeros with this stalement.

the inference engine program applyrul, the
TenCORE syntax for calling it would look
like this.

14 do

We are now ready to write the inference
engine program. The major approach is to
begin with the first rule and test the LHS of
tHat rule against the state vector. If that
rule’s LHS does not match the state vector,
we move on and test the LHS of the next
rule against the state vector. When a match
s found (and if the rules are written cor-
rectly, a match will always be found even-
tyally), the inference engine program re-
turns the number of the next module to be
sfudied and the number of the rule whose
LHS matched. The code for achieving these
results is shown in Figure 6.

The first interesting thing about this code
1 its brevity. If we were o take out all of the
comments (the lines beginning with aster-
isks), the entire inference engine program
would be only 16 lines long! The trick to
making the code this concise is in the defi-
nition of the rule-base, which expiains why
| have spent so much time discussing how
the rule-base is derived and expressed. But
let us now dissect the code to see just how
it works.

Lines 8-12 establish three local variables
at may be used within this unit without
ffecting any variables outside of the unit.

applyrul (; rulenum,nextmod)

o =

Line 16 sets the number of the rule cur-

rently being processed to 1 so that the pro-

gram begins with the first rule in the rule-
base when it does its tests.

The nucleus of the program is in lines
21-24 (line 20 is merely a label for the
branch in line 30). Line 21 shows the al-
gorithm | referred to earlier for mapping a
2D array onto a 1D array. This line com-
putes an offset into the 60-element rule-
base array for the rule currently being
tested. This offset is added to all sub-
script references for the current rule to
access the correct elementsin the rule-
base array. For example, for Rule 2 the
offsetis6 * (2 ~ 1) =6*1 = 6. If we
want lo refer to the first element of the sec-
ond rule, we therefore refer Lo it as
rules(l + 6) which is of course rules(7).

Line 22 sets up aloop that is going to ex-
ecute a maximum of 5 times, once for each
element in the state vector (and in the LHS
of each rule). Line 23 exits the loop if and
only if both of the follow ing conditions
are true:

e the current rule element (rules
(k+offset))isnot equalto —1,ie.,itis
not a “wild card,” and

® the current rule element is not equal
to the corresponding value in the
state vector (statevec(R)).

A loop exit under these conditions causes
an immediate branch to line 25, the state-

ment immediately following the endloop
command. If either of these conditions is
false, control passes to endloop command
on line 24, at which point the program
increments the loop index, k, and loops
back to line 23 if & is less than or equal
to 5 or drops through to line 25 if & is
greater than 5.

Line 25 looks at the value of the loop in-
dex to decide whether or not the LHS of the
rule being processed matches the state vec-

branches the program back to the testing
routine to see if the state vector matches
this new rule. Note that it is critical that the
last rule be a “catch-all” which always
matches any stale of the state vector. This
condition is necessary to prevent an infinite
loop.

What we have, then, is a short, relatively
simple program that implements the very
powerful concept of rule-based routing. Yet
although the program is simple, we had to

k2 $$ loop index
offset,2
nulenum,2
define end
+

aR=2
N=-QoOoENdDOo&oWN =

pry
=

* Initialization

gy
(=23,

calc

rulenumn (=1 $$ the symbol

STB

nextrul
calc offset := 6 * (rulenum - 1)
loop k:=15

RBRW

endioop

zsgmam

cale rulenum := rulenum + 1
branch 1nextrul

Bwes

* A maiching rule has been found

]

3 1match
35 retum rulenum, nies(B-+offset)

Unit applyrul

*This unit applies the rules defined in the global variable *'rules™
* 1o the state vector stored in the global varfable “statevec’”
'(ﬂmsemustbeglobalvariabl&shTenCOREbecausettwarelonger

* than 8 bytes and therefore cannot be passed as parameters.) The
* unit returns a single integer mprmenungmenmteadmgopemmn
'tobeperformed or -1 if the system should stop.
define local $% local variables known only within this unit

$$ offset into rule datébase for cument rule
$3 number of rule currently being processed

=" means "is assigned the value of”

* Test the LHS of a rule for a match with the state vector

outloop rules(k+offset) < > —1 and nules(k+offset) < > statevec(k)
branch k > 5; Imatch; x $$branch to labet 1match if true, drop through if 1alse

* Rule does not match, increment rufe counter and apply next rule

Figure 6. When a match is found, this code ensures thal the inference engine program will
return the number of the next module and the number of the rule whose LHS matched.

tor. If the loop executed all five times-—that
is, if at least one condition specified in the
outloop command was false for each of the
five elements in the stale vector—the value
of k at this point will be 6. In this case, the
LHS of the rule being processed matches
the state vector and the condition in the
branch command in line 25, & is greater
than 5, will be true. The program therefore
branches to line 34 which contains the la-
bel Imatch. Line 35 then returns the num-
ber of the current rule, rulenumn, and the
number of the next module to be studied,
which is the RHS of the current rule and is
stored in rules(6+offset).

If, on the other hand, the loop terminated
prematurely, ie., if both conditions speci-
fied in the outloop command were true for
one of the five elements in the state vector,
the value of & at line 25 will be less than or
equal to 5. The condition in the branch
command in line 25, & is greater than 5,
will be false. The program therefore drops
through to line 29 where the number of the
rule to be tested is incremented. Line 30

do a great deal of work in setting up the
rule-base on which it operates. This some-
what non-intuitive situation, in which
deriving the data is more difficult than writ-
ing the program that processes it, is com-
mon to rule-based programming and other
areas of artificial intelligence. While the
programming aspect of this work may there-
fore be handled by junior employees, the
derivation of branching data will always
remain the task of experienced course
developers.

1 would be happy to provide TenCORE
authors with a demonstration disk con-
taining the source code of Lhe inference
engine program,; this demo disk also con-
tains a TenCORE unit which calls the in-
ference engine program and displays its
results. Please send a formatted diskette
and a self-addressed mailer to me in care
ol Training News, 38 Chauncy St., Boston,
MA 02111 O

*TenCORE is a registered trademark of
Computer Teaching Corporation.

