IMPLICATIONS OF WINDOWING
TECHNIQUES FOR CATXI

Jesse M. Heines, Ed.D.
Ceorges 8. Orinstein, Ph.D.

University of Loweall
Dapt. of Computer Sciesnce
Lowell, MA 018354

paper presented at a conference on
Visions of Higher Education: Trans—National Dialogues

Stockton State College
Pomona, New Jersey

August S5, 1985

ABSTRACT

Windowing is & technique that allows & aingle computer terminal
to act as either multiple output devicea for a single computer
program, or & single output device for multiple computer pro-
grama. This paper discusses the use of windowing in computer-
assisted instruction (CAI) programs to allow independent control
of functional areas in complex CAI diaplays and simultaneocus
display of output from a running computer program and coordinated
inatructional material.

INTRODUCTION

One of the basic fixtures of the tomorrow’a learning environment
for higher education will be instructional programas delivered by
computers. The vision of highly interactive and adaptive teach-
ing machines has been around for decades, but the move to devel-
oping such systems always seems to stall before it gets up a
significant head of steam. Two of the obastacles to widespread
use of computer-assisted inatruction (CAI) in computer ascience
courses are:

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinastein, University of Lowell

@ the need to display a large amount of information on the
acreen at one time, and

@ the need to either simulate sophisticated computer pro-
cesses 80 they can be demonstrated from within a running
CAI program or to exit the CAI program so students can
try out the concepts being taught.

This paper examines the implicationsa of using windowing tech-
nigues to address both these problems, 8o that more effective
computer science CAI programs may be developed in the future.

USING WINDOWS

Windowing is a technique that allows a single terminal to act as
either:

e nrultiple output devices for a single computer program, or
@ a single output device for multiple computer programs.

The availability of this technique has a number of implications
for CAI, where screen display space is often at a premium. The
two main implications we examine are:

e the independent control of functional areas in complex
CAI displays, and

@ s8simultaneous display of output from a running computer
program and coordinated instructional material.

The firast part of our effort is to specify a virtual windowing
syastem by defining the features we would 1like to see in a
computer science CAI windowing system. The s8econd part 1is to
examine how such a system might be implemented in current envi-
ronments, concentrating on the trade-offs that might be made to
enhance simplicity and performance.

THE VIRTUAL S8YSTEM

CA]l screens are often complex, combining explanatory text and
graphics with representationa of the subject matter such as

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

simulated computer screens. Heines (1984) has pointed out the
advantages of establishing discrete functional areas for various
screen componenta. Windowing can be vused to make control of
these areas truly independent, greatly simplifying coding and
debugging. Rudimentary windowing is already available in some
CAI authoring asyastems, but these implementationas can only handle
non-overlaid windows. We know of no CAI authoring system that
currently provides windows of arbitrary dimensions and overlay
levels, dealing fully with the problems of occlusion and restor-
ation.

Even in more sophisticated windowing systems, the missing fea-
ture, from a CAI point of view, is the ability for a process
running in one window to "“filter™ a process running in another
window. One often finds that sophisticated CAI programs contain
simulators for software (such as command interpreters or com-
pilers)> that already exist on the system but that are inacces-
sible from inaside an executing image. It ias certainly true that
most of today’s major operating systems allow a main process to
spawn a child process, pass control to it, and then analyze its
results when the subprocess is terminated by the user. These
systems do not, however, generally allow the parent proceas to
"eavesdrop” on the child, analyze its results as the student
workas, and interrupt as soon as an error is saspotted. ("Shelley,"
a new CAI authoring syatem for the IBM PC that was demonstrated
at Data Training’s Computer-Based Training Conference in March,
1985, is a notable exception.)

The functionality described above may, at firat reading, seem to
have 1little relevance to windows. It is, however, extremely
relevant because it governs the types of interactions that one
can implement in a windowing system. Without the ability to
*filter" processes in the manner described above, windows supply
little more than a convenient technique for the control of func-
tional areas. While this minimum functionality is still useful,
it leavea the contribution of windowing techniques to CAI far
below its promise.

Sample Applications

During the 1984 spring term, Heines worked with Karen Smith at
Brown University to explore the development of a CAI course with
the features described above. Brown makes extensive use of
Apollo Domain systems in its introductory Pascal programming
course, and these systems have a number of hardware features
specifically designed to simplify the implementation of windowing
systems. To this hardware Brown’s programmers have added BALSA,

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heinea & Grinstein, University of Lowell

the Brown Algorithm Simulator and Animator, a system that pro-
vides software interfaces to the windowing hardware along with
other, more sophisticated features. (For a fuller desacription of
BALSA, see Brown and Sedgewick, 1984.)

One of the applications that Heines and Smith built was an in-
atructional game to help students master the concepts and syntax
of Pascal passing parameters by value and by reference. The game
was called "The Parameter Mystery', and its initial acenario was
simply that someone had been murdered. The students’ task was to
determine who murdered whom with what. To play the game, satu-
dents typed Pascal assignment statements and procedure calls as
if they were writing a program. They could assign values to
sevaen predeclared variables and call seven predefined procedures.
Each procedure required certain information to be passed to it

and returned certain information in turn. The students’ entries
were evaluated interactively, with detailed error messages for
incorrect statements. Procedures called correctly with the

appropriate parameters yielded clues to the mystery, <from which
students could eventually deduce an anawer. (For a more complete
deacription of "The Parameter Mystery," see Smith, 1985. Exten-
sions of this work are now being pursued by Heines at The Univer-
sity of Lowell under a grant from Digital Equipment Corporation.)

Ingert Figure 1 about here.

The initial acreen for "The Parameter Mystery™ is shown in Figure
1. This figure shows the BALSA logo and basic screen layout with
five windows:

1. The first window is the topmost line of the screen in which
the measage "Type your first entry"” appears. This is where a
student’s input appears as s/he types it.

2. The second window is the large (and currently empty) rectan-
gle taking up most of the left-hand side of the screen. This
is where feedback on the student’s input will appear. This
feedback will be either an explanatory error message (see
Figure 2), a confirming message for an assignment statement
(Figure 3), or a clue for a valid procedure call (Figure 4).

Insert Figures 2, 3, & 4 about here.

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

3. The third window at the top of the right-hand column of rec-
tangles contains a standard help message on additional conm-
mands the student may enter. These are "quit"” to terminate
the program, ‘'ascalarsa”™ to display all known scalar values,
and “"formals"™ to display the predefined procedure names and
their formal parameter lists.

4. The fourth window is the narrow one-line message that dis-
plays the number of statements already entered.

S. The fifth window at the bottom right of the screen 1is a
dynamic display of the values of all user-assignable vari-
ables. At the beginning of the program, all of these values
are undefined (see Figure S).

Insert Figure S5 about here.

Each student entry caused information to be updated in four of
the five windows. Note, however, that none of these windows
overlapped. The use of windowing in this instance therefore did
not result in an increased display space, but rather simplified
the display of updated information and the overall management of
this rather complex sacreen.

A more sophisticated windowing application can be seen in a com-
plementary application built by Smith and Heinea. This applica-
tion reinforced material presented in lectures and prepared
atudents for playing 'The Parameter Mystery" by visually demon-
strating actual progrars that make use of procedures and paranr-
eters. (This application is also described more fully in Smith,
1985.>

Insert Figure 6 about here.

Figure 6 shows one screen from this application, containing four
windows.

1. The firat window is again the topmosat line of the acreen in
which the message '"Press Return To Continue”™ appeara. This
is where program ocutput appears and where a atudent’s input
appears as s/he typea it.

2. The second window is the short, wide rectangle below the logo
that displays explanatory messages.

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinatein, University of Lowell

3. The third window ias the large rectangle at the lower left of
the screen that contains the program code being demonstrated.

4. The fourth window is the narrow rectangle at the lower right
of the screen that displays parameters and their values.

As each line of the program in the third window 1is executed,
BALSA encloses it in a narrow box (see the fourth line from the
bottom in Figure 7). When a procedure 1is called, the actual
parameteras are digsplayed in Window #4 (Figure 7). The called
procedure is then overlaid on top of Window #3, occluding the
calling code and the formal parameter identifiers are displayed
in Window #4 (Figure 8). The actual parameter values are then
shown to be assigned to the formal parameters in an animated
fashion to drive home the concept of parameter passing (see the
time exposure in Figure 9). When the called procedure termi-
nates, the overlaid code is removed and the acreen in Figure 7 is
automatically reatored by BALSA. We believe that the visual
power of this system is unprecedented in demonstrating the rela-
tionahip between actual parameters in a calling procedure and
formal parameters in the procedure being called.

Insert Figures 7, 8, & 9 about here.

THE PHYSICAL S8SYSTEM

While the advantages of windowing syastems are easy to conceive,
the implementation of +these capabilities is complex. Even in
syateme that handle only non-occluded windows, keeping track of
which window vyou are addressing and where positions in that
window are located in ite own relative coordinate system can be
mind-boggling for the applications programmer. PC Pilot offersa
auch a capability, and Heinea’ experience is that the task is
still complex even though PC Pilot windows only support text and
the language provideasa macro commands for switching from one
window to another (asee Uaing IBM Pilot, 1984).

When each window contains a separate procesa, the aystem nust
also handle interwindow communication. Since most modern oper-
ating systems provide some capability of interproceass communica-
tion, the problem can be reduced to template matching: one window
to one proceass. Interwindow/interprocess communication can then
be implemented in several ways:

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

e s8et up a parent process that periodically monitors its
child processes,

e set up a parent process that continually monitors its
child processes,

e set up a parent process that only responds upon an inter-
rupt from its child processes, and

e sget up a parent procesas that periodically interrupts its
child processes.

Terminal independence is an additional requirement of the imple-
mentation, as it is not reasonable to expect student or faculty
usage to be restricted to a single terminal type. In addition,
the window manager should conform to international graphics
standardas, and most of these require device independence as a
primary feature. Given the diverse university environment and
the large number of possible extensions to this work, we feel
that tools development is8 as important as the final implemen-
tation itself. A large amount of time has therefore been spent
developing tools that will be used to implement interwindow com-
munication.

Implemantation Under UNIX

The Apollo Domain systems used to implement the sample applica-
tions discussed above ran a version of UNIX. UNIX is well-known
for ite sophisticated interprocess communication capabilities via
“pipes,’ and BALSA handled virtually all of the required window
managenent taskas. The master CAI program for both of the sample
applications was actually run as a subprocess with BALSA as the
controlling process. Each windowing operation was coded in the
CAI program as an "interesting event” that signalled an interrupt
to BALSA. A second set of procedures (written in C and Pascal)
told BALSA what to do at each interrupt. Such procedures
included updating variablea, displaying data in one of the win-
dows, demonatrating a Pascal program, and accepting keyboard and
mouge input from the user. The program ran quite quickly, since
each Apollo system was an semi-independent workstation.

The combination of UNIX and BALSA therefore proved to be a highly
functional, albeit somewhat opaque, environment for implementing
the sample applications. However, this software was intimately
tied to the Apollo systemsa, particularly the high resolution
Domain display. We therefore began experimenting with implemen-
ting similar functionality under VAX/VMS.

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

Implementation Under VAX/VMS

The run time library supplied with VAX/VMS Version 4.1 includes a
number of acreen management functions that provide the primitives
needed for windowing. Such primitives include defining a
pasteboard (a physical screen area) and defining windows (virtual
acreen areas) on this pasteboard. The run time library also
provides utilities to delete a window, make a window visible or
invisible, move windows, change priorities, accept input from a
window, etc. These operations are somewhat terminal independent.
We have tested them on a VTi00, a GIGI, and a VT240. While we
have encountered some problems running applications on more than
one terminal type, we are not sure at this point whether those
problems lie in our software or the run time library.

When we looked at the posaibility of uasing interprocess communi-
cation with different windows, we ran into great difficulty.
Firat, as ias usual, we found that the syatem documentation ia
written for very sophisticated applications programmers and
leaves a great deal unsaid. Second, we found that the system
overhead involved in the creation of internal "mailboxes™ for
interprocesas communication was large and caused the application
to run very slowly.

When our prototype windowing communication software ran with one
user there was a noticeable set up time, but the windows communi-
cated with reasonable speed. When several users were on the
system, interprocess communication was slow. The moast succesaful
implementation we have accomplished to date involved sapawning a
number of processes, some to handle interprocess commrunication
and othera to handle output to the different windows.

We succeeded in setting up a parent that continually monitored
ite child processes and in setting up a parent procese that only
responds upon an interrupt from its child processes. We are
atill looking at ways of implementing the other two approaches
under VAX/VMS.

CONCLUSIONS

We have demonatrated that windowing is a highly desirable CAI
feature, but implementation has proven difficult. BALSA and UNIX
provide moast of the needed capabilities on Apollo Domain syatenms,
but this software system is difficult to transport to other
systema. VAX/VMS acreen management utilities are in some ways

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, Universasity of Lowell

more device independent, but they provide considerably less
functionality. In addition, the high overhead of interproceas
communication on VAX/VMS makes use of these routines untenable
under normal system loads.

In some ways, our work thus far has provided more questions than
answers. The prototype applications discussed above have signif-
icantly helped us to organize our thoughts about asynchronous
processes in the CAI environment, but at this time more practical
approaches still need to be devised.

REFERENCES CITED

Brown, Marc H., and Robert Sedgewick, 1984. A system for algo-
rithm animation. Brown University Dept. of Computer Science,
Technical Report No. CS-84-01.

Heines, Jesse M., 1984. Screen Design Strategies for Computer-
Asgisted Instruction. Digital Press, Burlington, MA.

Smith, Karen E., 1985. Developing and evaluating a computer-
assisted instruction dialogue on parameters. Brown University
Dept. of Computer Science, Technical Report No. CS-85-04.

Using IBM Pilot, 1984. IBM Corporation, Irving, TX.

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

ORer on sooigraent statensst, presedurs cal) o
one of the Pelisuing commpnde:

IIT ts torninnts the pregres

SCALMRS to ioplay 81} haous scaler veluss

FIRNLS to Gisplay the Procodure ammss hd thelr
feraal paremster 1ists

IR |

Figure 1. Initial BALSA screen layout for "“The Parameter Mya-
tery."

=¥, A "

{tha Sisylator snd Animator
N cenper 13, 1983

Figure 2. Clue from a correct call to procedure "knew" in “The
Parameter Mystery."

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinsatein, University of Lowell

-
[_J A A

ng!o{:’“ mninston "*F

§ nane: =andy;

WANE sssigned the value of ANDY.

Figure 3. Confirmation of a correct assignment to variable
"name" in "The Parameter Mystery."

R [A Type your next entry:

rown tha Siaylator and Aninstor
e T 150 Ro—o—edr] 000

knew(andy);

: PARANETER ERROR: You must use a veriasble of type PERSON ss the

actusl paramster for KNEV because the corresponding foras!
parasster is preceded by the keyword VAR, indicsting thet a valus
¥i1] be psssed back to the calling procedurs. The only varisble
of type PERSON you have is NANE, so you must first assign s value
to NAE to pass to KNEW and then use NANE as your sctusl
Paramster to receive the value thst KNEW passes back.

Figqure 4. Error megssage for an incorrect call to

procedure
“knew”™ in "The Parameter Mystery."™

- 11 -

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAl
Heines & Grinstein, University of Lowell

Figure S. Windows showing the number of statements already
entered and the values of all user-assignable variables in "The
Parameter Mystery."”

This progren processes credit card charges to denonstrete
thet actusl paremeters are unchenged by a procedure call.
The charge cand nusbers renge froa 169 to 104, and sny anount ey be charged to an account.

Neinline;

| I ol Sl ot i
| sesaw
: Witeln ¢ Irewn Dookatore List OF Cwrges);

:27»‘ M):IM? (or 8 if done) °%;

r >e 108) AD (chargs_muber <= 100 THEN

wﬂcm :ilu? 2
nm_hi (card_nunber, purchese);
WL cord_ruer = & (5 Sentine! valve ®
oan

Figure 6. Initial BALSA screen layout for a CAI application that
uses occluded windows.

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI

Heines & Grinstein, University of Lowell

e
card, I integer; (% cherge cerd nusber
u'#' .'I”-’.’

: (8 anount of purchese
q1 -]
: Writeln ¢ Brown Bookstore List OF Cherges*);
Mrite ¢ Cord Nusber? (or 8 iF done) *);
Readin 4
>u 108) AD (charge_rusber <= 100 TEN
Write (‘Purchese Velue? *);
PPN 0 H
S R
m-c (= Sentinel velue ®
on

Figure 7. Highlighted procedure call and

parameters in adjacent window.

et velus ¢ Charge_Card’s Formal paremeters teke on?

Pleass enter the value thet plate_smber il becons, snd then
enter the velue that charge_smewnt will becoms.

Fiqure 8. Overlaid code of called procedure

formal parameters in adjacent window.

-13_

appearance

of actual

appearance of

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

Fiqure 9. Movement of actual parameter values to formal param-
eters in an animated fashion.

