Stop More Bugs with our Code Review Checklist - Fog Creek Blog http://blog.fogcreek.com/increase-defect-detection-with-our-code-review...

Fog Creek FogBugz Kiln

Home  About  Blog  Support  Careers  Contact

January 8th, 2015 by Gareth Wilson (2 min read)

Stop More Bugs with our Code Review Checklist

In our blog about effective code reviews, we recommended the use of a checklist.
Checklists are a great tool in code reviews - they ensure that reviews are consistently
performed throughout your team. They’'re also a handy way to ensure that common
issues are identified and resolved.

Research by the Software Engineering Institute
suggests that programmers make 15-20 common
mistakes. So by adding such mistakestoa
checklist, you can make sure that you spot them
whenever they occur and help drive them out
over time.

To get you started with a checklist, here’s a list of
typical items:

Code Review Checklist

General

© Does the code work? Does it perform its intended function, the logic is correct etc.

O Isall the code easily understood?

Does it conform to your agreed coding conventions? These will usually cover location of braces,
variable and function names, line length, indentations, formatting, and comments.
Is there any redundant or duplicate code?

Is the code as modular as possible?

Can any global variables be replaced?

Is there any commented out code?

Do loops have a set length and correct termination conditions?

Can any of the code be replaced with library functions?

Can any logging or debugging code be removed?

(0]

00 00O0O0O0

Security

O Are all data inputs checked (for the correct type, length, format, and range) and encoded?
© Where third-party utilities are used, are returning errors being caught?

O Are output values checked and encoded?

O Areinvalid parameter values handled?

Documentation

O Do comments exist and describe the intent of the
code?

O Are all functions commented?

O Is any unusual behavior or edge-case handling
described?

O Isthe use and function of third-party libraries
documented?

1of3 3/23/2015 12:37 PM



Stop More Bugs with our Code Review Checklist - Fog Creek Blog

20f3

O Are data structures and units of measurement
explained?

O Isthere any incomplete code? If so, should it be
removed or flagged with a suitable marker like
‘TODO'?

Testing

O Isthe code testable? i.e. don't add too many or hide dependencies, unable to initialize objects,
test frameworks can use methods etc.

O Do tests exist and are they comprehensive? i.e. has at least your agreed on code coverage.

O Do unit tests actually test that the code is performing the intended functionality?

O Are arrays checked for ‘out-of-bound’ errors?

O Could any test code be replaced with the use of an existing API?

You'll also want to add to this checklist any language-specific issues that can cause
problems.

The checklist is deliberately not exhaustive of all issues that can arise. You don’t want a
checklist, which is so long no-one ever uses it. It's better to just cover the common issues.

Optimize Your Checklist

Using the checklist as a starting point, you should optimize it for your specific use-case. A
great way to do this is to get your team to note the issues that arise during code reviews
for a short time. With this data, you'll be able to identify your team's common mistakes,
which you can then build into a custom checklist. Be sure to remove any items that don't
come up (you may wish to keep rarely occurring, yet critical items such as security related
issues).

Get Buy-in and Keep It Up To Date

Asa general rule, any items on the checklist should be specific and, if possible,
something you can make a binary decision about. This helps to avoid inconsistency in
judgments. It is also a good idea to share the list with your team and get their agreement
on its content. Make sure to review the checklist periodically too, to check that each item
is still relevant.

Armed with a great checklist, you can raise the number of defects you detect during code
reviews. This will help you to drive up coding standards and avoid inconsistent code
review quality.

To learn more about code reviews at Fog Creek, check out the following video:

http://blog.fogcreek.com/increase-defect-detection-with-our-code-review...

3/23/2015 12:37 PM



Generic Checklist for Code Reviews

Structure

Does the code completely and correctly implement the design?

Does the code conform to any pertinent coding standards?

Isthe code well-structured, consistent in style, and consistently formatted?

Are there any uncalled or unneeded procedures or any unreachable code?

Arethere any leftover stubs or test routines in the code?

Can any code be replaced by calls to externa reusable components or library functions?

Are there any blocks of repeated code that could be condensed into a single procedure?

Is storage use efficient?

Are symbolics used rather than “magic number” constants or string constants?

Are any modules excessively complex and should be restructured or split into multiple routines?

OooOoooooono

Documentation

O Isthe code clearly and adequately documented with an easy-to-maintain commenting style?
O Areall comments consistent with the code?

Variables

0 Areall variables properly defined with meaningful, consistent, and clear names?
[0 Do all assigned variables have proper type consistency or casting?

O Arethere any redundant or unused variables?

Arithmetic Operations

[0 Doesthe code avoid comparing floating-point numbers for equality?

0 Doesthe code systematically prevent rounding errors?

0 Does the code avoid additions and subtractions on numbers with greatly different magnitudes?
O Aredivisors tested for zero or noise?

L oops and Branches

Are al loops, branches, and logic constructs complete, correct, and properly nested?

Are the most common cases tested first in IF- -EL SEIF chains?

Areall cases covered in an IF- -EL SEIF or CASE block, including ELSE or DEFAULT clauses?
Does every case statement have a default?

Are loop termination conditions obvious and invariably achievable?

Areindexes or subscripts properly initialized, just prior to the loop?

Can any statements that are enclosed within loops be placed outside the |oops?

Does the code in the loop avoid manipulating the index variable or using it upon exit from the
loop?

OOoOooooono

Defensive Programming

Are indexes, pointers, and subscripts tested against array, record, or file bounds?
Are imported data and input arguments tested for validity and completeness?
Areall output variables assigned?

Are the correct data operated on in each statement?

Is every memory allocation deallocated?

Aretimeouts or error traps used for external device accesses?

Arefiles checked for existence before attempting to access them?

Areall files and devices are | eft in the correct state upon program termination?

OOoOooooono

Copyright © 2001 by Karl E. Wiegers. Permission is granted to use, modify, and distribute this document.

3



Code Review Checklist

http://commondatastorage.googleapis.com/bluelotussoftware/documents/
Code%20Review%20Checklist.docx

Documentation

O All methods are commented in clear language. If it is unclear to the reader, it is unclear to the
user.

O All source code contains @author for all authors.

O @version should be included as required.

O All class, variable, and method modifiers should be examined for correctness.

O Describe behavior for known input corner-cases.

O Complex algorithms should be explained with references. For example, document the reference
that identifies the equation, formula, or pattern. In all cases, examine the algorithm and determine
if it can be simplified.

O Code that depends on non-obvious behavior in external frameworks is documented with
reference to external documentation.

O Confirm that the code does not depend on a bug in an external framework which may be fixed
later, and result in an error condition. If you find a bug in an external library, open an issue, and
document it in the code as necessary.

O Units of measurement are documented for numeric values.

O Incomplete code is marked with //TODO or //[FIXME markers.

O All public and private APIs are examined for updates.

Testing

O Unit tests are added for each code path, and behavior. This can be facilitated by tools like Sonar,
and Cobertura.

O Unit tests must cover error conditions and invalid parameter cases.

O Unit tests for standard algorithms should be examined against the standard for expected results.

O Check for possible null pointers are always checked before use.

O Array indices are always checked to avoid ArrayIndexOfBounds exceptions.

O Do not write a new algorithm for code that is already implemented in an existing public framework
API, and tested.

O Ensure that the code fixes the issue, or implements the requirement, and that the unit test
confirms it. If the unit test confirms a fix for issue, add the issue number to the documentation.

Error Handling
O Invalid parameter values are handled properly early in methods (Fast Fail).


http://www.sonarsource.org/
http://cobertura.sourceforge.net/

O Oo0Oo0oao

O

Nul1PointerException conditions from method invocations are checked.

Consider using a general error handler to handle known error conditions.

An Error handler must clean up state and resources no matter where an error occurs.

Avoid using RuntimeException, or sub-classes to avoid making code changes to implement
correct error handling.

Define and create custom Exception sub-classes to match your specific exception conditions.
Document the exception in detail with example conditions so the developer understands the
conditions for the exception.

(JDK 7+) Use try-with-resources. (JDK < 7) check to make sure resources are closed.

Don't pass the buck! Don't create classes which throw Exception rather than dealing with
exception condition.

Don't swallow exceptions! For example catch (Exception ignored) {}. Itshould at least

log the exception.

Thread Safety

O
O

O

Global (static) variables are protected by locks, or locking sub-routines.

Objects accessed by multiple threads are accessed only through a lock, or synchronized
methods.

Locks must be acquired and released in the right order to prevent deadlocks, even in error

handling code.

Performance

O

O

Objects are duplicated only when necessary. If you must duplicate objects, consider
implementing Clone and decide if deep cloning is necessary.

No busy-wait loops instead of proper thread synchronization methods. For example,

avoid while(true){ ... sleep(10);...}

Avoid large objects in memory, or using String to hold large documents which should be handled
with better tools. For example, don't read a large XML document into a String, or DOM.

Do not leave debugging code in production code.

Avoid System.out.println(); statements in code, or wrap them in a Boolean condition
statement like i f(DEBUG) {...}

"Optimization that makes code harder to read should only be implemented if a profiler or other
tool has indicated that the routine stands to gain from optimization. These kinds of optimizations
should be well documented and code that performs the same task should be preserved."

— UNKNOWN.



Coding Standards

understandable

adhere code guidelines
indentation

no magic numbers

naming

units, bounds

spacing: horizontal (btwn
operators, keywords) and
vertical (btwn methods, blocks)

Comments

no needless comments

no obsolete comments

no redundant comments
methods document parameters
it modifies, functional
dependencies

comments consistent in format,
length, level of detail

no code commented out

Logic

array indexes within bounds
conditions correct in ifs, loops
loops always terminate
division by zero

refactor statements in the loop
to outside the loop

Error Handling

error messages understandable
and complete

edge cases (null, 0, negative)
parameters valid

files, other input data valid

Code Decisions

6

code at right level of
abstraction

methods have appropriate
number, types of parameters
no unnecessary features
redundancy minimized
mutability minimized

static preferred over nonstatic
appropriate accessibility
(public, private, etc.)

enums, not int constants
defensive copies when needed
no unnecessary new objects
variables in lowest scope
objects referred to by their
interfaces, most generic
supertype

Code Review Checklist

Review Information:

Name of Reviewer:

Name of Coder:

File(s) under review:

Brief description of change being reviewed:

Review Notes (problems or decisions):

SVN Versions (if applicable):
Before review:
After revisions:




o

& SMARTBEAR

. SM
Ensuring Software Success

11 Best Practices for Peer
Code Review

A SmartBear White Paper

Using peer code review best practices optimizes your code reviews, improves your code and makes
the most of your developers’ time. The recommended best practices contained within for efficient,
lightweight peer code review have been proven to be effective via extensive field experience.

Contents

Introduction

Review fewer than 200-400 lines of code at a time

. Aim for your inspection rate of less than 300-500 LOC/hour

. Take enough time for a proper, slow review, but not more than 60-90 minutes.

w w NN NN

. Authors should annotate source code before the review begins.

I~

. Checklists substantially improve results for both authors and reviewers.

1.

2

3

4

5. Establish quantifiable goals for code review and capture metrics so you can improve your ProCesses. .........eeesseeeesseeeens
6

7. Verify that defects are actually fixed!

8

. Managers must foster a good code review culture in which finding defects is viewed positively
9. Beware the “Big Brother” effect

10. The Ego Effect: Do at least some code review, even if you don’t have time to review it all

11. Lightweight-style code reviews are efficient, practical, and effective at finding bugs

O 0 00 N o Uu1 u»n

Summary

www.smartbear.com/codecollaborator ;


http://smartbear.com/products/software-development/code-review

It’s common sense that peer code review — in which software developers review each other’s code before releas-

ing software to QA - identifies bugs, encourages collaboration, and keeps code more maintainable.

But it’s also clear that some code review techniques are inefficient and ineffective. The meetings often man-
dated by the review process take time and kill excitement. Strict process can stifle productivity, but lax process
means no one knows whether reviews are effective or even happening. And the social ramifications of personal

critique can ruin morale.

This whitepaper describes 11 best practices for efficient, lightweight peer code review that have been proven to
be effective by scientific study and by SmartBear’s extensive field experience. Use these techniques to ensure

your code reviews improve your code — without wasting your developers’ time.

The Cisco code review study (see sidebar on page 5) shows that for optimal effectiveness, developers should re-
view fewer than 200-400 lines of code (LOC) at a time. Beyond that, the ability to find defects diminishes. At this
rate, with the review spread over no more than 60-90 minutes, you should get a 70-90 % yield; in other words, if
10 defects existed, you’d find 7-9 of them.

The graph to the right, which plots defect density against the number of lines of code under review, supports

this rule. Defect density is the number of defects per 1000

lines of code. As the number of lines of code under review

grows beyond 300, defect density drops off considerably.

In this case, defect density is a measure of “review effective-
ness.” If two reviewers review the same code and one finds
more bugs, we would consider her more effective. Figure 1
shows how, as we put more code in front of a reviewer, her

effectiveness at finding defects drops. This result makes

sense — the reviewer probably doesn’t have a lot of time to

Figure 1: Defect density dramatically decreases when
the number of lines of inspection goes above 200, and is
on each file. almost zero after 400.

spend on the review, so inevitably she won’t do as good a job

Take your time with code review. Faster is not better. Our research shows that you’ll achieve optimal results at
an inspection rate of less than 300-500 LOC per hour. Left to their own devices, reviewers’ inspection rates will

vary widely, even with similar authors, reviewers, files, and review size.

To find the optimal inspection rate, we compared defect density with how fast the reviewer went through the
code. Again, the general result is not surprising: if you don’t spend enough time on the review, you won’t find

many defects. If the reviewer is overwhelmed by a large quantity of code, he won’t give the same attention to

& SMART


http://www.smartbear.com

every line as he might with a small change. He won’t be able to explore all ramifications of the change in a

single sitting.

So - how fast is too fast? Figure 2 shows the answer: reviewing faster than 400-500 LOC/hour results in a severe
drop-off in effectiveness. And at rates above 1000 LOC/hour, you can probably conclude that the reviewer isn’t

actually looking at the code at all.

Important Definitions

@ Inspection Rate: How fast are we able to review
code? Normally measured in kLOC (thousand Lines Of
Code) per
man-hour.

@ Defect Rate: How fast are we able to find defects?
Normally measured in number of defects found per
man-hour.

@ Defect Density: How many defects do we find in
a given amount of code (not how many there are)? Figure 2: Inspection effectiveness falls of when greater than
Normally measured in number of defects found per
kLOC.

3. Take enough time for a proper, slow review, but not more than 60-90 minutes.

We’ve talked about how you shouldn’t review code too fast for best results — but you also shouldn’t review too
long in one sitting. After about 60 minutes, reviewers simply wear out and stop finding additional defects. This
conclusion is well-effectiveness. And at rates above 1000 LOC/hour, you can probably conclude that the reviewer
isn’t actually looking at the code at all. Supported by evidence from many other studies besides our own. In fact,
it’s generally known that when people engage in any activity requiring concentrated effort, performance starts

dropping off after 60-90 minutes.

Given these human limitations, a reviewer will probably not be able to review more than 300-600 lines of code

before his performance drops. On the flip side, you should always spend at least five minutes reviewing code

—even if it’s just one line. Often a single line can have conse- _
] ) You should never review code for more than

quences throughout the system, and it’s worth the five minutes .
90 minutes at a stretch.

to think through the possible effects a change can have.

4. Authors should annotate source code before the review begins.

It occurred to us that authors might be able to eliminate most defects before a review even begins. If we re-
quired developers to double-check their work, maybe reviews could be completed faster without compromising
code quality. As far as we could tell, this idea specifically had not been studied before, so we tested it during the

study at Cisco.

The idea of “author preparation” is that authors should annotate their source code before the review begins. We

S SMARTBEAQ


http://www.smartbear.com

10

invented the term to describe a certain behavior pattern
we measured during the study, exhibited by about 15 %
of the reviews. Annotations guide the reviewer through
the changes, showing which files to look at first and
defending the reason and methods behind each code
modification. These notes are not comments in the code,

but rather comments given to other reviewers.

Our theory was that because the author has to re-think

and explain the changes during the annotation process, :
Figure 3: The striking effect of author preparation on defect

the author will himself himself uncover many of the de- density.

fects before the review even begins, thus making the review

itself more efficient. As such, the review process should yield a lower defect density, since fewer bugs remain.

We also considered a pessimistic theory to explain the lower Sure enough, reviews with author prepara-

bug findings. What if, when the author makes a comment, the tion have barely any defects compared to

reviewer becomes biased or complacent, and just doesn’t find as reviews without author preparation.

many bugs? We took a random sample of 300 reviews to investi-
gate, and the evidence definitively showed that the reviewers were indeed carefully reviewing the code — there

were just fewer bugs.

As with any project, you should decide in advance on the goals of the code review process and how you will
measure its effectiveness. Once you’ve defined specific goals, you will be able to judge whether peer review is

really achieving the results you require.

It’s best to start with external metrics, such as “reduce support calls by 20 %,” or “halve the percentage of
defects injected by development.” This information gives you a clear picture of how your code is doing from the

outside perspective, and it should have a quantifiable measure — not just a vague “fix more bugs.”

However, it can take a while before external metrics show results. Support calls, for example, won’t be affected
until new versions are released and in customers’ hands. So it’s also useful to watch internal process metrics to
get an idea of how many defects are found, where your problems lie, and how long your developers are spend-
ing on reviews. The most common internal metrics for code review are inspection rate, defect rate, and defect

density.

Consider that only automated or tightly-controlled processes can give you repeatable metrics — humans aren’t
good at remembering to stop and start stopwatches. For best results, use a code review tool that gathers metrics

automatically so that your critical metrics for process improvement are accurate.

To improve and refine your processes, collect your metrics and tweak your processes to see how changes affect

& SMART


http://www.smartbear.com

your results. Pretty soon you’ll know exactly what works

best for your team.

6. Checklists substantially improve results for both

authors and reviewers.

Checklists are a
highly recom- Checklists are especially important
for reviewers, since if the author
forgot it, the reviewer is likely to

miss it as well.

mended way to
find the things
you forget to

do, and are useful for both authors and reviewers. Omis-
sions are the hardest defects to find — after all, it’s hard
to review something that’s not there. A checklist is the
single best way to combat the problem, as it reminds the
reviewer or author to take the time to look for something
that might be missing. A checklist will remind authors and
reviewers to confirm that all errors are handled, that func-
tion arguments are tested for invalid values, and that unit

tests have been created.

Another useful concept is the personal checklist. Each
person typically makes the same 15-20 mistakes. If you
notice what your typical errors are, you can develop your
own personal checklist (PSP, SEI, and CMMI recommend
this practice too). Reviewers will do the work of determin-
ing your common mistakes. All you have to do is keep a
short checklist of the common flaws in your work, particu-

larly the things you forget to do.

As soon as you start recording your defects in a checklist,
you will start making fewer of them. The rules will be
fresh in your mind and your error rate will drop. We’ve

seen this happen over and over.

For more detailed information on checklists plus a sample

checklist, get yourself a free copy of the book,

7. Verify that defects are actually fixed!

OK, this “best practice” seems like a no-brainer. If you're

The World’s Largest Code Review Study at
Cisco Systems®

Our team at SmartBear Software® has spent years
researching existing code review studies and col-
lecting “lessons learned” from more than 6000
programmers at 200+ companies. Clearly people
find bugs when they review code — but the reviews
often take too long to be practicall We used the
information gleaned through years of experience to
create the concept of lightweight code review. Using
lightweight code review techniques, developers can
review code in 1/5th the time needed for full “formal”
code reviews. We also developed a theory for best
practices to employ for optimal review efficiency and
value, which are outlined in this white paper.

To test our conclusions about code review in general
and lightweight review in particular, we conducted
the world’s largest-ever published study on code
review, encompassing 2500 code reviews, 50
programmers, and 3.2 million lines of code at Cisco
Systems. For ten months, the study tracked the
MeetingPlace® product team, distributed across
Bangalore, Budapest, and San José.

At the start of the study, we set up some rules for the

group:

@ All code had to be reviewed before it was
checked into the team’s Perforce version control
software.

@ SmartBear’s CodeCollaborator® code review
software tool would be used to expedite,
organize, and facilitate all code review.

@ In-person meetings for code review were not
allowed.

@ The review process would be enforced by tools.

@ Metrics would be automatically collected by
CodeCollaborator, which provides review-level
and summary-level reporting.

S SMARTBJAIJ—



http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
http://www.smartbear.com

going to all of the trouble of reviewing code to find
bugs, it certainly makes sense to fix them! Yet many
teams who review code don’t have a good way of
tracking defects found during review, and ensuring
that bugs are actually fixed before the review is com-
plete. It's especially difficult to verify results in e-mail

or over-the-shoulder reviews.

Keep in mind that these bugs aren’t usually logged in

the team’s usual defect tracking system, because they

are bugs found before code is released to QA, often be-

fore it’s even checked into version control. So, what’s
a good way to ensure that defects are fixed before

the code is given the All Clear sign? We suggest using

good collaborative review software to track defects found in review. With
the right tool, reviewers can logs bugs and discuss them with the author.
Authors then fix the problems and notify reviewers, and reviewers must
verify that the issue is resolved. The tool should track bugs found during

review and prohibit review completion until all bugs are verified fixed by

More on the Cisco Study...

After ten months of monitoring, the study crystallized
our theory: done properly, lightweight code reviews are
just as effective as formal ones — but are substantially
faster (and less annoying) to conduct! Our lightweight
reviews took an average of 6.5 hours less time to con-
duct than formal reviews, but found just as many bugs.

Besides confirming some theories, the study uncovered
some new rules, many of which are outlined in this
paper. Read on to see how these findings can help your
team produce better code every day.

The point of software code review
is to eliminate as many defects as
possible — regardless of who
“caused” the error.

the reviewer (or consciously postponed to future releases and tracked using an established process).

If you’re going to go to the trouble of finding the bugs, make sure you’ve fixed them all!

Now that you’ve learned best practices for the process of code review, we’ll discuss some social effects and how

you can manage them for best results.

Code review can do more for true team building than almost any other technique we’ve seen — but only if

managers promote it at a means for learning, growing, and communication. It’s easy to see defects as a bad

thing — after all they are mistakes in the code — but fostering a negative attitude towards defects found can sour

a whole team, not to mention sabotage the bug-finding process.

Managers must promote the viewpoint that defects are positive. After all, each one is an opportunity to improve

the code, and the goal of the bug review process is to make the code as good as possible. Every defect found

and fixed in peer review is a defect a customer never saw, another problem QA didn’t have to spend time track-

ing down.

Teams should maintain the attitude that finding defects means the author and reviewer have successfully

worked as a team to jointly improve the product. It’s not a case of “the author made a defect and the review

found it.” It’s more like a very efficient form of pair-programming.

Reviews present opportunities for all developers to correct bad habits, learn new tricks and expand their capabili-

& SMART


http://www.smartbear.com

ties. Developers can learn from their mistakes — but only if they know what their issues are. And if developers are

afraid of the review process, the positive results disappear.

Especially if you're a junior developer or are new to a team, defects found by others are a good sign that your
more experienced peers are doing a good job in helping you become a better developer. You’ll progress far

faster than if you were programming in a vacuum without detailed feedback.

To maintain a consistent message that finding bugs is good, management must promise that defect densities
will never be used in performance reports. It’s effective to make these kinds of promises in the open — then de-

velopers know what to expect and can call out any manager that violates a rule made so public.

Managers should also never use buggy code as a basis for negative performance review. They must tread care-
fully and be sensitive to hurt feelings and negative responses to criticism, and continue to remind the team that

finding defects is good.

“Big Brother is watching you.” As a developer, you automatically assume it’s true, especially if your review met-
rics are measured automatically by review-supporting tools. Did you take too long to review some changes? Are

your peers finding too many bugs in your code? How will this affect your next performance evaluation?

Metrics are vital for process measurement, which in turn provides the

basis for process improvement. But metrics can be used for good or evil. If ~ Metrics should never be used to

developers believe that metrics will be used against them, not only will they ~ Single out developers, particularly

. hei Thi ;
be hostile to the process, but they will probably focus on improving their " front.oft eir peers. This practice

) . ) ] can seriously damage morale.
metrics rather than truly writing better code and being more productive.

Managers can do a lot to improve the problem. First and foremost — they should be aware of it and keep an eye

out to make sure they’re not propagating the impression that Big Brother is indeed scrutinizing every move.

Metrics should be used to measure the efficiency of the process or the effect of a process change. Remember
that often the most difficult code is handled by your most experienced developers; this code in turn is more likely
to be more prone to error — as well as reviewed heavily (and thus have more defects found). So large numbers of

defects are often more attributable to the complexity and risk of a piece of code than to the author’s abilities.

If metrics do help a manager uncover an issue, singling someone out is likely to cause more problems than it
solves. We recommend that managers instead deal with any issues by addressing the group as a whole. It’s best
not to call a special meeting for this purpose, or developers may feel uneasy because it looks like there’s a prob-

lem. Instead, they should just roll it into a weekly status meeting or other normal procedure.

Managers must continue to foster the idea that finding defects is good, not evil, and that defect density is not
correlated with developer ability. Remember to make sure it’s clear to the team that defects, particularly the
number of defects introduced by a team member, shouldn’t be shunned and will never be used for performance

evaluations.

& SMART 1 3


http://www.smartbear.com

Imagine yourself sitting in front of a compiler, tasked with fixing a small bug. But you know that as soon as you
say “I'm finished,” your peers — or worse, your boss — will be critically examining your work. Won’t this change
your development style? As you work, and certainly before you declare code-complete, you’ll be a little more
conscientious. You’ll be a better developer immediately because you want the general timbre of the “behind
your back” conversations to be, “His stuff is pretty tight. He’s a good developer;” not “He makes a lot of silly

mistakes. When he says he’s done, he’s not.”

The “Ego Effect” drives developers to write better code because they know that others will be looking at their
code and their metrics. And no one wants to be known as the guy who makes all those junior-level mistakes. The

Ego Effect drives developers to review their own work carefully before passing it on to others.

A nice characteristic of the Ego Effect is that it works equally well whether reviews are mandatory for all code
changes or just used as “spot checks” like a random drug test. If your code has a 1 in 3 chance of being called
out for review, that’s still enough of an incentive to make you do a great job. However, spot checks must be
frequent enough to maintain the Ego Effect. If you had just a 1 in 10 chance of getting reviewed, you might not

be as diligent. You know you can always say, “Yeah, I don’t usually do that.”

Reviewing 20-33 % of the code will probably give you maximal Ego Effect benefit with minimal time expendi-

ture, and reviewing 20 % of your code is certainly better than none!

There are several main types, and countless varia-
tions, of code review, and the best practices you've
just learned will work with any of them. However, to
fully optimize the time your team spends in review,
we recommend a tool-assisted lightweight review

process.

Formal, or heavyweight, inspections have been

around for 30 years —and they are no longer the Figure 4: CodeCollaborator, the lightweight code review tool used
most efficient way to review code. The average heavy-  in the Cisco study.

weight inspection takes nine hours per 200 lines of

code. While effective, this rigid process requires three to six participants and hours of painful meetings paging
through code print-outs in exquisite detail. Unfortunately, most organizations can’t afford to tie up people for
that long — and most programmers despise the tedious process required. In recent years, many development or-
ganizations have shrugged off the yoke of meeting schedules, paper-based code readings, and tedious metrics-
gathering in favor of new lightweight processes that eschew formal meetings and lack the overhead of the older,

heavy-weight processes.

We used our case Study at Cisco to determine how the lightweight techniques compare to the formal processes.

& SMART


http://www.smartbear.com

The results showed that lightweight code reviews take 1/5th the time (or less!) of formal reviews and they find

just as many bugs!

While several methods exist for lightweight code review, such as “over the shoulder” reviews and reviews by
email, the most effective reviews are conducted using a collaborative software tool to facilitate the review. A
good lightweight code review tool integrates source code viewing with “chat room” collaboration to free the
developer from the tedium of associating comments with individual lines of code. These tools package the code
for the author, typically with version control integration, and then let other developers comment directly on the
code, chat with the author and each other to work through issues, and track bugs and verify fixes. No meetings,
print-outs, stop-watches, or scheduling required. With a lightweight review process and a good tool to facilitate
it, your team can conduct the most efficient reviews possible and can fully realize the substantial benefits of

code review.

So now you’re armed with an arsenal of best practices to ensure that you
Figure 5: Best Kept
Secrets of Peer Code
and a social perspective. Of course you have to actually do code reviews Review — the only
book to address
lightweight code
cal to implement for 100 % of your code (or any percent, as some would review.

get the most of out your time spent in code reviews — both from a process

to realize the benefits. Old, formal methods of review are simply impracti-

argue). Tool-assisted lightweight code review provides the most “bang

for the buck,” offering both an efficient and effective method to locate

defects — without requiring painstaking tasks that developers hate to do. With the right

tools and best-practices, your team can peer-review all of its code, and find costly bugs before your software

reaches even QA - so your customers get top-quality products every time!

More details on these best practices, the case study, and other topics are chronicled in Jason Cohen’s book,

, currently available FREE.

For information on code review tool, please

You may also enjoy these other resources in the SmartBear Software Quality Series:

L 4
L 2

Be smart and of over 100,000 development, QA and IT professionals in 90
countries.

Scan and download your free trial to see why users
choose SmartBear for peer code review.

& SMART 1 5


http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
http://smartbear.com/products/software-development/code-review
http://smartbear.com/products/software-development/code-review
http://smartbear.com/products/qa-tools/automated-testing/sign-up/
http://support.smartbear.com/resources/sp/Uniting-Automated-and-Manual-Tests.pdf
http://support.smartbear.com/pdf/6_Tips_for_Automated_Test.pdf
http://smartbear.com/community
http://smartbear.com/SmartBear/media/pdfs/best-kept-secrets-of-peer-code-review.pdf
http://www.smartbear.com

SmartBear Software provides tools for over one
million software professionals to build, test, and
monitor some of the best software applications and
websites anywhere — on the desktop, mobile and in
the cloud. Our users can be found worldwide, in small
businesses, Fortune 100 companies, and government
agencies. Learn more about the SmartBear Quality
Anywhere Platform, our award-winning tools, or join
our active user community at ,

on , or follow us on Twitter

& SMART

SmartBear Software, Inc. 100 Cummings Center, Suite 234N Beverly, MA 01915
+1978.236.7900 www.smartbear.com ©2012 by SmartBear Software Inc.
Specifications subject to change. CC-WP-11BP-42012-WEB


http://smartbear.com/
http://www.facebook.com/smartbear
https://twitter.com/#!/smartbear

	StopMoreBugsWithOurCodeReviewChecklist_FogCreekBlog_2015-03-23
	WhitePaper-11BestPracticesOfPeerCodeReview_2015-03-23
	CodeReviewChecklist_KarlWiegers_2015-03-23
	CodeReviewChecklist_2015-03-23
	Code Review Checklist
	Documentation
	Testing
	Error Handling
	Thread Safety
	Performance


	12wiCodeReviewChecklist_2015-03-23



