8 Ways to Become a Better Coder
By Esther Schindler « Feb. 22nd, 2016 « Tech Topics

https://blog.newrelic.com/2016/02/22/8-ways-become-a-better-coder/

It’s time to get serious about improving your programming skills. Let’s do it!

That’s an easy career improvement goal to give oneself, but “become a kick-ass programmer” is
not a simple goal. For one thing, saying, “I want to get better”” assumes that you recognize what
“better” looks like. Plus, too many people aim for improvement without any sense of how to get
there.

So let me share eight actionable guidelines that can act as a flowchart to improving your
programming skills. These tidbits of wisdom are gathered from 35 years in the computer
industry, many of which were spent as a lowly grasshopper at the feet of some of the people who
defined and documented it.

1. Remind yourself how much you have to learn

The first step in learning something is recognizing that you
don’t know it. That sounds obvious, but experienced
programmers remember how long it took to overcome this
personal assumption. Too many computer science students
graduate with an arrogant “I know best” bravado, a robust
certainty that they know everything and the intense need to
prove it to every new work colleague. In other words: Your “I
know what ’'m doing!” attitude can get in the way of learning
anything new.

U

2. Stop trying to prove yourself right

To become great—not just good—you have to learn from experience. But be careful, experience
can teach us to repeat poor behavior and to create bad habits. We’ve all encountered
programmers with eight years of experience ... the same year of experience, repeated eight
times. To avoid that syndrome, look at everything you do and ask yourself, “How can I make this
better?”

Novice software developers (and too many experienced ones) look at their code to admire its
wonderfulness. They write tests to prove that their code works instead of trying to make it fail.
Truly great programmers actively look for where they’re wrong—»because they know that
eventually users will find the defects they missed.



https://blog.newrelic.com/author/estherschindler/
https://blog.newrelic.com/category/tech-topics/
http://www.javaworld.com/article/2072856/software-development-and-the-pink-pony-backpack.html
http://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises/
http://www.cio.com/article/2373826/careers-staffing/careers-staffing-fighting-the-superstitions-of-software-development-questioning-the-assumptions.html

3. “The code works” isn’t where you stop; it’s where you start

Yes, your first step is always to write quality software that fulfills the spec. Average
programmers quit at that point and move on to the next thing.

But to stop once it’s “done” is like taking a snapshot and expecting it to be a work of art. Great
programmers know that the first iteration is just the first iteration. It works— congratulations!—
but you aren’t done. Now, make it better.

Part of that process is defining what “better” means. Is it valuable to make it faster? Easier to

document? More reusable? More reliable? The answer varies with each application, but the
process doesn’t.

4. \Write it three times

Good programmers write software that works. Great ones write software that works exceedingly
well. That rarely happens on the first try. The best software usually is written three times:

1. First, you write the software to prove to yourself (or a client) that the solution is possible.
Others may not recognize that this is just a proof-of-concept, but you do.

2. The second time, you make it work.

3. The third time, you make it work right.

This level of work may not be obvious when you look at the work of the best developers.
Everything they do seems so brilliant, but what you don’t see is that even rock-star developers
probably threw out the first and second versions before showing their software to anyone else.
Throwing away code and starting over can be a powerful way to include “make it better” into
your personal workflow.

If nothing else, “Write it three times” teaches you how many ways there are to approach a
problem. And it prevents you from getting stuck in a rut.

5. Read code. Read lots of code

You probably expected me to lead with this advice, and indeed
it’s both the most common and the most valuable suggestion
for improving programming skills. What is less evident are the
reasons that reading others’ code is so important.

When you read others’ code, you see how someone else solved
a programming problem. But don’t treat it as literature; think
of it as a lesson and a challenge. To get better, ask yourself:



http://www.javaworld.com/article/2072651/becoming-a-great-programmer--use-your-trash-can.html
http://www.daedtech.com/throw-out-your-code/

e How would I have written that block of code? What would you do differently, now that
you’ve seen another solution?

o Whatdid I learn? How can I apply that technique to code I wrote in the past? (“I’d never
have thought to use recursive descent there...”).

o How would | improve this code? And if it’s an open source project where you are
confident you have a better solution, do it!

o Write code in the author’s style. Practicing this helps you get into the head of the person
who wrote the software, which can improve your empathy.

Don’t just idly think about these steps. Write out your answers, whether in a personal journal, a
blog, in a code review process, or a community forum with other developers. Just as explaining a
problem to a friend can help you sort out the solution, writing down and sharing your analysis
can help you understand why you react to another person’s code in a given way. It’s all part of
that introspection | mentioned earlier, helping you to dispassionately judge your own strengths
and weaknesses.

Warning: It’s easy to read a lot of code without becoming a great programmer, just as a wannabe
writer can read great literature without improving her own prose. Plenty of developers look at
open source or other software to “find an answer” and, most likely, to copy and paste code that
appears to solve a similar problem. Doing that can actually make you a worse programmer, since
you are blindly accepting others’ wisdom without examining it. (Plus, it may be buggier than a
summer picnic, but because you didn’t take the time to understand it, you’ll never recognize that
you just imported a bug-factory.)

6. Write code, and not just as assignments

Working on personal programming projects has many advantages. For one, it gives you a way to
learn tools and technologies that aren’t available at your current job, but which make you more
marketable for the next one. Whether you contribute to an open source project or take on pro-
bono work for a local community organization, you’ll gain tech skills and self-confidence. (Plus,
your personal projects demonstrate to would-be employers that you’re a self-starter who never
stops learning.)

Another advantage of writing code for fun is that it forces you to figure things out on your own.
You can’t leave the hard stuff to someone else, so it keeps you from asking for help too soon.

Pro tip: Don’t choose only personal projects where you never fail. You need to fail! But you do
probably don’t want to fail at work or when you have a deadline.


http://gamedevwithoutacause.com/?p=1329
http://www.cio.com/article/2431556/developer/5-reasons-for-software-developers-to-do-code-reviews--even-if-you-think-they-re-a-waste-of.html

7. Work one-on-one with other developers any way
you can

It helps to listen to other people. That might mean pair
programming, or going to a hackathon, or joining a
programming user group (such as the Vermont Coders
Connection). When you contribute to an open source project,
pay attention to the feedback you get from users and from
other developers. What commonalities do you see in their criticism?

You might be lucky enough to find a personal mentor whom you can trust to guide you in
everything from coding techniques to career decisions. Don’t waste these opportunities.

8. Learn techniques, not tools

Programming languages, tools, and methodologies come and go. That’s why it pays to get as
much experience as you can with as many languages and frameworks as possible. Focus on the
programming fundamentals, because the basics never change; pay more attention to architecture
than to programming. If you feel certain that there’s only one right way to do something, it’s
probably time for a reality check. Dogma can hamper your ability to learn new things, and make
you slow to adapt to change.

| could keep going, but a key tenet of self-improvement is knowing when to stop.

Code, learning, reading, and collaboration images courtesy of Shutterstock.com.

careers, developers, programming, software development

Since 1992, Esther Schindler has made a living by translating from Geek into
English. Find her on Twitter, Facebook, and Google+, where she’s sure to distract
you from getting productive work accomplished. View posts by Esther Schindler.



http://www.hackathon.io/events
http://www.meetup.com/vtcode/
http://www.meetup.com/vtcode/
http://www.shutterstock.com/pic-268947506.html
http://www.shutterstock.com/pic-124386907/stock-vector-knowledge.html
http://www.shutterstock.com/pic-303402542.html
http://www.shutterstock.com/pic-168304187.html
http://www.shutterstock.com/
https://blog.newrelic.com/tag/careers/
https://blog.newrelic.com/tag/developers/
https://blog.newrelic.com/tag/programming/
https://blog.newrelic.com/tag/software-development/
https://twitter.com/estherschindler
https://www.facebook.com/esther.schindler
https://plus.google.com/+EstherSchindler/posts
https://blog.newrelic.com/author/estherschindler/

