
-rk "-~"~'~ :f ~~L ,h~t-4 ~ ~,-n Y"~
frvr .ltr"-{f-, ./'(} i w~<e?.-14 ~,..,r .#f ~

6~?l:-#r~ ~~~r-t ~~;.,. I W(lw(,L ~L- ;,W

}o kv~ ./1#-tt--jL ~~ ~~ , 1... d.- ~~ ~.

Pod play. me
The Multi platform Podcast Player

4 4-
,c b -- ~~- ~yt- /Pl-. /,if~
c. b

lA 3
L 2. -- flo p~?Vf...//IOJ., d A Pf fou---e-v(t'v.l'~

Ian McGaunn & David Zirnmelman

McCiaunn. Zimmclman: P<'dplay Proposal ,,

Contents
Project Goal 3

Features 3

Simple Podcast Feed Management.. ... 3

Synchronization of User Preferences 3

Clean User Experience 4

Native Browser Podcast Player 4

User Descriptions 5

Component Details 5

Templating 6

iTunes API Integration 6

Data Persistence 6

Browser Audio 6

Potential Issues 7

iTunes API Limitations 7

Non-Uniform Data Formats 8

Project Timeline 8

Acceptability Criteria 10

Required Features 1 0

Extra Features 10

Mc(iaunn. Zimmc lman: P()dplay Proposal 3

Project Goal

The goal of the project is to create a web application for aggregating and

streaming podcasts. This application will allow users to customize their

experience and take their preferences with them across devices. It is also a goal of

the project to implement the application using modem web technologies including

the WebAudio API on the client-side, and Node.js and MongoDB on the server­

side.

Features

Simple Podcast Feed Management

Podplay is at its core a podcast manager. This means that being able to subscribe

to, search for and make play lists of podcasts are all central features . Podplay will

leverage the breadth of the iTunes podcast catalog via the iTunes search API to

help users find their favorite feeds and organize them.

Synchronization of User Preferences

As users subscribe to feeds and create playlists using Podplay, their settings will

be saved to their accounts and will be restored upon logging in. This will allow

users to keep their settings across all of their devices.

McGaunn. Zimmclman: P<'dplay Proposal 4

Clean User Experience 1.)
~0

The screen mocku~hows the layout for Podplay. Podplay is split into

two main components: the library view and the player view. The largest part of

the user interface is the library view, which houses the main functionality of

Podplay. The library view presents a user's saved podcasts and provides a search

function to find new podcasts. To simplify the user interface, additional features

(for example, browsing by genre) are accessible through the collapsible

navigation menu; this approach is modeled after techniques used in mobile

applications. The player view provides the ability to customize the current playlist

and stream podcast episodes.

Figure 1: Basic design concept

Native Browser Podcast Player

Podplay will support podcast playback using native browser APis rather than

relying on third-party middlewares such as Flash ~r Java. Reliance on W3C

/' (/~ ero

Mc(iaunn.Zimmclman: P<)dplay Proposal 5

approved specifications, will improve performance and expand the number of

devices that Podplay can run on without additional dependencies.

User Descriptions

Podplay is designed for avid podcast listeners w would prefer a web application

that allows them to preserve their settings ac ss devices over a native mobile

d./*er .
app. Podcast listeners of ;my' gender an anx ge can find use for Podplay, as it is

a simple way to organize and listen to podcasts from any platform with a modern

web browser. For users already committed to a mobile podcast app, Podplay is a

good companion for when their mobile phone is not available or when they are

spending a prolonged period of time at a computer where a web application might

be more strategic.

Component Details

Podplay is primarily implemented as a Node.js server-side application which

exposes a minimal API for searching and listing podcast feeds to the client-side

web pages. The client will use standard HTML5/CSS to present the user with a

clean Ul.

McGaunn. Zimmclman: Podplay Proposal 6

Templating

Views in Podplay.me are rendered server-side with Jade templates, which greatly

reduces the amount of markup that has to be written and provides a method of

code reuse for our web page structure. Requests for these views are handled

server-side by Express, a Node.js web framework that simplifies routing and

templating.

iTunes API Integration

The main view of Podplay is focused around the podcast feeds a user has

subscribed to. To enable the user to locate their preferred feeds and to help the

application aggregate information, the iTunes search API will be used. Access to

the entire iTunes catalog of podcasts is a feature that many mobile apps have

neglected to provide.

Data Persistence

A MongoDB database will store users' account information and individual

preferences, and also cache information about commonly accessed podcast feeds

to circumvent exceeding iTunes API rate limits.

Browser Audio

The actual audio player for Podcasts will be implemented with the HTML5

<audio> element and the WebAudio API. The WebAudio API provides a simple

way to decode and play audio in the browser, making it a great candidate for a

pure HTML5 audio player. Since these standards are implemented in most

'

McGaunn. Zimmclman: P<)dplay Proposal 7

modem web browsers (Firefox, Chrome and Safari), this approach should be

straightforward to implement in a browser agnostic manner.

Potential Issues

iTunes API Limitations

The API provided by iTunes is not very flexible, nor is it very robust. The first

major issue is the possible rate limits on the API requests. Although Apple does

not explicitly define any such limitations, it has been reported that they exist when

exceeding roughly 10,000 requests per day. If this problem arises, a caching

system will be implemented into the project so that any request made will first hit

the server's cached podcast directory for a "quick result" and only make the hard

request to Apple's API when necessary (e.g., a deep search).

The second issue with the iTunes API is the inability to retrieve a full list of all

available podcasts, or even to provide a page offset for a search. This means the

maximum number of results that can be retrieved for any request is 200. Unless

the previously-mentioned caching system is implemented, the project will be

limited to the inferior search request of the iTunes API. However, this seems to be

the standard used by similar podcasting applications, so at the very least, this

project will be on-par to its competitors.

McGattJm. Zimmclman: P<'dplay Proposal 8

Non-Uniform Data Formats

Because podcast feeds are individually managed, it is possible to run into non-

standard data formats within individual feeds. Episode-specific information, such

as summaries, could possibly have oddly-named keys, or might not even exist at

all. In these (presumedly rare) situations, the data will not be shown to the users

(who will likely see a message similar to "not available" where the information

would normally be), until a special rule can be added in the server to find and

parse the non-uniform data.
?I 'J

Project Timeline

"'

Milestone Expected Date Dave Ian

Week 1: Development environment 15 Feb 15
~ X X setup and bare-bones server running

with dedicated domain.

Week 2: Node server has partial iTunes 22 Feb 15
X API implementation.

I
I

Week 3 (Alpha 1): Extremely basic 26 Feb 15 I

IX web client for testing server
I implementation. Ability to search, view '

and stream podcasts. I
I

McGaunn. Zimmclman: P<,dplay Prorosal 9

Week 3: Node server application has 1 Mar 15 X full iTunes implementation.

Weeks 4-5 (Alpha 2): Fully styled 15 Mar 15
X client website. Implements all server

I functionality: searching and viewing I

podcast data as well as HTML audio
I
I

streaming of individual podcasts. I

Week 6: Partial user account system 22 Mar 15
X implemented in server. Database

integration, secure transmission

methods, and user data model. Provides

methods for registering, signing in and I
signing out.

~ -
Week 7: Full user account system 29 Mar 15 X implemented in server. Provides I

methods for updating user preferences,

subscriptions, and playlists.

-
Weeks 8-9 (Alpha 3): Client side 12 Apr 15 X implementation and GUI polishing for

user accounts.
I

· Week 10 (Beta 1): Add any extra 1 14 Apr 15 'x ~ x
needed polish to application and

I

resolve any open issues/bugs. Usability I
test for Alpha 3.

Weeks 11-12 (Release): Time 1 May 15
X X permitting, work on additional

backlogged features for fmal release.
'-- --

McGaunn, Zimmclman: Podplay Pwposal 10

Acceptability Criteria

Required Features

A functional player for streaming podcasts

A UI that allows users to subscribe to podcast feeds and create playlists.

Searching using the iTunes API

Server-side storage of user preferences to allow users to maintain their

settings across multiple devices.

Extra Features

Server-side caching of podcast feed information to circumvent iTunes API

rate limits.

Notify users when new items are pushed to podcast feeds.

