Cheatography

A Start of string, or start of line in multi-line

pattern
\A Start of string

$ End of string, or end of line in multi-line
pattern

\Z End of string

\b Word boundary

\B Not word boundary
\< Start of word

\> End of word

Character Classes

\c Control character
\s White space

\S Not white space
\d Digit

\D Not digit

\w Word

\W Not word

\X Hexadecimal digit
\O Octal digit

POSIX

[:upper:] Upper case letters

[:lower:] Lower case letters

[:alpha:] All letters

[:alnum:] Digits and letters

[:digit:] Digits

[:xdigit:] Hexadecimal digits

[:punct:] Punctuation

[:blank:] Space and tab

[:space:] Blank characters

[:entrl] Control characters

[:graph:] Printed characters

[:print:] Printed characters and spaces
[:word:] Digits, letters and underscore

By Dave Child (DaveChild)

cheatography.com/davechild/

Eﬁf@&;}% www.addedbytes.com

Regular Expressions Cheat Sheet
by Dave Child (DaveChild) via cheatography.com/1/cs/5/

= Lookahead assertion

?! Negative lookahead

e Lookbehind assertion
?l=or ?<! Negative lookbehind

?> Once-only Subexpression
?() Condition [if then]

?20)] Condition [if then else]

% Comment

* 0 or more {3} Exactly 3
+ 1 or more {3,} 3 or more
? Oor1 {3,5} 3,4o0r5

Add a ? to a quantifier to make it ungreedy.

Escape Sequences

\ Escape following character
\Q Begin literal sequence
\E End literal sequence

"Escaping" is a way of treating characters
which have a special meaning in regular
expressions literally, rather than as special

characters.

Z [: $
{ * (\
4) | ?
< >

The escape character is usually \

Special Characters

\n New line

\r Carriage return

\t Tab

\v Vertical tab

\f Form feed

\XXX Octal character xxx

Hex character hh

Published 19th October, 2011.
Last updated 2nd January, 2015.
Page 1 of 1.

Groups and Ranges

Any character except new line (\n)

(alb) aorb

(-.) Group

(?:..) Passive (non-capturing) group
[abc] Range (a or b or c)

[rabc] Not (aorborc)

[a-q] Lower case letter from ato q
[A-Q] Upper case letter from A to Q
[0-7] Digit from 0 to 7

\X Group/subpattern number "x"

Ranges are inclusive.

Pattern Modifiers

g Global match

Case-insensitive

m* Multiple lines

s* Treat string as single line

x* Allow comments and whitespace in
pattern

e* Evaluate replacement

U* Ungreedy pattern

* PCRE modifier

String Replacement

$n nth non-passive group
$2 "xyz" in /A(abc(xyz))$/
$1 "xyz" in /A(?:abc)(xyz)$/
$ Before matched string
$' After matched string

$+ Last matched string

$& Entire matched string

Some regex implementations use \ instead of $.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/davechild/
http://www.cheatography.com/davechild/cheat-sheets/regular-expressions
http://www.cheatography.com/davechild/
http://www.addedbytes.com
https://readability-score.com

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

1of 10

Regular Expressions
bysocontributors: [Sl E R BB B P BB 2 € shovan.

« Previous Next »

Regular expressions are patterns used to match character combinations in strings. In JavaScript, regular expressions are also
objects. These patterns are used with the exec and test methods of RegExp, and with the match, replace, search, and split
methods of String. This chapter describes JavaScript regular expressions.

Creating a regular expression

You construct a regular expression in one of two ways:

Using a regular expression literal, which consists of a pattern enclosed between slashes, as follows:
| 1 | var re = /ab+c/;

Regular expression literals provide compilation of the regular expression when the script is loaded. When the regular expression will
remain constant, use this for better performance.

Or calling the constructor function of the RegExp object, as follows:

1 | var re = new RegExp("ab+c");

Using the constructor function provides runtime compilation of the regular expression. Use the constructor function when you know the
regular expression pattern will be changing, or you don't know the pattern and are getting it from another source, such as user input.

Writing a regular expression pattern

A regular expression pattern is composed of simple characters, such as /abc/, or a combination of simple and special characters, such as
/ab*c/ or /Chapter (\d+)\.\d*/.The last example includes parentheses which are used as a memory device. The match made with this
part of the pattern is remembered for later use, as described in Using parenthesized substring matches.

Using simple patterns

Simple patterns are constructed of characters for which you want to find a direct match. For example, the pattern /abc/ matches
character combinations in strings only when exactly the characters 'abc' occur together and in that order. Such a match would succeed in
the strings "Hi, do you know your abc's?" and "The latest airplane designs evolved from slabcraft." In both cases the match is with the
substring 'abc'. There is no match in the string 'Grab crab' because while it contains the substring 'ab c', it does not contain the exact
substring 'abc'.

Using special characters

When the search for a match requires something more than a direct match, such as finding one or more b's, or finding white space, the

11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

pattern includes special characters. For example, the pattern /ab*c/ matches any character combination in which a single 'a' is followed
by zero or more 'b's (* means 0 or more occurrences of the preceding item) and then immediately followed by 'c'. In the string
"cbbabbbbcdebc," the pattern matches the substring 'abbbbc'.

The following table provides a complete list and description of the special characters that can be used in regular expressions.

Special characters in regular expressions.

Character Meaning

Matches according to the following rules:

A backslash that precedes a non-special character indicates that the next character is special and is not to be interpreted
literally. For example, a 'b' without a preceding '\' generally matches lowercase 'b's wherever they occur. But a '\b' by itself
doesn't match any character; it forms the special word boundary character,

A backslash that precedes a special character indicates that the next character is not special and should be interpreted
literally. For example, the pattern /a*/ relies on the special character '*' to match 0 or more a's. By contrast, the pattern

/a*/ removes the specialness of the '*' to enable matches with strings like 'a*'.

Do not forget to escape \ itself while using the RegExp("pattern") notation because \ is also an escape character in strings.

Matches beginning of input. If the multiline flag is set to true, also matches immediately after a line break character.
For example, /~A/ does not match the 'A' in "an A", but does match the 'A’ in "An E",

The '~" has a different meaning when it appears as the first character in a character set pattern. See complemented
character sets for details and an example.

Matches end of input, If the multiline flag is set to true, also matches immediately before a line break character.

For example, /t$/ does not match the 't' in "eater”, but does match it in "eat".

Matches the preceding expression 0 or more times. Equivalent to {0,}.

For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in "A bird warbled", but nothing in "A goat grunted".

Matches the preceding expression 1 or more times. Equivalent to {1, }.

For example, /a+/ matches the 'a' in "candy" and all the a's in "caaaaaaandy", but nothing in "cndy".

Matches the preceding character 0 or 1 time. Equivalent to {@,1}.

For example, /e?le?/ matches the 'el' in "angel" and the 'le’ in "angle" and also the 'l' in "oslo".

If used immediately after any of the quantifiers *, +, ?, or {}, makes the quantifier non-greedy (matching the fewest
possible characters), as opposed to the default, which is greedy (matching as many characters as possible). For example,

applying /\d+/ to "123abc" matches "123". But applying /\d+?/ to that same string matches only the "1".

Also used in lookahead assertions, as described in the x(?=y) and x(?!y) entries of this table.

(The decimal point) matches any single character except the newline character.

2 0f 10 11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

Character

()

(25X

x(?=y)

x(?ly)

x|y

{n}

{n,m}

[xyz]

[*xyz]

30f10

Meaning

For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the tree", but not 'nay".

Matches 'x' and remembers the match, as the following example shows. The parentheses are called capturing parentheses.

The '(foo)' and '(bar)'in the pattern /(foo) (bar) \1 \2/ match and remember the first two words in the string "foo
bar foo bar". The \1 and \2 in the pattern match the string's last two words. Note that \1, \2, \nare used in the
matching part of the regex. In the replacement part of a regex the syntax $1, $2, $n must be used, e.g.: 'bar
foo'.replace(/(...) (...)/, '$2 $1').

Matches 'x' but does not remember the match. The parentheses are called non-capturing parentheses, and let you define
subexpressions for regular expression operators to work with. Consider the sample expression /(?:foo){1,2}/. If the
expression was /foo{1,2}/, the {1,2} characters would apply only to the last '0' in 'foo'. With the non-capturing
parentheses, the {1,2} applies to the entire word 'foo",

Matches 'x' only if 'x' is followed by 'y'. This is called a lookahead.

For example, /Jack(?=Sprat)/ matches 'Jack' only if it is followed by 'Sprat'. /Jack (?=Sprat |Frost)/ matches 'Jack’ only if
it is followed by 'Sprat’ or 'Frost'. However, neither 'Sprat' nor 'Frost' is part of the match results.

Matches 'x' only if 'x' is not followed by 'y'. This is called a negated lookahead.

For example, /\d+(?!\.)/ matches a number only if it is not followed by a decimal point. The regular expression /\d+(?!
\.)/.exec("3.141") matches '141' but not '3.141",

Matches either 'x' or'y".

For example, /green|red/ matches 'green' in "green apple" and 'red' in "red apple."

Matches exactly n occurrences of the preceding expression. N must be a positive integer.

For example, /a{2}/ doesn't match the 'a' in "candy," but it does match all of the a's in "caandy," and the first two a's in
"caaandy."

Where n and m are positive integers and n <= m. Matches at least n and at most m occurrences of the preceding
expression, When m is omitted, it's treated as =,

For example, /a{1, 3}/ matches nothing in "cndy", the 'a' in "candy," the first two a's in "caandy," and the first three a's in
"caaaaaaandy". Notice that when matching "caaaaaaandy", the match is "aaa", even though the original string had more
a'sinit

Character set. This pattern type matches any one of the characters in the brackets, including escape sequences, Special
characters like the dot(.) and asterisk (*) are not special inside a character set, so they don't need to be escaped, You can
specify a range of characters by using a hyphen, as the following examples illustrate.

The pattern [a-d], which performs the same match as [abcd], matches the 'b' in "brisket" and the 'c' in "city". The
patterns /[a-z.]+/ and /[\w.]+/ match the entire string "test.i.ng".

A negated or complemented character set. That is, it matches anything that is not enclosed in the brackets. You can
specify a range of characters by using a hyphen. Everything that works in the normal character set also works here.

11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

4 of 10

Character

[\b]

\b

\B

\eX

\d

\D

\f

\n

\r

\s

Meaning

For example, [*abc] is the same as [*a-c]. They initially match 'r' in "brisket" and 'h' in "chop."

Matches a backspace (U+0008). You need to use square brackets if you want to match a literal backspace character. (Not
to be confused with \b.)

Matches a word boundary. A word boundary matches the position where a word character is not followed or preceeded
by another word-character. Note that a matched word boundary is not included in the match. In other words, the length
of a matched word boundary is zero. (Not to be confused with [\b].)

Examples:

/\bm/ matches the 'm'in "moon" ;

/oo\b/ does not match the 'oo' in "moon", because 'o0' is followed by 'n' which is a word character;

/oon\b/ matches the 'oon' in "moon", because 'oon' is the end of the string, thus not followed by a word character;

/\w\b\w/ will never match anything, because a word character can never be followed by both a non-word and a word
character.

D Note: JavaScript's regular expression engine defines a (= specific set of characters to be "word" characters. Any character not in that
set is considered a word break. This set of characters is fairly limited: it consists solely of the Roman alphabet in both upper- and
lower-case, decimal digits, and the underscore character. Accented characters, such as "é" or "0" are, unfortunately, treated as word
breaks.

Matches a non-word boundary. This matches a position where the previous and next character are of the same type:
Either both must be words, or both must be non-words. The beginning and end of a string are considered non-words.

For example, /\B. ./ matches 'o0' in "noonday", and /y\B./ matches 'ye' in "possibly yesterday."

Where X is a character ranging from A to Z. Matches a control character in a string,

For example, /\cM/ matches control-M (U+000D) in a string.

Matches a digit character. Equivalent to [@-9].

For example, /\d/ or /[©-9]/ matches '2' in "B2 is the suite number."

Matches any non-digit character. Equivalent to [*8-9].

For example, /\D/ or /[~@-9]/ matches 'B' in "B2 is the suite number."

Matches a form feed (U+000C).
Matches a line feed (U+000A),
Matches a carriage return (U+000D).

Matches a single white space character, including space, tab, form feed, line feed. Equivalent to [\f\n\r\t\v\ueeae
\ul680\ul80e\u2000-\u200a\u2028\u2029\u282f\u205Ff\u3eee\ufeff].

For example, /\s\w*/ matches ' bar' in "foo bar."

11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

50f10

Character Meaning

Matches a single character other than white space. Equivalentto [* \f\n\r\t\v\ueeae\ul68e\ulsee\u2000-\u200a
\u2028\u2029\u202f\u205f\u3eee\ufeff].

\S
For example, /\S\w*/ matches 'foo' in "foo bar."
\t Matches a tab (U+0009).
\V Matches a vertical tab (U+000B).
Matches any alphanumeric character including the underscore. Equivalent to [A-Za-z@-9_].
\w ; : -
For example, /\w/ matches 'a' in "apple," '5'in "$5.28," and '3'in "3D."
Matches any non-word character, Equivalent to [*A-Za-z8-9_].
\W i
For example, /\W/ or /[*A-Za-28-9_]/ matches '%' in "50%."
Where n is a positive integer, a back reference to the last substring matching the n parenthetical in the regular expression
(counting left parentheses).
\n
For example, /apple(,)\sorange\1/ matches 'apple, orange,' in "apple, orange, cherry, peach."
\6 Matches a NULL (U+0000) character. Do not follow this with another digit, because \@<digits> is an octal escape
sequence.
\xhh Matches the character with the code hh (two hexadecimal digits)
\uhhhh Matches the character with the code hhhh (four hexadecimal digits).

Escaping user input to be treated as a literal string within a regular expression can be accomplished by simple replacement:

1 | function escapeRegExp(string){
2 return string.replace(/[.*+223{}()|[\]\\]1/g, "\\$&");
3|}

Using parentheses

Parentheses around any part of the regular expression pattern cause that part of the matched substring to be remembered. Once
remembered, the substring can be recalled for other use, as described in Using Parenthesized Substring Matches.

For example, the pattern /Chapter (\d+)\.\d*/ illustrates additional escaped and special characters and indicates that part of the
pattern should be remembered. It matches precisely the characters 'Chapter ' followed by one or more numeric characters (\d means any
numeric character and + means 1 or more times), followed by a decimal point (which in itself is a special character; preceding the decimal
point with \ means the pattern must look for the literal character '.'"), followed by any numeric character 0 or more times (\d means
numeric character, * means 0 or more times). In addition, parentheses are used to remember the first matched numeric characters.

This pattern is found in "Open Chapter 4.3, paragraph 6" and '4' is remembered. The pattern is not found in "Chapter 3 and 4", because
that string does not have a period after the '3'.

To match a substring without causing the matched part to be remembered, within the parentheses preface the pattern with ?:. For

11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

example, (?:\d+) matches one or more numeric characters but does not remember the matched characters.

Working with regular expressions

Regular expressions are used with the RegExp methods test and exec and with the String methods match, replace, search, and split.
These methods are explained in detail in the JavaScript reference.

Methods that use regular expressions

Method Description

exec A RegExp method that executes a search for a match in a string. It returns an array of information.
test A RegExp method that tests for a match in a string. It returns true or false.
match A String method that executes a search for a match in a string. It returns an array of information or null on a mismatch.

search AString method that tests for a match in a string, It returns the index of the match, or -1 if the search fails,

: A String method that executes a search for a match in a string, and replaces the matched substring with a replacement
replace
P substring.

split A string method that uses a regular expression or a fixed string to break a string into an array of substrings.

When you want to know whether a pattern is found in a string, use the test or search method; for more information (but slower
execution) use the exec or match methods. If you use exec or match and if the match succeeds, these methods return an array and
update properties of the associated regular expression object and also of the predefined regular expression object, RegExp. If the match
fails, the exec method returns null (which coerces to false).

In the following example, the script uses the exec method to find a match in a string.

53 var myRe = /d(b+)d/g;
2 | var myArray = myRe.exec("cdbbdbsbz");

If you do not need to access the properties of the regular expression, an alternative way of creating myArray is with this script:

1 | var myArray = /d(b+)d/g.exec("cdbbdbsbz");

If you want to construct the regular expression from a string, yet another alternative is this script:

it o 1

1 | var myRe = new RegExp("d(b+)d", "g");
2 | var myArray = myRe.exec("cdbbdbsbz");

With these scripts, the match succeeds and returns the array and updates the properties shown in the following table.

Results of regular expression execution.

Property or In this
Object : pery Description
index example
. . ["dbbd",
The matched string and all remembered substrings. ipt
myArray]
index The 0-based index of the match in the input string. 1

6 of 10 11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

Property or In this
Object . perty Description
index example
input The original string. "cdbbdbsbz"
[@] The last matched characters. "dbbd"
Va=iThd The index at which to start the next match. (This property is set only if the regular 5
astIndex
expression uses the g option, described in Advanced Searching With Flags.)
myRe
The text of the pattern. Updated at the time that the regular expression is created, not
source tad "d(b+)d"
executed.

As shown in the second form of this example, you can use a regular expression created with an object initializer without assigning it to a
variable. If you do, however, every occurrence is a new regular expression. For this reason, if you use this form without assigning it to a
variable, you cannot subsequently access the properties of that regular expression. For example, assume you have this script:

var myRe = /d(b+)d/g;
var myArray = myRe.exec("cdbbdbsbz");

[

console.log("The value of lastIndex is " + myRe.lastIndex);

wmoobh W N

// "The value of lastIndex is 5"

However, if you have this script:

var myArray = /d(b+)d/g.exec("cdbbdbsbz");
console.log("The value of lastIndex is " + /d(b+)d/g.lastIndex);

// "The value of lastIndex is @"

The occurrences of /d(b+)d/g in the two statements are different regular expression objects and hence have different values for their
lastIndex property. If you need to access the properties of a regular expression created with an object initializer, you should first assign it
to a variable.

Using parenthesized substring matches

Including parentheses in a regular expression pattern causes the corresponding submatch to be remembered. For example, /a(b)c/
matches the characters 'abc' and remembers 'b'. To recall these parenthesized substring matches, use the Array elements [1], ..., [n].

The number of possible parenthesized substrings is unlimited. The returned array holds all that were found. The following examples
illustrate how to use parenthesized substring matches.

The following script uses the replace() method to switch the words in the string. For the replacement text, the script uses the $1 and $2
in the replacement to denote the first and second parenthesized substring matches.

var re = /(\w+)\s(\w+)/;
var str = "John Smith";

var newstr = str.replace(re, "$2, $1");

T N

console.log(newstr);

This prints "Smith, John".

Advanced searching with flags

7 of 10 11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

Regular expressions have four optional flags that allow for global and case insensitive searching. These flags can be used separately or
together in any order, and are included as part of the regular expression.

Regular expression flags

Flag Description

g Global search.
i Case-insensitive search.
m Multi-line search.

y Perform a "sticky" search that matches starting at the current position in the target string. See sticky
To include a flag with the regular expression, use this syntax:
| 1 | var re = /pattern/flags;

or

| 1 | var re = new RegExp("pattern", “"flags");

Note that the flags are an integral part of a regular expression. They cannot be added or removed later.

For example, re = /\w+\s/g creates a regular expression that looks for one or more characters followed by a space, and it looks for this
combination throughout the string.

var re = /\w+\s/g;
var str = "fee fi fo fum";

W

var myArray = str.match(re);

4 | console.log(myArray);

This displays ["fee ", "fi ", "fo "]. In this example, you could replace the line:

I
+

| T var re
with:

M=

| T var re = new RegExp("\\w+\\s", "g");

and get the same result.

The m flag is used to specify that a multiline input string should be treated as multiple lines. If the m flag is used, ~ and $ match at the start
or end of any line within the input string instead of the start or end of the entire string.

Examples

The following examples show some uses of regular expressions.

8 of 10 11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

Changing the order in an input string

The following example illustrates the formation of regular expressions and the use of string.split() and string.replace(). It cleans a
roughly formatted input string containing names (first name first) separated by blanks, tabs and exactly one semicolon. Finally, it reverses
the name order (last name first) and sorts the list.

1 | // The name string contains multiple spaces and tabs,

2 // and may have multiple spaces between first and last names.

3 | var names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ; Chris Hand “;
4

5 | var output = ["---------- Original String\n", names + "\n"];

6

7 | // Prepare two regular expression patterns and array storage.

g8 | // Split the string into array elements.

9

10 // pattern: possible white space then semicolon then possible white space
11 | var pattern = /\s*;\s%/;

12

13 | // Break the string into pieces separated by the pattern above and
14 // store the pieces in an array called namelist

15 | var namelist = names.split(pattern);

16

17 | // new pattern: one or more characters then spaces then characters.
18 // Use parentheses to "memorize" portions of the pattern.

19 | // The memorized portions are referred to later.

28 | pattern = /(\w+)\s+(\w+)/;

21

22 | // New array for holding names being processed.

23 | var bySurnameList = [];

24

25 | // Display the name array and populate the new array

26 | // with comma-separated names, last first.

27 | /!

28 | // The replace method removes anything matching the pattern

290 | // and replaces it with the memorized string-second memorized portion
38 | // followed by comma space followed by first memorized portion.

3t | [/

32 // The variables $1 and $2 refer to the portions

33 // memorized while matching the pattern.

34

35 | output.push("---------- After Split by Regular Expression");

36

37 | var i, len;

38 | for (i = @, len = namelist.length; i < len; i++){

39 output.push(nameList[i]);

49 bySurnameList[i] = namelList[i].replace(pattern, "$2, $1");

4 |}
22

43 | // Display the new array.

44 | output.push("-=-==---~-- Names Reversed");

45 | for (i = @, len = bySurnameList.length; i < len; i++){

46 output.push(bySurnameList[i]);

47 | }
48
a9 | // Sort by last name, then display the sorted array.

58

90f 10 11/18/2015 10:40 AM

Regular Expressions - JavaScript | MDN

10 0of 10

bySurnamelList.sort();
output.push("---------- Sorted");

output.push(bySurnamelList[i]);

output.push("---==-=-=---- End");

console.log(output.join("\n"));

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regula...

for (i = @, len = bySurnamelist.length; i < len; i++){

Using special characters to verify input

In the following example, the user is expected to enter a phone number. When the user presses the "Check" button, the script checks the
validity of the number. If the number is valid (matches the character sequence specified by the regular expression), the script shows a
message thanking the user and confirming the number. If the number is invalid, the script informs the user that the phone number is not

valid.

Within non-capturing parentheses (?: , the regular expression looks for three numeric characters \d{3} OR | a left parenthesis \(
followed by three digits \d{3}, followed by a close parenthesis \), (end non-capturing parenthesis)), followed by one dash, forward
slash, or decimal point and when found, remember the character ([-\/\.]), followed by three digits \d{3}, followed by the remembered
match of a dash, forward slash, or decimal point \1, followed by four digits \d{4}.

The Change event activated when the user presses Enter sets the value of RegExp. input.

isn't a phone number with area code!");

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1">
5 <meta http-equiv="Content-Script-Type" content="text/javascript">
6 <script type="text/javascript">

7 var re = /(2:\d{3}|\N(\d{3I\))([-\/\-])\d{3}\1\d{4}/;

8 function testInfo(phonelnput){

9 var OK = re.exec(phoneInput.value);

10 if (l0K)

11 window.alert(phoneInput.value + "

12 else

13 window.alert("Thanks, your phone number is " + OK[@]);

14 }

15 </script>

16 </head>

17 <body>

18 <p>Enter your phone number (with area code) and then click "Check".
19
The expected format is like ###-###-###t#. < /p>

20 <form action="#">
21
22 </form>
23 </body>
24 </html>

« Previous

<input id="phone"><button onclick="testInfo(document.getElementById(phone'));">Check</button>

Next »

11/18/2015 10:40 AM

	regular-expressions-cheat-sheet-v3_davechild_nocolor.pdf
	Regular Expressions Cheat Sheet - Page 1
	Anchors
	Assertions
	Groups and Ranges
	Quanti­fiers
	Character Classes
	Pattern Modifiers
	Escape Sequences
	POSIX
	String Replac­ement
	Common Metach­ara­cters
	Special Characters

	Blank Page

