

– 1 –

Internet Encyclopedia

XSL
Jesse M. Heines, Ed.D.

heines@cs.uml.edu
Dept. of Computer Science

University of Massachusetts Lowell
One University Avenue

Lowell, MA 01854 USA

Abstract

XSL — the Extensible Stylesheet Language — is an XML-based technology for transforming XML documents
from one form to another. It uses a declarative programming paradigm and a specific XML namespace that gives
programmers full access to all XML components — elements, attributes, and text — and the ability to manipulate them
in ways that go far beyond the capabilities of Cascading Style Sheets (CSS). XSL can be used to control the rendition
of XML data, selectively filter the data items selected for transformation, convert data from various incompatible forms
into a single, standard form, or implement just about any other operation that one might want to perform on XML data
without changing the original XML source. Various parts of XSL are now industry standards (known as World Wide
Web Consortium “Recommendations”) and are therefore highly usable even in today’s ever-changing Web
environment.

This article presents the basic concepts and techniques used in XSL. It provides a variety of examples of XSL
Transformations (XSLT), XPath Expressions (the language used to refer to collections of XML nodes for processing by
XSLT), and XSL Formatting Objects (XSL-FO).

This article was published in The Internet Encyclopedia, edited by Hossein Bidgoli.
January 2004, John Wiley & Sons, Inc.

XML, XML EVERYWHERE, BUT NOT A DROP OF
COMPATIBILITY

If we both store our data as XML, we should be
compatible with each other, right? Unfortunately, no. The
XML Recommendation specifies how XML documents are
formed, but not how the data they contain should be
organized. Consider, for example, the many valid ways to
store a date shown in Table 1. The simple solution, of
course, is for everyone to agree to express dates in the same
format. As the flower girl cum socialite mused in My Fair
Lady, “Wouldn’t it be loverly?” But as the auctioneer cum
Mafioso chirped in Mickey Blue Eyes, “Fughedaboudit!”

The problem is not that people disdain compatibility,
it’s that XML allows each of us to wrap our data in any tags
that make sense to us alone. There are no standards for tag
names. So even though Company A may really want its
inventory system to automatically communicate with
Company B’s order processing system, and even though
Company A’s sending program can generate XML output

and Company B’s receiving program can take XML input,
the two may still not be able to communicate. Both may be
Y2K compliant, but if Company A’s program represents the
year number in an element (<year>2002</year>) and
Company B’s program expects an attribute on a date tag
(year="2002"), well, “never the twain shall meet.” The
analogy here is that if you ask for a “hoagie” in a town
where such sandwiches are known as “grinders” or “heroes”
or “subs,” you’ll very likely go hungry.

“But this is no big deal,” you say. “All one has to do is
write a simple C++ or Java program to convert one data
format to another.” I fear that such programs are not as
simple as they may at first appear, and of course the more
complex the conversion, the more complex the conversion
program. XML data is fairly easy to create and maintain,
while C++ and Java programs are not. It would be nice if
we had an XML-based solution to convert XML data from
one format to another. This is precisely what XSLT —
XML Stylesheet Language Transformation — is for.

Internet Encyclopedia: XSL Heines

– 2 –

Table 1. Many valid ways to store a date in XML.

<date>February 26, 2002</date> <!-- American standard -->
<date>26 February 2002</date> <!-- European standard -->
<date month="February" day="26" year="2002" /> <!-- no ambiguity -->
<date> <!-- reasonable alternative -->
 <month>Feb</month> <!-- which also eliminates -->
 <day>26</day> <!-- ambiguity but now uses -->
 <year>2002</year> <!-- an abbreviation for the -->
</date> <!-- month name -->
<date>2/26/02</date> <!-- common American abbreviation -->
<date>26.2.2002</date> <!-- common European abbreviation -->
<date>2002-02-26</date> <!-- ISO 8601 format, standard used -->
 <!-- in XML Schemas -->
<date>37313</date> <!-- serial number -->

A “stylesheet language” may seem a strange moniker
for a protocol that converts one data format to another, but
the name is historical. XSLT is a component of XSL, the
XML Stylesheet Language, which was originally conceived
as a native XML replacement for CSS, just as the Schema
was conceived as a native XML replacement for Document
Type Definitions (DTDs). The XSLT part of XSL is an
extremely powerful and efficient method for viewing XML
data in a variety of formats. It does this by essentially
transforming XML into HTML. A few examples will make
this readily apparent.

Formatting XML-based Web Pages
If one brings up XML data in Internet Explorer, one

sees a nice tree-structured rendition such as that in Figure 1.
Microsoft has cleverly made this display interactive,
allowing the user to expand and contract subtrees by
clicking the + and – prefixes. Nice for developers, but
rather awkward for regular folks who are interested in the
data per se, not its XML representation.

A relatively few lines of XSL can transform this data
into the user-friendly format shown in Figure 2. In this
example, XSL was used to generate the entire HTML page
being displayed, but one could just as easily use XSL to
format just part of the page. Thus dynamic data stored in
XML format can be integrated with dynamic or static data
stored in other Web-friendly formats to produce pages that
not only look good, but that also allow more sophisticated
processing because the data has semantics (expressed in
XML tags) rather than just formatting information
(expressed in HTML tags).

[Readers who want to dive right into code will find
listings for this and the examples in Figures 3 and 4 below
in the Appendix. Also note that the Internet Explorer XSL
Engine will not apply XSL formatting to an XML file that
contains a Schema reference on the root node!]

Fig. 1. The Internet Explorer XML data default rendition.
This file is adapted from one developed by Mary Stehlin in

an XML class taught by the author at McKessonHBOC,
Inc., in Alpharetta, GA, May 2000.

Internet Encyclopedia: XSL Heines

– 3 –

Fig. 2. The same data formatted with XSL.

Generating Reports from XML Data
Look carefully at Figures 1 and 2 and notice that

“Mootsie” appears as the fourth cat in Figure 1, yet is
second in Figure 2. This is an indication that XSL can do
more than just format data: it can rearrange it, too.
Rearrangement is another simple type of transformation
[Cagle, 2000a]. XSL can also filter XML data by extracting
selected elements whose values match a given pattern and,
if so desired, juxtapose their data values with those of other
selected elements. Such “filtering” is similar to “selecting”
data from relational databases with SQL queries that
incorporate WHERE clauses. Furthermore, XSL can sort data
on the values of any XML element, allowing data to be
presented in a logical order for the purpose at hand.

These types of basic transformations are the essence of
generating reports, that is, presenting different views of the
same data for different purposes or different audiences.
Figure 3 shows the cats in order of their birth dates. Figure
4 shows only the two female cats and presents just their IDs,
names, and number of kittens. Each of these reports was
generated from the same XML file by applying a different
XSL file to its contents.

Fig. 3. Cat data sorted by DOB (Date Of Birth).

Resolving Differences Between Disparate XML Data
The DOB data in the Cats XML file is stored in ISO

8601 format, an international standard that defines a method
for writing dates and times unambiguously (W3C, 1997).
The date part of the standard specifies that a four-digit year
is followed by a two-digit month (with a leading zero if
necessary) and a two-digit day (again possibly with a

leading zero). Hyphens separate the three data items,
making YYYY-MM-DD the common abbreviation for this
format. In addition to begin unambiguous, dates expressed
in ISO 8601 format have the distinct advantage of being
alphabetically sortable. That is, a simple alphanumeric sort
will correctly put “2002-01-31” before “2002-02-01,” while
the same sort would incorrectly put “January 31, 2002” after
“February 1, 2002” and “31.01.2002” after “01.02.2002.”

When a programmer is confronted with the need to
compare dates stored in the many formats shown at the
beginning of this article, one approach is to convert all dates
to ISO 8601 format and then do the required comparison
(see Figure 5). XSLT provides the capability to do this and
similar conversions with relatively few lines of code and
surprising execution speed. (Code to do this is presented in
the final example of this article.) Using XSLT for this task
allows a programmer to stay within the XML paradigm,
eliminating the need to write functions in other, more
general-purpose languages.

Fig. 4. Cat data filtered to show only selected data

in selected elements of the two female cats.

Communicating Between Applications
The first two sample XSL applications discussed above

transform XML into HTML. The third transforms data
from one form of XML to another. XSL can actually be
used to transform XML data into virtually any text-based
format, thus making it an invaluable partner to XML in
situations where one application must exchange data with
another (Cagle, 2000b).

2003-04-18

April 18, 2003

18 April 2003

Apr. 18, 2003

4/18/03

18.4.2003

4/18/2003

Fig. 5. Transforming dates from various disparate forms
into a single, standard form: ISO 8601 format.

Internet Encyclopedia: XSL Heines

– 4 –

Consider, for example, the relationships between vari-
ous components in a multitiered Web application (see Fig-
ure 6). A customer might browse product descriptions and
prices on-line using HTML generated from XML. When
the customer places the order, that same XML might be
processed by another XSL file to generate an SQL query
that determines product availability. The accounting depart-
ment will need the same information in a form compatible
with its invoice-generating program, and XSL might pro-
vide that in a comma-delimited data stream. The shipping
department may require yet another form to generate pick
lists and mailing labels. Once again, XSL might be used to
perform the required transformation.

Fig. 6. Work and data flow scenario involving XML data in

various formats (Oracle, 1999).
Copyright © 1999, 2001, Oracle Corporation.

All rights reserved. Used with permission.

WHAT XSL IS AND IS NOT
“Decorating” vs. “Transforming” (CSS vs. XSL)

At first glance, XSL may appear to be for XML what
CSS are for HTML. Alternatively, a cursory comparison of
CSS and XSL might lead one to reasonably — but erron-
eously — conclude that XSL is a “better” CSS. Indeed, one
can apply CSS to an XML document to achieve some of the
capabilities we demonstrated with XSL. For example, Fig-
ure 7 shows the Cats XML file with CSS attributes applied.
However, Table 2 explains the real differences between CSS
and XSL. Thus, XSL is not “a better CSS.” It is really a
different technology with capabilities for manipulating
XML data, while CSS is still as valuable as ever for
controlling the appearance of generated HTML elements.

XSL as an XML Document
Any discussion of what XSL is and is not will reveal

different opinions based on how one uses this technology.
However, one issue is not open to debate: XSL structure.
An XSL document is first and foremost an XML document,
and as such it must conform to all the syntactic and semantic

rules for XML documents. This means that if one includes
HTML constructs in an XSL file (a common practice), they
must be well-formed. All start tags must have end tags or
be self-closing (end with /> rather than just >). Thus one
cannot use HTML tags such as
 and in an XSL
file without their corresponding end tags, </br> and ,
which almost never appear in standard HTML. Shortcuts
are allowed, like
. [
 is sometimes interpreted
as

 by browsers, but
 (with a space) seems
to be reliably interpreted as a single
 tag.] One also
cannot use entity references like , because XSL has
only five entity references: <, >, &, ', and
". (For , use .) Finally, if generating
HTML, one must be more careful with white space
characters, because these are significant in XML while
typically insignificant in HTML. These types of issues
become moot if one works in XHTML, which is a version
of HTML that conforms to XML standards, thus requiring
all documents to be “well-formed” in the XML sense.

Fig. 7. Cats XML file linked to a CSS file.

Table 2. Capabilities of CSS vs. XSL

CSS XSL

CSS controls the format-
ting properties of ele-
ments, their so-called
“decorations”

XSL “transforms” an XML
tree into a new tree

CSS cannot reorder ele-
ments, generate text, or
perform calculations

XSL can do all of these

CSS cannot access XML
attributes

XSL has full control over
XML attributes, just as it
does over elements

CSS can only render a
node’s value once

XSL can use a node’s value
as many times as desired and
in as many contexts as
needed

Internet Encyclopedia: XSL Heines

– 5 –

The characteristic that clearly distinguishes XSL docu-
ments from all other XML documents is their namespace.
The most recent XSL namespace is http://www.w3.org/
1999/XSL/Transform (W3C, 1999), but one may see older
books and papers using a previous version, http://

www.w3.org/TR/WD-xsl. Internet Explorer 5 (including
version 5.5) only supports the older version unless one adds
a plug-in. Internet Explorer 6.0 supports the newer version,
which is more complete and more closely conforms to the
W3C Recommendations. The many various versions of all
browsers, including Netscape and Mozilla, provide widely
varying levels of support for XSL.

The XSL Processing Model
Purists will state that XSL is a pattern-matching lan-

guage, not a programming language. Indeed, it would be
quite cumbersome to do many general-purpose program-
ming tasks in XSL. There are, however, a number of pro-
gramming constructs built into XSL, such as if constructs,
choose constructs (analogous to switch or select in other
languages), sorting, iteration, recursive descent, and
numerous others as well as pattern matching.

The overall strategy, however, is declarative rather than
procedural or functional. This means that you “specify how
you want the result to look rather than saying how it should
be transformed” (Martin et al., 2000, p. 375). An XSL
engine — software that applies an XSL file to an XML file
— first loads an XML source document and an XSL
stylesheet into memory (see Figure 8). Internally, each of
these documents is represented as a multibranching tree.

The XSL engine then begins processing the stylesheet
tree at its root node. The output specifications in this node
may cause other stylesheet nodes to be applied to the source

tree in turn. Those may be applied to the whole source tree,
selected subtrees, or collections of source tree nodes. Each
stylesheet node specifies how the transformation result for
some part of the source tree is to look. As shown in Figure
8, applying stylesheet specifications to a source tree results
in the XSL engine generating a result tree. That result tree
can then be output in any of a number of formats, of which
text, HTML, and XML itself are the most common.

XSL APPLICATION INFRASTRUCTURE
The Minimal XSL Document

As mentioned above, an XSL document is first and
foremost an XML document. Thus all XSL document files
begin with the standard XML processing instruction:

<?xml version="1.0" ?>

(At present there is only one version of XML, so the version
number is always 1.0.)

The root element of an XSL document is always
stylesheet. This element name comes from the XSL
namespace, so it must be preceded by a namespace prefix
(W3C, 1999) followed by a colon. By convention, most
people use xsl as the namespace prefix, declared with an
xmlns attribute on this root element (see below). In
addition, the stylesheet element requires a version attribute
which (like XML itself) is currently 1.0. Thus the minimum
well-formed and valid XSL document that uses the most
recent XSL namespace (as of July 2002) must contain the
following three lines:

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl=
 "http://www.w3.org/1999/XSL/Transform">
 ...
</xsl:stylesheet>

Fig. 8. The XSL Processing Model (Kay, 2000, p. 49).

Copyright © 2000, Wrox Press, Ltd. All rights reserved. Used with permission.

Internet Encyclopedia: XSL Heines

– 6 –

XSL Templates
The abstract stylesheet nodes referred to in the discus-

sion of the XSL processing model above are specified using
XSL templates, which are introduced by the xsl:template
tag. These can be thought of as pieces of output that get
generated — or further specifications that get processed —
when the XSL engine state causes those templates to be
applied. Each template is differentiated by a match
condition that identifies the context in which it is applied.
(Templates with identical match conditions may optionally
be differentiated by modes.)

The XSL engine starts its processing with the template
whose match condition specifies the XSL document’s root
context. The template tag for this node is:

<xsl:template match="/">
 ...
</xsl:template>

It is important to realize that the XSL document root context
is not the XML document root node. One should think of
the XSL root context as an abstract context just above the
XML root node, as represented in Figure 9.

 XSL Root Context

XML Tree Root Node

Additional XML
Tree Subnodes

Fig. 9. The XSL Root Context vs. the XML Root Node.

This template is equivalent to the main function in a C

or C++ or Java program: it is where processing begins. The
output specified here is typically code that “frames” output
that will be generated by other templates. For an XSL
document designed to generate HTML, this means that this
“main” template typically contains at least the opening and
closing <html> and </html> tags, most of the output for the
head section, and the body tags. A simple XSL file
structured in this way is shown in Listing 1.

If you try to bring up this file in Internet Explorer
Version 6.0, you will get the XML tree display shown in
Figure 10. This is because an XSL file is an XML file, and
without applying it to an XML file via an XSL engine, it is
no different than any other XML file.

Choosing an XSL Engine
When it comes to selecting an XSL engine, there are

many choices. We will follow the lead of most books on
this subject by using the XSL engine built into Internet
Explorer 6.0 (Microsoft, 2002), because that makes it easy
to see our results. As mentioned earlier, the IE 6.0 XSL

Listing 1. File hello.xsl.
 1 <?xml version="1.0" ?>
 2 <!--
 3 hello.xsl - minimal XSL file
 4 updated by JMH on April 11, 2002
 5 -->
 6 <xsl:stylesheet version="1.0"
 7 xmlns:xsl=
 8 "http://www.w3.org/1999/XSL/Transform"
 9 <xsl:template match="/">
10 <html>
11 <body>
12 <h2>
13 Hello, XSL!
14 </h2>
15 </body>
16 </html>
17 </xsl:template>
18
19 </xsl:stylesheet>

Fig. 10. File hello.xsl displayed as XML.

engine conforms well to the latest World Wide Web XSL
Recommendation, but previous versions do not.

One should realize, however, that there are numerous
other quality XSL engines available and several ways to link
an XML file to an XSL file using these engines. The choice
of which engine and which technique to use depends largely
on where one is using XSL (on the client side, the server
side, or in a stand-alone application) and the format of one’s
XML and XSL documents (files on disk or data structures in
memory). We cannot explore all the possibilities in this
article, but it is worth mentioning that the differences in
browser versions as of the time of this writing (July 2002)
make applying XSL on the client side extremely unreliable.

Most of today’s XSL processing that generates HTML
Web pages is therefore done on the server side. A popular
XSL engine that integrates very smoothly with Java Web
servers is the Xalan-Java engine, which is available free of
charge from the Apache Software Foundation (Apache,
2002). In this article we will work with the client-side
Internet Explorer engine, but the appendix provides listings

Internet Encyclopedia: XSL Heines

– 7 –

of small programs to apply XSL files to XML files on the
server-side. These programs include a small, self-contained
Java Server Page that demonstrates using hard-coded XML
and XSL file names and an analogous Java Servlet that
processes XML and XSL file names supplied by an HTML
form.

Applying an XSL File to an XML File
To link an XSL file to an XML file, one can include a

processing instruction in the XML file that specifies the
relative path to the XSL file to be applied:

<?xml-stylesheet type="text/xsl"

 href="hello.xsl" ?>

Since the simple XSL file in Listing 1 makes no reference to
the elements in any XML file that may link to it, we can
create a minimal XML file that includes only this processing
instruction and some arbitrary root tag required to make the
XML document well-formed. Bringing up the XML file
shown in Listing 2 in Internet Explorer Version 6.0
generates the output shown in Figure 11.

Listing 2. Minimal XML file that links to an XSL file.
 1 <?xml version="1.0"?>
 2 <!--
 3 hello.xml - minimal version including
 4 xml-stylesheet processing instruction
 5 updated by JMH on April 11, 2002
 6 -->
 7 <?xml-stylesheet type="text/xsl"
 8 href="hello.xsl" ?>
 9 <hello>
10 </hello>

Fig. 11. File hello.xsl applied to XML file hello.xml.

Inserting the xml-stylesheet processing instruction in
an XML file as at line 7 in Listing 2 is equivalent to hard-
coding the link. Microsoft JScript (their extended version of
JavaScript) provides the ability to load XML and XSL files
dynamically and apply one to the other under program
control. This technique allows XML data styled with XSL
to be seamlessly integrated into HTML pages. The minimal
code to accomplish this is shown in Listing 3. (One could,
of course, read the file names into variables and apply them
dynamically, but they are shown hard-coded in Listing 3 for
simplicity.) Of course, JScript is only one way to apply
XSL to be applied to XML dynamically. The appendix
includes code to do so through a Java Server Page and a

Java Servlet, and other techniques are possible as well.

Listing 3. Minimal JScript code to apply an XSL file to an
XML file.

 1 <html>
 2 <!--
 3 Minimum Code for Applying an XSL file to
 4 an XML file on the Client Side using
 5 Internet Explorer Version 6.0
 6 updated by JMH on April 13, 2002
 7 -->
 8 <body>
 9 <script type="text/javascript">
10 var xmlDoc = new ActiveXObject(
11 "Microsoft.XMLDOM") ;
12 xmlDoc.async = false ;
13 // disable multithreading
14 xmlDoc.load("hello.xml") ;
15
16 var xslStyleSheet = new ActiveXObject(
17 "Microsoft.XMLDOM") ;
18 xslStyleSheet.async = false ;
19 xslStyleSheet.load("hello.xsl") ;
20
21 document.write(xmlDoc.transformNode(
22 xslStyleSheet)) ;
23 </script>
24 </body>
25 </html>

EXTRACTING XML DATA
We’re now ready to explore the code that gives XSL

technology its real power. This code centers around the
xsl:template element we have already seen, but with
considerably more complexity. A large portion of that
complexity resides in XPath, the language used to express
the crucial patterns that appear in the match and test
attributes of XSL elements. Like XSLT, XPath is an
integral part of XSL. Of course, entire books have been
written about XSLT and XPath (see, for example, the XSLT
Programmer’s Reference by Michael Kay, 2000), but the
scope of this article is considerably less ambitious. It strives
only to give a feel for the types of things one can do with
the basic XSLT elements, how XPath is used to apply those
elements to selected parts of the XML tree, and how one
should think of an XSL document as a whole.

We’ll use the XML file in Listing 4 for the examples in
this section. This file contains information on the titles and
authors of four of the chapters in the Internet Encyclopedia
using a variety of XML structures. These structures allow
us to demonstrate how XSL can address each piece of data
by applying different XSL files to this XML document.
Most of the transformations in the remainder of this article
were generated under program control using the minimal
JScript code shown previously in Listing 3, which explains
why there is no xml-stylesheet processing instruction
hard-coded in the book.xml file shown below.

Internet Encyclopedia: XSL Heines

– 8 –

Listing 4. XML file for use in examples in this section.
 1 <?xml version="1.0"?>
 2 <!--
 3 book.xml - selected chapters and their authors
 4 updated by JMH on July 17, 2002
 5 -->
 6 <book>
 7 <chapter title="Java Server Pages (JSP)">
 8 <author last="Pratter" first="Frederick" />
 9 <title>Adjunct Instructor</title>
10 <affiliation>University of Montana
11 <department>Information Technology</department>
12 <e-mail>pratter@cs.umt.edu</e-mail>
13 </affiliation>
14 </chapter>
15 <chapter title="JavaScript">
16 <author last="Roussos" first="Constantine" />
17 <title>Professor</title>
18 <affiliation>Lynchburg College
19 <department>Computer Science</department>
20 <e-mail>roussos@lynchburg.edu</e-mail>
21 </affiliation>
22 </chapter>
23 <chapter title="Extensible Stylesheet Language (XSL)">
24 <author last="Heines" first="Jesse" middle="M." />
25 <title>Associate Professor</title>
26 <affiliation>University of Massachusetts Lowell
27 <department>Computer Science</department>
28 <e-mail>heines@cs.uml.edu</e-mail>
29 </affiliation>
30 <chapter title="XML, XML Everywhere, But Not a Drop of Compatibility" />
31 <chapter title="What XSL Is and Is Not" />
32 <chapter title="XSL Application Infrastructure" />
33 <chapter title="Extracting XML Data" />
34 </chapter>
35 <chapter title="Extensible Markup Language (XML)">
36 <author last="Ulmer" first="John" />
37 <title>Assistant Professor</title>
38 <affiliation>Purdue University
39 <department>Computer and Information Systems Technology</department>
40 <e-mail>jjulmer@tech.purdue.edu</e-mail>
41 </affiliation>
42 </chapter>
43 </book>

Extracting Single Data Items
Extracting Data Stored in Element Nodes

The main way to extract data from an XML document
is via the xsl:value-of element, and the heart of that
element is the select attribute which specifies the data to
be extracted. The value of the select attribute is an XSL
pattern. The syntax of that pattern is an XPath expression,
which defines a collection of XML nodes for processing by
XSLT. Let’s replace line 13 in Listing 1 with:
 <xsl:value-of

 select="book/chapter/affiliation/department" />

The result is the single string:
Information Technology

To understand why, consider the following points:
(a) This xsl:value instruction is being executed

within the xsl:template element whose match
attribute is "/". Therefore, as shown previously in

Figure 9, the context of this template is the XSL
root context, just above the XML root node.

(b) To “descend into” the XML document, we must
therefore first reference the XML root node, book.

(c) To descend further, we refer to the nodes in the
order in which they appear in the XML source tree,
separating successive tree levels with forward
slashes (/). This is basic XPath syntax. Reading
the pattern from right to left: we are looking for a
department node that has an affiliation node as
its parent, a chapter node as its grandparent, and a
book node as its greatgrandparent.

(d) When, as in this case, the XSL pattern references a
node whose only child is an unnamed text node
(that is, an element whose DTD specification is
<!ELEMENT elementName (#PCDATA)>), the
xsl:value-of element returns the text stored in

Internet Encyclopedia: XSL Heines

– 9 –

that node. Thus in this case we get the text
“Information Technology.”

(e) Note that in this example the text of only the first
node that matches the XPath specification in the
select attribute is returned. (We will see how to
reference groups of nodes a little later.)

Extracting Data Stored in Attribute Nodes
To extract data stored in attributes, we use the @ sign:

<p><i>Chapter Title:</i>
 <xsl:value-of select="book/chapter/@title" />
</p>

Reading the pattern from right to left: we are looking for the
text stored in an attribute node named title that is a child
of a chapter node which is in turn a child of a book node.
We’ve added some additional HTML code to this group of
instructions to show further how XSL output can be
wrapped in formatting text. The resultant output is:

Chapter Title: Cascading Stylesheets (CSS)

Extracting Text Data in Mixed Content Nodes
Look at the structure of the data stored inside the
affiliation tags in Listing 4. This type of structure is
called mixed content because it include both text and
subelements. The DTD code for this structure is:

<!ELEMENT affiliation
 (#PCDATA|department|e-mail)*>
<!ELEMENT department (#PCDATA)>
<!ELEMENT e-mail (#PCDATA)>

If we try to extract the text data stored in the affiliation
node that begins on line 10 in Listing 4 with the statement:

<xsl:value-of

 select="book/chapter/affiliation" />

The result is all of the text in all of the subelements:
Rochester Institute of Technology Information
Technology ell@mail.rit.edu

To get only the text at the first level of the affiliation
node, we use another XPath feature called a location path
(W3C, 2001). In this case we want to use the text()
location path, which selects all the text node children of the
context node. In the problem at hand, the context node is
affiliation. So to get just its text, we use the statement:
 <xsl:value-of

 select="book/chapter/affiliation/text()" />

This gives us just the text we desire:
Rochester Institute of Technology
We have now seen how to extract data from elements

that contain only text, attribute values, and nodes that
contain mixed content. These are the three most common
situations for any single piece of data. Let’s now see how to
extract sets of data.

Extracting Sets of Data Items
Iteration
One way to extract sets of data is to use the xsl:for-each
instruction. Like the xsl:value-of instruction, xsl:for-
each has a select attribute, but this time the attribute is
interpreted as a node set expression that selects all the XML
data items that match its XPath expression. The xsl:for-
each instruction then applies the template between its start
and end tags to each node in the set.

Consider the code in Listing 5. The xsl:for-each in-
struction appears at line 13, and its XPath specification
(reading right to left) selects all of the chapter elements
that are children of book elements. This listing also formats
the XSL output as an HTML table, a common practice with
tabular data. Applying the XSL file in Listing 5 to
book.xml in Listing 4 yields the display shown in Figure 12.

Listing 5. XSL iteration with the xsl:for-each instruction.
 1 <?xml version="1.0" ?>
 2 <!--
 3 book2.xsl
 4 updated by JMH on April 15, 2002
 5 -->
 6 <xsl:stylesheet version="1.0"
 7 xmlns:xsl=
 8 "http://www.w3.org/1999/XSL/Transform">
 9 <xsl:template match="/">
10 <html>
11 <body>
12 <table border="1">
13 <xsl:for-each
14 select="book/chapter">
15 <tr>
16 <td> <xsl:value-of
17 select="@title" /> </td>
18 </tr>
19 </xsl:for-each>
20 </table>
21 </body>
22 </html>
23 </xsl:template>
24
25 </xsl:stylesheet>

Fig. 12. Result of applying the XSL iteration construct

in Listing 5 to the XML file in Listing 4.

Internet Encyclopedia: XSL Heines

– 10 –

This example also demonstrates the important concept
of node context changes. Note that the XPath expression in
the xsl:value-of instruction’s select attribute (line 14 in
Listing 5) is "@title," not "book/chapter/@title" as in
the example we looked at for extracting data stored in
attribute nodes:

<p><i>Chapter Title:</i>
 <xsl:value-of select="book/chapter/@title"/>
</p>

The difference here is that the xsl:for-each instruction
changes the context of the instructions inside its start and
end tags to the node specified in its select attribute. Thus
line 14 is executed in the context of a book/chapter node.
Saying it another way, line 14 is executed on a
book/chapter subtree. We extract the text in the title
attribute by referring to the XPath relative to the current
context. Since we’re already at book/chapter, we only
have to go down one more level to @title. Understanding
context changes is crucial to understanding the preferred
way of extracting sets of data items: using recursive descent.

Recursive Descent
There is nothing wrong with iteration, but it is generally
thought of as a procedural construct. Since XSL is
declarative by nature, creating additional templates and
applying them under certain conditions is more in keeping
with XSL’s overall design philosophy. Templates can be
applied recursively as one descends into the XML source
tree. Thus this technique is a form of recursive descent.

The XSL instruction used to apply templates is aptly
named xsl:apply-templates. Like the xsl:for-each
instruction, xsl:apply-templates uses a select attribute
to specify a set of nodes to which matching templates
should be applied.

To change the code in Listing 5 from iteration to
recursive descent, we first replace lines 12-16 with the
single line:

<xsl:apply-templates select="book/chapter" />

We then define a new template:
<xsl:template match="chapter">
 <tr>
 <td> <xsl:value-of select="@title" />
 </td>
 </tr>
</xsl:template>

Note that the value of the match attribute is yet another XSL
pattern, but also note that the context of this pattern is
somewhat “free floating” and does not include the full
XPath expression in the xsl:apply-templates select
attribute. In this example, match="chapter" will cause this
template to be called whenever the context is "chapter,"
which it is when we specifically descend into the XML
document’s book node and select all the chapter nodes.
The output generated by the xsl:apply-templates and
xsl:template instructions above is exactly the same as that

in Figure 12.
If chapters had subchapters that were also identified

with chapter tags, we could do a true recursive descent into
the source tree to find all the chapter nodes by changing the
xsl:apply-templates instruction’s select attribute:

<xsl:apply-templates select="//chapter" />

Again reading right to left, this expression tells the XSL
engine to select “all chapter nodes that are children of any
other node.” Since the selection is done recursively, all
chapter nodes in the structure below would be processed:

<chapter
 title="Extensible Stylesheet Language (XSL)">
 <author last="Heines" first="Jesse"
 middle="M." />
 <title>Associate Professor</title>
 <affiliation>University of Massachusetts
 Lowell
 <department>Computer Science</department>
 <e-mail>heines@cs.uml.edu</e-mail>
 </affiliation>
 <chapter title="XML, XML Everywhere, But Not
 a Drop of Compatibility" />
 <chapter title="What XSL Is and Is Not" />
 <chapter title="XSL Application
 Infrastructure" />
 <chapter title="Extracting XML Data" />
</chapter>

Filtering
One last variation before we move on: the ability to simulate
queries into the XML data by filtering the set of extracted
data items. To do this, one adds a Boolean expression
enclosed within square brackets to an XPath. (Such
expressions are more precisely called predicate expressions
and are an integral part of XPath.) For example:

<xsl:apply-templates

select="book/chapter[not(author/@middle)]" />

returns the set of all chapter nodes that are children of book
nodes and whose child author nodes do not include a
middle attribute. (For our sample XML file, this statement
would select the nodes for Frederick Pratter, Constantine
Roussos, and John Ulmer.)

It is easy to see that such filters can quickly get very
complex. The standard Boolean =, !=, and, or, and not
operators exist in XPath, as well as numerous functions such
as contains and starts-with for strings. When working
with strings, remember that an XSL document is an XML
document, so single quotes must be included inside double
quotes, or vice versa, because there is no escape character
like "\" in C/C++/Java.

This feature provides some of the capabilities of a
WHERE clause in SQL queries. For example:

<xsl:apply-templates
 select="book/chapter[starts-with(

 author/@first,'J')]" />
returns the set of all chapter nodes that are children of book
nodes, and where the value of the first name attribute of the

Internet Encyclopedia: XSL Heines

– 11 –

child author node begins with the letter J. (For our sample
XML file, this statement would select the nodes for Jesse
Heines and John Ulmer.)

Sorting Transformations
Once one knows how to refer to each type of data in an

XML source using XPath expressions and iterate over sets
of nodes or recurse into the XML tree, one has full access to
the XML data and can use XSL to transform it in a myriad
of ways. Let’s look at sorting as an example. This is
accomplished by adding xsl:sort instructions as children
of either the xsl:for-each or xsl:apply-templates
instructions.

The xsl:sort element has three main attributes:
• select specifies the data on which to sort
• data-type is typically either "text" or "number"
• order is either "ascending" or "descending"

If one includes multiple xsl:sort instructions, the first is
taken as the primary sort key, the second as the secondary
sort key, etc.

The code in Listing 6 generates a table showing the five
chapters sorted primarily on the authors’ last names and
secondarily on their first names. The output is shown in
Figure 13.

Fig. 13. Result of applying the XSL sort construct in

Listing 6 to the XML file in Listing 4.

Listing 6. Sorting data.
 1 <?xml version="1.0" ?>
 2 <!--
 3 book3.xsl
 4 updated by JMH on April 15, 2002 at 11:49 AM
 5 -->
 6 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 7
 8 <xsl:template match="/">
 9 <html>
10 <body>
11 <table border="1">
12 <xsl:apply-templates select="book/chapter">
13 <xsl:sort select="author/@last" data-type="text" order="ascending" />
14 <xsl:sort select="author/@first" data-type="text" order="ascending" />
15 </xsl:apply-templates>
16 </table>
17 </body>
18 </html>
19 </xsl:template>
20
21 <xsl:template match="chapter">
22 <tr>
23 <xsl:apply-templates select="author" />
24 <td> <xsl:value-of select="@title" /> </td>
25 </tr>
26 </xsl:template>
27
28 <xsl:template match="author">
29 <td nowrap="">
30 <xsl:value-of select="@last" />,
31 <xsl:value-of select="@first" />
32 <xsl:value-of select="@middle" />
33 </td>
34 </xsl:template>
35
36 </xsl:stylesheet>

Internet Encyclopedia: XSL Heines

– 12 –

Note the following points about this code.
(a) Lines 13 and 14: The XPath in the xsl:sort in-

structions’ select attribute is relative to the con-
text specified in the enclosing xsl:apply-

templates instruction.
(b) Line 23: We have chosen to create a new template

to handle author elements. Once again, note the
context in the select attribute at line 23 and how
the context changes in the template at lines 28-34.

(c) Line 29: Remember once again that an XSL
document is an XML document, so we cannot use
the standard HTML <td nowrap> construct
because every attribute must have a value. Thus
we have set the value to something. An empty
string will do just fine: <td nowrap="">.

(d) Lines 30-32: If we put nothing at the end of line
31, the authors’ first and middle names will be run
together. In line 24 we used , the XSL
equivalent of , to get the extra aesthetically
pleasing spaces before and after the text in each
cell of our table. But if we use at the end
of line 31, we get two spaces instead of one. Thus
we have used , which is the standard ASCII
space character.

CONTROLLING XSL PROCESSING ENGINE FLOW
Calling Templates with Parameters

The xsl:for-each and xsl:apply-templates
instructions certainly provide some degree of flow control
within the XSL processing engine. Further control can be
achieved with the xsl:call-template instruction, which
allows XSL templates to be called by name just like
standard subroutines. In a nutshell, the syntax is:

<xsl:call-template name="templateName" />
Rather than the match attribute we saw in templates called
by xsl:apply-templates, templates called by name have a
name attribute:

<xsl:template name="templateName">
 instructions to execute when this template is called
</xsl:template>

Another important difference between applying and calling
templates is that in the former the node context changes, as
we saw above, while in the latter it does not.

There is also a parameter construct that allows
templates to be called with values that can be further used to
control program flow. This construct can be used with
xsl:apply-templates, but it is more commonly found with
xsl:call-template:

<xsl:call-template name="templateName">
 <xsl:with-param name="parameterName"
 select="pattern" />
</xsl:call-template>

<xsl:template name="templateName">
 <xsl:param name="parameterName" />

 <!-- name must match that used above -->
 instructions to execute when this template is called,
 parameter can be referenced using $parameterName
</xsl:template>

Examples of these constructs appear in the next section.
One can therefore see that even though no one would

claim that XSL is a general-purpose programming language,
it is a rich set of instructions that provides many of the basic
features of a declarative programming language, coupled
with exceptional abilities to manipulate XML data.

Conditional Execution
One of the basic flow control features in any language

is the Boolean if construct that provides conditional
instruction execution. XSL does indeed have an xsl:if
instruction. Its basic format is:

<xsl:if test="Boolean expression">
 instructions to execute if the test of the enclosing
 xsl:if is true
</xsl:if>

This instruction is not as heavily used as one might expect,
however, because it has no “else” clause. People therefore
tend to use the XSL equivalent of the C/C++/Java switch
statement: the xsl:choose instruction. Its basic format is:

<xsl:choose>
 <xsl:when test="Boolean expression">
 instructions to execute if the test of the enclosing
 xsl:when is true
 </xsl:when>
 ... any number of additional xsl:when
 elements may be included here ...
 <xsl:otherwise>
 instructions to execute if no other Boolean
 expressions in this xsl:choose are true
 </xsl:otherwise>
</xsl:choose>

As you surely suspect by now, the Boolean expressions
include XPath expressions, which can, in turn, include
Boolean operators and numerous functions. The following
sample xsl:choose construct outputs Dear Ms. (last
name): if the current context node’s first attribute contains
the string “Elizabeth,” otherwise it outputs Dear Mr. (last
name):. Note the use of single and double quotes in the
test attribute of the first xsl:when element.

<xsl:choose>
 <xsl:when test="@first='Elizabeth'">
 Dear Ms. <xsl:value-of select="@last" />:
 </xsl:when>
 <xsl:otherwise>
 Dear Mr. <xsl:value-of select="@last" />:
 </xsl:otherwise>
</xsl:choose>

One note of clarification to C/C++/Java programmers:
each case (xsl:when or xsl:otherwise) is mutually
exclusive. That is, each case ends with an implicit break
statement (in C/C++/Java terms), and processing exits the

Internet Encyclopedia: XSL Heines

– 13 –

xsl:choose structure as soon as any case is completed. It is
therefore critical that tests be sequenced from the most
specific to the most general, with xsl:otherwise (if
present) as the last case in the sequence.

MAKING DATA IN XML DOCUMENTS COMPATIBLE
To put everything together that we’ve seen so far, we

return to the problem introduced at the beginning of this
article: incompatibility of date formats. The XML file in
Listing 7 has six person elements, each with a birth date
specified in one of three different formats: in attributes
(lines 8-9), in subelements (lines 13-15), or as text (line 19).
(Having different date formats in the same XML file is
certainly contrived for this demonstration, but it is common
to have different formats in different files, as discussed at
the beginning of this article.)

Listing 7. XML file with birth dates in various formats.
 1 <?xml version="1.0"?>
 2 <!--
 3 birthdates.xml
 4 updated by JMH on April 15, 2002
 5 -->
 6 <family>
 7 <person id="Dad">
 8 <birthdate month="November" day="28"
 9 year="1916" />
 10 </person>
 11 <person id="Mom">
 12 <birthdate>
 13 <month>December</month>
 14 <day>13</day>
 15 <year>1918</year>
 16 </birthdate>
 17 </person>
 18 <person id="Judy">
 19 <birthdate>1/14/42</birthdate>
 20 </person>
 21 <person id="Carol">
 22 <birthdate>
 23 <month>July</month>
 24 <day>9</day>
 25 <year>1943</year>
 26 </birthdate>
 27 </person>
 28 <person id="Henry">
 29 <birthdate month="July" day="18"
 30 year="1945" />
 31 </person>
 32 <person id="Jesse">
 33 <birthdate>4/18/48</birthdate>
 34 </person>
 35 </family>

The XSL file in Listing 8 determines how the birth date
for each person is stored and executes the required instruct-
tions to transform each into ISO 8601 format. The table
resulting from the transformation is shown in Figure 14.

The heart of this transformation is in the template that
begins on line 58. This template is executed in the context

Fig. 14. Birthdates transformed to ISO 8601 format.

of a birthdate node, which exists for each person regard-
less of the birth date’s format.

At line 62 we test for the existence of a month attribute
associated with the birthdate node. If such an attribute
exists, we assume that the birth date is stored in attributes
and proceed accordingly. We extract the value of the year
attribute and add it to the generated output at line 63. ISO
8601 format specifies that the year value be followed by a
hyphen (YYYY-MM-DD). However, adding that hyphen at the
end of line 63 generates an extra space in the output, so we
follow it with a tag that we know HTML processors will
ignore: <null />. This dummy tag is immediately
followed by another tag at line 64, so no additional spaces
are generated.

At line 64 we call the template named month, passing it
parameter monthName with the value extracted from the
month attribute (line 65). The template named month that
begins at line 109 transforms month name strings into
numbers to conform to ISO 8601 format. Line 67 tests the
value of the day attribute to see if it is numerically less than
10. If so, this line outputs a 0 to add a leading 0 to the day
number to conform to ISO 8601 format.

Line 72 tests for the existence of a month subelement in
the birthdate context. If it exists, we assume that the birth
date is stored in subelements and proceed accordingly. The
code here is very similar to that in the previous case, except
that we extract data from elements rather than from
attributes, so no @ signs appear in the select and test
attributes of the various instructions.

Line 82 tests whether the text in a birthdate element
contains a forward slash ("/"). If it does, we assume that
the birth date is stored in the common American month/
day/year format. We then use the XPath string functions
substring-before and substring-after to isolate each of
the numbers delineated by the slashes and transform them
appropriately to conform to ISO 8601 format.

Internet Encyclopedia: XSL Heines

– 14 –

Listing 8. XSL file to display birth dates supplied in various formats in ISO 8601 format.
 34 <?xml version="1.0" ?>
 35 <!--
 36 birthdates1.xsl
 37 updated by JMH on April 15, 2002 at 7:40 PM
 38 -->
 39 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 40
 41 <xsl:template match="/">
 42 <html>
 43 <body>
 44 <table border="1">
 45 <xsl:apply-templates select="family/person" />
 46 </table>
 47 </body>
 48 </html>
 49 </xsl:template>
 50
 51 <xsl:template match="person">
 52 <tr>
 53 <td> <xsl:value-of select="@id" /> </td>
 54 <td><xsl:apply-templates select="birthdate" /></td>
 55 </tr>
 56 </xsl:template>
 57
 58 <xsl:template match="birthdate">
 59 <xsl:choose>
 60
 61 <!-- handle case where date is in attributes -->
 62 <xsl:when test="@month">
 63 <xsl:value-of select="@year" />-<null />
 64 <xsl:call-template name="month">
 65 <xsl:with-param name="monthName" select="@month" />
 66 </xsl:call-template>-<null />
 67 <xsl:if test="@day < 10">0</xsl:if>
 68 <xsl:value-of select="@day" />
 69 </xsl:when>
 70
 71 <!-- handle case where date is in subelements -->
 72 <xsl:when test="month">
 73 <xsl:value-of select="year" />-<null />
 74 <xsl:call-template name="month">
 75 <xsl:with-param name="monthName" select="month" />
 76 </xsl:call-template>-<null />
 77 <xsl:if test="day < 10">0</xsl:if>
 78 <xsl:value-of select="day" />
 79 </xsl:when>
 80
 81 <!-- handle case where date is in text -->
 82 <xsl:when test="contains(./text(), '/')">
 83 <!-- extract month, day, and year values as strings -->
 84 <xsl:variable name="strMonth"
 85 select="substring-before(./text(), '/')" />
 86 <xsl:variable name="strDay"
 87 select="substring-before(substring-after(./text(), '/'), '/')" />
 88 <xsl:variable name="strYear"
 89 select="substring-after(substring-after(./text(), '/'), '/')" />
 90 <!-- output year, prefixing with "19" if it's expressed in two digits -->
 91 <xsl:if test="string-length($strYear) = 2">19</xsl:if>
 92 <xsl:value-of select="$strYear" />-<null />
 93 <!-- output month, prefixing with "0" if it's expressed in one digit -->
 94 <xsl:if test="$strMonth < 10">0</xsl:if>
 95 <xsl:value-of select="number($strMonth)" />-<null />
 96 <!-- output day, prefixing with "0" if it's expressed in one digit -->
 97 <xsl:if test="$strDay < 10">0</xsl:if>
 98 <xsl:value-of select="number($strDay)" />
 99 </xsl:when>
100

Internet Encyclopedia: XSL Heines

– 15 –

101 <!-- handle default case -->
102 <xsl:otherwise>
103 unknown
104 </xsl:otherwise>
105
106 </xsl:choose>
107 </xsl:template>
108
109 <xsl:template name="month">
110 <xsl:param name="monthName" />
111 <xsl:choose>
112 <xsl:when test="$monthName='January'">01</xsl:when>
113 <xsl:when test="$monthName='February'">02</xsl:when>
114 <xsl:when test="$monthName='March'">03</xsl:when>
115 <xsl:when test="$monthName='April'">04</xsl:when>
116 <xsl:when test="$monthName='May'">05</xsl:when>
117 <xsl:when test="$monthName='June'">06</xsl:when>
118 <xsl:when test="$monthName='July'">07</xsl:when>
119 <xsl:when test="$monthName='August'">08</xsl:when>
120 <xsl:when test="$monthName='September'">09</xsl:when>
121 <xsl:when test="$monthName='October'">10</xsl:when>
122 <xsl:when test="$monthName='November'">11</xsl:when>
123 <xsl:when test="$monthName='December'">12</xsl:when>
124 </xsl:choose>
125 </xsl:template>
126
127 </xsl:stylesheet>

The template that begins at line 109 is essentially one
large xsl:choose instruction. Line 110 accepts the
monthName parameter passed via the xsl:with-param
instructions at lines 65 and 75. We then use that param-
eter in the xsl:when test attributes by preceding its name
with a dollar sign ($). We check for each of the twelve
month names in turn and add the corresponding month
number (with a leading 0 if necessary) to the output when
one of the Boolean tests is true.

Thus, the disparate date formats are all made compat-
ible with one another. Of course, one could add addition-
al cases to the birthdate template that begins at line 58

to handle all of the variations presented at the beginning
of this article. (Serial dates require computing a unique
day number, where January 1, 1900 is defined as day 1.)

The previous example is fine for generating HTML
output as we have been doing throughout this article, but
many applications that use XML and XSL have no
interest at all in generating HTML. Instead, they want to
take an XML file in one format and convert it to an
equivalent XML file another format. That is, they would
want to convert the file in Listing 7 to a new file with all
dates in the same format. The XSL file in Listing 9 does
precisely this, generating the output in Listing 10.

Listing 9. XSL file to generate a new XML file with birth dates in various formats converted to ISO 8601 format.
 1 <?xml version="1.0" ?>
 2 <!--
 3 birthdates2.xsl
 4 updated by JMH on July 17, 2002 at 03:02 PM
 5 -->
 6 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 7
 8 <xsl:output method="xml" version="1.0" indent="yes" />
 9
 10 <xsl:template match="/">
 11 <xsl:comment> <!-- text within xsl:comment tags will appear in the output file -->
 12 birthdates2.xml
 13 generated from birthdates.xml by birthdates2.xsl
 14 </xsl:comment>
 15 <xsl:element name="family"> <!-- root element -->
 16 <xsl:apply-templates select="family/person" />
 17 </xsl:element>
 18 </xsl:template>
 19
 20 <xsl:template match="person">
 21 <xsl:text> <!-- go to a new line and add indent two spaces -->

Internet Encyclopedia: XSL Heines

– 16 –

 22 </xsl:text>
 23 <xsl:element name="person"> <!-- person subelement -->
 24 <xsl:attribute name="id"> <!-- first attribute on the person element -->
 25 <xsl:value-of select="@id" />
 26 </xsl:attribute>
 27 <xsl:attribute name="birthdate"> <!-- second attribute on the person element -->
 28 <xsl:apply-templates select="birthdate" />
 29 </xsl:attribute>
 30 </xsl:element>
 31 </xsl:template>
 32
 33 <xsl:template match="birthdate">
 34 <xsl:choose>
 35
 36 <!-- handle case where date is in attributes -->
 37 <xsl:when test="@month">
 38 <xsl:value-of select="@year" />
 39 <xsl:text>-</xsl:text> <!-- use this element to avoid whitespace problems -->
 40 <xsl:call-template name="month">
 41 <xsl:with-param name="monthName" select="@month" />
 42 </xsl:call-template>
 43 <xsl:text>-</xsl:text>
 44 <xsl:if test="@day < 10">
 45 <xsl:text>0</xsl:text>
 46 </xsl:if>
 47 <xsl:value-of select="@day" />
 48 </xsl:when>
 49
 50 <!-- handle case where date is in subelements -->
 51 <xsl:when test="month">
 52 <xsl:value-of select="year" />
 53 <xsl:text>-</xsl:text>
 54 <xsl:call-template name="month">
 55 <xsl:with-param name="monthName" select="month" />
 56 </xsl:call-template>
 57 <xsl:text>-</xsl:text>
 58 <xsl:if test="day < 10">
 59 <xsl:text>0</xsl:text>
 60 </xsl:if>
 61 <xsl:value-of select="day" />
 62 </xsl:when>
 63
 64 <!-- handle case where date is in text -->
 65 <xsl:when test="contains(./text(), '/')">
 66 <!-- extract month, day, and year values as strings -->
 67 <xsl:variable name="strMonth"
 68 select="substring-before(./text(), '/')" />
 69 <xsl:variable name="strDay"
 70 select="substring-before(substring-after(./text(), '/'), '/')" />
 71 <xsl:variable name="strYear"
 72 select="substring-after(substring-after(./text(), '/'), '/')" />
 73 <!-- output year, prefixing with "19" if it's expressed in two digits -->
 74 <xsl:if test="string-length($strYear) = 2">19</xsl:if>
 75 <xsl:value-of select="$strYear" />
 76 <xsl:text>-</xsl:text>
 77 <!-- output month, prefixing with "0" if it's expressed in one digit -->
 78 <xsl:if test="$strMonth < 10">0</xsl:if>
 79 <xsl:value-of select="number($strMonth)" />
 80 <xsl:text>-</xsl:text>
 81 <!-- output day, prefixing with "0" if it's expressed in one digit -->
 82 <xsl:if test="$strDay < 10">0</xsl:if>
 83 <xsl:value-of select="number($strDay)" />
 84 </xsl:when>
 85
 86 <!-- handle default case -->
 87 <xsl:otherwise>
 88 unknown
 89 </xsl:otherwise>

Internet Encyclopedia: XSL Heines

– 17 –

 90
 91 </xsl:choose>
 92 </xsl:template>
 93
 94 <xsl:template name="month">
 95 <xsl:param name="monthName" />
 96 <xsl:choose>
 97 <xsl:when test="$monthName='January'">01</xsl:when>
 98 <xsl:when test="$monthName='February'">02</xsl:when>
 99 <xsl:when test="$monthName='March'">03</xsl:when>
100 <xsl:when test="$monthName='April'">04</xsl:when>
101 <xsl:when test="$monthName='May'">05</xsl:when>
102 <xsl:when test="$monthName='June'">06</xsl:when>
103 <xsl:when test="$monthName='July'">07</xsl:when>
104 <xsl:when test="$monthName='August'">08</xsl:when>
105 <xsl:when test="$monthName='September'">09</xsl:when>
106 <xsl:when test="$monthName='October'">10</xsl:when>
107 <xsl:when test="$monthName='November'">11</xsl:when>
108 <xsl:when test="$monthName='December'">12</xsl:when>
109 </xsl:choose>
110 </xsl:template>
111
112 </xsl:stylesheet>

Listing 10. XML file generated by the XSL file in Listing 9.
113 <?xml version="1.0" encoding="utf-8"?>
114 <!--
115 birthdates2.xml
116 generated from birthdates.xml by birthdates2.xsl
117 -->
118 <family>
119 <person id="Dad" birthdate="1916-11-28"/>
120 <person id="Mom" birthdate="1918-12-13"/>
121 <person id="Judy" birthdate="1942-01-14"/>
122 <person id="Carol" birthdate="1943-07-09"/>
123 <person id="Henry" birthdate="1945-07-18"/>
124 <person id="Jesse" birthdate="1948-04-18"/>
125 </family>

XSL FORMATTING OBJECTS
The third component of XSL is the set of formatting

objects (XSL-FO) that can be used to render output in
sophisticated formats such as PostScript, Portable
Document Format (PDF), and even Java (using the Abstract
Windowing Toolkit for screen display). Use of these
formatting objects is a direct extension of the concepts and
techniques presented in this article, applied using the
http://www.w3.org/1999/XSL/Format namespace. This
namespace provides tags similar to, but considerably more
sophisticated than, those found in CSS. To include the
XSL-FO namespace in an XSL file, simply add it to the
xsl:stylesheet tag:
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format">

The full set of XSL-FO tags and allowable attributes is truly
immense. One “short reference” that merely lists them all is
26 pages long! Thus this article can only address the basic
structure of an XSL file that uses the XSL-FO namespace.
For detailed discussion of XSL-FO, please see the W3C

Recommendation for XSL Version 1.0 (W3C, 2001).
XSL formatting objects specify page layout using a

hierarchical system of pages, flows, and blocks. Further
refinements of the hierarchy include rectangles, borders,
and spaces. Full discussion of these topics is beyond the
scope of this article, but basically one may think of a simple
printed document as having a master layout that is broken
down into page sequences that contain flows that are
comprised of blocks.

Formatting Static Text
As a first example, consider the code in Listing 11,

which is adapted from one of the examples provided with
the transformation engine used to render the examples in
this section: the FOP Formatting Objects Processor from the
Apache Group. (This software can be downloaded free of
charge from http://xml.apache.org/fop/.) The adapted
example renders the abstract for this article in Portable
Document Format (PDF), which can be viewed in the
popular Adobe Acrobat Reader as shown in Figure 15. (The

Internet Encyclopedia: XSL Heines

– 18 –

explanation of this code that follows is drawn largely from
the comments embedded in the original example.)

We see from line 1 that this is an XML file, but it does
not use the XSL Transformation engine. Therefore, only the
XSL-FO namespace is specified on the fo:root element in
line 9. (The next example will use both namespaces as
discussed above.)

The fo:root element must contain one and only one
fo:layout-master-set element (line 12), which in turn
contains one or more page master elements that specify sets
of master layout parameters. In this example, there is only
one fo:simple-page-master element that defines the
layout for all pages. If there were multiple page layouts,
they would be differentiated by their master-name attributes
(line 13).

Listing 11. Simple XSL-FO to render the abstract for this article.
 1 <?xml version="1.0" encoding="utf-8"?>
 2
 3 <!--
 4 j2a.fo, adapted from fop-0.20.3\docs\examples\fo\simple.fo
 5 primary source: http://xml.apache.org/fop/index.html
 6 updated by JMH on July 18, 2002 at 01:18 PM
 7 -->
 8
 9 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
10
11 <!-- master document layout -->
12 <fo:layout-master-set>
13 <fo:simple-page-master master-name="simple"
14 page-height="11.0in" margin-top="1in" margin-left="1.25in"
15 page-width="8.5in" margin-bottom="1in" margin-right="1.25in">
16 <fo:region-body margin-top="0in"/>
17 <fo:region-before extent="0.25in"/>
18 <fo:region-after extent="0.5in"/>
19 </fo:simple-page-master>
20 </fo:layout-master-set>
21
22 <!-- beginning of a page within a document -->
23 <fo:page-sequence master-reference="simple">
24
25 <!-- beginning of a flow within a page -->
26 <fo:flow flow-name="xsl-region-body">
27
28 <!-- title -->
29 <fo:block
30 font-size="18pt" line-height="24pt" background-color="black"
31 font-family="Times" space-after.optimum="24pt" color="white"
32 text-align="center" padding-top="0pt">
33 The Extensible Stylesheet Language (XSL)
34 </fo:block>
35
36 <!-- subtitle -->
37 <fo:block font-size="14pt" line-height="20pt"
38 font-family="Times" space-after.optimum="12pt"
39 font-weight="bold" padding-top="0pt">
40 Abstract
41 </fo:block>
42
43 <!-- first paragraph -->
44 <fo:block font-size="12pt" line-height="15pt" text-indent="25pt"
45 font-family="Times" space-after.optimum="12pt" text-align="justify">
46 XSL - the Extensible Stylesheet Language - is an XML-based technology for
47 transforming XML documents from one form to another. It uses a declarative
48 programming paradigm and a specific XML namespace that gives programmers full
49 access to all XML components - elements, attributes, and text - and the ability
50 to manipulate them in ways that go far beyond the capabilities of Cascading
51 Style Sheets (CSS). XSL can be used to control the rendition of XML data,
52 selectively filter the data items selected for transformation, convert data from
53 various incompatible forms into a single, standard form, or implement just about
54 any other operation that one might want to perform on XML data without changing
55 the original XML source. Various parts of XSL are now industry standards (known

Internet Encyclopedia: XSL Heines

– 19 –

56 as World Wide Web Consortium "Recommendations"), and are therefore highly usable
57 even in today's ever-changing Web environment.
58 </fo:block>
59
60 <!-- second paragraph -->
61 <fo:block font-size="12pt" line-height="15pt" text-indent="25pt"
62 font-family="Times" space-after.optimum="12pt" text-align="justify">
63 This article presents the basic concepts and techniques used in XSL. It
64 provides a variety of examples of XSL Transformations (XSLT), XPath Expressions
65 (the language used to refer to collections of XML nodes for processing by XSLT),
66 and XSL Formatting Objects (XSL FO).
67 </fo:block>
68
69 </fo:flow>
70 </fo:page-sequence>
71 </fo:root>

A document’s content is organized into one or more
page sequences. Each fo:page-sequence element (line 23)
has a master-reference attribute whose value corresponds
to the master-name attribute of one of the previously
defined page master elements (line 13).

Page sequences contain flows, which can be positioned
in one of five regions: the page header or footer, the left or
right margin, or the body. The fo:flow tag at line 26 begins
the definition of a body flow.

Actual content is then contained within blocks that
contain text and formatting instructions. There are four
blocks in this example. The first one, which begins at line
29, displays the overall title centered in 18-point white type
on a black background. (72 points = 1 inch.) The text for
this block appears on line 33. The second block, which
begins at line 37, displays a subtitle left-justified in bold 14-
point type. The text for this block appears on line 40.

The format of the two paragraphs is defined at lines 44-
45 and 61-62. The first line of each paragraph is indented
25 points and their text is justified (all text in all lines except
the first is aligned at both the left and right margins).

Formatting Text from an XML Document
The real power of XSL formatting objects, of course,

comes into play when they are combined with XSL
transformations to format text read dynamically from XML
files. The basic structure of the XSL file is the same as that
shown for static text in the first example, but the XSL-FO
tags are now embedded within XSLT tags that control flow
and pull data from an XML file. That may sound more like

alphabet soup than computer programming, but the example
that follows is intended to clarify how these technologies fit
together.

This example uses the XML file in Listing 12, which is
an excerpt from a glossary of terms used in this article. The
corresponding XSL file in Listing 13.

Fig. 15. PDF rendering of the XSL-FO file in Listing 11.

Listing 12. Excerpt from a glossary of terms used in this article encoded in XML.
 1 <?xml version="1.0" ?>
 2 <!--
 3 jglossary.xml, adapted from fop-0.20.3\docs\examples\markers\glossary.xml
 4 primary source: http://xml.apache.org/fop/index.html
 5 Jesse M. Heines, UMass Lowell Computer Science, heines@cs.uml.edu
 6 updated by JMH on July 17, 2002 at 10:04 PM
 7 -->

Internet Encyclopedia: XSL Heines

– 20 –

 8 <article>
 9 <title>The Extensible Stylesheet Language (XSL)</title>
 10 <section>
 11 <title>Glossary</title>
 12 <entry>
 13 <term>context</term>
 14 <definition>
 15 as used in XSL, the tree level at which an instruction is executed; a single
 16 instruction will produce different results if executed in different contexts
 17 </definition>
 18 </entry>
 19 <entry>
 20 <term>declarative language</term>
 21 <definition>
 22 a computer language in which one specifies desired results rather than the
 23 procedures used to achieve those results (compare to pattern matching language
 24 and procedural language)
 25 </definition>
 26 </entry>
 27 <entry>
 28 <term>engine</term>
 29 <definition>
 30 as used in XSL, a program that applies the declarations in an XSL file to the
 31 data in an XML file by performs the actions necessary to achieve the specified
 32 transformation
 33 </definition>
 34 </entry>
 35 <entry>
 36 <term>entity reference</term>
 37 <definition>
 38 a symbol in an XML file that begins with an ampersand and ends with a semi-
 39 colon; there are only five built-in entities in XSL, while there are many more
 40 in XML
 41 </definition>
 42 </entry>
 43 <entry>
 44 <term>eXtensible Stylesheet Language (XSL)</term>
 45 <definition>
 46 an XML-structured technology that uses XSL transformations (XSLT), XPath
 47 addressing schemes, and (optionally) XSL formatting objects (XSL FO) to
 48 transform XML data into other forms
 49 </definition>
 50 </entry>
 51 <entry>
 52 <term>filtering</term>
 53 <definition>
 54 the process of extracting selected data from an XML file that meet a set of
 55 specified criteria
 56 </definition>
 57 </entry>
 58 <entry>
 59 <term>match condition</term>
 60 <definition>
 61 a template attribute that specifies the engine state in which that template's
 62 instructions will be executed
 63 </definition>
 64 </entry>
 65 <entry>
 66 <term>mode</term>
 67 <definition>
 68 a further refinement of a match condition that allows differentiation between
 69 multiple templates with the same match condition
 70 </definition>
 71 </entry>
 72 </section>
 73 </article>

Internet Encyclopedia: XSL Heines

– 21 –

Listing 13. XSL-FO code to render the glossary XML file.
 74 <?xml version="1.0" encoding="utf-8"?>
 75 <!--
 76 jglossary.xsl, adapted from fop-0.20.3\docs\examples\markers\glossary.xsl
 77 primary source: http://xml.apache.org/fop/index.html
 78 Jesse M. Heines, UMass Lowell Computer Science, heines@cs.uml.edu
 79 updated by JMH on July 18, 2002 at 08:55 AM
 80 -->
 81 <xsl:stylesheet version="1.0"
 82 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 83 xmlns:fo="http://www.w3.org/1999/XSL/Format">
 84
 85 <xsl:template match="/">
 86 <xsl:apply-templates select="article" />
 87 </xsl:template>
 88
 89 <xsl:template match="article">
 90 <fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
 91
 92 <fo:layout-master-set>
 93 <fo:simple-page-master master-name="all"
 94 page-height="11.5in" margin-top="1in" margin-left="1in"
 95 page-width="8.5in" margin-bottom="0.75in" margin-right="1in">
 96 <fo:region-body margin-top="0in" margin-bottom="0in"/>
 97 <fo:region-before extent="0in"/>
 98 <fo:region-after extent="0.5in"/>
 99 </fo:simple-page-master>
100 </fo:layout-master-set>
101
102 <fo:page-sequence master-reference="all">
103
104 <fo:flow flow-name="xsl-region-body">
105 <!-- article title -->
106 <fo:block
107 font-size="18pt" font-family="sans-serif" line-height="24pt"
108 color="white" text-align="center" padding-top="0pt"
109 background-color="black" space-after.optimum="24pt">
110 <xsl:value-of select="title" />
111 </fo:block>
112
113 <!-- process all sections -->
114 <xsl:apply-templates select="section" />
115
116 </fo:flow>
117 </fo:page-sequence>
118
119 </fo:root>
120 </xsl:template>
121
122 <!-- process a section -->
123 <xsl:template match="section">
124 <!-- section title -->
125 <fo:block
126 font-size="14pt" font-family="sans-serif" font-weight="bold"
127 line-height="20pt" space-after.optimum="12pt" padding-top="0pt">
128 <xsl:value-of select="title" />
129 </fo:block>
130
131 <!-- process a Glossary section -->
132 <xsl:if test="title='Glossary'">
133 <xsl:apply-templates select="entry" />
134 </xsl:if>
135 </xsl:template>
136
137 <!-- process a glossary entry -->
138 <xsl:template match="entry">
139 <fo:block
140 text-align="start" font-size="12pt" text-indent="-0.5in"

Internet Encyclopedia: XSL Heines

– 22 –

141 margin-left="0.5in" font-family="Times" space-after.optimum="12pt">
142 <xsl:apply-templates select="term"/>
143 </fo:block>
144 </xsl:template>
145
146 <!-- process a term -->
147 <xsl:template match="term">
148 <fo:inline font-weight="bold" >
149 <xsl:value-of select="." />
150 <xsl:apply-templates select="../definition" />
151 </fo:inline>
152 </xsl:template>
153
154 <!-- process a definition -->
155 <xsl:template match="definition">
156 <fo:inline font-weight="normal">
157 - <xsl:value-of select="."/>
158 </fo:inline>
159 </xsl:template>
160
161 </xsl:stylesheet>

First, we see the presence of both namespaces defined
in the xsl:stylesheet element at line 81-83. Lines 85-87
are the standard top level “main” template which simply
passes processing on to the XML document’s root element,
article.

The template that matches XML element article
begins at line 89. It contains the fo:root element (line 90)
and defines the master layout using an fo:layout-master-
set element (lines 92-100). The page sequence begins at
line 102. It starts a flow at line 104 and creates the first
block at lines 106-111. Note, however, the one major
difference between this example and the previous one: line
110 does not contain static text. Rather, line 110 inserts the
text contained in the title child element of the XML
article element using an xsl:value-of instruction. Line
114 then descends into the XML tree by applying the
appropriate template that matches all the section child
elements.

That template begins at line 123. It creates a new block
at lines 125-129. Here again, at line 128, we use an
xsl:value-of instruction to pull the text content to be
rendered from the XML file rather than hard-coding it as
static text in the XSL file. Note, however, that the title
element here refers to a child of the XML section element,
which is not the same as the title referred to at line 111.
Refer back to lines 9 and 11 of the XML file in Listing 12 to
see that title elements appear at two different levels. The
recursive descent structure of the XSL processing engine
insures that we are referred to the right element at each
level.

Next, controlled by the xsl:if instruction at line 132 to
make sure that the section we’re currently processing is a
glossary, the xsl:apply-templates instruction at line 133
initiates processing of all glossary entries. Here’s where the
real fun begins!

Each entry element in the XML file has two child
elements: term and definition (see lines 13 and 14 in
Listing 12). Before displaying each term, the entry
template begins a block (line 139 in Listing 13), which in
this case is essentially a paragraph. Thus a line break occurs
and the formatting instructions for that block are applied.
All of the blocks in this layout have space-after.optimum
set to 12 points (1/6 of an inch), essentially leaving a blank
line between glossary entries. Line 142 then initiates
processing of the entry element’s term child element.

In the term template we see an fo:inline tag at line
148. This tag begins the definition of a section of text
similar to a block, but inline indicates that no line break is
to occur. The fo:inline tag is analogous to an HTML
 tag: it delineates a section that has its own
formatting but that is not separated from its surrounding
elements by white space. Here the font weight is set to
bold, and then the xsl:value-of instruction is used to
insert the text of the current XML term element.

Line 150 continues processing by applying the
definition template to the current term’s sibling
definition element. In that template (lines 155-159), the
fo:inline tag is used to return the font weight to normal
(non-bold), and then a hyphen is rendered followed by the
content of the XML definition element.

In addition to the finely tuned formatting control
provided by XSL-FO tags and attributes, XSL-FO engines
are now beginning to appear that can render those formats in
a variety of ways. Figures 16, 17, and 18 show the glossary
excerpt we have been discussing rendered in PDF,
PostScript, and Java AWT formats, respectively. All of
these renderings were created from the same XML and XSL
files using the FOP processing engine. To produce the
different outputs, only the output specification parameter
passed to the FOP program was changed.

Internet Encyclopedia: XSL Heines

– 23 –

Fig. 16. Glossary transformed to PDF format using

XSL-FO.

Fig. 18. Glossary transformed to Java AWT format using

XSL-FO.

Fig. 17. Glossary transformed to PostScript format using

XSL-FO.

WHERE TO GO FROM HERE
Hundreds — if not thousands — of pages would of

course be needed to cover all the features of XSL and its
XSLT, XPath, and XSL-FO subcomponents, but hopefully
this article has given you enough information to grasp the
essence of these powerful Web technologies. The list of
references cited in the Bibliography provides pointers to
further reference material and Web sites where you can not
only learn about XSL, but also download the software
discussed in this article to use XSL on your own systems.

BIBLIOGRAPHY
Apache Software Foundation (2002). Xalan-Java.

Available at http://xml.apache.org/ xalan-j (date of access:
July 16, 2002).

Cagle, Kurt (2000a). Transform your data with XSL.
XML Magazine 1(1), 76-80, Winter 1999/2000.

Cagle, Kurt (2000b). ArchitectureX: Designing for
XML. XML Magazine 1(2), 22-28, Spring 2000.

Kay, Michael (2000). XSLT Programmer’s Guide, First
Edition, ISBN 186-100-3129. (A second edition, ISBN
186-100-5067, is now available.) Birmingham, UK: Wrox
Press, Ltd.

Martin, Didier (and twelve other authors) (2000).
Professional XML. Birmingham, UK: Wrox Press, Ltd.

Microsoft Corporation (2002). Microsoft XML Core
Services (MSXML) 4.0 - XSLT Reference. Available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/xmlsdk/htm/ xsl_ref_overview_1vad.asp (date of access:
July 16, 2002).

Oracle Corporation (1999, updated 2001). Using XML

Internet Encyclopedia: XSL Heines

– 24 –

in Oracle database applications: exchanging business data
among applications. White paper available at http://technet.
oracle.com/tech/xml/info/htdocs/otnwp/xml_data_exchange.
htm (date of access: July 16, 2002).

World Wide Web Consortium (1997). Date and time
formats. “Note” available at http://www.w3.org/TR/NOTE-
datetime.html (date of access: April 18, 2002).

World Wide Web Consortium (1999). Namespaces in
XML. “Recommendation” available at http://www.w3.org/
TR/REC-xml-names (date of access: July 16, 2002).

World Wide Web Consortium (1999). XSL Trans-
formations (XSLT), Version 1.0. “Recommendation”
available at http://www.w3.org/TR/xslt (date of access: July
16, 2002).

World Wide Web Consortium (2001). Extensible
Stylesheet Language (XSL), Version 1.0. “Recommenda-
tion” available at http://www.w3.org/TR/2001/REC-xsl-
20011015 (date of access: July 16, 2002).

World Wide Web Consortium (2002). XSL Transfor-
mations (XSLT), Version 2.0. “Working Draft” available at
http://www.w3.org/TR/xslt20 (date of access: July 16, 2002).

REFERENCE WEB SITES
(in alphabetical order)
http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/xmlsdk30/htm/xmrefxsltreference.asp – comprehen-
sive and very well organized reference material on all

aspects of XSLT and XPath
http://www.dpawson.co.uk/xsl – extremely comprehensive

list of XSL FAQs with extensive answers and examples
http://www.jenitennison.com/xslt/index.html – wonderful

tutorials and documentation on many advanced
applications of XSLT and XPath

http://www.mulberrytech.com/xsl – wealth of XSL reference
material including wonderful “quick reference” sheets
for XML, XSLT, and XPath; also the parent of the
phenomenally active XSL-List Open Forum at
http://www.mulberrytech.com/xsl/xsl-list/index.html

http://www.netcrucible.com/xslt/msxml-faq.htm – unofficial
answers to MSXML XSLT frequently asked questions

http://www.oasis-open.org/cover/xsl.html – a comprehensive
list of online references for XSL, XSLT, XPath, and
related standards

http://www.w3.org/Style/XSL – World Wide Web Consor-
tium home page for all XSL-related documents

http://www.w3.org/TR/xpath – World Wide Web Consortium
Recommendation for the XML Path Language, XPath

http://www.w3.org/TR/xslt –World Wide Web Consortium
Recommendation for XSL Transformations, XSLT

http://www.xslt.com – links to a wealth of tools and tutorials
on XSLT

http://xml.apache.org/fop – home page for the Apache
Group’s FOP Formatting Objects Processor, a print
formatter driven by XSL formatting objects

APPENDIX LISTINGS

Appendix Listing 1. XSL code to generate the output in Figure 2 from the XML in Figure 1.
 1 <?xml version='1.0'?>
 2 <!--
 3 File: cats7e.xsl
 4 updated by JMH on July 17, 2002 at 12:19 PM
 5 -->
 6 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 7 version="1.0">
 8
 9 <xsl:template match="/">
10 <html>
11 <body>
12
13 <h2>Mary's Cats</h2>
14
15 <table border="1" cellpadding="2" cellspacing="0">
16 <thead>
17 <td align="center">Id</td>
18 <td align="center">Name</td>
19 <td align="center">Sex</td>
20 <td align="center">Breed</td>
21 <td align="center">Dob</td>
22 <td align="center">Color</td>
23 <td align="center">Kittens</td>
24 </thead>
25 <tbody>
26 <xsl:for-each select="MyCats/Cat">
27 <xsl:sort select="./text()" order="ascending" />
28 <tr>

Internet Encyclopedia: XSL Heines

– 25 –

29 <td><xsl:value-of select="@id"/></td>
30 <td><xsl:value-of select="./text()"/></td>
31 <td align="center">
32 <xsl:value-of select="@sex"/>
33 </td>
34 <td><xsl:value-of select="Info/Breed"/></td>
35 <td><xsl:value-of select="Info/DOB"/></td>
36 <td><xsl:value-of select="Info/@color"/></td>
37 <td align="center">
38 <xsl:choose>
39 <xsl:when test="Info/Kittens/@number">
40 <xsl:value-of select="Info/Kittens/@number"/>
41 </xsl:when>
42 <xsl:otherwise>
43 --
44 </xsl:otherwise>
45 </xsl:choose>
46 </td>
47 </tr>
48 </xsl:for-each>
49 </tbody>
50 </table>
51
52 </body>
53 </html>
54 </xsl:template>
55
56 </xsl:stylesheet>

Appendix Listing 2. XSL code to generate the output in Figure 3 from the XML in Figure 1.
 1 <?xml version='1.0'?>
 2 <!--
 3 File: cats7e-3.xsl
 4 updated by JMH on July 17, 2002 at 12:19 PM
 5 -->
 6 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 7 version="1.0">
 8
 9 <xsl:template match="/">
10 <html>
11 <body>
12
13 <h2>Mary's Cats</h2>
14
15 <table border="1" cellpadding="2" cellspacing="0">
16 <thead>
17 <td align="center">Id</td>
18 <td align="center">Name</td>
19 <td align="center">Sex</td>
20 <td align="center">Breed</td>
21 <td align="center">Dob</td>
22 <td align="center">Color</td>
23 <td align="center">Kittens</td>
24 </thead>
25 <tbody>
26 <xsl:apply-templates select="MyCats/Cat">
27 <xsl:sort select="Info/DOB" order="ascending" />
28 </xsl:apply-templates>
29 </tbody>
30 </table>
31
32 </body>
33 </html>
34 </xsl:template>
35
36 <xsl:template match="Cat">

Internet Encyclopedia: XSL Heines

– 26 –

37 <tr>
38 <td><xsl:value-of select="@id"/></td>
39 <td><xsl:value-of select="./text()"/></td>
40 <td align="center">
41 <xsl:value-of select="@sex"/>
42 </td>
43 <td><xsl:value-of select="Info/Breed"/></td>
44 <td><xsl:value-of select="Info/DOB"/></td>
45 <td><xsl:value-of select="Info/@color"/></td>
46 <td align="center">
47 <xsl:choose>
48 <xsl:when test="Info/Kittens/@number">
49 <xsl:value-of select="Info/Kittens/@number"/>
50 </xsl:when>
51 <xsl:otherwise>
52 --
53 </xsl:otherwise>
54 </xsl:choose>
55 </td>
56 </tr>
57 </xsl:template>
58
59 </xsl:stylesheet>

Appendix Listing 3. XSL code to generate the output in Figure 4 from the XML in Figure 1.
 1 <?xml version='1.0'?>
 2 <!--
 3 File: cats7e-4.xsl
 4 updated by JMH on July 17, 2002 at 01:48 PM
 5 -->
 6 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 7 version="1.0">
 8
 9 <xsl:template match="/">
10 <html>
11 <body>
12
13 <h2>Mary's Cats</h2>
14
15 <table border="1" cellpadding="2" cellspacing="0">
16 <thead>
17 <td align="center">Id</td>
18 <td align="center">Name</td>
19 <td align="center">Kittens</td>
20 </thead>
21 <tbody>
22 <xsl:apply-templates select="MyCats/Cat[Info/Kittens/@number]" />
23 </tbody>
24 </table>
25
26 </body>
27 </html>
28 </xsl:template>
29
30 <xsl:template match="Cat">
31 <tr>
32 <td><xsl:value-of select="@id"/></td>
33 <td><xsl:value-of select="./text()"/></td>
34 <td align="center">
35 <xsl:value-of select="Info/Kittens/@number"/>
36 </td>
37 </tr>
38 </xsl:template>
39
40 </xsl:stylesheet>

Internet Encyclopedia: XSL Heines

– 27 –

Appendix Listing 4. Java Server Page code to apply an XSL file to an XML file using the Apache Xalan-Java XSL engine.
 1 <html>
 2 <!--
 3 Code to Apply an XSL File to an XML File on the Server Side
 4 adapted from xalan-j_2_3_1\samples\SimpleTransform\SimpleTransform.java
 5 download Xalan-Java from http://xml.apache.org/xalan-j free of charge
 6 updated by JMH on July 16, 2002 at 07:23 PM
 7 -->
 8 <head>
 9 <%@ page import="java.io.*" %> <!-- for StringWriter -->
10 <%@ page import="javax.xml.transform.*, javax.xml.transform.stream.*" %>
11
12 <%!
13 /** Apply an XSL file to an XML file and return the results as a String.
14 * @param strXMLfile String containing full URL to the XML file
15 * @param strXSLfile String containing full URL to the XSL file
16 * @return String containing the output of the transformation
17 */
18 String ApplyXSL(String strXMLfile, String strXSLfile)
19 {
20 // StringWriter is a child of java.io.Writer and can therefore be
21 // used as an argument to a StreamResult constructor, which is
22 // required by Transformer.transform().
23 StringWriter swResult = new StringWriter() ;
24
25 try {
26 // Use the static TransformerFactory.newInstance() method to instantiate
27 // a TransformerFactory. The javax.xml.transform.TransformerFactory
28 // system property setting determines the actual class to instantiate --
29 // org.apache.xalan.transformer.TransformerImpl.
30
31 TransformerFactory tFactory = TransformerFactory.newInstance();
32
33 // Use the TransformerFactory to instantiate a Transformer that will work
34 // with the stylesheet you specify. This method call also processes the
35 // stylesheet into a compiled Templates object.
36
37 Transformer transformer =
38 tFactory.newTransformer(new StreamSource(strXSLfile)) ;
39
40 // Use the Transformer to apply the associated Templates object to an XML
41 // document (foo.xml) and write the output to a file (foo.out).
42
43 transformer.transform(new StreamSource(strXMLfile),
44 new StreamResult(swResult)) ;
45
46 // Return the result.
47 return swResult.toString() ;
48
49 } catch (TransformerConfigurationException tfce) {
50 return tfce.toString() ;
51
52 } catch (TransformerException tfe) {
53 return tfe.toString() ;
54 }
55 }
56 %>
57 </head>
58
59 <body>
60 <%
61 // This code assumes that the XML and XSL files reside in the same directory
62 // as this JSP. Those file names are hard-code here, but they could be passed
63 // as parameters from an HTML form or via some other such technique.
64 String strXMLfilename = "hello.xml" ; // replace with your XML file name
65 String strXSLfilename = "hello.xsl" ; // replace with your XSL file name
66
67 // We need to construct a full path to the XML and XSL files, including the

Internet Encyclopedia: XSL Heines

– 28 –

68 // "http://" protocol specification, server name, and server port number (if
69 // it's not the default of 80). The following code accomplishes this.
70 String strFullPath = "http://" + request.getServerName() ;
71 if (request.getServerPort() != 80)
72 strFullPath += ":" + request.getServerPort() ;
73
74 // We then add the full path to this JSP and finally strip off this JSP's file
75 // name and extension that follow the last forward slash (/).
76 strFullPath += request.getRequestURI() ;
77 strFullPath = strFullPath.substring(0, strFullPath.lastIndexOf("/") + 1) ;
78
79 // We append the XML and XSL file names to the full path to pass them to our
80 // ApplyXSL method, which applies the XSL file to the XML file and returns the
81 // result as a string. Printing that String shows the result in the browser.
82 out.println(ApplyXSL(strFullPath + strXMLfilename,
83 strFullPath + strXSLfilename)) ;
84 %>
85 </body>
86 </html>

Appendix Listing 5. Java Servlet to apply an XSL file to an XML file using the Apache Xalan-Java XSL engine.
 1 /*
 2 * ApplyXSLServlet.java
 3 *
 4 * Created using Forte for Java 4, Community Edition, on July 17, 2002, 10:30 AM
 5 */
 6
 7 package InternetEncyclopedia.XSLDemos ;
 8
 9 import javax.servlet.*;
 10 import javax.servlet.http.*;
 11
 12 import java.io.* ; // for StringWriter and PrintWriter
 13 import javax.xml.transform.* ;
 14 // for Transformer, TransformerFactory, TransformerException,
 15 // and TransformerConfigurationException
 16 import javax.xml.transform.stream.* ;
 17 // for StreamSource and StreamResult
 18
 19 /**
 20 * This servlet applies an XSL file to an XML file and displays the results.
 21 * @author Jesse M. Heines
 22 * @version 1.0
 23 */
 24 public class ApplyXSLServlet extends HttpServlet
 25 {
 26 /** Apply an XSL file to an XML file and return the results as a String.
 27 * @param strXMLfile String containing full URL to the XML file
 28 * @param strXSLfile String containing full URL to the XSL file
 29 * @return String containing the output of the transformation
 30 */
 31 private String ApplyXSL(String strXMLfile, String strXSLfile)
 32 {
 33 // StringWriter is a child of java.io.Writer and can therefore be
 34 // used as an argument to a StreamResult constructor, which is
 35 // required by Transformer.transform().
 36 StringWriter swResult = new StringWriter() ;
 37
 38 try {
 39 // Use the static TransformerFactory.newInstance() method to instantiate
 40 // a TransformerFactory. The javax.xml.transform.TransformerFactory
 41 // system property setting determines the actual class to instantiate --
 42 // org.apache.xalan.transformer.TransformerImpl.
 43
 44 TransformerFactory tFactory = TransformerFactory.newInstance();
 45

Internet Encyclopedia: XSL Heines

– 29 –

 46 // Use the TransformerFactory to instantiate a Transformer that will work
 47 // with the stylesheet you specify. This method call also processes the
 48 // stylesheet into a compiled Templates object.
 49
 50 Transformer transformer =
 51 tFactory.newTransformer(new StreamSource(strXSLfile)) ;
 52
 53 // Use the Transformer to apply the associated Templates object to an XML
 54 // document (foo.xml) and write the output to a file (foo.out).
 55
 56 transformer.transform(new StreamSource(strXMLfile),
 57 new StreamResult(swResult)) ;
 58
 59 // Return the result.
 60 return swResult.toString() ;
 61
 62 } catch (TransformerConfigurationException tfce) {
 63 return tfce.toString() ;
 64
 65 } catch (TransformerException tfe) {
 66 return tfe.toString() ;
 67 }
 68 }
 69
 70 /** Display an error message for a missing field.
 71 * @param strErrorMsg String containing error message to show
 72 * @return String containing the output of the transformation
 73 */
 74 private void ShowErrorMessage(PrintWriter out, String strErrorMsg)
 75 {
 76 out.println("<p>" + strErrorMsg + "</p>");
 77 out.println("<p>Please press your browser's BACK button and try again.</p>") ;
 78 }
 79
 80 /** Initializes the servlet. (supplied by Forte for Java 4)
 81 */
 82 public void init(ServletConfig config) throws ServletException
 83 {
 84 super.init(config);
 85 }
 86
 87 /** Destroys the servlet. (supplied by Forte)
 88 */
 89 public void destroy()
 90 { }
 91
 92 /** Processes requests for both HTTP <code>GET</code> and <code>POST</code> methods.
 93 * @param request servlet request
 94 * @param response servlet response
 95 */
 96 protected void processRequest(
 97 HttpServletRequest request, HttpServletResponse response)
 98 throws ServletException, java.io.IOException
 99 {
100 // This code assumes that the XML and XSL files reside in the same directory.
101 String strXMLpath = request.getParameter("XMLpath") ;
102 // XML file name passed from an HTML form
103 String strXMLfilename = request.getParameter("XMLfilename") ;
104 // XSL file name passed from an HTML form
105 String strXSLfilename = request.getParameter("XSLfilename") ;
106
107 response.setContentType("text/html");
108 java.io.PrintWriter out = response.getWriter();
109
110 out.println("<html>") ;
111 out.println("<head>") ;
112 out.println(" <title>Apply XSL Servlet</title>") ;
113 out.println("</head>") ;

Internet Encyclopedia: XSL Heines

– 30 –

114
115 out.println("<body>") ;
116
117 if ((strXMLpath == null) || strXMLpath.equals("")) {
118 ShowErrorMessage(out, "No path supplied for XML and XSL files.") ;
119 } else if ((strXMLfilename == null) || strXMLfilename.equals("")) {
120 ShowErrorMessage(out, "No name supplied for your XML file.") ;
121 } else if ((strXSLfilename == null) || strXSLfilename.equals("")) {
122 ShowErrorMessage(out, "No name supplied for your XSL file.") ;
123 } else {
124 out.println(ApplyXSL(strXMLpath + strXMLfilename,
125 strXMLpath + strXSLfilename)) ;
126 }
127
128 out.println("</body>") ;
129 out.println("</html>") ;
130
131 out.close();
132 }
133
134 /** Handles the HTTP <code>GET</code> method. (supplied by Forte for Java 4)
135 * @param request servlet request
136 * @param response servlet response
137 */
138 protected void doGet(HttpServletRequest request, HttpServletResponse response)
139 throws ServletException, java.io.IOException
140 {
141 processRequest(request, response);
142 }
143
144 /** Handles the HTTP <code>POST</code> method. (supplied by Forte for Java 4)
145 * @param request servlet request
146 * @param response servlet response
147 */
148 protected void doPost(HttpServletRequest request, HttpServletResponse response)
149 throws ServletException, java.io.IOException
150 {
151 processRequest(request, response);
152 }
153
154 /** Returns a short description of the servlet. (supplied by Forte for Java 4)
155 */
156 public String getServletInfo()
157 {
158 return "This small servlet applies an XSL file to an XML file and displays the " +
159 "results.";
160 }
161 }

Appendix Listing 6. HTML form to supply parameters to the Apply XSL Java Servlet.
 1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
 2 <!--
 3 ApplyXSLForm.htm: to provide parameters for the ApplyXSLForm servlet
 4 Jesse M. Heines, UMass Lowell Computer Science, heines@cs.uml.edu
 5 updated by JMH on July 17, 2002 at 10:54 AM
 6 -->
 7 <html>
 8 <head>
 9 <title>Apply XSL Form</title>
10 <script type="text/javascript">
11 function init(frm) // called when body is loaded to initialize form
12 {
13 // set default path to the location of this form
14 var strPathName = "http://" + location.host ;
15 strPathName += location.pathname.substring(
16 0, location.pathname.lastIndexOf("/") + 1) ;

Internet Encyclopedia: XSL Heines

– 31 –

17 frm.XMLpath.value = strPathName ; // set default path in first form field
18 frm.XMLfilename.focus() ; // set focus to second form field
19 }
20 </script>
21 </head>
22 <body onload="init(frm)">
23 <p>Please fill in the fields below to specify the parameters needed to
24 apply an XSL file to an XML file.</p>
25 <p><i>Notes:</i></p>
26
27 This form expects your XML and XSL files to be in the same directory.
28 You may edit the full path field, but your entry must be of the form shown
29 initially.
30
31

32 <form name="frm" action="/servlet/InternetEncyclopedia.XSLDemos.ApplyXSLServlet">
33 <table name="tbl">
34 <tr>
35 <td align="right">Path to XML and XSL files:</td>
36 <td><input name="XMLpath" size="60"/></td>
37 </tr>
38 <tr>
39 <td align="right">XML file name:</td>
40 <td><input name="XMLfilename" size="60"/></td>
41 </tr>
42 <tr>
43 <td align="right">XSL file name:</td>
44 <td><input name="XSLfilename" size="60"/></td>
45 </tr>
46 <tr>
47 <td align="right"></td>
48 <td align="right">
49 <input type="submit" value="Submit Entries" />
50 <input type="reset" value="Clear Fields" />
51 </td>
52 </tr>
53 </table>
54 </form>
55 </body>
56 </html>

